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1. Introduction
Nowadays, digital techniques in music industry
and production are becoming more and more
popular alongside the classic analog ones or in
some cases directly replacing them. One of the
most innovative research area in this sense is
represented by the analog audio effect model-
ing, which exploits DSP (Digital Signal Process-
ing) or modern deep learning techniques to cre-
ate digital models of analog amplifiers, pedals
and other audio effects.
Two of the main non deep learning based
methodologies are represented by WDFs (Wave
Digital Filters) and block-oriented Wiener-
Hammerstein model. The first are a partic-
ular kind of digital filters based on physical
modeling principles; the second is a paramet-
ric model adaptable to many distortion effects.
Both methods present difficulty in handling mul-
tiple nonlinearities and they are often demand-
ing from a computational point of view.
Trying to overcome the difficulty in modeling
multiple nonlinearities, a deep learning based
method is introduced by Zhang’s [5] work. Al-
though the authors reported clearly audible dif-
ferences between the resulting model and the
target device. An improvement on perceptual
results is brought by Wright [4]. The paper

shows how good results can be achievable with
RNN (Recurrent Neural Network) and WaveNet
models, explaining also the possibility in terms
of real-time applications. Steinmetz and Reiss
[3] carry on Wright’s work applying a new model
based on TCNs (Tempoal Convolutional Net-
works) on a more complex audio effects (dy-
namic range compressor). It is shown how this
new architecture is more efficient from a com-
putational effort making the model particularly
suitable for real-time implementations.
In this thesis work we apply deep learning to
acoustic guitar pickup - microphone black-box
sound modeling. Since this is a new field of re-
search, we selected one of the most used deep
neural network in black-box sound modeling, a
RNN with an LSTM (Long Short Term Mem-
ory) unit [1]. In order to test this model, we
create a training dataset composed by pairs of
microphone and pick-up acoustic guitar record-
ings. Furthermore, we studied the loss func-
tion implemented by Wright [4] to see if it could
fit our task. We evaluated the best performing
model in terms of ESR (Error to Signal Ratio)
both in time and frequency domain. Finally, we
presented a comparison between different mod-
els based on the ESR values taking into account
also the author’s perceptual evaluation.
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2. Model and Methods
In order to accomplish our task, a deep learning
based approach is adopted. First implemented
in [4], the chosen neural network model is the
RNN (Recurrent Neural Network). This net-
work receives the piezo-electric pickup record-
ing as input and the cardiod microphone ones
as target.
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Figure 1: RNN model. The input xn goes first to
the LSTM unit and then into a fully connected
layer. The output of the latter is summed with
the initial xn to obtain the predicted output ŷn

Fig 1 shows the entire architecture. The RNN
network is composed by an LSTM (Long-Short
Term Memory) unit, followed by a Fully Con-
nected layer. At each time step n a single input
sample x[n] is fed into the LSTM unit. The
output of the latter goes into the Fully Con-
nected layer to produce a single output which
is summed with the initial input x[n] to obtain
the final predicted output ŷ[n]. By doing so,
the network just learns to predict the difference
between input and output samples.
The state of the LSTM unit is made of two vec-
tors: the hidden state h and the cell state c. For
each time step n, x[n], h[n− 1] and c[n− 1] are
used to calculate the LSTM’s output h[n] and
c[n].
The size of both the hidden and cell states is
equal to the LSTM’s hyperparameter hidden
size. Increasing the hidden size generally results
in the model being more accurate. However it
increases the number of learnable parameters in
the network, as well as the processing power re-
quired to run it. The PyTorch machine learning
library was used to implement the whole RNN
model.

2.1. Data acquisition process
The diagram of the data acquisition process is
shown in Figure 2. An acoustic guitar is simul-
taneously recorded from its piezo-electric pickup
and a professional microphone placed in front of

Audio Interface

Microphone

Acoustic Guitar

Mic in Guitar in Out

Laptop

Figure 2: Data acquisition process. The signal is
recorded simultaneously from the acoustic gui-
tar pick-up and a microphone using an audio
interface. Its output is connected via USB to a
laptop. Ableton Live® was used to record and
export the audio.

it. In order to do that, an audio interface is
used. A jack cable connects the guitar pickup to
the first channel, while an XLR cable carries the
microphone signal to the second channel. The
audio interface is connected to a laptop using
an USB cable. To record the multi-track we
relied on Ableton Live®. This software allow
us to record and edit multiple audio tracks at
the same time. Finally, all the recorded tracks
(pickup and microphone version) have been ex-
ported in mono audio files. The instrument has
been recorded in a small room with no particular
acoustic treatments.

