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Abstract

The main topic of this thesis concerns the study of global existence and blow-up of
solutions to certain nonlinear parabolic differential equations. The thesis is divided into
three parts where three different equations are considered. In Part I, we analyze the
Cauchy problem for the porous medium equation with a variable density, which depends
on the space variable, and a power-like reaction term: this is a mathematical model of a
thermal evolution of a heated plasma. Depending on the rate of decaying at infinity of
the density function, by comparison method and suitable sub- and supersolutions, we
determine whether the solution exists globally in time or blows up in finite time. In Part
II, we consider reaction-diffusion equations posed on complete, noncompact, Riemannian
manifolds of infinite volume. Such equations contain power-type nonlinearity and slow
diffusion of the porous medium type. For the Cauchy problem related to this equation
we prove global existence for positive initial data belonging to suitable LP spaces, and
that solutions corresponding to such data are bounded at all positive times with a
quantitative bound on their L°° norm. The methods of proof are functional analytic
in character, as they depend solely on the validity of the Sobolev and the Poincaré
inequalities. In Part III, we are concerned with nonexistence results for a class of
quasilinear parabolic differential equations with a potential in bounded domains. In
particular, we investigate how the behavior of the potential near the boundary of the
domain and the power nonlinearity affect the nonexistence of solutions.






Sommario

L’argomento principale della tesi é lo studio dell’esistenza globale e del blow-up di
soluzioni ad alcune equazioni differenziali paraboliche nonlineari. La tesi Al suddivisa
in tre parti in ciascuna delle quali si prende in considerazione una diversa equazione.
Nella Parte I, viene analizzato un problema di Cauchy per una equazione dei mezzi porosi
con densitéd variabile che dipende solo dallo spazio, e un termine di diffusione del tipo
potenza: questa equazione rappresenta un modello matematico per ’evoluzione della
temperatura del plasma. Utilizzando metodi di sotto- e soprasoluzioni, grazie anche al
principio del confronto, si determina quando la soluzione del problema esiste globalmente
in tempo e quando invece avviene blow-up in tempo finito. Nella seconda parte, Part II,
si studia una classe di equazioni di reazione-diffusione definita su varietd Riemanniane
complete, noncompatte e di volume infinito. Queste equazioni contengono nonlinearita
di tipo potenza e una diffusione lenta del tipo mezzi porosi. Per il problema di Cauchy
relativo a queste equazioni, si dimostra esistenza globale in tempo delle soluzioni per
dati iniziali positivi e che siano appartenenti ad opportuni spazi LP. Inoltre, per queste
soluzioni, si dimostra che esse sono limitate per tutti i tempi e si propone una stima
quantitativa sulla loro norma L°°. I metodi utilizzati per le dimostrazioni sono funzionali
e si basano principalmente sulla validita delle disuguaglianze di Sobolev e Poincaré.
Infine, nella Part III, si studia la nonesistenza di soluzioni per una classe di equazioni
differenziali paraboliche quasilineari con un potenziale, definite in domini limitati. In
particolare, si mostra come il comportamento del potenziale vicino alla frontiera del
dominio e la nonlinearitd di tipo potenza influenzano la nonesistenza delle soluzioni.
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Introduction

I.1 The problems

In this thesis we investigate global existence and blow-up of solutions to nonlinear
degenerate parabolic partial differential equations on both the Euclidian space and more
general complete noncompact Riemannian manifolds. Specifically, we address equations
of the following type:

p(x)ur = A(w™) + p(z)uP in RY x (0,7), (L.1.1)
up = A(u™) + 4P in M x (0,7), (I.1.2)
up — div (|VulP2Vu) = Vu?  in Q x (0,7), (1.1.3)

where T' > 0.

In equation (I.1.1), N > 3 and p is a suitable positive function, to which we refer as
weight from here on; such equation arises in various physical models, see [73] and Section
1.2.1. Moreover, we assume that p > 1 and m > 1. More precisely, we are concerned
with global existence and blow-up of solutions to the Cauchy problem associated to
equation (I.1.1) when p(x) ~ |z|~? as |z| — 400 with ¢ > 0 or p(z) ~ (log |z))* || 72 as
|x| = 400 with |a| > 1, see Chapters 1, 2, 3.

In equation (I.1.2), M is a complete, noncompact, Riemannian manifold of infinite
volume and dimension N > 3; moreover p > 1 and m > 1. In Chapters 4, 5, we
investigate existence of global in time solutions to the Cauchy problem for equation
(I.1.2), depending on the initial datum providing also suitable estimates on the L°°-
norm of the solutions for ¢t > 0.

Finally, in equation (I.1.3), € is an open bounded connected subset of RY. Moreover,
we assume that p > 1, ¢ > max{p — 1,1} and V = V(z,t) is a given positive function,
to which we refer as potential from here on. We study nonexistence of nonnegative,
nontrivial global weak solutions to the Cauchy-Dirichlet problem associated to equation
(I.1.3), see Chapter 6.

The thesis is organized in three parts which correspond to equations (I.1.1), (I.1.2)
and (I.1.3), respectively. Chapters 1, 2 and 3 are contained in Part I. Chapters 4 and 5
are contained in Part II whereas Part III is Chapter 6. In what follows, for each part,
we give a brief overview of known results in literature and we outline our main results.

xi



xii INTRODUCTION

I.2 Part I: The inhomogeneous porous medium equation
with reaction on RV

I.2.1 A survey of the literature

The problem of global solvability of nonlinear evolution problems, such as the Cauchy
problem associated to equation (I.1.1), occupies a special place in the theory of nonlinear
equations. We say that a problem is globally solvable in time if it admits a bounded
solution for any t € (0,400). On the contrary, we say that the solution to a given
problem blows up in finite time when there exists a time S > 0 such that

l|u(t)]|oo — +00 as t — S,

If S = 400 then we say that the blow up occurs in infinite time.

The differential equation in (I.1.1) for N = 1, posed in the interval (—1,1) with
homogeneous Dirichlet boundary conditions, has been introduced in [73] as a math-
ematical model of evolution of plasma temperature, where u is the temperature, p(z)
is the particle density and p(x)u? represents the volumetric heating of plasma. The
interest in thermal waves arises in plasma physics in various laboratory and terrestrial
situations where the ambience is at rest but cannot be considered homogeneous. In-
deed, in [73, Introduction] a more general source term of the type A(z)u? has also been
considered; however, then the authors assume that A = 0; only some remarks for the
case A(z) = p(x) are made in [73, Section 4].

Equation (I.1.1) is a generalization of the very well-known Porous Medium Equation
(PME), that is,

up = AWm), in Qx(0,400) (m>1), (1.2.4)

where  is a domain of RY. The PME is one of the simplest examples of a nonlinear
evolution equation of parabolic type. It appears in the description of different natural
phenomena such as the flow of a fluid through a porous medium [81, 101], the study
of groundwater infiltration [14] or the heat radiation in plasmas [136]. The equation
can be posed both in 2 =R or in bounded subdomains Q ¢ RV and completed with
initial and boundary conditions. Observe that, from (1.2.4) we get

up = div (mu™ 'Vu) in Q x (0, +o00).

The diffusivity coefficient appearing in the latter is mu™~! that motivates the finite
speed of propagation of solutions to (I.2.4). This means that, if for instance the initial
value has compact support, then the solution has compact support for every fixed time.
This is the main difference between the solutions to (I1.2.4) and the solutions to the heat
equation (that is (I.2.4) with m = 1). As for the heat equation, also the PME has a
family of fundamental solutions whose existence has been shown in [10]. Their explicit
form is

_1
Uz, t) =t [o ka2 (1.2.5)
+

where (A)+ := max{A,0}, C is an arbitrary positive constant depending on the mass
M = [pn U(z,t) dz, which is constant in time, and

N

a(m—1)
Nim—1)+2° ‘

@ 2mN

o
ﬁ_ﬁa k=
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The functions in (1.2.5) are usually referred to as Barenblatt solutions. We refer the
reader to [5, 103, 128] for a complete overview of the PME equation.

The inhomogeneous version of equation (I1.2.4) has also been widely examined in
literature. It is given by

p(x)uy = A(w™), in Qx(0,400) (m>1), (I.2.6)

where Q is a domain of RY. The case when Q = R™ and p decays at infinity as a
negative power of |z|, is the most studied one, see e.g. [25, 26, 27, 62, 63, 64, 65, 66,
67, 68, 69, 70, 116, 117, 120]. Moreover, in [71] and [72] the Cauchy problem related to
equation (I.2.6) for N = 1 is investigated. They explain that equation (I1.2.6) models the
propagation of a nonlinear thermal wave in an inhomogeneous medium. They suppose
that p is a positive and smooth function. Let

“+o0
M= [ pa)ds,

then the authors investigate the behavior of solutions for both the cases of M < oo and
M = oo showing remarkable differences between them. Moreover, in [109] for N > 3,
assuming that p(z) ~ |z|79, it is proved that equation (1.2.6), for any bounded initial
datum wug, has infinitely many very weak solutions if ¢ > 2 whereas it admits a unique
very weak solution if ¢ < 2. This different behavior of solutions determines ¢ = 2 as a
threshold value.

Equation (I.2.6) can be further generalized to the following weighted PME

pu()uy = div [pu(x)V(u™)], in Qx (0,4+00) (m>1), (1.2.7)

where p, and p, > 0 are two weights independent of the time variable. With no claim
of generality, we refer the reader e.g. to [49]. Depending on the behavior of p, and p,,
as |x| — oo, existence and uniqueness and the asymptotic behavior of energy solutions
for large times have been addressed.

We also recall the well known semilinear heat equation defined as follows

up = Au+ f(u) in Qx (0,7), (I.2.8)

where T > 0, Q is a possibile unbounded domain of RY and f(u) is a nonnegative
function, thus we are in presence of reaction. The classical choice in equation (1.2.8) is
f(u) = uP for p > 1. Such equation models various natural phenomena. Here we have
a competition between the diffusion due to the Laplacian and the reaction term, which
may drive the solution towards blow-up. In particular, we mention the pioneering work
by Fujita [31] where global existence and blow-up of solutions to the Cauchy problem
associated to (1.2.8) is investigated when = R¥. It is shown that

e finite time blow-up occurs for all nontrivial nonnegative initial data, for any
l<p<1+ 2.
P> N
e global existence of solutions for sufficiently small initial data, for any

>1+4 2
p N
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The value p. =1+ % is usually referred to as the Fujita exponent. We remark that the
critical case p = p. was left open by Fujita, it was proved later in [58, 77, 133]. In [35] the
authors propose a different method to obtain the Fujita exponent in terms of sub and
supersolutions and comparison principles. Moreover they apply this method to different
reaction-diffusion problems. Observe that, if p > 1, due to Kaplan’s argument we can
say that the solution blows up if it accumulates enough mass, and this is the case of all
solutions if 1 < p < p.. On the contrary, if p > p., diffusion does not allow small initial
values to grow, and in fact the solutions tend to zero. The fact that when p > p. there
exist small global solutions is easily proved by comparison with a supersolution. Finally
we refer the reader to another way of proving Fujita’s result introduced in [82, 84].

For more details on equation (I.2.8) for a general nonnegative function f(u) we refer
the reader for instance to [24, 29, 30, 31, 32, 58, 74, 83, 114, 121, 135]. Also the weighted
version of equation (I.2.8) has been studied in literature, see e.g. [21, 85]. In particular,
in [85], they consider the Cauchy problem associated to equation

playu = Mut ple)a? in RN x (0,T) (p> 1),
where T'> 0 and p ~ |z|79 as |z| — oo for 0 < g < 2. Is is shown that
e solutions blow-up in finite time, for all nontrivial nonnegative initial data, for any

lep<iy 274,
PELY

e global in time solutions exist for sufficiently small nonnegative initial data, for any

2—q

>1 .
p +N—q

We also recall the well known nonlinear parabolic equation
up = AW™)+ v’ in Qx(0,400), (Mm>1,p>1), (I.2.9)

where © is a domain of RY. Equation (1.2.9) is usually referred to as the Porous
Medium Equation with reaction. The Cauchy problem related to equation (1.2.9) with
nonnegative continuous initial datum has been mainly investigated in [99, 119]. In the
case of Q = RV, it is shown that the Fujita exponent is p. = m + % More precisely,
we have

e finite time blow-up for all nontrivial nonnegative initial data, for any

2
l<p< —;
P m+N

e global existence in time of solutions for sufficiently small nonnegative initial data,
for any

2
>m+ —;
b N’
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e finite time blow-up for sufficiently large nonnegative initial data, for any

p> 1.

The results in [119] has been proved by means of comparison principles and suitable
sub- and supersolutions of the form

1
n(t)] " for any (z,t) € RY x [0,7),

Jr

|z

u(z,t) = CC(t) [1 — =L

where ((t) and n(t) are appropriate auxiliary functions and C' and a are positive con-
stants.

The Cauchy problem related to equation (I.1.1) has also been investigated in [86,
87]. More precisely, they consider a class of double-nonlinear operators among which
equation (I.1.1) is included. They show that, (see [86, Theorem 1)) if p(z) = |z|~? with
q € (0,2), for any z € RV \ {0},

2
p>mt

the initial datum wg is nonnegative and
{uol@) + [uo(@))7} p(e)dz < 5,
R

for some 0 > 0 small enough and q > %(p — m), then there exists a global solution
of the Cauchy problem associated to (I.1.1). In addition, a smoothing estimate holds.
On the other hand, if p(z) = |z|7? or p(z) = (1 + |z|)~¢ with ¢ € [0,2), for any initial
datum wug # 0 and

2—¢

N—q’

then blow-up prevails, in the sense that there exist 6 € (0,1), R > 0,7 > 0 such that

p<m-+

/ [u(z, 1)) p(x)dx — +oo as t — T~ .
Br

Such results have also been generalized to more general initial data, decaying at infinity
with a certain rate (see [87]).

1.2.2 Outline of the results

In Chapter 1 (where [92] is reproduced) we address the inhomogeneous porous medium
equation with reaction of the form (I.1.1). We assume that the function p : RY —
(0, +00) is such that

(i) p € C(RY),

(ii) there exist ki, kg € (0,+00), with k1 < kg, and 0 < ¢ < 2 such that (1.2.10)

1
ki|z]9 < — < kolz|? for all z € RN\ B1(0).

p(z)
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Due to hypotheses (1.2.10), we refer to p(x) as a slowly decaying density at infinity.

We investigate global existence and blow-up of solutions to the Cauchy problem

p(x)

= L A@W™) +uP in RY x (0,T
ut (W) +u? in (0.7) (1.2.11)
u = ug in RV x {0},

where the initial datum ug : RY — [0, +00) is a compactly supported function and it is
such that
ug € L™ (]RN ).

Therefore, the related diffusion operator is ﬁA, and in view of (i) — (i7), the coefficient

can diverge at infinity.
p(z)

For problem (I1.2.11), we prove global existence in time or blow-up in finite time of
solutions, depending on the interplay between p > 1 and m > 1. In particular, suppose

that

by (m— (N —2)
ko m + 2 ¢

then we introduce the values

_ m—1 1
N -2+ 2% (m - &2)
m(N—q)—F% m—%)

It can be easily checked that

In particular, p = p whenever k1 = k2. Then we prove that

e for p > P, if the initial datum, ug € L>°(RY), is small enough, then global solutions
to problem (I1.2.11) exist;

e for any p > 1, if the initial datum is sufficiently large, the solutions of problem
(I.2.11) blow-up in finite time;

e for 1 < p < m, then for any ug # 0, solutions to problem (I.2.11) blow-up in finite
time;

o for m < p < p, if in addition ¢ € [0, €) for € > 0 small enough, then for any ug # 0,
solutions to problem (I.2.11) blow-up in finite time.

In the special case, k1 = ko, the results stated so far can be understood as follows

o for p > m + J%,;_qq and for small enough initial data with uy € L>®(R"), global
solutions to problem (I.2.11) exist;
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e for any p > 1 and for sufficiently large initial data, solutions of problem (I1.2.11)
blow-up in finite time;

e for 1 < p < m, then for any ug # 0, solutions to problem (I.2.11) blow-up in finite
time;

e form<p<m+ J%,;_‘f], if in addition ¢ € [0,¢) for € > 0 small enough, then for
any ug # 0, solutions to problem (I.2.11) blow-up in finite time.

Our proofs mainly rely on suitable comparison principles and properly constructed
sub- and supersolutions. Let us mention that the arguments exploited in [119] cannot
be directly used in our case, due to the presence of the coefficient p(z). In fact, we
construct appropriate sub- and supersolutions, which crucially depend on the behavior
at infinity of the inhomogeneity term p(x). More precisely, whenever |z| > 1, they are
of the type

1

m—1

w(z,t) = CC(t) {1 - xn(t)] for any (z,t) € [RY\ B1(0)] x [0,T),

for suitable functions ¢ = ((t), n = n(t) and constants C > 0, a > 0, where b := 2 —g.
In view of the term |z|® with b € (0,2], we cannot show that such functions are sub-
and supersolutions in Bj(0) x (0,7"). Thus we have to extend them in a suitable way in
B1(0) x (0,T). In order to extend our sub- and supersolutions, we need to impose some
extra conditions on ¢ = ((t), n = n(t), C and a. Thus, it appears a sort of interplay
between the behavior of the density p(x) in compact sets, say Bi(0), and its behavior
for large values of |z|.

Finally, let us comment about the proofs of the blow-up result for any nontrivial
initial datum. For 1 < p < m, the result follows by a direct application of the previous
results. For m < p < p, the proof is more involved. The corresponding result for the
case p = 1 established in [119] is proved by means of the Barenblatt solutions of the
porous medium equation

uy = A(u™)  in RY x (0, +00) .

In our situation, we do not have self-similar solutions, since our equation in (I.2.11) is
not scaling invariant, in view of the presence of the term p(x). Indeed, we construct a
suitable subsolution z of equation

1 . N
up = —A(u™) in R™ x (0,400).
p(x)
By means of z, we can show that after a certain time, the solution u of problem (I1.2.11)
is sufficiently large, then we get finite time blow-up as in the previous situation.

In Chapter 2 (where [93] is reproduced) we study problem (I1.2.11) with the following
assumptions on p : RY — (0, +00)
(i) p € CRY),

(ii) there exist ky, kg € (0,+00), with ky < ko, 79 >0 and ¢ > 2 s.t. (1.2.12)

1
k1(|z| +7r0)? < Pe) < ky(|z| +7r9)? for all z € RN\ B1(0).
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Due to hypotheses (1.2.12), we refer to p(z) as a fast decaying density at infinity. We
distinguish between two cases: ¢ =2 and g > 2.
First, assume that (1.2.12) holds with ¢ = 2, then we prove that

e for any p > m, if the initial datum ug € L (R¥) is small enough, then there exist
global in time solutions to problem (I.2.11), which belong to L= (RY x (0, 4+00));

e for any p > m, if the initial datum wg is sufficiently large, then solutions to problem
(I.2.11) blow-up in finite time.

The proofs mainly relies on suitable comparison principles and properly constructed
sub- and supersolutions, which crucially depend on the behavior at infinity of the in-
homogeneity term p(x). More precisely, they are of the type
1
lo m—1
wia ) = c¢(t) |1 — BT, V™ o any (,0) € [RY\ By(0)] x [0,7),
a
Jr

for suitable functions ¢ = ((t), n = n(t) and constants C > 0, a > 0. The presence of
log(|z| + r9) in w is strictly related to the assumption that ¢ = 2. Observe that the
barriers used in the slowly decaying density case, i.e. 0 < g < 2, which are of power
type in |z|, do not work in the present situation. Furthermore, note that the exponent
P introduced before for 0 < ¢ < 2, when ¢ = 2 becomes p = m.

Now, assume that ¢ > 2. We have the following results

e for 1 < p < m, if ug € L®°(RY) then there exist global in time solutions to
problem (I.2.11). We do not assume that ug has compact support, but we need
that it fulfills a decay condition as |z| — +o0o. However, ug in a compact subset
of RV can be arbitrarily large. We cannot deduce that the corresponding solution
belongs to L= (RN x (0, +00)), but it is in L>=(RN x (0, 7)) for each 7 > 0.

e for p > m > 1, if ug € L®(RY) then problem (1.2.11) admits a solution in
L®(RY x (0,+00)). We need that

0 <wup(x) < CW(x) forall zeRY,

where C' > 0 is small enough and W (x) is a suitable function, which vanishes as
|z| — +o0.

e for p = m > 1, if ug € L®(RY) then problem (1.2.11) admits a solution in
L®(RY x (0,+00)), provided that 9 > 0 in (1.2.12) is big enough.

Such results are very different with respect to the cases 0 < ¢ < 2 and ¢ = 2. In
fact, we do not have finite-time blow-up, but global existence, for suitable initial data
always prevails. The results follow by comparison principles, once we have constructed
appropriate supersolutions, that have the form

w(z,t) =)W (z) forall (z,t) € RN x (0,+00),

for suitable ((t) and W (z). When p > m, ((t) = 1. Observe that we can also include
the linear case m = 1, whenever p > m.
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In Chapter 3 (where [94] is reproduced), we have considered problem (I.2.11) for a
different choice of weight p : RY — (0, 4+00), p € C(RY). In particular, we always make
one of the following assumptions:

there exist k € (0,+00) and « > 1 such that

1 1.2.13
—— > k(log|z))®|z|> forall z € RN\ B,(0); ( )
p(z)
or
there exist ki, ko € (0,4+00) with k1 < ko and « > 1 such that
|z|? 1 |z|? (1.2.14)

N
oglal” < o) = P loglape T2l 7 ERTALL).
Global existence and blow-up of solutions are addressed depending on the interplay
between m > 1, p > 1 and «. The method of proofs and the results are similar to those
obtained in the case of slowly and fast decaying densities.
In particular, if p satisfies (1.2.13), then

e for 1 < p < m, if the initial datum ug € L>(R"), then problem (1.2.11) admits a
global solution belonging to L>(RY x (0,7)) for every 7 > 0;

e for p > m > 1, if ug satisfies a suitable decaying condition as |x| — +o0, then
problem (1.2.11) admits a global solution in L>®(RY x (0, +00)).

On the other hand, if p satisfies (1.2.14), then

o for p >m > 1, if uy € L>°(RY) is sufficiently large, then the solutions to problem
(I.2.11) blow-up in finite time;

o forp>m >1,ifug e L™ (RN ) is sufficiently small and compact supported, then,
under suitable assumptions on k; and ks, there exist global in time solutions to
problem (1.2.11) in L>®(RY x (0, +00)).

We construct suitable sub- and supersolutions that are of the form

w(z,t) =CC(t) |1 — n(t) for any (z,t) € [RY\ B.(0)] x [0,7),

(log(|2| +ro))? , ]m-T
a +

for appropriate functions ¢ = ((t), n = n(t) and constants C' > 0, a > 0, 79 > 0 and
q>1.

I.3 Part II: The porous medium equation with reaction on
noncompact Riemannian manifolds

I.3.1 A survey of the literature

The problem of global solvability of nonlinear evolution problems has been recently
deep investigated also on general Riemannian manifolds. All the problems that we have
mentioned so far have a counterpart in the Riemannian setting, i.e. when the Euclidian
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space R is replaced by a general complete, noncompact Riemannian manifold M.
We focus on those results in literature that motivates our investigation on the Cauchy
problem associated to equation (I.1.2). We observe that the behavior of solutions is
mostly influenced by two competing phenomena.
The first one is the diffusive pattern associated to the Porous Medium FEquation
(PME)
ur = A@Wm), in M x(0,T) (m>1), (I.3.15)

where T > 0, M is a Riemannian manifold of dimension N > 2 and A is the Laplace-
Beltrami operator. Observe that the fact that we assume m > 1 puts us in the slow
diffusion case. On the other hand, if m < 1, equation (I1.3.15) is called fast diffusion
equation, on Riemannian manifolds it has been e.g. addressed in [13]. We mention
that the investigation on the behavior of solutions to the Cauchy problem associated to
equation (I.3.15) when M is the hyperbolic space H'V, has been addressed in [111, 129].
We recall that HY is the complete, simply connected manifold of dimension N with
sectional curvature everywhere equal to —1. In particular, in [129], the fundamental
solution to equation (I.3.15) posed in HY has been constructed. It has been shown
that the behavior of the fundamental solutions for short and long times is completely
different. More precisely, for short times, the fundamental solutions behave like the
Barenblatt solutions introduced in (I.2.5). On the other hand, for large times, it has
been proved that radial and compactly supported data give rise to solutions that grow
logarithmically; in particular the following bound holds

1
l t m—1
u(t) | ey < C (Of> for any ¢ > 2, (1.3.16)

where C' > 0 is a suitable constant. This different behavior depending on the time is
a remarkable difference with the Euclidean case and it is due to the gradual influence
of the curvature of the hyperbolic space on the form of the fundamental solutions.
Moreover, (1.3.16) is in contrast with the well-known power-like growth of the PME in
the Euclidean space: the decay rate predicted by (1.3.16) is faster than its Euclidean
counterpart. Qualitatively speaking, negative curvature accelerates diffusions, a fact
that is apparent first of all from the behavior of solutions of the classical heat equation.
In fact, it can be shown that the standard deviation of a Brownian particle on the
hyperbolic space HY behaves linearly in time, whereas in the Euclidean situation it is
proportional to v/¢. Similarly, the heat kernel decays exponentially as ¢ — +oo in the
hyperbolic space HY whereas one has a power-type decay in the Euclidean situation.

Equation (I1.3.15) has also been studied in [48, 55] when M is a Cartan-Hadamard
manifold, namely an N-dimensional complete, simply connected Riemannian manifold
with nonpositive sectional curvature. It is further assumed that the sectional curvature is
bounded above by a suitable constant —k < 0. It is investigated the behavior of solutions
to the Cauchy problem related to (I.3.15) when the initial datum wg is integrable and
bounded on M. It is proved that the smoothing estimate (1.3.16) holds also in this case,
ie. )

log(2 + t)|Jug|™ L ] T
()l z=an) < € [ e )t” OILI‘M)] for any ¢ > 0,
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where C' > 0 is a suitable constant.

The Cauchy problem associated to equation (1.3.15) has also been investigated on
more general Riemannian manifolds, see e.g. [43, 52, 53, 112].

The second driving factor influencing the behavior of solutions to the Cauchy prob-
lem associated to equation (I.1.2), is the reaction term u”, which has the positive sign
and, thus, might drive solutions towards blow-up. Let us first recall the well known
semilinear heat equation

up = Au+ f(u) in M x (0,7), (1.3.17)

where T" > 0, M is a Riemannian manifold of dimension N > 2, A is the Laplace-
Beltrami operator and f is a positive function, thus we are in presence of reaction. The
choice f(u) = uP, for p > 1, has been considered in [9]. It has been shown that the
Cauchy problem associated to equation (I1.3.17) when M = HY, always admits a global
solution, if the initial datum is sufficiently small. We underline that this behavior of
solutions is in contrast with the Euclidian counterpart (M = RY) where the Fujita
phenomenon arises. On the other hand, it is similar to the behavior of solutions to
the Cauchy problem posed in bounded domains Q@ C RY with homogeneous Dirichlet
boundary conditions. For other choices of f(u) and more general Riemannian manifolds
we refer the reader to e.g. [110, 113, 130, 131].
Let us now recall some results concerning the equation in (1.1.2), i.e.

up = A(u™) +uP in M x (0,7),

where M is a complete noncompact Riemannian manifold of dimension N, p > 1, m > 1
and T > 0. The Cauchy problem associated to equation (I.1.2) has been studied in [137],
under the assumption that the volume of geodesic balls of radius R grows as R® with
a > 2; this kind of assumption is typically associated to nonnegative Ricci curvature.

The situation on negatively curved manifolds M is significantly different, and the
results in this connection have been shown in [54]. More precisely, in [54], the behavior
of solutions to the Cauchy problem associated to equation (I.1.2) when M is a Cartan-
Hadamard manifold and the initial datum is nonnegative and compactly supported, has
been addressed. Moreover, suitable curvature conditions have been assumed, i.e.

Rico(z) < —(N —1)h? or Rice(x) > —(N —1)k?, (1.3.18)
where h, k > 0 and Rice(x) is the Ricci curvature at x in the radial direction % w.I.t.

a given pole o. For p > m, a dichotomy phenomenon has been proved. In particular, it
has been shown global existence of solutions for small enough initial datum assuming
that the upper bound on the Ricci curvature given in (1.3.18) holds. Moreover, a class
of sufficiently small data shows propagation properties identical to the ones valid for the
unforced porous medium equation (I.3.15). On the other hand, blow-up occurs if the
initial datum is large enough and the lower bound on the Ricci curvature given in (1.3.18)
holds. For p € (1, H'Tm] , it is shown that pointwise everywhere blowup in infinite time
occurs. Whereas, in the range p € (HTm, m] , they show that, if the solution is global
in time, then blowup occurs in infinite time. Thus we can observe that the behavior

of solutions is considerably different from the Euclidean setting. In the Riemannian
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setting, a dichotomy phenomenon between large and small data occurs when p > m,
whereas in the Euclidean one the same dichotomy occurs when p > m + % Finally, a
completely new phenomenon appears when p € (1, HTm] , i.e. blow-up of solutions in
infinite time.

1.3.2 Outline of the results

In Chapters 4 and 5, we address the porous medium equation with reaction of the form
(I.1.2) posed in the Riemannian setting.
We investigate global existence of solutions to the Cauchy problem

{ut =A@Wwm)+uP in M x(0,T) (13.19)

u = ug in M x {0},

where M is a complete noncompact Riemannian manifold of infinite volume, of dimen-
sion N >3, T >0 and m > 1, p > 1. Moreover, the initial datum wug is a nonnegative
function.

In particular, in Chapter 4 (where [45] is reproduced), we consider the case when
p>m>1

and we assume the validity of the Sobolev or the Poincaré inequalities on M, i.e.

1 oo
vl z2* (ary < FHVUHLQ(M) for any v € C°(M), (1.3.20)
1
[vllz2ary < = [IVollp2(ary  for any v € C°(M); (I.3.21)
C,
P
where C), and Cy are numerical constants and 2* := ]\2,—]_\[2 This assumption puts con-

straints on the Riemannian manifold M. In particular, we recall that it is e.g. well
known that the Sobolev inequality always holds on Cartan-Hadamard manifolds, namely
complete and simply connected manifolds that have everywhere non-positive sectional
curvature. Furthermore, if we assume that sec < —k < 0 then also the Poincaré in-
equality holds.

Our results can be summarized as follows.

e For

2
> AT
P m+N

we assume that the Sobolev inequality in (I.3.20) holds on M. Then we prove
that any sufficiently small initial datum

N
2

uy € L™(M) N LP~™2 (M)

gives rise to a global solution u(t) such that u(t) € L (M) for all ¢t > 0. Moreover,
we prove a quantitative bound on the L* of the solution u(t) for any ¢ > 0.
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e For
p>m,

we assume that both the Sobolev and Poincaré in (I1.3.20), (I1.3.21) inequalities
hold on M. Then we prove that any sufficiently small initial datum ug, where ug
belongs to a suitable Lebesgue space, give rise to a global solution u(t) such that
u(t) € L*(M) for all t > 0. Moreover we provide a quantitative bound on the
L*° norm of the solution u(t) for any ¢ > 0.

Observe that, if we only assume that the Sobolev inequality holds, then we need to
restrict the range of p asking for p > m + % On the other hand, we can relax the
assumption on the exponent p, i.e. p > m, if we further assume the validity of the
Poincaré inequality.

The strategy of the proof of both results mainly relies on the validity of the functional
inequalities (I.3.20) and (I.3.21). For this reason, our results can be generalized to
different context among which we outline the case of inhomogeneous porous medium
equation with reaction in the Euclidean setting, see problem (1.2.11). The problem is
naturally posed in the weighted spaces

1/q
Lg(]RN) = {v : RY — R measurable , [vllLg = (/ vip(x) da;) < —i—oo} .
RN

Then we introduce the weighted Sobolev and Poincaré inequalities

1 00

HUHL%*(RN) < ESHVUHLQ(RN) for any v € CC (RN), (1322)
1

H’UHL%(RN) < HHVUHLQ(RN) for any v € CSO(RN), (1.3.23)
p

for suitable positive constants Cs and C),. The main results of this case can be sum-
marized as follows.

e For

2
p>m+N,

we assume that the Sobolev inequality in (I.3.22) holds on M. Then we prove
that any sufficiently small initial datum

N
2

up € LM®RN) N LY ™™= (RY)

gives rise to a global solution u(t) such that u(t) € L>(RY) for all t > 0. Moreover,
we prove a quantitative bound on the L* of the solution u(t) for any ¢ > 0.

e For
p>m,

we assume that both the Sobolev and Poincaré inequalities in (1.3.22), (1.3.23)
hold on M. Then we prove that any sufficiently small initial datum ug, where ug
belongs to a suitable Lebesgue space, give rise to a global solution u(t) such that
u(t) € L®(RYN) for all t > 0. Moreover we provide a quantitative bound on the
L*>° norm of the solution u(t) for any ¢ > 0.
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In Chapter 5 (where [46] is reproduced), we investigate global existence of solutions
to the Cauchy problem in (1.3.19) in the case when

l<p<m.

We also assume the validity of the Sobolev and Poincaré inequalities (I1.3.20) and (1.3.21)
on M. Moreover, we suppose that the initial datum wug is a nonnegative function such
that

uy € L™(M).

We summarize the main results as follows.

e For any
l<p<m,

we suppose that the initial datum ug is a nonnegative function such that ug €
L™(M). Then we prove global existence of solutions to problem (1.3.19). Moreover,
we show a smoothing effects for solutions, in the sense that L™ data give rise to
global solutions u(t) such that u(t) € L*>(M) for all ¢ > 0, with a quantitative
bound on their L*° norm.

e As a consequence, combining this fact with some results proved in [54], we can
prove that, on manifolds satisfying e.g. —c; < sec < —cg with ¢; > ¢o > 0, any
solution u(t) to (I.3.19) corresponding to an initial datum wy € L™ (M) exists
globally and, provided wug is sufficiently large, it satisfies the property

lim w(x,t) =400 Vre M,
t——+oo
namely complete blowup in infinite time occurs for such solutions to (1.3.19) in the
whole range p € (1, m). We recall that e.g. the above hypothesis on the sectional

curvature, sec, includes the particularly important case of the hyperbolic space
HV.

Similarly to the case when p > m > 1, our results depend essentially only on the
validity of the functional inequalities (1.3.20) and (I1.3.21), hence they are generalizable
to different contexts. As a particularly significant situation, we single out the case of
Euclidean, inhomogeneous porous medium equation with reaction introduced in (1.2.11).
Assuming that the weight p is such that the weighted Sobolev and Poincaré inequalities
in (I.3.22) and (I1.3.23) hold, we prove that

e for any
l<p<m,

we suppose that the initial datum wug is a nonnegative function such that ug €
Ly (RY). Then we prove global existence of solutions to problem (I.3.19). Moreover,
we show a smoothing effects for solutions, in the sense that L7 data give rise to
global solutions u(t) such that u(t) € L®(RY) for all ¢+ > 0, with a quantitative
bound on their L°° norm:;
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e for p < |z|72 as |z| — +oo, we are able to construct a subsolution of equation
(I.2.11) which blows up in infinite time. As a consequence, combining this fact
with the previous result of global existence of the solution, we can prove that, any
solution u(t) to (1.2.11) corresponding to an initial datum ug € LJ'(RY) exists
globally and, provided wug is sufficiently large, it satisfies the property

lim wu(z,t) = 400 Vo eRY,
t——+o0
namely complete blowup in infinite time occurs for such solutions to (I1.2.11) in the
whole range p € (1,m).

I.4 Part III: Quasilinear parabolic differential inequalities

I.4.1 A survey of the literature

The study of nonexistence of solutions to partial differential equations, such as equation
in (I.1.3), has received considerable attention in the literature. Observe that equation
in (I.1.3) represents a wide class of nonlinear problems. The approach used to study
nonexistence of solutions has been exploited by Mitidieri and Pohozaev in [95, 96] and
it is mainly based on the construction of suitable test functions and integral estimates.
For a comprehensive description of such approach we refer the reader to [98].

One of the most important and well-studied class of elliptic differential inequalities,
due to its ubiquitous presence in many applications, is

Au+V(z)u? <0, (I.4.24)

both on RY and on general Riemannian manifolds M, for ¢ > 1. In particular, in
many instances it is also required that the solution u of the problem is positive. The
Cauchy problem related to inequality (I1.4.24) has been investigated by Gidas in [37] and
Gidas and Spruck in [38]. In those papers the authors show, among other results, that
any nonnegative solution of inequality (1.4.24) is in fact identically null if and only if
q < %, in case V = 1 and the dimension of the Euclidean space is N > 3. Moreover,
in [96], the authors show that inequality (I.4.24) on RY does not admit any nontrivial
nonnegative solution, provided that
2q 1
liminf R -1 / V alder < oo
R—o0 B\/gR\BR
We also mention that nonexistence results of nonnegative nontrivial solutions have

been much investigated for solutions to elliptic quasilinear inequalities of the form:

1
@) div (a(:L‘)|Vu|p_2Vu) +V(z)u! <0 inRY, (1.4.25)

where
a>0, acLipy,(RY), V>0ae onRY Vel (RY),

p>1,q¢>p—1. We refer to [17, 95, 96, 97, 98] for a comprehensive description of
results related to problem (I.4.25) and also more general problems on RY.
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Inequality (1.4.25) has also been considered when the Euclidean space is replaced by
a complete noncompact Riemannian manifold M. The results in this case have a more
recent history, we refer the reader to the inspiring papers of Grigor’yan and Kondratiev
[41] and Grigor’yan and Sun [42], whose approach originates from the work of Kurta
[80], and the papers by Sun [123, 124].

In particular, in [90], the authors prove nonexistence of solutions to inequality
(I.4.25), for any p > 2, provided that there exists Cp > 0 and k € [0, ), such that,
for every R > 0 sufficiently large and every small enough ¢ > 0

/ VPtedy < ¢ RYT%%(log R)F
Br\Bpg/2

where du is the canonical Riemannian measure on M, By is the geodesic ball centered
at a point g € M and

R S S et
g—p+1 g—p+1°
Finally, we mention that (1.4.25) posed on an open relatively compact connected
domain 2 C M has been studied in [100]. Under the assumptions that

a>0, a€Lip,(Q), V>0aeonQ VeclL.,.(Q),

p > 1, ¢ > p— 1, the authors investigate the relation between the behavior of the
potential V' at the boundary of {2 and nonexistence of nonnegative weak solutions.

We now consider the evolutive counterpart of the elliptic inequalities introduced so
far, such as the parabolic problem in (I.1.3). Global existence and finite time blow-
up of solutions for problem (I.1.3), together with its generalization to a wider class of
operators of p-Laplace type or related to the porous medium equation, has been deeply
studied in the Euclidean space; without claim of completeness we refer the reader to
[33, 34, 35, 97, 98, 105, 104] and references therein. In particular, in [98], the authors
consider the Cauchy problem associated to the following inequality

u — div ([VuP72Vu) > u? in RY x (0,7),
where the initial datum is uo € L} (R) and
qg>1.

They prove nonexistence of nontrivial weak solutions with the assumptions

2N
P> NTT
We refer the reader to [98] for nonexistence results of more general quasilinear evolution
inequalities.

Moreover, problem (I.1.3) has been investigated in the Riemannian setting, see e.g.
[9, 89, 110, 56, 137] and references therein.

In [89] problem (I.1.3) is studied when ©Q = M is a complete, N-dimensional, non-
compact Riemannian manifold; it is investigated nonexistence of nonnegative nontrivial
weak solutions depending on the interplay between the geometry of the underlying man-
ifold, the power nonlinearity and the behavior of the potential at infinity, assuming that
ug € L} (M), u>0ae. in M and V € L}, (M x [0,+00)), V > 0 a.e. in M.

loc

max{l,p—l}<q§p—1—|—%.
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1.4.2 Outline of the results

In Chapter 6 (where [91] is reproduced), we address a class of quasilinear parabolic
differential equations with a potential of the form (I.1.3).
We are concerned with nonexistence of nonnegative weak solutions to the following
problem
Opu — div (|VuP2Vu) > V ul in Qx(0,7)
u=0 on 092 x (0,7) (1.4.26)
u = U in Q x {0};

where € is an open bounded connected subset of RV, T'> 0, p > 1 and ¢ > max{p—1,1}.
Under suitable hypotheses on V' and ¢, we obtain nonexistence of global weak solu-
tions. In particular, we assume that

e p>1,¢g>max{p—1,1};

e VelLl (2x]0,+00)),V >0a.e. in Q x [0,+00);

loc

e V satisfies some integral conditions which describe its behavior near the boundary

o9,

o uy € LI (Q), up >0 a.e. in €.

loc

Then we prove that, if v is a nonnegative weak solution of problem (1.4.26) then u =0
a.e. in 2 x [0, 400).

The proof is mainly based on the choice of a family of suitable test functions, de-
pending on two parameters, that enables us to deduce first some appropriate a priori
estimates, then that the unique global solution is © = 0. Such test functions are defined
by adapting to the present situation those used in [89]; however, some important differ-
ences occur, since in [89] an unbounded underlying manifold is considered, whereas now
we consider a bounded domain. In some sense, the role of infinity of [89] is now played
by the boundary 0. Obviously, this implies that such test functions satisfy different
properties.

Moreover, as a special case, we consider the semilinear parabolic problem

0w — Au =V (z)u? in Q x (0,7)
u(z,t) =0 on 092 x (0,7T) (1.4.27)
u(x,0) = up(z) in Q2 x {0}.

where  is an open bounded connected subset of RY, N > 3 and ug : Q — [0, +00),
g>1and T > 0.

We can summarize our results for problem (1.4.27) as follows. As a consequence of
our general result, we infer that nonexistence of global solutions for problem (I1.4.27)
prevails, when

V(z) > Cd(x)™ for all z € Q,

for some C' > 0 and
o1 >q+1,
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where

d(z) := dist(z,09Q) for any x € Q.

Furthermore, we show sharpness of this result for the semilinear problem in the case 02
is regular enough and V' = V(z) is continuous and independent of ¢. Indeed, under the
assumption that

0<V(z)<Cd(z)™? forall zeQ,

for some C' > 0 and
0§0-1<q+17

we prove the existence of a global classical solution for problem (I1.4.27), if the initial
datum wug is small enough. This existence result is obtained by means of the sub-—
and supersolutions method. In particular, we construct a supersolution to problem
(1.4.27), which actually is a supersolution of the associated stationary equation. Such
supersolution is obtained as the fixed point of a suitable contraction map. In order to
show that such a fixed point exists, we need to estimate some integrals involving the
Green function associated to the Laplace operator —A in ) and we prove that there
exists C' > 0 such that

0< / G(z,y)d(y)’ dy < Cd(z), forany B> —2.
Q

Finally, we study the slightly supercritical case
V(x,t) > d(x)" T f(d(x)?! forall x€Q, te0,4+00)

where f is a function satisfying suitable assumptions and such that lim,_,o+ f(e) =
400, for which we prove nonexistence of nonnegative nontrivial weak solutions in 2 x
(0,+00)). The proof of this result require a different argument with respect to the
previous nonexistence results, which makes use of linearity of the operator and of the
special form of the potential. Then the critical rate of growth d(x)~9~! as x approaches
0f) is indeed sharp for the nonexistence of solutions to problem (1.4.27). Our results do
not cover the case of critical rate of growth, i.e.

Crd(z) T < V(z,t) < Cod(z) 77!

for some C7,Cy > 0, but we conjecture that also in this case no nonnegative nontrivial
solution of problem (1.4.27) exists.
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Chapter 1

The slowly decaying density case

1.1 Introduction

We investigate global existence and blow-up of nonnegative solutions to the Cauchy
parabolic problem

p(x)us = A(u™) + p(x)uP in RN x (0,7) (1.1.1)
u = ug in RN x {0}, o
where m > 1,p > 1, N > 3,7 > 0; furthermore, we always assume that
(i) pe C(RN), p>0in RV,
(ii) there exist ki, ka € (0, +00) with k1 < kg and 0 < ¢ < 2 such that
(H)

1
kylz|? < —— < kolz|?  for all RN\ B1(0):
1|:l:’ _p(l‘)_ 2’1‘| orall z € \ 1()7

(iii) uo € L®(RY), ug > 0 in RV .

The parabolic equation in problem (1.1.1) is of the porous medium type, with a
variable density p(x) and a reaction term p(z)uP. Clearly, such parabolic equation is
degenerate, since m > 1. Moreover, the differential equation in (1.1.1) is equivalent to

up = ——Au™) +uP in RY x (0,7);

therefore, the related diffusion operator is ﬁA, and in view of (H), the coefficient

1
@) can positively diverge at infinity. Problem (1.1.1) has been introduced in [73] as
plx
a mathematical model of evolution of plasma temperature, where v is the temperature,

p(x) is the particle density, p(x)uP represents the volumetric heating of plasma. Indeed,
in [73, Introduction] a more general source term of the type A(x)uP has also been
considered; however, then the authors assume that A = 0; only some remarks for the
case A(x) = p(x) are made in [73, Section 4], when the problem is set in a slab in one
space dimension. Then in [71] and [72] problem (1.1.1) is dealt with in the case without
the reaction term p(x)uP.
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We refer to p(z) as a slowly decaying density at infinity because, in view of (H),

1 1
— < < for all >1,
b S P S pg forall 2]
with
0<g<2.

Global existence and blow-up of solutions for problem (1.1.1) with fast decaying density
at infinity, i.e. ¢ > 2, is investigated in [93] . We regard the value ¢ = 2 as the threshold
one, indeed, the behavior of solutions is very different according to the fact that ¢ < 2
or ¢ =2 or ¢ > 2. Such important role played by the value ¢ = 2 does not surprise. In
fact, for problem (1.1.1) without the reaction term u?, that is

{put =A@™) in RY x (0,7) (1.1.2)

u = ug in RY x {0},

in [109], it is shown that for ¢ < 2 there exists a unique bounded solution, whereas for
q > 2, for any ug € L®(RY) there exist infinitely many bounded solutions.

Let us briefly recall some results in the literature concerning well-posedness for
problems related to (1.1.1). Problem (1.1.1) with p = 1 and without the reaction term,
that is

{ut = A@™) in RN x (0,7) 113)

u = ug in RY x {0},

has been the object of detailed investigations. We refer the reader to the book [128] and
references therein, for a comprehensive account of the main results. Also problem (1.1.1)
with variable density, without reaction term, that is problem (1.1.2), has been widely
examined. In particular, depending on the behaviour of p(x) as |x| — oo, existence and
uniqueness of solutions and the asymptotic behaviour of solutions for large times have
been addressed (see, e.g., [25, 27, 49, 51, 50, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 109,
115, 116, 117)).

For problem (1.1.1) with m = 1 and p = 1, global existence and blow-up of solutions
have been studied. To be specific, if

<142
p<l+

then finite time blow-up occurs, for all nontrivial nonnegative data, whereas, for

>1+3
p N’

global existence prevails for sufficiently small initial conditions (see, e.g., [16, 24, 30, 31,
58, 83, 114, 118, 121, 135]). In addition, in [85] (see also [21]), problem (1.1.1) with
m = 1 has been considered. Let assumption (H) be satisfied, and let

b:=2—gq. (1.1.4)
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Obviously, since ¢ € [0,2), we have that
be(0,2].

It is shown that if

<14-—2
pltg o

then solutions blow-up in finite time, for all nontrivial nonnegative data, whereas, for

1 -
prlt oy

global in time solutions exist, provided that ug is small enough.

Now, let us recall some results established in [119] for problem (1.1.1) with p = 1,
m > 1,p > 1 (see also [36, 99]). We have:

e ([119, Theorem 1, p. 216]) For any p > 1, for all sufficiently large initial data,
solutions blow-up in finite time;

e ([119, Theorem 2, p. 217]) ifp € (1, m + %), for all initial data, solutions blow-up
in finite time;

e ([119, Theorem 3, p. 220]) if p > m + %, for all sufficiently small initial data,
solutions exist globally in time.

Similar results for quasilinear parabolic equations, also involving p-Laplace type oper-
ators or double-nonlinear operators, have been stated in [1], [3], [4], [20], [22], [23], [60],
[61], [86], [87], [88], [97], [98], [104], [125], [132] (see also [89] for the case of Riemannian
manifolds); moreover, in [54] the same problem on Cartan-Hadamard manifolds has
been investigated.
Let us observe that the results in [119] illustrated above have been proved by means
of comparison principles and suitable sub— and supersolutions of the form
1
|z et N
w(zx,t) = C¢(t) [1 - an(t)] for any (x,t) € R™ x [0,T),
+

for appropriate auxiliary functions ¢ = ((t),n = n(t) and constants C' > 0,a > 0.

In [86, 87] double-nonlinear operators, including in particular problem (1.1.1), are
investigated. It is shown that (see [86, Theorem 1]) if p(z) = |z|~? with ¢ € (0,2), for
any x € RV \ {0},

p>m+7N_2+b,

ug > 0 and
/RN {uo(x) + [uo(2)]?} p(x)dz < 4, (1.1.5)

for some § > 0 small enough and § > %(p — m), then there exists a global solution

of problem (1.1.1). In addition, a smoothing estimate holds. On the other hand, if
p(x) = x|~ or p(x) = (1 + |z|)~? with ¢ € [0,2), ug #Z 0 and

< -
P m+N—2+b’
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then blow-up prevails, in the sense that there exist 6 € (0,1), R > 0,7 > 0 such that
/ [u(z, ) p(x)de — 400 as t — T
Br

Such results have also been generalized to more general initial data, decaying at infinity
with a certain rate (see [87]). We compare the results in [86] with ours below (see
Remarks 1.2.3, 1.2.5 and 1.2.8).

