
Executive Summary of the Thesis

Dynamic Selection Techniques for Federated Learning

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Andrea Restelli

Advisor: Prof. Luciano Baresi

Co-advisor: Tommaso Dolci

Academic year: 2022-2023

1. Introduction
Machine Learning (ML) is a specialized field
in Artificial Intelligence (AI) and computer sci-
ence, using data and algorithms to replicate hu-
man learning processes. Its prevalence is driven
by diverse datasets, cost-effective computational
processing, and affordable data storage. ML
applications span computer vision, e-commerce
recommendations, healthcare imaging, and self-
driving cars.
Deep learning’s rise in ML has led to a depen-
dence on extensive datasets, posing challenges
in data transmission and storage, including net-
work latency and privacy concerns. Federated
Learning (FL) addresses these challenges by
training algorithms across decentralized clients,
keeping local data within devices. Participating
devices retrieve the model from a central server,
conduct local model training with their respec-
tive data, and subsequently communicate the re-
sultant model back to the server. These model
weights are then aggregated, and the process can
repeat in subsequent iterations, referred to as
"rounds," until a satisfactory level of accuracy
is attained.
While numerous tools support federated learn-
ing, no standard has emerged, and gaps exist in
analyzing state-of-the-art techniques and tools.

2. Problem statement
FL offers distinct advantages over traditional
ML in distributed settings. FL enhances pri-
vacy by allowing local model training on decen-
tralized devices, reducing the need for data shar-
ing and minimizing privacy risks. Additionally,
it reduces communication overhead as data re-
mains on the local device, alleviating network
congestion.
However, FL introduces its own set of complex-
ities. One of the distinguishing challenges of FL
is the presence of statistical and system hetero-
geneity.
• Statistical heterogeneity arises from the

non-IID (non-independent and identically
distributed) nature of data on different de-
vices, coupled with significant variations in
the sizes of local data samples, influenced
by individual user behaviors. This diver-
sity in data distribution can impede model
convergence compared to the homogeneous
centralized dataset used in traditional ML.

• System heterogeneity encompasses varia-
tions in device attributes such as compu-
tational capabilities, memory, energy avail-
ability, and environmental factors like net-
work speed and reliability. In contrast to
the relatively uniform and robust machines

1



Executive summary Andrea Restelli

used in classic ML, FL contends with di-
verse and less predictable system condi-
tions.

To address these challenges, specialized plat-
forms and algorithms are imperative. Consider-
ing factors such as quality and size of local data,
computational resources, and device availability
can enhance client selection, mitigating the im-
pact of slower clients and refining the learning
process.
Existing solutions have tried to address these
challenges by means either of static solutions
that do not take into account the evolution of
the learning over the duration of the process or
either solutions that do not take into account
system heterogeneity.
Lastly, experimentation is difficult, given the
fact that setting up a realistic federated network
for experimentation presents notable challenges
and costs.

3. Contribution of the thesis
The goal of this thesis is to address the chal-
lenges outlined in Section 2, exploring method-
ologies and innovations to maximize the poten-
tial of federated learning while tackling its in-
herent complexities.
This thesis has three primary objectives: (1) an-
alyze available FL frameworks and select the
most promising one, (2) extend it with algo-
rithms for dynamic client selection during train-
ing, and (3) further extend it with algorithms
enabling resource-aware workload allocation to
clients during training.
A significant contribution of this thesis is the use
of an open-source framework, prioritizing repro-
ducibility and extendability. As highlighted in
Section 2, experimentation poses a critical chal-
lenge in federated learning. Thus, implementing
the solution in an environment favorable to easy
experiment reproduction in a simulated feder-
ated setting is crucial. At the same time, to
obtain meaningful results, the experimental en-
vironment should allow reproducing conditions
close to the real ones.
The work concludes with an experimental phase
to assess the impact of the introduced elements
compared to state-of-the-art techniques. This
experimental phase aims to closely replicate a
real federated environment and is designed for
ease of future reproducibility and extension.

4. Framework choice
Establishing a realistic federated network for ex-
perimentation poses significant challenges and
costs, especially in dealing with the inherent
heterogeneity and vast scale of real-world envi-
ronments. Replicating such diversity demands
acquiring or renting numerous devices, incur-
ring significant expenses. Additionally, geo-
graphic distribution introduces varying com-
munication times, posing logistical challenges.
Physical emulation mirrors real conditions but
lacks flexibility to simulate diverse network
states. Hardware-dependent outcomes hinder
reproducibility due to changes in capabilities
and network conditions.
Numerous federated learning frameworks strive
to navigate and mitigate these challenges.
TensorFlow Federated (TFF) facilitates open re-
search in federated learning, offering low-level
Federated Core APIs and high-level Federated
Learning APIs for model integration. FATE
is a business-ready framework supporting se-
cure computation protocols. While feature-rich,
its extensive modules can be complex, and us-
ability improvements are needed. FedJAX, a
JAX-based library, prioritizes ease of use for re-
searchers in developing and evaluating federated
algorithms. However, it lacks widespread popu-
larity and active maintenance. FedML provides
a comprehensive platform with versatile feder-
ated learning simulation, but its complexity may
pose a challenge for users. PySyft extends be-
yond FL, supporting remote data science with
privacy measures. Despite its potential, docu-
mentation gaps hinder clarity. Each framework
has its strengths, but challenges in usability and
documentation persist.
Among these frameworks, we selected Flower [1]
for the following reasons:
• User-Friendly: Flower prioritizes ease of

