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Abstract

Modern developments in electric mobility and continuously merging microgrids
with high penetration of renewable energy sources have surged the demand for
battery energy storage systems as a viable solution for storing the energy. The
growing trend of the battery energy storage application in the last decade has
given rise to recent investigations into battery energy storage management which
aims to improve battery energy storage performance and extend the battery life-
time by reducing operational stresses, such as overcharging, deep discharging and
overheating.

Battery energy storage safe operation and management rely on precise observation
of the battery states, such as State-of-Charge and State-of-Health. The mentioned
states have to be estimated as it is not possible to measure them directly.

In the literature, different battery State-of-Charge estimation methods are im-
plemented considering a specific battery cell technology and application. Con-
sequently, the identification of an appropriate State-of-Charge estimation method
able to work properly in different applications and operational constraints is a chal-
lenge. Moreover, the choice of the suitable State-of-Charge estimation method is
further hindered by the existing trade-off between complexity and accuracy offered
by each method.

To address the aforementioned challenges, the present thesis is mainly focusing
on developing the most frequently used Model-based State-of-Charge estimation
methods by modeling a lithium nickel manganese cobalt oxide (NMC) battery cell,
which is one of the most successful lithium-ion battery cell technologies within the
industry sector.

The Model-based estimation structures developed with three different equivalent
circuit models and verified State-of-Charge estimators, are tested by applying dy-
namic and constant current profiles at different C-rates and operating tempera-
tures. The results achieved through the tests are used for comparison and evalua-
tion of Model-based structures to identify the accuracy of each algorithm, as well
as their advantages and constraints concerning the possible applications.
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Sommario

I moderni sviluppi nella mobilità elettrica e la continua evoluzione delle microreti
con alte penetrazioni di fonti rinnovabili, stanno aumentando la domanda di sistemi
di accumulo di energia elettrica. La crescita di queste applicazioni, nell’ultimo
decennio ha portato a un grande sviluppo di soluzioni di accumulo a batterie
elettrochimiche gestite da sistemi elettronici di conversione. Ciò ha dato origine a
diversi studi associati alla gestione della carica delle batterie al fine di migliorarne
le prestazioni e prolungarne la vita utile riducendone gli stress operativi (come
sovraccarico carica/scarica e temperature operative eccessive).

Un funzionamento e una gestione sicura della batteria si basa quindi sull’osservazio-
ne dello stato della stessa, come lo stato di carica o lo stato di salute, che deve
essere osservato con precisione. Va notato che qualunque sia lo stato della bat-
teria di interesse, questo deve essere stimato in quanto non è possibile misurarlo
direttamente.

Considerando lo stato di carica della batteria, nella letteratura sono disponibili
diversi metodi sviluppati ed utilizzati in considerazione di una specifica tecnologia
di batteria e applicazione. Di conseguenza, identificare un metodo appropriato di
stima dello stato di carica di una particolare tecnologia di accumulo considerando
applicazioni diverse è di per se una sfida. A complicare il problema è anche impor-
tante sottolineare che il compromesso esistente tra complessità e precisione è un
ulteriore ostacolato alla scelta di un metodo di stima dello stato adeguato a più
applicazioni.

Per affrontare le sfide di cui sopra, la presente tesi si concentra principalmente
sullo sviluppo dei metodi di stima dello stato di carica basati sui modelli più fre-
quentemente utilizzati, sviluppando una batteria al Litio Nichel-Manganese-Ossido
di Cobalto (NMC), che è una delle batterie al litio di maggior successo tra le tec-
nologie delle celle a batteria agli ioni di Litio. Le strutture di stima dello stato di
carica basate sul modello sono sviluppate considerando tre diversi modelli equiv-
alenti di batteria e tre stimatori dello stato di carica. Ciascuna delle strutture di
stima dello stato di carica è stata testata considerando profili di corrente dinamici
e costanti (con tassi di C diversi) e temperature di esercizio differenti. I risultati
ottenuti attraverso i test vengono utilizzati per confrontare e valutare le strutture
di stima dello stato di carica basate su modello per identificare l’accuratezza di
ciascun algoritmo di stima dello stato di carica della stessa batteria in diversi casi
operativi.



Chapter 1

Introduction

This chapter represents the all-inclusive introduction to the present study and the
fundamental concepts used in this thesis.

1.1 Context and Motivation

The lithium-ion battery cell technologies have proven their capability to store a
significant amount of energy for a quiet long time. These criteria have promoted
the lithium-ion Battery Energy Storage Systems (BESS) application in modern
mobility (e.g. electric vehicles) and stationary (e.g. microgrids) solutions [1].
Consequently, many studies have analyzed the BESS from different perspectives,
particularly trying to enhance BESS sizing, management, and performance con-
cerning the application requirements.

One of the important factors frequently addressed in the literature is the battery
State-of-Charge (SoC), which indicates the relative amount of energy stored in a
battery cell, defined as the ratio of the available capacity of the battery cell to
its nominal capacity. Accurate estimation of SOC not only ensures battery cell
safe operation, prevents overcharging, avoids deep discharging, and improves the
battery life, but also allow the application to make rational control strategies to
save more energy.

The battery SoC cannot be measured, thus to determine its value, different esti-
mations methods can be employed. These methods mainly use the realistic data
collected from measurable variables of the battery cell, such as terminal voltage,
current, and operating temperature to perform the state estimation.

The battery SoC can be estimated offline, for which the battery must be detached
from the load or charging source. Although offline SoC estimation is only based
on direct measurements and simple, it is time-consuming and not efficient due
to the fact that the BESS operation is interrupted for a quiet long period of
time required for the battery to reach a chemically stable point where accurate
measurement can give precise SoC estimation [2]. Therefore, it can be concluded



that the offline method is mainly suitable for battery cell characterizing analysis
by the manufacturers, and the modeling purposes.

Mentioned disadvantages and the requirements of the modern applications have
raised interest in the Model-based SoC estimation methods, which are capable to
perform online SoC estimation, and reach desirable accuracy with the cost of higher
complexity. The latter has led to the enduring trade-off between the accuracy and
the complexity of the existing SoC estimation methods. Thus, making the best
trade-off is the main motivation for the present study that aims to evaluate and
compare the Model-based SoC estimation algorithms with respect to accuracy,
complexity, and applicability by providing a clear insight into the advantages and
disadvantages of each algorithm.

This objective cannot be achieved by simply referring to the literature due to the
fact that the SoC estimation methods are mostly evaluated considering a par-
ticular application (e.g. specific battery cell technology, C-rate, and operating
conditions). Consequently, a comprehensive study is required to address the chal-
lenges associated with the recognition of the suitable SoC estimation method for
the desired application.

1.2 Literature Review

Since 1980 that the first lithium-ion battery was created, different research studies
have been investigated to provide more in-depth knowledge of the battery cell
characteristics and performance. The majority of these studies tend to address
the topics related to the application of different commercial lithium-ion battery
cells, such as lithium cobalt oxide (LCO), lithium iron phosphate (LFP), lithium
manganese oxide (LMO), and lithium nickel manganese cobalt oxide (NMC), which
are widely used in Electric vehicles (EVs) and electrical grids where distributed
generation is realized using Renewable Energy Sources (RES).

Studies [3–7] are based on comparing different Lithium-ion battery cell technologies
by characterizing each cell based on specific power, specific energy, safety, lifespan,
cycling at low/high C-rates, and thermal stability. The studies also include the
manufacturing costs of lithium-ion batteries employed for different applications.

Mentioned studies agree that the lithium-ion batteries benefit from high energy
density, low self-discharge rate, and require low maintenance. However, the man-
ufacturers are constantly improving lithium-ion battery cell technologies in a way
that new and more enhanced chemical combinations for battery cell development
are introduced frequently. Therefore, more studies should be investigated to assess
the advantages and disadvantages of each technology.

The comparative approach is similarly implemented in [8–11], which analyze the
sizing and economics of different grid-connected lithium-ion BESS. These studies
reveal that BESS sizing and technology are the key factors influencing the cost-
efficiency of implementing energy storage systems due to high manufacturing costs
of the lithium-ion battery cells. However, it is predicted that the lithium-ion
battery cell price will be reduced due to recent technology improvements.
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Although these studies incorporate valuable information that facilitate the recogni-
tion of suitable cell technology with respect to application, they are not addressing
the BESS management and control.

Battery Management Systems (BMS) is responsible for managing the output,
charging, and discharging the battery as well as preventing operational stresses.
Practical analysis and design of BMS are the topics addressed in [12–15]. The
authors have provided a comprehensive methodology to realize lithium-ion BESS
management and control systems focusing on the conditions and requirements of
a specific application. In these studies, the battery states such as SoC and State-
of-Health (SoH) are considered among the factors that need to be observed by the
BMS to implement the optimum control strategy. However, in these studies the
state estimation procedure and methods are not analyzed thoroughly.

Accordingly, the battery state estimation methods are extensively studied during
the recent decade trying to introduce a precise method that can fulfill the BMS re-
quirements. Studies [16,17] propose different SoC estimation methods and provide
an inclusive description of the proposed methods. On the other hand, the research
works [18,19] are categorizing and comparing the different SoC estimation methods
aiming to highlight the advantages and drawbacks of each method. The results
verify robustness and accuracy of the Model-based SoC estimation methods.

For further analysis of the Model-based methods with respect to application con-
ditions and constraints, the research studies [20–24] introduce different battery cell
models and studies [25–32] include different SoC estimation algorithms that can
be used to realize the Model-based SoC estimation structure.

The majority of the mentioned studies are using the modern control techniques
and adaptive filtering methods to provide accurate SoC estimates, which are also
compared in [33–35] considering a single battery cell model developed for a verified
battery cell technology.

It is worth noting that, the Model-based SoC estimation is continuously improving
by enhancing the battery cell models and introducing novel and hybrid estimation
algorithms as in [36–41]. The new SoC estimation techniques tend to improve
estimation accuracy by eliminating the flaws described for the other algorithms.
However, some of these techniques are developed recently and further research is
required to evaluate their performance with different battery cell technologies and
conditions.