1.1.1 Outline of our results

We prove the following results.

e (See Theorem 1.2.1). Suppose that

—1)(N -2
ko (M DWNZ2) (1.1.6)
k1 b
and define
B m(N—2+b)+%(m—%) (L.17)
- 1.
N—2+;}T0n—ﬁ)

If up has compact support and is small enough,
p>D,
then global solutions exist.

Note that for k1 = ko,
b

Nt2-b
this is coherent with [86, Theorem 1] (see Remark 1.2.3 below for more details).
If in addition p = 1, and so b = 2, we have

p=m+

_ " 2
=m+ —.

b N
Thus, our results are in accordance with those in [119]. Furthermore, for m = 1,
they are in agreement with the results established in [85], and in [31, 58] when

p=1

e (See Theorem 1.2.4). For any p > 1, if wy is sufficiently large, then solutions to
problem (1.1.1) blow-up in finite time.

e (see Theorem 1.2.6). If 1 < p < m, then for any uy # 0, solutions to problem
(1.1.1) blow-up in finite time. In addition (see Theorem 1.2.7), if

< -
'm_p<m—|—N_2+b

and g € [0,¢) for € > 0 small enough, then for any uy # 0, solutions to problem
(1.1.1) blow-up in finite time.
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It remains to be understood if the restriction ¢ € [0, €) can be removed.

Actually, we obtain similar results to those described above, also when assumption
(H) is fulfilled for general 0 < k; < ko. In that case, the blow-up result for large initial
data can be stated exactly as in the previous case k1 = ko . Instead, in order to get
global existence, the assumption on p changes, since it also depends on the parameters
k1 and ko. More precisely, Indeed, also our blow-up results for any nontrivial initial
datum holds when 0 < k1 < k2. The case 1 < p < m is exactly as before. Moreover (see
Theorem 1.2.7), if

m < p <p,

where

(1.1.8)

then the solution blows-up for any nontrivial initial datum, under the extra hypothesis
that ¢ € [0,€) for € > 0 small enough. Note that in view of (1.1.6), it can be easily
checked that

P<D.
In particular, p = p whenever k; = ko.

The methods used in [21, 31, 58, 85] cannot work in the present situation, since they
strongly require m = 1. Indeed, our proofs mainly relies on suitable comparison prin-
ciples (see Propositions 1.3.6, 1.3.7) and properly constructed sub- and supersolutions.
Let us mention that the arguments exploited in [119] cannot be directly used in our case,
due to the presence of the coefficient p(x). In fact, we construct appropriate sub— and
supersolutions, which crucially depend on the behavior at infinity of the inhomogeneity
term p(x). More precisely, whenever || > 1, they are of the type

j]”

w(z,t) = CC(¢) {1 _ 2

a

n(t)] " for any (x,t) € [RN\Bl(O)] x [0,T),
+

for suitable functions ¢ = {(t),n = n(t) and constants C' > 0,a > 0. In view of the term
|z|® with b € (0,2], we cannot show that such functions are sub- and supersolutions in
B1(0) x (0,T). Thus we have to extend them in a suitable way in B;(0) x (0,7"). This is
not only a technical aspect. In fact, in order to extend our sub— and supersolutions, we
need to impose some extra conditions on ¢ = ((t), n = n(t), C and a. Thus, it appears
a sort of interplay between the behavior of the density p(x) in compact sets, say B1(0),
and its behavior for large values of |z|. Finally, let us comment about the proofs of the
blow-up result for any nontrivial initial datum. For 1 < p < m, the result follows by a
direct application of Theorem 1.2.4. For m < p < p, the proof is more involved. The
corresponding result for the case p = 1 established in [119] is proved by means of the
Barenblatt solutions of the porous medium equation

up = A(w™)  in RY x (0, +00).

In our situation, we do not have self-similar solutions, since our equation in (1.1.1) is
not scaling invariant, in view of the presence of the term p(x). Indeed, we construct a
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suitable subsolution z of equation
1

up = —A(u™) in RY x (0, +00).
P

By means of z, we can show that after a certain time, the solution u of problem (1.1.1)
satisfies the hypotheses required by Theorem 1.2.4. Hence u blows-up in finite time.

Chapter 1 is organized as follows. In Section 1.2 we state our main results, in
Section 1.3 we give the precise definitions of solutions, we establish a local in time
existence result and some useful comparison principles. In Section 1.4 we prove the
global existence theorem. The blow-up results are proved in Section 1.5 for sufficiently
big initial data, and in Section 1.6 for any initial datum.

1.2 Statements of the main results
In view of (H)-(i), there exist p1, p2 € (0,400) with p; < pa such that

1 P
—— < pg forall z € B;(0). (1.2.9)

As a consequence of hypothesis (H) and (1.2.9), we can assume that
k‘l = P1, k‘Q = p2. (1.2.10)

Let p be defined by (1.1.7). It is immediate to see that p is monotonically increasing
with respect to the ratio %; furthermore,

p>m.
Define
Eak if |z| > 1,
() = 1.2.11

The first result concerns the global existence of solutions to problem (1.1.1) for p > p.
Theorem 1.2.1. Let assumptions (H), (1.1.6) and (1.2.10) be satisfied. Suppose that
D> D,

where P is given in (1.1.7), and that ug is small enough and has compact support. Then
problem (1.1.1) admits a global solution u € L= (RN x (0, 400)).
More precisely, if C > 0 is small enough, T > 0 is big enough, a > 0 with

Cmfl

wp < < wi,

for suitable 0 < wy < wy,

1 1
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up(x) < CT™¢ {1 - ?T‘B} " for any x € RY (1.2.13)
+

then problem (1.1.1) admits a global solution u € L= (RN x (0, +00)). Moreover,

m—1

u(z,t) <C(T+t) @ [1 - tS;C)(T —I—t)_ﬁ} . for any (z,t) € RN x [0, +00) .
(1.2.14)

The precise choice of the parameters C' > 0,7 > 0 and @ > 0 in Theorem 1.2.1 is
discussed in Remark 1.4.2 below. Observe that if ug satisfies (1.2.13), then

[uolloc < CT™,

suppug C {z € RY : v(z) < aT”}.

In view of the choice of C,T,a (see also Remark 1.4.2), ||ug||s is small enough, but
supp ug can be large, since we can select aT? > rq for any fixed ro > 0.
Moreover, from (1.2.14) we can infer that

suppu(-,t) C {z € RN : t(z) < a(T +1t)°} forallt>0. (1.2.15)

Remark 1.2.2. Note that if k1 = ko, then

P=mt Ny

In particular, for ¢ =0, i.e. b =2, we obtain

a2
=m+ —.
p N

Hence, Theorem 1.2.1 is coherent with the results in [119].

Remark 1.2.3. In [86, Theorem 1] a similar global existence result is proved, for p(x) =
|z|=4 for any x € RNV \ {0} with q € [0,2) and for suitable ug not necessarily compactly
supported. Clearly, such p does not satisfy assumption (H). Moreover, we can consider
a more general behaviour of p(x) for |x| large; this affects the definition of p, and
consequently the choice of p. The smallness condition in Theorem 1.2.1 is different
from that in [86], and it is not possible in general to say which is stronger. Moreover,
since we consider uy with compact support, we can obtain the estimates (1.2.14) and
(1.2.15), which do not have a counterpart in [86]. Finally, in [86] energy methods are
used and a smoothing estimate is derived; hence the proof is completely different from
our.

The next result concerns the blow-up of solutions in finite time, for every p > 1 and
m > 1, provided that the initial datum is sufficiently large.

Let
{|:r:|b i |z| > 1,

s(x) =
(@) lz|2 if |z| <1.
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Theorem 1.2.4. Let assumptions (H) and (1.2.10) be satisfied. For anyp > 1,m > 1
and for any T > 0, if the initial datum ug is large enough, then the solution u of problem
(1.1.1) blows-up in a finite time S € (0,T], in the sense that

lu(t)||oo = 400 as t — S™. (1.2.16)

More precisely, we have the following three cases.

(a) Let p>m. If C > 0,a > 0 are large enough, T > 0,

wuo(z) > CT 71 {1 - E’("E)T’Z—f] " (1.2.17)
a
+

then the solution u of problem (1.1.1) blows-up and satisfies the bound from below

m—p | W1
u(x,t) > C(T — t)_p%l [1 - s’(ax)(T - t)f)—lp} for any (z,t) € RN x [0, 9).
+
(1.2.18)
(b) Let p < m. If CmTfl > 0 and a > 0 are big enough, T > 0 and (1.2.17) holds,

then the solution u of problem (1.1.1) blows-up and satisfies the bound from below
(1.2.18).

(¢) Let p = m. If %71 > 0 and a > 0 are big enough, T > 0 and (1.2.17) holds,
then the solution u of problem (1.1.1) blows-up and satisfies the bound from below
(1.2.18).

Observe that if ug satisfies (1.2.17), then

p—

suppug 2 {x € RN : s(x) < aT P—T}.

In all the cases (a), (b), (¢), from (1.2.18) we can infer that
suppu(-,t) D {z € RY : s(z) < a(T — t)%} for all ¢t € [0, .5) . (1.2.19)

The precise choice of parameters C' > 0, T' > 0, a > 0 in Theorem 1.2.4 is discussed in
Remark 1.5.2 below.

Remark 1.2.5. Let us mention that in [86], where some blow-up results are shown for
problem (1.1.1), there is not a counterpart of Theorem 1.2.4, since our result concerns
any p > 1 and sufficiently large initial data.

1.2.1 Blow-up for any nontrivial initial datum

In this Subsection we discuss a further result concerning the blow-up of the solution to
problem (1.1.1) for any initial datum ug € C(RY),ug > 0,ug % 0.
Let p and be defined by (1.1.8) and (1.1.7), respectively. Assume (1.1.6). It is direct
to see that
p<p. (1.2.20)

In particular, p = p, whenever ki = ko. We distinguish between two cases:



1.2. Statements of the main results 11

1) 1<p<m,
2) m<p<p.
In case 2), we need an extra hypothesis. In fact, we assume that (H) holds with
q€(0,¢), (1.2.21)
for some € > 0 to be fixed small enough later. Then, b defined by (1.1.4), satisfies
2—¢ < b < 2. (1.2.22)
Theorem 1.2.6. Let assumption (H) be satisfied. Suppose that
1<p<m,

and that ug € C(RN),ug(x) # 0. Then, for any sufficiently large T > 0, the solution u
of problem (1.1.1) blows-up in a finite time S € (0,T], in the sense that

|u(t)||oo = +00 as t — S™.

More precisely, the bound from below (1.2.18) holds, with b,C,a,(,n as in Theorem
1.2.4-(b).

Theorem 1.2.7. Let assumptions (H) and (1.2.21) be satisfied for e > 0 small enough.
Let ug € C®°(RY) and ug £ 0. If
m < p <p, (1.2.23)

then there exist sufficiently large t1 > 0 and T > 0 such that the solution u of problem
(1.1.1) blows-up in a finite time S € (0,1 + t1], in the sense that

lu(t)||oo = +00 as t — S™.

More precisely, when S > t1, we have the bound from below
1

m—p | m—1
u(w,t) > C(T—i'tl—t)_ﬁ 1- 5(;6)<T+ t1 — t)?f for any (z,t) € RN x(t1,8),
+
(1.2.24)
with C,a as in Theorem 1.2.4-(a).

Remark 1.2.8. As it has been mentioned in the Introduction, in [86, Theorem 3] blow-
up of solutions to problem (1.1.1) is shown when p(x) = |z|~% or p(x) = (14 |x|)~7 with
q € [0,2). However, the results in [86] are different, in fact it is obtained an integral
blow-up, that is, for some R > 0, 8 € (0,1), T > 0, fBR[u(x,t)e]p(x)d:U — 400 as
t — T~. On the other hand, we should mention that the extra hypothesis (1.2.21), that
we need in Theorem 1.2.7, in [86] is not used. Furthermore, the methods of proofs in
[86] are completely different, since they are based on the choice of a special test function
and integration by parts.
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1.3 Preliminaries

In this section we give the precise definitions of solution of all problems we address, then
we state a local in time existence result for problem (1.1.1). Moreover, we recall some
useful comparison principles.

Throughout the chapter we deal with very weak solutions to problem (1.1.1) and to
the same problem set in different domains, according to the following definitions.

Definition 1.3.1. Let ug € L¥(R™) with ug > 0. Let 7 > 0, p > 1,m > 1. We say
that a nonnegative function u € L®(RN x (0, 5)) for any S < 7 is a solution of problem

(1.1.1) if
- [ ] remdrar= [ p@pole)et.0 s

+/ / u Apdtdx (1.3.25)
RN Jo
+/ / p(z)uPo dt dx

RN Jo

for any ¢ € CX(RN x [0,7)),o > 0. Moreover, we say that a nonnegative function
u € L®RYN x (0,9)) for any S < 7 is a subsolution (supersolution) if it satisfies
(1.3.25) with the inequality ” <7 (" >7 ) instead of 7 =" with ¢ > 0.

For any o € RY and R > 0 we set
Br(zo) = {z € RY : ||z — 20|| < R}. (1.3.26)
When g = 0, we write Bg = Br(0). For every R > 0, we consider the auxiliary problem

up = %A(um) +wP  in Br x (0,7)
u=0 on 0Bg x (0,7) (1.3.27)

u = ug in Br x {0}.

Definition 1.3.2. Let ug € L>(Bpg) with ug > 0. Let 7 >0, p > 1,m > 1. We say
that a nonnegative function u € L>(Bgr x (0,5)) for any S < 7 is a solution of problem
(1.3.27) if

_/BR /OTp(x)ugotdtde/ p(x)uo(2)p(z,0) dx

Br

—I—/ / u" Apdt dx (1.3.28)
Br J0

—i—/ / p(x)uPodt dx
Br Jo

for any ¢ € CX(Bg x [0,7)) with p|op, =0 for allt € [0,7). Moreover, we say that a
nonnegative function u € L>(Brx(0,S5)) for any S < 7 is a subsolution (supersolution)
if it satisfies (1.3.28) with the inequality ” <7 (7 >7) instead of 7 =7, with ¢ > 0.
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Proposition 1.3.3. Let hypothesis (H) be satisfied. Then there exists a solution u to

problem (1.3.27) with
1

71 M
(p— 1)HUO||]Zoo(BR)

T2 TR =

Proof. Note that u = 0 is a subsolution to (1.3.27). Moreover, let ur(t) be the solution

of the Cauchy problem
{u’(t) =P
u(0) = [[uoll o (BR) »

ap(t) = luollz=5p) — forall te[0,7R).

1= (0= Dtfluolly |

that is

Clearly, for every R > 0, up is a supersolution of problem (1.3.27). Due to hypothesis
(H),
.1 1 1 —
0 <min— < ——<max— forall x € Bg.
Bg p~ p() Br P

Hence, by standard results (see, e.g., [128]), problem (1.3.27) admits a nonnegative
solution up € L>®(Bg % (0,5)) for any S < 7, where 7 > 7 is the maximal time of
existence, i.e.

|lur(t)||oo =00 as t — 7g.

O]

Moreover, the following comparison principle for problem (1.3.27) holds (see [7] for
the proof).

Proposition 1.3.4. Let assumption (H) hold. If u is a subsolution of problem (1.3.27)
and v is a supersolution of (1.3.27), then

u<wv a.e in Brx (0,7).

Proposition 1.3.5. Let hypothesis (H) be satisfied. Then there exists a solution u to
problem (1.1.1) with
1

(p = Dlluollt™

Moreover, u is the minimal solution, in the semse that for any solution v to problem
(1.1.1) there holds

2> Ty =

u<v in RN x(0,7).
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Proof. For every R > 0 let ur be the unique solution of problem (1.3.27). It is easily
seen that if 0 < R; < Ry, then

ug, <ugr, in Bpg, x(0,7). (1.3.29)

In fact, up, is a supersolution, while ug, is a solution of problem (1.3.27) with R = R;.
Hence, by Proposition 1.3.4, (1.3.29) follows. Let @(t) be the solution of

{a’(t) — P
(0) = [Juollso ,

u(t) = B3 — forall t€]0,79).

1= (= Dol

Clearly, for every R > 0, @ is a supersolution of problem (1.3.27). Hence

I

that is

0 <ug(z,t) <u in Bg x (0,7). (1.3.30)

In view of (1.3.29), the family {ugr}r>¢ is monotone increasing w.r.t. R. Moreover,
(1.3.30) implies that the family {ug} is uniformly bounded. Hence {ug}r~o converges
point-wise to a function, say u(x,t), as R — 400, i.e.

lim wup(z,t) =u(z,t) ae in RY x (0,70).
R—+o00

Moreover, by the monotone convergence theorem, passing to the limit as R — 400 in
(1.3.28) we obtain

- /R N /0 b p(x)upy dt dr = /R  P@)uo(2)¢(,0) do

70
+/ / u Ay dtdz
RN Jo

T0
+/ / p(x)uPy dt dx
RN Jo

for any ¢ € CX(RN x [0,79)),¢ > 0. Hence u is a solution of problem (1.1.1) u €
L®(RY x (0,5)) for any S < 7, where 7 > 79 is the maximal time of existence, i.e.

lu(t)]|oo = 00 as t — 7.

Let us now prove that w is the minimal nonnegative solution to problem (1.1.1).
Let v be any other solution to problem (1.1.1). Note that, for every R > 0, v is a
supersolution to problem (1.3.27). Hence, thanks to Proposition 1.3.4,

ur <v in Bg x (0,7).
Then passing to the limit as R — oo, we get
u<vin RN x (0,7).

Therefore, u is the minimal nonnegative solution. O
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In conclusion, we can state the following two comparison results.

Proposition 1.3.6. Let hypothesis (H) be satisfied. Let u be a supersolution to problem
(1.1.1). Then, if u is the minimal solution to problem (1.1.1) given by Proposition 1.5.5,
then

u<t ae inRY x(0,7). (1.3.31)

In particular, if u exists until time 7, then also w exists at least until time T.

Proof. Clearly, for any R > 0, u is a supersolution to problem 1.3.27. Hence, by
Proposition 1.3.4,
up < in Bgx (0,7).

By passing to the limit as R — +o00, we easily obtain (1.3.31), which trivially ensures
that u does exist at least up to 7, by the definition of maximal existence time. O

Proposition 1.3.7. Let hypothesis (H) be satisfied. Let u be a solution to problem
(1.1.1) for some time T =11 > 0 and u a subsolution to problem (1.1.1) for some time
T =19 > 0. Suppose also that

supp ulrw x[o,5] i compact for every S € (0,72).

Then
w>u i RY x (0,min{m,n}) . (1.3.32)

Proof. We fix any S < min{7j,72}. It R > 0 is so large that
Supp Ul [o,5] € Br % [0,5],
then v and u are a supersolution and a subsolution, respectively, to 1.3.27. Hence
u>wu in Bgx(0,5).

Inequality (1.3.32) then just follows by letting R — +o0c and using the arbitrariness of
S. O

Remark 1.3.8. Note that by minor modifications in the proof of [109, Theorem 2.3]
one could show that problem (1.1.1) admits at most one bounded solution.

In what follows we also consider solutions of equations of the form
1
u = —AW™)+uP in Qx(0,7), 1.3.33
where Q C RY. Solutions are meant in the following sense.

Definition 1.3.9. Let 7 > 0, p > 1,m > 1. We say that a nonnegative function
u € L>®(Q x (0,8)) for any S < 7 is a solution of problem (1.3.27) if

—// p(x)ugptdtda::// u" Ay dt dx
QJOo QJo
—i—// p(x)uPpdt dx
QJo

(1.3.34)
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for any ¢ € C°(Q x [0,7)) with plaqg = 0 for all t € [0,7). Moreover, we say that a
nonnegative function u € L>®(2 x (0,5)) for any S < 7 is a subsolution (supersolution)
if it satisfies (1.3.28) with the inequality ” <7 (7 >7 ) instead of 7 =7, with ¢ > 0.

Finally, let us recall the following well-known criterion, that will be used in the
sequel; we reproduce it for reader’s convenience. Let 2 € RY be an open set. Suppose
that Q = Q; U Qs with Q; N Qs = 0, and that ¥ := 9Q; N 9Ny is of class C. Let n be
the unit outwards normal to €27 at 2. Let

{ul in Ql X [O,T),
u =

. (1.3.35)
up in Q9 x [0,7),

where Oyu € C(Ql X (O,T)),’l/ln S 02(Q1 X (O,T)) N Cl(ﬁl X (O,T)),atUQ S C(QQ X
(0,7)),)uft € C%(Q2 x (0,7)) N CH Q2 x (0,T)).

Lemma 1.3.10. Let assumption (H) be satisfied.
(i) Suppose that

1
Oug > =Au" +uf for any (z,t) € Q4 x (0,7),
i’ (1.3.36)
dug > =Auf’ +ub  for any (z,t) € Q2 x (0,7),
p
up = ug, Ouy’ > Ouz’ for any (x,t) € ¥ x (0,T). (1.3.37)

on — On
Then u, defined in (1.3.35), is a supersolution to equation (1.3.33), in the sense of
Definition 1.3.9.
(ii) Suppose that

1
Opuy < ;Auﬂ" +uf  for any (x,t) € Q1 x (0,7),
L (1.3.38)
Opug < ;AUQ +u;,  for any (z,t) € Q2 x (0,7T),
oul* _ ouy’
up = ug, et M e for any (z,t) € ¥ x (0,T). (1.3.39)

on — 0On
Then u, defined in (1.3.35), is a subsolution to equation (1.3.33), in the sense of Defi-
nition 1.3.9.

0.

Proof. Take any ¢ € C°(2 x [0, 7)) with ¢|gq =0 for all t € [0,7),¢ >
1.3.36), then integrating

)
(i) We multiply by ¢ both sides of the two inequalities in (1.3.3
two times by parts we get

- / / p(urpr + ujp)dzdt
0 95

T T T m
> / W Apdrdt — / / w08 ot + / / 22 gt
0 0 Jxu on 0o Js On
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—/ /Mw%—@@Wﬁ
0 Qo

> / W Apdrdt + / / w28 dodr — / / 22 ot
0 0 J= on 0o Js On

Summing up the previous two inequalities and using (1.3.37) we obtain

T T
—/ / p(upr + uP) dedt > / u Ap dxdt .
0 JQ 0
Hence the conclusion follows in this case. The statement (ii) can be obtained in the
same way. This completes the proof. ]

1.4 Global existence: proofs

In what follows we set r = |z|. We want to construct a suitable family of supersolutions

of equation
1

p(x)
To this purpose, we define, for all (z,t) € []RN \ B1(0)] x [0, +00),

up = Aw™) + P in RY x (0,400). (1.4.40)

1
b m—1
u(z,t) = u(r(z), t) == CC(t) {1 - Zn(t)] , (1.4.41)
+
where 7, ¢ € C1([0, +00); [0, +00)) and C > 0, a > 0.
Now, we compute

up — 1A(um) —uP.

To do this, let us set
b

Flr,t)=1— %n(t)
and define
Dy := {(z,t) € [RN\ B1(0)] x (0, +00) | 0 < F(r,t) < 1}.

For any (z,t) € Dy, we have:

1 b
w = CC'Fwt 4 O¢——— F-i ! <—T77’>
m—1 a
b / /
m—1 a n m—1n
1 7 1 _
Syr0—Tpam _oc— T pmat,
m—1n m—1n

=C(Fwm

1 b
(um)r — _Cmgm mnz 1Fm1_1 a77Tb71; (1443)
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(m —
+ Cmgmim = —1677741)72 (1.4.44)
(m—1)? a
—1 a
N -1
A = @) + D wm),
— (msm m m% lbj b—2
c"¢ ( _1)2F ro
e M TN S
- C"¢ ( _1)2F Tnr
m 1 b(b—1 _
_Cmcm _1F_ (a )ner
B (1.4.45)
+ (N 1) < Cmcm m Fm1 77,’,'"1) 1>
T 1
moem M b2 11 p9
c™¢ ( _1)2a77F 1™y
_emyN om0 o
C™(N —2)¢ _1a77F iy
2 2
_CmCm< T’zl)anlerb—Q
We set @ = u,
Bl 1) = w(r(e), £) o= 4 20D B RIABUOTX [0, +00), (1.4.46)
’ ’ v(z,t) in B1(0) x [0, +00),
where 1
2 — m—1
o, 1) = 5(r(@), ) = OC(1) [1— B +2-Y) ”(ﬂ | (1.4.47)
2 a |,
We also define
1 m—=1 1 pt+m—2
m — p=1 m— p=1
K=— (-
Gins) -Gis) T e
1 b b
o) = ¢4 oty o emien g (N -z Y,
7777/ m—1,m m ﬁ
o) =C 1y T oz ™ (1.4.48)
(t) == CPI¢P(b),
1
ao(t) —C+C——+ mlcm kalf
5 — 71 m—112 1. ~m___ " "f
50(t).—<m_1n+0 bk‘QC (m_1)2a2.
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Proposition 1.4.1. Let ( = ((t), n = n(t) € C*([0,+00); [0, +00)). Let K,5,6,7, 50, S0
be defined in (1.4.48). Assume (1.1.6), (1.2.10), and that, for all t € (0,+00),
n(t) < a, (1.4.49)
U bQCm Lem=1(g) (1.4.50)
2= m—12 =
/ m—1 m k2b -1
¢+Cm(¢ -2 + — —CP (P >0, (1.4.51)
1 m—1
77 m—1_ T
— > 1.4.52
L e (14.52)
cm— 1 m cm- 1 m

¢+ N¢g™ —— ki = NC" n? ko — CP~1¢P > 0. (1.4.53)

a? (m—1)2
Then w defined in (1.4.46) is a supersolution of equation (1.4.40).

Proof of Proposition 1.4.1. In view of (1.4.42), (1.4.43), (1.4.44) and (1.4.45), for any
(x,t) € Dy,

1
Uy — ~A(@™) — @P
¢ p( )

/ /
= C’C'Fﬁ + C(;H—Fﬁ - Cgénfpﬁfl
m—1n m—1n
2 e T (1.4.54)
- — O ——5—nFm1 " — C™(N = 2)("————nFmn-1
P { ¢ -1 a" (N =2)¢" 1]
m? b
— mcm ifr’Fm—l } — CpCme—l
(m—1)
Thanks to hypothesis (H), we have
b2 b2
e >k, - > —ky forall z € RN\ By(0). (1.4.55)
From (1.4.54) and (1.4.55) we get
A" -
u — —A(u™) —u
"
1 b b
> CFwil { [C g + cmtem Llfnk:l <N 2+ mlﬂ (1.4.56)
I -1 m b2 1
—(———-Cc™ mi ko — CP™ .

From (1.4.56), taking advantage from &(t), 6(¢) and 74(t) defined in (1.4.48), we have

(1.4.57)

P+mf2]

=A@~ > CF [o(0)F = 51) = 5(OF 5
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For each t > 0, set

p+m—2

o(F):=c(t)F —6(t) —yt)F =71 , Fe(0,1).

Now our goal is to find suitable C| a, (,n such that, for each ¢ > 0,
o(F)>0 forany F € (0,1).

We observe that ¢(F') is concave in the variable F', hence it is sufficient to have ¢(F')
positive in the extrema of the interval of definition (0,1). This reduces to the system

{‘p(o) 20 (1.4.58)
>0,

that is

m—1
which is guaranteed by (1.1.6), (1.4.50) and (1.4.51). Hence we have proved that
1
u— —A@")—u? >0 in Dj.
p
Since @™ € CY[RN \ B1(0)] x (0,7)), in view of Lemma 1.3.10-(i) (applied with
Q) = D1,Qy = RN\ [B1(0) U Dy],u; = @,up = 0,u = @), we can deduce that @ is
a supersolution of equation
1
a— ~A@™) —a? =0 in [RY\ B1(0)] x (0, +00), (1.4.59)
P
in the sense of Definition 1.3.9. Now let v be as in (1.4.47). Set

B br2 +2 — bn(t)
2 a

G(r,t) =1
Due to (1.4.49),
0<G(r,t) <1 forall (z,t) € B1(0) x (0,400).

For any (z,t) € B1(0) x (0,+00), we have:

1 1 1 1
5 =CCGmT +0C——Lomt—cc——Lama (1.4.60)
m-—1n7 m—1n7
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(™), = _Cmbgm%gﬁgr; (1.4.61)

2
(@™ )y = OmcmﬁGﬁ‘l%b%? - omen gl (1.4.62)

Therefore, for all (z,t) € B1(0) x (0, +00),

@t—lA(@m)—@p
L1 / ¢ 77/ N — m—1,m_ T 171 b m—1,m_ "M 7
— m—1 —_ — -
ca {G[C+m—1n+b r C ¢ 1pa+pC ¢ m—1a
_#l,_ﬁ 2om-1__ M mnj_ p—1 0 PR
m—1n pr (m—l)2< a? ¢ CG ' }
(1.4.63)

Using (1.2.9) and the fact that r € (0,1), (1.4.63) yields, for all (z,t) € B;1(0) x (0, 4+00),
1. _
vy — —A@@™) — o
p

oler=1 { [g+<1”+kacm Lem mln]
K e (1.4.64)
G0 emegpg, M T g
Ty O e e 06 1}
p+m—2]

= CGmT [20(6)G = Bo(t) — ()G

Hence, due to (1.4.64), we obtain for all (z,t) € B1(0) x (0,400),

(1.4.65)

= Lo - L1 [_- = _ ptm—2
B AT - 2 06T [ao(t)G— Jo(t) — 5(1)G ]

For each t > 0, set

ptm—

B(G) = Go(H)G — Bolt) — FOET, G e (0,1).

Now our goal is to verify that, for each ¢ > 0,
P(G) >0 forany G € (0,1).

We observe that ¢(G) is concave in the variable G, hence it is sufficient to have (G)
positive in the extrema of the interval of definition (0,1). This reduces to the system

{1/’(0) =0 (1.4.66)
>0,
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that is

n 20”1 mlm
T 20 kG

¢ SN I (ot — P E (e — CPTLCP > 0,

)
which is guaranteed by (1.1.6), (1.4.52) and (1.4.53). Hence we have proved that

1
Uy — ;A(@m) —oP >0 forall (z,t) € B1(0) x (0, +00) (1.4.67)

Now, observe that w € C(RY x [0, +00)); indeed,

1

)] m-1

u=1v=C0¢(t) [1 - ni)] in 9B;1(0) x (0, 400).
+

Moreover, w™ € C1(RYN x [0, +00)); indeed,

1

(@), = (¥™), = —C™¢ ()™ mm 1b77£f) [1 - ”Ef)] :” in 9B1(0) x (0, +00) . (1.4.68)

In conclusion, by (1.4.59), (1.4.64), (1.4.68) and Lemma 1.3.10-(i) (applied with Q; =
RN\ B1(0),Q2 = B1(0),u1 = @, us = 9,u = W), we can infer that w is a supersolution
to equation (1.4.40) in the sense of Definition 1.3.9. O

Remark 1.4.2. Let

P> D,
and assumptions (1.1.6) and (1.2.10) be satisfied. Let w := CZ_I. In Theorem 1.2.1,
the precise hypotheses on parameters o, 3,C > 0,w > 0,T > 0 are the following:

condition (1.2.12),

B —bwks—" >0, (1.4.69)
m_
Catbw [h(N 24 MI)— @b]ZGWH (1.4.70)
m — m—1 m—1
BTP > P2y (1.4.71)
a "m-—1
78 > %) (for 1o > 1), (1.4.72)
—a+ w2 kN—bik > crt (1.4.73)
m—1\"" (m—1)a 2] = ' o

Lemma 1.4.3. All the conditions in Remark 1.4.2 can be satisfied simoultaneously.
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Proof. We take « satisfying (1.2.12) and

bm kob
kl (N_2+m> _m2—1 klN 1
ke m (N —2+0) — (N —2)] bka + (m — DN’ m — 1

o < min

(1.4.74)

This is possible, since

>p>m+ @ >m
p>p N .
In view of (1.4.74), (1.1.6) and the fact that § = 1 — a(m — 1), we can take w > 0 so
that (1.4.69) holds, the left-hand-side of (1.4.70) is positive, and

m

— b
o+ wm—l

(klN — 6) >0,
for some € > 0. Then, we choose C' > 0 so small that (1.4.70) holds and

—a+ bw (k1N —€) > CP71; (1.4.75)

m—1

therefore, also a > 0 is properly fixed, in view of the definition of w. We select T" > 0
so big that (1.4.71), (1.4.72) are valid and

kiN —b——k € 1.4

> €. A4.76
1 (m—1) 2 Z ( )
From (1.4.76) and (1.4.75) inequality (1.4.73) follows. O

Proof of Theorem 1.2.1. We prove Theorem 1.2.1 by means of Proposition 1.2.1. In view
of Lemma 1.4.3, we can assume that all the conditions of Remark 1.4.2 are fulfilled.
Set
Ct)=(TH+t)"% nt)=(T+t)?, forall t>0.

Observe that condition (1.4.72) implies (1.4.49). Moreover, consider conditions (1.4.50),
(1.4.51) of Proposition 1.4.1 with this choice of ((¢) and 7(t). Therefore we obtain

b2 m
8- fcmflmz@(zﬁ +¢)"em=D=8+1 > (1.4.77)

a

and

cm™t mb bm kab
. —a—1 B . 2 —am—f
a(T +t) + . m_l[kq(N 2+m_1> m—1](T+t)
—CP N T +¢)7°" > 0.
(1.4.78)

Since, f =1 —a(m — 1), (1.4.77) and (1.4.78) become

om-1_ b < 1—a(m-—1)

e 1.4.
m—1la — kob ’ (1.4.79)
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m—1
SPNAS U [ PN 6 NP L L DL B QAN
a m-—1 m—1 m—1 (1.4.80)

> CP YT 4-t)~oP

Due to assumption (1.2.12),
>0, —a—12>—pa. (1.4.81)

Thus (1.4.79) and (1.4.80) follow from (1.6.157), (1.4.69) and (1.4.70).

We now consider conditions (1.4.52) and (1.4.53) of Proposition 1.4.1. Substituting
¢(t), n(t), a and B previously chosen, we get (1.4.71) and

m—1
cr om <k1N —b

— b
ot m—1

<T“)) o) |+t 2 o

(m—1
(1.4.82)
Condition (1.4.82) follows from (1.6.157) and (1.4.73).
Hence, we can choose a, 3, C > 0, a > 0 and T so that (1.4.79), (1.4.80), (1.4.71)
and (1.4.82) hold. Thus the conclusion follows by Propositions 1.4.1 and 1.3.6. O

1.5 Blow-up: proofs

Let
in [RY\ B T
v(z,t) in B1(0) x [0,7),
where u = u is defined in (1.4.41) and v is defined as follows
£)]mT
v(z,t) = v(r(x),t) == CC(t) [1 - 7‘277£L)] . (1.5.84)
+
Observe that for any (z,t) € B1(0) x (0,7, we have:
1 1 7
C’CGm I —F(Jci—Gm I —C’Ci_lnGm ; (1.5.85)
my _— _9Cmm P WA
(©™)r cme G la, ;
mm m m%—lﬂ _ mpym M m%ﬁ
(W™)pr =4C™¢ (m _1)2G T 20™(¢ m—lG -
moon 1
_4qomem " T ms
¢ (m—1)2 aG '
m L7 moon 1
A(™) = 40" (" g GmT T = —ACM (" G
(m—1) (m—1)%a (1.5.86)

Conemem Mgt
m—1 a
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Therefore, from (1.5.85) and (1.5.86) we get, for all (z,t) € B1(0) x (0,7,

1
v, — —A@™) =P

p
! 1 4
m—1n m—1pa p (m—1)2a

¢ 4.0 m 1 op o pEM=2
- " = - PTG mT ;.

m—1n p (m—1)2%a ¢ }

(1.5.87)
We also define
1 ! b b
o(t)i= ¢+ ¢——TL 4 omigm L 2y (N -2+ ),
m—1n7 m—1a m—1
1 77/ -1 m b2

ot) =(—— m=lem____ 7~ pk

7() Cm—177+c C (m_l)gaﬁ 1

(1) = CPI¢P,

! 1 7 m—1,m__ M 2 n (1.5.88)
oalt) = ¢ omg T aem e I (N 2
1 77/ Cmfl m
=(———+14 m
Ip(1) Cm—l 7 + . ¢"p1 (m—l)Qn’

m—1 p+m—2
Ko (oL e (m L
p+m—2 p+m—2
Proposition 1.5.1. Let T € (0,00), ¢, n € C*([0,T); [0, +00)). Let 0,0,7,00,00, K be
defined in (1.5.88). Assume (1.2.10) and that, for allt € (0,T),

p+m—2 m—1

Klo())" 7T < 8(t)[y(t)] 57 | (1.5.89)
(m—1)a(t) < (p+m—2)y(t), (1.5.90)
Kloo(®) %1 < o(t)l(8)] 77 , (1.5.91)
(m—=1)ag(t) < (p+m —2)y(t). (1.5.92)

Then w defined in (1.5.83) is a weak subsolution of equation (1.4.40).

Proof of Proposition 1.5.1. In view of (1.4.42), (1.4.43), (1.4.44) and (1.4.45) we obtain

Uy — EA(u’“) —uP

p
/ 1 /
= C(’Fﬁ + Cgilpmil — CcilF'mal_l
m—1mn m—1mn
b—2 2 2 2
r m b 1 m b __1 m b 1
— Cm m___ Fm—l _Cm m___ - Fm—l _Cm m_____ Fm—l
{ ¢ (m—l)zan ¢ m—1a’ ¢ ( —1)2a17 }

— CP¢PFmT for all (z,t) € Dy .
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In view of hypothesis (H), we can infer that

T'b_2 T'b_2
<ky, ———<—k forall zeRN\ Bi(0). (1.5.94)

p p
From (1.5.93) and (1.5.94) we have

1
u, — —Au™) — P

p
1 b b
< OFm-i 1{ [g +§ +Cm e Ll,n;@ <N 2+m1ﬂ (1.5.95)
1 1 m b2 p— 1 p p+tm—2
=T _gm-tpm_ 07 i .
Gy O (m_l)gankl PR
Thanks to (1.5.88), (1.5.95) becomes
w— LA —w? < CFRTG(F), (1.5.96)

P
where, for each t € (0,7,

ptm—2

o(F) = o(t)F — §(t) -y () F T,

Our goal is to find suitable C,a, (,n such that, for each t € (0,7,
@(F) <0 forany F € (0,1).
To this aim, we impose that

su F)= max ¢(F)=p(Fy) <0,
Fe(&)s@( ) FE(OJ)@( ) = ¢(Fp) <

for some Fy € (0,1). We have

do

¥ia =0 < a(t) - — y(t)Fm=1 =0
m—1
m—1 o(t)]»1
<— F=F=|—-—--——= .
0 [p—l—m—Q’y(t)]
Then
U(t)p;ng
o(Fo) = K —"—— —4(t),
y(t) =1

where the coefficient K depending on m and p has been defined in (1.5.88). By hypoteses
(1.5.89) and (1.5.90), for each ¢t € (0,7),

p(Fp) <0, Fpy<1. (1.5.97)

So far, we have proved that
1
—— AW - <0 in Di. 1.5.98
S AEn) (15.98)
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Furthermore, since u™ € C*([R™ \ B1(0)] x (0,7)), due to Lemma 1.3.10 (applied with
O = D1, = RN\[Bl (0)UD1],u1 = u,ug = 0,u = w), it follows that u is a subsolution
to equation

1
u— —AW™) —u? =0 in [RY\ Bi(0)] x (0,7),
in the sense of Definition 1.3.9.

Let
Dy :={(z,t) € B1(0) x (0,T) : 0 < G(r,t) < 1}.

Using (1.2.9), (1.5.87) yields, for all (z,t) € Dy,

v — —A(™) =P
¥—1 ! C 77/ 2 m—1,m m 77
<cerm e+ =T 2 (N4 2 ) wemien ]
m—1n m—1 m—1a
¢ -1 m_ 7 —1 ppEEms2
_ 5 T yom B S Ve Tk
m—1n ¢ kl(m—l)Qa e 1}
= G oG — o) — 2 (DG
(1.5.99)

Now, by the same arguments used to obtain (1.5.98), in view of (1.5.91) and (1.5.92)
we can infer that

1
v, — —Av™ <P for any (x,t) € Ds. (1.5.100)
p

Moreover, since v € C'(B1(0) x (0,7)), in view of Lemma 1.3.10 (applied with Q; =
Dy,Q9 = B1(0) \ D2,u; =v,u2 = 0,u = v), we get that v is a subsolution to equation

1
v, ——Av™ =vP in By(0) x (0,7), (1.5.101)
p

in the sense of Definition 1.3.9. Now, observe that w € C(R™ x [0,7)); indeed,

u=uv=C((t) [1 - ngt)]ml in 9B;1(0) x (0,7).
+

Moreover, since b € (0, 2],

1

(Hm)r > (Qm)r — _20m<(t)mr,nn_ll((1t) |:1 — n((lt):| j:l in 8B1<O) X (O,T) .

(1.5.102)
In conclusion, in view of (1.5.102) and Lemma 1.3.10 (applied with ; = B;(0),Q9e =
RN\ B1(0),u1 = v,us = u,u = w), we can infer that w is a subsolution to equation
(1.4.40), in the sense of Definition 1.3.9. O

Remark 1.5.2. Let w := 0%4 In Theorem 1.2.} the precise choice of the parameters
C >0,a>0,T >0 are as follows.
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(a) Let p > m. We require that

1 b S
tn
Kd— 4 bhgw—2 (2 L N9
m—1 m—1\m-—1
m—1 m p—m
< b2k
_m—l[ 1Wm—l_._p—l}’

b
1 + wmbks (N—2+ml> <(p+m-—2)CP,
—

ptm—2

1 2 —1
K|—— +2kow m N+ — !
m—1 m—1 m—1

m—1 o
SC [4k1w L m} ;
m—1 m p—

2
1+ kow (N—i—) < (p+m—2)CP~1;
m—

(b) Let p < m. We require that

(m —p)(m —1)

W= b2(p — 1)mky ’

K{m T +whoty b(N—2+%)} T

a 2 max ,
wiky Witk b2 - 2P|
p+m—2
K{m%JrkaQL_ (N+i1)} P

m
W [4k1wm T ZL lp]

p=1 bm
(p+m—2)(aw)mT Zmax{l+wmbk2 (1 —|—N—2>
m

1—|—wk2 <N+2>}
m—1

(¢) Let p=m. We require that w > 0,

2
K {5y + wha iy b<N—2+%)}

a > max

K {2k + 2wk 2 (N+—)}2

4]{31(4.) (m 1)2 ’

1 bm

M[”“’” (“2—1)]}
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(1.5.103)

(1.5.104)

(1.5.105)

(1.5.106)

(1.5.107)

(1.5.108)

(1.5.10)

(1.5.110)
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Lemma 1.5.3. All the conditions of Remark 1.5.2 can hold simultaneously.

Proof. (a) We take any w > 0, then we select C' > 0 big enough (therefore, a > 0 is also
fixed, due to the definition of w) so that (1.5.103)-(1.5.106) hold.

(b) We can take w > 0 so that (1.5.107) holds, then we take a > 0 sufficiently large to
guarantee (1.5.108) and (1.5.109) (therefore, C' > 0 is also fixed).

(c) For any w > 0, we take a > 0 sufficiently large to guarantee (1.5.110) (thus, C' > 0
is also fixed). O

Proof of Theorem 1.2.4. We now prove Theorem 1.2.4, by means of Proposition 1.5.1.
In view of Lemma 1.5.3, we can assume that all the conditions in Remark 1.5.2 are
fulfilled. Set

(=T -1, nt)=(T-1)

and

Then

(m—=1)(p—1) (m—1)%a
A(t) == CP (T — 1)1

Let p > m. Conditions (1.5.103) and (1.5.104) imply (1.5.89) and (1.5.90), whereas
(1.5.105) and (1.5.106) imply (1.5.91) and (1.5.92). Hence, by Propositions 1.5.1 and
1.3.7 the thesis follows in this case.

Let p < m. Conditions (1.5.108) and (1.5.109) imply (1.5.89) and (1.5.90), whereas
conditions (1.5.105) and (1.5.106) imply (1.5.91) and (1.5.92). Hence, by Propositions
1.5.1 and 1.3.7 the thesis follows in this case, too.

Finally, let p = m. Condition (1.5.110) implies (1.5.89), (1.5.90), (1.5.91) and
(1.5.92). Hence, by Propositions 1.5.1 and 1.3.7 the thesis follows in this case, too.

The proof is complete.
O

1.6 Blow-up for any nontrivial initial datum: proofs

Proof of Theorem 1.2.6. Since ug #Z 0 and ug € C(RY), there exist ¢ > 0,79 > 0 and
zo € RY such that
up(x) > ¢, forall z € By, (xo).

Without loss of generality, we can assume that xg = 0. Let w be the subsolution of
problem (1.1.1) considered in Theorem 1.2.4 (with a > 0 and C' > 0 properly fixed).
We can find T' > 0 sufficiently big in such a way that

_m—p

CT 71 <e, aT 7+t <min{rd2}. (1.6.111)
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From inequalities in (1.6.111), we can deduce that
w(z,0) <wup(z) forany = € R.
Hence, by Theorem 1.2.4 and the comparison principle, the thesis follows. ]

Let us explain the strategy of the proof of Theorem 1.2.7. Let u be a solution to
problem (1.1.1) and let w be the subsolution to problem (1.1.1) given by Theorem 1.2.4.
We look for a subsolution z to the equation

1
2= —A(E™) inRY x(0,00), 1.6.112
such that
2(2,0) < wug(z) for any z € RV, (1.6.113)
and
z(z,t) > w(z,0) for any z € RY (1.6.114)

for t; > 0 and T > 0 large enough. Let 7 > 0 be the maximal existence time of u. If
7 < t1, then nothing has to be proved, and u(z,t) blows-up at a certain time S € (0, t1].
Suppose that 7 > ¢;. Since z is also a subsolution to problem (1.1.1), due to (1.6.113)
and the comparison principle,

2(z,t) < u(x,t) for any (x,t) € RY x (0,7). (1.6.115)
From (1.6.114) and (1.6.115),

u(z,t1) > z(z,t1) > w(z,0) for any z € RY.

Thus u(z,t + t1) is a supersolution, whereas w(z,t) is a subsolution of problem

o

u = A@W™) +uP in RN x (0, +00)
u(z,t1) = w(z,0) in RN x {0}.

Hence by Theorem 1.2.4, u(x,t) blows-up in a finite time S € (¢t1,t1 + T).

In order to construct a suitable family of subsolutions of equation (1.6.112), let us
consider two functions n(t),((t) € C*([0,+00);[0,400)) and two constants C; > 0,
a1 > 0. Define

_ gty in RV Bi(0)] x (0, +00)
z(x,t) = z(r(x),t) = { () in By(0) x (0, +0o). (1.6.116)
where )
rP m—1
€0 =€), 0) = €1¢(0) 1= Tt (1.6.117)
al +
and .
7"2 _ m—1
1) = €(r (o)1)= Cu() |1 = 22 (1.6.118)
al +
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Let us set , )
r bre4+2-—95
F(r,t):=1— —n(t Girit)i=1 — ——
(1) :=1=Tn), Glr) -

n(t)
and define
Dy := {(z,t) € [RN\ B1(0)] x (0, +00) |0 < F(r,t) <1},

Dy := {(z,t) € B1(0) x (0,+00) |0 < G(r,t) < 1}.

Furthermore, for ¢y > 0 small enough, let

k
g
2 1.6.119
bo (m—=1)(N—-2)+bm’ ( )
1- 8 N2+mb—1(m:1>
ap = 0 = 2/ (1.6.120)
m—1 (m—1)(N—=2)+bm
k
2?1 — €0
Bo = 2 1.6.121
b= Nm-1+2 (1.6.121)
k1
1— Gy N(m—l)—|—2—2k—2—|—eo
N = = 1.6.122
1T m-D[Nm-1)+2 (16.122)
Observe that
0 < Py <1, 0< By < 1. (1.6.123)
Note that, if ¢g > 0 is small enough, then
0 < Bo < o (1.6.124)

Proposition 1.6.1. Let assumption (H) be satisfied. Assume that (1.2.21) holds, for
€ > 0 small enough. Let

B € (0, Bo), (1.6.125)
1-3
= —— . 1.6.12
“ m—1 (1.6.126)
Suppose that )
1 <p<m+§. (1.6.127)

Let Ty € (0, 00),

)= (T +)7%, nt)= (T +t)7.

m—1

Then there exist wy == -— >0, ¢, > 0 and T > 0 such that z defined in (1.6.116) is

aj

a subsolution of equation (1.6.112) and satisfies (1.6.113) and (1.6.114).
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Proof. We can argue as we have done to obtain (1.5.95), in order to get

1
NG
‘= (3
1 7 b b
<O Fmi U+ ——T pomtem ™2k (N—2+
m—1n m—1a m—1
1 7 1 m b
—(——— - ("———=—nk for all t)e Dy.
<m—117 CT" ¢ (m—l)Qalnl or all (z,t) € Dy
(1.6.128)
We now define
1 7 b b
o(t) i= ¢+ (T O kg (N =24~ )
m—1n m—1a m—1
L 2 (1.6.129)
n m—1,m m
ot) =C——— ———nk.
®) Cm—ln—'_c1 ¢ (m—l)Qan1
Hence, (1.6.128) becomes
1
G- A" < CiF717'g(F) in Dy, (1.6.130)
where
o(F):=0o(t)F —i(t) (1.6.131)
Observe that £ is a subsolution to equation
1 .
& — EA(fm) =0 in Dy, (1.6.132)
whenever, for any ¢ > 0
@(F) <0,
that is
o(t)>0
d(t) >0 for any ¢ >0 (1.6.133)

o(t) — 8(t) < 0.