2.2. Acquisition parameters and data
description

The guitar and microphone signals are acquired
at 44.1kHz. We obtain two mono audio tracks
for each recording. All the audio lengths are
between 1 and 2 minutes.
Figure 4 shows the time domain representation
of the two obtained signals. The curves exhibit
a different trend. The blue one referring to the
pick-up acquired signal is richer in high frequen-
cies components than the orange one referring
to the SM57. This characteristic is reflected in
time domain by the abrupt changes of the the
blue curve. We can observe it also in the spec-
trograms of the two signals in figure 3.
As a matter of fact, we can see that the energy
of the microphone one is concentrated more on
frequencies lower than 1 kHz. The pick-up spec-
trograms instead present a lot of energy also in
the mid-high frequencies. These differences can
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Figure 3: Spectrograms of the pick-up and microphone signals. The image refers to 1 second of audio.
For both images we have the guitar pick-up signal on the left and microphone signal on the right. (a)
refers to the entire audio bandwidth, (b) refers to a low-mids frequency band (0 Hz - 2 kHz).

be clearly heard in the two recordings. The mi-
crophone audio is characterized by a darker tone
with respect to the piezo pick-up one.

2.3. Pre-processing and training
Before entering in the network loop, the training
data are pre-processed. Since the majority of
the energy of the target is concentrated around
lower frequencies, a low pass filter is applied to
the input training signal. We use Butterworth
digital low pass filter.
In order to have balance between training and
validation data, each audio is split into 2 parts.
By doing so we increase the number and vari-
ability in the selection process. 70% of these
segments are assigned to the training data and
20% to the validation. Once the splitting is de-
fined, the training and validation arrays are ob-
tained concatenating the respective audio seg-
ments. Furthermore, as test data we used an
audio which is a mixture of guitar playing styles.
In order to be processed by the neural network,
the dimensions of the three data arrays are mod-
ified and they are converted into tensors. The

training array is split into overlapping batches
of segment_length = 7 second. Furthermore,
we use an overlap parameter to control the per-
centage of overlapping between two consecutive
segments.
The model is trained using Adam optimizer.
The RNN is trained for 1000 epochs. The val-
idation loss is calculated every three epochs. If
the validation loss does not improve within 200
epochs, the training stops. The starting learn-
ing rate value LRi = 0.01 is decreased dynam-
ically by a multiplicative factor k = 0.7 every
3 epochs the validation loss is not improving.
Furthermore, to avoid local minima the learning
rate is reset to 0.8LRi at epoch 500 and 0.1LRi

at epoch 700.

2.4. Loss function
We studied the loss function used in Wright’s
work [4]. For a signal of length N the loss func-
tion ε is the result of the sum of two contribu-
tions:

ε = εESR + εDC (1)
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Figure 4: Comparison between recorded signals and the network output in time domain. The image
shows 0.05 seconds of audio. The image refers to a guitar strumming audio. The blue one refers to
the signal recorded with the pick-up, the orange is obtained using the SM57 microphone and the green
one is the RNN output.

The first component is the error to signal ratio
(ESR) with respect to the training data, calcu-
lated as:

εESR =

∑N−1
n=0 |yp[n]− ŷp[n]|2∑N−1

n=0 |yp[n]|2
(2)

Where yp[n] and ŷp[n] are respectively the tar-
get signal and the output of the neural network
at sample n. For both signals a low-passed A-
Weighting filter has been applied. Its purpose is
to emphasise the frequencies in the loss function,
based on their perceived loudness. The denom-
inator in the ESR normalises the loss with re-
gards to the target signal energy. As a matter of
fact it prevents the loss function to be dominated
by the segments of signal with higher energy.
The second additional member εDC of the equa-
tion (1) represents the difference in DC offset
between the target and neural network output:

εDC =
| 1N

∑N−1
n=0 (y[n]− ŷ[n])|2

1
N

∑N−1
n=0 |y[n]|2

(3)

The target y[n] and the network’s output ŷ[n]
have not been filtered.
We calculated the two components of the loss
function for some of the audio segments and we
have seen that the contribution of the DC com-
ponents is always close to 0, on average in the
order of 10−4. Therefore we decide to neglect
the DC component and use only the ESR for
the loss evaluation.
In order to understand if the network is able to
learn using the εESR loss function, we built a

fake signal which tries to emulate what the net-
work should do with the original signal. The
fake signal is obtained as a sum of the input sig-
nal, at which a smoothing algorithm is applied,
with 4 sinusoids at different frequencies. We ob-
served that the fake signal has lower ESR values
with respect to the raw input, suggesting that
the loss function we chose could perform well on
the task we aim to.