use with well-maintained documentation,
tutorials, and baselines, aligning perfectly
with the goal of enabling easy reproduction
of results by other researchers.

• Extendability: Flower offers flexibility
through numerous easily extendable classes,
allowing a focus on core algorithms without
navigating complex structures. This sets
it apart from frameworks like TensorFlow
Federated with intricate and poorly docu-
mented core APIs.

2



Executive summary Andrea Restelli

• Versatile Capabilities: Flower stands
out as one of the most versatile frameworks,
accommodating various client types and
supporting major machine learning frame-
works, making it suitable for diverse tasks,
from mobile to edge devices.

• Built-in Simulation Engine: Flower’s
simulation engine facilitates quick proto-
typing and verification of strategies, allow-
ing experimentation with different configu-
rations without limitations.

• Active Community and Popularity:
Flower’s popularity and active community
support ensure ongoing updates and main-
tenance, vital for long-term reproducibility
and research advancement.

In summary, Flower excels in user-friendliness,
extendability, versatility, simulation capabili-
ties, and community engagement, making it the
ideal platform for advancing federated learning
research in this thesis.

5. Implementation
As highlighted in Section 3, this thesis focused
its contributions in two directions: strategies for
dynamic selection of clients and strategies for
resource-aware workload allocation in federated
learning.

5.1. Dynamic selection
Five state-of-the-art strategies for dynamic
client selection were implemented and integrated
into the Flower framework to facilitate compar-
ison and to ensure straightforward reproducibil-
ity.

FedAvg

FedAvg [4] strategy serves as a benchmark for
client selection in federated learning. Consider
a setting with a predetermined set of K clients.
Each client k has a unique local dataset of size
nk. At the beginning of every round, this strat-
egy consists of selecting a random subset St of
clients, which represents a fraction C of the to-
tal clients. Flower provides a built-in FedAvg
implementation among its baselines, ensuring
seamless integration for new projects that wish
to benchmark against FedAvg. We leveraged
this built-in strategy, adapting it to our specific
clients and data-loading pipeline. This serves as

our baseline for comparing new techniques.

Dynamic sampling

This strategy overcomes FedAvg ’s static nature
by dynamically adjusting the number of clients
selected at each round [2]. It starts with a high
sampling rate, gradually reducing it with each
round to accelerate initial convergence. As the
federated model matures, fewer clients partici-
pate, conserving communication resources. The
exponential decay rate (β) governs the dynamic
sampling, ensuring fewer parameter transmis-
sions than static methods over rounds. The
dynamic subsampling, represented as R(t, β) =

1
exp(βt) , yields a dynamic rate c = C

exp(βt) , differ-
entiating it from static techniques. We extended
Flower to include Dynamic Sampling by creating
a custom Strategy.

pow-d

The base variant of the Power of Choice tech-
niques aims to select clients dynamically based
on their local losses, prioritizing those with
higher loss for faster convergence [3]. The strat-
egy involves three phases for server-side client
selection:

1. Sample Candidate Client Set: The cen-
tral server samples a set A of d clients,
choosing each client k with probability pk,
the fraction of data at the k-th client.

2. Estimate Local Losses: Server sends the
global model w(t) to clients in A for compu-
tation of local loss Fk(w

(t)).
3. Select Highest Loss Clients: The server

forms the active client set S(t) by choosing
the top m = max(CK, 1) clients with the
highest Fk(w

(t)), with ties broken at ran-
dom.

The implementation of this technique in Flower
involved creating a custom Server, Strategy, and
other classes for different variants (pow-d, cpow-
d, rpow-d) of the Power of Choice family.

cpow-d

The Power of Choice base strategy (pow-d) has
two primary drawbacks:

- Requires a preliminary phase where each
client evaluates the entire local dataset,
leading to increased computational over-
head.

3



Executive summary Andrea Restelli

- Involves all clients communicating their lo-
cal losses to the server in every round, in-
troducing additional communication cycles
and increased costs.