By using the very definition of { and 7, we get

5 5 omt m bm
O’(t) = —d(Tl-Hf)_a_l—imﬁ_ 1(T1+t)_a_1+ 111 ka — 1b <N -2+ ﬂ’L—l) (T1+t)_
B —a—1 C{n_l m 2 —am—f
= —— (T} @ T, am—p
5(t) m_1(1+t) + o kl(m_1)2b( 1+ t)

By (1.6.123), (1.6.125) and (1.6.126),

(1.6.134)
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Due to (1.6.126), (1.6.133) becomes

( m—1
b
14 4 kwnbOV—2+nl>>0,
ai m—1
B Cm—l
B+ Ly M2 0, (1.6.135)
al m—1
- e b b
o1+ 9 (N2 2 gy <0,
ai m—1 m—1
which reduces to
m—1 2 _
O 5 max ! — 7€¥n kl) (1.6.136)
“ bkaOV—2+> e
m—1
ot 1-8
L < bfl T (1.6.137)
“ bm{@<N—2+>—m ]
m—1 m—1
If (1.6.136) and (1.6.137) are verified, then £ is a subsolution to equation (1.6.132). We

m—1

now show that it is possible to find w; := Clal such that (1.6.136) (1.6.137) hold. Such
w1 can be selected, if

1 1-3

< . (1.6.138)
Mn@(N—2+mn> MnP@CV—2+‘Wl>—k1l)]
m—1 m—1 m—1
and _ ~
1 1—
flm—1) b . (1.6.139)
b2mk bm b
bm ko [ N —24+ —— | — k1
m—1 m—1

Conditions (1.6.138) and (1.6.139) are satisfied, if

B < Bo. (1.6.140)

Finally, condition (1.6.140) is guaranteed by hypothesis (1.6.125). Moreover, by Lemma
1.3.10, ¢ is a subsolution to equation

1
ft—m

in the sense of Definition 1.3.9. We can argue as we have done to obtain (1.5.99), in
order to get

1
— ZA(u™
[t p(u)

/ m—1 2
gchml—fl{G[c/+ C Mgy G Cmn(N+>]

m—lg m—-1 a m—1

/ Cmfl m Cmfl m .
¢ n 1 1 ¢ 772}

AE™ =0 in [RY\ B1(0)] x (0,7). (1.6.141)

———— =2k b m 2—b)kab
m—1n L (m—l)2C n+ ) k2 a? (m—1)2

for any (x,t) € Dy.
(1.6.142)
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We now define

1 ! cmt m 2
2o(t) = ¢ Gy ok Egm M (v 2,

ail m—1 m—1
¢ ot om ot om 9
0p(t) = ————+4+2k1b —— (" — (2—0b) ko b —("n".
70() m_1n+ 1 ai (m_l)QC n ( ) 2 CL% (m_l)QC n
Hence, (1.6.142) becomes,
1
pe= L AW") < CLGTTG(G) i Dy, (1.6.143)
where
O(G) = ao(t)G — dy(t) -
By arguing as above, we can infer that
1
e — ;A(um) <0 in D, (1.6.144)
provided that
O’o(t) >0
do(t) >0 for any t € (0,71) (1.6.145)
Uo(t) - 50(t) < 0.
By using the very definition of ¢ and 7, (1.6.145) becomes
m—1
2
—1+bk201 m <N+> >0,
al m—1
cm =t om cmtom 3
- 20k ———— — (2D bky L ——— (T4 + )P >0
b+ "a m—1 ( ) a2 m—l(lJr) -
m—1 m—1
2 —
B—1+bkym—L1—N+ 1k +(2—b)k:2b012 o+t f <o,
aq m—1 ko ay
(1.6.146)
which reduces to
m—1 o)
1 —1
O nax TR - ﬁ(”; - b) — ¢, (1.6.147)
“ bk (N+——) bmky 252 - Z—2(Ty +1)~F
m—1 ko al
m—1 o)
1_
G < b > (1.6.148)
a1 2 k 2—b(Ty+1t)”
bmky [N+ —— (1- 2]+ Tt ?)
m—1 ko al m—1

If (1.6.147) and (1.6.148) are verified then p is a subsolution to equation

1
e — —Ap™ =0 in Ds.
p
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m—1

In order to find w; = <1 satisfying (1.6.147) and (1.6.148), we need

ai

1 1-3

5 <
bmko (N + ) binksy

. (1.6.149)

2 k 2-b(Th+t) P
N+——(1-2)+ Ti+t)
m—1 ko a1 m—1

m—1

and

B(m -1) 1-06

b 2= a1°
2— — T; -
bmko [ " @ (T1 +t) ] bmksy

2 2—b(T -8
Ny 2 (1R 2ob@mry)
m—1 ko a1 m—1

(1.6.150)

Now we choose in (1.2.21) € = €(ay,T1) > 0 so that

10 < e, (1.6.151)
ai

with €y used in (1.6.121) and (1.6.122) to be appropriately fixed. By (1.2.21), (1.2.22)
and (1.6.151),

2a_1b(T1+t)5 << <a
So, conditions (1.6.149) and (1.6.150) are fulfilled, if
! 5 < 5 1-5 . — (1.6.152)
bmk2<N+m_1> bmk?[N+TrL—1<1_k:2>+m—l]
and
Alm ;11) < 5 1-5 . - (1.6.153)
bmk2[2k2—e] bmk2[N+m—1(1_kg>+m—l]
Finally, conditions (1.6.152) and (1.6.153) are satisfied, if
B<Bo, (1.6.154)

provided that ¢y > 0 is small enough. Observe that (1.6.154) is guaranteed due to
hypothesis (1.6.124) and (1.6.125). Moreover, since u™ € C'(B;(0)x (0,T1)), by Lemma
1.3.10, p is a subsolution to

1
ue — —=A(p™) =0 in B1(0) x (0,71), (1.6.155)
p
in the sense of Definition 1.3.9. Hence z is a subsolution of equation (1.6.112).

Since ug # 0 and ug € C(RY), there exist 79 > 0 and & > 0 such that

up(x) >¢e in By (0).
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Hence, if
supp z(+,0) C By, (0), (1.6.156)

and
z(x,0) <e in B,,(0), (1.6.157)

then (1.6.113) follows. Moreover, if
supp w(-,0) C supp 2(-,t1), (1.6.158)

and
w(z,0) < z(x,t;) for all z € RY, (1.6.159)

then (1.6.114) follows.

We first verify that z satisfies condition (1.6.156) and (1.6.157). If we require that

g 7o
a 1) < 50 (1.6.160)
then
supp z(+,0) N B1(0) C B,,(0),
and
supp z(-,0) N [RY \ B1(0)] € B, (0),
therefore (1.6.156) holds. Moreover, if
(a1w)mT < eT%, (1.6.161)

then (1.6.157) holds. Obviously, for any 77 > 0 we can choose a1 = a1(T7) > 0 such
that (1.6.160) and (1.6.161) are valid. On the other hand,

supp w(-,0) N By (0) C supp z(+, 1) N B1(0),
and if _ »
ap (T1 +t1)P > a T 1 (1.6.162)

then,
supp w(+,0) N [RY\ By(0)] C supp (-, 1) N [RY \ By(0)].

Hence, (1.6.158) holds. If
_ 1
C1 (Tl—i-tl)_a >CT »r1, (1.6.163)

then (1.6.159) holds. If we choose the equality in (1.6.163),

C\"
T1+t1: (C,l)

Qi

1
T -Da,

then (1.6.162) becomes
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The latter holds, if

RPN

T 1 < (= —. 1.6.164

() e (16,164

Condition (1.6.164) is satisfied thanks to (1.6.127), for T' > 0 sufficiently large. This
completes the proof. ]

Proof of Theorem 1.2.7. Let 7 > 0 be the maximal existence time of u. If 7 < ¢1, then
nothing has to be showed, and u blows-up at a certain time S € (0, ¢1]. Suppose 7 > ;.
Let us consider the subsolution z of equation (1.6.112) as defined in (1.6.116). Since
p < p, we can find B (and so @) such that (1.6.125), (1.6.126) and (1.6.127) hold. By
Proposition 1.6.1, z satisfies (1.6.113) and (1.6.114). Thanks to condition (1.6.113) and
the comparison principle, we have (1.6.115). From (1.6.114) and (1.6.115),

u(z,t1) > z(z,t1) > w(z,0) for any z € RY.

Thus u(z,t + t1) is a supersolution, whereas w(x,t) is a subsolution of problem

up = %A(um) +uP in RN x (0,+00)
u=w in RY x {0}.

Hence by Theorem 1.2.4, u(x, t) blows-up in a finite time S € (¢1,¢1+7"). This completes
the proof. 0

1.7 Further results: uniqueness

Proposition 1.7.1. Let assumption (H) be satisfied. Then there exist at most one
bounded solution u to problem (1.1.1).

1.7.1 Proof of Proposition 1.7.1

We denote by v the outer normal at any point of the boundary. Let us consider any
two solutions to problem (1.3.27), u; and up. We define

ul" —uy'
a:=-——2 when uj # ug, (1.7.165)
Ul — U2
Observe that a € L>®°(RY x [0,7]). Let us also define the domains,
Bri={r€R":|z| <R},  Qgr:=DBgx(0,T]. (1.7.166)

We introduce the approximation of a

1
Qp 1= EQn + )
n
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where @ is the extension by 0 of a to RV xR and g, is a sequence of mollifiers in RY x R.
Then a,, satisfies the following properties

(i) an € C°RN x [0,T7),
1

(ii) an > —, (H3)
n
(iii) a, <k,
for some k > 0. Moreover assume that
_ 1
lla — aan%g(QRT) < R 0 as n — +oo (1.7.167)

We now consider the backward problem

P($)¢nt + anAwn = p(x))\wn 0<t< T, €T € BR
Y =0 0<t<T, ©€0dBg (1.7.168)
¢n(xaT) = 9(1') T € Br

where p satisfies hypotheses (i) — (i7) in (H), A > 0 and
e C0X(Br), 0<0<L.

To prove Proposition 1.7.1 we need the following lemma.

Lemma 1.7.2. Let assumptions (H)-(i)—(ii) and (H3) be satisfied. Moreover, consider

a, B, i € R such that
N-1

B>—5—, (1.7.169)
a>4kNB(B+1), (1.7.170)

and
m >0(x) forallz € Bg. (1.7.171)

Then the solution 1, to problem (1.7.168) has the following properties:

(1)

D<u < ulo B x0T
—¢”—“(1+\x12)ﬁ in Br x [0,T7,
(1)
T
/ / an\AwnPdwdtScl,
0 JBg
(iii)
sup / |V¢n|2(t)dx§02,
0<t<T JBgr

for some c1, co independent of u.
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Proof of Lemma 1.7.2. Let us start by proving property (¢). Consider the function

el N0 1.7.172
We compute
Ag = @-NT-1) | 28N 4B(B + 1)z
(L4 [z)o+t (L4 |2[?)F+2
Observe that, by (H)-(i), (H3) and (1.7.170)
|anAd| < k[Ad]
< ko la=N(T—1) 28N 4B(6 + 1)|x|?
- (14 [z2)P+t (1 + |2[?)F+2
< 1 pla=N(T-1) 26N 4B(6 + 1)(1 + |z/*)
- (14 [a]?)P+! (14 [a[?)P+2
b Y N 1
= A F eyt 28N +45(8 + 1)]
A 1 !
SE ey PN
<4kENBB+1)¢p
< apg.
where k has been introduced in (H3). Hence we get
port+andd < pprt+pad=—padp+pro+pap=pAo.
Moreover, by (1.7.171),
1
n(x, T) = <——— = ,T).
Ul T) = 0(a) € ey = 0l T)
Thus, by the maximum principle we have
0 < Yp(z,t) < po(z,t) forany 0 <t <T, x € Bp.
Ay
To prove (ii) and (éi7), let us multiply the equation in problem (1.7.168) by ;f and

integrate in Br x (t,T),

//BantAzpnda:dt—i—/ /BR " Aapy|? da dt
:/t /B MY Ay, diz dt .

Then by the integration by parts on Br and in the time interval (¢,T"), we get,

1

T
2 Qan 2
—2/ Vil (2, T) da + /R\vw <m,t>dx+/t /BRp|A¢n| da dt

:—)\/ / |V, |2 daz dt
Br

(1.7.173)
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From the latter we deduce

1 1
/ / —]A¢n|2 drx dt < / V0% (x) dx — / Vb, |2 (2, 1) dz < c,
Br 2 /B, 2 /B,

where ¢ is a positive real constant independent of u. Moreover, since p € C(R”), then

1 _
— has a finite minimum in Bpg, thus
p

min — / / | Ay |2 dxdt</ / an\Aq/Jn|2d:z:dt
Bgr P Br Br

This ensures property (i¢). From equality (1.7.173) we also deduce

/ Vb, | (, t) da g/ VO (x) dr < é
Br

Br

where ¢ is a positive real constant. By the arbitrarily of ¢ € (0,T) we deduce property
(vi1). O

We now prove Proposition 1.7.1.

Proof of Proposition 1.7.1. Consider any two solutions u; and uy to problem (1.3.27).
By (1.3.9) and (1.7.166), subtracting u; and ug we get

T
- / / pur — ws)dy, da dt + / p(@)ur (2, T) — us(ar, T)]i(x, T) da
0 BR BR

T T
= / / (ul* — uy" ) A dz dt — / / (u]" —uy") Ve - vdodt (1.7.174)
Br 0 JoBg

/ | ot =y i

Using the definition of a in (1.7.165), (1.7.174) can be rewritten as
| o, 7) — e 1))i(e, T) ds
B
tor T
= / / (u1 — u2)(pr + alAp) du dt —/ / (U —uy" )V -vdodt  (1.7.175)
Br o JoBg

/ /B P —ub)pdrdt

We aim to prove that

/B p(x)[ur(z, T) — ua(z, T)|Y(z, T)dr — 0 as R — +oo.
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Let us choose the test function in (1.7.175) equal to the solution v, of problem (1.7.168).
Thus, (1.7.175) becomes

/B pl) u (2, T) — up(, T))0() da

T T
= / / p (u1 — ug) Ay, dx dt + / / (ur —u2)(a — an) A, drdt  (1.7.176)
Br Br

// wndadt—i—// ub — b, dx dt
BBR BR

Let us now define

T
I = — — ) Ay, dx dt, 1.7.177
1 / /BR(ul ug)(a — an) A, dx dt ( )

/ /aBR ;;”d dt (1.7.178)

I3 —/ / (ug — ug )\wndzvdt+/ / P — ub)ip, dz dt. (1.7.179)
Br Br

Then we estimate I;. Thanks to Holder inequality and since u1,us € L®(RY x (0,7T)),
we get

|11|</ [ )|
BR
(a—a) 1/2 )
<C 7dxdt, an| Ay, |* dz dt,
0 JBg Qn 0 JBg

and

] i A b,

1o (17.180)

Now,
1\2
1/2 T (a—aqn—n)
(/ / (=) dt) < / / da dt
Br Qn 0 JBg 1/n

1/2
[ [l ] )
Br
1/2
la — aqn||L2QRT)+ // dmdt)
Bgr

1 TRN\Y?
1 n2>

1/2

B

¢(R)

IN
B
A/\/_\/\

IN
|

IA
:H§

R

(1.7.181)
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Moreover, by Lemma 1.7.2,

T 1/2
(/ / an\A%\zdwdt,) <ci.
o JBg

c1 ¢(R)

Hence,

|| < — 0 asn — +o0.

Let
J={(z,t):R—1<|z|<R,0<t<T}

Let g, which is independent of ¢, be defined by
(x,t) = (:E)'—L—l—e for (z,t) € J
g ) - g L |x’N_2 )

where d and e satisfy,

d Aelo=NT
N Te= NG’
(R—-1) (1+(R—-1)2)8
W +e= 0.

Then g is such that
9>V, g(z,t)=0 on 0<t<T, |z|=R.

and 5
5(9—¢n)($,t)§0 for |zl =R, 0<t<T.

Then, since % <0,
v

Mn 9y
su z,t)| < sup |=—(x,t for x| =R, 0<t<T,
\z\:% % ( )’ - |z|:II)3 (91/( ) 2]
o<t<T o<t<T

which gives an estimate on the normal derivative of 1,,. Note that,
Ag=0 on J
Moreover, by (1.7.185),

gR—-1)>Y,(R—1,t) for0<t<T,
g(R) = Yn(R,t) =0 for0 <t <T,

and by (1.7.168),
g(x) > Yp(x,T) for R—1<|z| < R.

(1.7.182)

(1.7.183)

(1.7.184)

(1.7.185)

(1.7.186)

(1.7.187)

(1.7.188)
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Therefore (1.7.186) holds by maximum principle and so does (1.7.187).

estimate gg over 0Br. We have
v
[ . _ (2—-N)d
8V |1“:R - RN_l
C2-N  eleNT 1 1N
CRNT(14(R-1)2)8 \(R—1)N-2 RN-2]
Hence,
dg N—2 el NT RN=2(R—1)N-2

—_— <
o | g T RV T(I+(R—1)2)f RN-2 —(R—1)N-2
- c 1 N9 RZ(N72)
= pN-1 — 1\2\8 _{\N-2
< c 1 RN-2
= DN-1 —1\2\8 N—2
RN A+ (R-1D2 14 (1-4)
< c 1 RN-2
= RN1(1+(R—1)2)8 (N —2)R!
c 1
< RN
S RVT(1+ (R—1)2)P
C
< W

Combining (1.7.190) together with (1.7.188), we have

0y, c

—_— )| < —.
|§|u£z v (=, )‘ - R
o<t<T

Going back to (1.7.178),
m m c — —1—
(2] < Juy® — uy HLoo(aBRx(o,T))ﬁTRN P < RN

Thus in (1.7.176) we get

c1¢(R)
vn

/B pl) (2, T) — uz(w, T))0() da <

Without lost of generality, we can set
0(x) = sign[ui(z,T) — up(z,T)]" for = € Bp,

thus we have

/ o) (&, T) — sz, T)]* de
Br

c1¢(R)
vn

<

+ RN 4|1,

T
teRTITE 4 / / pMur = uz) + (uf — uh)| " by da dt.
0o JBg
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It remains to

(1.7.189)

(1.7.190)

(1.7.191)

(1.7.192)

(1.7.193)

(1.7.194)
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By Lemma 1.7.2,

ela=2)(T—1)

Yn(z,t) < m

Thus, (1.7.194), letting n — 400, reads

/ o) (2, T) — u (e, T)]* de

forr € Br, 0<t<T.

9 (1.7.195)
<RN125+// Mug — ug) + (uf — d dt.
c B 1+|CC| [ (ul Ug) (ul UZ)] xz

Let
5o := max{||u1|loos ||u2]loo}-

Let L be the Lipschitz constant of the function s — sP over [—sp.sp]. Then choosing
A > max{L,a}, (1.7.196)
(1.7.195) becomes

e(’\_a)T/B p(x)[uy(z, T) — ug(x, T)])" da

. (1.7.197)
< AT o gN-1-28 —I—/ e()‘_o‘)t/ p 2 (ur —ug)t drdt.
0 Br
Let
h(t) := e()‘_a)t/ p(z) (ug — uz)t dz,
Br
,Y(t) — e(A—a)TCRN—l—Q,B,
so, (1.7.197) implies
T
W(T) < () + 22 / h(t) dt
0
Thanks to (1.7.196), by Gronwall’s Lemma,
/ p(z)uy(x, T) — ug(z, T)]* do < 2T ¢ RN 71728 (1.7.198)
Br
If we change the role of u; and usy, we obtain symmetrically,
/ p(x)[ua(z, T) — uy (2, T)]" de < 2T ¢ RN 71728 (1.7.199)
Br
By adding (1.7.198) and (1.7.199) we get
/ p(x) Jur(x, T) — ug(z, T)| de < e ¢ RN-1728 (1.7.200)
Br

Finally, by (1.7.169), letting R going to +oc in (1.7.200), we have

/RN p(x) Jui(z,T) — uz(x,T)| de < 0.

This completes the proof.



Chapter 2

The fast decaying density case

2.1 Introduction

We investigate global existence and blow-up of nonnegative solutions to problem

p(x)ur = A(u™) + p(z)u?  in RN x (0,7) (2.1.1)
u(x,0) = ug(z) in RV x {0} o
where N > 3,p > 1,m > 1 and 7 > 0. We always assume that
(i) p € C(RY), p>0in RV, ()
(ii) ug € L®(RN),ug > 0 in RV |
and that
there exist ki, ko € (0,4+00) with k1 < ko, 79 > 0,¢q > 2 such that
(2.1.2)

1
ki(Jz| +r9)? < o) < ko(|z| +79)? for all z € RV,
p(x
The parabolic equation in problem (2.1.1) is of the porous medium type, with a variable
density p(x) and a reaction term p(z)uP. Clearly, such parabolic equation is degenerate,
since m > 1. Moreover, the differential equation in (2.1.1) is equivalent to
1 .
up = ——Au™) +u? in RY x (0,7);
p(x)

1
thus the related diffusion operator is ﬁA, and in view of (2.1.2), the coefficient —

p(z)
can positively diverge at infinity. The differential equation in (2.1.1), posed in the

interval (—1,1) with homogeneous Dirichlet boundary conditions, has been introduced
in [73] as a mathematical model of evolution of plasma temperature, where u is the
temperature, p(x) is the particle density, p(x)uf represents the volumetric heating of
plasma. Indeed, in [73, Introduction]| a more general source term of the type A(x)uP has
also been considered; however, then the authors assume that A = 0; only some remarks
for the case A(z) = p(x) are made in [73, Section 4]. Then in [71] and [72] the Cauchy
problem (2.1.1) is dealt with in the case without the reaction term p(x)uP.

45
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In view of (2.1.2) the density p decays at infinity. Indeed,

1 1
Fa(lz] £ o) < p(x) < (el T 7o) for all |z| > 1. (2.1.3)

Since we assume (2.1.2), we refer to p(z) as a fast decaying density at infinity. On
the other hand, in [92] it is studied problem (2.1.1) with a slowly decaying density, that
is (2.1.2) is assumed with ¢ < 2.

There is a huge literature concerning various problems related to (2.1.1). For in-
stance, problem (2.1.1) with p = 1,m = 1 is studied in [16, 24, 30, 31, 58, 62, 64,
83, 114, 118, 121, 135], problem (2.1.1) without the reaction term wu” is treated in
[25, 27, 49, 51, 50, 66, 67, 68, 69, 70, 71, 72, 73, 102, 59, 115, 116, 117]. Moreover,
problem (2.1.1) with m = 1 is addressed in [85] (see also [21]), where p satisfies (2.1.3)
with 0 < ¢ < 2. In particular, let us recall some results established in [119] for problem
(2.1.1) with p=1,m > 1,p > 1 (see also [36, 99]). We have:

e ([119, Theorem 1, p. 216]) For any p > 1, for all sufficiently large initial data,
solutions blow-up in finite time;

e ([119, Theorem 2, p. 217]) ifp € (1, m + %), for all initial data, solutions blow-up
in finite time;

e ([119, Theorem 3, p. 220]) if p > m+ %, for all sufficiently small initial data with
compact support, solutions exist globally in time and belong to L> (R x (0, +00)).

Similar results for quasilinear parabolic equations, also involving p-Laplace type oper-
ators or double-nonlinear operators, have been stated in [1], [3], [4], [20], [22], [23], [60],
[61], [86], [87], [88], [97], [98], [104], [125], [132] (see also [89] for the case of Riemannian
manifolds); moreover, in [54] the same problem on Cartan-Hadamard manifolds has
been investigated. In particular, in [86, Theorem 2] it is shown that if p(x) = (1+|z|) ¢
with 0 < ¢ < 2, p > m, and ug is small enough (in an appropriate sense), then there
exists a global solution; moreover, a smoothing estimate is given. Such result will be
compared below with one of our results (see Remark 2.2.5).

In [92] the following results for problem (2.1.1) are established, assuming (2.1.2)
with 0 < ¢ < 2.

e ([92, Theorem 2.1]. If
P> D,
ug has compact support and is small enough, then there exist global in time

solutions to problem (2.1.1) which belong to L% (R x (0, +00)); here p is a certain
exponent, which depends on N, m,q, k1, ko. In particular, for k; = ko we have

e ([92, Theorem 2.3]). For any p > 1, if ug is sufficiently large, then solutions to
problem (2.1.1) blow-up in finite time.
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e ([92, Corollary 2.4, Theorem 2.5]). If 1 < p < p, then for any uy # 0, solutions
to problem (2.1.1) blow-up in finite time. Here p € (m,p) is a certain exponent
depending on N,m,q, ki, ke. For ky = ko, p = p. Observe that for m < p < p,
some extra conditions are needed. a B

Analogous results, proved by different methods, can be found also in [86, 87], where also
more general double-nonlinear operators are treated.

2.1.1 Outline of our results

Let us now describe our main results. We distinguish between two cases: ¢ = 2 and
q > 2. First, assume that (2.1.2) holds with ¢ = 2.

e (Theorem 2.2.1). If
p>m,

ug has compact support and is small enough, then there exist global in time
solutions to problem (2.1.1), which belong to L=(RY x (0, 4+00));

e (Theorem 2.2.2). For any p > m, if ug is sufficiently large, then solutions to
problem (2.1.1) blow-up in finite time.

The proofs mainly relies on suitable comparison principles and properly constructed
sub- and supersolutions, which crucially depend on the behavior at infinity of the in-
homogeneity term p(x). More precisely, they are of the type

1
- log“””l”‘))n(t) " forany (o) € [RY\ By(0)] x [0,7),
! (2.1.4)
for suitable functions ¢ = ((¢),n = n(t) and constants C' > 0,a > 0. The presence of
log(|z| + r0) in w is strictly related to the assumption that ¢ = 2. Observe that the
barriers used in [92] for the case 0 < g < 2, which are of power type in |z|, do not
work in the present situation. Furthermore, note that the exponent p introduced in [92]
for 0 < ¢ < 2, when ¢ = 2 becomes p = m. Hence Theorem 2.2.1 can be seen as a
generalization of [92, Theorem 2.1] to the case g = 2.
Now, assume that ¢ > 2. We have the following results (see Theorem 2.2.3 and
Remark 2.2.4).

w(z,t) =CC(t) |1

e Let 1 < p < m. Then for suitable ug € L>(R") there exist global in time solutions
to problem (2.1.1). We do not assume that uy has compact support, but we need
that it fulfills a decay condition as |z| — +o00. However, g in a compact subset
of RV can be arbitrarily large. We cannot deduce that the corresponding solution
belongs to L (RN x (0, +00)), but it is in L>=(RY x (0, 7)) for each 7 > 0.

e Let p > m > 1. Then for suitable ug € L>°(RY), problem (2.1.1) admits a solution
in L°(RY x (0,+00)). We need that

0 <wup(x) < CW(x) forall zcRY,
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where C' > 0 is small enough and W (x) is a suitable function, which vanishes as
|x| — 400. We should mention that, as recalled above, a similar result was been
obtained in [86, Theorem 2|, where also double-non linear operators are treated;
see Remark 2.2.5 below.

e Let p =m > 1. Then for suitable ug € L>°(R"), problem (2.1.1) admits a solution
in L°(RY x (0, +00)), provided that 79 > 0 in (2.1.2) is big enough.

Such results are very different with respect to the cases 0 < ¢ < 2 and ¢ = 2. In fact,
we do not have finite-time blow-up, but global existence prevails, for suitable initial
data. The results follow by comparison principles, once we have constructed appropriate
supersolutions, that have the form

w(z,t) =)W (z) forall (z,t) € RN x (0,+00),

for suitable ((t) and W (z). When p > m, ((t) = 1. Observe that we can also include
the linear case m = 1, whenever p > m. In this respect, our result complement the
results in [85], where only the case ¢ < 2 is addressed. Finally, let us mention that
it remains to be understood whether in the case 1 < p < m solutions can blow-up in
infinite time or not.

2.2 Statements of the main results

For any R > 0, let Bg as in (1.3.26).

For the sake of simplicity, sometimes instead of (2.1.2), we suppose that

there exist ki, ks € (0,400) with k3 < ks,¢ > 2, R > 0 such that

1 2.2.5
kplz|? < —— < ko|z|? for all 2 € RV \ Bg. (225)
p(x)
In view of (H)-(i),
for any R > Othere exist p1(R), p2(R) € (0,400) with pi1(R) < p2(R)
(2.2.6)

1 _
such that p1(R) < — < p2(R) for all z € Bp.

p(x)
Obviously, (2.1.2) is equivalent to (2.2.5) and (2.2.6).

In the sequel we shall refer to ¢ as the order of decaying of p(x) as |x| — +oc.

2.2.1 Order of decaying: ¢ =2

Let ¢ = 2. The first result concerns the global existence of solutions to problem (2.1.1)
for p > m. We assume that

(N —2)(m— 1)

— 1 . 2.2.
o b1 0870 (2.2.7)

o > €,

Such technical request allow us to construct an appropriate supersolution, as it will be
apparent in the proof of Proposition 2.3.1 below.
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Theorem 2.2.1. Assume (H), (2.1.2) for ¢ =2 and (2.2.7). Suppose that
p>m,

and that ug is small enough and has compact support. Then problem (2.1.1) admits a
global solution u € L® (RN x (0, +00)).
More precisely, if C > 0 s small enough, a > 0 is so that

m—1

0<wy<

<wy

for suitable 0 < wy < w1, T >0,

1

_ log(ja] + 7o) -z ]
a +

up(x) < OT [1 for a.e. z € RV, (2.2.8)

then problem (2.1.1) admits a global solution u € L= (RN x (0, +00)). Moreover,

1

3

u(z,t) < C(T—H)*ﬁ [1 _ log(fal + o) (T + t)J;l } o for a.e. (z,t) € RN x(0,+00).

+

’ (2.2.9)

Observe that if ug satisfies (2.2.8), then
supp ug C {x € RN . log(|z| + ro) < aT%}_

From (2.2.9) we can infer that
suppu(-,t) C {z € RY : log(|z| 4+ ro) < a(T + t)%} for a.e. t > 0. (2.2.10)

The choice of the parameters C' > 0,7 > 0 and a > 0 is discussed in Remark 2.3.2.

The next result concerns the blow-up of solutions in finite time, for every p > m > 1,
provided that the initial datum is sufficiently large. We assume that hypothesis (2.2.5)
holds with the choice

g=2, R=e. (2.2.11)

So we fix, in assumption (2.2.6),

p1(R) = pi(e) =t p1, p2(R) = pa(e)

1 p2.

Let
log(|z|) if »eRN\ B,

if ze€B,.
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Theorem 2.2.2. Let assumption (H), (2.2.5) and (2.2.11) hold. For any
p>m

and for any T > 0, if the initial datum uqg is large enough, then the solution u of problem
(2.1.1) blows-up in a finite time S € (0,T], in the sense that

||u(t)]|oo — 00 ast — S~ . (2.2.12)
More precisely, if C > 0 and a > 0 are large enough, T > 0,

m— m—1
uo(x) > CT [1 _ 5@ Tpf} . forae xeRY, (2.2.13)
a
+

then the solution u of problem (2.1.1) blows-up and satisfies the bound from below

m-p| m—1
u(z,t) > C(T — t)fp%l [1 _5@) (T —1) Pl] , for a.e. (z,t) € RY x (0, 8).
a
+
(2.2.14)
Observe that if ug satisfies (2.2.13), then
N =T
suppug 2 {x € R : s(x) <aT»T}.
From (2.2.14) we can infer that
suppu(-,t) D {z e RY : s(z) < a(T — t)%} for a.e. t €0,5). (2.2.15)

The choice of the parameters C' > 0,7 > 0 and a > 0 is discussed in Remark 2.4.2.

2.2.2 Order of decaying: ¢ > 2

Let ¢ > 2. The first result concerns the global existence of solutions to problem (2.1.1)
for any p > 1 and m > 1, p # m. Let us introduce the parameter b € R such that

0<b<min{N -2, ¢—2}. (2.2.16)
Moreover, we can find ¢ > 0 such that
(r+ ro)_% <¢ foranyr >0, (2.2.17)

with o > 0 as in hypothesis (2.1.2).

Theorem 2.2.3. Let assumptions (H), (2.1.2) and (2.2.16) be satisfied with q > 2.
Suppose that
l<p<m, orp>m2>1,

and that ug is small enough. Then problem (2.1.1) admits a global solution u € L™ (RN x
(0,7)) for any T > 0. More precisely, we have the following cases.
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(a) Let 1 <p<m. If C >0 is big enough, 7o >0, T > 1, a >0,

up(x) < CTY (x| + ro)_% for a.e. z € RN (2.2.18)

then problem (2.1.1) admits a global solution u, which satisfies the bound from
above

u(z,t) < C(T +t)* (x| + ro)_% for a.e. (x,t) € RY x (0,400). (2.2.19)

(b) Let p > m > 1. If C > 0 is small enough, ro > 0 and (2.2.18) holds with
a = 0, then problem (2.1.1) admits a global solution u € L®(RN x (0,+00)),
which satisfies the bound from above (2.2.19) with a = 0.

Remark 2.2.4. Observe that, in the case when p = m, if C > 0 is small enough, rg > 0
big enough to have

bp

<1>m <Dk (N —2-1),

To
T > 0 and (2.2.18) holds with o = 0, then problem (2.1.1) admits a global solution
u € L®(RN x (0, +00)) which satisfies the bound from above (2.2.19) for a = 0.

Note that in Theorem 2.2.3 we do not require that supp ug is compact.

The choice of the parameters C' > 0,7 > 0 and a > 0 is discussed in Remark 2.3.5.

Remark 2.2.5. The statement in Theorem 2.2.5-(b) is in agreement with [86, Theorem
2], where it is assumed that p > m, p(x) = (1 + |z[)~7 with ¢ > 2, [pn p(x)uo(x)dr <
+00, Jon p(@)[uo(x)]9dz < 8, for some § > 0 small enough and ¢ > 5 (p —m).

Note that the assumption on ug is of a different type. In particular, in view of
(2.2.18) and (2.2.16), the initial datum ug considered in Theorem 2.2.3-(b) not neces-
sarily satisfies [pn p(@)uo(x)de < +oo.

In [86] the proofs are based on the energy method, so they are completely different
with respect to our approach.

2.3 Global existence: proofs

Throughout this Chapter we deal with very weak solutions to problem (2.1.1) and to
the same problem set in different domains (see Section 1.3).

For every R > 0, let Br as in (1.3.26), then, for 7 > 0, we consider the auxiliary
problem

up = ﬁA(um) +uP in Bg x (0,7)
u= on dBg x (0,7) (2.3.20)
u = U in B x {0}.

The definition of solution to problem (2.3.20) is given in Definition 1.3.9.

In what follows we set r = |z|. We construct a suitable family of supersolutions of
equation

up = —A(u™) +u?  inRY x (0,400). (2.3.21)
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2.3.1 Order of decaying: ¢ =2

We assume (H), (2.1.2) with ¢ = 2 and (2.2.7). In order to construct a suitable family
of supersolutions of (2.3.21), we define, for all (z,t) € RY x (0, 4+00),

1

B log(r + m)n(t) m=t ’ (2.3.22)

+

u(z,t) == C¢(t) |1 -
where 7, ¢ € C1([0,+00); [0, +00)) and C > 0, a > 0, o > e.

Now, we compute

1
U — ~A(@™) — @P.
¢ p( )

To this aim, let us set

_ log(r + o)

F(r,t) =1 -

n(t),

and define
Dy = {(z,t) € RN\ {0}] x (0, +00) | 0 < F(r,t) < 1}.

For any (x,t) € Dy, we have:

Uy = Cg’pﬁ + C’C%Fﬁ_l <_M77/>
m — a
1 1 ¢ 1 /
= CC’le—l +C(—— (1 — og(r+r0)n> T pws—1 _ Ccilpﬁ—l
m—1 a n m—1n
1 1 77/ 1 1 77’ 1
= C{Fa-1 + O(———~Fu-1 - O(————~Fm-1"1,
m—1n m—1n
(2.3.23)
cm m 1 1
")y = ——" Fm= : 2.3.24
()r a ¢ m—1 (r-l—ro)n ( )
_ cm m 1y log(r + 19) 1
m = —— mimel 1 —
(U )rr a C (m—1)2 < a n 77(T+r0)2 log(r+r0)
cm o, m 1y n cm mo 1 1
- 7Fm—1 7m7Fm—17
+ a ¢ (m —1)2 (T+T0)2log(r+ro)+ a ¢ m—1 (T+T0)2n
cm o, m 1 1
= - 7F*m—l
a ¢ (m —1)2 n(r+ro)210g(r+ro)
cm o, m 1 n cm mo 1 1
- 7Fm—1 7m7Fm—17 .
+ a ¢ (m —1)2 (7’+7’0)210g(r+r0)+ a ¢ m—1 (r+r0)2n
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a@) = =D am), 1 @m),

N -1 m 1
= (T) <—C;<mmni [F r +r0)”>

cm 1
- TC’”(m_Ll)gFﬁ”(r + 70)2log(r + o)
* C:lCn(m—ﬂﬂbl)Qle11 (r+1rp)? ;Z)g(r +70)
N ?gW%Fﬁ (7“—1-1?”())2n (2.3.26)
= iVJ:ri <_Cc;n<mfmni1Fm11 (r J: 7’0)”)

m 1
- C;lgm(mmlﬁle_ln (r +19)2log(r + 7o)
+ icmm_ml)szl‘l e ﬁ)g(r +70)
T

We also define

m—1 ptm=—2
Koo |(m=L N\t (m=L ) >0,
p+m—2 p+m—2

1 cmt m

_ Al m m _
o(t) =4y T Tk (V —2), (2.3.27)
S — 7777, m—1 m m ﬂ
ot) = Cm —1n O (m —1)% alog(ro) &
F(t) == CP7I¢P.
Proposition 2.3.1. Let ( = ((t), n = n(t) € C*([0,+00);[0,+0)). Let K, &, §, ¥

be as defined in (2.3.27). Assume (H), (2.1.2) with ¢ = 2, (2.2.7) and that, for all
t € (0,400),

77/ 1 Cmfl .om
- = > m k 2.3.28
n? ~ log(rg) a ¢ m—1" ( )
and
cm—1 m ko
! m N—-2k——= | —cPl¢P>0. 2.3.29
¢ " |( )1 (m — 1) log(ro) P> ( )

then w defined in (2.3.22) is a supersolution of equation (2.3.21).
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Proof. In view of (2.3.23), (2.3.24), (2.3.25) and (2.3.26), for any (z,t) € D,

1
u——A(a™) —aP
1 1 !
> O¢'Fret +CC71*F"” T Cgillpﬁ—l
—4in
N Clgm m 1 kT < 1 N 2) (2.3.30)
- 177p(7’ +r0)? (m — 1) log(r 4 ro)
1 P
_S T m M patsl n — CP(PFwmT,
e e
Thanks to hypothesis (H), (2.1.2) and (2.2.7), we have
1 1 N
—— >0, - > for all = € RV, (2.3.31)
log(r + 7o) log(r + 7o) log (7o)

1 >k ! > —ky forall xRN (2.3.32)
—_— , ——>— or all x . 3.
plr+ro)2 =7 p(r o2 T

From (2.3.30), (2.3.31) and (2.3.32) we get,
1 _
up — —A(a™) —a?
p
1 1 Ccmt m
> CFm-11! {F [C’ +¢ T cm n(N — 2)]{31] (2.3.33)
m—1n a m—1
1 7 cm! m 1 1 p M2
_ LA m ko — p pF m—1
Cm—ln a ¢ (m—l)zlog(ro)n2 e
From (2.3.33) and (2.3.27), we have
1 _ m—
@ — ~A@") — @ > CFme17! [6(t)F ~5(t) — f’y(t)Fipjn—IQ} (2.3.34)
p

For each t > 0, set

o(F) = G(t)F — 3(t) — () F ", Fe(0,1).
Now our goal is to find suitable C, a, (,n such that, for each ¢t > 0,
©(F)>0 forany F e (0,1).

We observe that ¢(F) is concave in the variable F'. Hence it is sufficient to have ¢(F)
positive in the extrema of the interval (0,1). This reduces, for any ¢ > 0, to the
conditions

(2.3.35)

These are equivalent to
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that is
r_oomtt 0 om 1
O w1
n a m — 1log(ro)
cm-1 m ko
L (N =2k - ———2 | PP >0
¢ a ¢ m—1" ( Ja (m — 1) log(ro) ¢ =20,

which are guaranteed by (2.2.7), (2.3.28) and (2.3.29). Hence we have proved that

1
Ut — *A(ﬂm) -’ >0 inDy.
p

Now observe that
u € C(RYN x [0, +00)),
a™ € CH(RN \ {0}] x [0, +00)), and by the definition of i,
@ =0in [RY \ Dy] x [0, 4+00)).

Hence, by Lemma 1.3.10 (applied with Q; = Dy, Qo = RV \ Dy, uy = @, up = 0, u = @),
u is a supersolution of equation

iy — ;A(am) @ =0 in RN\ {0}) x (0, +00)

in the sense of Definition 1.3.9. Since u;"*(0,¢) < 0 for any ¢ > 0,
Ala™ (x,1)] < p(@)[ae(z,t) — @ (z,t)] for all (z,t) € (RV\ {0}) x (0, +00),

by the same arguments as in the proof of the so-called Kato inequality (see [75, Lemma
AJ), it can be easily seen that

A@™) < plag —aP)  in D'(RY x (0,400))

(see also [54, proof of Proposition 4.1]. So, @ is a supersolution of equation (2.3.21) in
the sense of Definition 1.3.9. O

Remark 2.3.2. Let

p>m
and assumption (2.2.7) be satisfied. Let w := Crz_l . In Theorem 2.2.1 the precise
hypotheses on parameters C > 0, w > 0, T > 0 are the following:
p—m m 1
> k 2.3.36
p—1 =Y *log(ro)’ ( )
w k:(N—2)—$ >ortp L (2.3.37)
m—1|" (m —1)log(rg)| — p—1" e

Lemma 2.3.3. All the conditions in Remark 2.8.2 can be satisfied simultaneously.
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Proof. Since p > m the left-hand-side of (2.3.36) is positive. In view of (2.2.7), we can
tale w > 0 such that (2.3.36) holds and

m ko 1
ki(N —2)— .
m—1 i ) (m — 1) log(ro) - p—1

W

Then we take C' > 0 so small that (2.3.37) holds (and so a > 0 is accordingly fixed). [

Proof of Theorem 2.2.1. We prove Theorem 2.2.1 by means of Proposition 2.3.1. In
view of Lemma 2.3.3, we can assume that alla conditions in Remark 2.3.2 are fulfilled.
Set

C=(T+t)", n=(T+t)", forall t>0.

Consider conditions (2.3.28), (2.3.29) of Proposition 2.3.1 with this choice of {(¢) and
n(t). Therefore we obtain

m—1
8- ¢ T (T 4 1)@m= D=A+L > (2.3.38)
a m-—1
and
cm 1l m ko
—a(T +t)" > 4 — k(N =2)— ———=— [ (T +t)"mF
( ) a m-—1 i ) (m — 1) log(ro) ( ) (2.3.39)
—CP YT +t)7 P >0,
We take )
p—m
a= =5, B=25 (2:3.40)

Due to (2.3.40), (2.3.38) and (2.3.39) become

p—m _ C™ 1 m ko

> 2.3.41
p—1 = a m—1log(rg)’ ( )

ol m ko 1
— | h(N=-2)— —= | >CcP 7 4 —— . 2.3.42
a m-—1 i ) (m —1)log(ro) | — +p—1 ( )
Therefore, (2.3.28) and (2.3.29) follow from assumptions (2.3.36) and (2.3.37). Thus
the conclusion follows by Propositions 2.3.1 and 1.3.6. O

2.3.2 Order of decaying: ¢ > 2

We assume (H), (2.1.2) and (2.2.16) for ¢ > 2 and (2.2.17). In order to construct a
suitable family of supersolutions of (2.3.21), we define, for all (z,t) € RV x (0, 4+00),

3o

u(z,t) =u(r(x),t) = CCt)(r+ro) m; (2.3.43)

where ¢ € C*(]0, +00); [0, +00)) and C > 0, 79 > 0.
Now, we compute

Up — 1A(am) —uP.
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For any (z,t) € [RY \ {0}] x (0, +00), we have:

G =C ¢ (r+ro) . (2.3.44)

(@), = —bC™ ™ (r+19) "7 (2.3.45)

(@™)pr = b(b+1)C™ ™ (1 + 1) 072, (2.3.46)

Proposition 2.3.4. Let ¢ = ((t) € C'[0,+00);[0,+00)),¢’ > 0. Assume (H), (2.1.2)

and (2.2.16) for ¢ > 2, (2.2.17), and that
bk1(N — 2 —b)C™(™ — eCP¢P > 0. (2.3.47)
Then @ defined in (2.3.43) is a supersolution of equation (2.3.21).

Proof of Proposition 2.3.4. In view of (2.3.44), (2.3.45), (2.3.46) and the fact that

1 1
- > -
(r+70)0tlr = (r+1rg)o*2

we get, for any (z,t) € (RV \ {0}) x (0, +00),

for any z € RV,

Up — 1A(am) —uP
(2.3.48)

+ ; {(N —2—b)C"C™b(r + TO)—B—Q} _CPer(r 4+ TO)_%'

3o

> C¢'(r+m)”

Thanks to hypothesis (2.1.2), (2.2.16) and (2.2.17), we have

—b—2 _
(7" + 7'0) > k?l(T‘ + ’I“o)_b_2+q =k,
p (2.3.49)

—(r+ 7“0)7%) > —C
Since ¢’ > 0, from (2.3.48) and (2.3.49) we get
i — ~A@™) — @’ > kib(N — 2 — 5O — 6CPCP. (2.3.50)
p

Hence we get the condition
k1b(N —2 —b)C™(™ — cCP¢P >0, (2.3.51)
which is guaranteed by (2.2.16) and (2.3.47). Hence we have proved that

@y — ;A(um) —@? >0 in (RV\ {0}) x (0, +00).

Now observe that
u € C’(RN x [0,400)),

u™ € CH([RYM\ {0}] x [0, +00)),
a™(0,t) <0.

Hence, thanks to a Kato-type inequality we can infer that « is a supersolution to equation
(2.3.21) in the sense of Definition 1.3.9.
O
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Remark 2.3.5. Let
q>2

and assumption (2.2.16) be satisfied. In Theorem 2.2.3 the precise hypotheses on para-
meters a, C >0, T > 0 are as follows.

(a) Let p < m. We require that

a>0, (2.3.52)
bky(N —2—-b)C™ —cC? >0 (2.3.53)
(b) Let p > m. We require that
a=0, (2.3.54)
bki(N —2—b)C™ —¢cC? >0 (2.3.55)

Lemma 2.3.6. All the conditions in Remark 2.8.5 can hold simultaneously.

Proof. (a) We observe that, due to (2.2.16),
N—-2-b>0.

Therefore, we can select C' > 0 sufficiently large to guarantee (2.3.53).
(b) We choose C' > 0 sufficiently small to guarantee (2.3.55). O

Proof of Theorem 2.2.3. We now prove Theorem 2.2.3 in view of Proposition 2.3.4. In
view of Lemma 2.3.6 we can assume that all conditions in Remark 2.3.5 are fulfilled.
Set

Ct)y=(T+1t)*, forall t>0.
Let p < m. Inequality (2.3.47) reads
bki(N —2—0)C™(T +t)™ —eCP(T +t)’* >0 forall t>0.

