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Abstract

The main topic of this thesis concerns the study of global existence and blow-up of
solutions to certain nonlinear parabolic differential equations. The thesis is divided into
three parts where three different equations are considered. In Part I, we analyze the
Cauchy problem for the porous medium equation with a variable density, which depends
on the space variable, and a power-like reaction term: this is a mathematical model of a
thermal evolution of a heated plasma. Depending on the rate of decaying at infinity of
the density function, by comparison method and suitable sub- and supersolutions, we
determine whether the solution exists globally in time or blows up in finite time. In Part
II, we consider reaction-diffusion equations posed on complete, noncompact, Riemannian
manifolds of infinite volume. Such equations contain power-type nonlinearity and slow
diffusion of the porous medium type. For the Cauchy problem related to this equation
we prove global existence for positive initial data belonging to suitable Lp spaces, and
that solutions corresponding to such data are bounded at all positive times with a
quantitative bound on their L∞ norm. The methods of proof are functional analytic
in character, as they depend solely on the validity of the Sobolev and the Poincaré
inequalities. In Part III, we are concerned with nonexistence results for a class of
quasilinear parabolic differential equations with a potential in bounded domains. In
particular, we investigate how the behavior of the potential near the boundary of the
domain and the power nonlinearity affect the nonexistence of solutions.





Sommario

L’argomento principale della tesi é lo studio dell’esistenza globale e del blow-up di
soluzioni ad alcune equazioni differenziali paraboliche nonlineari. La tesi Ãĺ suddivisa
in tre parti in ciascuna delle quali si prende in considerazione una diversa equazione.
Nella Parte I, viene analizzato un problema di Cauchy per una equazione dei mezzi porosi
con densitá variabile che dipende solo dallo spazio, e un termine di diffusione del tipo
potenza: questa equazione rappresenta un modello matematico per l’evoluzione della
temperatura del plasma. Utilizzando metodi di sotto- e soprasoluzioni, grazie anche al
principio del confronto, si determina quando la soluzione del problema esiste globalmente
in tempo e quando invece avviene blow-up in tempo finito. Nella seconda parte, Part II,
si studia una classe di equazioni di reazione-diffusione definita su varietá Riemanniane
complete, noncompatte e di volume infinito. Queste equazioni contengono nonlinearitá
di tipo potenza e una diffusione lenta del tipo mezzi porosi. Per il problema di Cauchy
relativo a queste equazioni, si dimostra esistenza globale in tempo delle soluzioni per
dati iniziali positivi e che siano appartenenti ad opportuni spazi Lp. Inoltre, per queste
soluzioni, si dimostra che esse sono limitate per tutti i tempi e si propone una stima
quantitativa sulla loro norma L∞. I metodi utilizzati per le dimostrazioni sono funzionali
e si basano principalmente sulla validitá delle disuguaglianze di Sobolev e Poincaré.
Infine, nella Part III, si studia la nonesistenza di soluzioni per una classe di equazioni
differenziali paraboliche quasilineari con un potenziale, definite in domini limitati. In
particolare, si mostra come il comportamento del potenziale vicino alla frontiera del
dominio e la nonlinearitá di tipo potenza influenzano la nonesistenza delle soluzioni.
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Introduction

I.1 The problems

In this thesis we investigate global existence and blow-up of solutions to nonlinear
degenerate parabolic partial differential equations on both the Euclidian space and more
general complete noncompact Riemannian manifolds. Specifically, we address equations
of the following type:

ρ(x)ut = ∆(um) + ρ(x)up in RN × (0, T ), (I.1.1)

ut = ∆(um) + up in M × (0, T ), (I.1.2)

ut − div
(
|∇u|p−2∇u

)
= V uq in Ω× (0, T ), (I.1.3)

where T > 0.

In equation (I.1.1), N ≥ 3 and ρ is a suitable positive function, to which we refer as
weight from here on; such equation arises in various physical models, see [73] and Section
I.2.1. Moreover, we assume that p > 1 and m > 1. More precisely, we are concerned
with global existence and blow-up of solutions to the Cauchy problem associated to
equation (I.1.1) when ρ(x) ∼ |x|−q as |x| → +∞ with q ≥ 0 or ρ(x) ∼ (log |x|)α |x|−2 as
|x| → +∞ with |α| > 1, see Chapters 1, 2, 3.

In equation (I.1.2), M is a complete, noncompact, Riemannian manifold of infinite
volume and dimension N ≥ 3; moreover p > 1 and m > 1. In Chapters 4, 5, we
investigate existence of global in time solutions to the Cauchy problem for equation
(I.1.2), depending on the initial datum providing also suitable estimates on the L∞-
norm of the solutions for t > 0.

Finally, in equation (I.1.3), Ω is an open bounded connected subset of RN . Moreover,
we assume that p > 1, q > max{p− 1, 1} and V = V (x, t) is a given positive function,
to which we refer as potential from here on. We study nonexistence of nonnegative,
nontrivial global weak solutions to the Cauchy-Dirichlet problem associated to equation
(I.1.3), see Chapter 6.

The thesis is organized in three parts which correspond to equations (I.1.1), (I.1.2)
and (I.1.3), respectively. Chapters 1, 2 and 3 are contained in Part I. Chapters 4 and 5
are contained in Part II whereas Part III is Chapter 6. In what follows, for each part,
we give a brief overview of known results in literature and we outline our main results.

xi



xii INTRODUCTION

I.2 Part I: The inhomogeneous porous medium equation
with reaction on RN

I.2.1 A survey of the literature

The problem of global solvability of nonlinear evolution problems, such as the Cauchy
problem associated to equation (I.1.1), occupies a special place in the theory of nonlinear
equations. We say that a problem is globally solvable in time if it admits a bounded
solution for any t ∈ (0,+∞). On the contrary, we say that the solution to a given
problem blows up in finite time when there exists a time S > 0 such that

‖u(t)‖∞ −→ +∞ as t→ S− ,

If S = +∞ then we say that the blow up occurs in infinite time.
The differential equation in (I.1.1) for N = 1, posed in the interval (−1, 1) with

homogeneous Dirichlet boundary conditions, has been introduced in [73] as a math-
ematical model of evolution of plasma temperature, where u is the temperature, ρ(x)
is the particle density and ρ(x)up represents the volumetric heating of plasma. The
interest in thermal waves arises in plasma physics in various laboratory and terrestrial
situations where the ambience is at rest but cannot be considered homogeneous. In-
deed, in [73, Introduction] a more general source term of the type A(x)up has also been
considered; however, then the authors assume that A ≡ 0; only some remarks for the
case A(x) = ρ(x) are made in [73, Section 4].

Equation (I.1.1) is a generalization of the very well-known Porous Medium Equation
(PME), that is,

ut = ∆(um), in Ω× (0,+∞) (m > 1) , (I.2.4)

where Ω is a domain of RN . The PME is one of the simplest examples of a nonlinear
evolution equation of parabolic type. It appears in the description of different natural
phenomena such as the flow of a fluid through a porous medium [81, 101], the study
of groundwater infiltration [14] or the heat radiation in plasmas [136]. The equation
can be posed both in Ω ≡ RN or in bounded subdomains Ω ⊂ RN and completed with
initial and boundary conditions. Observe that, from (I.2.4) we get

ut = div
(
mum−1∇u

)
in Ω× (0,+∞).

The diffusivity coefficient appearing in the latter is mum−1 that motivates the finite
speed of propagation of solutions to (I.2.4). This means that, if for instance the initial
value has compact support, then the solution has compact support for every fixed time.
This is the main difference between the solutions to (I.2.4) and the solutions to the heat
equation (that is (I.2.4) with m = 1). As for the heat equation, also the PME has a
family of fundamental solutions whose existence has been shown in [10]. Their explicit
form is

U(x, t) = t−α
[
C − k|x|2t−2β

] 1
m−1

+
, (I.2.5)

where (A)+ := max{A, 0}, C is an arbitrary positive constant depending on the mass
M =

∫
RN U(x, t) dx, which is constant in time, and

α =
N

N(m− 1) + 2
, β =

α

N
, k =

α(m− 1)

2mN
.
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The functions in (I.2.5) are usually referred to as Barenblatt solutions. We refer the
reader to [5, 103, 128] for a complete overview of the PME equation.

The inhomogeneous version of equation (I.2.4) has also been widely examined in
literature. It is given by

ρ(x)ut = ∆(um), in Ω× (0,+∞) (m > 1) , (I.2.6)

where Ω is a domain of RN . The case when Ω ≡ RN and ρ decays at infinity as a
negative power of |x|, is the most studied one, see e.g. [25, 26, 27, 62, 63, 64, 65, 66,
67, 68, 69, 70, 116, 117, 120]. Moreover, in [71] and [72] the Cauchy problem related to
equation (I.2.6) for N = 1 is investigated. They explain that equation (I.2.6) models the
propagation of a nonlinear thermal wave in an inhomogeneous medium. They suppose
that ρ is a positive and smooth function. Let

M =

∫ +∞

−∞
ρ(x) dx ,

then the authors investigate the behavior of solutions for both the cases of M <∞ and
M = ∞ showing remarkable differences between them. Moreover, in [109] for N ≥ 3,
assuming that ρ(x) ∼ |x|−q, it is proved that equation (I.2.6), for any bounded initial
datum u0, has infinitely many very weak solutions if q > 2 whereas it admits a unique
very weak solution if q ≤ 2. This different behavior of solutions determines q = 2 as a
threshold value.