To address these issues, a more computationally
efficient variant, referred to as cpow-d, is pro-
posed. Unlike pow-d, cpow-d has clients com-
pute Fk on a mini-batch of b samples randomly
selected from Bk. This enhances efficiency by re-
ducing computational requirements, although at
the expense of potential loss representativeness.

rpow-d

The last Power of Choice strategy variant, rpow-
d, aims to address identified weaknesses of the
base strategy. It eliminates the initial phase, and
selected clients return their cumulative averaged
loss from local iterations when transmitting local
models to the server. The server uses the most
recently received loss value from each client as a
proxy for the loss in client selection. For yet-to-
be-selected clients, the most recent loss value is
set to ∞.

5.2. Resource-aware workload
allocation

To address the challenge outlined in Section 2 of
substantial resource variability across devices in
federated learning we present four Global Update
Optimizers as extensions of strategies to adjust
workload allocation at each client’s round initia-
tion. Expecting uniform workloads or consistent
performance across devices is unrealistic, thus
we aim to assign each client workload propor-
tional to its capabilities.

Static optimizer

The Static Optimizer sets epochs, batch_size,
and fraction_samples statically from configu-
ration file parameters, treating all devices uni-
formly. This basic implementation, lacking con-
sideration for device-specific features and dy-
namic behavior, is designated as the baseline for
comparison with more sophisticated techniques.

Uniform optimizer

The Uniform Optimizer assigns epochs,
batch_size, and fraction_samples to de-
vices by drawing from uniform distributions

within specified ranges, configured in YAML.
For device k, the number of epochs is sam-
pled from [epochs_min, epochs_max). Simi-
larly, batch_sizek and fraction_samplesk
are drawn uniformly from ranges
[batch_size_min, batch_size_max) and
[fraction_samples_min, fraction_samples_max)
respectively. This optimizer, aiming to emulate
computational workload heterogeneity, provides
a baseline for comparison against more adaptive
strategies.

Round Time optimizer

The RT (Round Time) Optimizer configures
batch_size and fraction_samples taking them
from configuration file. For each client k, the
number of epochs is assigned proportionally to
its computational power, measured by the iter-
ations per second (IPS). The device with the
highest IPS is assigned the maximum epochs
specified in the configuration. This approach
optimally utilizes faster devices by allocating
more computational load, preventing slowdowns
from slower devices with proportionally reduced
epochs. It exemplifies resource-aware workload
allocation, dynamically adjusting to variations
in clients’ computational capacities.

Equal Computation Time optimizer

The Equal Computation Time (ECT) Op-
timizer configures epochs, batch_size, and
fraction_samples based on a fixed computa-
tion time (comp_time) and individual client
IPS values.
For a client k with IPSk, local iterations are
computed as

local_iterationsk = comp_time · IPSk

If the number of epochs is the varying parame-
ter, epochsk is computed as:

epochsk =
local_iterationsk · batch_size

num_samplesk · fraction_samples

The optimizer allows variation in one parame-
ter, with the others set from the configuration
file. The choice of the varying parameter de-
pends on the scenario; for instance, varying the
fraction of samples risks inadequate updates for
low IPS, increased batch size may stress lim-
ited memory, and excessive epochs can lead to

4



Executive summary Andrea Restelli

overfitting. This approach ensures equal compu-
tation time across devices, addressing resource
variations.

6. Experiments
In this section, we detail the setup and execution
of experiments designed to evaluate the perfor-
mance of implemented federated learning tech-
niques, as introduced in Section 5. The experi-
ments aim to assess the impact of these strate-
gies on the federated learning process, consid-
ering metrics such as training accuracy, con-
vergence speed, test accuracy, and loss. We
exploited the built-in Flower simulation engine
to run two types of neural networks, a Multi-
Layer Perceptron and a deep convolutional neu-
ral network, on image classification tasks, specif-
ically using the MNIST and CIFAR-10 datasets.
To simulate realistic non-IID data distribution
among clients, the experiments utilize a data
partitioning method based on the Dirichlet dis-
tribution. Parameter α controls the extent of
data heterogeneity, with a smaller value of α in-
dicating greater data heterogeneity. The simula-
tions are executed on the CPU, with the option
to switch to GPU for larger networks. Flower’s
efficiency in managing a large number of clients
is leveraged to emulate a realistic federated envi-
ronment with diverse client characteristics. The
detailed setup ensures a comprehensive evalua-
tion of techniques under various conditions, al-
lowing for a nuanced analysis of their strengths
and weaknesses. We provide specific values and
configurations of experiments to enable the re-
producibility of results.
In Figure 1, we present a plot depicting results
from experiments, specifically comparing dy-
namic client selection strategies for CNN on the
CIFAR10 dataset partitioned with α = 0.6 to
create an unbalanced dataset. The findings indi-
cate the competitiveness of the dynamic strate-
gies against the static FedAvg strategy baseline.
In Figure 2, we present a plot showing results
comparing resource-aware workload optimizers
for MLP on the MNIST dataset partitioned with
α = 0.6. The findings indicate the competitive-
ness of our optimizers, dynamically considering
system properties, against strategies solely op-
timizing accuracy disregarding such considera-
tions.
The experiments’ results allowed us to formulate

Figure 1: Dynamic selectors, CNN on CIFAR10
with alpha=0.6, Test accuracy.