This follows from (2.3.52) and (2.3.53), for 7" > 1. Hence, by Propositions 2.3.4 and
1.3.5 the thesis follows in this case.
Let p > m. Conditions (2.3.54) and (2.3.55) are equivalent to (2.3.47). Hence, by
Propositions 2.3.4 and 1.3.5 the thesis follows in this case too. The proof is complete.
O

2.4 Blow-up: proofs

In what follows we set r = |x|. We construct a suitable family of subsolutions of equation

up = —A(u™) +uP  in RY x (0,7). (2.4.56)
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2.4.1 Order of decaying: ¢ =2

Suppose (H), (2.2.5) and (2.2.11). To construct a suitable family of subsolution of
(2.4.56), we define, for all (x,t) € [RV \ B,] x (0,T),

1 =
u(z,) = u(r(z), 1) = CC(t) [1 - Oga(’")n@)} " (2.4.57)
+
and
t) in [RN\ B, T),
w(z,t) = wir(z), 1) = 4 L& B REA B > (0,T) (2.4.58)
v(z,t) in Be x (0,T),
where
2 27w
_ L r“t+e‘n|m
v(z,t) = v(r(z),t) == C((t) [1 Y a} L (2.4.59)
Let us set
log(r)
Flrt) =1 — 22y
a
and
r? + e n(t)
G(T, t) =1 282 T
For any (x,t) € (RV\ B,) x (0,T), we have:
fa L 1 1 g [ log(r) ,
Qt:CCmel +C<mF7nfl for/ —
/ /
_ocFaT 4ot (1 _ log(r) n) U L =
m—1 a n m—1n
ol 1 1 1 7 1y
=C{Frn1+(0(———Fmn1—-(C(———Fm1 ",
m—1n m—1mn
(2.4.60)
cm m 11
™My =——("——Fm-1-n. 2.4.61
w™) a ¢ m—1 17“77 (2.4.61)
m _ __ymsm m m%—l o IOg(T) 1
(Q )7‘7“ - C C (m o 1)2F ! (1 a 77) 77T2 10g(7’)
+ QCWLQF%*QL + Cicmlpﬁ %77 =
a (m—1) r2log(r) a’ m-—1 T
. (2.4.62)
B _C;Cm m 1
a (m —1)2 = log(r)
+ ggm M proa-t N CmgmLFﬁiQn



60 CHAPTER 2. The fast decaying density case

For any (z,t) € B. x (0,T), we have:

2
:CCIGmll _1_04761771 <_T +€ Tl) —

2¢2  a

1
_clar p oS (1—T + ¢ ") nGm - (Jci"G*—1

m—1 2¢2 a m—1n
1 | P
=c¢ Gm 1 —I—C’Ci Gm - C¢ _lgGmfl .
(2.4.63)
cm m L7
m = m — m—1 —n ., 2.4. 4
(v™) e G ) (2.4.64)
m m,m L1 n cm m m 19 2?"2
(’U )TTZ*C C me71€725+?C mefl n 674 (2465)
We also define
1 g Ccmt 1
o(t) = ¢+ (T (M Tk (N =24 )
m—1n7 a m—1 m—1
v
5t) = (5
y(t) == CPI¢P, (2.4.66)
¢ n N Oom! m
)=+ —=>-L+= m
ay(t) C+m—1n+e2p2 ",

m—1 ptm—2
Koo (mobt et om=1 N
p+m—2 p+m—2

Proposition 2.4.1. Let p > m. Let T € (0,00), ¢, n € CY([0,T7);[0,T)). Let o, 6, 7
0o, K be defined in (2.4.66). Assume that, for allt € (0,T),

(
o(t) >0, Klo®)] 7T <d)yt)5

p+m—2
o (2.4.67)
(m—=1)a(t) < (p+m—2)y(t). (2.4.68)
0o(t) >0, Klogl(t) 7T < 8(t)y(t) 7, (2.4.69)
(m—1)ay(t) < (p+m —2)y(t). (2.4.70)
Then w defined in (2.4.58) is a subsolution of equation (2.4.56).
Proof of Proposition 2.4.1. Let u be as in (2.4.57) and set
Dy :={(z,t) € RN\ B,) x (0,7) | 0 < F(r,t) < 1}.
In view of (2.4.60), (2.4.61), (2.4.62), we obtain, for all (z,t) € Do,
1
u, — —A(u™) —u?
U= (u™) —u
1 1 -—
=C( Fat 4 Cci—Fm T — C’Ci—F
19 —1n
L com m 1 1 14 7
Fm— L N— -—_— N — 1 ——_(m Fm—
LR (( —1)log(r) | ) < - )

_ Cpgppﬁ'
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In view of hypotheses (2.2.5) and (2.2.11), we can infer that

pr?

Moreover,

1
—1<— <0
= log(r) T 7 log(r)

From (2.4.71) and (2.4.72) we have

1
u — —Au™) —uf
P
1 / Cmfl
<0FJ11{F[C+¢ Ty ¢
m—1n a m—1

UL

/ —
X <N2+1>] fgil Cp—lgprfnlz}.
m

m—1mn

Thanks to (2.4.66) and (2.4.73)

w_;AWm%ﬂf§0F5f4ﬂF%

where

p+m—2
—1

p(F) :=a(t)F = 4(t) —y(t)F

Due to (2.4.74), our goal is to find suitable C' > 0, a > 0, {, n such that

o(F) <0, forall Fe(01).
To this aim, we impose that

sup F)= max ¢(F)=p(Fy) <0,
FemJ)@( ) FemJ)w( ) = ¢(Fo)

for some Fy € (0,1). We have

=0 = olt) - TSy (O F R = 0
[ m—=1 a(t) =
¢$Fb_b+m—2(ﬂ]
Then, .
o(F) = k2" _5)
y(t) 7=

1
— <ky, ——<—k; forall zeRV\B,.

<1, forall zeRY\B..

61

(2.4.71)

(2.4.72)

(2.4.73)

(2.4.74)

(2.4.75)

where the coefficient K = K (m, p) has been defined in (2.4.66). By hypotheses (2.4.67)

and (2.4.68)

(2.4.76)
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So far, we have proved that

1
AWM —wP <0 . 2.4.
Uy p($)A(u) u? <0 in Dy (2.4.77)

Furthermore, since u™ € CY([RN \ B.] x [0,7T)), due to Lemma 1.3.10 (applied with

Q1 = Dy, Qy = RN\ [Be U Ds],u; = u,ug = 0,u = u), it follows that u is a subsolution

to equation
1

= AW - =0 in RV Be] x (0,7, (2.4.78)
plx
in the sense of Definition 1.3.9.
Let

D3 :={(z,t) € B. x (0,T) |0< G <1} .
In view of (2.4.63), (2.4.64) and (2.4.65), for all (z,t) € Ds,

1

v — ——A@W™) =P
AV OR
1 ro1emtt N-1 1Ccm! 1
e 1] [ S A
m—1n p a m—1 e p a m—1e
C o _1C™ T m Ty et
m—1n p a? (m—l)ze‘m o
(2.4.79)
Using (2.2.6), (2.4.79) yield, for all (z,t) € Ds,
1
v——=A") =P
1 ! cm-l N
< oGm! {G [g’ S, 277] (2.4.80)
m—1n a m—1e
o CP—ICPGPTHTIZ .
m—1n
Thanks to (2.3.27) and (2.4.80),
v — ;A(vm) _ P < CGRTIN(G), (2.4.81)
where o
B(G) = ay(1)C — 8(t) — 1 (NG (2.4.82)

Now, by the same arguments used to obtain (2.4.78), in view of (2.4.69) and (2.4.70)
we can infer that

W(G)<0 0<G<1.
So far, due to (2.4.81), we have proved that

1

——A@™) =P <0 forany (z,t) € Ds. 2.4.83

Ve —
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Moreover, by Lemma 1.3.10 v is a subsolution of equation

1
vp— —A@™) =P =0 in Bex(0,7T), 2.4.84
AW  x (0.T) (2.4.8)
in the sense of Definition 1.3.9. Now, observe that w € C(RY x [0,T)), indeed,

uw=uv=CC(t) {1—77“)}7”1_1 in 0B, x (0,T).

a 1+

Moreover, w™ € C*(RY x [0,T)), indeed,

W™, = (™), = —C™C(H)m—— Ln(®) {1 _ ”(tq " OB x (0,T).

m—1e a a |,

Hence, by Lemma 1.3.10 again, w is a subsolution to equation (2.4.56) in the sense of
Definition 1.3.9. O

Remark 2.4.2. Let
p>m,

1

and assumptions (2.2.5) and (2.2.11) be satisfied. Let define w := CW: . In Theorem
2.2.2, the precise hypotheses on parameters C > 0, a > 0, w > 0 and T > 0 is the
following.

1N
62} <(p+m-2)CP 1,

(2.4.85)

cm-t 1
max{l—i—mkg (N—2—|—>;1+mp2
a

m—1 a

p+m—2

K C’mfl 1 _—
T prm—z MaX [1+mk2 <N—2+>] ! :
(m—1) »1 a m—1

cm-i N pt’:nl_Q p—m
1 — < £ =  comt,
(14 ) }—<m—n@—mc

(2.4.86)

Lemma 2.4.3. All the conditions in Remark 2.4.2 can hold simultaneously.

Proof. We can take w > 0 such that
wo Sw < wy

for suitable 0 < wp < w; and we can choose C' > 0 sufficiently large to guarantee (2.4.85)
and (2.4.86) (so, a > 0 is fixed, too). O

Proof of Theorem 2.2.2. We now prove Theorem 2.2.2, by means of Proposition 2.4.1.
In view of Lemma 2.4.3 we can assume that all conditions of Remark 2.4.2 are fulfilled.
Set

(=(T—-t)", n=(T-t)"", forall t>0,
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and a and (3 as defined in (2.3.40). Then

m—1 m _p
dw:[mi1+ca m—1b(m£1+N_%]@_wpl’
N e
o(t) - On—lﬂp—lﬁT 0 (2.4.87)

A(t) = CP (T =) 7T

- 1 NmCm™1 _p
el i e [CEU RS

Let p > m. Condition (2.4.85) implies (2.4.67), (2.4.68), while condition (2.4.86)
implies (2.4.69), (2.4.70). Moreover, w(zx,0), with w defined in (2.4.58), coincides with
the right hand side of (2.2.13). Hence by Propositions 2.4.1 and 1.3.7 the thesis follows.

O

m—1

2.5 Further results: non-uniqueness for ¢ > 2
In the case when ¢ > 2 we can prove a result of non-uniqueness of the solution to
problem (2.1.1) in the space L= (RY x (0, T]).
Proposition 2.5.1. Let hypothesis (H) be satisfied. Let

q> 2.
If there exists a supersolution V> 0 of problem

Iav=11

P (2.5.88)

lim V(zx)=0,
|z| =400

then there exist infinitely many solutions u of problem (2.1.1) that belong to L™®(RN x
(0, 7)), for some T > 0. In particular, for any ¢ > 0, there exists a solution u. of
problem (2.1.1) such that

T
\a:|i>n-|}oo T/ ul(z,t)dt = ¢
To prove Proposition 2.5.1, we introduce the following definitions.
Definition 2.5.2. Let g = {1,—1}. By a solution to the problem
AV =gp(z) inRY (2.5.89)

we mean any function V € C(RY) such that

/VAdj dx :/ VVY -vdo+g / p(x) dx (2.5.90)
Q o0 Q

for any open bounded set Q C RN with reqular boundary 0 and for any ¢ € C>(Q),
Y > 0 and ¢¥|pq = 0. Subsolutions (supersolutions) of (2.5.89) are defined replacing
T ="by” >7 (respectively” <7 ) in equality (2.5.90).
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Moreover, we shall also consider the following auxiliary problems:

1
U = *A(um) +uP in BR X (O,T]
p

— 0 on OBp x (0,T] (2.5.91)
= up on Br x {0},
and
1
-AV = in B
P I f (2.5.92)
Vv =¥ on 0Bg.

Here Br := {x € RV : |z| < R} and the functions ¢ € C(0Brx(0,T]) and x € C(0BRg)
are given functions. Solutions to problems (2.5.91) and (2.5.92) are defined as follows.

Definition 2.5.3. By a solution to the problem (2.5.91) we mean any function u €
C(Bgr x (0,T]) such that

I/ (ot ot ) dedr = | st 6(0) - w ()} da

Br
/ / u" Vi - vdodr,
OBg

for any t € (0,T) and any 1 € C*®(Br x (0,T]), ¥ >0 and ¢ = 0 on 0Br x (0,T]. Sub-
solutions (supersolutions) of (2.5.91) are defined replacing” =7 by ” >7 (respectively
7 <) in equality (2.5.93).

(2.5.93)

Definition 2.5.4. Let g = {1,—1}. By a solution to the problem (2.5.92) we mean any
function V € C(Q) such that

/ VAYde = / VV - vdo + g/ p(z)y dz (2.5.94)
Br 8Br

Bgr

for any ¢ € C*(BRr), ¥ > 0 and ¢ = 0 on OBg. Subsolutions (supersolutions) of
(2.5.92) are defined replacing” =" by ” >"7 (respectively ” <7 ) in equality (2.5.97).

We now prove the existence of at least one solutions in L= (RY x (0,7]) to problem
(2.1.1) when ¢ > 2.
We now prove the following Lemma.

Lemma 2.5.5. Let assumptions (H) and (2.1.2) follow. Then there exists a supersolu-
tion V' to the problem

1
;AV =—-1 inRY (2.5.95)

such that
V(z) — 0 as|z| = +o0.
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Proof of Lemma 2.5.5. Let us consider
V= (ro+z)~" inRV\ {0},

where

0<b<min{N—-2,q—2},
ro > [b(N—2—b)>".
Then, thanks to (2.1.2) and (2.5.96),

(2.5.96)

—AV ;[VTW(N’;‘ 1)W]
1 2 r T _ (N_ 1) r x —bh—1
p[b +b)(ro + |z]) 2 b(ro + |z|) ]
< k2 (?"0+ |z])? [(b2+b—Nb+b)(r0 + yx\)—b—ﬂ
< —kob(N —2—b)(ro + |z[)T27°
< —17 in RN\{()}.

Hence V is a supersolution to (2.5.95) in R \ {0}, for any € R" \ {0}. Thanks to
a Kato-type inequality, since V, < 0, we can easily infer that V is a supersolution of
equation (2.5.95) , in the sense of Definition 2.5.4. Moreover,

lim V(z) =0,

|x|—o00

and
V > 0.

Finally we can say that
0=infV = lim V,

RN |z|—o0

that corresponds to the desired hypotheses of Proposition 2.5.1. O
We can finally prove Proposition 2.5.1.

Proof of Proposition 2.5.1. For any fixed ¢ > 0, consider the problem

{ut =uP in (07 T] (2597)
u(0) =w

1
such that w > max{||uo||co, 0%2Pj}. Then the solution is

w
[1—(p—1)twr1]1/(-1)

a(t) = (> 0).

Take any 0 < T < Let {ug} be the solution to

1
2(p—Twp=1"
pur = A(u™)+ puP in Bg x (0,7
w =cm ondBgx (0,7 (2.5.98)
u  =wug in Br x {0}.
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Then, thanks to the comparison principle,
UR,c < u,

and in particular,
upe <u(T)=:k in Br x (0,T].

Moreover, @ = 0 is a subsolution to problem (2.5.98). Therefore
upe >0 in Bg x (0,7

Thus we can say that
0<ugr.<k inBgx(0,T].

Thanks to compactness argument, we can extract a subsequence {ug, .} where R; — 0
as | — +oo that converges to u., u. being a solution to problem (2.1.1) in the sense of
Definition 1.3.1. Finally, it is still true that

0<u<k inRY x (0,7 (2.5.99)
It remains to show that -
1
im — ul'(z,T)dx = c.
lz|=oo T Jo

Define,
T
UR;c :=/ up (z,t)dt z € Bp. (2.5.100)
0

For any 1) as in Definition 2.5.3, choosing ¢ = 1 (z) in equality (2.5.93), we easily obtain

T
/BRZ vr, A dr = /BRl plur,c(x,T) —uo(x)]y doe — /BRZ P [/0 “110?,1,(: dt} Y dx

+/ cTVi-vdo
0Bg,

Moreover, observe that, thanks to (2.5.99)

T
yuRl,c(x,T)yHuo(xH/ i |t < 2k TH = (2.5.101)
0 b
Thus,
[ onetvdez [ onovovio-ar [ puds (2.5.102)
Bg, 0Bg, Bg,

Inequality (2.5.102) shows that, for any integer [, the function

FLZ - W, (25103)
is a subsolution of problem (2.5.92) for
cT
g=-1, X = 7r
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Similarly, from Lemma 2.5.5, we have

VAydr < /

VVY - vdo — / pY dx (2.5.104)
OB,

Bp, Br,

where we have used that V' > 0. We now consider the constant solution W = ¢ of the
problem

—EAW =0 in Br
p
W=c on 0BpR.
Then, for any ¢ € C*®°(Bg), 1 > 0 and % = 0 on dBg, it follows that

WA dr = WV - v do. (2.5.105)
Br OBg

T
We multiply (2.5.105) by i and we sum the result together with (2.5.104). Using the
definition of W we get,

/ (V + CTA¢> dx < / (V + £V¢ : 1/) do — / pdx. (2.5.106)
B, M JBR, M Bg,

Defining,

cT
Fyp:=V+ i (2.5.107)

inequality (2.5.106) becomes,

/ Fy Apdx < / Fo VY -vdo —/ pydz. (2.5.108)
BRl aBRl

Bg,

This proves that F; is a supersolution to problem (2.5.92). By comparison results, it
follows that
Fi < Fy.

Hence T
URl,c:MFLl SMFQJZM[V'F?W] =MV +4+cT in BRL'

Letting | — oo we obtain,
Ve <MV +ceT inRY, (2.5.109)

where N
ue = lim up, . in RY x (0,77,
=00 ’

i (2.5.110)
Ve 1= / ug'(z,t)dt = lim vg, . for z € RN,
0 l—o00

On the other hand, thanks to (2.5.99),

[ onevde< [ onoVovdora [ puds (2.5.111)
BRl 8BRl BRl
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Inequality (2.5.111) shows that, for any integer [, the function F}; defined in (2.5.103),
is a supersolution of problem (2.5.92) for

I s
g=41 X = M
Similarly, from Lemma 2.5.5, we have
/ (=VAY) de > / (=VV¢-v) do —|—/ py dx, (2.5.112)
B, OBg, B,

where we have used that V' > 0. We now consider the constant solution W = ¢ as
T

defined in (2.5.105). Then, we multiply (2.5.105) by i and we sum the result together

with (2.5.112). Using the definition of W we get,

cT cT

Defining
cT

Fy;=-V+ — 2.5.114
3,1 + i ( )

inequality (2.5.113) becomes

T
/ Py Avde > CMW)-udajL/ o da. (2.5.115)
BRl OBRr BRL

This proves that F3; is a subsolution to problem (2.5.92) with the choice

By comparison results, it follows that
Fy, > F3y,

hence -
Vpe=MF >MFy, =M [—V+ CM] =MV +cT in Bpg,.

Letting [ — oo we obtain,
Ve > MV +¢T inRY. (2.5.116)

Combining (2.5.109) and (2.5.116), thanks to the property of V' showed in Lemma 2.5.5,
we obtain

¢l = lim (-MV+cT) < lim v(z) < lm (MV+4cT) = cT. (2.5.117)

|z|—=+o0 |z|—+o0 |z|—=+o0
Thus
lim v (z) = T, (2.5.118)
|z|—+o0

Recalling the definition of v, and wu. in (2.5.110), the thesis follows. O
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Chapter 3

The logarithmic decaying density
case

3.1 Introduction

We are concerned with global existence and blow-up of nonnegative solutions to the
Cauchy parabolic problem

p(x)us = A(u™) + p(x)uP in RY x (0,7) (3.1.1)
u = ugp in RY x {0}, o
where m > 1, p > 1, N > 3, 7 > 0. Furthermore, we always assume that
(i) up € L®(RY), ug > 0 in RV ; (3.1.2)
(ii) p € C(RN), p > 0in RV o

the function p = p(z) is usually referred to as a variable density.

The differential equation in problem (3.1.1), posed in (—1,1) with homogeneous
Dirichlet boundary conditions, has been introduced in [73] as a mathematical model of
a thermal evolution of a heated plasma.

We refer the reader to [92, Introduction], [93, Introduction]| for a comprehensive
account of the literature concerning various problems related to (3.1.1). Here we limit
ourselves to recall only some contribution of that literature. Problem (3.1.1) without
the reaction term has been widely examined, e.g., in [25, 27, 49, 51, 50, 66, 67, 68, 69, 70,
71, 72, 108, 106, 107, 109, 115]. Furthermore, global existence and blow-up of solutions
of problem (3.1.1) with m = 1 and p = 1 have been studied, e.g., in [31, 58]). If

<1+ 2
b= N’

then finite time blow-up occurs, for all nontrivial nonnegative data, whereas, for

>1+4 2
p N’

71
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global existence prevails for sufficiently small initial conditions. In addition, in [85] (see
also [21]), problem (3.1.1) with m = 1 has been considered.

Similar results for quasilinear parabolic equations, also involving p-Laplace type
operators or double-nonlinear operators, have been stated in [60], [86], [87], [88], [104],
[132] (see also [46] and [89] for the case of Riemannian manifolds); moreover, in [54] the
same problem on Cartan-Hadamard manifolds has been investigated.

Global existence and blow-up of solutions for problem (3.1.1) with p satisfying

1 1

< <
Filalt < P S Bl

for all |z| > 1 (3.1.3)

have been investigated in [92] for ¢ € [0,2), and in [93] for ¢ > 2. In [92], for ¢ € [0, 2),
the following results have been established.

e ([92, Theorem 2.1]) If p > p, for a certain p = p(ki, k2,q,m, N) > m and the
initial datum is sufficiently small, then solutions exist globally in time. Observe
that

2 —

p=m-+ N—(f] when ki1 = ko.

e ([92, Theorem 2.4]) For any p > 1, for all sufficiently large initial data, solutions
blow-up in finite time.

e ([92, Theorem 2.6]) For 1 < p < m, for any non trivial initial data, solutions
blow-ip in finite time.

e ([92, Theorem 2.7]) If m < p < p, for a certain p = p(k1, k2,q,m, N) < p, then, for
any non trivial initial data, solutions blow-up in finite time, under specific extra
assumptions on p.

Such results extend those stated in [119] for problem (3.1.1) with p=1,m > 1, p > 1
(see also [36]).

Furthermore, assume that (3.1.3) holds with ¢ > 2. In [93] the following results have
been showed.

e ([93, Theorem 2.1]) If ¢ = 2 and p > m, then, for sufficiently small initial data,
solutions exist globally in time.

e ([93, Theorem 2.2]) If ¢ = 2 and p > m, then, for sufficiently large initial data,
solutions blow-up in finite time.

e ([93, Theorem 2.3]) If ¢ > 2, then, for any p > 1, for sufficiently small initial data,
solutions exist globally in time.

Finally, in [46], (3.1.1) is addressed, when p < m. It is assumed that (3.1.2) is
satisfied, and that the weighted Poincaré inequality with weight p holds. Moreover, in
view of the assumption on p also the weighted Sobolev inequality is fulfilled. By using
such functional inequalities, it is showed that global existence for L™ data occurs, as
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well as a smoothing effect for the solution, i.e. solutions corresponding to such data are
bounded for any positive time. In addition, a quantitative bound on the L* norm of
the solution is given.

In what follows, we always consider two types of density functions p. To be more
specific, we always make one of the following two assumptions:

there exist k € (0,4+00) and « > 1 such that

H
> k (log |z|)* |$!2 for all z € RY \ Be(0); (H1)
p(x)
there exist ki, ks € (0,+00) with k1 < ks and « > 1 such that
2 1 2 (1)

N
ogle)® = pa) = P lloglape 72l # € RIABAD).

Assume (Hy). For 1 < p < m and for suitable initial data uy € L®(RY), we show
the existence of global solutions belonging to L™ (R x (0, 7)) for each 7 > 0. Indeed, in
this case, the global existence follows from the results in [46] for ug € me(]RN ). However,
now we consider a different class of initial data ug. In fact, ug € L°(R") and satisfies
a decaying condition as |z| — 400; however, ug not necessarily belongs to LZ@(]RN ).

On the other hand, for p > m > 1, if ug satisfies a suitable decaying condition as
|| — +o0, then problem (3.1.1) admits a solution in L>(RY x (0, +00)).

Now, assume (Hj). For any p > m, if ug is sufficiently large, then the solutions to
problem (3.1.1) blow-up in finite time. Moreover, if p > m, up has compact support
and is small enough, then, under suitable assumptions on k1 and ko, there exist global
in time solutions to problem (3.1.1), which belong to L>=(RY x (0, +00)).

The proofs mainly relies on suitable comparison principles and properly constructed
sub- and supersolutions, which crucially depend on the behavior at infinity of the density
function p(z). More precisely, they are of the type

Mn(t) m for any (x,t) € [RN \ BE(O)] x [0,T),

+

w(z,t) =C¢(t) |1 —
(3.1.4)

for suitable functions ¢ = ((t),n = n(t) and constants C' > 0,a > 0,79 > 0 and ¢ > 1.

Chapter 3 is organized as follows. In Section 3.2 we state our main results. In Section

3.3 we prove Theorem 3.2.1. The blow-up result (that is, Theorem 3.2.2) is proved in

Section 3.4. Finally, in Section 3.5 Theorem 3.2.3 is proved .

3.2 Statements of the main results

For any xo € RY and R > 0 we set

Br(zo) = {x € RN : ||z — x0|| < R}. (3.2.5)

When zg = 0, we write Br = Br(0).
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3.2.1 Density p satisfying (H;)

The first result concerns the global existence of solutions to problem (3.1.1) for any
p>1and m > 1, p # m. We introduce the parameter b € R such that

O<b<a-—1. (3.2.6)
Moreover, since N > 3, we can choose € > 0 so that
N-2—-¢b+1)>0, (3.2.7)

and rg > e so that .
log(|z| + r9)

Finally, we can find ¢ > 0 such that

<e forany z € RY. (3.2.8)

IR

[log(|z| +70)] ™ <& forany z € RY. (3.2.9)

Observe that, thanks to (3.1.2)-(i) and (H1), we can say that there exists kg > 0 such

that

2

—— > ko [log(|z| + 70)]* (|Jz| +r9)?® for any x € RV . (3.2.10)

1
p(x)
Theorem 3.2.1. Let assumptions (3.1.2), (H1), (3.2.6), (3.2.7) and (3.2.8) be satisfied.
Suppose that
l<p<m, or p>m>1,

and that ug is small enough. Then problem (3.1.1) admits a global solution u € L>® (RN x
(0,7)) for any T > 0. More precisely, we have the following cases.

(a) Let 1 <p<m. If C >0 is big enough, T > 1, > 0,
up(z) < CT? (log(|z] + ro))_% for any x € RY | (3.2.11)

then problem (3.1.1) admits a global solution u, which satisfies the bound from
above

u(x,t) < C(T +t)° (log(|x| + To))_% for any (z,t) € RY x (0,400). (3.2.12)

(b) Let p > m > 1. If C > 0 is small enough, T > 0 and (3.2.11) holds with
B = 0, then problem (3.1.1) admits a global solution u € L>®(RN x (0,+00)),
which satisfies the bound from above (3.2.12) with 8 = 0.

3.2.2 Density p satisfying (H>)

The next result concerns the blow-up of solutions in finite time, for every p > m > 1,
provided that the initial datum is sufficiently large. We assume that hypotheses (3.1.2)
and (Hz) hold. In view of (3.1.2)-(i), there exist pi, p2 € (0,400) with p; < py such
that

1 -
;< o) < py forall z € B.(0). (3.2.13)
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Let
b:=a+1, (3.2.14)

and

s(x) =

= +1-— Q if x€B..

2
Theorem 3.2.2. Let assumptions (3.1.2), (Hz), (3.2.13) and (3.2.14) hold. For any
p>m

and for any T > 0, if the initial datum wug is large enough, then the solution u of problem
(3.1.1) blows-up in a finite time S € (0,T], in the sense that

||u(t)]|oo — 00 ast — S~ . (3.2.15)
More precisely, if C >0 and a > 0 are large enough, T > 0,
-1 5(:(}) m—p | m=1 N
ug(z) > CT p-1 |1 — —= T 1 for any x € R, (3.2.16)
a
+

then the solution u of problem (3.1.1) blows-up and satisfies the bound from below

mop| W1
u(z,t) > C(T — t)fp%l {1 _s@) (T — t)Pl] for any (z,t) € RY x (0, S).
a
Jr
(3.2.17)
Observe that if ug satisfies (3.2.16), then
suppug 2 {z € RY : s(z) < aT%}.
From (3.2.17) we can infer that
suppu(-,t) D {z € RY : s(z) < a(T — t)%} for all t € ]0,.5). (3.2.18)

The choice of the parameters C' > 0,7 > 0 and a > 0 is discussed in Remark 3.4.2.

The next result concerns the global existence of solutions to problem (3.1.1) for
p > m. We assume that p satisfies a stronger condition than (Hs). Indeed, we suppose
that

(ol +70° _ 1 _,  (al+n0)

loa(le 2 ro)® S 5@ < P2 log(al £rgye Al wERY (3:219)
where
ro>e 2 mg(N-3) (m_1> , (3.2.20)
k1 b
and

b:=a+2. (3.2.21)
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Theorem 3.2.3. Assume (3.1.2), (3.2.19), (3.2.20) and (3.2.21). Suppose that
p>m,

and that ug is small enough and has compact support. Then problem (3.1.1) admits a
global solution u € L® (RN x (0, +00)).
More precisely, if C > 0 is small enough, a > 0 is so that

m—1

0<wy<

<wi

for suitable 0 < wg < w1, T >0,

(og (2] + o))" 2=

for any x € RV, (3.2.22)

up(z) < oT [1 — ”

+

then problem (3.1.1) admits a global solution u € L (RN x (0,400)). Moreover,

1
m—1

(log(Jz] +70))° ] " (3.2.23)

u(w, t) < C(T+1) 7T [1 - - (T +t)" vt

+
for any (z,t) € RN x (0, 400).

Observe that if ug satisfies (3.2.22), then

suppug C {z € RY : (log(|z| + ro))g <aT»T}.

From (3.2.23) we can infer that

—m

suppu(-,t) C {z € RY : (log(|z| +70))’ < a(T+ )71} forallt>0. (3.2.24)

IS

The choice of the parameters C > 0,7 > 0 and a > 0 is discussed in Remark 3.5.2.

3.3 Proof of Theorem 3.2.1

In what follows, we deal with very weak solutions to problem (3.1.1) and to the same

problem set in different domains (see Section 1.3).
In what follows we set r = |z|. We assume (3.1.2), (H1), (3.2.6) and (3.2.7). We

want to construct a suitable family of supersolutions of equation

1

— A@W™) + v’ RN 00). 3.
p(x>A( )+ RY x (0, +00) (3.3.25)

U =

In order to do this, we define, for all (z,t) € RY x (0, +oc0),

a(z,t) = u(r(z),t) == C(t) (log(r + 7"0))7% ; (3.3.26)
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where ¢ € C*(]0, +00);[0,+00)), C > 0 and 79 > e such that (3.2.8) is verified.
Now, we compute

1
uy — —A(@™) — aP.
¢ p( )

For any (z,t) € [RN \ {0}] x (0, +00), we have:

u; = C ¢ (log(r + ro))_% . (3.3.27)
(@™)y =—-bC™"¢™ (log(r J:Lr”))bl : (3.3.28)
T ro
—b—2 —b—1
(@™),r = bC™ (™ {(b +1) (bg((’;if;))l + (log((;i’;?)l } . (3.3.29)

Proposition 3.3.1. Let ¢ € C([0,+00);[0,+00)),¢" > 0. Assume (3.1.2), (Hy),
(3.2.6), (3.2.7), (3.2.8), (3.2.9), (3.2.10) and that

kob(N —2 —e(b+1))C™(™ — e CP¢P > 0. (3.3.30)
Then @ defined in (3.3.26) is a supersolution of equation (3.3.25).

Proof of Proposition 3.3.1. In view of (3.3.27), (3.3.28), (3.3.29), (3.2.7) and (3.2.8), for
any (z,t) € (RV\ {0}) x (0, +00),

Uy — 1A(am) —uP
p

Yy _b 1 - log(r 4+ r —b—1
> O¢ (log(r +70) 7+~ {N =2~ e(b+ 1)} "¢ b g((r——i_i— 7%)))2 (3.3.31)

bp

— CPCP (log(r 4+ o))" ™ .

Thanks to hypotheses (3.2.6), (3.2.9) and (3.2.10), we have

L (log(r + o)) 7! (log{r + 7o)

(r+70)* > ko,

p  (r+ro) = (r +10)? (3.3.32)
— (log(r + 7)) > —¢.
Since ¢’ > 0, from (3.3.32) we get
1
@ — ~A@™) —aP > ko b(N — 2 — e(b+ 1))C™¢™ — e OPCP . (3.3.33)
p
Hence (3.3.33) is nonnegative if
kob(N —2—¢e(b+1))C™¢™ —cCP¢P >0, (3.3.34)

which is guaranteed by (3.2.7) and (3.3.30). So, we have proved that

0y — ;A(um) —@ >0 in (RV\{0}) x (0, +00).
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Now observe that
e C(RY x [0,+00)),
@™ € CHRN \ {0}] x [0, +00))
u'(0,t) <0.
Hence, thanks to a Kato-type inequality we can infer that « is a supersolution to equation

(3.3.25) in the sense of Definition 1.3.9.
O

Remark 3.3.2. Let assumption (Hp) be satisfied. In Theorem 3.2.1 the precise hypo-
theses on parameters B, C >0, T > 0 are as follows.

(a) Let p < m. We require that

B >0, (3.3.35)
ko b(N —2 —e(b+1))C™ —eCP > 0. (3.3.36)
(b) Let p > m. We require that
p=0, (3.3.37)
ko b(N —2 —(b+1))C™ —eCP > 0. (3.3.38)

Lemma 3.3.3. All the conditions in Remark 3.3.2 can hold simultaneously.
Proof. (a) We observe that, due to (3.2.7),
N—-2—-¢(b+1)>0.

Therefore, we can select C' > 0 sufficiently large to guarantee (3.3.36).
(b) We choose C' > 0 sufficiently small to guarantee (3.3.38). O

Proof of Theorem 3.2.1. We now prove Theorem 3.2.1 in view of Proposition 3.3.1. In
view of Lemma 3.3.3 we can assume that all conditions in Remark 3.3.2 are fulfilled.
Set

Ct)=(T+1t)P, foral t>0.
Let p < m. Inequality (3.3.30) reads
kob(N —2 —e(b+ 1)C™(T + )™ —cCP(T +t)P° >0 forall t>0.

This follows from (3.3.35) and (3.3.36), for ' > 1. Hence, by Propositions 3.3.1 and
1.3.5 the thesis follows in this case.

Let p > m. Conditions (3.3.37) and (3.3.38) are equivalent to (3.3.30). Hence, by
Propositions 3.3.1 and 1.3.5 the thesis follows in this case too. The proof is complete. [
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3.4 Proof of Theorem 3.2.2

We construct a suitable family of subsolutions of equation

1
u = —AW™) +u?  in RY x(0,7).

We assume (3.1.2) and (H3). Let

ﬂ::{u@J) in [RV\ Be(0)] x [0,7),

w(z,t) = w(r(x) v(z,t) in Be(0) x [0,T),

where

u(z,t) = u(r(z),t) := CC(t)

1- (logar)bn(t)] o

and

Let

and

2
G(r,t)::1—<b7"+1—b>”.
(&

Observe that for any (x,t) € [RY \ B.(0)] x (0,T), we have:

P . 1 n 1
w=C(Fmn1+(C(———Fmn1—-(C(———Fm1
m-—1n7 m—1n

r

Mgl (log r 0
—_ 1 r
b—2

m _ Cmm
W™)r = —b—-¢" 0

cm (b— 1)(logr)

m 1
Cﬁn_ln{F“*

a 72 B r2
b (logr)t2
b2 LB (1 (o) Pt
a

m—1 r2

79

(3.4.39)

(3.4.40)

(3.4.41)

(3.4.42)

(3.4.43)

(3.4.44)

(3.4.45)
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b—2

cm m_ (logr)
a (m—1)2" 72

m 2 b—2
_ ggmn <m> b? %Fﬁ
" (3.4.46)

1
m—1

1
F'm—l_l

m (log T')Q_Q

m 1 b—1
O ey My U081 oty (v g

3
|

a m—1-" r?
Observe that for any (x,t) € B.(0) x (0,T"), we have:

]. / 1 /
b= OCGPT 4 00—y 67 = O (3.4.47)
m Cm m m 1 br
(™)r = _TC HG’””;QW, (3.4.48)
m c" o, m b 1 r 1 nbr
cm m b 1 cm m b2 2 N
A "= — (M= m—1 —___[(m = 2 m—l
@) acm 1e2nG +a2<(m 1) e4nG
cr ., m b _ 1
(N =)= G (3.4.50)
cm . m Q2T2 ) 1L cm m b S
S g e e SN T e
We also define
/ Cmfl
o(t)i= ¢4~ e M ("N - 2),
m—1 n a m—1 m—1
/
8(t) = o
m—1mn
2(t) 1= O, (3.4.51)
¢ 7 b ¢cm1 m
t) = (' > 7 N = m
golt) = D H e N G — =
m=—1 ptm—2

Kom (LML A fml N
p+m—2 p+m—2
Proposition 3.4.1. Let T € (0,00), ¢, n € C*([0,T);[0,+00)). Let 0,0,7,09, K be
defined in (3.4.51). Assume that, for allt € (0,T),

pt+m—2 m—1

o(t) >0, Klo]"FT < st (3.4.52)
(m — 1alt) < (p-+m — 2 (). (3.4.53)
oo(t) > 0, Klagl(®) 7T < 8(t)y(t) 71, (3.4.54)
(m—1)ay(t) < (p+m—2)y(t). (3.4.55)
Then w defined in (3.4.40) is a subsolution of equation (3.4.39).



3.4. Proof of Theorem 3.2.2 81

Proof of Proposition 3.4.1. In view of (3.4.43), (3.4.44), (3.4.45) and (3.4.46) we obtain

uy — lA(ym) —uP

p
/ /
= CC’Fﬁ + C#Qpﬁ — Ciipﬁfl
m—1n7 m—1mn
1jpcm m (logr)e™2 1+, O™ m \?. (logr)™% 1
_ 2T m b2 Fm-1 Z ) ppi2 . pwm-
p{aC (m—l)zfn r2 + aC m—1) 21 2
cm m (logr)2™2 4 cm m (logry™ 1
——(" b Fm=t 4 —(™ bn Fm=1 (N —2)
a’ m-—1 72 a’ m-—1 72
— CPCPFRT,  for all (x,t) € Dy.
(3.4.56)
In view of (H2) and (3.2.14), we can infer that
_ (g ko, for all = € RV \ B.(0) (3.4.57)
p r? = logr — e o
1(0gr)™* _ ky for all = € RN\ B,(0) (3.4.58)
p 2 T logr % o o
1 (logr)®™"
p (Oi';) <ky, forall z € RV \ B.(0). (3.4.59)
From (3.4.56), (3.4.57), (3.4.58) and (3.4.59) we have
A" -
u — —AW™) —u
Uy o u
/ m—1
copm P g e ST o g (N2 T
m—1n a m—1 m—1
G Cp—lgprjﬂIQ .
m—1mn
(3.4.60)
Thanks to (3.4.51), (3.4.60) becomes
1
u, — ~A@W™) — uP < CFaT L o(F), (3.4.61)

p
where, for each t € (0,7,

ptm—2

O(F):=a(t)F —0(t) —y(t)F =1 .
Our goal is to find suitable C, a, (,n such that, for each t € (0,7,
p(F) <0 forany F € (0,1).
To this aim, we impose that

sup F)= max o(F) = @(Fy) <0,
FE@J)@( ) FewJ)w( ) = ¢(Fo)
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for some Fy € (0,1). We have

de p+m—2 Pl
ﬁ_O(:)g(t)_ ] F(t)Fm=1 =0
= F=F= [m_l J(t)]?_ll
T T prm—24(b) '
Then
U(t)PJ;TIQ
o(Fo) = K ——— —4(1),
y(t) 71

where the coefficient K depending on m and p has been defined in (3.4.51). By (3.4.52)
and (3.4.53), for each t € (0,7,

o(Fp) <0, Fy<1. (3.4.62)
So far, we have proved that
1
———A@W™) -4’ <0 in Dy. 3.4.63

Furthermore, since u™ € C*([R™ \ B.(0)] x (0,T)), due to Lemma 1.3.10 (applied with
O = D1, = RN\[Be(O)UDl], up = u,ug = 0,u = u), it follows that u is a subsolution

to equation
1

U — —AW)—u? =0 in [RY\ B.(0)] x (0,T),
tp(m)() [R™\ Be(0)] x (0,7)
in the sense of Definition 1.3.9.

Let

Dy :={(z,t) € B.(0) x (0,T) : 0 < G(r,t) < 1}.
Using (3.2.13), (3.4.39) yields, for all (z,t) € Dy,

1
v, — —A(@™) — P
v (©™) — v

/ m—1
<CGmlll{G[C'—|—<n+Np2bQC " 77}
m—1n7 e’ a m—1 (3.4.64)
o Cpflcp(;pfﬁf}
m—1n

p+m—2]

= CGmT |gg(H)G - 8(t) — A ()G

Now, by the same arguments used to obtain (3.4.63), in view of (3.4.55) and (3.4.56)
we can infer that

1
v, — —Av™ <P for any (x,t) € Ds. (3.4.65)
p

Moreover, since v™ € C1(B,(0) x (0,T)), in view of Lemma 1.3.10 (applied with ; =
Dy, Q9 = B.(0) \ D2, u1 = v,us = 0,u = v), we get that v is a subsolution to equation

1
v = AU =9 in Be(0) x (0,T), (3.4.66)
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in the sense of Definition 1.3.9. Now, observe that w € C(RY x [0,T)); indeed,

w=v=CC(t) {1 - 773)} " i 9B.(0) x (0,T).
+

Moreover, w™ € C*(RY x [0,7)); indeed,

W)y = (@™), = _omg(t)mmﬂjlg)z [1 — "fﬂ rl in 0B.(0) x (0,T). (3.4.67)

In conclusion, in view of (3.4.67) and Lemma 1.3.10 (applied with Q; = B.(0),Qs =
RY \ Be(0),u1 = v,us = u,u = w), we can infer that w is a subsolution to equation
(3.4.39), in the sense of Definition 1.3.9. O

Remark 3.4.2. Let
p>m,

and assumptions (Hs) and (3.2.13) be satisfied. Let define w := """ In Theorem

a

3.2.2, the precise hypotheses on parameters C > 0, a > 0, w > 0 and T > 0 are the
following.

m—1 m—1 N
max{l—l—mksz (N—2+bm>;1—|—mp2 bg}g(p+m_2)cp—l’
a m—1 e
(3.4.68)
K cm-1 m prms2
ey max [l—l—mk;gb <N—2+b>] ;
(m—1) »1 a m—1

1 S (3.4.69)

C’I’)’L— N p—1 p_ m 1

1 b— < £ 7 om-l

( + m p2 a e2> } = m-Dp-1)

Lemma 3.4.3. All the conditions in Remark 3.4.2 can hold simultaneously.

Proof. We can take w > 0 such that
wy Sw < wy

for suitable 0 < wy < wy and we can choose C' > 0 sufficiently large to guarantee (3.4.68)
and (3.4.69) (so, a > 0 is fixed, too). O

Proof of Theorem 3.2.2. We now prove Theorem 3.2.2, by means of Proposition 3.4.1.
In view of Lemma 3.4.3 we can assume that all conditions of Remark 3.4.2 are fulfilled.
Set

(=(T-t)", n=(T -, forall t>0,
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Then
0@%:[m11+ct]__ﬁk @-+N_2H<T_w =
. p=m N
W= - " (3.470)
y(t) = CP T — 1) 7T
m m—1 __p_
Uo(t):—ml_l{l—i—pﬂ; bca ](T—t) =3

Let p > m. Condition (3.4.68) implies (3.4.53), (3.4.55), while condition (3.4.69) implies
(3.4.52), (3.4.54). Hence by Propositions 3.4.1 and 1.3.7 the thesis follows. O

3.5 Proof of Theorem 3.2.3

We assume (3.1.2), (3.2.19) and (3.2.20). In order to construct a suitable family of
supersolutions of (3.3.25), we define, for all (x,t) € RV x (0, +00),

_ (log(r +0))° TO))bn(t) : (3.5.71)

+

u(z,t) = u(r(x),t) == C((t)

where 7, ¢ € C1([0, +00); [0, +00)), C >0, a > 0, 79 > e and b as in (3.2.21).
Now, we compute

1
uy — —A(@™m) — aP.
t p( )

To this aim, set

(log(r + r0))°

F(rt):=1-—
a

n(t),

and
Dy := {(z,t) € [RN\ {0}] x (0, +00) | 0 < F(r,t) < 1}.

For any (x,t) € Dy, we have:

0
N = 1Fﬁ71 (_ (log(r + 70)) n’)
e “ (3.5.72)
= C¢Fmt 4 chQFm T chlFm
17 —1n
el 1 (log(r +19))" "
(@), = —b——(M— T (3.5.73)

a’ m—1 (r+70)
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b—2 b—1

_cm m 1
—m N N mi Fm-
(@")pr = =b =" 1] I

- (log(r + o)

G -1) _ (log(r +10))

(r+1rg)? (r+17p)?

b (log(r +10))>2

1-( Fm11
+ m—1 (r+ 7‘0)2 ( (log(r 4+ ro)) ) =
b (log(r+ ro
m—1  (r+ry)?
m —2
i ] (ostr-+ro)~* 1,
a m-—1 (r 4+ rg)?
-C™ m (log(r + 70)) -1
bi m F‘"L 1
a m— 1C g (r+rp)?
—2C™  m (log(r + ro) b-2 1
- m Fael
+b a (m—l)2C (r+1r)?
(3.5.74)
N -1
a@m) = Dy, 4 @,
(N-1) 3 C’mC M el (log(r + ro))g_1
N T a m—1 (r+mp)
m 72
gt m my (5 log Tt r” F (3.5.75)
a m-—1 (r+rg)?
-C™ m (log(r + ro))g
> m FsT
+ba mflC " (r+ro)?
—2C™ m . (log(r + ro) —2 ot
+b a (m—l)2¢ g (r +1rg)? '
We also define
/ _Cm 1
(t):= ¢+ — ¢ T3 W/m7“<b +N—@
—1n a m—1
_ ¢ 77’ o1 m (3.5.76)
-~ T m k
5( m—]_?’]+b a C ( 1)277 2
A(t) == CP7I¢P

Proposition 3.5.1. Let C € CY([0,4+0);[0,+00)). Let &, 6, 4 be as defined in
(3.5.76). Assume (Ha), (3.2 9), (3.2.20), (3.2.21) and that, for all t € (0, 400),
m—1

a

= ks, (3.5.77)

_cm-1 m - m b
/ m _ o _ p—1sp >
¢+b ¢ [(bm TN 3) k1 = 1)/@] CP~1¢P >0. (3.5.78)

Then u defined in (3.5.71) is a supersolution of equation (3.3.25).
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Proof of Proposition 3.5.1. In view of (3.5.72), (3.5.73), (3.5.74) and (3.5.75), for any
(l’,t) S Dl,

1
u——A(a™) —aP
P
1y 1oy 1
> CCFmT + C¢——— T Fmt - (——Tpma~!
m—1n m—1n

(log(r +r0))"™

1 -Ccm m 1
(N —2)f——¢m Fm
+ L S (- 5 10)? (3.5.79)
1-C™ m - m (log(r + 7“0))5_2 1
— b - m b — 1 mel
+p a m—lC [ -1 } (r+1rg)?
120™ m (log(r + 7“0))5_2 1y _p_
_7b7 m mel _Cpmefl
o T o T ) ‘
where we have used the inequality
1 1
> .
r(r+mro) — (r+rg)?
Thanks to (3.2.19) and (3.2.21), we have
1 (1 b—2
L0og(r+mo)" " o b forall 2RV, (3.5.80)
p (r+mr)?
11 b—2
L Qostrdro)) 77 h forall ze RY, (3.5.81)
p (r+mp)
1 (log(r + o))" N
- >kl > ki for all R . .5.82
p (T ro)? > kylog(r+rg) >k forall z € (3.5.82)

From (3.5.80), (3.5.81) and (3.5.82) we get
1

4 — —A@™) — P
/ m—1
sopa e ey ST g ™ (T N
m—1n a m—1 m—1
C 77/ 9 Cm—l m . prm—2
S T m ky — CP1 PR RS
m—1n a ¢ (m—1)2772 o
(3.5.83)
From (3.5.83) and (3.5.76), we have
1 _ m—

G — ~A@") — @ > CFm1 ! [6(t)F ~ (1) — "y(t)Fip;—IQ} . (3.5.84)

p

For each t > 0, set

— p+m—2

o(F) = 5(t)F — 3(t) — ()F =1, Fe(0,1).
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Now our goal is to find suitable C, a, (,n such that, for each ¢ > 0,
©(F)>0 forany F € (0,1).

We observe that ¢(F') is concave in the variable F. Hence it is sufficient to have that
©(F) is positive at the extrema of the interval (0,1). This reduces, for any ¢ > 0, to the

conditions
0)>0,
#(0) 2 (3.5.85)
p(1) > 0.
These are equivalent to
—0(t) >0, a(t)—a(t) —7(t) >0,
that is
77, 72 Om_l m—1_ T
——>b k
n? a ¢ m—1"7
_(m—1 . B
Cl‘l-bc ¢m mn nilb m +N-3)k———ko —Cpilcpzo.
a m—1 m—1 (m—1)

which are guaranteed by (3.2.20), (3.5.77) and (3.5.78). Hence we have proved that
1
u ——A(™)—u? >0 in D;.
p
Now observe that
u € C(RYN x [0,400)),
a™ € CH[RN \ {0}] x [0,+00)), and by the definition of @,
u=0in [RY\ D] x [0, +00)).

Hence, by Lemma 1.3.10 (applied with Q; = Dy, Qo = RV \ Dy, uy = @, us = 0, u = @),
u is a supersolution of equation

iy — ;A(am) @ =0 in (RV\ {0}) x (0, 4+00)

in the sense of Definition 1.3.9. Thanks to a Kato-type inequality, since @]*(0,t) < 0, we
can easily infer that @ is a supersolution of equation (3.3.25) in the sense of Definition

1.3.9. O
Remark 3.5.2. Let
p>m
and assumption (3.2.20) be satisfied. Let w := CmTfl In Theorem 3.2.3 the precise
hypotheses on parameters C' > 0, w > 0, T' > 0 are the following:
p—m _ =2 m
>b k 3.5.86
p—1 — Y1 ( )

_ m - m k - 1
N-3)— >corty — 5.
bwm_l[/ﬁ(bm + 3) (m—l)b]_c +p—1 (3.5.87)
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Lemma 3.5.3. All the conditions in Remark 3.5.2 can be satisfied simultaneously.