According to the literature review, numerous research works have implemented the
Model-based method for the lithium-ion battery cell technologies. Although these
studies represent successful approaches resulting in high SoC estimation accuracy,
they are not including the evaluation of different battery cell models in integration
with different SoC estimation algorithms for a unique battery cell technology. The
latter is addressed in the present thesis, which provides more comprehensive and
inclusive analysis of the most used Model-based SoC estimation methods.
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1.3 Adopted Battery Cell technology

The battery cell technology adopted for the present study is known as NMC battery
cell with a solution of lithium hexafluorophosphate (LiPF6) in a mixture of organic
solvent ethylene carbonate and ethyl methyl carbonate as the electrolyte. The
cathode chemistry is nickel manganese cobalt oxide and the anode is graphite.

NMC batteries are among the frequently used lithium-ion batteries in the industry,
e-bikes, EVs, and medical devices due to their high specific power, capacity, and
extended lifetime.

Cathode combination of nickel and manganese has enhanced NMC batteries with
high specific energy and low internal resistance. Additionally, low amount of cobalt
in the cathode combination has resulted in lower cost and a higher market share in
comparison to other lithium-ion battery cell technologies. The NMC battery cells
are characterized with the lowest self-heating rate among all lithium-ion technolo-
gies. This is the other highlighted feature that has improved their safe operation
and performance.

The adopted battery cell nominal voltage is 3.6 V, and the nominal capacity is
equal to 8 Ah. The cell is manufactured as a pouch cell with 16 layers and the size
is equal to 105× 100× 7.05 mm with weight equal to 157 g [42].

1.4 Model-Based SoC Estimation

Model-based SoC estimation methods are verified as robust and efficient techniques
that can be implemented for online SoC estimation. The lithium-ion battery cell
technologies are complex electrochemical systems with non-linear and time-variant
characteristics. Therefore, for SoC estimation, the Model-based methods with a
closed-loop structure can be the promising solution as they are able to improve
the estimation by reducing the error. This property also makes the Model-based
SoC estimation methods less dependant on the estimated initial SoC.

The Model-based SoC estimation structure is illustrated in Figure 1.1. As it can
be seen, the Model-based SoC estimation structure consists of a battery model
and the SoC estimation algorithms.

The model inputs are obtained through direct measurements of the battery charg-
ing/discharging current and temperature. The Coulomb Counting (CC) method
is used for predicting primary SoC that is required by the battery model for pa-
rameter identification.
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Figure 1.1: Model-Based SoC estimation structure.

The Model-based SoC estimation is based on the assumption that the battery
model is equivalent to the real battery cell so that it can simulate the battery
behavior with significant correspondence [21]. Therefore, considering identical
inputs for both battery cell and the model, it is expected that the output voltage
simulated by the battery model will be equal to the real battery terminal voltage.
However, in real applications, the model and sensors, which are used to measure
the input parameters, are non-ideal and noisy. The presence of the noise and
inaccuracies in model development are the main sources of the SoC estimation
error.

To reduce the error, the SoC estimator tends to calculate a system gain based on
the deviation between battery model output and the actual battery cell terminal
voltage. The calculated gain is efficiently used for correcting and improving the
estimated SoC. However, it should be noted that the estimator gain is not used
for correcting the modeling errors. Thus, the model accuracy has an inevitable
effect on the SoC estimation obligating the precise battery modeling for achieving
better results.

To reach trusted and precise estimation results, the battery model must be devel-
oped considering the cell electrochemical characteristics. Studies have shown that
battery electromotive force, which is used to approximate the battery Open-Circuit
Voltage (OCV), can be measured with respect to SoC variation.

The resulting OCV-SoC function, which is nonlinear monotone for NMC battery
cells contains the fundamental information required for SoC estimation and BESS
management [11,43]. Therefore, accurate OCV measurement is pivotal for battery
modeling.

Precise OCV measurement is complex since the battery behavior is affected by
its transient state, Hysteresis phenomena, charging and discharging rate (C-rate),
and aging. Therefore, the impact of each factor must be analyzed and considered
during the battery cell modeling process.
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The electrochemical processes, such as diffusion and charge-transfer occurring at
the interface between electrolyte and electrodes are responsible for the dynamic
battery voltage transient, which is visualized in Figure 1.2 .

It can be seen that, there is an immediate voltage drop once the discharging current
pulse with C-rate of 1C (8 A) is applied at t = 2.21× 104 s. This sudden voltage
drop, which is indicated by (4V1), is caused by the internal resistance of the cell,
and the resistance of active material, such as electrolyte and current collector.

During the discharging process at a constant 1C rate, the battery cell voltage shows
an exponential decay (4V2), which is mainly caused by the surface reactions and
the diffusion effects.

At t = 2.245× 104 s, as the discharging current pulse goes to zero, an immediate
voltage rise (4V3) can be observed. The sudden voltage rise can be explained
by pointing out that the effect of the cell internal resistance is removed when
the battery current is equal to zero. However, the battery cell is still affected by
the surface reactions and the diffusion effects that are shown by an exponential
rise (4V4), which demonstrates that the OCV converges to the steady-state value
gradually.

Accordingly, for modeling the battery cell precisely, the OCV value must be mea-
sured after the end of the charging/discharging sequence, and allowing the battery
to reach steady-state considering adequate relaxation time.

The exponential decay and rise in the battery voltage transient state can be mod-
eled considering specific time constants, which will be further discussed in Sec-
tion 2.1. The relaxation time required for each battery cell varies according to cell
technology and age.

Figure 1.2: Battery cell transient state when a discharging current pulse with C-rate of 1C is applied.

By further analysis in battery cell, it has been observed that in real battery cells,
the OCV measured at a certain SoC is not equal to a single and stable value and
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its value varies within a specific range. This effect is described as Hysteresis
phenomena [44].

The voltage hysteresis, which is time-independent and changes only with respect
to SoC variation, has positive value during the charging process and negative value
during the discharging process; leading to different charging/discharging efficiency.

In the modeling process, the effects of charging/discharging current rate and the
temperature on battery cell capacity should be considered as well. The effective
capacity, which indicates the amount of energy that can be extracted from the
battery, is lower when the battery is discharged with high C-rate since there isn’t
enough time for completion of the electrochemical processes inside the battery
cell [17].

The effect of the battery cell temperature on its effective capacity can be analyzed
using a constant current discharge test. The test is conducted at 3C rate (24 A)
at different temperatures equal to 288.15 K, 298.15 K, and 318.15 K. The test
results are shown in Figure 1.3. More detailed description of the constant current
discharge tests is given in Section 4.1.

The results show that the battery effective capacity is elevated when the operating
temperature is higher. The higher operational temperature lowers the battery
internal resistance and facilitates the electrochemical reactions within the battery
cell. However, prolonged cycling at high temperatures will shorten the battery
lifetime.

Figure 1.3: The battery cell effective capacity at the constant current discharge with C-rate of 3C at
temperatures 288.15 K, 298.15 K, and 318.15 k.

Another factor that needs to be considered for battery cell modeling is aging.
Battery aging increases the cell internal resistance and degrades the battery cell
capacity through the time. It should be noted that aging is inevitable. However,
avoiding battery high rate cycling not only increases the battery effective capacity,
but also decelerates battery cell aging.
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1.5 Structure of the Thesis

The thesis is organized as follows: The battery models adopted for this study and
the model development procedure are described in Chapter 2.
Chapter 3 provides introduction to the SoC estimation algorithms and a detailed
explanation of each algorithm working principle and simulation.
Battery testing profiles, conditions, and test execution process are described in
Chapter 4.
Chapter 5, is used for representing the obtained results and discussing the obser-
vations.
Finally, Chapter 6 is devoted to the conclusion and future research work recom-
mendation.
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Chapter 2

Battery Modeling

Different battery cell models studied in the literature [45–47], can be categorized
as:

• Electrochemical models;

• Empirical/Analytical models;

• Data-Driven models;

• Electrical models.

The listed models are capable to simulate the battery cell operation in some re-
gards and comprise the important modeling factors described in Section 1.4. Each
model provides specific pros and cons. Therefore, employing a suitable model
must be based on the operational conditions, application constraints, and required
accuracy.

Electrochemical models, are developed to describe the electrochemical pro-
cesses inside the battery cell using the nonlinear Partial Differential Equations
(PDEs) [22,48]. The equations are able to simulate the battery dynamic behavior
precisely. However, the high computational effort and model complexity are two
major drawbacks of the Electrochemical models.

Empirical/Analytical models, which are also known as simplified Electrochem-
ical models, are developed using the reduced-order PDEs considering only the es-
sential nonlinear characteristics of the battery cell. Consequently, compared to the
Electrochemical models, both the computational burden and model accuracy are
decreased [45,49].
One of the frequently used Empirical model is battery Impedance model which is
developed using electrochemical impedance spectroscopy techniques [50].
In brief, attempting to reach higher accuracy using Electrochemical and Empirical
models will lead to undesirable complexity.



Data-Driven models are developed using data mining methods and Artificial
Intelligence (AI) tools to simulate the battery cell performance [51,52].

The data used at the model training stage is of paramount importance since it has
a direct impact on model accuracy. Ease of use is a distinct advantage of Data-
Driven models as they consider the battery system as a black-box. However, to
reach higher accuracy, these methods require extensive training data-set. So it is
necessary to collect adequate data implying more time-consumption and requiring
numerous battery tests under different operational conditions. Furthermore, The
complexity of these models prevents wide usage of AI based SoC estimations, since
the computation resources available at real-life applications, such as EVs, are not
enough for executing the estimations.

Electrical models known as Equivalent Circuit Models (ECMs) simulate the
battery cell properties using electrical circuit elements, which make battery cell
performance more comprehensible [24]. ECMs are widely used for SoC estimation
in electrical grids with high penetration of RES and electric mobility applications
due to their simple structure and adequate accuracy.

ECMs require lower computational resources with respect to Electrochemical mod-
els and provide further flexibility in application. However, it should be noted that
the circuit elements parameter identification, which is the fundamental stage of
developing an ECM , can be intricate and time-consuming.

Furthermore, as the model parameters are optimized considering the laboratory-
test conditions, operating ECMs in a different condition might reduce the model
accuracy [2].