Equation (I.2.6) can be further generalized to the following weighted PME

ρν(x)ut = div [ρµ(x)∇(um)] , in Ω× (0,+∞) (m > 1) , (I.2.7)

where ρν and ρµ > 0 are two weights independent of the time variable. With no claim
of generality, we refer the reader e.g. to [49]. Depending on the behavior of ρν and ρµ
as |x| → ∞, existence and uniqueness and the asymptotic behavior of energy solutions
for large times have been addressed.

We also recall the well known semilinear heat equation defined as follows

ut = ∆u+ f(u) in Ω× (0, T ), (I.2.8)

where T > 0, Ω is a possibile unbounded domain of RN and f(u) is a nonnegative
function, thus we are in presence of reaction. The classical choice in equation (I.2.8) is
f(u) = up for p > 1. Such equation models various natural phenomena. Here we have
a competition between the diffusion due to the Laplacian and the reaction term, which
may drive the solution towards blow-up. In particular, we mention the pioneering work
by Fujita [31] where global existence and blow-up of solutions to the Cauchy problem
associated to (I.2.8) is investigated when Ω ≡ RN . It is shown that

• finite time blow-up occurs for all nontrivial nonnegative initial data, for any

1 < p ≤ 1 +
2

N
;

• global existence of solutions for sufficiently small initial data, for any

p > 1 +
2

N
.
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The value pc = 1 + 2
N is usually referred to as the Fujita exponent. We remark that the

critical case p = pc was left open by Fujita, it was proved later in [58, 77, 133]. In [35] the
authors propose a different method to obtain the Fujita exponent in terms of sub and
supersolutions and comparison principles. Moreover they apply this method to different
reaction-diffusion problems. Observe that, if p > 1, due to Kaplan’s argument we can
say that the solution blows up if it accumulates enough mass, and this is the case of all
solutions if 1 < p < pc. On the contrary, if p > pc, diffusion does not allow small initial
values to grow, and in fact the solutions tend to zero. The fact that when p > pc there
exist small global solutions is easily proved by comparison with a supersolution. Finally
we refer the reader to another way of proving Fujita’s result introduced in [82, 84].

For more details on equation (I.2.8) for a general nonnegative function f(u) we refer
the reader for instance to [24, 29, 30, 31, 32, 58, 74, 83, 114, 121, 135]. Also the weighted
version of equation (I.2.8) has been studied in literature, see e.g. [21, 85]. In particular,
in [85], they consider the Cauchy problem associated to equation

ρ(x)ut = ∆u+ ρ(x)up in RN × (0, T ) (p > 1),

where T > 0 and ρ ∼ |x|−q as |x| → ∞ for 0 ≤ q < 2. Is is shown that

• solutions blow-up in finite time, for all nontrivial nonnegative initial data, for any

1 < p ≤ 1 +
2− q
N − q

;

• global in time solutions exist for sufficiently small nonnegative initial data, for any

p > 1 +
2− q
N − q

.

We also recall the well known nonlinear parabolic equation

ut = ∆(um) + up in Ω× (0,+∞), (m ≥ 1, p > 1) , (I.2.9)

where Ω is a domain of RN . Equation (I.2.9) is usually referred to as the Porous
Medium Equation with reaction. The Cauchy problem related to equation (I.2.9) with
nonnegative continuous initial datum has been mainly investigated in [99, 119]. In the
case of Ω ≡ RN , it is shown that the Fujita exponent is pc = m + 2

N . More precisely,
we have

• finite time blow-up for all nontrivial nonnegative initial data, for any

1 < p < m+
2

N
;

• global existence in time of solutions for sufficiently small nonnegative initial data,
for any

p > m+
2

N
;
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• finite time blow-up for sufficiently large nonnegative initial data, for any

p > 1.

The results in [119] has been proved by means of comparison principles and suitable
sub- and supersolutions of the form

u(x, t) = Cζ(t)

[
1− |x|

2

a
η(t)

] 1
m−1

+

for any (x, t) ∈ RN × [0, T ),

where ζ(t) and η(t) are appropriate auxiliary functions and C and a are positive con-
stants.

The Cauchy problem related to equation (I.1.1) has also been investigated in [86,
87]. More precisely, they consider a class of double-nonlinear operators among which
equation (I.1.1) is included. They show that, (see [86, Theorem 1]) if ρ(x) = |x|−q with
q ∈ (0, 2), for any x ∈ RN \ {0},

p > m+
2− q
N − q

,

the initial datum u0 is nonnegative and∫
RN

{
u0(x) + [u0(x)]q̄

}
ρ(x)dx < δ,

for some δ > 0 small enough and q̄ > N
2 (p − m), then there exists a global solution

of the Cauchy problem associated to (I.1.1). In addition, a smoothing estimate holds.
On the other hand, if ρ(x) = |x|−q or ρ(x) = (1 + |x|)−q with q ∈ [0, 2), for any initial
datum u0 6≡ 0 and

p < m+
2− q
N − q

,

then blow-up prevails, in the sense that there exist θ ∈ (0, 1), R > 0, T > 0 such that∫
BR

[u(x, t)]θρ(x)dx→ +∞ as t→ T−.

Such results have also been generalized to more general initial data, decaying at infinity
with a certain rate (see [87]).

I.2.2 Outline of the results

In Chapter 1 (where [92] is reproduced) we address the inhomogeneous porous medium
equation with reaction of the form (I.1.1). We assume that the function ρ : RN →
(0,+∞) is such that

(i) ρ ∈ C(RN ),

(ii) there exist k1, k2 ∈ (0,+∞), with k1 ≤ k2, and 0 ≤ q < 2 such that

k1|x|q ≤
1

ρ(x)
≤ k2|x|q for all x ∈ RN \B1(0) .

(I.2.10)
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Due to hypotheses (I.2.10), we refer to ρ(x) as a slowly decaying density at infinity.

We investigate global existence and blow-up of solutions to the Cauchy problem{
ut = 1

ρ(x)∆(um) + up in RN × (0, T )

u = u0 in RN × {0} ,
(I.2.11)

where the initial datum u0 : RN → [0,+∞) is a compactly supported function and it is
such that

u0 ∈ L∞(RN ).

Therefore, the related diffusion operator is 1
ρ(x)∆, and in view of (i)−(ii), the coefficient

1

ρ(x)
can diverge at infinity.

For problem (I.2.11), we prove global existence in time or blow-up in finite time of
solutions, depending on the interplay between p > 1 and m > 1. In particular, suppose
that

k2

k1
< m+

(m− 1)(N − 2)

2− q
,

then we introduce the values

p :=
m(N − q) + 2−q

m−1(m− k2
k1

)

N − 2 + 2−q
m−1

(
m− k2

k1

) ,

p =
m (N − q) + 2−q

m−1

(
m− k1

k2

)
N − 2 + 2−q

m−1

(
m− k1

k2

) .

It can be easily checked that

p ≤ p̄ .

In particular, p = p̄ whenever k1 = k2. Then we prove that

• for p > p, if the initial datum, u0 ∈ L∞(RN ), is small enough, then global solutions
to problem (I.2.11) exist;

• for any p > 1, if the initial datum is sufficiently large, the solutions of problem
(I.2.11) blow-up in finite time;

• for 1 < p ≤ m, then for any u0 6≡ 0, solutions to problem (I.2.11) blow-up in finite
time;

• for m < p ≤ p, if in addition q ∈ [0, ε) for ε > 0 small enough, then for any u0 6≡ 0,
solutions to problem (I.2.11) blow-up in finite time .

In the special case, k1 = k2, the results stated so far can be understood as follows

• for p > m + 2−q
N−q and for small enough initial data with u0 ∈ L∞(RN ), global

solutions to problem (I.2.11) exist;
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• for any p > 1 and for sufficiently large initial data, solutions of problem (I.2.11)
blow-up in finite time;

• for 1 < p ≤ m, then for any u0 6≡ 0, solutions to problem (I.2.11) blow-up in finite
time;

• for m < p ≤ m + 2−q
N−q , if in addition q ∈ [0, ε) for ε > 0 small enough, then for

any u0 6≡ 0, solutions to problem (I.2.11) blow-up in finite time .

Our proofs mainly rely on suitable comparison principles and properly constructed
sub- and supersolutions. Let us mention that the arguments exploited in [119] cannot
be directly used in our case, due to the presence of the coefficient ρ(x). In fact, we
construct appropriate sub- and supersolutions, which crucially depend on the behavior
at infinity of the inhomogeneity term ρ(x). More precisely, whenever |x| > 1, they are
of the type

w(x, t) = Cζ(t)

[
1− |x|

b

a
η(t)

] 1
m−1

+

for any (x, t) ∈
[
RN \B1(0)

]
× [0, T ),

for suitable functions ζ = ζ(t), η = η(t) and constants C > 0, a > 0, where b := 2− q.
In view of the term |x|b with b ∈ (0, 2], we cannot show that such functions are sub-
and supersolutions in B1(0)× (0, T ). Thus we have to extend them in a suitable way in
B1(0)× (0, T ). In order to extend our sub- and supersolutions, we need to impose some
extra conditions on ζ = ζ(t), η = η(t), C and a. Thus, it appears a sort of interplay
between the behavior of the density ρ(x) in compact sets, say B1(0), and its behavior
for large values of |x|.

Finally, let us comment about the proofs of the blow-up result for any nontrivial
initial datum. For 1 < p ≤ m, the result follows by a direct application of the previous
results. For m < p < p, the proof is more involved. The corresponding result for the
case ρ ≡ 1 established in [119] is proved by means of the Barenblatt solutions of the
porous medium equation

ut = ∆(um) in RN × (0,+∞) .

In our situation, we do not have self-similar solutions, since our equation in (I.2.11) is
not scaling invariant, in view of the presence of the term ρ(x). Indeed, we construct a
suitable subsolution z of equation

ut =
1

ρ(x)
∆(um) in RN × (0,+∞) .