Proof. Since p > m the left-hand-side of (3.5.86) is positive. By (3.2.20), we can select
w > 0 so that (3.5.86) holds and

_ m - m ko - 1
1 _ _ >
S TN S

Then we take C' > 0 so small that (3.5.87) holds (and so a > 0 is accordingly fixed). [

Proof of Theorem 3.2.3. In view of Lemma 3.5.3, we can assume that all the conditions
in Remark 3.5.2 are fulfilled. Set

C(t) = (T+1)" 771, forall t>0,

and e
n(t)=(T+t) »=1, forall ¢>0.

Let p > m. Consider conditions (3.5.77) and (3.5.78) with this choice of ¢ and 1. They
read

p—m 72 cmtom ko,
p—1 a —1
1 _ (m—1 7
= +bC = SN -3 bk Pl >0,
p—1 (m—1)
Therefore, (3.5.77) and (3 5. 78) follow from assumptions (3.5.86) and (3.5.87). Hence,

by Propositions 3.5.1 and 1.3.5 the thesis follows. O
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manifolds
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Chapter 4

Global existence and smoothing
estimates for p > m

4.1 Introduction

We investigate existence of global in time solutions to nonlinear reaction-diffusion prob-
lems of the following type:

{ut:Aum+ uP in M x (0,7T)

' (4.1.1)
U = ug in M x {0},

where M is an N —dimensional complete noncompact Riemannian manifold of infinite
volume, A being the Laplace-Beltrami operator on M and T € (0, c0]. We shall assume
throughout this chapter that

N > 3, m > 1, p > m,

so that we are concerned with the case of degenerate diffusions of porous medium type
(see [128]), and that the initial datum wug is nonnegative.

Let L4(M) be the space of those measurable functions f such that |f|? is integrable
w.r.t. the Riemannian measure u. We shall always assume that M supports the Sobolev
inequality, namely that:

1
(Sobolev inequality) vl 2" (ary < EHVUHLZ(M) for any v € C°(M), (4.1.2)
2N

where C; is a positive constant and 2* := =5. In one of our main results, we shall also
suppose that M supports the Poincaré inequality, namely that:

(Poincaré inequality)  [[v][z2(ar) < CLHV’UHLQ(M) for any v e C°(M), (4.1.3)
P

for some C,, > 0. Observe that, for instance, (4.1.2) holds if M is a Cartan-Hadamard
manifold, i.e. a simply connected Riemannian manifold with nonpositive sectional
curvatures, while (4.1.3) is valid when M is a Cartan-Hadamard manifold satisfying
the additional condition of having sectional curvatures bounded above by a constant
—c < 0 (see, e.g., [39, 40]). Therefore, as is well known, in RY (4.1.2) holds, but (4.1.3)
fails, whereas on the hyperbolic space both (4.1.2) and (4.1.3) are fulfilled.

91
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4.1.1 On some existing results

The behaviour of solutions to (4.1.1) is influenced by competing phenomena. First of
all there is a diffusive pattern associated with the so-called porous medium equation,
namely the equation

u = Au™ in M x (0,T), (4.1.4)

where the fact that we keep on assuming m > 1 puts us in the slow diffusion case. It
is known that when M = R"™ and, more generally, e.g. when M is a Cartan-Hadamard
manifold, solutions corresponding to compactly supported data have compact support
for all time, in contrast with the properties valid for solutions to the heat equation,
see [128]. But it is also well-known that, qualitatively speaking, negative curvature
accelerates diffusions, a fact that is apparent first of all from the behaviour of solutions
of the classical heat equation. In fact, it can be shown that the standard deviation
of a Brownian particle on the hyperbolic space H"” behaves linearly in time, whereas
in the Euclidean situation it is proportional to v/t. Similarly, the heat kernel decays
exponentially as t — +o00 whereas one has a power-type decay in the Euclidean situation.

In the Riemannian setting the study of (4.1.4) has started recently, see e.g. [43], [47],
[48], [52], [53], [55], [111], [129], noting that in some of those papers also the case m < 1 in
(4.1.4), usually referred to as the fast diffusion case, is studied. Nonlinear diffusion gives
rise to speedup phenomena as well. In fact, considering again the particularly important

example of the hyperbolic space H"” (cf. [129], [48]), the L> norm of a solution to (4.1.4)

log ¢ 1/(m—1)

satisfies |lu(t)]|co =< (=5~ as t — 400, a time decay which is faster than the

corresponding Euclidean bound. Besides, if the initial datum is compactly supported,
the volume V(t) of the support of the solution u(t) satisfies V(t) = t*/(m=1) as t — +o0,
while in the Euclidean situation one has V() < t*(N™) with 3(N,m) < 1/(m — 1).

The second driving factor influencing the behaviour of solutions to (4.1.1) is the
reaction term uP, which has the positive sign and, thus, might drive solutions towards
blow-up. This kind of problems has been widely studied in the Euclidean case M = RY,
especially in the case m = 1 (linear diffusion). The literature for this problem is huge
and there is no hope to give a comprehensive review here, hence we just mention that
blow-up occurs for all nontrivial nonnegative data when p < 1+ 2/N, while global
existence prevails for p > 1+ 2/N (for specific results see e.g. [16], [24], [30], [31], [58],
[83], [114], [121], [134], [135]). On the other hand, it is known that when M = H" and
m =1, for all p > 1 and sufficiently small nonnegative data there exists a global in time
solution, see [9], [130], [131], [110].

As concerns the slow diffusion case m > 1, in the Euclidean setting it is shown in
[119] that, when the initial datum is nonnegative, nontrivial and compactly supported,
for any p > 1, all sufficiently large data give rise to solutions blowing up in finite
time. Besides, if p € (l,m + %), all such solutions blow up in finite time. Finally, if
p>m+ %, all sufficiently small data give rise to global solutions. For subsequent,
very detailed results e.g. about the type of possible blow-up and, in some case, on
continuation after blow-up, see [36], [99], [126] and references quoted therein.

For any xg € M, r > 0 let B,(xg) be the geodesic ball centered in zy and radius 7,
let g;; the metric tensor. In [137], problem (4.1.1) is studied when M is a manifold with
a pole, u(Br(xp)) < Cr® for some o > 2 and C' > 0. Under an additional smallness
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condition on curvature at infinity, if ug is sufficiently small and with compact support,
then there exists a global solution to problem (4.1.1). Global existence is also proved, for
some initial data ug, under the assumption that M has nonnegative Ricci curvature and
p > ;%5m. It should be noticed that such result do not cover cases in which negative
curvature either does not tend to zero at infinity, or does so not sufficiently fast, in
particular the case of the hyperbolic space cannot be addressed.

The situation on negatively curved manifolds is significantly different, and the first
results in this connection have been shown in [54], where only the case of nonnegative,
compactly supported data is considered. Among the results of that paper, we mention
the case that a dichotomy phenomenon holds when p > m, in the sense that under
appropriate curvature conditions, compatible with the assumptions made in the present
work, all sufficiently small data give rise to solutions existing globally in time, whereas
sufficiently large data give rise to solutions blowing up in finite time. Results were only
partial when p < m, since it has been shown that when p € (1, HT’"] and again under
suitable curvature conditions, all solutions corresponding to compactly supported initial
data exist globally in time, and blow up everywhere pointwise in infinite time. When
p € (HTm,m), precise information on the asymptotic behaviour is not known, since
blowup is shown to occur at worse in infinite time, but could in principle occur before.

4.1.2 Qualitative statements of our new results in the Riemannian
setting

Our results concerning problem (4.1.1) can be summarized as follows.

e (See Theorem 4.2.2) We prove global existence of solutions to (4.1.1), assuming
that the initial datum is sufficiently small, that

2
p>m—+ N,
and that the Sobolev inequality (4.1.2) holds; moreover, smoothing effects and
the fact that suitable L? norms of solutions decrease in time are obtained. To be
specific, any sufficiently small initial datum ug € L™ (M) N Lr—m)% (M) gives rise
to a global solution u(t) such that u(t) € L>°(M) for all ¢ > 0 with a quantitative
bound on the L* norm of the solution.

e (See Theorem 4.2.5) We show that, if both the Sobolev and the Poincaré inequality
(i.e. (4.1.2), (4.1.3)) hold, then for any

p>m,

for any sufficiently small initial datum wug, belonging to suitable Lebesgue spaces,
there exists a global solution w(t) such that w(t) € L°°(M). Furthermore, a
quantitative bound for the L* norm of the solution is satisfied for all ¢ > 0.

Note that in Theorem 4.2.2 we only assume the Sobolev inequality and we require that
p>m+ %, instead in Theorem 4.2.5 we can relax the assumption on the exponent p,
indeed we assume p > m, but we need to further require that the Poincaré inequality
holds. Moreover, in the two theorems, the hypotheses on the initial data are different.
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The main results given in Theorems 4.2.2 and 4.2.5 depend essentially only on the
validity of inequalities (4.1.2) and (4.1.3), are functional analytic in character and hence
can be generalized to different contexts.

4.1.3 The case of Euclidean, weighted diffusion

As a particularly significant setting, we single out the case of Euclidean, mass-weighted
reaction diffusion equations, that has been the object of intense research. In fact we
consider the problem

{put = Au™ +puP in RN x (0,T) (4.15)

u =g in RV x {0},

where p : RY — R is strictly positive, continuous and bounded, and represents a mass
variable density . The problem is naturally posed in the weighted spaces

1/q
LZ(RN) = {v : RY — R measurable , [vllLg = </ vip(x) dx) < +oo} .
RN

This kind of problem arises in a physical model provided in [73]. Such choice of p
ensures that the following analogue of (4.1.2) holds:

1 (o)
HUHLIQJ*(RN) S EHVUHLZ(RN) fOI' any v € Cc (RN) (416)

for a suitable positive constant Cs. In some cases we also assume that the weighted
Poincaré inequality is valid, that is

1
||UHL%(RN) < HHVUHLQ(RN) for any v € CSO(RN), (417)
p

for some C), > 0. For example, (4.1.7) is fulfilled when p(z) < |z|7¢, as |z| — +o0, for
every a > 2, whereas, (4.1.6) is valid for every a > 0.

Problem (4.1.5) under the assumption 1 < p < m has been investigated in [46].
Under the assumption that the Poincaré inequality is valid on M, it is shown that
global existence and a smoothing effect for small L™ initial data hold, that is solutions
corresponding to such data are bounded for all positive times with a quantitative bound
on their L* norm.

In [86, 87] problem (4.1.5) is also investigated, under certain conditions on p. It is
proved that if p(z) = |z|~* with a € (0,2),
2—a
N —a’

p>m—+

and up > 0 is small enough, then a global solution exists (see [86, Theorem 1]). Note
that the homogeneity of the weight p(x) = |z|~% is essentially used in the proof, since the
Caffarelli-Kohn-Nirenberg estimate is exploited, which requires such a type of weight.
In addition, a smoothing estimate holds. On the other hand, any nonnegative solution
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blows up, in a suitable sense, when p(z) = |z|~% or p(z) = (1 + |z|)~* with a € [0,2),
ug # 0 and

2—a

N—-a

Furthermore, in [87, 88], such results have been extended to more general initial data,
decaying at infinity with a certain rate (see [87]). Finally, in [86, Theorem 2], it is shown
that if p > m, p(z) = (1 + |z|)~* with @ > 2, and wug is small enough, a global solution
exists.

Problem (4.1.5) has also been studied in [92], [93], by means of suitable barriers,
supposing that the initial datum is continuous and with compact support. In particular,
in [92] the case that p(z) =< |z|~® for |z| — +o0 with a € (0,2) is addressed. It is proved
that for any p > 1, if ug is large enough, then the solution blows up in finite time. On
the other hand, if p > p, for a certain p > m depending on m,p and p, and ug is small
enough, then there exists a global bounded solution. Moreover, in [93] the case that
a > 2 is investigated. For a = 2, blowup is shown to occur when ug is big enough,
whereas global existence holds when wug is small enough. For a > 2 it is proved that if
p > m, ug € L (RY) and goes to 0 at infinity with a suitable rate, then there exists
a global bounded solution. Furthermore, for the same initial datum wug, if 1 < p < m,
then there exists a global solution, which could blow up as t — +o00.

l<p<m+

Our main results concerning problem (4.1.5) can be summarized as follows. Assume
that p € C(RNV) N L®(RY), p > 0.

o (See Theorem 4.2.8) We prove that (4.1.5) admits a global solution, provided that

2
> ~7
D m+N

moreover, certain smoothing effects for solutions are fulfilled. More precisely, for

N
any sufficiently small initial datum ug € L7*(RY) N L,()pim)7(RN ) there exists a
global solution u(t) such that u(t) € L¥(RYM) for all £ > 0 and a quantitative
bound on the L° norm is verified. Moreover, suitable L? norms of solutions
decrease in time.

e (See Theorem 4.2.9) We show that, if the Poincaré inequality (4.1.7) holds and
one assumes the condition
p>m,

then, for any sufficiently small initial datum g belonging to suitable Lebesgue
spaces, there exists a global solution u(t) to (4.1.5) such that u(t) € L>®(RY),
with a quantitative bound on the L norm.

Let us compare our results with those in [86]. Theorem 4.2.8 deals with a different
class of weights p with respect to [86, Theorem 1], where p(z) = |z|~% for a € (0,2),
and the homogeneity of p is used. As a consequence, also the hypotheses on p and the
methods of proofs are different. Furthermore, Theorem 4.2.9 requires the validity of the
Poincaré inequality, hence, in particular, it can be applied when p(z) = (1 + |z|)~* with
a > 2 (see [49]). On the other hand, in Theorem [86, Theorem 2] it is assumed that
p(x) = (1 +|z|)~@ for a > 2, so, the case a = 2 is not included.
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4.1.4 Organization of the chapter

In Section 4.2 we state all our main results. In Section 4.3 some auxiliary results con-
cerning elliptic problems are deduced together with a Benilan-Crandal type estimate.
In Section 4.4 we introduce a family of approximating problems. Then, for such solu-
tions, we prove that suitable L? norms of solutions decrease in time, and a smoothing
estimate, in the case p > m + %, supposing that M supports the Sobolev inequality.
Under such assumptions, global existence for problem (4.1.1) is shown in Section 4.5.
In Section 4.6 we prove that suitable L? norms of solutions decrease in time, and L
bounds for solutions of the approximating problems, under the assumptions that p > m
and that M supports the Poincaré inequality as well. Then, under such hypotheses,
existence of global solutions to problem (4.1.1) is proved. Finally, a concise proof of
the results concerning problem (4.1.5) is given in Section 4.7 by adapting the previous
methods to that situation.

4.2 Statements of main results

We state first our results concerning solutions to problem (4.1.1), then we pass to the
ones valid for solutions to problem (4.1.5).

4.2.1 Global existence on Riemannian manifolds

Solutions to (4.1.1) will be meant in the very weak, or distributional, sense, according
to the following definition.

Definition 4.2.1. Let M be a complete noncompact Riemannian manifold of infinite
volume. Let m > 1, p > m and ug € L}OC(M), ug > 0. We say that the function u is a
solution to problem (4.1.1) in the time interval [0,T) if

we L] (M x(0,T))

and for any ¢ € C°(M x [0,T]) such that p(x,T) =0 for any x € M, u satisfies the

equality:
/ / wpdpdt = / / u™ Apdpdt +/ / uP o dpdt

/M uo (@) o(,0) d.

First we consider the case that p > m + % and the Sobolev inequality holds on M.
In order to state our results we define

po:=(p— m); (4.2.8)

Observe that pg > 1 whenever p > m + %
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Theorem 4.2.2. Let M be a complete, noncompact manifold of infinite volume such
that the Sobolev inequality (4.1.2) holds. Let m > 1, p > m+ % and up € L™(M) N
LPO(M), ug > 0 where po has been defined in (4.2.8). Let

N 2 1
r > max pO,E s S:1+N—;

Assume that
luollzro(ary < €0 (4.2.9)

with 9 = eo(p, m, N,r,Cs) sufficiently small. Then problem (4.1.1) admits a solution
for any T > 0, in the sense of Definition 4.2.1. Moreover, for any T > 0, one has
u € L®(M x (1,400)) and there exists a numerical constant I' > 0 such that, for all
t >0, one has

1 s—1

v 5 5 ms e
Hu(t)HLOO(M) < Tt ms {HUOHLIPO(M) + Hu0||L2po(M)} HuOHLm(M)»

where
N(p—m —m N(m—1 —m N(m—1
p—1 2pr p—1 2pr p—1 2r
Moreover, let pg < q < 0o and
[[uol| Leo (ar) < €0 (4.2.10)

foréo = éo(p,m, N,r,Cs, q) small enough. Then there exists a constant C = C(m, p, N,eo,Cs,q) >
0 such that 5
Hu(t)HLq(M) < Ct_7q||u0|]Lqp0(M) forall t >0, (4.2.11)

where

S [1_N(p—m)]’ 5q:p—m[1+N(m—1)}.

p—1 2q p—1 2q
Finally, for any 1 < q¢ < oo, if ug € LI(M) N LP°(M)NL™(M) and

HUOHLPO(M) <e€ (4212)
with € = e(p,m, N,r,Cs, q) sufficiently small, then
lu()l|La(ary < llwolla(ary  for all > 0. (4.2.13)

Remark 4.2.3. We notice that the proof of the above theorem will show that one can
take an explicit value of ¢ in (4.2.9). In fact, let go > 1 be fixed and {g,}nen be the
sequence defined by:

so that

n n—1 i
N N(m —1) N
S A . 4.2.14
e <N—2> OWtTN3 - <N—2> (42.14)
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Clearly, {g,} is increasing and ¢, — +00 as n — +oo. Fix ¢ € [qop, +00) and let 7 be
the first index such that gz > q. Define

1
L . . 2m(gn —1) o 2m(po—1) o)|7
€0 60(p7 m,iv,Us,(q, q(]) |:m1n {nn()l,ln,n (m 4 qn — 1)2 CR (m +p0 _ 1)2 S
(1.2.15)
Observe that g9 in (4.2.15) depends on the value of ¢ through the sequence {¢,}. More

precisely, i is increasing with respect to ¢, while the quantity min,—q 5 %Cg

decreases w.r.t. ¢. We then let gg = pg, take ¢ = pr and define, for these choice of qq, ¢,

eo = eo(p,m, N,Cs,r) = o(p,m, N,Cs,pr,pp) .
Furthermore, in (4.2.10) we can take
g0 = €o(p,m, N, Cs, q) = €o(p,m, N, Cs, ¢, po) - (4.2.16)
Similarly, one can choose the following explicit value for € in (4.2.12):
e =¢EA ey, (4.2.17)

where

2m(g—1) o 2mlpo—1) CQH

g€ =¢&(p,m,Cs,q) := |min o s
(v ? [ {<m+q—1)2 (m+po—1)°

Remark 4.2.4. Observe that, for M = R¥ in [119, Theorem 3, pag. 220] it is shown
that if p > m + % and ug has compact support and is small enough, then the solution
to problem (4.1.1) globally exists and decays like
1
t -1 as t— 4o0.

Note that under these assumptions, Theorem 4.2.2 can be applied. It implies that the
solution to problem (4.1.1) globally exists and decays like

v

ms as t — +4o00.

It is easily seen that, for any p > m (1 + %),

0 1
ms — p—1’
: 2 2
instead, for any m + <p<m(1+ﬁ),
1
a1
ms p—1

Hence, when p > m (1 + %) the decay’s rate of the solution wu(t), for large times, given
by Theorem 4.2.2 is better than that of [119, Theorem 3, pag. 220], while the opposite
is true for m + % <p<m (1 + %) In both cases, the class of initial data considered
in Theorem 4.2.2 is wider.
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In the next theorem, we address the case that p > m, supposing that both the
inequalities (4.1.2) and (4.1.3) hold on M.

Theorem 4.2.5. Let M be a complete, noncompact manifold of infinite volume such
that the Sobolev inequality (4.1.2) and the Poincaré inequality (4.1.3) hold. Let

N
m>1, p>m, r> 5

and ug € L°(M) N LP"(M) where # = min{m, 7}, ug > 0. Let

1+ 2 1
s = S
N r
Assume that
luoll 55 ) < €1 (4.2.18)

holds with 1 = e1(m,p, N,r,Cyp, Cs) sufficiently small. Then problem (4.1.1) admits a
solution for any T > 0, in the sense of Definition 4.2.1. Moreover for any 7 > 0 one
has uw € L>®(M x (1,400)) and for all t > 0 one has

1 1
S m s=1 1 ms
@l < (527) " ol ogan [Faolomcay + gyl

Moreover, suppose that ug € LY(M) N LY (M) N LP"(M) for some for 1 < q < oo,

HUOH < &9, (4.2.19)

LPY (M)
for some g9 = ea2(p, m, N,r,Cp, Cs, q) sufficiently small. Then

|w®)laary < lluollLaary  for all > 0. (4.2.20)
Remark 4.2.6. We define, given ¢ > 1:

£1(q) := [min{(zm(q —1) C; 2m (p% — 1)20}

=T (e )

pt+m+tqg—1
p(p+g—1)—m(m+qg—1)

(4.2.21)

where C' = Cgm/pé' and C' = C(Cs,m,p,q) > 0 is defined in (4.6.91) below, with the
choice 6 := %. The proof will show that one can choose €1 := min;—y . 41(¢;)
where g1 =m, o = p, g3 =pr and g4 = 7.

Similarly, we observe that in (4.2.19) we can choose
€9 =€1NE (q) . (4.2.22)

In the next sections we always keep the notation as in Remarks 4.2.3 and 4.2.6.
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4.2.2 Weighted, Euclidean reaction-diffusion problems
We consider a weight p : RN — R such that

p e CRMYNL®MRY), p(zx) >0 for any z € RV, (4.2.23)
Solutions to problem (4.1.5) are meant according to the following definition.

Definition 4.2.7. Let m > 1, p > m and ug € Lp eRY), ug > 0. Let the weight
p satisfy (4.2.23). We say that the function u is a solution to problem (4.1.5) in the
interval [0,T) if

we b (RN x (0,7))

and for any p € C(RN x [0,T)) such that ¢(z,T) =0 for any x € RN, u satisfies the

equality:
/ / uy p(x) dedt = / / u™ Apdz dt +/ / uP o p(x) dx dt
RN RN RN

/ up(x) @ (z,0) (i) do.
RN

First we consider the case that p > m + % Recall that since p is bounded, the
Sobolev inequality (4.1.6) necessarily holds.

Theorem 4.2.8. Let p satisfy (4.2.23). Let m > 1, p > m+ % and ug € LZ"‘(RN) N
Lo (RM), ug > 0 with py defined in (4.2.8). Let

N 2 1
r > max pO,E s S:1+N—;

Assume that
||U0”Lﬁ0(RN) < €0

with g = go(p, m, N,r,Cs) sufficiently small. Then problem (4.1.5) admits a solution
for any T > 0, in the sense of Definition 4.2.7. Moreover, for any T > 0, one has
u € L®RN x (1,400)) and there exist T' > 0 such that, for all t > 0, one has

1

_a 1 ms =
[u()l| oo (mrvy < Tt ms {HUOHLPO ®") T T H OHLPO(RN)} HUOHL%(RN)’
where
N(p— — N(m -1 — N(m —1
W 1 Ne—m) s =pP Ty 4 (m ),5:p mly Nm=bDF
p—1 2pr p—1 2pr p—1 2r

Moreover, let pg < q < 0o and
[uoll £z vy < €0

foréo = éo(p,m, N,r,Cs, q) small enough. Then there exists a constant C = C(m,p, N,eo,Cs, q) >
0 such that

[u(@)[|Lg@ny < Ct™ ’quUOH for all t>0,

LYO(RY)
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where

1 [1_N(p—m)]7 5, = L= [1+N(m—1)} .

7q:p—1 2q p—1 2q

: - N N m (N
Finally, for any 1 < q < oo, if ug € LLR™) N LO(RY) N L (RY) and
||uOHL£O(RN) < €
holds, with € = (p,m, N,r,Cs,q) sufficiently small, then
()l gy < ol g, for all ¢ > 0.

A quantitative form of the smallness condition on ug in the above theorem can be
given exactly as in Remark 4.2.3, see in particular (4.2.15), (4.2.16) and (4.2.17).

In the next theorem, we address the case p > m. We suppose that the Poincaré
inequality (4.1.7) holds.

Theorem 4.2.9. Let p satisfy (4.2.23) and assume that the inequality (4.1.7) hold. Let

N

m>1, p>m, r> 5

and ug € Lz(RN) N LgT(]RN) where = min{m,r}, ug > 0. Let

1+ 2 1
s = R——
N r
Assume that
U < €
I oHng(RN) 1

holds with €1 = e1(m,p, N,r,Cp, Cs) sufficiently small Then problem (4.1.5) admits a
solution for any T > 0, in the sense of Definition 4.2.7. Moreover, for any T > 0 one
has u € L®(RN x (1,+00)) and for all t > 0 one has

1 1

m s—1

s 1 ms
@)y < (55) ol ay ol oy + o oolzza

Moreover, suppose that uy € LZ(RN) N LZ(RN) N Lgr(]RN) for some for 1 < q < oo,

[[uoll )< e

2% @y
for some g3 = e2(p,m, N,r,Cyp, Cs,q) small enough. Then

lu(@)ll g @ny < lluollpgmny for all t>0.

A quantitative form of the smallness condition on ug in the above Theorem can be
given exactly as in Remark 4.2.6, see in particular (4.2.21) and (4.2.22).
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4.3 Auxiliary results for elliptic problems

Let zg,z € M. We denote by r(z) = dist (xzg,x) the Riemannian distance between
xo and z. Moreover, we let Br(zo) := {z € M, dist (xo,2) < R} be the geodesic ball
with centre zg € M and radius R > 0. If a reference point x¢g € M is fixed, we shall
simply denote by Bp the ball with centre zg and radius R. Moreover we denote by u
the Riemannian measure on M.

For any given function v, we define for any k € R™

k if v>k,
Ti(v) =< v if |v] <k, (4.3.24)
—k if v<—-k.

For every R > 0, k > 0, consider the problem

up = Au™ + Ti(uP) in Bgr x (0,+00)
u=0 in 9BR x (0, +00) (4.3.25)
U = Uug in BRX{O},

where ug € L>(Bg), up > 0. Solutions to problem (4.3.25) are meant in the weak sense
as follows.

Definition 4.3.1. Let m > 1 and p > m. Let uy € L*°(BR), ug > 0. We say that a
nonnegative function u is a solution to problem (4.3.25) if

u € L®°(Bg % (0,400)), u™ € L*((0,T); Hy(Br)) for any T >0,

and for any T > 0, ¢ € C°(Br x [0,T]) such that o(x,T) = 0 for every x € Bgr, u
satisfies the equality:

// wpdp dt = // ™ V) d,udt—i—// Tr(uP) o dp dt
Br Br Br

+ / uo () o, 0) dp.
Br
We also consider elliptic problems of the type

{—Au—f in Bpg,

) (4.3.26)
u=20 in 0Bg,

where f € L9(Bp) for some g > 1.
Definition 4.3.2. We say that u € H}(Bg), u > 0 is a weak subsolution to problem
(4.3.26) if

/ (Vu,Vo)du < | fodu,
Br Br

for any p € HY(BR), > 0.
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In the next lemma we recall [46, Lemma 3.6], which will be used later.

Lemma 4.3.3. Let v € L'(Bg). Let k > 0. Suppose that there exist C > 0 and s > 1
such that B
g(k) < Cu(Ax)®  for any k > k.

Then v € L>®(Bgr) and

s 1, 1-1 =
ol ) < oz CH ol +

The following proposition contains an estimate in the spirit of the L* one of Stam-
pacchia (see, e.g., [76], [11] and references therein) in the ball Bg; however, some dif-
ferences are in order. In fact, we aim at obtaining an estimate independent of the
radius R (see Remark 4.3.5). Since the volume of M is infinite, the classical estimate of
Stampacchia cannot be directly applied.

Proposition 4.3.4. Let f € L™(Bg) where m > &. Assume that v € H}(Bg), v >0
1$ a subsolution to problem

—Av = m B
v=/ inBr, (4.3.27)
v=0 ondBg,
in the sense of Definition 4.3.2. Then
2
S 1 B 1 s—=1
oo < 55 (&) 11 Emo ol (43.28)
where 5 1
=14+=—-—. 4.3.2
s +N - (4.3.29)

Remark 4.3.5. If in Proposition 4.3.4 we further assume that there exists a constant
ko > 0 such that

maX{H’UHLl(BR), Hf”Lm(BR)} < ko for all R > 0,

then from (4.3.28), we infer that the bound from above on ||v||;e (g, is independent of
R. This fact will have a key role in the proof of global existence for problem (4.1.1).

Proof of Proposition 4.3.4. We define
Gr(v) :=v—Ti(v)
where T (v) has been defined in (4.3.24) and
Ay :={x € Bg : |v(z)| > k}.

Since Gx(v) € H}(Bgr) and Gi(v) > 0, we can take G (v) as test function in problem
(4.3.27). Arguing as in the proof of [46, Proposition 3.3] we obtain

‘ Z

+2

2
3|

1
| 16@ldi < G5l flimmn(An) (4.3.30)
BR S
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By (4.3.29), setting
1
C= @llflle(BR),
we rewrite (4.3.30) as

| 16wl < utary

Hence we can apply Lemma 4.3.3 to v and we obtain
18 s=1 -
ol < CF Il iy + .

Taking the limit as & — 0 and we get the thesis.
O

We shall use the following Aronson-Benilan type estimate (see [6]; see also [118,
Proposition 2.3]).

Proposition 4.3.6. Let m > 1, p > m, up € H}(Bg) N L®(BR), ug > 0. Let u be the
solution to problem (4.3.25). Then, for a.e. t € (0,T),

1

—Au () WP ) +

u(-,t) in D'(Bg).

Proof. The conclusion follows by minor modifications of the proof of [118, Proposition
2.3] (where p < m), due to the fact that we have p > m. We define

i U
z=u + ——
t m—1

and the operator
Lz=A(mu™'2) + muP~ 'z,

where wu is the solution to problem (4.3.25). Observe that

z(x,0) >0 for z € Bpg,
2(z,t) >0 for € 0Br and te (0,1).

Moreover, by direct computation, we get
zz—Lz>0 in Br x (0,7).

Thus, arguing as in [118, Proposition 2.3], thanks to the comparison principle, we get,
for a.e. t € (0,7),

1 1

—Au" (-, t) < Ty[uP (-, )] + mu(-,t) <uP(-,t) + u(-,t) in ©'(Bg),

where we have used that Tj(uP) < uP . O
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4.4 L? and smoothing estimates for p > m + %

Lemma 4.4.1. Let m > 1,p > m + % Assume that inequality (4.1.2) holds. Suppose
that ug € L>°(BR), up > 0. Let 1 < g < 00, po as in (4.2.8) and assume that

ol zro(Br) < € (4.4.31)

with € = &(p,m, q,Cs) sufficiently small. Let u be the solution of problem (4.3.25) in
the sense of Definition 4.3.1, such that in addition w € C([0,T),LY(BRr)) for any q €
(1,+400), for any T > 0. Then

Hu(t)HL‘I(BR) < ||UOHL‘1(BR) forall t>0. (4.4.32)

Note that the request u € C([0,T"), LY(Bgr)) for any ¢ € (1,+00), for any T > 0 is
not restrictive, since we will construct solutions belonging to that class (see the proof
of Theorem 4.2.2 below). This remark also applies to several other intermediate results
below.

Proof. Since ug is bounded and T} is a bounded and Lipschitz function, by standard
results, there exists a unique solution of problem (4.3.25) in the sense of Definition 4.3.1.
We now multiply both sides of the differential equation in problem (4.3.25) by w91,

/ wudtdp = Au™) u?t dp —I—/ Ty (uP)ud =t dp.
Br Br Br

Now, formally integrating by parts in Br. This can be justified by standard tools, by
an approximation procedure. We get

—— uldpu = —m(q — 1)/ w3 |Vl dp + / Te(uP)u? dp.  (4.4.33)
Br Br B

R

Observe that, thanks to Sobolev inequality (4.1.2), we have

4 m+q 1 2
m+q—3 v 2 du = ‘v ‘ d
/;Ru | u‘ s (”L+q_1 / ( ) s
N-2 (4.4.34)

> $C2 </ um+q 12N d,U,>N '
(m+q—1)>2 Br

Moreover, the last term in the right hand side of (4.4.33), thanks to Holder inequality
with exponents 2 and N , becomes

/ Tp(uP)ud=tdp < / wPu?t dp = / uP~m ™ gy
Br Br Br (4.4.35)

m+4q—1

R)

Combining (4.4.34) and (4.4.35) we get

IOy < — [ = WO | RO

mﬂ_D%(BR) '

(4.4.36)
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Take any 7" > 0. Observe that, thanks to hypothesis (4.4.31) and the known continuity
of the map t — wu(t) in [0, 7], there exists top > 0 such that

|w(®)|zro(Br) < 2& for any t € [0,%o].
Hence (4.4.36) becomes, for any t € (0, to],

4m(qg—1)

1d . o
Ol <= | 2 220 [luft) "0 <0,

m+q— 1) LN (By)

where the last inequality is obtained thanks to (4.4.31). We have proved that ¢ —
|u(t)ll La(py) is decreasing in time for any t € (0, o], i.e.

a(t) | o) < llwolloqzg) for amy ¢ € (0.t]. (4.4.37)

In particular, inequality (4.4.37) follows for the choice ¢ = py, in view of hypothesis
(4.4.31). Hence we have

[w(®)[|Lro(Br) < lluollzro(mr) < € forany ¢ € (0,to].

Now, we can repeat the same argument in the time interval (¢, ¢1], where ¢; is chosen,
due to the continuity of u, in such a way that

lu()ll zro(Br) < 28 for any t € (to,t1].
Thus we get

lu()l ar) < lluollpapy,) for any t € (0,21].

Iterating this procedure we obtain that ¢ ~ ||u(t)|| (B, is decreasing in [0,7]. Since
T > 0 was arbitrary, the thesis follows. O

Using a Moser type iteration procedure we prove the following result:

Proposition 4.4.2. Let m > 1,p > m + % Assume that inequality (4.1.2) holds.
Suppose that ug € L*°(BRr), up > 0. Let u be the solution of problem (4.3.25) in
the sense of Definition 4.3.1, such that in addition u € C([0,T),LY(BRr)) for any q €
(1,400), for any T >0. Let 1 < gy < q < +00 and assume that

[uollLro(BR) < €0 (4.4.38)

foréo = o(p,m, N, Cs, q, qo) sufficiently small. Then there exists C(m, qo, Cs, €0, N, q) >
0 such that

— 0
@) o(a) < Ct ol a5,y for all >0,

where

e = <1 1> N o R (Hg(m_l)> . (4.4.39)

@ q)2q+Nm-—1) g \p+Ym-1)
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Proof. Let {q,} be the sequence defined in (4.2.14). We start by proving a smoothing
estimate from ¢ to gp using a Moser iteration technique (see also [2]).

Let ¢ > 0, we define
t

o1

ty = (2" —1)s. (4.4.40)

Observe that to = 0, t; =t, {t,} is an increasing sequence w.r.t. n. Now, for any
1 < n <, we multiply equation (4.3.25) by u%-1~! and integrate in B X [tn,_1,tn].
Thus we get

tn tn tn
/ / wput 1" dpdt = / A( ™) uidn=17 1dudt+/ / Ty (uP) w2~ dp dt.
tn—1 B tn—1

Then we integrate by parts in Br X [tn—1,t,]. Thanks to Sobolev inequality and hypo-
thesis (4.4.38) we get

1 n— n
pad IR0 ] YR LIGRAeY] i)
4m(qn - ) , i tn - . (4.4.41)
<- U o2 g / T
(m+gn_1—1)2 1 Lmran—1"DN=3 (gp

where we have used the fact that Ti(uP) < uP. We define ¢, as in (4.2.14), so that

N
(m+ gn—1— 1)m = ¢p,- Hence, in view of hypothesis (4.4.38) we can apply Lemma
4.4.1 to the integral on the right hand side of (4.4.41), hence we get

1 N -
pasl LICORE0] YR LGRS sy
—
4m(gn—1—1) L S (4.4.42)
< - (m—i—q 1_1)20 _250 Hu( tn)Han(B ’tn tn—ll-
n—
Observe that
Hu(a tn)| %?1;171(3]3) > 0,
B on—1y4 (4.4.43)
|tn, — tn—1| = R
We define ,
4m(qn 1 — ) 2 L N 1
dp_1:= Cy —2&5™™ . 4.4.44
o (m+Qn 1_1) dn—1 ( )
By plugging (4.4.43) and (4.4.44) into (4.4.42) we get
tgna-1 _ (2" =1)d n
||u( tn)”?qanRl) < ?ltn”u(‘,tnflﬂqynz(]g]{y
The latter formula can be rewritten as
(27‘1 1)d prr—— ! =1 1 __dn—1
- n— T mtdy_1—1
Jute )l < (Z5™) T )l o
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Thanks to the definition of the sequence {g,} in (4.2.14) we write

— N 1
2" — Ddp—1 N\ 2an __N 1 In—1 N_
lu(-stn)llLan(BR) < <(2n)1"> T (ult) | - (4445)

Define o := % Observe that, for any 1 < n < n, we have

e ]

on—1 on—1

i (m + qn-1— 1)2 B gn—1
‘ﬂ 1 1 7 (4.4.46)
- 2n—1 4an—1(Qn—1 - 1) ~%m ’
(m TP 1)2 052 — 255 dn—1
where _
2" -1 n+1 -
51 <2 forall 1 <n <n. (4.4.47)

Consider the function

4 -1 1
m(z ) 02—255’7"1 T for go <z <gqm, = €R.

90 = e - 12

Observe that, thanks to the definition of o, g(x) > 0 for any qp < = < gz. Moreover, g
has a minimum in the interval ¢y < x < ¢, call it Z. Then we have

1 1

() ~ g(2)
Thanks to (4.4.46), (4.4.47) and (4.4.48), we can say that there exist a positive constant
C, where C = C(N, Cs,e,7,m, qo), such that

for any qo <z <gn, x €R. (4.4.48)

<

2" — 1)dyy\°
<(%l%1> <C, forall 1<n<h. (4.4.49)

By using (4.4.49) and (4.4.45) we get, for any 1 <n <n

dn—19

1 _ o
[u(stn)lLon By < Cant o [luls tn1)ll a1 gy, - (4.4.50)
Let us set
Un = Hu('vtn)HLQn(BR)-
Then (4.4.50) becomes
1 Jed In—19
U, <Caut U, 7
29n—2

g

1 o el 02
<Cant o |Cant anlU,_,™

IN

n—1 _; o n—1 i gn40

1
< Can 2i=0 7 im0 T an,
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We define
o .:1§U¢ 3 .:(’Sgizga 5, = o2 (4.4.51)
e TN g S T g
=0 =0
By substituting n with 7 into (4.4.51) we get
N-2A N A q0
ap = ————, Bpi=— 0 = (A+1)—, 4.4.52
" 2 g T gy T UL ( )

where A := (%)” 1. Hence, in view of (4.4.40) and (4.4.52), (4.4.50) with n = 7

yields

N-2A _NA qo—
lu(, )|l pan(Br) < C 2 @t Zan ||u0HLqO(BR) (4.4.53)

We have proved a smoothing estimate from ¢g to gz. Observe that if gz = ¢ then the
thesis is proved. Now suppose that g > ¢gz. Observe that ¢y < ¢ < ¢ and define

B:=N(m—-1)A+2q(A+1).
From (4.4.53) and Lemma 4.4.1 we get, by interpolation,

s Ol zaczry < Il O a0 5 luls )l zan ()

_NA 2 (1-0)
< ) o) 0 [ (1454)
NaA 2 (1-6)+6
= OO0 g 200 B (04
where
9:q0<q”_q>. (4.4.55)
4 \qn — 40
Combining (4.4.54), (4.4.39) and (4.4.55) we get the claim, noticing that ¢ was arbitrary
n [QO7 OO) ]

Remark 4.4.3. One can not let ¢ — +00 in the above bound. In fact, one can show
that e — 0 as ¢ — oco. So in such limit the hypothesis on the norm of the initial datum
(4.2.9) is satisfied only when ug = 0.

Proposition 4.4.4. Letm >1,p>m+ %, R >0, po be as in (4.2.8), ug € L*°(Bg),
ug > 0. Let

N 2 1

— =14+—=—--. 4.4.

r> max{po, 2}, s +N . (4.4.56)

Suppose that (4.2.9) holds for g = eo(p,m, N,Cs, 1) sufficiently small. Let u be the
solution to problem (4.3.25), such that in addition v € C([0,T),L4(BgR)) for any q €
(1,400), for any T > 0. Let M be such that inequality (4.1.2) holds. Then there exists
I'=T(p,m,N,r) > 0 such that, for all t > 0,

1

s—1

_ 1 ms =
)l < Tt m{uuonm By + 7 o7 BR>} luoll gy (44:57)
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where

p N(p—m) p—m N(m—1) p—m N(m—1)

— 1— = 1 1

7 p—l[ 2pr ]’5 pm—l[ * 2pr ) 02 m—1]  2r
(4.4.58)

Remark 4.4.5. If in Proposition 4.4.4, in addition, we assume that for some kg > 0
max{”uoHLm(BR); ||UOHLP0(BR)} <ky forevery R>0,

then the bound from above for ||u(t)|| (g in (4.4.57) is independent of R.

Proof of Proposition 4.4.4. Let us set w = u(-,t). Observe that w™ € HZ(Bg) and

w > 0. Due to Proposition 4.3.6 we know that

Observe that, since ug € L>®(Bg) also w € L*°(Bg). Due to (4.4.56), we can apply
Proposition 4.3.4. So, we have that

2
m s 1\s
s < 725 ()

S 1 : 1 s mE=1
< s 1 (Qg) {prHL"'(BR) + (m— 1)t HTUHU-(BR)} Hw”LmEBR)
(4.4.59)
where s has been defined in (4.3.29). Thanks to (4.2.9), with an appropriate choice of
€0, and (4.4.56) we can apply Proposition 4.4.2 with

e

w s=1
o™ 2

(m—1)t |

L™(Br)

w? +

q = pr, qo = Po, Ypr =

and 0y, = d1/p, 61 defined in (4.4.58). Hence we obtain

_ 1) P
1?1l (Bay = 10l 5y < [C ¥ ol ) (4.4.60)

where C' > 0 is defined in Proposition 4.4.2. Similarly, by (4.2.9), with an appropriate
choice of ¢q, and (4.4.56), we can apply Proposition 4.4.2 with

1 N(p—m)
qg=r, @=po, Yr=—7|1-—7—>
p—1 2r
and J, = dy as defined in (4.4.58). Hence we obtain
v 5
[l r(Bry < O w0l oo (5, (4.4.61)

where C' > 0 is defined in Proposition 4.4.2. Plugging (4.4.60) and (4.4.61) into (4.4.59)
we obtain

- s (1N S, 1 S mest
e c. [Pl gy + m =1t lwllprsry ¢ Nwllpm{sgy

1
s—1

2
S 1 B _ 5 1 _ K} B m
. p P Vpr 1 - Ir 2 s
< s—1 (Cs> {C 13 P HUOHLPo(BR)+ (m—l)tCt HUOHLpo(BR)} HwHLm(BR)'
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Observe that —py,, = —v, — 1 = 7, where v has been defined in (4.4.58). Hence we
obtain

2 1
s 1\s _~o s 1 ) : mast
oo < =5 () ¢ {0 Mol + g ol ol

Moreover, since uy € L°°(Bg), we can apply Lemma 4.4.1 to w with ¢ = m. Thus from
(4.4.32) with ¢ = m we get
1\* 1 g !
s s s 5 ® me=
e < 57 (&) 0 {7 Moo + ey Cllolhngagy b Tuolntan

Finally define

Hence we obtain

1

s—1

1 ms
- 5 0 s
[wlizee () < Tt ms {HuO”LlpO(BR) o HUOHL2P0(BR)} 1uoll Lon ()

4.5 Proof of Theorem 4.2.2

Proof of Theorem 4.2.2. Let {ugy}nr>0 be a sequence of functions such that

a) upp € L°(M)NCX(M) for all h > 0,

b) ugp >0 for all h >0,

c) uo,py, < Ugp, for any hy < h,

d) uo, — uo in L™(M)NLP (M) as h— +oo,

(
(
(
(

where py has been defined in (4.2.8). Observe that, due to assumptions (c) and (d), ug
satisfies (4.2.9). For any R > 0, k > 0, h > 0, consider the problem

ug = Au™ + Tp(uP) in B x (0, +00)
u=20 in 0BRr % (0,00) (4.5.62)
U= U} in Br x {0}.

From standard results it follows that problem (4.5.62) has a solution uhR ; in the sense
of Definition 4.3.1; moreover, uﬁk € C([O, T; Lq(BR)) for any g > 1. Hence, by Lemma
4.4.1, in Proposition 4.4.2 and in Proposition 4.4.4, we have for any ¢ € (0, +00),

Huﬁk(t)HLm(BR) < luwonllm (sg):; (4.5.63)

_ 1
laf Ol s < CElton] %0, (4.5.64)
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where

1 [1_ N(p—m)]7 6p:p—m [1+N(m—1)] ’
1 p—1
1 e s—1
oo * e V0 g | 00l
(4.5.65)
with s as in (4.4.56) and +, d1, d2 as in (4.4.58). In addition, for any 7 € (0,7),( €
Cg((T? T))’C > 0, maxir ) C/ > Oa

_
||uf]§,k\|Loo(BR) <T't ms {

mt1 m
[0 [(@h"),] e < max € [ (@l i
[7,T] Br
+ Cmax( F(uﬁk(x, T))dﬂ
11" Sy (4.5.66)
< 1{112;}}{{ (t)CHU}]ik(T)||L°°(BR)||U}1?,I~:(7_)HTW(BR)

7—7
B Dy B
e oo (B) I Uhik Lm(BR)

where "
F(u) = / s s
0

and C' > 0 is a constant only depending on m. Inequality (4.5.66) is formally obtained by
multiplying the differential inequality in problem (4.3.25) by ¢(¢)[(u")¢], and integrating
by parts; indeed, a standard approximation procedure is needed (see [49, Lemma 3.3]
and [7, Theorem 13]).

Moreover, as a consequence of Definition 4.3.1, for any ¢ € C°(Bg x [0,T]) such
that p(z,T) = 0 for any = € Bg, uﬁk satisfies

//uhwtdudt // AsodudtJr//Tk (ufip)P) p dpu dt
Br Br Br

/ uo,n () o(x,0) du,
Br

(4.5.67)
where all the integrals are finite. Now, observe that, for any o > 0 and R > 0 the
sequence of solutions {uf xtk>0 is monotone increasing in k hence it has a pointwise

limit for & — oo. Let uh be such limit so that we have
uﬁk — ul' as k — oo pointwise.

In view of (4.5.63), (4.5.64) and (4.5.65), the right hand side of (4.5.66) is independent
of k. So, (uft) " e H'((r,T); L*(Bgr)). Therefore, (uf)mTH € C([r,T); L*(Bg)). We
can now pass to the limit as k& — 400 in inequalities (4.5.63), (4.5.64) and (4.5.65)
arguing as follows. From inequality (4.5.63) and (4.5.64), thanks to the Fatou’s Lemma,
one has for all t > 0

Huﬁ(t)HLm(BR) < [Juo,nllLm(BR)- (4.5.68)
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1
(B (4.5.69)

On the other hand, from (4.5.65), since uﬁk — uf as k — oo pointwise and the right
hand side of (4.5.65) is independent of k, one has for all ¢ > 0

(RG] A=

1

m s—1

P S e
(4.5.70)

with s as in (4.4.56) and 7, 1, 62 as in (4.4.58). Note that (4.5.68), (4.5.69) and (4.5.70)

hold for all t > 0, in view of the continuity property of v deduced above. Moreover,

thanks to Beppo Levi’s monotone convergence theorem, it is possible to compute the

limit as & — +oo in the integrals of equality (4.5.67) and hence obtain that, for any

¢ € CX(Bg x (0,T)) such that ¢(z,T) = 0 for any = € Bp, the function ul? satisfies

//Uh%d/ldt // Uh Ac,od,udt+// uf pdpdt
BR BR BR

/ uon(z) ¢(z,0) dp.
Br

Observe that all the integrals in (4.5.71) are finite, hence u,lf is a solution to problem
(4.5.62), where we replace Tj(uP) with uP itself, in the sense of Definition 4.3.1. Indeed
we have, due to (4.5.68), ult € L™(Bg x (0,T)) hence uf € L*(Bg x (0,T)). Moreover,
due to (4.5.69), uft € LP(Bg x (0,T)) indeed we can write

T R\? T R
[l dude = [t g, d
0 Br 0

T
S/O (Ct VPHUO}ZHLPO(BR)) dt (4572)

o 0
sfil ey < Tt {,uo,hu oyt

(4.5.71)

T
—Cp”UOh”Lpo(B )/0 tPrdt.

Now observe that the integral in (4.5.72) is finite if and only if py, < 1. The latter
reads p > m + %, which is guaranteed by the hypotheses of Theorem 4.2.2.