3. Results
We analysed the output of the best performing
model in terms of ESR (Error to Signal Ratio)
score. The analysis of the network’s audio out-
put is carried out both in time and frequency
domain.
For what concern the time domain, the net-
work processing has a significant problem: since
the final audio is obtained by an overlap and
add process, discontinuities between two con-
secutive segments cause a click noise. The rea-
son of this issue regards the time step t as
t = (1 − overlap) ∗ segment_len which has a
jump. In order to solve this problem, we ap-
plied triangular windowing where each segment
is multiplied by a triangular window during the
overlap and add process. Each triangular win-
dow has a unitary amplitude and it share the
same length and overlapping factor of the audio
chunks.
Figure 4 shows results in time domain of an au-
dio characterized by strumming chords. As it
can be seen the RNN signal follows quite well
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Figure 5: Spectrograms of microphone, "best" network output and model "sum" output signals. The
image refers to 1 second of audio. For both images we have the microphone signal on the left, the
model "best" output in the center and the model "sum" output on the right. (a) refers to the entire
audio bandwidth, (b) refers to a low-mids frequency band (0 Hz - 2 kHz).

the microphone one, however it struggles during
abrupt changes (which correspond to high fre-
quency components), even if the overall trend is
respected.
Figure 5 shows at its center the spectrograms
of the network’s output. On one hand, figure
5a demonstrates the fact that those frequencies
higher than 3kHz are attenuated in the RNN
output with respect to the target, reflecting the
results obtained in the time domain. The main
reasons could be that the model is not com-
plex enough to capture all the high frequencies
characteristics of the target signal, or we do not
have enough data for the training. On the other
hand, figure 5b shows the network performance
in terms of low and mid range frequencies ( 80Hz
- 2kHz). It is appreciable how these components
are well represented in the model output.
In order to overcome high frequencies limitations
of the model previously described, we propose a
solution based on the consideration of two differ-
ent network’s outputs instead of relying just on
a single model. The two summed components

are respectively the output of the best perform-
ing model in terms of ESR loss and the output
of a simpler model (hidden size of 16 instead of
96), which slightly performs in a worse manner
in terms of loss but it presents a bigger number
of higher frequency components. As a result the
new gained complete spectrum (Fig. 1 - right)
has more energy in the upper range of frequen-
cies with respect to the best performing model
one (Fig. 1 - center). This change in the fre-
quency domain is appreciable also from a per-
ceptual point of view; as a matter of fact the
addition of the high frequencies makes all the
overtones of the acoustic steel strings audible.
We finally performed a perceptual analysis (con-
ducted by the author) among different models’
output. We found that the best performing net-
works in terms of ESR, are not necessarily the
best from a perceptual point of view. As we de-
scribed before, in the spectrogram of the best
model the frequencies higher than 3 kHz are at-
tenuated, this turns out in a darker tone of the
audio with respect to the target one. On the
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other hand simpler models maintain the high
frequency components giving a better percep-
tual impression, even with a lower ESR score.

4. Conclusions
This thesis aimed to black-box modeling acous-
tic guitar pickup - microphone sound using deep
leaning model based on a recurrent neural net-
work (RNN) with a long-short term memory
(LSTM) unit. The network has shown its ability
of following the trend of the target microphone
signal in time domain, given as input the pick-up
one. However, the model is not able to properly
capture the high frequencies components of the
spectrum, which are attenuated for frequencies
greater than 3 kHz. Moreover, we proposed a
solution based on the combination of two differ-
ent models which seems to produce appreciable
auditory results, comparable with the original
microphone recordings.
As we describe in Section 3, a possible problem
we can highlight corresponds to the fact that the
best model output does not correspond to the
best perceptual audio results. Since the percep-
tual analysis is conducted by the author of this
thesis, we suggest as a future development to
verify the perceptual analysis with a proper test
such as webMUSHRA (Multiple Stimuli with
Hidden Reference and Anchor) [2].
We also know there is room for improvements re-
garding the used data acquisition process, which
has been done in a small room with no special
acoustic treatment. A possible solution we sug-
gest is to redo the data acquisition process in
a controlled environment such as an anechoic
chamber. As a consequence all room’s spectral
components contributions are eliminated.
Moreover, we find that all the proposed models
reach a plateau in the training process. Because
the complexity of the task, a possible cause could
be the lack of data. Therefore we propose as a
future development to expand the dataset with
a new set of acoustic guitar recordings using the
same equipment. In this sense, a further step
could be to try modeling different type of mi-
crophones, defining different training dataset for
each one of them.
Following Wright [4] and Steinmetz’s works [3],
we suggest to do a real-time implementation of
the model to see its computational effort, which
could be compared with two or more other neu-

ral network models.
To the best of our knowledge, there are no pre-
vious researches on this thesis’ task. Therefore,
our main contribution to the state of the art
is given by the demonstration that the acous-
tic guitar pickup - microphone sound modeling
can be done using deep neural networks. To con-
clude, we believe this work represents a first step
in this newer field of research.
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