By means of z, we can show that after a certain time, the solution u of problem (I.2.11)
is sufficiently large, then we get finite time blow-up as in the previous situation.

In Chapter 2 (where [93] is reproduced) we study problem (I.2.11) with the following
assumptions on ρ : RN → (0,+∞)

(i) ρ ∈ C(RN ),

(ii) there exist k1, k2 ∈ (0,+∞), with k1 ≤ k2, r0 > 0 and q ≥ 2 s.t.

k1(|x|+ r0)q ≤ 1

ρ(x)
≤ k2(|x|+ r0)q for all x ∈ RN \B1(0) .

(I.2.12)
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Due to hypotheses (I.2.12), we refer to ρ(x) as a fast decaying density at infinity. We
distinguish between two cases: q = 2 and q > 2.

First, assume that (I.2.12) holds with q = 2, then we prove that

• for any p > m, if the initial datum u0 ∈ L∞(RN ) is small enough, then there exist
global in time solutions to problem (I.2.11), which belong to L∞(RN × (0,+∞));

• for any p > m, if the initial datum u0 is sufficiently large, then solutions to problem
(I.2.11) blow-up in finite time.

The proofs mainly relies on suitable comparison principles and properly constructed
sub- and supersolutions, which crucially depend on the behavior at infinity of the in-
homogeneity term ρ(x). More precisely, they are of the type

w(x, t) = Cζ(t)

[
1− log(|x|+ r0)

a
η(t)

] 1
m−1

+

for any (x, t) ∈
[
RN \B1(0)

]
× [0, T ),

for suitable functions ζ = ζ(t), η = η(t) and constants C > 0, a > 0. The presence of
log(|x| + r0) in w is strictly related to the assumption that q = 2. Observe that the
barriers used in the slowly decaying density case, i.e. 0 ≤ q < 2, which are of power
type in |x|, do not work in the present situation. Furthermore, note that the exponent
p̄ introduced before for 0 ≤ q < 2, when q = 2 becomes p̄ = m.

Now, assume that q > 2. We have the following results

• for 1 < p < m, if u0 ∈ L∞(RN ) then there exist global in time solutions to
problem (I.2.11). We do not assume that u0 has compact support, but we need
that it fulfills a decay condition as |x| → +∞. However, u0 in a compact subset
of RN can be arbitrarily large. We cannot deduce that the corresponding solution
belongs to L∞(RN × (0,+∞)), but it is in L∞(RN × (0, τ)) for each τ > 0.

• for p > m ≥ 1, if u0 ∈ L∞(RN ) then problem (I.2.11) admits a solution in
L∞(RN × (0,+∞)). We need that

0 ≤ u0(x) ≤ CW (x) for all x ∈ RN ,

where C > 0 is small enough and W (x) is a suitable function, which vanishes as
|x| → +∞.

• for p = m > 1, if u0 ∈ L∞(RN ) then problem (I.2.11) admits a solution in
L∞(RN × (0,+∞)), provided that r0 > 0 in (I.2.12) is big enough.

Such results are very different with respect to the cases 0 ≤ q < 2 and q = 2. In
fact, we do not have finite-time blow-up, but global existence, for suitable initial data
always prevails. The results follow by comparison principles, once we have constructed
appropriate supersolutions, that have the form

w(x, t) = ζ(t)W (x) for all (x, t) ∈ RN × (0,+∞),

for suitable ζ(t) and W (x). When p ≥ m, ζ(t) ≡ 1. Observe that we can also include
the linear case m = 1, whenever p > m.
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In Chapter 3 (where [94] is reproduced), we have considered problem (I.2.11) for a
different choice of weight ρ : RN → (0,+∞), ρ ∈ C(RN ). In particular, we always make
one of the following assumptions:

there exist k ∈ (0,+∞) and α > 1 such that

1

ρ(x)
≥ k (log |x|)α |x|2 for all x ∈ RN \Be(0) ;

(I.2.13)

or
there exist k1, k2 ∈ (0,+∞) with k1 ≤ k2 and α > 1 such that

k1
|x|2

(log |x|)α
≤ 1

ρ(x)
≤ k2

|x|2

(log |x|)α
for all x ∈ RN \Be(0) .

(I.2.14)

Global existence and blow-up of solutions are addressed depending on the interplay
between m > 1, p > 1 and α. The method of proofs and the results are similar to those
obtained in the case of slowly and fast decaying densities.

In particular, if ρ satisfies (I.2.13), then

• for 1 < p < m, if the initial datum u0 ∈ L∞(RN ), then problem (I.2.11) admits a
global solution belonging to L∞(RN × (0, τ)) for every τ > 0;

• for p > m > 1, if u0 satisfies a suitable decaying condition as |x| → +∞, then
problem (I.2.11) admits a global solution in L∞(RN × (0,+∞)).

On the other hand, if ρ satisfies (I.2.14), then

• for p > m > 1, if u0 ∈ L∞(RN ) is sufficiently large, then the solutions to problem
(I.2.11) blow-up in finite time;

• for p > m > 1, if u0 ∈ L∞(RN ) is sufficiently small and compact supported, then,
under suitable assumptions on k1 and k2, there exist global in time solutions to
problem (I.2.11) in L∞(RN × (0,+∞)).

We construct suitable sub- and supersolutions that are of the form

w(x, t) = Cζ(t)

[
1− (log(|x|+ r0))q

a
η(t)

] 1
m−1

+

for any (x, t) ∈
[
RN \Be(0)

]
× [0, T ),

for appropriate functions ζ = ζ(t), η = η(t) and constants C > 0, a > 0, r0 > 0 and
q > 1.

I.3 Part II: The porous medium equation with reaction on
noncompact Riemannian manifolds

I.3.1 A survey of the literature

The problem of global solvability of nonlinear evolution problems has been recently
deep investigated also on general Riemannian manifolds. All the problems that we have
mentioned so far have a counterpart in the Riemannian setting, i.e. when the Euclidian
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space RN is replaced by a general complete, noncompact Riemannian manifold M .
We focus on those results in literature that motivates our investigation on the Cauchy
problem associated to equation (I.1.2). We observe that the behavior of solutions is
mostly influenced by two competing phenomena.

The first one is the diffusive pattern associated to the Porous Medium Equation
(PME)

ut = ∆(um), in M × (0, T ) (m > 1) , (I.3.15)

where T > 0, M is a Riemannian manifold of dimension N ≥ 2 and ∆ is the Laplace-
Beltrami operator. Observe that the fact that we assume m > 1 puts us in the slow
diffusion case. On the other hand, if m < 1, equation (I.3.15) is called fast diffusion
equation, on Riemannian manifolds it has been e.g. addressed in [13]. We mention
that the investigation on the behavior of solutions to the Cauchy problem associated to
equation (I.3.15) when M is the hyperbolic space HN , has been addressed in [111, 129].
We recall that HN is the complete, simply connected manifold of dimension N with
sectional curvature everywhere equal to −1. In particular, in [129], the fundamental
solution to equation (I.3.15) posed in HN has been constructed. It has been shown
that the behavior of the fundamental solutions for short and long times is completely
different. More precisely, for short times, the fundamental solutions behave like the
Barenblatt solutions introduced in (I.2.5). On the other hand, for large times, it has
been proved that radial and compactly supported data give rise to solutions that grow
logarithmically; in particular the following bound holds

‖u(t)‖L∞(HN ) ≤ C

(
log t

t

) 1
m−1

for any t > 2, (I.3.16)

where C > 0 is a suitable constant. This different behavior depending on the time is
a remarkable difference with the Euclidean case and it is due to the gradual influence
of the curvature of the hyperbolic space on the form of the fundamental solutions.
Moreover, (I.3.16) is in contrast with the well-known power-like growth of the PME in
the Euclidean space: the decay rate predicted by (I.3.16) is faster than its Euclidean
counterpart. Qualitatively speaking, negative curvature accelerates diffusions, a fact
that is apparent first of all from the behavior of solutions of the classical heat equation.
In fact, it can be shown that the standard deviation of a Brownian particle on the
hyperbolic space HN behaves linearly in time, whereas in the Euclidean situation it is
proportional to

√
t. Similarly, the heat kernel decays exponentially as t → +∞ in the

hyperbolic space HN whereas one has a power-type decay in the Euclidean situation.

Equation (I.3.15) has also been studied in [48, 55] when M is a Cartan-Hadamard
manifold, namely an N -dimensional complete, simply connected Riemannian manifold
with nonpositive sectional curvature. It is further assumed that the sectional curvature is
bounded above by a suitable constant−k < 0. It is investigated the behavior of solutions
to the Cauchy problem related to (I.3.15) when the initial datum u0 is integrable and
bounded on M . It is proved that the smoothing estimate (I.3.16) holds also in this case,
i.e.

‖u(t)‖L∞(M) ≤ C

[
log(2 + t)‖u0‖m−1

L1(M)

t

] 1
m−1

for any t > 0,
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where C > 0 is a suitable constant.
The Cauchy problem associated to equation (I.3.15) has also been investigated on

more general Riemannian manifolds, see e.g. [43, 52, 53, 112].
The second driving factor influencing the behavior of solutions to the Cauchy prob-

lem associated to equation (I.1.2), is the reaction term up, which has the positive sign
and, thus, might drive solutions towards blow-up. Let us first recall the well known
semilinear heat equation

ut = ∆u+ f(u) in M × (0, T ), (I.3.17)

where T > 0, M is a Riemannian manifold of dimension N ≥ 2, ∆ is the Laplace-
Beltrami operator and f is a positive function, thus we are in presence of reaction. The
choice f(u) = up, for p > 1, has been considered in [9]. It has been shown that the
Cauchy problem associated to equation (I.3.17) when M = HN , always admits a global
solution, if the initial datum is sufficiently small. We underline that this behavior of
solutions is in contrast with the Euclidian counterpart (M = RN ) where the Fujita
phenomenon arises. On the other hand, it is similar to the behavior of solutions to
the Cauchy problem posed in bounded domains Ω ⊂ RN with homogeneous Dirichlet
boundary conditions. For other choices of f(u) and more general Riemannian manifolds
we refer the reader to e.g. [110, 113, 130, 131].