Several other approaches toward maximizing the model accuracy by combining
different battery cell models (e.g. Electrochemical models and ECMs) have been
made to build hybrid models which benefit from the advantages of every single
model. However, resulting hybrid models suffer from high complexity and applica-
bility issues. To be more straight forward, a list of advantages and disadvantages
of each battery cell model is reported in Table 2.1.

Considering the features described for each battery model, the ECMs are the op-
timal choice for the present study since their performance has been qualified for
real-time (online) Model-based SoC estimation methods according to the investi-
gated research works in recent years [53–55].
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Table 2.1: Brief comparison of different battery cell models

Cell Model Advantages Disadvantages
Recommended

Application

Electrochemical
Models

- High accuracy;
- Correspondence to the real
battery.

- Requiring high computational effort
due to model complexity;
- Requiring fundamental knowledge
of the battery electrochemical
properties.

- Battery designing;
- Lifetime estimation.

Empirical
Models

- Higher abstraction and
computational efficiency.

- Not being able to model the battery
with high fidelity.

- Battery designing;
- Battery parametric
analysis;
- Lifetime estimation.

Data-Driven
Models

- High accuracy;
- Not requiring a fundamental
knowledge of battery
electrochemical properties.

- Developing an extensive training
data-set is laborious.

- SoC estimation;
- Real-time BESS
management and control.

ECMs
- Desirable accuracy;
- Applicationally flexible
and easily implemented;

- Complex parameter identification
procedure;
- Not being able to extrapolate well
under different operational conditions.

- Online SoC estimation;
- Real-time BESS
management and control.

Main principle of ECMs is to take battery current, operating temperature, and
SoC as the system inputs and model dynamic terminal voltage of the battery cell
as the output. Different ECMs existing in the literature can be categorized as:

• Linear (Rint) model;

• Thevenin-Based models;

• Partnership for a New Generation of Vehicles (PNGV) models;

Further description about the model characteristics and development are given in
the following sections. For more information about the PNGV, readers can refer
to [24].

2.1 Adopted Equivalent Circuit Models

Recalling the main purpose of the current study, Linear model and the Thevenin-
based models are employed since they fulfill the balance between model complexity
and accuracy required for online Model-based SoC estimation considering the NMC
battery cell technology.

Linear model, also known as Rint model is developed considering the battery cell
internal resistance. The Linear model circuit is shown in Figure 2.1. The ohmic
resistance Rint indicates the battery energy loss in the form of heat energy, which
increases the battery operating temperature through cycling.

The battery OCV is modeled by an ideal voltage source (VOC) and VT is used to
indicate the model terminal (output) voltage.
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Figure 2.1: Linear model circuit diagram.

Although the Linear model is simple and easily applicable, it is not able to model
battery transient response including diffusion voltage and the hysteresis phenom-
ena.

The equation governing the Linear model is given as:

VT = VOC −RintIbat (2.1)

Where Ibat represents the battery current.

According to (2.1), the model terminal voltage (VT ) is equal to the battery OCV
when battery current is equal to zero( Ibat = 0).

On the other hand, during charging/discharging process (Ibat 6= 0), the model is
able to simulate the instantaneous change in voltage with respect to SoC variation.
Consequently, this model is mostly employed for steady-state analysis and when
the battery OCV-SoC function is approximately linear.

Thevenin-based models are the most frequently adopted ECMs for SoC esti-
mation purposes [24].

These models are composed by adding resistor-capacitor networks (RC pairs) to
the Linear model. The RC pairs are able to emulate the battery transient state
including diffusion voltage and concentration polarization effects.

The Linear model with a single RC pair known as the first-order Thevenin
model is shown in Figure 2.2.

The first-order Thevenin model benefits from one time constant (τ1 = R1 × C1),
to increase the model accuracy and fulfill the shortcomings of the Linear model.

12



Figure 2.2: First-order Thevenin model circuit diagram.

The equations describing the first-order Thevenin model are given as:

V̇1 = − 1

τ1
V1 +

1

C1
Ibat (2.2)

VT = VOC − V1 −RintIbat (2.3)

Where V̇1 represents the derivative of the RC pair voltage (V1) with respect to
time.

It is possible to improve the model precision by connecting the second RC pair. The
resulting model, known as the second-order Thevenin model, is represented
in Figure 2.3.

Figure 2.3: Second-order Thevenin model circuit diagram.

Studies present clear evidence that the second-order Thevenin models adopted for
online SoC estimation, perform with desirable accuracy for certain battery cell
technologies.

The model is enhanced with two different time constants (τ1 = R1 × C1) and
(τ2 = R2 × C2) that facilitate the simulation of the short-term and long-term
transient responses related to both electrochemical polarization and concentration
polarization.
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The equations describing the second-order Thevenin model are given as:

V̇1 = − 1

τ1
V1 +

1

C1
Ibat (2.4)

V̇2 = − 1

τ2
V2 +

1

C2
Ibat (2.5)

VT = VOC − V1 − V2 −RintIbat (2.6)

It should be noted that adding the second RC pair has also increased model com-
plexity. Thus, it is even possible to reach higher precision by adding more RC pairs
if sufficient computational resources are available, and the application constraints,
such as model complexity are not taken into account.

2.2 Model Development

The parameter identification process for ECMs is based on experimental data
collected through the laboratory tests. Therefore, numerous tests at different
conditions are required in order to develop an accurate battery cell model.

The model circuit elements (VOC , Rint, R1, C1, R2, and C2) are not constant and
vary with respect to the battery SoC and temperature [42]. Hence, to simulate
the battery cell performance, each parameter should be identified.

In the present study, the battery self-discharge, which is usually modeled by ohmic
resistance, is not considered due to the fact that it is relatively low for NMC
and Lithium-ion battery technologies (2 - 3% per month). Moreover, the battery
hysteresis phenomena, the SoH estimation, and battery aging analysis are out of
the scope of present study. Consequently, the model parameters are developed as
a function of SoC and operating temperature. The model performance is tested
considering different C-rates and temperatures.

To identify each model parameter, a Hybrid Pulse Power Characterization (HPPC)
test is intended by combining both charging and discharging current pulses to
determine the battery power characterization profile. The HPPC test is performed
with fully charged cell, and repeated at each 10% increment of SoC, until the cell
got fully discharged. The pulse sequence included:

• Discharging the cell with current rate equal to 3C (24 A) for 10 s, followed
by 180 s relaxation time;

• Charging the cell with current rate equal to 3C for 10 s, followed by 180 s
relaxation time;

• Discharging the cell with current rate equal to 1C (8 A) until the SoC vari-
ation is equal to 10%, followed by 3600 s relaxation time;

The HPPC test current profile is shown in Figure 2.4. It should be noted that
sufficient time must elapse until the battery reaches electrochemical equilibrium
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before applying the next test current pulse. Considering relaxation time after
every test sequence makes the testing process complicated and time-consuming.

Figure 2.4: HPPC test profile.

2.3 Battery Cell Model Simulation

MATLAB Simulinkr is used to model the ECMs adopted for this study. To build
the ECMs, the related mathematical equations described in (2.1) - (2.6) are taken
into account and for each of the model parameters (VOC , Rint, R1, C1, R2, and
C2), a lookup table is developed considering the break-point specifications equal
to 0 to 100% with 10% increments for SoC and three different temperature rates
equal to 288.15 K, 298.15 K, and 318.15 K. Cubic Spline algorithm is applied to
identify the exact value of each model parameter according to the estimated SoC
and measured temperature.

The lookup tables are connected to the corresponding variable electric elements as
shown in Figure 2.5, which represents the Linear model.

Figure 2.5: Simulated Linear ECM

The battery cell open-circuit voltage (Voc) is simulated with a controlled voltage
source. A controlled current source is hired to inject the battery cycling current
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(Ibat), and an ideal voltage sensor, which converts the voltage measured between
any electrical connections into a physical signal proportional to the voltage, is used
to measure the simulated terminal voltage of the simulated ECMs.

Similar structures are developed to realize the first-order Thevenin model and the
second-order Thevenin model, which are represented in Figure 2.6 and Figure 2.7,
respectively.

Figure 2.6: Simulated first-order Thevenin model.

Figure 2.7: Simulated second-order Thevenin model.

The accuracy and performance of the developed models can be verified by compar-
ing the simulated terminal voltage (VT ) and the battery terminal voltage measured
through the HPPC tests. The comparisons are illustrated in Figure 2.8, Figure 2.9
and Figure 2.10, which represent the HPPC test result at 298.15 K (25◦ C) for
each battery cell model.
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It can be seen, that the models, which are developed independently, simulate the
battery cell with acceptable accuracy and the model outputs are only slightly
different.

The model validation with the HPPC tests at 288.15 K and 318.15 K are illustrated
in Appendix A. The indications show that the models are capable to simulate the
actual cell behaviour at different temperatures. The latter specify the compatibil-
ity of the developed models.

Furthermore, it is observed that the battery cell models developed using the data
collected from the HPPC test at 318.15 K demonstrate higher accuracy. This can
be explained by referring to the effect of the temperature on the actual battery
cell performance. Higher operating temperature enhances the electrochemical pro-
cesses inside the battery cell, reduces the battery internal resistance, and improves
the battery cell’s consistent performance.

Figure 2.8: HPPC test voltage for Linear model at 298.15 K.
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Figure 2.9: HPPC test voltage for first-order Thevenin model at 298.15 K.

Figure 2.10: HPPC test voltage for second-order Thevenin model at 298.15 K.
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Chapter 3

SoC Estimation Algorithms

Referring to Model-based SoC estimation described in section 1.4, it can be noticed
that the Coulomb Counting (CC) method is responsible to provide primary SoC
estimate required for model parameter identification. However, the CC is not the
main SoC estimator since the Model-based SoC estimation methods are generally
enhanced with more accurate SoC estimation algorithms.

Regarding the modern control theory, different adaptive filtering algorithms, such
as Recursive Least Square, Particle Filter (PF), H infinity (H∞) filter, Kalman
Filters (KFs), Luenberger observer, and the sliding mode observers could be em-
ployed to serve as the main SoC estimator [17,56].

Numerous studies have applied the CC as the most common direct SoC estimation
method and the KF algorithms as the efficient adaptive filtering methods. This is
due to the fact that KF algorithms are computationally robust in comparison to
the other suggested adaptive filtering algorithms.