Let us now observe that, for any h > 0, the sequence of solutions {ul}p~¢ is
monotone increasing in R, hence it has a pointwise limit as R — +00. We call its limit
function uy, so that

ull — uy, as R — 400 pointwise.

In view of (4.5.63), (4.5.64), (4.5.65), (4.5.68), (4.5.69), (4.5.70), the right hand side
of (4.5.66) is independent of k and R. So, (uh)mTJrl € HY((r,T); L*(M)). Therefore,
(up)™2" € C([7,T); LA(M)). Since ug € L™(M) N LP(M), there exists ko > 0 and
k1 > 0 such that
HUOhHLm(BR) < kg YVh>0, YVR>O0,
HUO}LHLP()(BR) <k Vh>0, VR>O0.

Note that, in view of (4.5.73), the norms in (4.5.68), (4.5.69) and (4.5.70) do not depend
on R (see Lemma 4.4.1, Proposition 4.4.2, Proposition 4.4.4 and Remark 4.4.5). There-
fore, we pass to the limit as R — 400 in (4.5.68), (4.5.69) and (4.5.70). By Fatou’s

(4.5.73)
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Lemma,
lun(OlLm oy < lvonllzm s (4.5.74)

— Op
lun (@)l Leary < CE o nll oo (ary - (4.5.75)

furthermore, since uf* — wuy, as R — 400 pointwise
9 h p ’

1

s—1

1 s ot
_x ) 1 s
| oo (ary < Tt {”“OﬁVEPO(M) +— IIUO,hHEpo<M)} lo.nll o ary  (4:576)

with s as in (4.4.56) and v, 1, 62 as in (4.4.58). Note that (4.5.74), (4.5.75) and (4.5.76)
hold for all t > 0, in view of the continuity property of uf deduced above.

Moreover, again by monotone convergence, it is possible to compute the limit as
R — +oo in the integrals of equality (4.5.71) and hence obtain that, for any ¢ €
C°(M x (0,T)) such that ¢(z,T) = 0 for any x € M, the function uj satisfies,

//uhaptdudt //uh Anpdudt—i—/ / up)P pdpdt
(4.5.77)

/UOh() ¢(z,0) dp.
M

Observe that, arguing as above, due to inequalities (4.5.74) and (4.5.75), all the integrals
in (4.5.77) are well posed hence uy, is a solution to problem (4.1.1), where we replace
up with wug p, in the sense of Definition 4.2.1. Finally, let us observe that {ug},>0 has
been chosen in such a way that

ug,p, —> ug in L™ (M) N LPO(M).

Observe also that {up}p>0 is a monotone increasing function in h hence it has a
limit as h — +o00. We call u the limit function. In view (4.5.63), (4.5.64), (4.5.65),
(4.5.68), (4.5.69), (4.5.70), (4.5.74), (4.5.75) and (4.5.76) the right hand side of (4.5.66)
is independent of k, R and h. So, u"T € H((r,T); L*(M)). Therefore, " €
C([r,T); L*(M)). Hence, we can pass to the limit as h — +oo in (4.5.74), (4.5.75) and
(4.5.76) and similarly to what we have seen above, we get

lu@) |l Lmary < [lwollpmar), (4.5.78)

- Sp
()| oary < CT[uoll g () » (4.5.79)

and

1

ms s—1
||uo||mM)} ol iy (45:80)

1
_
Jullzmiany < P07 { ol +

with s as in (4.4.56) and +, 01, d2 as in (4.4.58). Note that both (4.5.78), (4.5.79) and
(4.5.80) hold for all t > 0, in view of the continuity property of v deduced above.
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Moreover, again by monotone convergence, it is possible to compute the limit as
h — 400 in the integrals of equality (4.5.77) and hence obtain that, for any ¢ €
C°(M x (0,T)) such that p(z,T) = 0 for any € M, the function u satisfies,

//ucptdudt // mAcpdudt—F//up(pdudt
(4.5.81)

/MUO( ) (. 0) du.

Observe that, due to inequalities (4.5.78) and (4.5.79), all the integrals in (4.5.81) are
finite, hence u is a solution to problem (4.1.1) in the sense of Definition 4.2.1.

Finally, let us discuss (4.2.13) and (4.2.11). Let pg < ¢ < oo, and observe that,
thanks to hypotheses (c¢) and (d), ugy, satisfies hypothesis (4.2.10) for such ¢ and go = po
as ug, then we have

_ 5
[ur' k(D) Loy < Ct Y lluonll fro (- (4.5.82)

Hence, due to (4.5.82), letting k — +oo, R — +00, h — +00, by Fatou’s Lemma we
deduce (4.2.11).

Now let 1 < ¢ < oo. If ug € LY(M)NL™(M) N LP°(M), we choose the sequence ugy,
in such a way that it further satisfies

uo, — ug in LY(M) as h— +oo,
and observe that wgy, satisfies also (4.2.12) for such q. Then we have that

lur's (Dl Loy < lluonllasg)- (4.5.83)

Hence, due to (4.5.83), letting k¥ — +o00, R — +00, h — +00, by Fatou’s Lemma we
deduce (4.2.13). O

4.6 Estimates for p > m

Lemma 4.6.1. Let m > 1,p > m. Assume that inequalities (4.1.3) and (4.1.2) hold.
Suppose that ug € L°(BRr), ug > 0. Let 1 < g < oo and assume that

HUOHLP%(BR) <& (4.6.84)

for a suitable &1 = £1(p,m, N, Cp, Cs, q) sufficiently small. Let u be the solution of prob-
lem (4.3.25) in the sense of Definition 4.3.1, such that in addition uw € C([0,T); LY(BR)).
Then

Hu(t)HLq(BR) < ||UOHL‘1(BR) forall t>0. (4685)

Proof. Since ug is bounded and T} is a bounded and Lipschitz function, by standard
results, there exists a unique solution of problem (4.3.25) in the sense of Definition
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4.3.1. We now multiply both sides of the differential equation in problem (4.3.25) by
u?™! therefore

/ wpudtdp = A(u™)u?™ dp + / Te(u?) ™t dp.
Br Br Bgr

We integrate by parts. This can be justified by standard tools, by an approximation
procedure. Using the fact that T'(u?) < uP, we can write

1d
-— uldp < —m(q — 1)/ u™ T3 Vul? dp + / uP ui™t dp
4t S Un br (4.6.86)
4m(q — 1 / ‘ m+q 1 2 1 o
A o () s [ et
(m+q—1)? a Br a
Now we take ¢y > 0, co > 0 such that ¢; + co = 1. Thus
mtg=1 mig-1 2 mg=1 2
dn=er [ (+*57)| [ o | P
/ ‘V< )) n=a v L2(Bg) ez ||V L2(Bg) ( )
Take any « € (0, 1). Thanks to (4.1.3), (4.6.87) becomes
m+q 2 9 m+q—1 m+q 1 2
L G ez e izt +e [v (5757 L.,
9 matg—1 ,,L+q 1 24+2a—2a
S LT
2 m+q—1 2a (m+q-1) mig-l 22
> ¢1C2 ||u||meq_1(BR) a0 Il |V ()] L,
(4.6.88)

Moreover, using the interpolation inequality, Holder inequality and (4.1.2), we have

_ +qg—1
/ P g, = P
Bgr

+1 10+1
o 1 ) T Sl i

mta-1(pp) U Lotmtasi (5
- +g-1
< [l [y 75 2|
Lm+a— I(BR) LP2 (m+q,1>%(BR)
2(1—9)—Pta=1
< Pl bl P EEER (Lo (|
Lm+a— I(BR) % (Br) C, L2(Br)

(4.6.89)

where ¢ := "0 By plugging (4.6.88) and (4.6.89) into (4.6.86) we obtain

dm(q —1) 2 m+q—1
thH )HLq (Bp) = mcl Cy llu(t )Hmeq 1(Bg)
4m(q — 1) 2a a(m+q—1) m+q 1\ [|2—2
i 2 O Iy [V () Ly,
- (1-0) ZEE mig=1 120-0) 5 EESE
C (p+q-1) t p+m+q— ( )’ P a
+ ORI gy IOy ™ o

(4.6.90)
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where )
~ 1 2(1_9)17-&1-):»?!—;—1
=& . (4.6.91)
S
Let us now fix @ € (0,1) such that
—1
2~ 20 =2(1-0) <p+q>
p+m+q—1
Hence we have
m
a="2, (4.6.92)
p
By substituting (4.6.92) into (4.6.90) we obtain
dm(q—1) 2 +q-1
7%“ ( )HLq (Br) — m “a CP Hu(t)HZLm-gq—l(BR)
4m( ) p(p+q— l)m m(m+qg—1)
. — Jlu(®)]| prmta—1 (4.6.93)
C L(m+q-1) 7% (BR)
m+q 1 m+q—1 2—2«
O I ()

where C' has been defined in Remark 4.2.6. Observe that, thanks to hypothesis (4.6.84)
and the continuity of the solution u(t), there exists 9 > 0 such that

@)l 5y 5,y < 261 for any ¢ € (0,40].

Hence (4.6.93) becomes, for any ¢ € (0, o

L o)) _Amlg= 1)

q dt Lo(Br) = (m+q—1)2
1 4 -1 p(ptg=1)—m(m+qg—1) alm m

{m(q g, } lu®l5 ey ¥ (7))

RACErE i

<0,

+qg—1
&1 C2 )28

2—2«

L%(BRr)

provided £; is small enough. Hence we have proved that |[u(t) ze(p,) is decreasing in
time for any t € (0, to], i.e

lu)lLaBg) < lluollLa(my) for any t € (0,t]. (4.6.94)
In particular, inequality (4.6.94) holds ¢ = p%. Hence we have

[0y ) < 0l ) < &1 forany te (0,t0].

Now, we can repeat the same argument in the time interval (¢g,¢;] where t; is chosen,
thanks to the continuity of u(t), in such a way that

|u(®)|| <2& for any t € (to,t1].

Thus we get
lu(O)lla(r) < lluollrapy) for any t € (0,t].

Iterating this procedure we obtain the thesis.
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Proposition 4.6.2. Let m > 1, p>m, R >0, ugp € L*°(BR), up > 0. Let

2 1

— =14+——--. 4.6.

5 s=145 - (4.6.95)
Suppose that (4.2.18) holds for ey = e1(p,m, N,r,Cs, Cp) sufficiently small. Let u be
the solution to problem (4.3.25), such that in addition w € C([0,T); L4Y(Bg)) for any
1<qg<+oc0 and T > 0. Let M support the Sobolev and Poincaré inequalities (4.1.2)
and (4.1.3). Then there ezists I' = I'(N,m,l,Cs) > 0 independent of T' such that, for
all t > 0,

r>

s=1 1
[l o (Br) < T ol in (g | 1w0llTor (5, + WHUOHL’"(BR) - (4.6.96)
Remark 4.6.3. If in Proposition 4.6.2, in addition, we assume that for some kg > 0

max { ||uoll Lm ()5 1ol Lor ()i uollLr(sry} < ko for every R >0,
then the bound from above for ||u(t)||z~(py) in (4.6.96) is independent of R.
Proof of Proposition 4.6.2. Let us set w = u(-,t). Observe that w™ € H{(Bg) and
w > 0. Due to Proposition 4.3.6 we know that

Observe that, since ug € L*°(Bpg) also w € L*°(Bpg). Due to (4.6.95), we can apply
Proposition 4.3.4, so we have that

m s 1
e < 2 ()

™5
L (Br) (Br)

EAIN]

(m—1)t

pr—i-

Therefore

1
5 5 s=1
oo < =5 () {1t + g ol b g
(4.6.97)
where s has been defined in (4.6.95). In view of (4.2.18) with a suitable €1, since
ug € L*°(BgR), we can apply Lemma 4.6.1. Hence we obtain

lPllzr By = 0l < N0 - (4.6.98)

Similarly, again for an appropriate €1 in (4.2.18), since uy € L*°(BpR), we can apply
Lemma 4.6.1 and obtain

lwllrBr) < lluollr(Br)- (4.6.99)
Plugging (4.6.98) and (4.6.99) into (4.6.97) we obtain

m S 1Yys D 1 s m%
[0l o0 () s—1\C, Hw”Lm(BR)+m”w“y(3m HwHLm(BR)

< S 1 % P 1 H ms;sl
Ss-1\c, HUOHLPT(BR) + WHUOHL’“(BR) Hw”Lm(BR)-
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Moreover, since uy € L*°(Bpr), we can apply Lemma 4.6.1 to w with ¢ = m. Thus from
(4.6.85) with ¢ = m we get

2

s 1\
o < —
Wl Lo (BR) < L_l <Cs>

We define

1

ms

-

= P 1
HUOHLm(BR) HUOHLw(BR) + m“UOHLT(BR)

(4.6.100)

= Lil (Cls) ir. (4.6.101)

Then from (4.6.100) we get

s=1 1 e
ol < Dl gy ool + gy ol

m

O

Proof of Theorem 4.2.5. The proof of Theorem 4.2.5 follows the same line of arguments
of that of Theorem 4.2.2, with minor differences. Let {ug j}r>0 be a family of functions
such that

(@) upp, € L=(M)NCZ(M) for all h >0,

(b) up,p, >0 for all h >0,

(¢) uop, < ugp, for any hy < ho,

(

d) ug, — up in LY(M) N LP" (M) where 0 := min{m,r} as h — +oo,

Observe that, due to assumptions (c) and (d), ug  satisfies (4.2.18) for an appropriate
€1 sufficiently small. Moreover, thanks by interpolation, since m < p < pr, we have

upp, — uo in LP(M) as h — 4o0.
For any R > 0, k > 0, h > 0, consider the problem

ug = Au™ + Ti(uP) in Br x (0, +00)
u=70 in 9BR x (0, 00) (4.6.102)
U = Ug,h in BRX{O}.

From standard results it follows that problem (4.6.102) has a solution uf, in the sense
of Definition 4.3.1; moreover, u,lik € C([O,T]; Lq(BR)) for any ¢ > 1. Hence, it satisfies
the inequalities in Lemma 4.6.1 and in Proposition 4.6.2, i.e., for any t € (0, +00),

IN

R
lup @) lomBr)y < lvonllLmBy);

IN

lur (O llzesr) < llwonllesg):

1

s—1 ]_ ms
Huﬁ,kHL“(BR) <Tr H“O,hHLfn(BR) ”UO,hHIEm(BR) + m”UO,h”LT(BR) ;
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with r and s as in (4.6.95) and I" as in (4.6.101). Arguing as in the proof of Theorem
(4.2.13), we can pass to the limit as k — 400, R — 400, h — oo obtaining a function
u, which satisfies

[w(l Lmary < llwollzm(any, (4.6.103)
lu@)lLe(ary < llwollLe(ary, (4.6.104)
and
_ 1 1
”uHLOO(M) <T ||u0”Lm |:||u0”LpT (M) + (’n’L—l)t||uO|LT(M):| , (46105)

with 7 and s as in (4.6.95) and T as in (4.6.101). Moreover, for any ¢ € C2°(M x (0,T))
such that ¢(x,T) = 0 for any = € M, the function u satisfies

/ /ucptd,udt / / mAcpd,udt+/ /upgod,udt
(4.6.106)

/MuO< ) (. 0) du.

Observe that, due to inequalities (4.6.103), (4.6.104) and (4.6.105), all the integrals in
(4.6.106) are finite, hence u is a solution to problem (4.1.1) in the sense of Definition

4.2.1. Finally, using hypothesis (4.2.19), inequality (4.2.20) can be derived exactly as
(4.2.13). O

4.7 Proofs of Theorems 4.2.8 and 4.2.9

We use the following Aronson-Benilan type estimate (see [6]; see also [118, Proposition
2.3]); it can be shown exactly as Proposition 4.3.6.

Proposition 4.7.1. Let m > 1, p > m, up € HE(Bgr) N L®(Bg), uo > 0. Let u be the
solution to problem (4.7.107). Then, for a.e. t € (0,T),

—Au™ (- t) < puP (- 1) + Tfl)tu(-,t) in ©'(Bg).

For any R > 0, consider the following approximate problem

p(x)ur = Au™ + p(z)uP in Br x (0,T)
u=0 in 9Br x (0,7) (4.7.107)
u = ug in Br x {0},

where Br denotes the Euclidean ball with radius R and centre in the origin O.
We exploit the following estimate, which can be proved as that in Lemma 4.4.1.

Lemma 4.7.2. Let

2
>1, > —.
m p m+N
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Suppose that inequality (4.1.6) holds. Suppose that ug € L°(BRr), up > 0. Let 1 < g <
00, po be as in (4.2.8) and assume that

loll 0 55y < &

for g =&(p,m,Cs, q) small enough. Let u be the solution of problem (4.7.107), such that
in addition u € C([0,T), L(BR)) for any q € (1,400), for any T > 0. Then

lalt) | (5 < luollps sy for all > 0.

The following smoothing estimate is also used; the proof is the same as that of
Proposition 4.4.2.

Proposition 4.7.3. Let

2
>1 > —
m ) p m—"_N?

Assume (4.2.23) and (4.1.6). Suppose that ug € L*°(Bg), ugp > 0. Let u be the solu-
tion of problem (4.7.107), such that in addition uw € C([0,T),L}(Bg)) for any q €
(1,400), for any T > 0. Assume that (4.2.9) holds for g = €o(p, m, N,r,Cs) suffi-
ciently small. There exists C(m, qo,Cs,e,N,q) > 0 such that

lu@)lLa(Bry < Ct77uoll forall t>0,

6‘]
L}°(Br)

/11 Ngp . s _@fat3m=1)
T\ q) 20+ Nm-1)" "¢ y '
%0 q)2q+N(m-—1) ¢ \q+5(m—1)
Proof of Theorem 4.2.8. The conclusion follows by repeating the same arguments as in

the proof of Theorem 4.2.2. We use Lemma 4.7.2 instead of Lemma 4.4.1, Proposition
4.7.3 instead of 4.4.2 and Proposition 4.7.1 instead of Proposition 4.3.6. O

where

4.7.1 Proof of Theorem 4.2.9

We consider problem (4.7.107). We use the following estimate, which can be proved as
that in Lemma 4.6.1.

Lemma 4.7.4. Let
m > 1, p>m.

Assume that (4.1.6) and (4.1.7) hold. Suppose that ug € L>(BRr), up > 0. Let 1 < ¢ <
oo and assume that and assume that
HUOHLP%(BR) <&

for a suitable &1 = €1(p,m, N, Cp, Cs, q) sufficiently small. Let u be the solution of prob-

lem (4.7.107), such that in additionu € C([0,T'), LY(BR)) for any q € (1,+00), for any T >
0. Then

|w(t)|lLa(Br) < luolla(pyy — for all t>0.
Proof of Theorem 4.2.9. The conclusion follows arguing step by step as in the proof of

Theorem 4.2.5. We use Lemma 4.7.4 instead of Lemma 4.6.1 and Proposition 4.7.1
instead of Proposition 4.3.6. O
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Chapter 5

Global existence and smoothing
estimates for p < m

5.1 Introduction

Let M be a complete noncompact Riemannian manifold of infinite volume, whose di-
mension N will be required throughout the chapter to satisfy the bound N > 3. Let us
consider the following Cauchy problem, for any 7" > 0

= m p 1
{ut Au™+ uP in M x (0,T) (5.1.1)

u = ug in M x {0}

where A is the Laplace-Beltrami operator. We shall assume throughout this chapter
that 1 < p < m and that the initial datum wug is nonnegative. We let L9(M) be as
usual the space of those measurable functions f such that |f|? is integrable w.r.t. the
Riemannian measure p and make the following basic assumptions on M, which amount
to assuming the validity of both the Poincaré and the Sobolev inequalities on M:

1
(Poincaré inequality)  [[v|lz2(a) < FHV'UHL%M) for any v € C°(M); (5.1.2)
P

(Sobolev inequality) [Vl 2= (ary < CLHV’UHLQ(M) for any v e C°(M), (5.1.3)
S

where C), and C, are numerical constants and 2* := 2%, The validity of (5.1.2),
(5.1.3) puts constraints on M, and we comment that it is e.g. well known that, on
Cartan-Hadamard manifolds, namely complete and simply connected manifolds that
have everywhere non-positive sectional curvature, (5.1.3) always holds. Furthermore,
when M is Cartan-Hadamard and, besides, sec < —c¢ < 0 everywhere, sec indicating
sectional curvature, it is known that (5.1.2) holds as well, see e.g. [39, 40]. Thus,
both (5.1.2), (5.1.3) hold when M is Cartan-Hadamard and sec < —c < 0 everywhere,
a case that strongly departs from the Euclidean situation but covers a wide class of
manifolds, including e.g. the fundamental example of the hyperbolic space H", namely
that Cartan-Hadamard manifold whose sectional curvatures equal -1 everywhere (or the
similar case in which sec = —k everywhere, for a given k > 0).

123
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In Chapter 4, (where [46] is reproduced), problem (5.1.1) has been studied when
p > m. We refer the reader Section 4.1 for a comprehensive account of the literature.

5.1.1 Qualitative statements of main results in the manifold setting

We extend here the results of [54] in two substantial aspects. In fact, we summarize our
main results as follows.

e The methods of [54] rely heavily on explicit barrier arguments, that by their very
same nature are applicable to compactly supported data only and, in addition,
require explicit curvature bounds in order to be applicable. We prove here global
existence for L™ data and prove smoothing effects for solutions to (5.1.1), where
by smoothing effect we mean the fact that L™ data give rise to global solutions
u(t) such that u(t) € L*™ for all ¢ > 0, with quantitative bounds on their L
norm. This will be a consequence only of the validity of Sobolev and Poincaré
inequalities (5.1.3), (5.1.2), see Theorem 5.2.2.

e As a consequence, combining this fact with some results proved in [54], we can
prove that, on manifolds satisfying e.g. —c; < sec < —co with ¢1 > o > 0,
thus encompassing the particularly important case of the hyperbolic space H"
(somewhat weaker lower curvature bounds can be assumed), any solution u(t) to
(5.1.1) corresponding to an initial datum uy € L™ exists globally and, provided
ug is sufficiently large, it satisfies the property

lim w(z,t) =400 Ve M,

t—+o00

namely complete blowup in infinite time occurs for such solutions to (5.1.1) in the
whole range p € (1,m), see Theorem 5.2.3.

Our results can also be seen as an extension of some of the results proved in [118].
However, the proof of the smoothing estimate given in [118, Theorem 1.3] is crucially
based on the assumption that the measure of the domain where the problem is posed is
finite. This is not true in our setting. So, even if we use some general idea introduced
in [118], our proofs and results are in general quite different from those in [118].

For detailed reference to smoothing effect for linear evolution equations see [19],
whereas we refer to [127] for a general treatment of smoothing effects for nonlinear
diffusions, and to [12, 49, 48] for connections with functional inequalities in the nonlinear
setting.

We mention phenomena similar to the ones discussed in the present chapter occur
in qualitatively related but different settings. For example, we mention that solutions
to the heat equation with Dirichlet boundary conditions in a twisted tube (namely a
straight tube in R? whose cross-section is twisted in a given compact region) give rise to
smoothing estimates that are stronger for large times than the ones corresponding to the
untwisted situation, i.e. the geometry improves the smoothing effects, see [79, 78, 44].
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5.1.2 Qualitative statements of main results for Euclidean, weighted
reaction-diffusion equations

The main result given in Theorem 5.2.2 depend essentially only on the validity of in-
equalities (5.1.2) and (5.1.3), and as such is almost immediately generalizable to different
contexts. As a particularly significant situation, we single out the case of Euclidean,
mass-weighted reaction diffusion equations. In fact we consider the problem

{put — Aum —+ pup in RN X (07 T) (514)

u = up in RV x {0},

in the Euclidean setting, where p : RV — R is strictly positive, continuous and bounded,
and represents a mass density . The problem is naturally posed in the weighted spaces

1/q
LZ(RN) = {v : RY — R measurable , [vllpg == </ vip(z) dx) < —1—00} ,
RN

This kind of models originates in a physical model provided in [73]. There are choices
of p ensuring that the following analogues of (5.1.2) and (5.1.3) hold:

1 [e.9]
H’U”L%(RN) < @”VQ}HL%RN) for any v € C; (RN) (5.1.5)
and 1
19l 2+ vy < ESHWHLQ(M) for any v € C°(RY) (5.1.6)

for suitable positive constants. In fact, in order to make a relevant example, if p(x) =<
|z|~ for a suitable a > 0, it can be shown that (5.1.5) holds if a > 2 (see e.g. [49] and
references therein), whereas also (5.1.6) is obviously true for any a > 0 because of the
validity of the usual, unweighted Sobolev inequality and of the assumptions on p. Of
course more general cases having a similar nature but where the analogue of (5.1.6) is
not a priori trivial, could be considered, but we focus on that example since it is widely
studied in the literature and because of its physical significance.

In [86, 87] a large class of nonlinear reaction-diffusion equations, including in partic-
ular problem (5.1.4) under certain conditions on p, is investigated. It is proved that a
global solution exists, (see [86, Theorem 1]) provided that p(x) = |z|~* with a € (0, 2),

2—a

N—-a’

p>m—+

and ug > 0 is small enough. In addition, a smoothing estimate holds. On the other
hand, if p(z) = |z|7® or p(z) = (1 + |x|)~* with a € [0,2), up # 0 and

2—a
N—a’

l<p<m+

then any nonnegative solution blows up in a suitable sense. Such results have also been
generalized to more general initial data, decaying at infinity with a certain rate (see
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[87]). Finally, in [86, Theorem 2|, it is shown that if p > m, p(z) = (1 + |z|)~® with
a > 2, and ug is small enough, a global solution exists.

Problem (5.1.4) has also been studied in [92], [93], by constructing and using suitable
barriers, initial data being continuous and compactly supported. In particular, in [92]
the case that p(x) < |z|~® for |z| — 400 with a € (0,2) is addressed. It is proved that
for any p > 1, if ug is large enough, then blowup occurs. On the other hand, if p > p, for
a certain p > m depending on m, p and p, and ug is small enough, then global existence
of bounded solutions prevails. Moreover, in [93] the case that a > 2 is investigated. For
a = 2, blowup is shown to occur when ug is big enough, whereas global existence holds
when wug is small enough. For a > 2 it is proved that if p > m, ug € Li’OOC(RN ) and
goes to 0 at infinity with a suitable rate, then there exists a global bounded solution.
Furthermore, for the same initial datum wug, if 1 < p < m, then there exists a global
solution, which could blow up as t — 400.

Our main results in this setting can be summarized as follows.

e We prove in Theorem 5.2.5 global existence and smoothing effects for solutions
to (5.1.4), assuming that the weight p : RV — R is strictly positive, smooth and
bounded, so that (5.1.6) necessarily holds, and assuming the validity of (5.1.5).
In particular, L™ data give rise to global solutions w(t) such that u(t) € L> for
all t > 0, with quantitative bounds on their L norm. By constructing a specific,
delicate example, we show in Proposition 5.6.6 that the bound on the L°® norm
(which involves a quantity diverging as ¢ — +o0) is qualitatively sharp, in the
sense that there are examples of weights for which our running assumption holds
and for which blow-up of solutions in infinite time holds pointwise everywhere (we
refer to this property by saying that complete blowup in infinite time occurs). We
also prove, by similar methods which follow the lines of [118], different smoothing
effects which are stronger for large times, when p is in addition assumed to be
integrable, see Theorem 5.2.6.

Let us mention that the results in [93] for 1 < p < m are improved here in various
directions. In fact, now we consider a larger class of initial data wug, since we do not
require that they are locally bounded; moreover, in [93] no smoothing estimates are
addressed. Furthermore, the fact that for integrable weights p we have global existence
of bounded solutions does not have a counterpart in [93], nor has the blowup results in
infinite time.

5.1.3 On some open problems

As stated above, the present chapter settles the problem of global existence of solutions
to problem (5.1.1) on manifolds M supporting both the Sobolev and the Poincaré in-
equalities, in the case 1 < p < m and for data belonging to L™ (M ). It is also shown that
solutions corresponding to such data are bounded for all ¢ > 0, with quantitative bounds
on the L*(M) norm of solutions for all ¢ > 0. We also settle the long-time behaviour
of solutions to problem (5.1.1) on manifolds M whose curvature is pinched between two
strictly negative constants, where 1 < p < m and data belong to L™ (M), showing that
they blowup pointwise in infinite time. The following questions are however open for
further investigation:
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e Does similar results hold for data in Lebesgue spaces L9(M) with ¢ # m? The
present method of proof does not extend to such data.

e Do all initial data in LI(M) blow up in infinite time, or the long-time asymptotic
of small data is different?

5.1.4 Organizazion of the chapter

In Section 5.2 we collect the relevant definitions and state our main results, both in the
setting of Riemannian manifolds and in the Euclidean, weighted case. In Section 5.3
we prove some crucial results for an auxiliary elliptic problem, that will then be used in
Section 5.4 to show bounds on the P norms of solutions to certain evolution problems
posed on geodesic balls. In Section 5.5 we conclude the proof of our main results for
the case of reaction-diffusion problems on manifolds. In Section 5.6 we briefly comment
on the adaptation to be done to deal with the weighted Euclidean case, and prove the
additional results valid in the case of an integrable weight. We also discuss there a
delicate example showing that complete blowup in infinite time may occur under the
running assumptions.

5.2 Preliminaries and statement of main results

We first define the concept of solution to (5.1.1) that we shall use hereafter. It will be
meant in the very weak, or distributional, sense.

Definition 5.2.1. Let M be a complete noncompact Riemannian manifold of infinite
volume. Let 1 < p < m and ug € L™(M), ug > 0. We say that the function u is a
solution to problem (5.1.1) in the time interval [0,T) if

we L™(M x (0,T)),

and for any ¢ € C°(M x [0,T]) such that p(z,T) =0 for any v € M, u satisfies the

equality:
/ / wpdp dt = / / u™ Apdpdt +/ / uP o dudt

/M uo(w) (. 0) d.

Theorem 5.2.2. Let M be a complete, noncompact manifold of infinite volume such
that the Poincaré and Sobolev inequalities (5.1.2) and (5.1.3) hold on M. Let1 <p <m
and ug € L™ (M), ug > 0. Then problem (5.1.1) admits a solution for any T > 0, in
the sense of Definition 5.2.1. Moreover for any T > T > 0 one has u € L>°(M x (1,T))
and there exist numerical constants cq,co > 0, independent of T', such that, for allt > 0
one has

2m

pezm ol iy
()| oo ary < 16" S Hluoll —,5 : (5.2.7)

t2m+N(m—1)
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Besides, if ¢ > 1 and ug € LY(M) N L™(M), then there exists C(q) > 0 such that
()| Laary < eC D uoll Laqary  for all ¢ > 0. (5.2.8)

One may wonder whether the upper bound in (5.2.7) is qualitatively sharp, since
its r.h.s. involves a function of time that tends to 400 as ¢ — +oco. This is indeed
the case, since there is a wide class of situations covered by Theorem 5.2.2 in which
classes of solutions do indeed satisfy ||u(t)|cc — +00 as t — +o0o and show even the
much stronger property of blowing up pointwise everywhere in infinite time. In fact, as
a direct consequence of Theorem 5.2.2; of known geometrical conditions for the validity
of (5.1.2) and (5.1.3), and of some results given in [54], we can prove the following
result. We stress that this property has no Euclidean analogue for the corresponding
reaction-diffusion problem.

Theorem 5.2.3. Let M be a Cartan-Hadamard manifold and let sec denote sectional
curvature, Ric, denote the Ricci tensor in the radial direction with respect to a given
pole o € M. Assume that the following curvature bounds hold everywhere on M, for
suttable k1 > ko > 0:

Rico(x) > —k1;  sec < —ka.

Then the results of Theorem 5.2.2 hold. Besides, consider any nonnegative solution u to
(5.1.1) corresponding to an initial datum ug € L™ (M) which is sufficiently large in the
sense that ug > g for a suitable nonnegative and sufficiently large function vy € CO(M).
Then u satisfies
lim wu(z,t) =400 Ve M.
t——+o00

Observe that, as it will appear from the proof, for the function vy in Theorem 5.2.3
we require that vg > 0 in a geodesic ball Bg with R > 0 and m := infp, vy both
sufficiently large.

5.2.1 Weighted reaction-diffusion equations in the Euclidean space

As mentioned in the Introduction, the methods used in proving Theorem 5.2.2 are
general enough, being based on functional inequalities only, to be easily generalized to
different contexts. We single out here the one in which reaction-diffusion equations are
considered in the Euclidean setting, but in which diffusion takes place in a medium
having a nonhomogeneous density, see e.g. [73], [86], [87], [88] and references quoted
therein.

We consider a weight p : R — R such that

p e CRM)NL®RY), p(x) > 0 for any z € RY, (5.2.9)
and the associated weighted Lebesgue spaces
LZ(RN) = {v: RY = R measurable | [v]lzg < 400},

where [|v]| g = Jen p(z) |v(2)|? dz. Moreover, we assume that p is such that the weighted
Poincaré inequality (5.1.5) holds. By construction and by the assumptions in (5.2.9) it
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follows that the weighted Sobolev inequality (5.1.6) also holds, as a consequence of the
usual Sobolev inequality in RV and of (5.2.9).
Moreover, we let ug : RN — R be such that

ug € L;”(RN), uo(z) > 0 for a.e. z € RY

and consider, for any 7' > 0 and for any 1 < p < m, problem (5.1.4).
The definition of solution we use will be again the very weak one, adapted to the
present case.

Definition 5.2.4. Let 1 <p < m and ug € LZZ(]RN), ug > 0. Let the weight p satisfy
(5.2.9). We say that the function u is a solution to problem (5.1.4) in the interval [0,T")

if

ue LTRY x (0,T))
and for any p € C (RN x [0,T)) such that ¢(z,T) =0 for any x € RN, u satisfies the
equality:

// uy p(x)de dt = // mAgpdwdt—i—// uP o p(x) dxdt
RY RY RY (5.2.10)

/ uo () (. 0) pl) do.
RN

Theorem 5.2.5. Let p satisfy (5.2.9) and assume that the weighted Poincaré inequality
(5.1.5) holds. Let 1 < p < m and up € L;”(RN), uo > 0. Then problem (5.1.4) admits
a solution for any T > 0, in the sense of Definition 5.2.4. Moreover for any T > 17 >0
one hasu € L (RN x (7, T)) and there exist numerical constants c1, co > 0, independent
of T, such that, for allt > 0 one has

TR i)
< cat W@n—p) H OHLM RY) (5 9 11)
O equy < cre | ol 2t ¢ 2

£ I TN =T
Besides, if ¢ > 1 and ug € LIRY) N L;”(RN), then there exists C(q) > 0 such that

[u(@®)| g @y < 60(q)tHUoHLg(Rw) for all t>0.

Finally, there are examples of weights satisfying the assumptions of the present The-
orem and such that sufficiently large initial data ug give rise to solutions u(x,t) blowing
up pointwise everywhere in infinite time, i.e. such that limy_, o u(x,t) = +oo for all
r € RN, so that in particular |[u(t)|ec — +00 ast — +oo and hence the upper bound
in (5.2.11) is qualitatively sharp. One can take e.g. p < |x|=2 as |x| — +oo for this to
hold.

In the case of integrable weights one can adapt the methods of [118] to prove a
stronger result.
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Theorem 5.2.6. Let p satisfy (5.2.9) and p € L'(RN). Let 1 < p < m and ug €
L;(RN), ug > 0. Then problem (5.1.4) admits a solution for any T > 0, in the sense of
Definition 5.2.4. Moreover for any T > 7 > 0 one has u € L®(RY x (,T)) and there
exists C = C(m,p, N, Hp||L1(RN)) > 0, independent of the initial datum ug, such that,
for allt > 0, one has

Hu@ﬂhwmw)§(7{1+[0nilﬁ]m1}. (5.2.12)

Remark 5.2.7. e The bound (5.2.12) cannot be replaced by a similar one in which
the r.h.s. is replaced by (migl)t’ that would entail [[u(t)[[c — 0 as t — +o0, as
customary e.g. in the case of solutions to the Porous Medium Equation posed in
bounded, Euclidean domains (see [128]). In fact, it is possible that stationary,
bounded solutions to (5.1.4) exist, provided a positive bounded solution U to the
equation

— AU = pU*® (5.2.13)

exists, where a = p/m < 1. If this fact holds, V := U w s a stationary, bounded,
positive solution to the differential equation in (5.1.4), whose L norm is of course
constant in time. In turn, a celebrated results of [15] entails that positive, bounded
solutions to (5.2.13) exist if e.g. p < |z|727¢ for some € > 0 as |x| — +o0o (in fact, a
full characterization of the weights for which this holds is given in [15]), a condition
which is of course compatible with the assumptions of Theorem 5.2.6.

e Of course, the bound (5.2.11), which gives stronger information when ¢t — 0,
continues to hold under the assumptions of Theorem 5.2.6.

5.3 Auxiliary results for elliptic problems

Let zg,x € M be given. We denote by r(x) = dist (zg,x) the Riemannian distance
between xy and x. Moreover, we let

Bpr(zg) := {x € M,dist (x0,z) < R}

be the geodesics ball with center zg € M and radius R > 0. Let g € M any fixed refer-
ence point. We set Bg = Bgr(xo). As mentioned above, we denote by p the Riemannian
measure on M.

For any given function v, we define for any k € R™

k ifv>k
Ti(v) :== v if | <k
-k if v< -k

For every R > 0,k > 0, consider the problem

up = Au™ + Ti(uP) in Bg x (0, +00)
u=20 in 9Br x (0, +00) (5.3.14)
U = U in B x {0},



5.3. Auxiliary results for elliptic problems 131

where ug € L>(Bpr),up > 0. Solutions to problem (5.3.14) are meant in the weak sense
as follows.

Definition 5.3.1. Let p < m. Let ug € L*®°(Bg),ug > 0. We say that a nonnegative
function u is a solution to problem (5.3.14) if

u € L*(Bgr x (0,+00)),u™ € LQ((O,T);Hol(BR)) for any T >0,

and for any T > 0, € C°(Br % [0,T]) such that ¢(x,T) = 0 for every x € Bgr, u
satisfies the equality:

// wpdpdt = // V) dudt+// Ti(uP) p dp dt
Br Bgr Bgr

n /B o () p(, 0) dp.

We also consider elliptic problems of the type

{_A“ =/ i B (5.3.15)

u =0 in 8BR,
with f € LY(Bg) for some ¢ > 1.

Definition 5.3.2. We say that u € H}(Bgr),u > 0 is a weak subsolution to problem
(5.3.15) if

/<Vu,w>du§ fodu,
Br Br

for any ¢ € Hy(Bgr),¢ > 0.

The following proposition contains an estimate in the spirit of the celebrated L*°
estimate of Stampacchia (see, e.g., [76], [11] and references therein). However, the
obtained bound and the proof are different. This is due to the fact that we need an
estimate independent of the measure of Bp, in order to let R — 400 when we apply
such estimate in the proof of global existence for problem (5.1.1) (see Remark 5.3.4
below). Indeed recall that, obviously, since M has infinite measure, u(Br) — 400 as
R — +o0.

Proposition 5.3.3. Let f; € L™ (Bg) and fo € L™ (Bpr) where my > %, my > %
Assume that v € H}(BR), v > 0 is a subsolution to problem

(5.3.16)

—Av = (f1 + fg) i Bgr
v=20 on dBr

in the sense of Definition 5.3.2. Let k > 0. Then

1 s _
[vllzee(Br) < {C1IfillLm (Br) + Coll fallme(mpy b 0l L 5,y + B (5.3.17)
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where -
S:1+N_7’ (5.3.18)
g <l <min{my ,ma}, (5.3.19)
_ N s \* 1 [2\1 m
Ci= <3i1> ng<k> , Co= (s—l) o2 (k:) , (5.3.20)
and L. L.
C,=C |yv||£1(g;), Cy = Cs ||UH£1(E§) . (5.3.21)

Observe that Proposition 5.3.3 generalizes Proposition 4.3.4.

Remark 5.3.4. If in Proposition 5.3.3 we further assume that there exists a constant
ko > 0 such that

max(||v]|L1(gp)s 1 f1llLmi(BR)s | f2llLme (BR)) < ko for all R >0,
then from (5.3.17), we infer that the bound from above on ||v|| (g, is independent of
R. This fact will have a key role in the proof of global existence for problem (5.1.1).
5.3.1 Proof of Proposition 5.3.3
Let us first define
Gr(v) :=v —Tg(v) , (5.3.22)
o) = [ 1Gu(o)]dn
Br

For any R > 0, for v € LY(Bg), we set

A :={x € Br: |v(z)| > k}. (5.3.23)
We first state two technical Lemmas.

Lemma 5.3.5. Let v € LY (Bg). Then g(k) is differentiable almost everywhere in
(0,400) and
g'(k) = —p(Ag).

We omit the proof since it is identical to the one given in [11].

Lemma 5.3.6. Let v € LY(Bgr). Let k > 0. Suppose that there exist C > 0 and s > 1
such that
g(k) < Cu(Ag)*  for any k > k. (5.3.24)

Then v € L>®(Bgr) and

1 S 1—-1 _
[v]| Lo (Br) < C QHUHU(SBR) + k. (5.3.25)
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Remark 5.3.7. Observe that if C' in (5.3.24) does not depend on R and, for some
ko > 0,
||U||L1(BR) <ky forall R>O0,

then, in view of the estimate (5.3.25), the bound on [|v|| ;e (p,) is independent of R.

Proof of Lemma 5.3.6. Thanks to Lemma 5.3.5 together with hypotheses (5.3.24) we
have that
o (k) = () < — [0 gh)] "
hence
g(k) < C[-g'(k)]".

Integrating between k and k we get

/kk <— 011> dr = /: g'(r) g(r)"* dg, (5.3.26)

that is:

1.1 —1 _

g g (BT - - B)
_1 -1 _ _
<1l (g — ST C~5(k—k) forany k > k.

Choose
1 1-1 S _
k= ]{?() = CS HUHLl(SBR); + k,

and substitute it in the last inequality. Then g(ko) < 0. Due to the definition of g this
is equivalent to

/ G di=0 = [Gu() =0 <= [v] <ko.
Br

As a consequence we have

S 1, 1-1 =
_ lcs HUHLl(BR) + k

vl oo (Br) < ko =
OJ

Proof of Proposition 5.3.3. Take Gi(v) as in (5.3.22) and Ay, as in (5.3.23). From now
one we write, with a slight abuse of notation,

1fllzs(r) = [1fllza-
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Since Gi(v) € H¢(Bg) and Gg(v) > 0, we can take G (v) as test function in problem
(5.3.16). Then, by means of (5.1.3), we get

Vu-VGk(v)du>/ |Vo|? du
A

> /BR VG ()2 ds (5.3.27)

203(/33‘(;’“” u>2*

If we now integrate on the right hand side of (5.3.16), thanks to Holder inequality, we
get

Br

/ (1 + f2) Ga(w) dps = / £ G dut | f2Gu(o) du
Br A

Apg

S(/Ak’Gk(U)‘ dﬂ) [(/Aklfll du) +</Ak\le du> ]
< </ |Gr(v)* d#>2* [Hf1||LM1u(Ak)W(1_"”éVN”)>
Br

M(l, 2N >
+|| foll[Lma p(Ag) 28\ meER L

(5.3.28)
Combining (5.3.27) and (5.3.28) we have
2% N+2 2N
C? (/ |Gk(v)]2* du) < |:Hf1HLm1,uf(Ak)2]V(1_rnl(N+2))
N (5.3.29)
N+ 2N
+||f2HLmzu(Ak)N(1—nW+2))} |
Observe that
* QL* N+2
/B il = </B Geo)F d”) (AR 2 (5.3.30)
R R

We substitute (5.3.30) in (5.3.29) and we obtain
2L 2_ 1
[ 16l di < g [ 1 4) F T 4 ol ) F .
R

Using the definition of [ in (5.3.19), for any k > k, we can write

1_
1

11
" [ fallme p(Ag) T2 ]
(5.3.31)

1 1 1
T omyp 2 T mg
+ || fal| Lme <k||UHL1(BR)> ] :

/ (Gl dn < g7 1A R (1Al n(ap)

Set

2
il (Flollzrcon
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Hence, by means of Chebychev inequality, (5.3.31) reads, for any k > k,

[ 1Gu@ldu < €y, (5.3.32)

where s has been defined in (5.3.18). Now, (5.3.32) corresponds to the hypotheses of
Lemma 5.3.6, hence the thesis of such lemma follows and we have

s 1 -1 -
lllzoe < == C5 vl +

Then the thesis follows thanks to (5.3.21). O

5.4 LY and smoothing estimates

Lemma 5.4.1. Let 1 < p < m. Let M be such that inequality (5.1.2) holds. Suppose
that ug € L*°(BR), up > 0. Let u be the solution of problem (5.3.14). Then, for any
1 < q < 400, for some constant C = C(q) > 0, one has

lu(®)l LaBy) < €C(q)t”U0HLq(BR) forall t>0. (5.4.33)

Proof. Let z e R, x > 0,1 <p <m, € > 0. Then, for any 1 < ¢ < +00, due to Young’s
inequality, it follows that

ppta—1 x(m+q—1)(%)xQ(Z:f)
—1
< epmra- DD | (1po ] e LB (=)
N em—1 (5.4.34)

p—1
=ex™t 4 Tp=lym zd.
em—1

Since ug is bounded and Tj(u”) is a bounded and Lipschitz function, by standard res-
ults, there exists a unique solution of problem (5.3.14) in the sense of Definition 5.3.1;
moreover, u € C([0,T]; LY(Bg)). We now multiply both sides of the differential equation
in problem (5.3.14) by u9~! and integrate by parts. This can be justified by standard
tools, by an approximation procedure. Using the fact that

T (uP) < uP,

thanks to the Poincaré inequality, we obtain for all ¢ > 0

ColluN Tt gy + I

dm(q—1)
dt” ()HLq BR — ( Lm+q— l BR) Lpta— 1 BR)

q m+q—1)2

Now, using inequality (5.4.34), we obtain

dm(qg—1 Mag— Mag—
e L] (m+(q—1))2q§’|“(t)||Lifqll(BR)erIU(t)llLifqll(BR)JrC(E)I\U(t)ll(iq(BR),
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p—1

where C(e) = (é%) """ Thus, for every ¢ > 0 so small that
m(g—1)
0<e< (mtq_12°7
we have
thll uB)|7apr) < CENUD gy

Hence, we can find C' = C(q) > 0 such that
d

i O sy < C@Iu@)lLapy) forall ¢>0.
If we set y(t) := Hu(t)Hqu(BR), the previous inequality reads
y'(t) < Clq)y(t) forall te (0,7T).
Thus the thesis follows. O]

Note that for the constant C(q) in Lemma 5.4.1 does not depend on R and k > 0;
moreover, we have that
C(q) - +o0 as ¢ — +o0.

We shall use the following Aronson-Benilan type estimate (see [6]; see also [118,
Proposition 2.3)).

Proposition 5.4.2. Let 1 < p < m, ug € H}(Br) N L>°(Bgr), uop > 0. Let u be the
solution to problem (5.3.14). Then, for a.e. t € (0,T),

1
(m—1)t

Proof. By arguing as in [6], [118, Proposition 2.3] we get

—Au™ (-, t) <uP(-,t) + u(-,t) in D' (Bg).

1 1
77‘1/ . . —
(m—1)t

since T (uP) < uP. O

—Au™ () < TpluP (1)) +

Proposition 5.4.3. Let 1 < p < m, R > 0,ug € L*(BR), ug > 0. Let u be the
solution to problem (5.3.14). Let M be such that inequality (5.1.3) holds. Then there
exists ' = T'(p,m, N, Cs) > 0 such that, for all t > 0,

2m

lw®)ll o (Bz) <T { [ futoll L (] NP

(& + 5.4.35

here the constant C = C(m) > 0 is the one given in Lemma 5.4.1.



5.4. L1 and smoothing estimates 137

Remark 5.4.4. If in Proposition 5.4.3, in addition, we assume that for some kg > 0
|uollLm(By) < ko for every R >0,

then the bound from above for ||u(t)||ze(py) in (5.4.35) is independent of R.

Proof of Proposition 5.4.3. Let us set w = u(-,t). Observe that w™ € H&(BR) and

w > 0. Due to Proposition 5.4.2 we know that

—Aw™) < [wp + (mwl)t] . (5.4.36)

Observe that, since ug € L*°(Bpg) also w € L>(Bg). Let ¢ > 1 and

q N N
T >maxq—,—, To>max<sq,— .
p 2 2

We can apply Proposition 5.3.3 with

r=mi, T9o=ms, <l < min{m;,ma}.