Let us now recall some results concerning the equation in (I.1.2), i.e.

ut = ∆(um) + up in M × (0, T ),

where M is a complete noncompact Riemannian manifold of dimension N , p > 1, m > 1
and T > 0. The Cauchy problem associated to equation (I.1.2) has been studied in [137],
under the assumption that the volume of geodesic balls of radius R grows as Rα with
α ≥ 2; this kind of assumption is typically associated to nonnegative Ricci curvature.

The situation on negatively curved manifolds M is significantly different, and the
results in this connection have been shown in [54]. More precisely, in [54], the behavior
of solutions to the Cauchy problem associated to equation (I.1.2) when M is a Cartan-
Hadamard manifold and the initial datum is nonnegative and compactly supported, has
been addressed. Moreover, suitable curvature conditions have been assumed, i.e.

Rico(x) ≤ −(N − 1)h2 or Rico(x) ≥ −(N − 1)k2, (I.3.18)

where h, k > 0 and Rico(x) is the Ricci curvature at x in the radial direction ∂
∂r w.r.t.

a given pole o. For p > m, a dichotomy phenomenon has been proved. In particular, it
has been shown global existence of solutions for small enough initial datum assuming
that the upper bound on the Ricci curvature given in (I.3.18) holds. Moreover, a class
of sufficiently small data shows propagation properties identical to the ones valid for the
unforced porous medium equation (I.3.15). On the other hand, blow-up occurs if the
initial datum is large enough and the lower bound on the Ricci curvature given in (I.3.18)
holds. For p ∈

(
1, 1+m

2

]
, it is shown that pointwise everywhere blowup in infinite time

occurs. Whereas, in the range p ∈
(

1+m
2 ,m

]
, they show that, if the solution is global

in time, then blowup occurs in infinite time. Thus we can observe that the behavior
of solutions is considerably different from the Euclidean setting. In the Riemannian
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setting, a dichotomy phenomenon between large and small data occurs when p > m,
whereas in the Euclidean one the same dichotomy occurs when p > m + 2

N . Finally, a
completely new phenomenon appears when p ∈

(
1, 1+m

2

]
, i.e. blow-up of solutions in

infinite time.

I.3.2 Outline of the results

In Chapters 4 and 5, we address the porous medium equation with reaction of the form
(I.1.2) posed in the Riemannian setting.

We investigate global existence of solutions to the Cauchy problem{
ut = ∆(um) + up in M × (0, T )

u = u0 in M × {0} ,
(I.3.19)

where M is a complete noncompact Riemannian manifold of infinite volume, of dimen-
sion N ≥ 3, T > 0 and m > 1, p > 1. Moreover, the initial datum u0 is a nonnegative
function.

In particular, in Chapter 4 (where [45] is reproduced), we consider the case when

p > m > 1

and we assume the validity of the Sobolev or the Poincaré inequalities on M , i.e.

‖v‖L2∗ (M) ≤
1

Cs
‖∇v‖L2(M) for any v ∈ C∞c (M), (I.3.20)

‖v‖L2(M) ≤
1

Cp
‖∇v‖L2(M) for any v ∈ C∞c (M); (I.3.21)

where Cp and Cs are numerical constants and 2∗ := 2N
N−2 . This assumption puts con-

straints on the Riemannian manifold M . In particular, we recall that it is e.g. well
known that the Sobolev inequality always holds on Cartan-Hadamard manifolds, namely
complete and simply connected manifolds that have everywhere non-positive sectional
curvature. Furthermore, if we assume that sec ≤ −k < 0 then also the Poincaré in-
equality holds.

Our results can be summarized as follows.

• For

p > m+
2

N
,

we assume that the Sobolev inequality in (I.3.20) holds on M . Then we prove
that any sufficiently small initial datum

u0 ∈ Lm(M) ∩ L(p−m)N
2 (M)

gives rise to a global solution u(t) such that u(t) ∈ L∞(M) for all t > 0. Moreover,
we prove a quantitative bound on the L∞ of the solution u(t) for any t > 0.
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• For
p > m,

we assume that both the Sobolev and Poincaré in (I.3.20), (I.3.21) inequalities
hold on M . Then we prove that any sufficiently small initial datum u0, where u0

belongs to a suitable Lebesgue space, give rise to a global solution u(t) such that
u(t) ∈ L∞(M) for all t > 0. Moreover we provide a quantitative bound on the
L∞ norm of the solution u(t) for any t > 0.

Observe that, if we only assume that the Sobolev inequality holds, then we need to
restrict the range of p asking for p > m + 2

N . On the other hand, we can relax the
assumption on the exponent p, i.e. p > m, if we further assume the validity of the
Poincaré inequality.

The strategy of the proof of both results mainly relies on the validity of the functional
inequalities (I.3.20) and (I.3.21). For this reason, our results can be generalized to
different context among which we outline the case of inhomogeneous porous medium
equation with reaction in the Euclidean setting, see problem (I.2.11). The problem is
naturally posed in the weighted spaces

Lqρ(RN ) =

{
v : RN → R measurable , ‖v‖Lqρ :=

(∫
RN

vqρ(x) dx

)1/q

< +∞

}
.

Then we introduce the weighted Sobolev and Poincaré inequalities

‖v‖L2∗
ρ (RN ) ≤

1

Cs
‖∇v‖L2(RN ) for any v ∈ C∞c (RN ), (I.3.22)

‖v‖L2
ρ(RN ) ≤

1

Cp
‖∇v‖L2(RN ) for any v ∈ C∞c (RN ), (I.3.23)

for suitable positive constants Cs and Cp. The main results of this case can be sum-
marized as follows.

• For

p > m+
2

N
,

we assume that the Sobolev inequality in (I.3.22) holds on M . Then we prove
that any sufficiently small initial datum

u0 ∈ Lmρ (RN ) ∩ L(p−m)N
2

ρ (RN )

gives rise to a global solution u(t) such that u(t) ∈ L∞(RN ) for all t > 0. Moreover,
we prove a quantitative bound on the L∞ of the solution u(t) for any t > 0.

• For
p > m,

we assume that both the Sobolev and Poincaré inequalities in (I.3.22), (I.3.23)
hold on M . Then we prove that any sufficiently small initial datum u0, where u0

belongs to a suitable Lebesgue space, give rise to a global solution u(t) such that
u(t) ∈ L∞(RN ) for all t > 0. Moreover we provide a quantitative bound on the
L∞ norm of the solution u(t) for any t > 0.
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In Chapter 5 (where [46] is reproduced), we investigate global existence of solutions
to the Cauchy problem in (I.3.19) in the case when

1 < p < m.

We also assume the validity of the Sobolev and Poincaré inequalities (I.3.20) and (I.3.21)
on M . Moreover, we suppose that the initial datum u0 is a nonnegative function such
that

u0 ∈ Lm(M) .

We summarize the main results as follows.

• For any

1 < p < m ,

we suppose that the initial datum u0 is a nonnegative function such that u0 ∈
Lm(M). Then we prove global existence of solutions to problem (I.3.19). Moreover,
we show a smoothing effects for solutions, in the sense that Lm data give rise to
global solutions u(t) such that u(t) ∈ L∞(M) for all t > 0, with a quantitative
bound on their L∞ norm.

• As a consequence, combining this fact with some results proved in [54], we can
prove that, on manifolds satisfying e.g. −c1 ≤ sec ≤ −c2 with c1 ≥ c2 > 0, any
solution u(t) to (I.3.19) corresponding to an initial datum u0 ∈ Lm(M) exists
globally and, provided u0 is sufficiently large, it satisfies the property

lim
t→+∞

u(x, t) = +∞ ∀x ∈M,

namely complete blowup in infinite time occurs for such solutions to (I.3.19) in the
whole range p ∈ (1,m). We recall that e.g. the above hypothesis on the sectional
curvature, sec, includes the particularly important case of the hyperbolic space
HN .

Similarly to the case when p > m > 1, our results depend essentially only on the
validity of the functional inequalities (I.3.20) and (I.3.21), hence they are generalizable
to different contexts. As a particularly significant situation, we single out the case of
Euclidean, inhomogeneous porous medium equation with reaction introduced in (I.2.11).
Assuming that the weight ρ is such that the weighted Sobolev and Poincaré inequalities
in (I.3.22) and (I.3.23) hold, we prove that

• for any

1 < p < m ,

we suppose that the initial datum u0 is a nonnegative function such that u0 ∈
Lmρ (RN ). Then we prove global existence of solutions to problem (I.3.19). Moreover,
we show a smoothing effects for solutions, in the sense that Lmρ data give rise to

global solutions u(t) such that u(t) ∈ L∞(RN ) for all t > 0, with a quantitative
bound on their L∞ norm;
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• for ρ � |x|−2 as |x| → +∞, we are able to construct a subsolution of equation
(I.2.11) which blows up in infinite time. As a consequence, combining this fact
with the previous result of global existence of the solution, we can prove that, any
solution u(t) to (I.2.11) corresponding to an initial datum u0 ∈ Lmρ (RN ) exists
globally and, provided u0 is sufficiently large, it satisfies the property

lim
t→+∞

u(x, t) = +∞ ∀x ∈ RN ,

namely complete blowup in infinite time occurs for such solutions to (I.2.11) in the
whole range p ∈ (1,m).