The KF algorithms estimate an unknown system state variable based on the dy-
namic model of the system, system inputs, and the data collected by measuring the
observable variables, which are considered to contain a certain level of uncertainty.

For the battery cell system, the uncertainties in battery current measurement can
be considered as system process noise since they may alter the state of the system,
and the voltage sensor inaccuracies can be modeled as the measurement noise
because they are not affecting the system state directly. Taking these in mind,
it can be concluded that KF can be an optimum solution as it can attain precise
estimations by using self-correction mechanism when the measurements include
statistical noise and sensor errors.

The KF algorithm assumes that all the system noises are Gaussian. Therefore,
it is possible to derive state estimation by implementing the Gaussian sequential
probabilistic inference solution.

Different KF algorithms with specific properties can be found in the literature [17].
However, considering the non-linear characteristics of the NMC battery cell, Ex-



tended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are adopted
for the present study since the Linear Kalman Filter (LKF), generally known as
Kalman filter, works properly when the system is linear.

Consequently, the following sections are devoted to the in-detail description of the
CC, EKF, and UKF estimators, including the theoretical and operational concepts.

3.1 Coulomb Counting

CC method uses the charging/discharging current for SoC estimation. The method
is based on integrating the active flowing current (Ibat) measured over the specific
time interval to indicate the amount of charge the battery cell has lost or gained
in Ampere-second.

The amount of charge drawn from or supplied to the battery cell during the charg-
ing or discharging process per unit cell nominal capacity (Qrated) indicates the SoC
variation in percentage. Summing this value with the predetermined SoC at (t0),
denoted as initial State-of-Charge (SoC0), will result in the updated SoC estimate.

The CC equation is given by:

SoC(t) = SoC0 −
∫ t

t0

ηIbat(τ)

Qrated
dτ (3.1)

Where η indicates the Coulombic Efficiency (CE) that models the losses during
the charging/discharging process. CE is the ratio of the total charge extracted
from the battery during discharge process to the total charge put into the battery
during the charging process through a full battery cycle. It should be noted that
in the present study, the current is considered positive for the discharging process
and negative for charging in the present study.

The CC method is simply applicable and computationally efficient. However, there
are several factors that affect the accuracy of the SoC estimations.

First, as it was described in Section 1.4, the battery cell capacity is affected by the
C-rating and operating temperature, which means that considering the constant
capacity (Qrated) as reference would cause a non-negligible error.

Second, the inaccuracy in estimation of SoC0 and approximation of η, may be the
other source of the estimation error.

Finally, the current measurement is not ideal and the current flowing from/to the
battery cell is different from what is measured due to the existing sensor error and
measurement noise. Moreover, by using the CC method the self-discharging and
leakage currents are usually neglected.

The mentioned factors are the main reasons for the integrated error and drift in
the estimated SoC, which cannot be compensated since there is no feedback or
correction mechanism. The latter confirms the necessity of using EKF or UKF as
the main estimators for the Model-based SoC estimation.
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3.2 Extended Kalman Filter

The EKF, which is the extended version of the standard LKF, is capable to execute
state estimation in integration with the nonlinear systems.

The estimation procedure, which is based on the sequential probabilistic inference
solution is valid for both LKF and EKF under the assumption that the noises are
Gaussian. However, to cope with nonlinear systems, the EKF uses the lineariza-
tion technique, analytically applied at each operating point. The linearization
technique is computationally efficient when the system is not highly nonlinear [2].

To use EKF estimator, the battery cell system should be modeled using the
discrete-time state-space equations given in (3.2) and (3.3).

xk = f(xk−1, uk−1) + wk−1 (3.2)

yk = g(xk, uk) + vk (3.3)

Where xk and yk represent the system state vector and the system output measured
at time step (k), respectively. The state transition function f(xk−1, uk−1) is defined
based on the previous state and the measured system input (u) which are indicated
by time index (k− 1) and the measurement function g(xk, uk) is defined based on
the current state of the system and the input at time step (k). The elements wk
and vk depict the process and measurement noises, respectively.

Both wk and vk are considered additive and independent white Gaussian noises
with zero mean and specified covariances equal to Qw and Rv, respectively.

According to characteristics of the battery cell system employed for this study
the functions f(xk, uk) and g(xk, uk) are non-linear and from the functional point
of view, the state transition function f(xk−1, uk−1) is used to predict the current
state of the system based on the previously estimated state and the measurement
function g(xk, uk) is used to predict system output based on the current state of
the system.

The system state vector is defined based on the battery cell model. Therefore, for
Linear model the state vector can be defined as:

xk =
[
SoCk

]
(3.4)

and for first-order Thevenin model it can be written as:

xk =

[
SoCk
V1,k

]
(3.5)

Finally, for the second-order Thevenin model it is defined as:

xk =

SoCkV1,k

V2,k

 (3.6)

The system input (uk) is equal to the battery current (Ibat) measured in discrete-
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time with sampling time (Ts). The battery cell terminal voltage (VT )is considered
as the measured system output (yk).

The EKF linearization technique, which tends to linearize system equations at
every operating point, is realized by applying Taylor series expansion with the
simplifying assumptions that the higher-order terms are negligible and the func-
tions f(xk, uk) and g(xk, uk) are differentiable at every point in their domains.
The stated simplifying assumptions are the main drawbacks restricting EKF ap-
plication for highly non-linear systems.

By applying the first-order Tylor series expansion, (3.2) and (3.3) can be rewritten
in the linear form, given as:

xk = Ak−1xk−1 +Bk−1uk−1 + wk−1 (3.7)

yk = Ckxk +Dkuk + vk (3.8)

Where Ak, Bk, Ck, and Dk are the matrices analytically determined with partial
derivatives (Jacobians) of the system functions f(xk, uk) and g(xk, uk) with respect
to system state xk and the measured input uk as given in (3.9) - (3.12).

Ak =
∂f(xk, uk)

∂xk

∣∣∣∣
xk=x̂+k

(3.9)

Bk =
∂f(xk, uk)

∂wk

∣∣∣∣
wk=wk

(3.10)

Ck =
∂g(xk, uk)

∂xk

∣∣∣∣
xk=x̂−k

(3.11)

Dk =
∂f(xk, uk)

∂vk

∣∣∣∣
vk=vk

(3.12)

where the notation “ˆ” indicates the estimated values and the notations “-” and
“+” are denoting the prior and posterior estimates, respectively.

Considering system functions f(xk, uk) and g(xk, uk) and the state vectors defined
for each model, the matrices Ak, Bk, Ck, and Dk will have different in dimensions
and the elements for each battery cell model.

For second-order Thevenin model, the Jacobian matrices can be defined as:

Ak =

1 0 0

0 e
−Ts
τ1 0

0 0 e
−Ts
τ2

 (3.13)
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Bk =

 − ηTs
Qrated

R1(1− e−
Ts
τ1 )

R2(1− e−
Ts
τ2 )

 (3.14)

Ck =


∂Voc
∂SoC

∣∣∣∣
SoCk
−1
−1

 (3.15)

Dk =
[
−Rint

]
(3.16)

For the first-order Thevenin model and linear model, the Jacobian matrices Ak,
Bk,and Ck can be defined by reducing the order of the matrices by removing the
elements in the corresponding rows and columns. The Jacobian matrix Dk is the
same for all ECMs developed for this study.

Having stated these, the recursive approach implemented by EKF can be described.
The recursive calculation is initialized with the best guess of the current state and
its error covariance(P+

0 ), given as:

x̂+
0 = E

[
x0

]
(3.17)

P+
0 = E

[
(x0 − x+

0 )(x0 − x+
0 )T

]
(3.18)

The notation “T” indicates the matrix transpose.

The initialization step is followed by the six analytical steps denoted as prediction
and correction, which begins by propagating the mean and covirance of the input
system state through the linearized system functions, described as:

• Step 1: State - estimation time update
In this step, the priory state (x̂−k ) is predicted based on the posterior esti-

mated state (x̂+
k−1) and the measured input (uk−1), given as:

x̂−k = Ak−1x̂
+
k−1 +Bk−1uk−1 (3.19)

The posterior estimated state (x+
k−1) is set equal to (x̂+

0 ) when the EKF
recursive calculations are executed for the first time.

• Step 2: Error covariance time update
In this step, the error covariance (P−

x̃,k), which indicates the uncertainty

of the state estimation achieved in (3.19), is calculated based on the error
covariance of the posterior state (P+

x̃,k−1) and the process noise covariance

(Qw).

P−
x̃,k = Ak−1P

+
x̃,k−1A

T
k−1 +Qw (3.20)
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The error covariance of the posterior state (P+
x̃,k−1) is set equal to (P+

0 ) when

the EKF recursive calculations are executed for the first time.

• Step 3: System output prediction
In this step, the system output (ŷk) is predicted based on the prior state
estimated in (3.19) and the updated measured input (uk), given as:

ŷk = Ckx̂
−
k +Dkuk (3.21)

• Step 4: EKF gain matrix calculation
In this step, the EKF gain matrix (Lk) is calculated according to the error
covariance achieved in (3.20) and the measurement noise covariance (Rv).

Lk = P−
x̃,kC

T
k

[
CkP

−
x̃,kC

T
k +Rv

]−1
(3.22)

• Step 5: State estimate measurement update
In this step, the posterior state (x̂+

k ) is estimated based on the prior esti-
mated state, EKF gain matrix, and comparing the actual system output
(yk), obtained by direct measurement from the actual battery cell, with the
predicted system output (ŷk).

x̂+
k = x̂−k + Lk(yk − ŷk) (3.23)

The estimation achieved in this step will be substituted with the initializa-
tion state (x̂+

0 ) used for the next recursive approach.

• Step 6: Error covariance measurement update
In this step, the error covariance indicating the uncertainty of the estimates
achieved in (3.23) is computed as:

P+
x̃,k = (I − LkCk)P−

x̃,k (3.24)

where (I) indicates the identity matrix.

The error covariance calculated in this step will substitute (P+
0 ) for the

the next recursive approach. The error covariance computed in this step is
expected to have lower value in comparison to the error covariance achieved
in (3.20), since the EKF gain matrix is used to apply corrections to the
previously estimated values and increase the estimation accuracy.