2
So, we have that

ol 5y < {CL DIl (B + ACo ()0l 2} Il + Fo (5.4.37)

where s = 1+2/N —1/1 and v = 1/[(m—1)t]. Thanks to Holder inequality and Young’s
inequality with exponents

Sm sm

=51, B=— s
P=5y sm — (p - i)
T1
we obtain, for any €1 > 0
1
Pl _ N|yyp—a/r1+a/m1 - ri(p=a/m) a4,
A sl PO | e

T

[Hw (p=a/rs) Hmo(sR)quHLuBR)]

1 (5.4.38)
_ p— Q/Tl a4 1 p—q/r1 q/m
= lwlipee(py whdp ) = wllfSlp 1wl ez,
Bgr
] B14g
g e—a/r) o —1 —57
< —— |lwll ;< By o lwll fapp) -
We set o .
€ T —
01 1= La 77(:(}) = T =
(65} rz—1
Thus from (5.4.38) we obtain
( ) T ﬁ
[P 1 5y < 01wl 7% (5 + —1 lw ||Lq1(BR) rraln) (5.4.39)

al*
61
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Similarly, again thanks to Holder inequality and Young’s inequality with exponents

sm sm
as =7 - > 1, fg=— > 1.
T or sm — (1 — %)
we obtain, for any €2 > 0
_ 1
HwHLW(B ) < le q/r2+q/ra LB H ||LOOQ/;; || HqL/qTQBR
B
S S I ke W
L>(Bg) o L1(BR)
ag
We set 09 := 22—2 and thus we obtain
n(az) O
[wllrs gy < 02 lwllzie(py) + =5 lw ”Lq(BR) (5.4.40)
52“2_

Plugging (5.4.39) and (5.4.40) into (5.4.37) we obtain

s— m(s—1 7.8
ol 5y < 27 { [CLllwP Il () + Y Collwlra o] o) + B}

_ ( ) T ﬁ
<271 8O |0 |wll e gy + 1t H ||L‘11(BR ey
51
+~Cy |6 ||wH + ( )H || 72 sm— (11 q/72) ”me(Sfl) _+_2871]%s
yC2 |02 L>(Bg) Li(Bg) L™(BRg) ’

2

Without loss of generality we can assume that ||w|]?m( Br) # 0. Choosing €1,e2 such

that
1 1

1Ol D2t 7 ay Gl 21
we thus have
1 - s 1 m(s—1) \ @11 T =D
Sl 5y < 45T n(an) (22710l ) ™ el
1 1 aazl S:nqsm (1 /r9)
+ 45Ty (az) (27 Callwl ) ) = el g
+ 2571k,
This reduces to
al
1 1 1 s—1 1 s=1 @] — q 1
sm A4 sm(ag— S poeeny sm s r1 sm—( /r1)
HwHLOO(BR) < (2)Sm4 (a1 1)77(051)“” (2 sm Cl HwHLm(BR)> HwHLZ BR)P q/r1

@2

1

L D Dy — e T T a2t 73 F=(=a/7D)
+(2)sm 4 2= n(ag)sm 2sm ysm O ||wHLm(BR) HwHLq(BR)

1

+(2)m (23%112)5
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This can be rewritten as

1
1 s aal s;l Tqﬁ
|w|| oo (Br) < [77(@1) (2als+10?1)a171} ]| jBR w74 BR)(p /1)
o S5 b samary (5441

1
+ [n(ag) (20428—&-17042025“2)(12—1} ||wHLm BR ||wHLq (Br)
1
+ (2k) ™

Now we use the definitions of Cy, Cs,C, C3 introduced in (5.3.21) and (5.3.20), obtain-
ing

ars+1 Y 5T o a?11%(5—1+% %) qum
R Cr')™ [l L) lwll 1o (B
1
—agy =L | ™ 22 1(s—147— P ey ros’
+ |ntaz) (2“2%“20;)”1} AN i

§\H

+ (2k)

By taking limits as 11 — 400 and r — 400 we have

a1 ms
a; —1 ms—p
oD ms
ag — 1 ms —1’
A=
man) — 2577 {1- 5
ms
1
1 ms—1
n(az) — [
ms

Ql

-
TN TN

)

| | »

—_
N—— ~— — —

V)

Q- =

no
N N /O
En [l Rl [ )
S~ ~—

@0

Moreover we define

a2 1
. 1\ m T (s — 1 e oms—1 s \°? 1 (2 7T
> 1 \ms ms s—1/) C?2\k ’
f = max{fl ,fg}.

Hence by (5.4.41) we get

pee 871+1 —m o (s— 1+ 1 1
ol < F [lulFrg )+l D] + @5 G
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Letting { — 400 in (5.4.42), we can infer that

_2m ___2m N 1
[wllLee(Bry <T {II wll iz s 1)72’””(’””] (2k)™,  (5.4.43)
where
N r pN N+2 7 2'm+NI\ém—p)
ro— (1 pN v pN T o142y (N A2) N 1
' m(N + 2) m(N + 2) N C2
_ _ N
r,=(1 N\, N\ ez (N+2 el i LDy
2T m(N +2) m(N +2) N C?

I' = max{I';; I'2}.

Letting k — 0 in (5.4.43) we obtain

2m 2m N
il < |l ZXney ™ + ol ey s | (5.4.44)

Finally, since up € L*°(Bpg), we can apply Lemma 5.4.1 to w with ¢ = m. Thus from
(5.4.33) with ¢ = m and (5.4.44), the thesis follows. O

5.5 Proof of Theorems 5.2.2, 5.2.3

Proof of Theorem 5.2.2. Let {ugp}nr>0 be a sequence of functions such that
ugp € L(M)NCF(M) for all h >0,
ug,p, > 0 for all h > 0,
ug,hy < Ug,p, for any hy < ho,
upp, —> up in L™(M) as h — +oo.
For any R > 0,k > 0,h > 0, consider the problem
= Au™ 4+ T (uvP) in Bg x (0,+00)
u=20 in 0Bgr % (0,0) (5.5.45)
U= ugp in Br x {0}.
From standard results it follows that problem (5.5.45) has a solution uf, in the sense

of Definition 5.3.1; moreover, ufk € C([O,T]; Lq(BR)) for any ¢ > 1. Hence, it satisfies
the inequalities in Lemma 5.4.1 and in Proposition 5.4.3, i.e., for any ¢ € (0, +00),

luf k() Lm(sr) < € lluollimsg); (5.5.46)

2m

5 ¢ S EN(T=P)
()l (Bg) < T { [e tHUO,hHLM(BR)] TmF N (m—p)

(5.5.47)

N
2m 1 2m+N(m—1)
Ct m m—
+ [ uo,nllm ()] 20D [(m—l)t} } .
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In addition, for any 7 € (0,T),¢ € C}((7,T)),¢ > 0, maxj, 77 ¢’ > 0,

/ ¢(t) “hk 3 1)J dudt < max'C | (ulf )™ (z, 7)du

[7.7] Br
+Cmax( | F(upp(z,T))du
11 JBR (5.5.48)
< r[r;e%C (OC k(T oo (B Nhin (T o )
C

R D m
+m”uh,k( i o (Bp) || hk( W (Br)

where "
F(u) :/ s s
0

and C' > 0 is a constant only depending on m. Inequality (5.5.48) is formally obtained by
multiplying the differential inequality in problem (5.3.14) by ((¢)[(u™)], and integrating
by parts; indeed, a standard approximation procedure is needed (see [49, Lemma 3.3]
and [7, Theorem 13)).

Moreover, as a consequence of Definition 5.3.1, for any ¢ € C°(Bg x [0,T]) such
that ¢(z,T) = 0 for any = € Bg, uﬁk satisfies

//uhkcptd,udt // uhk Agpd,udt—l—/ / T3 [( Uhk Plodpdt
Br Br

/ uop(z) 9(,0) dp.
Br

5.5.49
Observe that all the integrals in (5.5.49) are finite. Indeed, due to (5.5.46),(uﬁk 6)
L™(Bp x (0,T)) hence, since p < m, ujy, € LP(Br x (0,T)) and uz). € L'(Br x (0,T)).
Moreover, observe that, for any 2~ > 0 and R > 0 the sequence of solutions {uf 5} >0
is monotone increasing in k hence it has a pointwise limit for £k — co. Let u;f be such
limit so that we have

uﬁk — ul  as k — oo pointwise.

In view of (5.5.46), (5.5.47), the right hand side of (5.5.48) is independent of k. So,
(uf)mT+1 € HY((r,T); L*(BRr)). Therefore, (uﬁ)mTH € C([r,T); L*(Br)). We can now
pass to the limit as k& — o0 in inequalities (5.5.46) and (5.5.47) arguing as follows.
From inequality (5.5.46), thanks to the Fatou’s Lemma, one has for all ¢ > 0

Huﬁ(t)HLm(BR) < GCtHUO,hHLm(BR). (5.5.50)

On the other hand, from (5.5.47), since uﬁk — u{f as k — oo pointwise and the right

hand side of (5.5.47) is independent of k, one has for all ¢ > 0

2m

s ¢ S ENG=P)
[un, ()| o (BR) SSF{[e g | L ()] TN 0P

5.5.51
2m+12\7n(17n71) 71 ﬁ(m_l) ( )
(BR)} (m— 1)t .

+ e
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Note that both (5.5.50) and (5.5.51) hold for allt > 0, in view of the continuity property
of u deduced above. Moreover, thanks to Beppo Levi’s monotone convergence Theorem,
it is possible to compute the limit as k& — 400 in the integrals of equality (5.5.49) and
hence obtain that, for any ¢ € C2°(Bpr x (0,T)) such that ¢(z,T) = 0 for any = € Bp,
the function uf satisfies

//uhgotd,udt // Agod,udt—l—// uh Podudt
Bgr Bgr Bgr

/ won(@) o (,0) dp.
Br

Observe that, due to inequality (5.5.50), all the integrals in (5.5.52) are finite, hence uf?
is a solution to problem (5.5.45), where we replace Ty (u?) with u? itself, in the sense of
Definition 5.3.1.

Let us now observe that, for any h > 0, the sequence of solutions {uf} R>0 18
monotone increasing in R, hence it has a pointwise limit as R — +o00. We call its limit
function uj, so that

(5.5.52)

ul! — up as R — 400 pointwise.
In view of (5.5.46), (5.5.47), (5.5.50), (5.5.51), the right hand side of (5.5.48) is in-

+1

dependent of k and R. So, (uh)mT+1 e HY((r,T); L*(M)). Therefore, (uy)"2 €
C([r,T); L*(M)). Since ug € L™ (M), there exists kg > 0 such that

||u0h||Lm(BR) <ky Vh>0,R>0. (5.5.53)

Note that, in view of (5.5.53), the norms in (5.5.50) and (5.5.51) do not depend on R
(see Proposition 5.4.3, Lemma 5.4.1 and Remark 5.4.4). Therefore, we pass to the limit
as R — +oo in (5.5.50) and (5.5.51). By Fatou’s Lemma,

() (5.5.54)

lun (&)l Lmary < e

furthermore, since uhR — up as R — +o0 pointwise,

2m

len(®llzo@n < T { [ luo pll L a7V

5.5.55
T S Lo ) B
e“lu m L B .
ORIL™(M) (m—1)t

Note that both (5.5.54) and (5.5.55) hold for allt > 0, in view of the continuity property
of u,{? deduced above.

Moreover, again by monotone convergence, it is possible to compute the limit as
R — +oco in the integrals of equality (5.5.52) and hence obtain that, for any ¢ €
C°(M x (0,T)) such that ¢(z,T) = 0 for any x € M, the function uj, satisfies,

//uhcptdudt //uh A(pdudt—i-/ / up)? pdupdt
(5.5.56)

/UOh() oz, 0) dy.
M
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Observe that, due to inequality (5.5.54), all the integrals in (5.5.56) are well posed
hence uy, is a solution to problem (5.1.1), where we replace ug with g p, in the sense of
Definition 5.2.1. Finally, let us observe that {ug}r>0 has been chosen in such a way
that

U, — UQ in Lm(M)

Observe also that {up}n>0 is @ monotone increasing function in h hence it has a limit
as h — +o0o0. We call u the limit function. In view (5.5.46), (5.5.47), (5.5.50), (5.5.51),
(5.5.54), (5.5.55), the right hand side of (5.5.48) is independent of k, R and h. So,

m+1 m

u 2 € HY((7,T); L>(M)). Therefore, u = C([r,T); L*(M)). Hence, we can pass to
the limit as h — 400 in (5.5.54) and (5.5.55) and similarly to what we have seen above,
we get

[w() || o (ary < €<l zman, (5.5.57)

and

_2m
lu@®)llzeoary <T { (e o | o (ary ] T

N (5.5.58)
 om 1 2m+N(m—1)
Ct m 2mAN(m=1) | ____— )
+ [ Juoll Lm(an)] [(m 1)15] }

Note that both (5.5.57) and (5.5.58) hold for allt > 0, in view of the continuity property
of u deduced above.

Moreover, again by monotone convergence, it is possible to compute the limit as
h — 400 in the integrals of equality (5.5.56) and hence obtain that, for any ¢ €
C°(M x (0,T)) such that p(z,T) = 0 for any x € M, the function u satisfies,

/ /ucptd,udt / / mAcpdudtJr/ /upgodpdt
(5.5.59)

/MuO< 2) (e, 0) dp.

Observe that, due to inequality (5.5.57), all the integrals in (5.5.59) are finite, hence u
is a solution to problem (5.1.1) in the sense of Definition 5.2.1.

Finally, let us discuss (5.2.8). Let ¢ > 1. If ug € LY(M) N L™(M), we choose the
sequence ugy, so that it further satisfies

uop, — up in LYM) as h — +oo.

We have that

)l pasr) < € lluonllLa(py)- (5.5.60)
Hence, due to (5.5.60), letting & — +o0o, R — 400,h — +00, by Fatou’s Lemma we
deduce (5.2.8). O

Proof of Theorem 5.2.3. We note in first place that the geometrical assumptions on M,
in particular the upper curvature bound sec < —ky < 0, ensure that inequalities (5.1.2)
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and (5.1.3) both hold on M, see e.g. [39, 40]. Hence, all the result of Theorem 5.2.2
hold, in particular solutions corresponding to data ug € L™ (M) exist globally in time.
Besides, it has been shown in [54] that if ug is a continuous, nonnegative, nontrivial
datum, which is sufficiently large in the sense given in the statement, under the lower
curvature bound being assumed here the corresponding solution u satisfies the bound

u(z,t) > CC(t) [1 - Zn(t)}f‘l vt € (0,8), Y € M,

possibly up to a finite time explosion time S, which has however been proved in the
present chapter not to exist. Here, the functions 7, are given by:

Ct):==(r+t)*, nt):=(r+t)"? foreveryte [0,00),

where C, T, Ro,infBRO ug must be large enough and one can take 0 < a < ﬁ , 0 =

W. Clearly, u then satisfies limy_, o u(z,t) = +oo for all z € M, and hence u

enjoys the same property by comparison. O

5.6 Proof of Theorems 5.2.5, 5.2.6

For any R > 0 we consider the following approximate problem

p(x)uy = Au™ + p(x)uP in Br x (0,7T)
u=0 in OBr x (0,7) (5.6.61)
U = Uug inBRx{O},

here Br denotes the Euclidean ball with radius R and centre in O.
We shall use the following Aronson-Benilan type estimate (see [6]; see also [118,
Proposition 2.3)).

Proposition 5.6.1. Let 1 < p < m, ug € HY(Bg) N L>®(Bgr), uop > 0. Let u be the
solution to problem (5.6.61). Then, for a.e. t € (0,T),

—AUT (1) < puP(-,t) + Fpl)tuc,w in ®'(Bg).

Proof of Theorem 5.2.5. The conclusion follows using step by step the same arguments
given in the proof of Theorem 5.2.2, since the necessary functional inequalities are being
assumed. We use Proposition 5.6.1 instead of 5.4.2. The last statement of the Theorem
will be proved later on in Section 5.6.1 O

In order to prove Theorem 5.2.6 we adapt the strategy of [118] to the present case,
so we shall be concise and limit ourselves to identifying the main steps and differences.
Define

dp := p(x)dz .
For any R > 0,k > 0, for any v € L;(BR), we set

A :={x € Bgr: |v(z)| > k}
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and

o) = [ 1Gu)lp(o) do.
Br
where G (v) has been defined in (5.3.22).
Lemma 5.6.2. Letv € L;(BR). Suppose that there exist C > 0 and s > 1 such that
g(k) < Cu(Ap)*  for any k € RT.
Then v € L>®(Bgr) and

S

s—1
el < € (527 ) Ioliitemy

Proof. Arguing as in the proof of Lemma 5.3.6, we integrate inequality (5.3.26) between
0 and k and using the definition of g, we obtain

-1
~ET 0tk for any k € RT .
s

Choose

1yonleg 5
k=ko=Cslvllpaipyy s =7

and substitute it in the last inequality. Then we have

g(ko) <0 —= |Gy (V)| dpp =0 <= |G, (v)| =0
Br
1, 11 s
= || <ky <= v < C‘“’””HL})(BR);'
Thanks to the assumption that p € L'(R™), we can apply the weighted Holder inequality
to get
S
s—1

Rearranging the terms in the previous inequality we obtain the thesis. O

1
1-5

1
CSHUHLoo(BR)Hm

_1
[Vl Lo (Br) < 1=,

Lemma 5.6.3. Let p satisfy (5.2.9) and p € LY RYN). Let f, € Ly (BRr) and f2 €
L7 (Br) where

N N
m1>5, m2>5

Assume that v € H} (Bg), v > 0 is a subsolution to problem

—Av =p(fi+ f2) inBgr
v=20 on OB

Then
[0l (Br) < Crllfillm ) + Callfollpme 5y, (5.6.62)
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where
1 s \°  E-L
cr= o (27) 1ol
S e (5.6.63)
N m
Cr= o (27) ol

with s given by (5.3.18) .

Remark 5.6.4. If in Lemma 5.6.3 we further assume that there exists a constant kg > 0
such that

il gy < Kos ([ f2llpe(pyy < ko forall R >0,

then from (5.6.62), we infer that the bound from above on ||v|| (g, is independent of
R. This fact will have a key role in the proof of global existence for problem (5.1.4).

Proof of Lemma 5.6.3. By arguing as in the proof of Proposition 5.3.3, we get
1+2 -1
/B Gr(o)] dp < — [umu (AR VT foll e (Ag) e ]
R
Thus
1 1421 -1 1L
|1 < g nta R [HleL;;n ol ity + 1 fell o ||p|L1(§;)] .

R S

Now, defining

1 y 2
C = @ [Hfl”Lml (Bg) HPHLl(RN) + Hf2HL'”2(BR HpHLl } ’

the last inequality is equivalent to
[ 1Gu@)ldn < Cpan), tor auy ke R,
Br

where s has been defined in (5.3.18). Hence, it is possible to apply Lemma 5.6.2. By
using the definitions of C and C3 in (5.6.63), we thus have

[0l oo Bry < CrllfillLma ) + C2 llf2llpme By -

L]
Proposition 5.6.5. Let 1 < p < m, R > 0,up € L*(Bgr), up > 0. Let u be

the solution to problem (5.6.61). Let inequality (5.1.6) hold. Then there exists C =
C(p,m, N, Cs, |lpllprryy) > 0 such that, for all t >0,

)

lu()ll ooy < C




5.6. Proof of Theorems 5.2.5, 5.2.6

147

Proof. We proceed as in the proof of Proposition 5.4.3, up to inequality (5.4.40). Thanks
to the fact that p € L'(RY), we can apply to (5.4.36) the thesis of Lemma 5.6.3. Thus

we obtain
ooy < Callw?llzr1 gy + ¥C2 0l 72 -
Now the constants are

m
Q= ;
=
m
Qg = 1 _ q
ro
g1 such that 61 = —;
1 1 10
€9 such that §y = .
2 2 10,

Plugging (5.4.39) and (5.4.40) into (5.6.64) we obtain

Wz ) < CillwPll gy +7C2llwll g2 sy,

n(a1) 1 mepta/r
< C1 |6 lwllfe ) + [[w ”L}’ BR;M/ '
5f1_

( ) ro m I3
+7Cs |02 ||wH7£°°(BR) + H ||L3 BR)1+z1/ :
5;27

Inequality (5.6.65) can be rewritten as

1

[wll Lo (Br) < [277(041) (4C71) -1 } | w H;}I“’LBRIH-Q/H
+ [277(042) (4’}/&20;2) } H HingéRlJrq/rQ ‘

Computing the limits as ry — oo and ro — oo we have

no) — [Z]77 {1- 21

m

o [3] f2)

” H?"l (m p+q/f1) — 1

ol *‘”’”2) 1

Moreover we define

C:=max{I'1 ,T'2}

(5.6.64)

(5.6.65)
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and notice that, by the above construction, the thesis follows with this choice of C. [

Proof of Theorem 5.2.6. The conclusion follows by the same arguments as in the proof
of Theorem 5.2.2. However, some minor differences are in order. We replace Proposition
5.4.3 by Proposition 5.6.5. Moreover, since ug € L;(RN ), the family of functions {wugp,}

is as follows:
ugp € L°(RY) N CP(RY) for all b >0,

ug,p, > 0 for all h > 0,

Uo,h, < Ugp, for any hy < ha,

U, — Ug in L})(RN) as h — +oo.
Furthermore, instead of (5.5.46), (5.5.50), (5.5.54), (5.5.57), we use the following. By
standard arguments (see, e.g. proof of [118, Proposition 2.5-(i)]) we have that

Huﬁ,k(t)HL},(BR) < Clluonllzy(pgy forallt >0,

for some positive constant C = C(p,m, N, ||p||1(r~)), and, for any € € (0,m — p),

1
// (uﬁk)pﬁp(x)dacdtgc,
0 JBg

for some positive constant C' = C(p, m, N, ol L1 vy HUOHL})(RN)). Hence, after having

passed to the limit as k — 400, R — 400, h — 400, for any T' > 0,0 € C® (RN x (0, T))
such that p(x,T) = 0 for every € RY, we have that

T
/ / uP e p(x)pdrdt < C.
o JrN

Therefore, (5.2.10) holds.
O

5.6.1 End of proof of Theorem 5.2.5: an example of complete blowup
in infinite time

We recall that we are assuming m > 1 and 1 < p < m. Let us set r := |z|. We now
construct a subsolution to equation

pus = Au™ + puP  in RN x (0,7), (5.6.66)

under the hypothesis that there exist k1 and ko with ko > k1 > 0 such that

1
kir? < —— < kor? for any z € RV \ B.. (5.6.67)
p(x)
Moreover, due to the running assumptions on the weight there exist positive constants
p1, p2 such that

1
p1 < m < py forany z € B.. (5.6.68)
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Let
log(|z|) if »eRN\ B,
s(x) =
x|? + €2 .
EST -

The requested statements will follow from the following result.

Proposition 5.6.6. Let assumption (5.2.9), (5.6.67) and (5.6.68) be satisfied, and 1 <
p < m. If the initial datum ug is smooth, compactly supported and large enough, then
problem (5.1.4) has a solution u(t) € L®(RY) for any t € (0,00) that blows up in
infinite time, in the sense that

lim wu(z,t) = +oo Ve RY. (5.6.69)

t—+o0

More precisely, if C >0,a>0,a>0,8>0,T >0 verify

0<TF < g (5.6.70)
0<a< goam=D+1 (5.6.71)
o = 6.
m—1" 2 ’
and
Py
uo(x) > CT“ [1 — ﬁ(x)T_ﬁ} ., for any x € RV,

a

+

then the solution u of problem (5.1.4) satisfies (5.6.69) and the bound from below

Fos
u(z,t) > C(T +t)* [1 _5@) (T + t)ﬁ} , for any (x,t) € RN x (0, 400).
a

+
Proof. We construct a suitable subsolution of (5.6.66). Define, for all (z,t) € RV,

u(z,t) in [RV\ B.] x (0,T),

w(z, t) = w(r(z),t) = {v(w,t) in B, x (0,T),

where

~—

u(x,t

= u(r(z),t) == O(T + ) [1 - loi(” (T + t)—ﬁ] :

+

and

v(x,t) = v(r(z),t) = C(T +t)° [1 -

Moreover, let
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and define
Dy = {(z,t) € RN\ B.) x (0,T) | 0 < F(r,t) <1}.

For any (z,t) € Dy, we have:

1 1 1 1 _
= Ca(T + )" F7t — CB(T +0)° ™ F7ot 4 CA(T +0)° ! F

Cm
m R T 7F7n 17 T t
(W = =@ty (7 4 1)
cm m L (T+1t)78
(um)rr = T(T'i_t)mam_ 1Fm71 r2
m m 1L (T +t)~2°
— T+t Fm-1
2 (T'+1) (m—1)2 72

Due to (5.6.70)
0<G(r,t) <1 forall (z,t) € Be x (0,+00).

For any (z,t) € B, x (0,T), we have:

a1 L a1 1 1 a1 1 1
v =Ca(T+t)* "GmnT1 -CB(T+t) " ——Gm 1 +CB(T+t)* " ——GmT
m—1 m—1
(v™) ——O—m(T—kt) a M _Gmer 1—(T+t)
" a m—1 e2
cm m 1 (T+t)# cm 0y
M = = (T Gt e (T s et L ()28
(07 = = (Tt G S (e T G ()
For every (z,t) € Dy, by the previous computations we have
1
wup——Au"
P
a1 Lo a1 1 1 a1 1 1
=Ca(T+t)* "Fmn1 -CB(T+t) " ——Fmn14+Cp(T+1)* ——Fm1
m—1 m—1
1 cm m 1 o™ m 141
ST (T 4 yme ﬁ M pae s (pgpyme28 T pal
+p{ a< +1) -1 72 a2( +?) (m —1)2 72
m 1
+(N—1)Ca (T + t)"=F ”lem 173}—CP(T+t)p°‘Fmpl.
(5.6.72)
Thanks to (5.6.67), (5.6.72) becomes, for every (z,t) € Dy
1
up——Au" —
P
1 B cmtoom
<CFm1 ' Fla(T+t) = (T + 1)+ (N -2)k ——— (T +t)mF
< {[a<+> U N (B )
p crt o m —28 -1 phwes
7T ) - —— k(T + )™ — CP7 (T + t)PYF m—1

< cFmi ! {o(OF - 5(t) - 1P T |
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where T
e(F) =oc)F —d(t) —~v(O)F =T,
with
m—1
o(t) = [a — mﬁ—l] (T%—t)o‘_1 + Ca mnz 1k2 (N —2) (T—I—t)mo‘_ﬁ,
m—1
3(t) = ——2— (@ 4 1o 4 & Tk (T + ™2,

T m—1
V(t) = CPH(T + )P,

a? (m—1)>2

Our goal is to find suitable C' > 0, a > 0, such that
o(F) <0, forall Fe(01).
To this aim, we impose that

sup F)= max p(F)=¢(Fp) <0,
Fe(O,l)(p( ) FE(OJ)@( ) = ¢(Fo)

for some Fy € (0,1). We have

dy p+m —2 p-1

R t HFmT =
¥ 0 < o(t) — ~(t) 0
— Fy= [m_l U(t)]rg:ll
p+m—25(t)
Then
a(t)ptﬁfz
o(Fo) = K———F=— —0()
v(t) Pt
m—1 p+m—2
where K = (pfrgb) L (pfﬂ;iz) "' > 0. The two conditions we must verify are
Klo(t)] 5T <8(thy(t)5 . (m—o(t) < (p+m —2)(1). (5.6.73)

Observe that, thanks to the choice in (5.6.71) and by choosing

m—1 _
C > 28 (m 1)i’
a m ki

we have
cml om

a m-—1

cm—1 m 9
> k(T + )™
6(t) > 27 1)2k1( 4 t)

and conditions in (5.6.73) follow. So far, we have proved that

o(t) < ko (N —2) (T 4 t)m=7,

1
p(z)

Uy — A(um) —uP < 0 in D1 .
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Furthermore, since u™ € C*([RV \ B.] x [0,T)) it follows that u is a subsolution to
equation (5.6.66) in [R™\ B,] x (0, T). Now, we consider equation (5.6.66) in B, x (0, 7).
We observe that, due to condition (5.6.70),

1
5 < G <1 for all (z,t) € Be x (0,T). (5.6.74)
Similarly to the previous computation we obtain, for all (z,t) € B x (0,7T):

v — ;Avm P < CGET (@),

where

W(G) = 00G — g — 4G T
with 8 om1
N m m-
_ o a—1 v ma—p3
oot) = [a - 25 @ ety P e,
_ 5 a—1
dolt) =~ (T +1)

A (t) = CP (T + 1.
Due to (5.6.74), v is a subsolution of (5.6.66) for every (x,t) € B x (0,7T), if

p+m—2

2 m=1" (g9 — o) <.

This last inequality is always verified thanks to (5.6.71). Hence we have proved that

1
v — —AW™) =P <0 in Bex (0,7),

Moreover, w™ € CY(RN x [0,T)), indeed,

(Um)r — (,Um)r — —CmC(t)m m ln(t) |:1 o U(t)} m-1 in aBe % (O,T) .

m—1e a a |,

Hence, w is a subsolution to equation (5.6.66) in RY x (0, T).
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Chapter 6

Nonexistence of solutions for a
class of quasilinear parabolic
inequalities

6.1 Introduction

In this chapter we investigate nonexistence of nonnegative, nontrivial global weak solu-
tions to quasilinear parabolic inequalities of the following type:

Opu — div (|[VuP~2Vu) >V ul in Q@ x (0,7)
u=0 on 99 x (0,7) (6.1.1)
u = up in Q x {0};

where Q is an open bounded connected subset of RV, N >3, p > 1 and ¢ > max{p —
1,1}. Furthermore, we assume that V' > 0 a.e. in  x (0,7 and the initial condition
ug > 0 a.e. in Q.

Global existence and finite time blow-up of solutions for problem (6.1.1) has been
deeply studied when Q = RV, see e.g. [33, 34, 35, 97, 98, 105, 104] and references
therein. In particular, in [98], nonexistence of nontrivial weak solutions is proved for
problem (6.1.1) when Q = R, V =1 and

2N
qu—1+£.

P> N1 N

Moreover, problem (6.1.1) has been investigated also in the Riemannian setting,
see e.g. [9, 89, 110, 56, 137] and references therein. In [89] problem (6.1.1) is studied
when 2 = M is a complete, N-dimensional, noncompact Riemannian manifold; it is
investigated nonexistence of nonnegative nontrivial weak solutions depending on the
interplay between the geometry of the underlying manifold, the power nonlinearity and
the behavior of the potential at infinity, assuming that ug € Llloc(M ), u>0a.e. in M
and V € L}, (M x [0,+00)), V > 0 a.e. in M.

Furthermore, we mention that nonexistence results of nonnegative nontrivial solu-
tions have been also much investigated for solutions to elliptic quasilinear equation of

155
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the form
1

a(@) div (a(x)|Vu]p_2Vu) +V(x)u! <0 in M, (6.1.2)

where
a>0, acLip,.(M), V>0ae onM, VelL,.(M),

p>1,q>p—1and M can be either the Euclidean space RY or a general Riemannian
manifold.

We refer to [17, 95, 96, 97, 98] for a comprehensive description of results related to
problem (6.1.2) and also more general problems on R". Problem (6.1.2) when M is a
complete noncompact Riemannian manifold has been considered e.g. in [41, 42, 90, 123,
124]. In particular, in [90] it is showed how the geometry of the underlying manifold M
and the behavior of the potential V' at infinity affect the nonexistence of nonnegative
nontrivial weak solutions for inequality (6.1.2). Finally, we mention that (6.1.2) posed
on an open relatively compact connected domain € C M has been studied in [100].
Under the assumptions that

a>0, a€Lip,(Q), V>0aeonQ VecL.,.(Q),

p > 1, q > p — 1, the authors investigate the relation between the behavior of the
potential V' at the boundary of 2 and nonexistence of nonnegative weak solutions.

In the present work, we are concerned with nonnegative weak solutions to problem
(6.1.1). Under suitable weighted volume growth assumptions involving V' and ¢, we
obtain nonexistence of global weak solutions (see Theorems 6.2.1, 6.2.2). The proofs
are mainly based on the choice of a family of suitable test functions, depending on two
parameters, that enables us to deduce first some appropriate a priori estimates, then
that the unique global solution is u = 0. Such test functions are defined by adapting
to the present situation those used in [89]; however, some important differences occur,
since in [89] an unbounded underlying manifold is considered, whereas now we consider a
bounded domain. In some sense, the role of infinity of [89] is now played by the boundary
01). Obviously, this implies that such test functions satisfy different properties. To the
best of our knowledge, the definition and the use of such test functions are new.

As a special case, we consider in particular the semilinear parabolic problem

Ou — Au = Vud in 2 x (0, +00)
u=0 on 09 x (0, 400) (6.1.3)
u = ug in Q@ x {0},

where ¢ > 1, ugp € L} (Q), up > 0 ae. in Q, V € L _(Q x [0,+00)), with V > 0, i.e.

loc loc

problem (6.1.1) with p = 2.
As a consequence of our general results, we infer that nonexistence of global solutions
for problems (6.1.1) and (6.1.3) prevails, when

V(z,t) > Cd(xz)™" for ae. x€Q,te0,+0)

for some C' > 0 and
o1 >q+1,
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where

d(z) := dist(z,09Q) for any x € Q. (6.1.4)

Furthermore, we show the sharpness of this result for the semilinear problem (6.1.3) in
case 0f) is regular enough and V = V(x) is continuous and independent of t. Indeed,
under the assumption that

0<V(x)<Cd(x) " forall xe€Q

for some C' > 0 and
0§01<Q+17

we prove the existence of a global classical solution for problem (6.1.3) (see Theorem
6.2.5), if the initial datum ug is small enough. This existence result is obtained by means
of the sub— and supersolution’s method. In particular, we construct a supersolution to
problem (6.1.3), which actually is a supersolution of the associated stationary equation.
Such supersolution is obtained as the fixed point of a suitable contraction map. In order
to show that such a fixed point exists, we need to estimate some integrals involving the
Green function associated to the Laplace operator —A in Q (see Lemmas 6.6.1-6.6.2).
Finally, we study the slightly supercritical case

V(x,t) > d(x)" T f(d(x)?! for ae. x€Q,t€0,+00),

where f is a function satisfying suitable assumptions and such that lim._,q+ f(¢) = +o0,
for which we prove nonexistence of nonnegative nontrivial weak solutions in  x (0, +00)
(see Theorem 6.2.6). The proof of this result require a different argument with respect
to the previous nonexistence results, which makes use of linearity of the operator and
of the special form of the potential. Then the critical rate of growth d(z)™9! as
approaches 0f) is indeed sharp for the nonexistence of solutions to problem (6.1.3). Our
results do not cover the case of critical rate of growth, i.e.

Cld(ac)_q_l <V(x,t) < C’Qd(x)_q_l

for some C1, Cy > 0, but we conjecture that also in this case no nonnegative nontrivial
supersolution of problem (6.1.3) exists.

Chapter 6 is organized as follows. In Section 6.2 we describe our main results and
some consequences for problem (6.1.1) (see Theorem 6.2.1, 6.2.2 and Corollaries 6.2.3,
6.2.4);). in particular, in Subsection 6.2.1 we give the statements of our results for the
semilinear problem (6.1.3) (see Theorem 6.2.5, 6.2.6 and Corollary 6.2.7). The definition
of weak solutions and some preliminaries inequalities are stated in Section 6.3. Finally
we prove the results obtained for problem (6.1.1) in Sections 6.4 and 6.5, while the
proofs of the results concerning the semilinear problem (6.1.3) are shown in Sections 6.6
and 6.7.

6.2 Statements of the main results

We now introduce the following two hypotheses HP1 and HP2 under which we will prove
nonexistence for problem (6.1.1). Let 6; > 1, 03 > 1; for each § > 0, we define

S:=Qx[0,+00) and Es:= {(ZL‘,t) €S dx) 2 +t" < 6_92}, (6.2.5)
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Observe that Es, C Es, for every §; > d2 > 0 and that (Js., Es = S. Moreover let

_ q _ 1
S1 = _192, SQ::?,

4 ¢ (6.2.6)
5 = ng §p = p—1

g—p+17’ g—1’

HP1 Assume that there exist constants §; > 1, 0, > 1, Cy >0, C >0, y € (0,1) and
g0 > 0 such that

(i) for any ¢ € (0,0¢) and for any ¢ € (0, o)

/ (D (T ) a4 quar < Co—1-00F [log(8) (6.2.7)
E(%)l/ezs\Ea
for some 0 < s9 < $9;
(ii) for any ¢ € (0,0p) and for any ¢ € (0, &)
/ d(:c)_(92+1)<q—2+1_5) Vot dudt < O 5 C0% |log(8)|*
E(%)1/926\E5
(6.2.8)

for some 0 < s4 < $4.

HP2 Assume that there exist constants §; > 1, 0, > 1, Cy >0, C >0, g € (0,1) and
€0 > 0 such that

(i) for any ¢ € (0,0¢) and for any € € (0, )

/ (O () v dudr < 055G log(5); (6.2.9)
E(l)ue%\Eé
2

] (O (T e dadt < 059G [log(8)|% ; (6.2.10)
E(l)l/e%\E‘;
2

(i) for any ¢ € (0,0p) and for any € € (0, )
/ d(z) "D (F2) =i dpdt < €60 [log(5)|

E(%)1/926\E5
(6.2.11)

/ d(x)_(92+1)<q—g+1 +5) Viiqf;jrl —€ dxdt S 0678737005 ‘lOg((S)|§4 ]
E(l)l/GQ(S\Eé
2
(6.2.12)

We can now state our main results.
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Theorem 6.2.1. Let p > 1, ¢ > max{p — 1,1}, V € L}, (2 x [0,400)), V > 0 a.e. in
Q x (0,+00) and ug € L} (Q), ug > 0 a.e. in Q. Assume that condition HP1 holds. If

loc
u is a nonnegative weak solution of problem (6.1.1), then u =0 a.e. in S.

Theorem 6.2.2. Letp > 1, ¢ > max{p— 1,1}, V € L} (2 x [0,+00)), V >0 a.e. in

loc

Q x (0,+00) and ug € Li,.(Q), up > 0 a.e. in Q. Assume that condition HP2 holds. If
u s a nonnegative weak solution of problem (6.1.1), then u =0 a.e. in S.

As a consequence of Theorem 6.2.1 we introduce the following Corollary 6.2.3. Let
d(x) and S be defined as in (6.1.4) and (6.2.5) respectively. Moreover we introduce the
functions h : @ — R and f : (0, +00) — R such that

h(z) > Cd(z)~"" [log(d(z))| ™  for a.c. z € Q, (6.2.13)
0< ft) <C(1+t)* for a.e. t € (0,400), (6.2.14)

where 01,91, > 0, C > 0. We can now state the following

Corollary 6.2.3. Let p > 1, ¢ > max{p — 1,1} and ug € L}, (), up > 0 a.e. in Q.
Suppose that V € L} (2 x [0,+00) satisfies

loc
V(z,t) > h(x)f(t) for a.e. (z,t) €S, (6.2.15)
where h and f satisfy (6.2.13) and (6.2.14) respectively. Moreover suppose that
T 1
/ F() 1 dt < CT?? (log T)%
o . (6.2.16)
| a < or,
0
forT >0, 09, 04, 02, 64 > 0 and C > 0. Finally assume that
(i) o1>q+1;
(ii) 0 < o9 < q%;
(iii) 61 <1 and b6y < =3
Now, if u is a nonnegative weak solution of problem (6.1.1), then u =0 a.e. in S.

As an immediate consequence of Corollary 6.2.3, choosing f(t) = 1, 0o = 04 = 1
and 6, = d, = 0, we obtain the following

Corollary 6.2.4. Let p > 1, ¢ > max{p — 1,1} and up € L}, (), up > 0 a.e. in Q.
Suppose that V € L} (2 x [0,4+00)) satisfies

loc
V(x,t) > Cd(x)"°"  for a.e. (x,t) €S, (6.2.17)

with o1 > q+ 1. If u is a nonnegative weak solution of problem (6.1.1), then u =0 a.e.
in S.
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6.2.1 Further result for semilinear problems

We prove, for the semilinear problem (6.1.3), an existence result when V = V(x) is
continuous and independent of ¢ and

0<V(zx)<Cd(z) 7, zeq,
with
0<o<qg+1

(see Theorem 6.2.5). Then we show a nonexistence result that yield that all nonnegative
solutions of (6.1.3) are trivial if V blows up at the boundary 952 faster than d(x)=9~!
(see Theorem 6.2.6 and Corollary 6.2.7 for precise statements).

Theorem 6.2.5. Suppose that OQ is of class C3 and let ug € C(Q), ug > 0 in €, be
such that there exists € > 0 such that

0<wup <ed(x) foranyxc. (6.2.18)
Moreover let V € C(Q), V >0 in Q and assume that for some C > 0
V =V(z) <Cd(z)” " for anyz € Q. (6.2.19)
with
0<or<qg+1. (6.2.20)

Then problem (6.1.3) admits a classical solution w in (€ x (0,400)) if € > 0 is small
enough.

For any ¢ > 0 sufficiently small, set
Q. ={x € Q|d(x) > e}. (6.2.21)
Theorem 6.2.6. Let V € L} (2 x [0,00)), V > 0 a.e., and ug € L} (Q), ug > 0

loc loc
a.e. Assume that there exists a nonincreasing function f : (0,e9) — [1,00) such that

lim,_,g+ f(e) = 400 and such that, for some C > 0, for every e > 0 small enough

f(E) _ 1 2q
/ / VoaeTdedt < Cea1,
0 Q¢\0:

(&) e e
/ / VoaTdadt < C f(e)aT.
3f(e) JQ

(6.2.22)

%
If w is a nonnegative weak supersolution of problem (6.1.3), see Definition 6.3.2, then
u=0 a.e. in Q x (0,+00).

As a consequence of Theorem 6.2.6 we have the following

Corollary 6.2.7. Suppose that ug € Li,.(2) with ug > 0 a.e. in Q. Assume that V
satisfies for some C >0

V(x,t) > Cd(x) T f(d(x)?!  for a.e. z € Q, t €0, +00), (6.2.23)

where f: (0,diam(Q2)] — [1, +00) is nonincreasing in a right-neighborhood of 0 and such
that lim,_,g+ f(g) = +00. If u is a nonnegative weak supersolution of problem (6.1.3),
see Definition 6.5.2, then u =0 a.e. in Q x (0,400).
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Remark 6.2.8. We note that an example of function f satisfying the assumptions of
Corollary 6.2.7 is

m times
N

1\ 17
flr)= logologo...olog<K+>} , >0,
T

for any B >0, m € N and for K > 0 sufficiently large.

Remark 6.2.9. We note that our results do not cover the case of a potential V' having
critical growth, i.e.

Crd(x) ™17 < V(a,t) < Cad(x) ™",
even if we conjecture that Corollary 6.2.4 holds also when o1 = q+ 1.

Remark 6.2.10. From Remark 2 in [100] we see that the stationary problem
div (|Vu[P2Vu) + Vul <0 in Q (6.2.24)
does not admit any nontrivial nonnegative solution if
V(z) > Cd(x) " |log d(z)| !

for some C' > 0. On the other hand, the function ¢ satisfying (6.6.136), which we
construct in the proof of Theorem 6.2.5 using a fixed point argument (for small values
of the parameter A > 0), is a nonnegative nontrivial solution of problem (6.2.24) with
p =2 in the case when

V < Cd(z)™,

with 0 < 01 < g+ 1. Thus we see that the exponent ¢ + 1 plays a special role both for
the elliptic and the parabolic problems.

For the sake of completeness, we also observe that in [100] an example was con-
structed in a unit ball, showing that problem (6.2.24) for p = 2 may admit a nontrivial
nonnegative solution if

V(z) = Cd(z)™"logd(x)| ="~

for some ¢ > 0.

6.3 Preliminaries

Let us first give the precise definition of solution to problem (6.1.1).
Definition 6.3.1. Let p > 1, ¢ > max{p — 1,1}, V € L (Q x [0,+00)), V > 0 a.e.

loc
in Q x (0,+00) and ug € L} (Q), up > 0 a.e. in Q. We say that u € VVllo’f(Q X
[0,4+00)) N L} (Q x [0,+00), Vdadt) is a weak solution of problem (6.1.1) if u > 0 a.e.
in 0 x (0,4+00) and for every ¢ € WIP(Q x [0,+00)), ¢ > 0 a.e. in Q x [0,+00) and

with compact support, one has

/ / Vul @ drdt < / / |Vu|P~2 (Vu, V) dadt
0 Q 0 Q

—/ /u@tgpdxdt—/uggp(x,O) dx.
0 Q Q

(6.3.25)
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Definition 6.3.2. Let p,g > 1, V € L (2 x [0,+0)), V > 0 a.e. in Q x (0,400)
and up € L}, (), ugp > 0 a.e. in Q. We say that u € VVZIOCZ(Q x [0,+00)) N LT (2 x
[0,400), Vdzdt) is a weak solution of problem (6.1.3) if u > 0 a.e. in Q x (0,+00)
and for every ¢ € Lip(Q x [0,00)), ¢ > 0 in Q x [0,4+00) and with compact support in

Q2 x [0,00), one has

/ /qugodmdt—/ /(Vu,Vgo) d:):dt—/ /u@tgod:):dt—/uocp(:v,O) dzx.
0 Q 0 Q 0 Q Q

(6.3.26)
We say that u is a supersolution to problem (6.1.3) if it satisfies Definition 6.3.1 with
p=2.

We now state some Lemmas that will be used in the proofs of Theorems 6.2.1 and
6.2.2. We omit here the proofs of these Lemmas that can be find in [89].