I.4 Part III: Quasilinear parabolic differential inequalities

I.4.1 A survey of the literature

The study of nonexistence of solutions to partial differential equations, such as equation
in (I.1.3), has received considerable attention in the literature. Observe that equation
in (I.1.3) represents a wide class of nonlinear problems. The approach used to study
nonexistence of solutions has been exploited by Mitidieri and Pohozaev in [95, 96] and
it is mainly based on the construction of suitable test functions and integral estimates.
For a comprehensive description of such approach we refer the reader to [98].

One of the most important and well-studied class of elliptic differential inequalities,
due to its ubiquitous presence in many applications, is

∆u+ V (x)uq ≤ 0, (I.4.24)

both on RN and on general Riemannian manifolds M , for q > 1. In particular, in
many instances it is also required that the solution u of the problem is positive. The
Cauchy problem related to inequality (I.4.24) has been investigated by Gidas in [37] and
Gidas and Spruck in [38]. In those papers the authors show, among other results, that
any nonnegative solution of inequality (I.4.24) is in fact identically null if and only if
q ≤ N

N−2 , in case V ≡ 1 and the dimension of the Euclidean space is N ≥ 3. Moreover,

in [96], the authors show that inequality (I.4.24) on RN does not admit any nontrivial
nonnegative solution, provided that

lim inf
R→∞

R
− 2q
q−1

∫
B√2R\BR

V
− 1
q−1 dx <∞

We also mention that nonexistence results of nonnegative nontrivial solutions have
been much investigated for solutions to elliptic quasilinear inequalities of the form:

1

a(x)
div
(
a(x)|∇u|p−2∇u

)
+ V (x)uq ≤ 0 in RN , (I.4.25)

where
a > 0, a ∈ Liploc(RN ), V > 0 a.e. on RN , V ∈ L1

loc(RN ),

p > 1, q > p − 1. We refer to [17, 95, 96, 97, 98] for a comprehensive description of
results related to problem (I.4.25) and also more general problems on RN .
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Inequality (I.4.25) has also been considered when the Euclidean space is replaced by
a complete noncompact Riemannian manifold M . The results in this case have a more
recent history, we refer the reader to the inspiring papers of Grigor’yan and Kondratiev
[41] and Grigor’yan and Sun [42], whose approach originates from the work of Kurta
[80], and the papers by Sun [123, 124].

In particular, in [90], the authors prove nonexistence of solutions to inequality
(I.4.25), for any p ≥ 2, provided that there exists C0 > 0 and k ∈ [0, β), such that,
for every R > 0 sufficiently large and every small enough ε > 0∫

BR\BR/2
V −β+ε dµ ≤ C Rα+C0 ε(logR)k ,

where dµ is the canonical Riemannian measure on M , BR is the geodesic ball centered
at a point x0 ∈M and

α =
pq

q − p+ 1
, β =

p− 1

q − p+ 1
.

Finally, we mention that (I.4.25) posed on an open relatively compact connected
domain Ω ⊂M has been studied in [100]. Under the assumptions that

a > 0, a ∈ Liploc(Ω), V > 0 a.e. on Ω, V ∈ L1
loc(Ω),

p > 1, q > p − 1, the authors investigate the relation between the behavior of the
potential V at the boundary of Ω and nonexistence of nonnegative weak solutions.

We now consider the evolutive counterpart of the elliptic inequalities introduced so
far, such as the parabolic problem in (I.1.3). Global existence and finite time blow-
up of solutions for problem (I.1.3), together with its generalization to a wider class of
operators of p-Laplace type or related to the porous medium equation, has been deeply
studied in the Euclidean space; without claim of completeness we refer the reader to
[33, 34, 35, 97, 98, 105, 104] and references therein. In particular, in [98], the authors
consider the Cauchy problem associated to the following inequality

ut − div
(
|∇u|p−2∇u

)
≥ uq in RN × (0, T ),

where the initial datum is u0 ∈ L1
loc(RN ) and

q > 1 .

They prove nonexistence of nontrivial weak solutions with the assumptions

p >
2N

N + 1
, max{1, p− 1} < q ≤ p− 1 +

p

N
.

We refer the reader to [98] for nonexistence results of more general quasilinear evolution
inequalities.

Moreover, problem (I.1.3) has been investigated in the Riemannian setting, see e.g.
[9, 89, 110, 56, 137] and references therein.

In [89] problem (I.1.3) is studied when Ω = M is a complete, N -dimensional, non-
compact Riemannian manifold; it is investigated nonexistence of nonnegative nontrivial
weak solutions depending on the interplay between the geometry of the underlying man-
ifold, the power nonlinearity and the behavior of the potential at infinity, assuming that
u0 ∈ L1

loc(M), u ≥ 0 a.e. in M and V ∈ L1
loc(M × [0,+∞)), V > 0 a.e. in M .
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I.4.2 Outline of the results

In Chapter 6 (where [91] is reproduced), we address a class of quasilinear parabolic
differential equations with a potential of the form (I.1.3).

We are concerned with nonexistence of nonnegative weak solutions to the following
problem 

∂tu− div
(
|∇u|p−2∇u

)
≥ V uq in Ω× (0, T )

u = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} ;

(I.4.26)

where Ω is an open bounded connected subset of RN , T > 0, p > 1 and q > max{p−1, 1}.
Under suitable hypotheses on V and q, we obtain nonexistence of global weak solu-

tions. In particular, we assume that

• p > 1, q > max{p− 1, 1};

• V ∈ L1
loc(Ω× [0,+∞)), V > 0 a.e. in Ω× [0,+∞);

• V satisfies some integral conditions which describe its behavior near the boundary
∂Ω,

• u0 ∈ L1
loc(Ω), u0 ≥ 0 a.e. in Ω.

Then we prove that, if u is a nonnegative weak solution of problem (I.4.26) then u ≡ 0
a.e. in Ω× [0,+∞).

The proof is mainly based on the choice of a family of suitable test functions, de-
pending on two parameters, that enables us to deduce first some appropriate a priori
estimates, then that the unique global solution is u ≡ 0. Such test functions are defined
by adapting to the present situation those used in [89]; however, some important differ-
ences occur, since in [89] an unbounded underlying manifold is considered, whereas now
we consider a bounded domain. In some sense, the role of infinity of [89] is now played
by the boundary ∂Ω. Obviously, this implies that such test functions satisfy different
properties.

Moreover, as a special case, we consider the semilinear parabolic problem
∂tu−∆u = V (x)uq in Ω× (0, T )

u(x, t) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω× {0} .
(I.4.27)

where Ω is an open bounded connected subset of RN , N ≥ 3 and u0 : Ω → [0,+∞),
q > 1 and T > 0.

We can summarize our results for problem (I.4.27) as follows. As a consequence of
our general result, we infer that nonexistence of global solutions for problem (I.4.27)
prevails, when

V (x) ≥ Cd(x)−σ1 for all x ∈ Ω,

for some C > 0 and

σ1 > q + 1,
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where
d(x) := dist(x, ∂Ω) for any x ∈ Ω.

Furthermore, we show sharpness of this result for the semilinear problem in the case ∂Ω
is regular enough and V = V (x) is continuous and independent of t. Indeed, under the
assumption that

0 ≤ V (x) ≤ Cd(x)−σ1 for all x ∈ Ω,

for some C > 0 and
0 ≤ σ1 < q + 1,

we prove the existence of a global classical solution for problem (I.4.27), if the initial
datum u0 is small enough. This existence result is obtained by means of the sub–
and supersolutions method. In particular, we construct a supersolution to problem
(I.4.27), which actually is a supersolution of the associated stationary equation. Such
supersolution is obtained as the fixed point of a suitable contraction map. In order to
show that such a fixed point exists, we need to estimate some integrals involving the
Green function associated to the Laplace operator −∆ in Ω and we prove that there
exists C > 0 such that

0 ≤
∫

Ω
G(x, y)d(y)β dy ≤ C d(x) , for any β > −2 .

Finally, we study the slightly supercritical case

V (x, t) ≥ d(x)−q−1f(d(x))q−1 for all x ∈ Ω, t ∈ [0,+∞)

where f is a function satisfying suitable assumptions and such that limε→0+ f(ε) =
+∞, for which we prove nonexistence of nonnegative nontrivial weak solutions in Ω ×
(0,+∞)). The proof of this result require a different argument with respect to the
previous nonexistence results, which makes use of linearity of the operator and of the
special form of the potential. Then the critical rate of growth d(x)−q−1 as x approaches
∂Ω is indeed sharp for the nonexistence of solutions to problem (I.4.27). Our results do
not cover the case of critical rate of growth, i.e.

C1d(x)−q−1 ≤ V (x, t) ≤ C2d(x)−q−1

for some C1, C2 > 0, but we conjecture that also in this case no nonnegative nontrivial
solution of problem (I.4.27) exists.
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Chapter 1

The slowly decaying density case

1.1 Introduction

We investigate global existence and blow-up of nonnegative solutions to the Cauchy
parabolic problem {

ρ(x)ut = ∆(um) + ρ(x)up in RN × (0, τ)

u = u0 in RN × {0} ,
(1.1.1)

where m > 1, p > 1, N ≥ 3, τ > 0; furthermore, we always assume that

(i) ρ ∈ C(RN ), ρ > 0 in RN ;

(ii) there exist k1, k2 ∈ (0,+∞) with k1 ≤ k2 and 0 ≤ q < 2 such that

k1|x|q ≤
1

ρ(x)
≤ k2|x|q for all x ∈ RN \B1(0) ;

(iii) u0 ∈ L∞(RN ), u0 ≥ 0 in RN .