The recursive approach executed by EKF is illustrated in Figure 3.1 ,which pro-
vides better insight into what has been discussed in this section.

There are two drawbacks for the EKF estimation algorithm. First, according
to the battery cell system, the actual value of the state vector is unknown and
it is considered as a random variable with a Gaussian distribution. Therefore,
propagating only a single point (Gaussian mean) through the non-linear system
functions may not be enough for producing precise estimations.

Second, the linearization process that leads to the linear approximation of the
system functions around the mean of the input Gaussian distribution may increase
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the inaccuracy and affect the estimation results adversely, such that a probable
error in system modeling or estimating the initial state might lead to diverging
results [2, 17].

Figure 3.1: EKF recuresive state estimation flowchart.

For further information about the EKF estimation algorithm, it is recommended
that readers refer to [2]

3.3 Unsented Kalman Filter

The UKF, which can be denoted as the updated version of the EKF, is the other
frequently used state estimator that tends to improve estimations by addressing
the drawbacks mentioned for the EKF. To do so, the UKF uses discrete-time
filtering with Unscented Transform (UT) instead of the linearization technique.

To use UKF, the battery system should be modeled in a discrete-time, identical to
what has been done in (3.2) and (3.3). The previously given information regard-
ing the system state vectors, measured input and output, and the characteristics
described for the process and measurement noises are also valid for the UKF.

The UKF working principle is to select a deterministic set of sampling points called
sigma points on the Gaussian distribution of the system state vector. The selected
sigma points are assigned weights in a way that the sum of the weights is equal to
1. Weighted sigma points are then propagated individually through the nonlinear
system functions f(xk, uk) and g(xk, uk).

It is important to mention that propagating a random variable with Gaussian
distribution through a nonlinear function will not result in a Gaussian distribution
anymore. In this regard, the UT is responsible to approximate the Gaussian
distribution of the transformed sigma points and to compute the corresponding
mean and covariance.
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The number of sigma points required by UT to approximate the output Gaussian
distribution using the transformed sigma points, is equal to (2n + 1) when the
input mean and covariance are given in n-dimensions.

The first sigma point is the mean of the Gaussian and the others are symmetrically
spread around the mean. The spread of sigma points is controlled by scaling factors
denoted as Alpha (α), Kappa (κ), and Beta (β).

The spread is directly affected by the scaling factor Alpha and the square root of
the scaling factor Kappa. Therefore, to control and limit the spread of the sigma
points close to the mean, both Alpha and Kappa factors must be set to small values.
The typical range for the scaling factors Alpha and Kappa are 10−3 ≤ α ≤ 1 and
0 ≤ k ≤ 3 , respectively [2, 57]. The scaling factor Beta, which incorporates the
prior information of the state distribution, typically takes scalar values greater than
zero. The optimal value of the scaling factor Beta for Gaussian state distribution
is equal to β = 2. Assigning smaller values for the scaling factors will enable the
UKF to easily track only a single peak in the probability distribution of the state.
The latter possibly increases the precision of the state estimation.

Additionally, selecting the deterministic set of sigma points provides considerable
advantages that distinguish UKF from EKF. Due to the fact that the linearization
process is avoided, there will be no need to apply first-order Taylor series and com-
puting the Jacobian matrices. Therefore, the system functions being differentiable
at all operating points is no longer required, which means the UKF performance
would be comparably better than EKF when the system under study is highly
non-linear.

It is evident that using the set of points instead of one will relatively increase the
complexity of the estimation algorithm. However, the UKF with a minimal set of
sigma points would be computationally efficient in comparison to the PF algorithm
which uses the higher number of randomly chosen points denoted as particles to
simulate the input distribution.

It is necessary to go through a few important definitions before describing the UKF
state estimation recursive calculation, which is also based on sequential probabilis-
tic inference with six steps.

To implement UKF, a state vector (µk) should be defined to include the system
state, the process noise, and the measurement noise at time index (k) as:

µk =

 xk
wk
vk+1

 (3.25)

which can be reported in the posterior estimation form, as:

µ+
k−1 =

x̂+
k−1
w
v

 (3.26)

including the mean values of all the random vectors with Gaussian distribution
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affecting the system. The dimension of the state vector (µ+
k−1) is used to define

the number (n) which is used to identify the number of the sigma points required
for the state estimation process. It will be recalled that the mean values for the
process noise and the measurement noise are considered equal to zero.

The covariance matrix corresponding to the random state vector can be defined
as:

Pµ,+x̃,k−1 =

P+
x̃,k−1

Qw
Rv

 (3.27)

The matrices defined in (3.26) and (3.27) are used to produce the sigma points,
as:

χk−1 =


µ+
k−1

µ+
k−1 +

√
(n+ λ)Pµ,+x̃,k−1

µ+
k−1 −

√
(n+ λ)Pµ,+x̃,k−1

 (3.28)

where (χk−1) is the matrix of the sigma points, chosen on the input state vector,
and the scaling parameter (λ) is equal to:

λ = α2(n+ κ)− n (3.29)

After sigma points origination, it is possible to consider each row of its matrix as
a separate section given as:

χk−1 =

χxk−1
χwk−1
χvk−1

 (3.30)

Where (χxk−1),(χwk−1), and (χvk−1) depict the randomness of the estimated state,
the process noise, and the measurement noise, respectively.

It is now possible to represent the summarized UKF recursive approach, initialized
with the best prediction of the system state and its covariance, given as:

x̂+
0 = E

[
x0

]
(3.31)

P+
x̃,0 = E

[
(x0 − x+

0 )(x0 − x+
0 )T

]
(3.32)

and followed by propagating the individual sigma points through the state transi-
tion function.

• Step 1: State - estimation time update
In this step, the prior state of the system is estimated using the transformed
sigma points and the measured input value, given as:

χx,−k,i = f(χx,+k−1,i, uk−1, χ
w,+
k−1,i) (3.33)
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x̂−k =
2n∑
i=0

γiχ
x,−
k,i (3.34)

Where subscript (i) denotes the individual sigma point and the (χx,−k,i ) de-

picts the matrix of the transformed sigma points. Finally, the prior state is
estimated based on the weighted average of the transformed sigma points.
This is done considering the weightening constant for mean computaions
(γi) equal to:

γ0 =
λ

n− λ
(3.35)

γi =
1

2(n− λ)
(3.36)

• Step 2: Error covariance time update
In this step, the error covariance indicating the uncertainty of the prior state
estimation is calculated based on the weighted sum of the results achieved
for every sigma point (i) as:

P−
x̃,k =

2n∑
i=0

ρi(χ
x,−
k,i − x̂

−
k )(χx,−k,i − x̂

−
k )

T
(3.37)

where the weightening constant for covariance computaions (ρi) is equal to:

ρ0 =
λ

n+ λ
+ (1− α2 + β) (3.38)

ρi =
1

2(n+ λ)
(3.39)

• Step 3: System output prediction
In this step, the system output is estimated first, by propagating each of
the transformed sigma points and updated input measurement through the
system measurement function, and then calculating the weighted average,
as:

Yk,i = g(χx,−k,i , uk, χ
v,+
k−1,i) (3.40)

ŷk =

2n∑
i=0

γiYk,i (3.41)

Where (Yk,i) represents the matrix of individual sigma points propagated
through the system measurement function.

• Step 4: UKF gain matrix calculation
In this step, the UKF gain matrix (Lk) is calculated based on the covariance
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matrices, given as:

Pỹ,k =
2n∑
i=0

ρi(Yk,i − ŷk)(Yk,i − ŷk)T (3.42)

P−
x̃ỹ,k =

2n∑
i=0

ρi(χ
x,−
k,i − x̂

−
k )(Yk,i − ŷk)T (3.43)

Where arguments are previously calculated in steps 1 to 3. Therefore, the
UKF gain matrix will be:

Lk = P−
x̃ỹ,kP

−1
ỹ,k (3.44)

• Step 5: State estimate measurement update
Similar to step 5 of the EKF recursive approach, in this step, the posterior
state (x̂+

k ) is estimated based on the prior state, EKF gain matrix, and com-
paring the measured system output (yk) and the predicted system output
(ŷk), given as:

x̂+
k = x̂−k + Lk(yk − ŷk) (3.45)

• Step 6: Error covariance measurement update
The final step is also driven by computing the error covariance which indi-
cates the error bound and uncertainty of the posterior state estimated in
step 5, as:

P+
x̃,k = P−

x̃,k − LkPỹ,kL
T
k (3.46)

The estimation achieved in steps 5 and the error covariance calculated at step 6
will be substituted for the initialization parameters in the next recursive approach.

The UKF recursive calculations are visualized in Figure 3.2, in order to provide
better insight into what has explained in the aforementioned steps. For further
information about the UKF estimation algorithm, it is recommended that readers
refer to [2, 17,31,58,59]
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Figure 3.2: UKF recursive state estimation flowchart.

3.4 Estimator Simulation

To realize the Model-based SoC estimation structure, it is necessary to understand
how to build and implement each block to enhance the integrated performance of
the simulated system.

As described earlier, the CC algorithm is employed as the primary SoC estimator.
To realize the CC in practice, the discrete-time summation is implemented instead
of continuous integration to enhance the SoC updating process in each time step.
The equation of the discrete-time CC algorithm is given in (3.47).

SoCk = SoCk−1 −
Ts

Qrated

k−1∑
j=0

ηIbat,j (3.47)

Where Ts represents the sampling time and the subscript (k) denotes the time
index.

The simulated CC algorithm is shown in Figure 3.3. As it can be noted, the battery
cell nominal capacity (Qrated), which is typically reported in Ampere-hour, should
be converted to the Ampere-second based on the sampling time chosen for the
model operation. A unit delay block is used for sampling the battery current. A
memory block is inserted to save the current SoC required as (SoCk−1) for the
next time step. The CE (η) is multiplied to the battery current, which is realized
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with a gain block. Finally, a saturation block is used in the output to limit the
SoC range between 0 - 100%.

Figure 3.3: Simulated CC algorithm.

To implement the EKF and UKF in simulations, first, the system state transition
and measurement functions are developed using Simulink function blocks [23].
The developed functions are later used within the EKF and UKF blocks that are
implemented using MATLAB control system toolbox.