Figure 2: Workload optimizers, MLP on MNIST
with alpha=0.6, Test accuracy.

the following considerations:
• The Power of Choice strategies exhibited

effectiveness, particularly in unbalanced
datasets, outperforming FedAvg in terms of
convergence speed and stability.

• The dynamic sampling strategy, while con-
verging quickly, displayed performance in-
stability over time, attributed to its initial
involvement of a large number of clients.

• The static and RT optimizers consistently
performed well across diverse settings, with
the latter’s adaptive workload distribution
proving to be a close and efficient competi-
tor.

• The uniform optimizer, relying on a ran-
dom approach to workload distribution,
yielded poorer performance, emphasizing
the necessity for strategies considering

5



Executive summary Andrea Restelli

client-specific characteristics in federated
learning scenarios.

In summary, our experiments underscored the
significance of strategic client selection and
workload distribution in federated learning, par-
ticularly in heterogeneous and real-world scenar-
ios, to achieve effective and stable model train-
ing.

7. Conclusions
This thesis proposes extensions to Flower, a
highly promising framework for advancing fed-
erated learning research.
The platform offers several advantages:

• A comprehensive set of classes and inter-
faces that allow easy extension and integra-
tion of new strategies and techniques.

• Very well-maintained documentation and
an active community to support the devel-
opment of the project.

• An easy-to-use simulation engine that al-
lows replication of federated learning envi-
ronments close to reality, enabling easy re-
producibility of experiments and prototyp-
ing.

Building on this platform, our objective was
to address existing gaps in federated learning
research, specifically focusing on crucial open
issues such as dynamic client selection dur-
ing training and workload allocation considering
client properties and resources.
We presented four state-of-the-art strategies for
dynamic client selection, extended Flower to ac-
commodate them, and compared them against
the FedAvg baseline.
Subsequently, we proposed four strategies for
resource-aware workload allocation, extended
Flower to support them and integrated them
with the dynamic client selection techniques.
We finally experimented with the implemented
techniques by utilizing the built-in Flower simu-
lator. We simulated a federated learning setting
with 100 clients over 200 rounds and compared
the implemented techniques.
Our experiments revealed the competitiveness
of the proposed strategies with state-of-the-art
techniques, showcasing superior performance in
certain settings, such as heterogeneous clients.
Part of our work is currently in the process of be-
ing merged into the official repository of Flower,
which boasts over 3300 stars on GitHub. This

contribution positions us as part of the next gen-
eration of research in federated learning.

7.1. Future work
Even though the work considered multiple facets
of federated learning, it could be extended in
various directions:
• Further investigate dynamic selection and

resource-aware workload allocation by
proposing innovative strategies that take
into account multiple client properties,
such as battery life, signal level, or network
speed.

• Experiment with other tasks, such as natu-
ral language processing with advanced mod-
els like GPT and LLaMA, fueling research
interest in federated learning for such com-
plex models.

• Experiment with a real federated environ-
ment with multiple actual devices. These
experiments may reveal nuances not evident
in a simulated environment, such as clients
slowing down training due to lower compu-
tational power.

References
[1] Daniel J. Beutel, Taner Topal, Akhil

Mathur, Xinchi Qiu, Titouan Parcollet, and
Nicholas D. Lane. Flower: A friendly fed-
erated learning research framework. CoRR,
abs/2007.14390, 2020.

[2] Shaoxiong Ji et al. Dynamic sampling and
selective masking for communication-
efficient federated learning. CoRR,
abs/2003.09603, 2020.

[3] Yae Jee Cho et al. Towards understand-
ing biased client selection in federated learn-
ing. In Proceedings of The 25th Interna-
tional Conference on Artificial Intelligence
and Statistics, volume 151 of Proceedings of
Machine Learning Research, pages 10351–
10375. PMLR, 28–30 Mar 2022.

[4] Brendan McMahan et al. Communication-
Efficient Learning of Deep Networks from
Decentralized Data. In Proceedings of the
20th International Conference on Artificial
Intelligence and Statistics, volume 54 of
Proceedings of Machine Learning Research,
pages 1273–1282. PMLR, 20–22 Apr 2017.

6


	Introduction
	Problem statement
	Contribution of the thesis
	Framework choice
	Implementation
	Dynamic selection
	Resource-aware workload allocation

	Experiments
	Conclusions
	Future work