(H)

The parabolic equation in problem (1.1.1) is of the porous medium type, with a
variable density ρ(x) and a reaction term ρ(x)up. Clearly, such parabolic equation is
degenerate, since m > 1. Moreover, the differential equation in (1.1.1) is equivalent to

ut =
1

ρ(x)
∆(um) + up in RN × (0, τ);

therefore, the related diffusion operator is 1
ρ(x)∆, and in view of (H), the coefficient

1

ρ(x)
can positively diverge at infinity. Problem (1.1.1) has been introduced in [73] as

a mathematical model of evolution of plasma temperature, where u is the temperature,
ρ(x) is the particle density, ρ(x)up represents the volumetric heating of plasma. Indeed,
in [73, Introduction] a more general source term of the type A(x)up has also been
considered; however, then the authors assume that A ≡ 0; only some remarks for the
case A(x) = ρ(x) are made in [73, Section 4], when the problem is set in a slab in one
space dimension. Then in [71] and [72] problem (1.1.1) is dealt with in the case without
the reaction term ρ(x)up.

3
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We refer to ρ(x) as a slowly decaying density at infinity because, in view of (H),

1

k2|x|q
≤ ρ(x) ≤ 1

k1|x|q
for all |x| > 1 ,

with

0 ≤ q < 2.

Global existence and blow-up of solutions for problem (1.1.1) with fast decaying density
at infinity, i.e. q ≥ 2, is investigated in [93] . We regard the value q = 2 as the threshold
one, indeed, the behavior of solutions is very different according to the fact that q < 2
or q = 2 or q > 2. Such important role played by the value q = 2 does not surprise. In
fact, for problem (1.1.1) without the reaction term up, that is{

ρut = ∆(um) in RN × (0, τ)

u = u0 in RN × {0} ,
(1.1.2)

in [109], it is shown that for q ≤ 2 there exists a unique bounded solution, whereas for
q > 2, for any u0 ∈ L∞(RN ) there exist infinitely many bounded solutions.

Let us briefly recall some results in the literature concerning well-posedness for
problems related to (1.1.1). Problem (1.1.1) with ρ ≡ 1 and without the reaction term,
that is {

ut = ∆(um) in RN × (0, τ)

u = u0 in RN × {0},
(1.1.3)

has been the object of detailed investigations. We refer the reader to the book [128] and
references therein, for a comprehensive account of the main results. Also problem (1.1.1)
with variable density, without reaction term, that is problem (1.1.2), has been widely
examined. In particular, depending on the behaviour of ρ(x) as |x| → ∞, existence and
uniqueness of solutions and the asymptotic behaviour of solutions for large times have
been addressed (see, e.g., [25, 27, 49, 51, 50, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 109,
115, 116, 117]).

For problem (1.1.1) with m = 1 and ρ ≡ 1, global existence and blow-up of solutions
have been studied. To be specific, if

p ≤ 1 +
2

N
,

then finite time blow-up occurs, for all nontrivial nonnegative data, whereas, for

p > 1 +
2

N
,

global existence prevails for sufficiently small initial conditions (see, e.g., [16, 24, 30, 31,
58, 83, 114, 118, 121, 135]). In addition, in [85] (see also [21]), problem (1.1.1) with
m = 1 has been considered. Let assumption (H) be satisfied, and let

b := 2− q. (1.1.4)
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Obviously, since q ∈ [0, 2), we have that

b ∈ (0, 2] .

It is shown that if

p ≤ 1 +
b

N − 2 + b
,

then solutions blow-up in finite time, for all nontrivial nonnegative data, whereas, for

p > 1 +
b

N − 2 + b
,

global in time solutions exist, provided that u0 is small enough.

Now, let us recall some results established in [119] for problem (1.1.1) with ρ ≡ 1,
m > 1, p > 1 (see also [36, 99]). We have:

• ([119, Theorem 1, p. 216]) For any p > 1, for all sufficiently large initial data,
solutions blow-up in finite time;

• ([119, Theorem 2, p. 217]) if p ∈
(
1,m+ 2

N

)
, for all initial data, solutions blow-up

in finite time;

• ([119, Theorem 3, p. 220]) if p > m + 2
N , for all sufficiently small initial data,

solutions exist globally in time.

Similar results for quasilinear parabolic equations, also involving p-Laplace type oper-
ators or double-nonlinear operators, have been stated in [1], [3], [4], [20], [22], [23], [60],
[61], [86], [87], [88], [97], [98], [104], [125], [132] (see also [89] for the case of Riemannian
manifolds); moreover, in [54] the same problem on Cartan-Hadamard manifolds has
been investigated.

Let us observe that the results in [119] illustrated above have been proved by means
of comparison principles and suitable sub– and supersolutions of the form

w(x, t) = Cζ(t)

[
1− |x|

2

a
η(t)

] 1
m−1

+

for any (x, t) ∈ RN × [0, T ),

for appropriate auxiliary functions ζ = ζ(t), η = η(t) and constants C > 0, a > 0.

In [86, 87] double-nonlinear operators, including in particular problem (1.1.1), are
investigated. It is shown that (see [86, Theorem 1]) if ρ(x) = |x|−q with q ∈ (0, 2), for
any x ∈ RN \ {0},

p > m+
b

N − 2 + b
,

u0 ≥ 0 and ∫
RN

{
u0(x) + [u0(x)]q̄

}
ρ(x)dx < δ, (1.1.5)

for some δ > 0 small enough and q̄ > N
2 (p − m), then there exists a global solution

of problem (1.1.1). In addition, a smoothing estimate holds. On the other hand, if
ρ(x) = |x|−q or ρ(x) = (1 + |x|)−q with q ∈ [0, 2), u0 6≡ 0 and

p < m+
b

N − 2 + b
,
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then blow-up prevails, in the sense that there exist θ ∈ (0, 1), R > 0, T > 0 such that∫
BR

[u(x, t)]θρ(x)dx→ +∞ as t→ T−.

Such results have also been generalized to more general initial data, decaying at infinity
with a certain rate (see [87]). We compare the results in [86] with ours below (see
Remarks 1.2.3, 1.2.5 and 1.2.8).

1.1.1 Outline of our results

We prove the following results.

• (See Theorem 1.2.1). Suppose that

k2

k1
< m+

(m− 1)(N − 2)

b
, (1.1.6)

and define

p :=
m(N − 2 + b) + b

m−1(m− k2
k1

)

N − 2 + b
m−1

(
m− k2

k1

) . (1.1.7)

If u0 has compact support and is small enough,

p > p,

then global solutions exist.

Note that for k1 = k2,

p = m+
b

N + 2− b
;

this is coherent with [86, Theorem 1] (see Remark 1.2.3 below for more details).
If in addition ρ ≡ 1, and so b = 2, we have

p = m+
2

N
.

Thus, our results are in accordance with those in [119]. Furthermore, for m = 1,
they are in agreement with the results established in [85], and in [31, 58] when
ρ ≡ 1.

• (See Theorem 1.2.4). For any p > 1, if u0 is sufficiently large, then solutions to
problem (1.1.1) blow-up in finite time.

• (see Theorem 1.2.6). If 1 < p < m, then for any u0 6≡ 0, solutions to problem
(1.1.1) blow-up in finite time. In addition (see Theorem 1.2.7), if

m ≤ p < m+
b

N − 2 + b

and q ∈ [0, ε) for ε > 0 small enough, then for any u0 6≡ 0, solutions to problem
(1.1.1) blow-up in finite time.
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It remains to be understood if the restriction q ∈ [0, ε) can be removed.

Actually, we obtain similar results to those described above, also when assumption
(H) is fulfilled for general 0 < k1 < k2. In that case, the blow-up result for large initial
data can be stated exactly as in the previous case k1 = k2 . Instead, in order to get
global existence, the assumption on p changes, since it also depends on the parameters
k1 and k2. More precisely, Indeed, also our blow-up results for any nontrivial initial
datum holds when 0 < k1 < k2. The case 1 < p < m is exactly as before. Moreover (see
Theorem 1.2.7), if

m ≤ p < p,

where

p =
m (N − 2 + b) + b

m−1

(
m− k1

k2

)
N − 2 + b

m−1

(
m− k1

k2

) , (1.1.8)

then the solution blows-up for any nontrivial initial datum, under the extra hypothesis
that q ∈ [0, ε) for ε > 0 small enough. Note that in view of (1.1.6), it can be easily
checked that

p ≤ p̄ .

In particular, p = p̄ whenever k1 = k2.

The methods used in [21, 31, 58, 85] cannot work in the present situation, since they
strongly require m = 1. Indeed, our proofs mainly relies on suitable comparison prin-
ciples (see Propositions 1.3.6, 1.3.7) and properly constructed sub- and supersolutions.
Let us mention that the arguments exploited in [119] cannot be directly used in our case,
due to the presence of the coefficient ρ(x). In fact, we construct appropriate sub– and
supersolutions, which crucially depend on the behavior at infinity of the inhomogeneity
term ρ(x). More precisely, whenever |x| > 1, they are of the type

w(x, t) = Cζ(t)

[
1− |x|

b

a
η(t)

] 1
m−1

+

for any (x, t) ∈
[
RN \B1(0)

]
× [0, T ),

for suitable functions ζ = ζ(t), η = η(t) and constants C > 0, a > 0. In view of the term
|x|b with b ∈ (0, 2], we cannot show that such functions are sub- and supersolutions in
B1(0)× (0, T ). Thus we have to extend them in a suitable way in B1(0)× (0, T ). This is
not only a technical aspect. In fact, in order to extend our sub– and supersolutions, we
need to impose some extra conditions on ζ = ζ(t), η = η(t), C and a. Thus, it appears
a sort of interplay between the behavior of the density ρ(x) in compact sets, say B1(0),
and its behavior for large values of |x|. Finally, let us comment about the proofs of the
blow-up result for any nontrivial initial datum. For 1 < p < m, the result follows by a
direct application of Theorem 1.2.4. For m < p < p, the proof is more involved. The
corresponding result for the case ρ ≡ 1 established in [119] is proved by means of the
Barenblatt solutions of the porous medium equation

ut = ∆(um) in RN × (0,+∞) .