To perform the state estimation, the system functions are not the only parameters
required by EKF and UKF estimators. The process noise covariance, measurement
noise covariance, the initial state of the system, the initial error covariance, and
the scaling factors α, κ and β are the other parameters that should be set as well.
The mentioned parameters will be briefly denoted as the tuning parameters
of the EKF and UKF estimators. In the present study, EKF and UKF tuning
parameters, and the test conditions are defined in a way to be inclusive and to
provide a meaningful and precise comparison of the Model-based SoC estimation
algorithms. The applied conditions and parameters can be summarized as:

• To simulate measurement noise two independent noise with power equal to
1×10−3 and 1.5×10−3 are considered to be added to the input current and
the model output voltage, respectively.

• Each test is initialized with specific (SoC0) described in Chapter 4. The
initialization states defined for both EKF and UKF estimators according to
each model are given in (3.48) - (3.50) for second-order Thevenin model,
first-order Thevenin model, and Linear model, respectively.

x̂+
0 =

[
SoC0 0 0

]
(3.48)

x̂+
0 =

[
SoC0 0

]
(3.49)

x̂+
0 =

[
SoC0

]
(3.50)

To define the initialization states, it has been considered that the battery
cell is allowed to reach the chemical equilibrium through adequate relaxation
time. The initialization values corresponding to RC pair voltages are set to
zero as the battery current is considered equal to zero at t0.

• The initial error covariance defined for both EKF and UKF estimators re-
garding the second-order Thevenin model, is given as:

P+
0 =

[
10−3 10−1 10−1

]
× I3 (3.51)
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where I3 represents the identity matrix of order 3. Accordingly, for the
first-order Thevenin model, it can be written as:

P+
0 =

[
10−3 10−1

]
× I2 (3.52)

where I2 represents the identity matrix of order 2. Finally, for Linear model
it can be written as:

P+
0 =

[
10−3

]
(3.53)

The initial error covariance matrices should be defined based on the initial-
ization error. Therefore, if it is assumed that the predicted initial states are
accurate and trusted, it is possible to assign lower values for the error ma-
trices. Accordingly, in case the accuracy of the initial states are not assured,
higher values should be assigned for the error covariance matrices.

• The process noise covariance defined for both EKF and UKF estimators con-
sidering the battery cell models are given in (3.54) - (3.56) for second-order
Thevenin model, first-order Thevenin model, and Linear model, respectively.

Qw =
[
10−8 10−6 10−6

]
× I3 (3.54)

Qw =
[
10−8 10−6

]
× I2 (3.55)

Qw =
[
10−8

]
(3.56)

The process noise covariance matrix indicates the amount of variance and co-
variance of the system states. The diagonal elements of Q show the variance
of each state variable, and off-diagonal elements demonstrate the covariances
between the different state variables. In this study, the covariance of the sys-
tem state variables is considered zero since they are uncorrelated, and their
variances, which are obtained empirically, are set to lower values indicating
that the spread of the state variables is close to the mean of the distribution.

• The measurement noise covariance defined for both EKF and UKF estima-
tors considering the battery cell models is given in (3.57), which is identical
for all the models.

Rv =
[
10−2

]
(3.57)

In this study, the measurement noise covariance matrix contains only the
variance of measurement related to the battery cell terminal voltage. The
value is defined considering that the standard deviation of the measurement
is equal to (S = 0.1) which indicates that measurement value spread is close
to the mean of the Gaussian distribution.

• The UKF scaling factors are defined empirically as α = 10−2, κ = 0, and
β = 2 to increase the accuracy of the UKF estimator.

• The sampling time defined for both of the estimator and the measurements
is considered equal to (TS = 0.1 s).
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Chapter 4

Battery Testing Profiles

Battery testing is one of the most fundamental procedures that can be conducted
to serve different purposes, such as qualification testing, safety and abuse testing,
and performance testing.

The qualifications testing is designed to confirm the specifications introduced
by the battery cell manufacturers and to verify whether the battery cell fits the
desired operating conditions and requirements. The qualification testing includes
the battery dynamic mechanical and environmental tests as well as the battery
charging system tests to ensure that both systems are compatible and the battery
cell will not experience irreversible overcharging stresses.

Safety and abuse testing are designed to verify that the battery cell is not a
danger for the user or to itself under expected or worst-case accidental or delib-
erate abuse. Conditions to be investigated include vehicle crashes, exposure to
external environments, and electrical charger malfunctioning. The data collected
from these testings are used to ensure that the battery cell complies with the safety
requirements and standards defined by national and international organizations.

Underwriters Laboratories (UL), American National Standards Institute (ANSI),
Canadian Standards Association (CSA), and International Electrotechnical Com-
mission (IEC) are among the organizations that have published standards con-
cerning battery cell qualification, safety, and performance.

The performance testing is designed to verify whether the battery cell is able
to deliver its specified power when needed. The performance testing includes
the constant current discharge tests and constant, variable, and special power
discharge tests that are all conducted considering the battery cell application and
charging/discharging traits [60].

Battery cells and testing conditions are affected by various factors which may lead
to deceiving results that possibly allow battery cells to mask the operational defi-
ciencies. Therefore, the test conditions must be specified in a way that repeatable
and meaningful results can be obtained.



Battery cell manufacturers are liable for their own end products. In this regard,
they are responsible to conduct different tests to certify that the produced battery
cells comply with the standards. However, the testing results achieved by the
manufacturers only reflect the new battery specifications which do not consider
battery aging and fading effects caused through the real-life application. The
latter explains the reason why performance testing is of high importance.

The present study considers the performance testing conditions simulating the
electric mobility and stationary applications, to compare and evaluate the online
Model-based SoC estimation accuracy. For test execution, the battery cell CE is
considered equal to (η = 97%), and the sampling time is set to (Ts = 0.1 s).

To be more inclusive each test is repeated at four different temperatures equal
to 288.15 k, 298.15 k, 308.15 k, and 318.15 K considering the typical battery
operational temperature range in real-life applications. The extensive description
of each test purpose and conditions are given in the following subsections.

4.1 Constant Current Discharge Test

Constant current discharge tests are performance testing types that are conducted
with a sequence of discharging pulses at constant C-rate to evaluate the effective
capacity of the battery cell.

In this study, a constant current with C-rate equal to 3C (24 A) is applied to the
fully charged battery cell (SoC0 = 100%) to discharge the battery continuously
without considering any relaxation time.

The 3C rate is denoted as the fast cycling C-rate that assumes that the battery
cell will be required to deliver 24 A for 20-minutes. However, as a high discharge
rate reduces the battery effective capacity, at 3C rate, the battery cell reaches the
minimum discharge voltage corresponding to (SoC = 0%), faster. The constant
current discharge test profile is shown in Figure 4.1.

Figure 4.1: Constant current discharge test profile at 3C rate.
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4.2 Federal Urban Driving Schedule Test

Federal Urban Driving Schedule (FUDS) is a standard variable power discharge
test which is designed by US Advanced Battery Consortium (USABC) testing
procedures.

The FUDS regime aims to simulate the effects of EV driving (including regener-
ative braking) on the performance of the battery cell. The regime is originally
designed based on a complex 1372 s time-velocity profile collected from a specific
vehicle driving data and then converted to the dynamic power-time profile [60].

To use the FUDS regime, the battery cell with (SoC0 = 80%) is charged with
constant C-rate of 0.5C until the battery cell is fully charged. After 8543 s relax-
ation period elapsed, the battery cell is discharged with the same C-rate until the
battery cell SoC drops to 80%. Considering enough relaxation time, the FUDS
profiles are applied continuously end-to-end with no relaxation time between them,
starting from t = 18954 s until the battery cell is fully discharged. The total test
duration is equal to 3.068× 104 s.

FUDS test profile is represented in Figure 4.2.

Figure 4.2: FUDS test profile.

4.3 Dynamic Stress Test

Dynamic Stress Test (DST) is the other variable power discharge regime that tends
to simulate the discharging profile based on the data collected from driving a real
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vehicle. The test is designed by USABC with a dynamic 360 s profile including
regenerative breaking [60,61].

To use the DST regime, first, the battery cell is fully charged with constant C-rate
of 0.5C, followed by 1.42 × 104 s relaxation period. Then the battery cell is dis-
charged with the same C-rate until the battery cell SoC drops to 80%. Relaxation
period of 0.42× 104 s is considered at this stage. Finally, the DST profiles are ap-
plied end-to-end repeatedly with no relaxation time between them, starting from
t = 2.30× 104 s until the battery cell reaches the minimum discharge voltage.

The DST test profile is represented in Figure 4.3. The test is initialized with
SoC0 = 60%. The total test duration is equal to 3.44× 104 s.

Figure 4.3: DST test profile.

4.4 Constant Current Cycling Test

Constant Current cycling test is designed to evaluate both the battery cell model
performance and the SoC estimator accuracy when the battery is continuously
cycled with the specific current rate in the SoC range between 20 - 70% .

The test profile that is represented in Figure 4.4 includes the sequence of dis-
charging current pulses at C-rate of 1C applied for 1432 s, each followed by 125 s
relaxation time and a charging pulse at 0.5C rate for 1730 s. The test starts with
an initial SoC0 equal to 50%. Then the battery is charged up to SoC = 72% and
discharged to SoC = 32%. The cycling profile is applied repeatedly, afterwards.
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According to the test profile, the cycling proceeds for 2.85× 105 s.

Figure 4.4: Constant current cycling test profile

4.5 High Regime Cycling

The High regime cycling test is designed to evaluate the battery cell model per-
formance and the SoC estimator accuracy when the battery cell is cycled with a
low current C-rate of 0.2C in a high regime partial charge/discharge cycle which
means the battery cell cycled as the it consistently contains 70% of it nominal
capacity available.

The test profile is given in Figure 4.5, which represents that the test is initialized
with SoC0 = 70% and the battery cell is discharged and charged once within the
SoC range equal to 78 - 45%. Then the High regime cycling regime is applied
continuously.

The expected SoC variation at each cycle is equal to 10% and the total test duration
is equal to 4.91× 105 s.
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Figure 4.5: High regime test profile.