Lemma 6.3.3. Let s > max {1 } be fixed. Then there exists a constant C >

1 q—17 g— p+1
0 such that for every a € % (—min{l,p — 1},0), for every nonnegative weak solution u
of problem (6.1.1) and for every ¢ € Lip (Q x [0, 4+00)) with compact support, 0 < ¢ < 1

one has
1 > +a s 3 o a—1 _s
- Vul™ o%dx dt + ~ | |Vu]pu ©® dxdt
2Jo Ja 4 0
_(»=1)q o0 P(qua) pta—1
< C{|a| q— p+1/ / |V¢|q 1/ a— p+1 dxdt (6327)
0o JO

> gta _ atl
+/ /|at¢|q—1v d:pdt}.
0 Q

Lemma 6.3.4. Let s > max {1, gﬂ, 7 2}’;3_1} be fized. Then there exists a constant C' >

0 such that for every a € % (— min {l,p —-1,q—-1, q;f—fl} ,O), for every nonnegative

weak solution u of problem (6.1.1) and for every ¢ € Lip (S) with compact support and
0 <y <1 one has

/ /quwsdxdt
0 Q

<C |:’C¥’ 1 <‘Oé‘_q p+1/ /V a— p+1 ’V@’q p+1 dI‘dt—l—/ / % ’81&90‘% dxdt>:| P

p—1

g—(1=a)(p—1)

X // qu+ag08dxdt // Vo S |V|a=0- S dadt
S\K S\K

gto—1

q+& _ gt q+a
+C // V ult o® ddt (/ / Ve |Opp|ata—T d:cdt) ,
S\K 0o Ja

(6.3.28)

where K :={(z,t) € S : p(z,t) =1} and S has been defined in (6.2.5).
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Corollary 6.3.5. Under the hypotheses of Lemma 6.3.4 one has

/ /quapsd:cdt
0 Q
p—1
1 _ (=g [ pta—1 o0 _a+l ata P
<C |l | | = V a—pF1 ]Vg0|q =22 dxdt + V7 a1 |Opp|a—T dadt
0 Q

(1 o) P 1) a—(1—a)(p—1)

X // Vule® dx dt // Vo D |Vp|a= T D dadt
S\K S\K
_(p=1)q o0 _pta—1 p(gta) o0 _atl qta q%
+C (|a! 4P+1/ /V a—p+1 |Vp| a—p+1 dwdt+/ /V a—1 |Oyp| a1 d:cdt>
0 Q 0 Q

qgt+a—1

S _ 1 gta q+
X </ / Va1 |Qyp|ate—T d:zdt)
0 Q

Lemma 6.3.6. Let s > max {1 gl _2pg } be fized. Then there exists a constant C' >

(6.3.29)

0 such that for every a € % (— min {l,p —1,q—1, q;f—{l} ,O), for every nonnegative

weak solution u of problem (6.1.1) and for every ¢ € Lip (S) with compact support and
0 < <1 one has

/ /qu(psdl’dt
0 Q
p=1
<C [|a! ! <\a|_q P+1/ /V e |V<,0|q s d:cdt+/ /V = |8t<p|q I dxdt)} ’

ga—(1-a)(p—1)

o Pq
X // V T dadt // V- q(l(l a)(p 1) V|- o sy daxdt
S\K S\K

q

;1
+C / Vul p®drdt </ /V_q—l |8tg0\¢1%1 dxdt) ’ ,
S\K 0o Jo

(6.3.30)
where K :={(z,t) € S : p(x,t) =1} and S has been defined in (6.2.5).
6.4 Proof of Theorem 6.2.1 and Corollary 6.2.3
Proof of Theorem 6.2.1. For any § > 0 sufficiently small, let o := loé 5- Observe that
a < 0and a — 0~ for § — 0. We define for any (z,t) € S
1 in Es
p(a,t) = [d(x)~02 + 01> o (6.4.31)
[5_92 n (Ej)
where 0(Co 1 G0t 1
Cy > M (6.4.32)

O2q
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01,02 > 1 as in HP1 and Es has been defined in (6.2.5). Moreover, for any n € N we
define

1 inEs
5\ "
N (z,t) == ¢ 2 — <n> [d(z) %2 + 9] in E(1)1/92£ \Es . (6.4.33)
0 in E’< )1/922
Let
on(x,t) == nu(x,t) p(x,t). (6.4.34)

Observe that for any (z,t) € S, ¢, € Lip(S) and 0 < ¢ < 1. Moreover, for any a > 1
we have
|at§0n’a = ’nnat()o + Spatnn’a < 2a71 (‘atgola + Q)Oa‘atnnw) : (6'4'35)

IVon|® = [mVe + oVna|* <2971 (|Ve|® + % Vna|*) . (6.4.36)

Let 5 > max{l, 2, q%l}

functions ¢,. Then, for some positive constant C, for every n € N and |a| > 0 we have

/ /qu'm oy dx dt
0 Q
pla+a) b gta  _ a+l
EC{|Q| q— p+1/ /|V<pn’q 1V q p+1 d:pdt_|_/ /|8t90n|q_1v q—1 dxdt}

plata > pa+a) plete)  _ pt
< Cla|” q P+1 [/ / V|- p+1V = p+1 dxdt—|-/ /gpq P+ |y | e F1 V4 p+1 d:];dt:|

* gto _ atl o ata gta ot
+C [/ / |0r o] STV dedt —I—/ / Qa1 |Omy| TV a1 dxdt] :
0 Q 0 Q

Let us define

we apply Lemma 6.3.3 with ¢ replaced by the family of

E~57n — E(1)1/92é \Es, (6.4.37)
2 n n
and
o0 plg+a) ptra—1
I = / / Vit V=i dedt, (6.4.38)
0 Q
p(g+a) p(g+a) p+
I = // pa- p+1’ |q L a— p+1 dx dt, (6,4.39)
E(Yn
> gt atl
I3 ::/ /\8“0]‘111/ a1 dxdt, (6.4.40)
0 Q
ata ato  a+l
I ://~ pa-1 ’&f”n“le a1 dxdt. (6.4.41)
Eé,n

Then the latter inequality can be read, for a positive constant C and for every n € N,
as

o (p-1)
/ / Vult® o8 dadt < C’\arqp*zﬂr(l] [ + I2] + C [I3 + L] . (6.4.42)
Q
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In view of (6.4.31) and (6.4.33), for |a| > 0, C' > 0 and for every n € N, we have

i (SNRSR Le
Iy S/ ~ Cn 1972 —pt1 [ — [d(:ﬂ)f 27 Vd(x)| vV re P+1 dx dt
Eén

n

p(g+a) p(g+a) plata) pta+1
< Onf i (o g T / d(z) VSRR VTS dadt.
Eén

(6.4.43)

> 0, (6.4.43) reduces to

s ()

with s4 as in HP1. Now observe that, due (6.4.32), we have

Due to assumption HP1(i) with ¢ = — =

__pe __
62 2059) (0 o1y gy plate) (§\ Tampri €0
IQ<Cn2L1 1L 0 % a—pt1 [ —
n

S4

: (6.4.44)

o
qg—p+1

|af
———— (—blap+Cipba(g+a) — Cy) >
q_p+1( 2p+ Cipba(q+a) — Co) =
Moreover, there exist C' > 0 such that

[e] a 6o p+C
sa=pr1l02p+Co] _ qmprrl0ap+Collog(d) _ R — &

Then from (6.4.44) we deduce, for some C > 0

e ()

Similarly, in view of (6.4.31) and (6.4.33), for |a] > 0, C' > 0 and for every n € N
we have

0
neof [ e ><6) ) ) B =t g
Eén

S4

lo

I, <Cn aptt (6.4.45)

" (6.4.46)
<O [ 9
E6 n
Due to assumption HP1(i) with e = — 2% > 0, (6.4.46) reduces to
—#92—005 So
I < € 2 (55) ©r0=1) g0 (4% <5> 1 log <5>
n n (6.4.47)
< Canll[C1a92(q+a)fa92+Co|aH 5q—i1[a92+00a]7
with s2 as in HP1. We now observe that, due to (6.4.32), we can write
it [Crba(ate)=0a=Col =327 (6.4.48)

Moreover, observe that there exist C' > 0 such that

62+C
57T (021Co) _ o727 (02+Co)log(8) _ H2ET0

Qi

(6.4.49)
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By plugging (6.4.48) and (6.4.49) into (6.4.47) we get

(9

Let us now consider integral I; defined in (6.4.38). By using the definition of ¢ in
(6.4.31) we can write

s2

I, <Cn o1

(6.4.50)

) 9o~ Cra—l 1 p(q+fl)

2 4 g0\ DO g ()01 T pran

I; < // C1a\92< ( )5 s ) ((5)—92] \% I‘;*P‘Ll dxdt

(Cra—1)p(a+e)
a A ST S % AP (0 )p(g+a) 095C1ap(g+a) a—
= C// |Oé|z<q;r+1> )792 + tel} o d(z)” e 5 T sztpﬂl dzdt.
EC
(6.4.51)

Similarly to (6.4.49), we can say that there exist C > 0 such that

05C1 ap(g+o) _
q—p+1 < C’

hence (6.4.51), for some constant C' > 0, reduces to

_ 03(Cra—1)p(g+a)

pta— 1 (B2+1)p(g+a) _6 0 76% q—p—+1
L <C’\o¢|q e // V aptid(x)” apt (d(x) 24t 1) ? dzdt.
EC’
(6.4.52)

Claim: Let f : (0,400) — [0,400) be a non decreasing function and if HP1(it)
holds then, for any 0 < e < &g and for any 0 < § < dg small enough, we can write

[ [ <[(d(“)_62”91)_ﬂ>d<m) O r (=) Y54 o
(E5)¢ 1

202 6 Prq
<C / F(z)z"amrmn 270  1og 2[5 dz,
(6.4.53)

for some constant C' > 0. To show the claim, we first observe that

J
f(x)§f<29,;> foralleEgnT?\Eg%.
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Hence, due to HP1(7i), we can write

_1 _
(Es)©
_1 -
) ! <[d(x)—92 + tel} 92) d(x)i(ezﬂ)p(qéﬂ*e) V- quilﬁ dxdt

+OO —92 —
< Zf [ (Sn] ( ” // d(m)_(ezﬂ)p(ﬁ%) V_rfp}q € dudt
n—=0 292 <E6 ne1 \E, HZ)
2 2

S4

6> —Coe
<eSr () GE) T ()
n—0 292 202 202

2(n=1)/02 1)/92 — —
<CZ )z - p+192 Coe 1|logz]s4dz

= 2”/92

21/026 pq
= C/ f(z)z~ 0*P+192_COE_1| log z|** dz.

We now apply (6.4.53) with € = o5 0 to inequality (6.4.52). We get

q—p+1
L < C|ay'2(—q§ff /2 " z~ 2 LR = B 00 S0 — Y 1og 2|** dz. (6.4.54)
0
We define 1
b:= pR— (—02C1ap(q + @) + Oapa + Coav) (6.4.55)

and due to (6.4.32), we observe that

S
g—p+1
By plugging (6.4.55) into inequality (6.4.54) we can write
plg+a) 21/026
I <Cla|ar+ / 227 log 2|* dz. (6.4.56)
0
Let us now perform a change of variable, we define
y :=b|logz|,
hence (6.4.56) reduces to
plata) o 4 0 s
L<Claf#5yst [ ey ay
—00
o —s4—1
<o (o) @57
g—p+1

< ClafTra—sl
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with s4 as in HP1(d1).
Finally, let us consider I3 defined in (6.4.40). Due to the definition of ¢ in (6.4.31)
we get

+a
Cia—1 ,p,. 1
(z)7%2 + 10 th - _atl
I3 < // C1|a|62 ( 50 = Va1 dadt
Lo g1 ) 0 hta) 0;C1atat0) a1
<C ]a!ql 2+t1] t a1y -t Va1 dxdt.
EC
B (6.4.58)
Arguing as in (6.4.49), we can say that there exist C' > 0 such that
0201 a(g+a) _
-1 <C.
Hence (6.4.58), for some constant C' > 0, reduces to
_p,(C1o—D)(ata)
a+l (01-1)(g+a) _p P @ q-1
I < Cla| i1 VT e (d(x) 2+t1) dzdt.
(6.4.59)

Let us now show the following
Claim: Let f : (0,+00) — [0,400) be a non decreasing function and if HP1(7)
holds then, for any 0 < e < ey and for any 0 < § < dg small enough, we can write

[ f? ([ )Gyt
EC’

(6.4.60)
2020 90y —C 1
< C/ flz)z7 a7 log 2[* dz,

for some constant C > 0.
Inequality (6.4.60) can be proven similarly to (6.4.53) where one uses HP1(7) instead

of HP1(ii). We now apply (6.4.60) with & = 121 > 0 to inequality (6.4.59). We get

gta 21/625 2] q+a ) Cpa
I3 < C|a|q—1/ —02(Cra=D TR =g 0+ T L g 4152 g2 (6.4.61)
0
We define )
B = pE) (—=02C10(q + @) + 20 + Cpar) (6.4.62)
and due to (6.4.32), we can say that
s>l oy
qg—1

By plugging (6.4.62) into inequality (6.4.61), we get
PR

I3 SC’\a|q1/ e’
—00

< Clof T g2t

o
< Claja-1772

521
B

Y

= d
3 Y

(6.4.63)
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with sy as in HP1(7).
For any n € N and § > 0 small enough, due to inequalities (6.4.45), (6.4.50), (6.4.57)
and (6.4.63), inequality (6.4.42) reduces to
J
log <>
n

la]

o0 n _(p=1)g Pq___ g, 1 _
Vul™ @l dedt < Cla|” a=p+l ||a|a—pH +n apHl
0 Q

()]

where C' > 0 does not depend on § and n. By taking the limit in (6.4.64) as n — oo for
a fixed § > 0 small enough, we get

OS// Vudte dazdtﬁ/ /Vu‘“'a o, dxdt
Es 0 JQ (6.4.65)

< C [jaldF T 4 ol

} (6.4.64)

o

P B T
+C ||a|=17 7 4+ n T

Observe that, due to the definitions of s in HP1(7) and s4 in HP2(i7)

1 1
>0, 2

—  — 5, >0.
q—1 qg—p+1 o

Hence we can take the limit in (6.4.65) as § — 0 (and thus a — 07) obtaining, by

Fatou’s Lemma
o0
/ / Vuldxdt =0,
0 Q

which concludes the proof. O

As a consequence of Theorem 6.2.1 we prove Corollary 6.2.3.

Proof of Corollary 6.2.3. We show that under the assumptions of Corollary 6.2.3, hy-
pothesis HP1 is satisfied. Let us define

Es:=F E
By

and observe that

— _ 1 1 b2
Es C {d(m) > 9 025} x [0, 29167 7

o)
| I
I
2
>
X
1
\.O
[\
S
<>ql
She
—_
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where d(z) has been define in (6.1.4). Observe that

/ / O (75 2) y-atite g
Ej;

O-1) (5 —¢) N
< / /E K [F()h(x) dadt

[4

()

b

1

2015 1

<C h(ﬁy)_qflﬁ_8 dx / t(0171)<ﬁ*5>f(t)—q%1+adt
Qs 0

1te

<o [ [aw gy ] T

f(t)_q*il(l +t)0‘5t(91_1)(q%1_6)dt (6.4.66)

< C [log(8)|+1 " [5‘3[(9””(&—5)*‘4} 577 Jlog(5)]2

S 05_% [(91_1) (q%l_a)"l‘aa"l‘oé] |10g(5)’%—851+(52 ,

for 6;,02 > 1 as in HP1. For € > 0 small enough, condition (6.2.7) of HP1 is satisfied
because

b | q 01 _
L — >0 d § _— . 6.4.67
0 [q—l 0'2:|_ an 2—|—q_1<32 ( )
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On the other hand, for € > 0 sufficiently small

[ [ ey ol vt
Es
/ / (0241 (= <) [f(t)h(a:)]_iqf;iﬁs dxdt
Es

1 02
3 2015 01 _
< [ a@y () pay o / ft) T ed
Qs 0
<C | d ’(92“)1”(%“*5)[ o1 A
< () =71 (@)™ log(d(x)) | d

1 02

2015 O _ 6.4.68
x 5‘33“5/ F(6) T de ( )
0

|

SC d(x)_(ez-ﬁ-l)P(ﬁ )+0’1q ] €01|1Og(d(l‘))|51#7'}'1_861dx
Qs

0 6
x [5‘0?“%‘9?“; 1og(5)154]
< 057%(a6+04)|10g( )|64+61<m )

y / d(x)*(92+1)1’<ﬁ;+1*5>+01#TL*ECH d
Qs

We define

q p—1
=—(h+1)p|————¢c)+o1——— —¢
b (2 )p<q—p+1 ) Ulq—p—i—l o1

and we observe that § < —1 for 69 sufficiently big. Therefore, due to the boundedness
of Qs, inequality (6.4.68) reduces to

Ea

S 05—a(a€+04)+5+1|log(5)|§4+51<q p+1 E)

(6.4.69)

For £ > 0 small enough and for #3/6; > 0 small enough, condition (6.2.8) is satisfied
because the hypotheses of the Corollary 6.2.3 guarantee that

0 q—p+1 p—1 _
- =0y 2> 1 d g+6|——— < 84.
o1 010’ p—l >q+ an 4+ 01 q_p+1 S S4
Thus HP1 holds and we can apply Theorem 6.2.1 and obtain the thesis. O

6.5 Proof of Theorem 6.2.2

Proof of Theorem 6.2.2. Let us recall the family of functions ¢,, defined in (6.4.34). We
claim that u4 € L'(Q2 x (0,+00), Vidudt). To prove this, we start by showing that for
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some constants A > 0, B > 0, s > 1, for every § > 0 small enough and every n € N we

have
—1

oo o0 %
/ / pyulVdrdt < A </ / oy ulV d:cdt) + B. (6.5.70)
0 Q 0 Q

In order to prove (6.5.70) we apply Corollario 6.3.5 with ¢ replaced by the family of
functions ¢,. Let

(6.5.71)

o >max{2(1+00+92p) 2(Co+1) Co—l—l}

phagq " 02(g—1)q" 29

with Cp > 0 and 62 > 1 as in HP2. Then for any fixed s > max{l, g+}, quﬁl}’ 0>0

sufficiently small, o = @ < 0 and for every n € N, we have

/ /qugosdxdt
0

<c @ar 1(\a|‘q

/ /V = ]Vgpn\q it dxdt
(=o)(p=1)

=2 rq
/ /V ot |8tg0n|q 1 dxdt)} T x </ quwadxdt)
Ef

g—(1=a)(p—1)

pq
<// Vo - (1 a)(p 1) |V<pn|q (a- a)(p 1) d;pdt)
EC
/ /V a— p+1 |V(p ’q p+1 dxdt
1
& _atl ato ato
+/ /V a=1 |Opipp| a1 da:dt]
0 Q
00 gta—1
_ 1 qto q+to
X </ / V™ aFe=1 |Oypy, | 1+o—T da;dt)
0 Q

+C [‘a|q p+1

(6.5.72)
where Ey has been defined in (6.2.5). We also define
o0 _pta-1 plgta)
J1 ::/ /V —p+1 |V | a-p+1 dxdt; (6.5.73)
0 Q
o _otl ata
Jo ::/ /V a1 |Qpppn| o1 dadt; (6.5.74)
J3 = // Ve <1 a)(p 1) |Von |7q T=a)=1) dxdt; (6.5.75)
EC

Jy = // Vit |8t¢n|qizil dzdt. (6.5.76)
BY
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By using (6.5.73), (6.5.74), (6.5.75) and (6.5.76), inequality (6.5.72) reads

oo
/ / Vul o® dxdt
0 Q
- (1-a)p-1)

g B = =(1-0)(p=1)
<C [\a| = Jl] / Vuly; dxdt Jg M
Ef
(=o)(p=1)

Pq g=(1-a)(p=1)
Clel™ IJQ E / Vuly) dx dt Jy

1
gfa gto—l

_(p=1)q
C |:’Oz’ a—p+1 J; + J2:| J4 ot

(A—a)(p—1) (6577)

_(p—1)q pa
<C |:‘Oz| a—p+1 J1:| (// Vuly; dx dt)
E¢

a=(1=)(p=1)
Pq

__ (=g
X |a| g—(1—a)(p—1) J3
(-a)(p=1) a=(1-a)(p—1)

p=1 pa _ (p—1)q Pq
+CJ," / Vules dx dt la| a=(=e)(p=1) Jg
Ef

1
qta _ato-l

_(p=1q
+C |:’a’ q—p+1 J1+J2:| J4 are

Let us prove that, for 6 > 0 sufficiently small and |a| = —@ > 0 sufficiently small

. _(p=1)q

lim sup <]04] a=pH1 J1> <C, (6.5.78)
n— o0

—_ (=Vq¢

lim sup, (\a\ g—(1-a)(p—1) J3> <C, (6.5.79)
n—oo

limsup Jo < C, (6.5.80)
n— o0

limsup Jy < C, (6.5.81)
n—oo

for some C > 0 independent of «.
We start by proving (6.5.78). Observe that

Jp < C(h + IQ), (6.5.82)

with I; and Iy defined in (6.4.38) and (6.4.39), respectively. Similarly to proof of
Theorem 6.2.1, in view of (6.4.31) and (6.4.33) we obtain inequality (6.4.44). Then due
to condition (6.2.11) in HP2(ii) with & = — == > 0 we have, for every n € N
5\ |*
log () , (6.5.83)
n

02—Coe
p(g+o) plata) [ § q— p+1 2—C0
I < C P2t (Cra=l) 502 T <>
n
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with 54 as in (6.2.6). Now observe that due to (6.5.71)

o] o]
———— (—Op+ C1pba(g+ ) — Cp) > ——.
q7p+1( 2p + C1pba(q + a) ) p——
Moreover, there exists C' > 0 such that
5%(921)(1*92pr+921704+000¢) — ea—pr1(02p+Co)log(d) _ 691125;;010 <C.

Then from (6.5.83) we deduce, for some positive constant C

(9

On the other hand, arguing as in the proof of Theorem 6.2.1, we deduce inequality
(6.4.57). Therefore

S,
o] 4

I, < Cn a»it (6.5.84)

a(p—1)

I < Cla|er 57 < Ola|ri 57 < O lafer. (6.5.85)

Combining (6.5.82), (6.5.84) and (6.5.85), for some C' > 0 and for every n € N, we have

_a(p—1) _alp=1) o
‘Oz’ q—p+1 Jl < C <1 + ’a’ q—p+1lq gq—p+1

54) . (6.5.86)

(i)

We can compute the limit as n — oo on both sides of (6.5.86), thus we obtain (6.5.78).
Now observe that

Jo < O + 1), (6.5.87)

with I3 and I defined in (6.4.40) and (6.4.41), respectively. Then arguing as in the proof
of Theorem 6.2.1, due to condition (6.2.9) in HP2(i) with ¢ = — 2% > 0 we deduce, for
some positive constant C
(%)
log [ —
n

where 59 has been defined in (6.2.6). Moreover, from inequality (6.4.65) and (6.2.6) we
deduce, for some constant C' > 0

S2

I;<Cnat : (6.5.88)

I; <C. (6.5.89)
Combining (6.5.87), (6.5.88) and (6.5.89), for some C' > 0 and for every n € N, we have

5\ |
log () ) .
n
Letting n — oo we obtain (6.5.79).
We now proceed to estimate J;. Observe that

lo

J2§C'(1+nq1

Jy < C(Is + Ig) (6.5.90)

where

__ 1 ata R _aqta
I5 = // V™= ate=T |Oyp|ate—T dadt; Ig:= // V™ aFa=T |9y, | te—T dadt.
ES Bf

1
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Due to (6.4.31) we have

- 0 0 (Cra=1)(q+e) 0 _qta
1 ara [d(z)"2 4t ata—1 $01—1\ Tra—1
<G VoareTt Jasre T | =g 5 dzdt
ES L 002 602

- (Cra—1)(g+a)
+a 1 SR 0yC1alata) (g, ) (Late)
< C|afFraT / / e L e I i (52 dpar
ES -

I 1
SC!a\qﬁil // V_q—o—a;—l <d(l‘)_02 —I—t01) 02
ES L

N t(ﬁ—l)(ﬁ-W) dzdt,

} ~02(Cro-1) (75~ Grra=T)

(6.5.91)
where we have used that there exists a positive constant C such that

seCre(Ges) _ (i) o _ o0 (5821) _ )

Claim: Let f : (0,+00) — [0,4+00) be a non decreasing function and if HP2(7)
holds then, for any 0 < e < eg and for any 0 < § < dg small enough, we can write

// f <|:(d(l‘)_92 +t01)912:|>t(91_1)(q(11+8>v_qil_6d$dt
58
273
< 0/0

for some constant C > 0 with 51 and 53 as in (6.2.6). Inequality (6.5.92) can be
proven similarly to (6.4.53) and (6.4.60) where one uses the condition (6.2.10) in HP2(4)

instead of HP1. By using the latter claim with ¢ = m > (0 we obtain

(6.5.92)

0
f(2)z=1 7 log 2| dz,

1
o [2720 .
Is<C ‘a‘qizl/ 2792(010[71)(%)*31*00671’ logz‘gz dz.
0

Then observe that, due to (6.5.71)

q+a _ o]
—05(Cia—1)| ————— | — 51 — Che > =:b
(01 )(q—i-a—l) R P}

Now we define

y:=blogz,
then there exists C' > 0 such that

(e 0 S:
]5§C|a’qi<t—1/ ey‘g Szldy
oo bl b
q+a _ 0 _
S
oo (6.5.93)

o —52—1
<C |a]ﬁ ( | 2)
(¢—1)

gt 1 4
< Clajate-1"171 < O,
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On the other hand, due to (6.4.31) and condition (6.2.10) in HP2(i) with e = m,

by using the definition of Eg/n in (6.4.37), for every n € N we have

w<c[[ v
E6/7L

<cn92(cl°”1>(q12°'1)592(q12a1>/ v (@) g
Es/n

_ e

(2
n

- n
Now observe that there exists a positive constant C' such that

qta

(7 +a—1
— [d(m) 2t91—1] ! 92&01<q+a 1> dxdt

n

(6.5.94)

S2

52
_lof [92 Cq (q+a)

< Cn qta—1 92_00]

Co_ ] Lo [
T a-1] §laFta—T)(¢—D)

Co—62

a2 —Col _  Grarhanle—Collosd _ Gratntn < ¢ (6.5.95)

J (a+a-1)(a—-1) e (ata-1)(¢—1)

and due to (6.5.71)

|

(6.5.96)

g—1 q-1 (q—1)%

_Q+a_

0 C
1[9201(q+oz) 2 _ 0 ] < — [

Combining (6.5.95) and (6.5.96) with (6.5.94) we obtain

log <5>
n

We now substitute (6.5.93) and (6.5.97) into inequality (6.5.90) thus we have, for some
C > 0 and for every n € N

5\|™

log <> ] .

n

Letting n — oo we get (6.5.81).

In order to estimate integral Js defined in (6.5.75), we define, for sufficiently small
|a] > 0, the positive constant A

o 52

Is < Cn @12 (6.5.97)

|

_ |
Jy <C [1 +n (@=1)?

B lalg(p — 1)
@t (- a1 (6:5.98)

Observe that, for sufficiently small |a| > 0

lafg(p — 1) 2|alg(p —1)
Bl AP W il L= 6.5.99
(g—p+1)? (g—p+1)? ( )
and
Pa 53 ap, (6.5.100)

g—(1-a)(p—1) 92



6.5. Proof of Theorem 6.2.2 177

where 53 has been defined in (6.2.6) and 63 > 1 as in HP2. Thus by the definition of ¢,
in (6.4.34) and by (6.5.98), for sufficiently small || > 0 and for every n € N we have

Jz < C// V“4|w|133+”dxdt+c// VA (V) P dadt
EY Es;y,

=:I;+ I3,
(6.5.101)
where Ej /n has been defined in (6.4.37). Due to the very definition of ¢ and 7, in
(6.4.31) and (6.4.33) respectively, and by (6.5.100) we get

5 02 ( 23+ 5
Iy < C/ i Y, Crota (35 +3) (z) () d(z)" PO EH) gy
§/n

< Cn(cla—l)(§3+)\p92)5§3+)\p92 / V—)\—§4d($)_(62+1)p(q%zq,_,_1+>\) drdt
Eé/n

02—Co 54

S4

and for sufficiently small 6 > 0
)
log <>
n
< 1o (e tA) AP C0N spor—con |1 <5>
n

Now we use condition (6.2.12) in HP2(4i) with ¢ = A and we obtain, for every n € N
__ Pq
[8 < Cn(01a—1)p92<7q7;+1+)\) 5p02(7q7;17+1+>‘) <(5> q—p+1
n
Due to the definition of A in (6.5.98), inequality (6.5.99) and the definition of C; in
(6.5.71), for sufficiently small |a| > 0 we write

Crapbs (q +/\> — Aply + CoA
g—p+1

e lalq(p — 1) oy P10 Colalg(p — 1)
= e - -1 T 1 T G Dl (= ) 1)]
lalg(p — 1) pqb Colafg(p — 1)
S (G D plr e TN T T T g p )
|| g p? lalgp qp lalg(p — 1)
< Craby [(q_p+1)2 SR g (q_p+1)2[?992—00]
< o (Capata-+ (= 1)1l = D) + (982~ Colalp 1)
< —@_k;’j]rl)?[(/’l@zpq—%(p—l)]
_(q—’ilq—ij—nl)Q[Cng q — Co)
__ lalgp
(—p+1)%

Moreover, since o = @ < 0, there exists C' such that

—lalg (p=1) _ _
§sAP02—Co) _ A(ph2—Co)logd _ —A(pO2—Co)llogd| - ,T(q—p+1)? (p92=Co)|log 8| <C
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Therefore we obtain the following bound on Ig

__lelpg ) 54
Is < Cn @»+)? llog (> (6.5.102)
n
On the other hand, by using the definition of ¢ in (6.4.31) we can write
) 0.\ Cia—1 g—ng/\p
I; < Clal S // YA (W) 592d(x)(921)] dzxdt,
ES e

and we observe that there exists C' > 0 such that

5010492(%-1-)\1)) _ 5@;@(%) < 5@;@(%) _ eclaag(#)logé <0

Therefore we get

d(z) "D (@) gt

9

} (C1a71)z—§+)\p

17 < C|O¢|q(1€xq)(pl)/ V—>\—§4 [d($)_92 _|_t¢91

C
E(S

We now state the following

Claim: Let f: (0,+00) — [0,400) be a non decreasing function and suppose that
HP2(ii) holds. Then, for any 0 < € < g¢ and for any 0 < & < &y small enough, we can
write

// f({(d(m)_ez—ktel)_ol?])d(x)(92+1)p(q;1”1+5>v_1m_5dxdt
B

I (6.5.103)
2025 ~ -
< C’/ f(2)z %37 log 2|5 dz,
0

for some constant C > 0 with §3 and 54 as in (6.2.6).  Inequality (6.5.103) can
be proven similarly to (6.4.53) and (6.4.60) where one uses the condition (6.2.12) in
HP2(ii) instead of HP1. By using the latter claim with € = A we get

1

202§ 5 ~
I; < Cla|T a5 / z“’?<cl°“‘1>(£“p)‘53‘00H| logz*dz  (6.5.104)
0
Observe that, since a < 0 and due to (6.5.71)

—02(0104 — 1) (SB —i—)\p) —353—Cp A

B2
MO pq lafg(p — 1) B lag(p — 1)
R ey o B B ) oo ] e ) e ey e
pq lalg(p —1) 2]alq(p—1)
2|a|0201(q—p+1)2 PRy —p+12 " g—p+1p?
lalg(p —1)
> 7(q_p+1)2{92 C1 —2Ch}
S lalglp—1) _

“(q—p+1)?
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We now set y := alog z then, by using the definition of 54 in (6.2.6), (6.5.104) becomes

0
I < Cyayq—u—’qup—n/ ¥yt dy < C|a|T 0 =D apr, (6.5.105)

—00

Combining together (6.5.101), (6.5.102) and (6.5.105), for any § > 0 small enough and

for every n € N we have
S4
log (5) ] .
n

Then letting n — oo, for every § > 0 small enough we obtain (6.5.79). Now using
(6.5.78), (6.5.79), (6.5.80) and (6.5.81) in (6.5.77), for any ¢ > 0 sufficiently small and
for every n € N we get

__lalpag

_ q(p—1) _ a(p—1)
‘a| a—(1-a)(p-1) J3 < C’|a| ¢—(1—a)(p—1) |:|o[|q (1- O4)(? 0 q— p+1 +n (e—p+1)?

(A—a)(p—1)

Pq
/ /(pn wl Vdudt < C' (// 7 quda:dt> + "
EC
(-a)(p—1)
q Pa ”
< C </ /gpnu Vd:vdt) + C
p—1
<C < / /gp qudl‘dt> oy

IN

p—1
A</ /goflqudxdt> o + B,
0o Jo

where A and B are positive constants and they are independent of n, § and % € (0,1).
This easily implies that there exists C' > 0 such that, for sufficiently small 6 > 0 and
for every n € N

/ / oy ul Vdxdt <C. (6.5.106)
0 Q
By using the definition of ¢,, in (6.4.31) we observe that

=1 in Ej
©n >0 in Q x[0,+00)

/ qudxdtS/ /goflqudxdt <C.
0 0 Jo

Then letting § — 0 we obtain that

hence

u? € L' (Q x (0,00); V dxdt) (6.5.107)

Now, we want to show that

/ wlV dzdt = 0.
0
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In order to do this, we use Lemma 6.3.6 where ¢ is replaced by ¢,

// wlV dxdt </ /gpiqudxdt
Es 0 Q

_1_a=1) o0 _pta—1 plgt+a)
<C ‘a| q—p+1 V a—p+1 |v90n‘ q—p+1 dxdt
0 Q

(I—a)(p—1)

-1 o _a—1 gt p;I s g pq
+ |af / / Va1 |Oppy| ot dadt // ey ulV dxdt
0 Q E(;C

g=(1=a)(p=1)

__(—o)(p—1) Pq pa
V' —(0-a)(p-1) |v90n| q—(1—a)(p—1) dxdt
Bf

X
1 a1
q o 1 q_ T
+C // eyul Vdxdt [/ /V 1| Qypp | 4T d:vdt]
Ef 0 Ja
p=1 Lok 1) g-(1-a)(p-1)
_ap—1) p pa __ alp—1) pa
< C |la| arit gy // oy ulV dzdt || = 0-a)=1) Jg
EY

Lt 1 g-(1-a)(p=1)

p=1 B a1 pa
+CJy" (// (pflqud:zdt> [|a! q(1a>(P1>J3]
EC
' 1
g g1
+C // ppulVdxdt | J3°
Ef

(6.5.108)
where Ji, Ja, J3 have been defined in (6.5.72), (6.5.73), (6.5.74) and
oo 1 _a_
Js ::/ /V a1 |Oppp| =T dxdt .
0 Q
Due to the definition of ¢y, in (6.4.34) we have
0o 1 q o0 1 g
JSC/ /V_q—l6<pq—1d:ndt+/ /V_q—lﬁnnq—ldxdt
° 0o Ja 9 o Ja [9er (6.5.109)

=1y + ILp.
By (6.4.31) we have

1

19§C|a]qql// V_qiil [(d(w)—ez +t91>_62
Bf

We now state the following

702(01(171)&
OV grdt

(6.5.110)

Claim: Let f: (0,+00) — [0,+00) be a non decreasing function and suppose that
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HP2(i) holds. Then, for any 0 < 6 < d9 small enough, we can write

1
// ({ ) t) 02]>t(01_1)<qq1>‘/‘¥1 dudt
EC’
1

(6.5.111)
2925 ~ ~
< C/ f(z)z_51_1] log z|*2 dz,
0

for some constant C > 0 with 51 and $2 as in (6.2.6). Inequality (6.5.111) can be
proven similarly to (6.4.53) and (6.4.60) where one uses the condition HP2(i) with
¢ = 0 instead of HP1. We now use the latter claim to (6.5.110), thus we have

1
0

2024
_a_ _ )4 4 g, =
Iy SC’a‘ql/ L 02(Cra=l) gty =320 1\logz|52 dz
0

q 2%6 02C
<C ]a\q—l/ 00T 1og 2|72 dz
0 , (6.5.112)
0 52
SC!a\qql/ ev Y 1dy
—00 Yo
< ClajmTo!
<C
where
v = |a| by Cy ql and y = logz
q—
On the other hand, by (6.4.33) we have
5 02 1
Ip < C/ VoET |pf2Cre () =t dadt
Ea
< O (Gt gt // Vo@D dadr
%
Then, due to HP2(i7) with ¢ = 0 we have
52
Lo < O (e Demtatite 35350 1o <6>
n
. (6.5.113)
< el Gty

()

Now, combining (6.5.109), (6.5.112) and (6.5.113) we get

o (1) |

Js < C (6.5.114)

Js < C [1 4o lel0 gty

By letting n — oo we obtain
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Finally we substitute inequality (6.5.72), (6.5.73), (6.5.74) and (6.5.114) into (6.5.108)
thus we have

(1-a)(-1) 1
rq q
// wlVdzdt < C // oy ul V dxdt + // oy, ul V dxdt
Es E(;C Eéc

Passing to the limsup as n — co, we obtain for some constant C' > 0

(A=) (p=1)

A-a)(p=1) 1
p q
// w!Vdxdt < C // w?V dxdt + // w?V dxdt
Es ES E§

(6.5.115)
Now we can pass to the limit in (6.5.115) as 6 — 0, and thus as « — 0, and conclude
by using Fatou’s Lemma and (6.5.107) that

/ / wlV dzdt = 0.
0 Q

Thus v =0 a.e. in Q x [0,00).

6.6 Proof of Theorem 6.2.5

Throughout this section we always assume that 02 is of class C®. We now introduce
two Lemmas that will be used in the proof of Theorem 6.2.5. Let us first observe that,
under the assumptions of Theorem 6.2.5, the Green function G(x,y) associated to the
laplacian operator —A satisfies the following bound

Gﬁmy)g(jnﬂn{l,igiﬁﬁg}|m——yF_N, (6.6.116)

for some C' > 0 and d(z) as in (6.1.4). See [57], [137]; see also [18], [28].

Lemma 6.6.1. Suppose that (6.6.116) holds and define

vie) = [ Gl d)’ iy (6.6.117)
for =1 < B <0. Then, there exist c = ¢(8) > 0 such that
0<¢(z)<cd(x) forevery xz €, (6.6.118)
Proof. Let us fix x € Q such that d(z) > 0. Then, for any y € Q either
d(y) > 2|z —yl, (6.6.119)

or

d(y) < 2|z —yl. (6.6.120)
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Therefore we write
o) = [ Glag)d(s) dy+ [ Gla, y)d(y)’ dy
{d(y)>2]z—yl} {d(y)<2|z—y|}

Moreover observe that, for any z € 02
ly—z2 <[z — 2]+ |y — .
If we fix z € 02 such that d(x) = |x — z| then the latter can be rewrite as
ly — 2| < d(z) + |y — z|. (6.6.121)
Combining (6.6.119) and (6.6.121), it follows that
e —yl < d(y) < ly — 2| < d(@) + |y — 2] — | — y| < d(a). (6.6.122)
Due to (6.6.116), (6.6.119) and (6.6.122)

og/’ G(z,y)d(y)° dy
{d(y)>2]|z—y|}

8
< C/ % dy
{d(y)>2lz—y} 1T — Y]

. d@)dw)’
{

d(y)>2la—yl} 17— YN

IN

/ d(x)
{dy)>2)e—yl} 17— y[N 170

IA

c dy.

Now, since —1 < <0
g ()
{dy)>2la—yl} |2 = yIN 7

where R := diam(§2) = sup{|z — y| : z,y € Q}. Similarly, due to (6.6.116), (6.6.120)
and (6.6.122)

1

dy < Cd(x)/ e

() |7 — dy < cd(x), (6.6.123)
Rr(®

os/ G(a,y)d(y)’ dy
{d(y)<2|z—y|}

143
< 0/ M y
{dw)<2lz—y} 17— Yl
< / d(x)
<c _ooalr)
{d(y)<2lo—y[} |z — y|N—0+F)
1
< —_—m
< cd(x) /BR(:p) o= y|N—(1+ﬂ) dy
< cd(x)
Finally, due to (6.6.123) and (6.6.124), for any = € Q, there exists ¢ = ¢(/3) such that

dy (6.6.124)

0 <Y(z) < cd(x).
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Lemma 6.6.2. Suppose that (6.6.116) holds. Let us recall the definition of 1 in
(6.6.117) and suppose that
_2<f< 1. (6.6.125)

Then, there exist M > 0 such that
0<(x) <M forany x € Q, (6.6.126)

Proof. By Lemma 6.6.1 we only need to consider the case —2 < 8 < —1. For every
¢ > 0 small enough, let €2, be defined as in (6.2.21). Moreover let G.(x,y) be the Green
function associated to the operator —A for x,y € Q.. For every € > 0, let

/ Ge(z,y) d(y)’ dy. (6.6.127)

Observe that, for every ¢ > 0, u. € C*®(.) N CY(), u. > 0 in Q. and it solves the
following problem

—Au.(z) = d(z)? in Q.
ue =0 on 99,

Moreover, due to assumption (6.6.125), see [106], there exists v : Q@ — R, v € C°(Q),
v > 0 in €2 such that v is a solution to problem

—Av(z) = d(z)? in
v=0 on 0f2

Observe that, due to the maximum principle, it follows that

0<u:<v in§). foranye > 0. (6.6.128)
Moreover, for 0 < €1 < €9 one has

Uey () S ugy () for any z € Q, (6.6.129)

Hence, the sequence of functions {u. }->0, due to (6.6.128) and (6.6.129), admits a finite
limit for € — 0, in particular we write

lim u.(z) = w(x) for any x €, (6.6.130)

e—0

and 0 < w(z) < v(z) for any = € Q. Now observe that
Ge(z,y) = G(z,y) as € —» 0 for any z,y € Q.

It follows, by the Monotone Convergence Theorem that for any € > 0 one has
us(z) = / Ge(z,y)d(y)? dy — / G(x,y)d(y)’dy as e — 0. (6.6.131)
Q Q

Hence, due to (6.6.130) and (6.6.131), for any x € Q2 we can write

/Gmy (y)? dy, and 0</nyd(y)’3§1)(:c).
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Finally, since v is continuous in a closed and bounded domain, there exists M > 0 such
that
v(z) < M, forany z €,

and
0< / G(a,y)d(y)® dy < M.
[9]

We are now ready to prove Theorem 6.2.5.

Proof of Theorem 6.2.5. We want to construct a subsolution and a supersolution to
problem (6.1.3). Let u be the subsolution and u be the supersolution. We firstly set

0.

u
On the other hand, in order to construct @, let us define, for any A > 0
Sy ={veC®Q) : 0<v(z) < Ad(x), Yz € Q}. (6.6.132)
with d(x) as in (6.1.4). Moreover we define the map T : S — Sy such that

Tv(z) :/\q/QG(a;,y) dy—l—/QG(x,y)V(y)v(y)qdy. (6.6.133)

We prove that T is well defined and that it is a contraction map. Observe that due to
Lemma 6.6.1 with 8 = 0 one has, for some ¢; > 0

0< )\q/ G(z,y)dy < c1 N%d(z), for every x € Q. (6.6.134)
Q
Similarly, due to (6.2.19), Lemma 6.6.1 with 8 = —o1 + ¢ and (6.2.20), for some ¢z > 0

0< / G(z,y)V(y)v(y)?dy < co )\q/ G(z,y)d(y)" T dy < o ANd(z). (6.6.135)
Q Q

By using (6.6.134) and (6.6.135), inequality (6.6.133), for some C' > 0 and A > 0 small
enough, reduces to

0<Tv(x) <CAd(x) < Ad(z) for any = € .
Hence, for a sufficiently small A > 0, the function Tv :  — R is continuous and thus

the map T : S\ — S is well defined. Let us now show that T is a contraction map. for
A > 0 small enough. Fix w,v € Sy, then for any z €

Tw(z) — To(x)| < /Q G, y)V (1) [0 () — v"(y)| dy

< / G (@, y)V (1)a (1) Jwy) — v(y)]| dy,
Q
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for some £(y) between w(y) and v(y). Then 0 < {(y) < Ad(y) and hence, due to Lemma
6.6.2 with 8 = —01 + ¢ — 1 and (6.2.20),

Tw(z) — To(x)| < ( | Gty o dy) A — ol gy

< CM X Hw = v (g
Thus we have, for A > 0 small enough,
[Tw — Tv|| peo () < %Hw — V()
hence T is a contraction map. Therefore, there exists ¢ € S such that ¢ = Tp. In
particular, we have
(i) 0 < (x) < Ad(z) for any = € Q;
(ii) ¢ is a solution of

B (6.6.136)
p=0 on 0f2

{—Acp =X+ V! inQ

(iii) ¢ > 0in Q.
We now set u(z,t) = @(z) and show that @ is a supersolution to problem (6.1.3).
Observe that

(i) Ou—Au=-Ap=X+V?>Vul inQ x (0,400);

(i) u(x,t) = (x) =0 for any xz € 9Q , for any t € (0, 400);
(iii) w>0 and @ # 0;

)

(iv) 0 < wp(x) <u(x,0) for any x € Q, if £ is small enough; indeed we can apply the
Hopf’s Lemma and if n denotes the inward normal unit vector to 92 deduce that

a—(’p>0 for any x € 09).
on

Then, due to the compactness of  and the continuity of ¢ in  we observe that
there exists a > 0 such that

@ > ad(z) for any x € .
Now, if ¢ > 0 in (6.2.18) is sufficiently small, we have that
0 <ug(r) <ed(z) < ad(r) < o(r) =u(x,0) forany z € Q.

Thus @ : Q x [0,+00) — R is a supersolution to problem (6.1.3), such that @ > u in
Q x [0, +0c0). Finally, we conclude that there exists a solution u : Q x [0, +00) — R of
problem (6.1.3) such that

0 <u(z) <u(z) for any z € Q.
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6.7 Proof of Theorem 6.2.6 and of Corollary 6.2.7

We introduce some auxiliary Lemmas that are needed in the proof of Theorem 6.2.6.

Lemma 6.7.1. Let ug € C(Q2), ug > 0 in Q. Moreover let V € C(Q2 x [0,+00)), V >0
in Q x (0,400) and assume that uw > 0 is a classical solution of problem (6.1.3) with
wnitial datum ug. Let o > % and 1 € Citl(Q X [0,400)), ¥ > 0 a.e. in Q x [0,400)
with compact support in 2 x [0, 4+00) then

/ / WV dadt < 27T {/ / Vo |la(a —1)|Ve|? + a¢A¢\T31 dadt
0 Q 0 Q

o 1 429 _a_
_|_/ / V7T a1 |apay| 7T dxdt}.
0 Q

Proof. Using Definition 6.3.1 and Young inequality with coeflicients ¢ and —L: we write
/ / wtVy® dzdt < / / lu| |(*)e — A(W®)| dedt — / uo(x)yY(x,0) dx
0 Q 0 Q Q
< / / VT~ TV 77 (%) — A@®)| dwdt — / o ()% (x, 0) dz
0 Q Q
1 oo
< q/ /\u|qV¢O‘dxdt+/ / V)T | (49, — AW [TH dad
0 Q

Reordering the terms we get

(6.7.137)

> q «a > a *qfll a—1 o o a—2 2 a—1 ﬁ
/0 /Qu Va dmdtﬁ/ /(Vzp ) ‘az/; Y — a(a— 1) 2| VY |* — ay A”L/J‘ dxdt

/ / VRt T T gy — afa — 1)[VY[? — apAG|TT dadt
= gt - 2 Agp|TT
<2 {/0 /Qv GO |a(a — 1) VY[ + apAy|TT dadt

o S ST _a_
[ [ v e dazdt}
0 Q

This proves the thesis. O

Lemma 6.7.2. Let the assumptions of Lemma 6.7.1 hold. Moreover let K C (2 x
[0, +00)) be a compact set and let 1p such that ¥ =1 in K. Let S := (2 x [0,4+00)) \ K
then

1
/ /uqvwada;dtgﬁ (// |u]qV1/Jada:dt>q
0 Q Sk

X { [/ Vot la(a — 1)|V|? + awAw‘q%l da:dt]
Sk

_1 a—2a _a_ q%!l
+ [// Va1 a1 |apahy| a1 dxdt} .
Sk;

g—1

q

(6.7.138)
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Proof. Similarly to the proof of Lemma 6.7.1, using the deﬁnition of weak solution of
problem (6.1.3) and Holder inequality with coefficients ¢ and 1 we get

g—1

/Ooo/Qquhbo‘dxdtg (/OOO/Qyuwvwdxdt) </ /V T (%), — AT dxdt)q

1
< (/ |V d:ndt) ’
Sk

q—1

< ([ [ v v - ata - DIVGP - avau[FT deat)

<9 1</ |u\qV¢adazdt)q

{ //S ST |ala — 1)|VE[ + agpAp|iT dxdt} '

+ [//Sk VT T ey | T dxdt];l}

This proves the thesis. O

We now need to introduce the so called Whitney distance § : Q — R™ which is a
function in C*°(£2), regardless of the regularity of 92, such that for all x €

cld(z) < 6(z) < cd(z),
V()| < ¢, (6.7.139)
1A8(@)] < 671 (x).

where d(z) has been defined in (6.1.4) and ¢ > 0 is a constant independent of x. These
properties of the Whitney distance may be found in [8, 122].

Lemma 6.7.3. Let V € L (Q x [0,00)), V > 0 a.e., and ug € L} (), up > 0
a.e. Assume that there exists a nonincreasing function f : (0,e0) — [1,00) such that
lim, .o+ f(e) = 400 and such that for every € > 0 small enough conditions (6.2.22)
hold. Let u > 0 be a weak solution of problem (6.1.3), then

+oo
/ / ulV dzdt < 400 (6.7.140)

Proof. For every € > 0 small enough, we consider a smooth function g. : [0,00) — R

such that 0 < g. <1, g. =1 in [, 4+00), suppge C [5,+00), 0 < gL < Q and |¢/| < 5

for some constant C' > 0. We also introduce 77 a smooth function such that 0<n< 1
=1in [0, %f(e)], suppn C [0, f(g)) and — ( 5 < 7’ < 0. Now let

we(wvt) = ¢€($) n(t)a (6'7'141)
where
1 d(z) > 2e

0 ) <e (6.7.142)

¢e () := ge(d(2)) = {
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and § is the Whitney distance defined in (6.7.139). Observe that, due to (6.7.141),
(6.7.142) and (6.7.139) for every x € Q we have

Vil = 163 V() < <,
o (6.7.143)
G = |GV + g (3(2) Ad(a)| < 3,

for some constant C' > 0. Hence for every x € Q, ¢t € [0,T) we have

C 4 C
(Wl < 550 (e — 1)| Ve | + e Ay |71 < — . (6.7.144)
ga-1

Let Q. = {z € Q|(z) > &} and note that by (6.7.139) for every r > 0 we have

Q, CQr, Q CQx.
CO CO

We now observe, applying Lemma 6.7.1 with the test function . defined in (6.7.141),
that

T 00
/ / ul Vdzdt < / u? P2V dxdt
0 Jo. 0

e’} a727q _q9
< C{/ VTR gl T (o — 1)|Vel? + ag A | 7T dadt
0

00 o 29
+/ V_ﬁ e ot |Oﬂ/)€(¢}€)t|’;%1 dwdt}
0
=11 + Ir.
(6.7.145)

Now, due to the definition of . in (6.7.141) and by (6.2.22) and (6.7.144), for every
small enough ¢ > 0 we have

2T
B [0 [ v et DIV +av A ) dod
0 a\QZE

2T 1 6.7.146
<< / / VT dadt ( )
-1 0 QE\QQs

ga-1
< C

where we set N = [2log, co]+1. Similarly, due to (6.7.141) and by (6.2.22) and (6.7.144)
we can observe that

2T 1 .
n< /| VI [l ()T ot

C 2T 1 6.7.147
< — / VT dadt ( )

Ta1 JT Qe

C.

<
By substituting (6.7.146) and (6.7.147) into (6.7.145) and letting € — 0 we obtain the
thesis. O
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We are now ready to prove Theorem 6.2.6.

Proof of Theorem 6.2.6. For small enough € > 0 consider the test function . defined
in (6.7.141). Define
K. = Q. x [0,7]; (6.7.148)

and
Sk. == (2 x[0,+00)) \ K. (6.7.149)

Observe that ¢ = 1 on K., hence we can apply Lemma 6.7.2 with the test function .,
thus we have

// u?V dxdt g/ /uqu?Vdmdt
. 0o Jo
1
<o f [, wovera)
Ske

g=1
D B 9 -4 qq
X // V qflw q—1 |a(a—1)‘vw‘ +Q¢Aw‘q_l dxdt
Sk.
g=1
_ 1 _2¢ _q_ ?
+ [/ V7 a1 a1 |apapy | a1 dwdt]
Sk.
= L+ I).
(6.7.150)

We can also use Lemma 6.7.3 hence we say that there exists C' > 0 such that

I, <C, I, <C.

1
q
// wlVdzdt < C(// ]quwad:Udt> .
€ SKE

Letting € — 0 we obtain

Thus we have

T
/ /qud:cht =0, (6.7.151)
0 Q

which proves the thesis.
O

Proof of Corollary 6.2.7. By (6.2.23) and the assumptions on f, for € > 0 small enough
we have

f(e) 1 g+l
/ / Va1 dadt < Cf(€)/ d(.%') q—1 f(d(il}))_l dx
0 2:\0 Qe\Qe

g+1 29
< qul/ dr < (Cea-1
Q%\Qs
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and

1 ! g1
- P ,
/éf(e)/g \% dxdt < Cf(&“)/ﬂ d(z)a1 f(d(z))"" da

(NS

< Of(e) < Cf)7.
Thus conditions (6.2.22) are satisfied and by Theorem 6.2.6 u = 0 a.e. in 2x[0,00). O
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