In our situation, we do not have self-similar solutions, since our equation in (1.1.1) is
not scaling invariant, in view of the presence of the term ρ(x). Indeed, we construct a
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suitable subsolution z of equation

ut =
1

ρ
∆(um) in RN × (0,+∞) .

By means of z, we can show that after a certain time, the solution u of problem (1.1.1)
satisfies the hypotheses required by Theorem 1.2.4. Hence u blows-up in finite time.

Chapter 1 is organized as follows. In Section 1.2 we state our main results, in
Section 1.3 we give the precise definitions of solutions, we establish a local in time
existence result and some useful comparison principles. In Section 1.4 we prove the
global existence theorem. The blow-up results are proved in Section 1.5 for sufficiently
big initial data, and in Section 1.6 for any initial datum.

1.2 Statements of the main results

In view of (H)-(i), there exist ρ1, ρ2 ∈ (0,+∞) with ρ1 ≤ ρ2 such that

ρ1 ≤
1

ρ(x)
≤ ρ2 for all x ∈ B1(0). (1.2.9)

As a consequence of hypothesis (H) and (1.2.9), we can assume that

k1 = ρ1, k2 = ρ2 . (1.2.10)

Let p be defined by (1.1.7). It is immediate to see that p is monotonically increasing
with respect to the ratio k2

k1
; furthermore,

p > m .

Define

r(x) :=

{
|x|b if |x| ≥ 1,
b|x|b+2−b

b if |x| < 1 .
(1.2.11)

The first result concerns the global existence of solutions to problem (1.1.1) for p > p.

Theorem 1.2.1. Let assumptions (H), (1.1.6) and (1.2.10) be satisfied. Suppose that

p > p,

where p is given in (1.1.7), and that u0 is small enough and has compact support. Then
problem (1.1.1) admits a global solution u ∈ L∞(RN × (0,+∞)).

More precisely, if C > 0 is small enough, T > 0 is big enough, a > 0 with

ω0 ≤
Cm−1

a
≤ ω1,

for suitable 0 < ω0 < ω1,

α ∈
(

1

p− 1
,

1

m− 1

)
, β = 1− α(m− 1), (1.2.12)
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u0(x) ≤ CT−α
[
1− r(x)

a
T−β

] 1
m−1

+

for any x ∈ RN , (1.2.13)

then problem (1.1.1) admits a global solution u ∈ L∞(RN × (0,+∞)). Moreover,

u(x, t) ≤ C(T + t)−α
[
1− r(x)

a
(T + t)−β

] 1
m−1

+

for any (x, t) ∈ RN × [0,+∞) .

(1.2.14)

The precise choice of the parameters C > 0, T > 0 and a > 0 in Theorem 1.2.1 is
discussed in Remark 1.4.2 below. Observe that if u0 satisfies (1.2.13), then

‖u0‖∞ ≤ CT−α,

suppu0 ⊆ {x ∈ RN : r(x) ≤ aT β} .

In view of the choice of C, T, a (see also Remark 1.4.2), ‖u0‖∞ is small enough, but
supp u0 can be large, since we can select aT β > r0 for any fixed r0 > 0.

Moreover, from (1.2.14) we can infer that

suppu(·, t) ⊆ {x ∈ RN : r(x) ≤ a(T + t)β} for all t > 0 . (1.2.15)

Remark 1.2.2. Note that if k1 = k2, then

p = m+
b

N − 2 + b
.

In particular, for q = 0, i.e. b = 2, we obtain

p = m+
2

N
.

Hence, Theorem 1.2.1 is coherent with the results in [119].

Remark 1.2.3. In [86, Theorem 1] a similar global existence result is proved, for ρ(x) =
|x|−q for any x ∈ RN \ {0} with q ∈ [0, 2) and for suitable u0 not necessarily compactly
supported. Clearly, such ρ does not satisfy assumption (H). Moreover, we can consider
a more general behaviour of ρ(x) for |x| large; this affects the definition of p̄, and
consequently the choice of p. The smallness condition in Theorem 1.2.1 is different
from that in [86], and it is not possible in general to say which is stronger. Moreover,
since we consider u0 with compact support, we can obtain the estimates (1.2.14) and
(1.2.15), which do not have a counterpart in [86]. Finally, in [86] energy methods are
used and a smoothing estimate is derived; hence the proof is completely different from
our.

The next result concerns the blow-up of solutions in finite time, for every p > 1 and
m > 1, provided that the initial datum is sufficiently large.

Let

s(x) :=

{
|x|b if |x| > 1,

|x|2 if |x| ≤ 1 .
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Theorem 1.2.4. Let assumptions (H) and (1.2.10) be satisfied. For any p > 1,m > 1
and for any T > 0, if the initial datum u0 is large enough, then the solution u of problem
(1.1.1) blows-up in a finite time S ∈ (0, T ], in the sense that

‖u(t)‖∞ → +∞ as t→ S−. (1.2.16)

More precisely, we have the following three cases.

(a) Let p > m. If C > 0, a > 0 are large enough, T > 0,

u0(x) ≥ CT−
1
p−1

[
1− s(x)

a
T
m−p
p−1

] 1
m−1

+

, (1.2.17)

then the solution u of problem (1.1.1) blows-up and satisfies the bound from below

u(x, t) ≥ C(T − t)−
1
p−1

[
1− s(x)

a
(T − t)

m−p
p−1

] 1
m−1

+

for any (x, t) ∈ RN × [0, S) .

(1.2.18)

(b) Let p < m. If Cm−1

a > 0 and a > 0 are big enough, T > 0 and (1.2.17) holds,
then the solution u of problem (1.1.1) blows-up and satisfies the bound from below
(1.2.18).

(c) Let p = m. If Cm−1

a > 0 and a > 0 are big enough, T > 0 and (1.2.17) holds,
then the solution u of problem (1.1.1) blows-up and satisfies the bound from below
(1.2.18).

Observe that if u0 satisfies (1.2.17), then

suppu0 ⊇ {x ∈ RN : s(x) < aT
p−m
p−1 } .

In all the cases (a), (b), (c), from (1.2.18) we can infer that

suppu(·, t) ⊇ {x ∈ RN : s(x) < a(T − t)
p−m
p−1 } for all t ∈ [0, S) . (1.2.19)

The precise choice of parameters C > 0, T > 0, a > 0 in Theorem 1.2.4 is discussed in
Remark 1.5.2 below.

Remark 1.2.5. Let us mention that in [86], where some blow-up results are shown for
problem (1.1.1), there is not a counterpart of Theorem 1.2.4, since our result concerns
any p > 1 and sufficiently large initial data.

1.2.1 Blow-up for any nontrivial initial datum

In this Subsection we discuss a further result concerning the blow-up of the solution to
problem (1.1.1) for any initial datum u0 ∈ C(RN ), u0 ≥ 0, u0 6≡ 0.

Let p and be defined by (1.1.8) and (1.1.7), respectively. Assume (1.1.6). It is direct
to see that

p ≤ p̄ . (1.2.20)

In particular, p = p̄, whenever k1 = k2. We distinguish between two cases:
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1) 1 < p < m ,

2) m ≤ p < p .

In case 2), we need an extra hypothesis. In fact, we assume that (H) holds with

q ∈ (0, ε) , (1.2.21)

for some ε > 0 to be fixed small enough later. Then, b defined by (1.1.4), satisfies

2− ε < b < 2 . (1.2.22)

Theorem 1.2.6. Let assumption (H) be satisfied. Suppose that

1 < p < m ,

and that u0 ∈ C(RN ), u0(x) 6≡ 0. Then, for any sufficiently large T > 0, the solution u
of problem (1.1.1) blows-up in a finite time S ∈ (0, T ], in the sense that

‖u(t)‖∞ → +∞ as t→ S−.

More precisely, the bound from below (1.2.18) holds, with b, C, a, ζ, η as in Theorem
1.2.4-(b) .

Theorem 1.2.7. Let assumptions (H) and (1.2.21) be satisfied for ε > 0 small enough.
Let u0 ∈ C∞(RN ) and u0 6≡ 0. If

m ≤ p < p, (1.2.23)

then there exist sufficiently large t1 > 0 and T > 0 such that the solution u of problem
(1.1.1) blows-up in a finite time S ∈ (0, T + t1], in the sense that

‖u(t)‖∞ → +∞ as t→ S−.

More precisely, when S > t1, we have the bound from below

u(x, t) ≥ C(T+t1−t)−
1
p−1

[
1− s(x)

a
(T + t1 − t)

m−p
p−1

] 1
m−1

+

for any (x, t) ∈ RN×(t1, S) ,

(1.2.24)
with C, a as in Theorem 1.2.4-(a).