4.6 Low Regime Cycling

The low regime cycling test is similar to the High regime cycling test. However,
this test tends to evaluate the model-based SoC estimation precision by cycling
the battery cell at a 0.2C rate in a low regime partial charge/discharge cycle as
the battery cell charge is always kept below 30%.

The Low Regime test profile is shown in Figure 4.6. The test is initialized with
SoC0 = 20% and the battery cell is charged and discharged once up to 57%
and then, the low regime cycling profile is applied repeatedly. The expected SoC
variation at each cycle is equal to 10% and the total test duration is equal to
4.88× 105 s.
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Figure 4.6: Low regime test profile.
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Chapter 5

Results And Discussions

In this chapter, the SoC estimation results and the estimation error obtained from
different tests are represented. The tests include HPPC, FUDS, DST, Constant
current cycling, High regime cycling, and Low regime cycling profiles. The results
are sorted with respect to the corresponding battery cell model in the following
sections. To be able to demonstrate the SoC estimation error and compare the
results from the precision point of view, a Reference SoC is considered which is
obtained by the ideal integration of the battery cell current. To do so, the current
measurement sensor error and noise are considered to be zero and the battery cell
CE is set to 100%.

5.1 Results for Linear Model

The test results for running six different tests on the Model-based SoC estimation
equipped with the Linear model are reported at a temperature equal to 298.15 k
(25◦ C) in Figure 5.1 - Figure 5.12, which include the SoC estimation results and
the corresponding estimation error.

Figure 5.1: HPPC test - SoC estimation for Linear model at 298.15 K.



Figure 5.2: HPPC test - Estimation error for Linear model at 298.15 K.

Figure 5.3: FUDS test - SoC estimation for Linear model at 298.15 K.

Figure 5.4: FUDS test - Estimation error for Linear model at 298.15 K.
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Figure 5.5: DST test - SoC estimation for Linear model at 298.15 K.

Figure 5.6: DST test - Estimation error for Linear model at 298.15 K.

Figure 5.7: Constant current cycling test - SoC estimation for Linear model at 298.15 K.
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Figure 5.8: Constant current cycling test - Estimation error for Linear model at 298.15 K.

Figure 5.9: High regime cycling test - SoC estimation for Linear model at 298.15 K.

Figure 5.10: High regime cycling test - Estimation error for Linear model at 298.15 K.
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Figure 5.11: Low regime cycling test - SoC estimation for Linear model at 298.15 K.

Figure 5.12: Low regime cycling test - Estimation error for Linear model at 298.15 K.

Referring to the SoC estimation error results represented, it can be seen that es-
timation error increases in SoC range corresponding to 60 - 30% at all the test
conditions. This means the data used to develop the Linear model suffers from
inaccuracy in the mentioned range. The increase in the estimation error is com-
pensated rapidly and the estimated SoC value converge to the reference value.

Additionally, it is seen that in all the test conditions the estimation error is rela-
tively higher in the initialization stage. This is because of the inaccuracy in the
initial estimated system state which can be enhanced by optimizing the estimator
tuning parameters and providing more accurate initialization predictions. The es-
timation error at the initialization stage reduces rapidly as the estimators execute
the recursive state estimation approach.

In order to be able to compare the performance of the EKF and UKF estimators,
the plot statistics of estimation error at 298.15 K (25◦C) are given in Table 5.1,
which includes the estimation error mean and standard deviation for the different
test conditions.
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Table 5.1: Plot Statistics of SoC Estimation Error for Linear Model at 298.15 K.

Estimation Error Plot Statistics (%)
EKF UKF

Battery
Testing
Profiles Mean Standard Deviation Mean Standard Deviation
HPPC 0.046 0.37 0.049 0.38
FUDS 0.010 0.28 0.011 0.28
DST 0.077 0.33 0.077 0.34

Constant Current
Cycling (1C)

0.070 0.53 0.072 0.53

High Regime
Cycling

0.006 0.31 0.008 0.31

Low Regime
Cycling

-0.004 0.29 -0.006 0.29

According to the data reported in Table 5.1, it can be concluded that for EKF
estimator performs with higher accuracy due to lower error mean value. Conse-
quently, the EKF estimator can be the optimal solution when the Linear model is
employed for the Model-based SoC estimation.

For further assessment of the EKF and UKF estimator performance, the maximum
estimation error for the Linear model at different test conditions and temperatures
are summarized in Table 5.2.

In some test conditions, the maximum estimation error reported for the UKF
estimator is lower in comparison to the EKF. However, by referring to the results
obtained from comparing the estimation error mean value in Table 5.1, it can be
concluded that, although the maximum error for UKF is lower, the error rate is
consistently higher with respect to the EKF.

Table 5.2: Maximum SoC Estimation Error for Linear Model at Different Test Conditions and Temper-
atures.

The SoC Estimation Error (%)
288.15 K 298.15 K 308.15 K 318.15 K

Battery
Testing
Profiles EKF UKF EKF UKF EKF UKF EKF UKF
HPPC 1.84 1.84 1.94 2.05 1.90 2.00 1.97 2.01
FUDS 1.97 1.93 1.97 1.91 2.16 2.05 2.06 2.02
DST 2.67 2.50 2.48 2.35 2.39 2.27 2.37 2.23

Constant Current
Cycling (1C)

3.05 3.03 2.93 2.59 2.96 2.80 2.70 2.68

High Regime
Cycling

2.25 2.25 2.20 2.23 2.21 2.43 2.07 2.07

Low Regime
Cycling

2.14 2.06 2.11 1.95 2.13 1.92 2.18 2.19
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By analyzing the results, it has been observed that the maximum estimation error
is related to the Constant Current Cycling test at 288.15 K which is bounded to
3%. The minimum estimation error is equal to 1.84% achieved with HPPC test at
288.15 K.

The error rate of 3% for SoC estimation is acceptable for most of the real-life
BESS solutions. Consequently, For the NMC battery cell technology, the Model-
based SoC estimation with Linear Model and the EKF estimator can produce SoC
estimations with adequate accuracy.

5.2 Results for First-order Thevenin Model

The test results related to the first-order Thevenin model are represented at 298.15
K (25◦ C) in Figure 5.13 - Figure 5.24 that include both the SoC estimation and
corresponding estimation error compared to the reference SoC.

Figure 5.13: HPPC test - SoC estimation for first-order Thevenin model at 298.15 K.

Figure 5.14: HPPC test - Estimation error for first-order Thevenin model at 298.15 K.
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Figure 5.15: FUDS test - SoC estimation for first-order Thevenin model at 298.15 K.

Figure 5.16: FUDS test - Estimation error for first-order Thevenin model at 298.15 K.

Figure 5.17: DST test - SoC estimation for first-order Thevenin model at 298.15 K.
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Figure 5.18: DST test - Estimation error for first-order Thevenin model at 298.15 K.

Figure 5.19: Constant current cycling test - SoC estimation for first-order Thevenin model at 298.15 K.

Figure 5.20: Constant current cycling test - Estimation error for first-order Thevenin model at 298.15
K.
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Figure 5.21: High regime cycling test - SoC estimation for first-order Thevenin model at 298.15 K.

Figure 5.22: High regime cycling test - Estimation error for first-order Thevenin model at 298.15 K.

Figure 5.23: Low regime cycling test - SoC estimation for first-order Thevenin model at 298.15 K.

49



Figure 5.24: Low regime cycling test - Estimation error for first-order Thevenin model at 298.15 K.

By observing the SoC estimation results, it can be seen that the high estimation
error rate in the initialization stage and SoC range 60 - 30% are repeating similar
to the results obtained for the Linear Model in the previous section. This confirms
that the inaccuracy in battery cell modeling has a considerable impact on the
precision of the SoC estimation.

To compare the performance of the EKF and UKF estimators employed for the
first-order Thevenin model, the estimation error mean and standard deviation for
each test condition at 298.15 K is reported in Table 5.3.

Table 5.3: Plot Statistics of SoC Estimation Error for First-Order Thevenin Model at 298.15 K.

Estimation Error Plot Statistics (%)
EKF UKF

Battery
Testing
Profiles Mean Standard Deviation Mean Standard Deviation
HPPC 0.044 0.36 0.048 0.36
FUDS 0.010 0.27 0.011 0.27
DST 0.072 0.32 0.072 0.33

Constant Current
Cycling (1C)

0.076 0.52 0.078 0.52

High Regime
Cycling

0.006 0.30 0.009 0.30

Low Regime
Cycling

-0.004 0.29 -0.006 0.29

The results show that the SoC estimations produced by EKF have lower error rate
in comparison to the UKF estimations. Therefore, it can be concluded that the
EKF estimator can perform better when the first-order Thevenin model is hired
for the Model-based SoC estimation.

To evaluate the EKF and UKF performance at different temperatures, the maxi-
mum estimation error for the first-order Thevenin model at different test conditions
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are summarized in Table 5.4.

Table 5.4: Maximum SoC Estimation Error for First-order Thevenin Model at Different Test Conditions
and Temperatures.

The SoC Estimation Error (%)
288.15 K 298.15 K 308.15 K 318.15 K

Battery
Testing
Profiles EKF UKF EKF UKF EKF UKF EKF UKF
HPPC 1.69 1.73 1.87 1.98 1.81 1.94 1.81 1.91
FUDS 3.49 3.59 3.47 3.56 3.48 3.57 3.05 3.60
DST 3.40 3.49 3.69 3.79 3.74 3.84 3.72 3.80

Constant Current
Cycling (1C)

2.91 2.89 2.84 2.79 2.78 2.95 2.65 2.58

High Regime
Cycling

3.61 3.59 3.65 3.65 3.63 3.64 3.57 3.58

Low Regime
Cycling

3.34 3.35 3.20 3.12 3.19 2.97 3.10 2.77

The maximum estimation error (3.84%) occurs with the DST test condition at
308.15 K, and the minimum estimation error equal to 1.69% is recorded for the
HPPC test at 288.15 K.

5.3 Results for Second-order Thevenin Model

The test results for the second-order Thevenin model are illustrated at 298.15 K
(25◦ C) in Figure 5.25 - Figure 5.36 that include both the SoC estimation and
corresponding estimation error compared to the reference SoC.

Figure 5.25: HPPC test - SoC estimation for second-order Thevenin model at 298.15 K.
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Figure 5.26: HPPC test - Estimation error for second-order Thevenin model at 298.15 K.

Figure 5.27: FUDS test - SoC estimation for second-order Thevenin model at 298.15 K.

Figure 5.28: FUDS test - Estimation error for second-order Thevenin model at 298.15 K.
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Figure 5.29: DST test - SoC estimation for second-order Thevenin model at 298.15 K.

Figure 5.30: DST test - Estimation error for second-order Thevenin model at 298.15 K.

Figure 5.31: Constant current cycling test - SoC estimation for second-order Thevenin model at 298.15
K.
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Figure 5.32: Constant current cycling test - Estimation error for second-order Thevenin model at 298.15
K.

Figure 5.33: High regime cycling test - SoC estimation for second-order Thevenin model at 298.15 K.

Figure 5.34: High regime cycling test - Estimation error for second-order Thevenin model at 298.15 K.
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Figure 5.35: Low regime cycling test - SoC estimation for second-order Thevenin model at 298.15 K.

Figure 5.36: Low regime cycling test - Estimation error for second-order Thevenin model at 298.15 K.

The estimation error plot statistics, including the mean and standard deviation,
for the second-order Thevenin model at 298.15, are reported in Table 5.5.

By comparing the performance of the EKF and UKF algorithms, it has been
observed that EKF estimations have a lower error rate, suggesting that the lin-
earization technique implemented by the EKF estimator is more efficient when is
it is used in integration with the second-order Thevenin model.
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Table 5.5: Plot Statistics of SoC Estimation Error for Second-Order Thevenin Model at 298.15 K.

Estimation Error Plot Statistics (%)
EKF UKF

Battery
Testing
Profiles Mean Standard Deviation Mean Standard Deviation
HPPC 0.026 0.29 0.029 0.31
FUDS 0.005 0.23 0.006 0.22
DST 0.052 0.26 0.053 0.27

Constant Current
Cycling (1C)

0.070 0.43 0.073 0.44

High Regime
Cycling

0.005 0.26 0.008 0.27

Low Regime
Cycling

0.002 0.24 0.006 0.24

EKF and UKF performance is also evaluated at different temperatures. The max-
imum estimation error for the second-order Thevenin model at different test con-
ditions and temperatures are summarized in Table 5.6.

Table 5.6: Maximum SoC Estimation Error for Second-order Thevenin Model at Different Test Condi-
tions and Temperatures.

The SoC Estimation Error (%)
288.15 K 298.15 K 308.15 K 318.15 k

Battery
Testing
Profiles EKF UKF EKF UKF EKF UKF EKF UKF
HPPC 1.36 1.41 1.46 1.58 1.46 1.59 1.31 1.41
FUDS 2.75 2.65 2.60 2.53 2.62 2.55 2.61 2.56
DST 2.67 2.45 2.70 2.58 2.62 2.54 2.36 2.28

Constant Current
Cycling (1C)

2.19 2.28 2.35 3.00 2.48 3.23 2.55 2.99

High Regime
Cycling

3.01 2.98 2.94 2.94 2.92 2.93 2.77 2.79

Low Regime
Cycling

2.72 2.72 2.39 2.36 2.25 2.10 2.13 2.24

The results suggest that the maximum estimation error is related to the Constant
current cycling test at 308.15 K with 3.23%, and the minimum error achieved is
equal to 1.31% for the HPPC test at 318.15 K. According to the maximum error
rate and the error mean values reported in Table 5.5 and Table 5.6, it can be
concluded that the second-order Thevenin model has the highest accuracy with
respect to the two other models analyzed earlier.

Further discussions regarding the results obtained for different models at different
test conditions and the temperature is given in the next section.
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5.4 Summary of the Results

Referring to the results represented earlier, it can be inferred that the performance
of the Model-based SoC estimation structures developed for this study is affected
by different factors, such as C-rate, temperature, and the estimator tuning param-
eters.

Considering the HPPC test results reported in Table 5.2, Table 5.4 and Table 5.6,
it is be observed that the accuracy of the SoC estimation for all the models, is
higher compared to the other test conditions. Accordingly, for the HPPC test
condition at different temperatures, the estimation error is bounded to 2%. This
is due to the fact that the battery cell models are developed based on the HPPC
test profile and data. Therefore, the battery cell model performance and accuracy
are much higher with respect to the other test conditions.

The estimation errors more than 3% do not disqualify the model based SoC estima-
tions developed for the present study and the error rate can be possibly decreased
by providing more accurate initialization data and assigning optimum tuning pa-
rameters. Accordingly, both the EKF and UKF estimators are capable to success-
fully produce SoC estimations with an error below of 3%, which is required by
most modern industrial applications.

By comparing the results published in previous sections, it can be inferred that the
SoC estimations regarding the second-order Thevenin model show higher accuracy.
This wasn’t out of expectation as it has been discussed that the second-order
Thevenin model is able to simulate the nonlinear characteristics of the battery cell
with high fidelity. However, this result doesn’t disqualify the Linear model and
the first-order Thevenin model since the results achieved for these models have the
acceptable accuracy.

It is worth noting that, at some test conditions, the results regarding the linear
model indicate higher accuracy with respect to the results for first-order Thevenin
model. This can be explained considering that adding one RC pairs to the battery
model increases the uncertainties as well as the model fidelity. The uncertainties
corresponding to the added RC pair are parameterized within the process and
measurement noise covariance matrices. In other words, it is possible to achieve
better results using the first-order Thevenin model, if the tuning parameters are
set optimally, which was not possible to be done at this stage, as the present study
is aiming to compare the model-based SoC estimation algorithms with identical
tuning parameters.

By analyzing the results achieved from repeating the tests at different temperatures
it can be seen that the temperature variation influences the SoC estimation. It’s
safe to say that the temperature doesn’t affect the SoC estimators performance.
However, the temperature has a direct effect on the battery cell itself which is
also reflected by the battery cell models. Meaning that, the battery cell models
are responsible for the changes in SoC estimation accuracy with respect to the
temperature.

As it was mentioned before, the results regarding the CC algorithm suffers from
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integration error through the time. This can be clearly observed by referring to
the HPPC, FUDS, and DST SoC estimation results. However, the maximum
estimation error for the CC is lower for the Constant Current cycling, High regime
cycling and Low regime cycling tests since the frequent charging and discharging
process prevents from integrating the error over long period of time. The long-term
drift in SoC estimated by CC cannot be corrected due to the lack of a reference
point and the error rate increases as the CE is set to lower values.

CE has direct effect on the EKF and UKF estimations as well. It is evident that
benefiting from higher efficiency would lead to better estimation results. For NMC
batteries the CE is typically ranged between 95 - 99% depending on the electrolyte
chemistry and the battery age.

The results approve that, for the NMC battery chemistry, which has mild nonlinear
characteristics, the EKF estimator can be the optimal solution due to its higher
precision and lower computational load. The latter reveals that the UKF estimator
is not necessarily the most accurate estimator for every battery cell type.
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Chapter 6

Conclusions and Future Works

This thesis represents the inclusive study of different Model-based SoC estimation
structures aiming to identify the best trade-off between the model and estimator
complexity and accuracy as well as providing more clear insight into the advantages
and disadvantages of each structure.

To achieve the study objectives, the Model-based structures were developed for
the NMC battery cell by using Linear model, first-order Thevenin model and the
second-order Thevenin model in integration with EKF and UKF estimators, which
are the most frequently implemented SoC estimation algorithms in the literature.

The performance of the battery cell models are validated at different temperatures.
The indications represented that the models developed based on the data collected
from the HPPC tests at 318.15 K (45◦ C) benefit from higher accuracy as the higher
temperature enhances battery cell performance from electrochemical point of view.

Different test profiles and conditions, which tend to simulate the real-life applica-
tion requirements, were used to provide meaningful comparison and evaluation of
each SoC estimation structure.

By referring to the results obtained at different conditions, it has been observed
that the Model-based SoC estimation with second-order Thevenin model and the
EKF estimator performed with higher accuracy. This can be explained by point-
ing out that the model accuracy plays a key role in Model-based SoC estimation
and the second-order Thevenin model is able to simulate the real battery cell with
higher physical correspondence and fidelity. Moreover, the EKF estimator that
benefits from linearization technique based on the first-order Taylor series expan-
sion performs better for the NMC battery chemistry, which is characterized by
mild non-linearity.

The results achieved with the other battery cell models revealed that both EKF and
UKF can successfully estimate the SoC with adequate accuracy. Therefore, it can
be concluded that different Model-based SoC structures can be implemented with
respect to real-life application requirements and constraints. In other words, for
applications with limited computational resources or lower accuracy requirements,



the Linear or first-order Thevenin model can be employed ensuring that the SoC
estimation will not be affected drastically.

During the simulation procedure, it has been observed that the EKF and UKF
performance can be optimized by adjusting the tuning parameters. Therefore, it
is possible to minimize the estimation error if the EKF and UKF estimators are
tuned independently considering each battery cell model.

Further research on developing a novel technique to extract the optimal tuning
parameters for EKF and UKF estimators is suggested future work.

The battery cell models can be improved by modeling the effective capacity at dif-
ferent C-rates and temperatures, the effect of the battery self-discharging and the
effect of Hysteresis phenomena. Furthermore, conducting more tests for sensitivity
analysis and studying the effect of each tuning parameter on the SoC estimation
is advised.

Finally, it is also recommended to develop a hybrid SoC estimation method com-
bining the Model-based structure and AI algorithms to enhance the online SoC
estimation by reducing the EKF and UKF run time and frequency.
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Appendix A

HPPC Test Results for Model
Validation

The HPPC test results for battery cell model validation at temperature equal to
288.15 K and 318.15 K are represented below.

Figure A.1: HPPC test voltage for Linear model at 288.15 K.

Figure A.2: HPPC test voltage for Linear model at 318.15 K.
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Figure A.3: HPPC test voltage for first-order Thevenin model at 288.15 K.

Figure A.4: HPPC test voltage for first-order Thevenin model at 318.15 K.

Figure A.5: HPPC test voltage for sescond-order Thevenin model at 288.15 K.
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Figure A.6: HPPC test voltage for sescond-order Thevenin model at 318.15 K.
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