Remark 1.2.8. As it has been mentioned in the Introduction, in [86, Theorem 3] blow-
up of solutions to problem (1.1.1) is shown when ρ(x) = |x|−q or ρ(x) = (1+ |x|)−q with
q ∈ [0, 2). However, the results in [86] are different, in fact it is obtained an integral
blow-up, that is, for some R > 0, θ ∈ (0, 1), T > 0,

∫
BR

[u(x, t)θ]ρ(x)dx → +∞ as

t→ T−. On the other hand, we should mention that the extra hypothesis (1.2.21), that
we need in Theorem 1.2.7, in [86] is not used. Furthermore, the methods of proofs in
[86] are completely different, since they are based on the choice of a special test function
and integration by parts.
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1.3 Preliminaries

In this section we give the precise definitions of solution of all problems we address, then
we state a local in time existence result for problem (1.1.1). Moreover, we recall some
useful comparison principles.

Throughout the chapter we deal with very weak solutions to problem (1.1.1) and to
the same problem set in different domains, according to the following definitions.

Definition 1.3.1. Let u0 ∈ L∞(RN ) with u0 ≥ 0. Let τ > 0, p > 1,m > 1. We say
that a nonnegative function u ∈ L∞(RN × (0, S)) for any S < τ is a solution of problem
(1.1.1) if

−
∫
RN

∫ τ

0
ρ(x)uϕt dt dx =

∫
RN

ρ(x)u0(x)ϕ(x, 0) dx

+

∫
RN

∫ τ

0
um∆ϕdt dx

+

∫
RN

∫ τ

0
ρ(x)upϕdt dx

(1.3.25)

for any ϕ ∈ C∞c (RN × [0, τ)), ϕ ≥ 0. Moreover, we say that a nonnegative function
u ∈ L∞(RN × (0, S)) for any S < τ is a subsolution (supersolution) if it satisfies
(1.3.25) with the inequality ” ≤ ” (” ≥ ”) instead of ” = ” with ϕ ≥ 0.

For any x0 ∈ RN and R > 0 we set

BR(x0) = {x ∈ RN : ‖x− x0‖ < R}. (1.3.26)

When x0 = 0, we write BR ≡ BR(0). For every R > 0, we consider the auxiliary problem
ut = 1

ρ(x)∆(um) + up in BR × (0, τ)

u = 0 on ∂BR × (0, τ)

u = u0 in BR × {0} .
(1.3.27)

Definition 1.3.2. Let u0 ∈ L∞(BR) with u0 ≥ 0. Let τ > 0, p > 1,m > 1. We say
that a nonnegative function u ∈ L∞(BR× (0, S)) for any S < τ is a solution of problem
(1.3.27) if

−
∫
BR

∫ τ

0
ρ(x)uϕt dt dx =

∫
BR

ρ(x)u0(x)ϕ(x, 0) dx

+

∫
BR

∫ τ

0
um∆ϕdt dx

+

∫
BR

∫ τ

0
ρ(x)upϕdt dx

(1.3.28)

for any ϕ ∈ C∞c (BR × [0, τ)) with ϕ|∂BR = 0 for all t ∈ [0, τ). Moreover, we say that a
nonnegative function u ∈ L∞(BR×(0, S)) for any S < τ is a subsolution (supersolution)
if it satisfies (1.3.28) with the inequality ” ≤ ” (” ≥ ”) instead of ” = ”, with ϕ ≥ 0.
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Proposition 1.3.3. Let hypothesis (H) be satisfied. Then there exists a solution u to
problem (1.3.27) with

τ ≥ τR :=
1

(p− 1)‖u0‖p−1
L∞(BR)

.

Proof. Note that u ≡ 0 is a subsolution to (1.3.27). Moreover, let ūR(t) be the solution
of the Cauchy problem {

ū′(t) = ūp

ū(0) = ‖u0‖L∞(BR) ,

that is

ūR(t) =
‖u0‖L∞(BR)[

1− (p− 1)t‖u0‖p−1
L∞(BR)

] 1
p−1

for all t ∈ [0, τR) .

Clearly, for every R > 0, ūR is a supersolution of problem (1.3.27). Due to hypothesis
(H),

0 < min
B̄R

1

ρ
≤ 1

ρ(x)
≤ max

B̄R

1

ρ
for all x ∈ BR .

Hence, by standard results (see, e.g., [128]), problem (1.3.27) admits a nonnegative
solution uR ∈ L∞(BR × (0, S)) for any S < τ , where τ ≥ τR is the maximal time of
existence, i.e.

‖uR(t)‖∞ →∞ as t→ τ−R .

Moreover, the following comparison principle for problem (1.3.27) holds (see [7] for
the proof).

Proposition 1.3.4. Let assumption (H) hold. If u is a subsolution of problem (1.3.27)
and v is a supersolution of (1.3.27), then

u ≤ v a.e. in BR × (0, τ).

Proposition 1.3.5. Let hypothesis (H) be satisfied. Then there exists a solution u to
problem (1.1.1) with

τ ≥ τ0 :=
1

(p− 1)‖u0‖p−1
∞

.

Moreover, u is the minimal solution, in the sense that for any solution v to problem
(1.1.1) there holds

u ≤ v in RN × (0, τ) .
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Proof. For every R > 0 let uR be the unique solution of problem (1.3.27). It is easily
seen that if 0 < R1 < R2, then

uR1 ≤ uR2 in BR1 × (0, τ0) . (1.3.29)

In fact, uR2 is a supersolution, while uR1 is a solution of problem (1.3.27) with R = R1.
Hence, by Proposition 1.3.4, (1.3.29) follows. Let ū(t) be the solution of{

ū′(t) = ūp

ū(0) = ‖u0‖∞ ,

that is

ū(t) =
‖u0‖∞[

1− (p− 1)t‖u0‖p−1
∞
] 1
p−1

for all t ∈ [0, τ0) .

Clearly, for every R > 0, ū is a supersolution of problem (1.3.27). Hence

0 ≤ uR(x, t) ≤ ū in BR × (0, τ0) . (1.3.30)

In view of (1.3.29), the family {uR}R>0 is monotone increasing w.r.t. R. Moreover,
(1.3.30) implies that the family {uR} is uniformly bounded. Hence {uR}R>0 converges
point-wise to a function, say u(x, t), as R→ +∞, i.e.

lim
R→+∞

uR(x, t) = u(x, t) a.e. in RN × (0, τ0) .

Moreover, by the monotone convergence theorem, passing to the limit as R → +∞ in
(1.3.28) we obtain

−
∫
RN

∫ τ0

0
ρ(x)uϕt dt dx =

∫
RN

ρ(x)u0(x)ϕ(x, 0) dx

+

∫
RN

∫ τ0

0
um∆ϕdt dx

+

∫
RN

∫ τ0

0
ρ(x)upϕdt dx

for any ϕ ∈ C∞c (RN × [0, τ0)), ϕ ≥ 0. Hence u is a solution of problem (1.1.1) u ∈
L∞(RN × (0, S)) for any S < τ , where τ ≥ τ0 is the maximal time of existence, i.e.

‖u(t)‖∞ →∞ as t→ τ−.

Let us now prove that u is the minimal nonnegative solution to problem (1.1.1).
Let v be any other solution to problem (1.1.1). Note that, for every R > 0, v is a
supersolution to problem (1.3.27). Hence, thanks to Proposition 1.3.4,

uR ≤ v in BR × (0, τ).

Then passing to the limit as R→∞, we get

u ≤ v in RN × (0, τ) .

Therefore, u is the minimal nonnegative solution.
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In conclusion, we can state the following two comparison results.

Proposition 1.3.6. Let hypothesis (H) be satisfied. Let ū be a supersolution to problem
(1.1.1). Then, if u is the minimal solution to problem (1.1.1) given by Proposition 1.3.5,
then

u ≤ ū a.e. in RN × (0, τ) . (1.3.31)

In particular, if ū exists until time τ , then also u exists at least until time τ .

Proof. Clearly, for any R > 0, ū is a supersolution to problem 1.3.27. Hence, by
Proposition 1.3.4,

uR ≤ ū in BR × (0, τ) .

By passing to the limit as R → +∞, we easily obtain (1.3.31), which trivially ensures
that u does exist at least up to τ , by the definition of maximal existence time.

Proposition 1.3.7. Let hypothesis (H) be satisfied. Let u be a solution to problem
(1.1.1) for some time τ = τ1 > 0 and u a subsolution to problem (1.1.1) for some time
τ = τ2 > 0. Suppose also that

suppu|RN×[0,S] is compact for every S ∈ (0, τ2) .

Then
u ≥ u in RN × (0,min{τ1, τ2}) . (1.3.32)

Proof. We fix any S < min{τ1, τ2}. It R > 0 is so large that

suppu|RN×[0,S] ⊆ BR × [0, S],

then u and u are a supersolution and a subsolution, respectively, to 1.3.27. Hence

u ≥ u in BR × (0, S) .

Inequality (1.3.32) then just follows by letting R → +∞ and using the arbitrariness of
S.

Remark 1.3.8. Note that by minor modifications in the proof of [109, Theorem 2.3]
one could show that problem (1.1.1) admits at most one bounded solution.

In what follows we also consider solutions of equations of the form

ut =
1

ρ(x)
∆(um) + up in Ω× (0, τ), (1.3.33)

where Ω ⊆ RN . Solutions are meant in the following sense.

Definition 1.3.9. Let τ > 0, p > 1,m > 1. We say that a nonnegative function
u ∈ L∞(Ω× (0, S)) for any S < τ is a solution of problem (1.3.27) if

−
∫

Ω

∫ τ

0
ρ(x)uϕt dt dx =

∫
Ω

∫ τ

0
um∆ϕdt dx

+

∫
Ω

∫ τ

0
ρ(x)upϕdt dx

(1.3.34)
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for any ϕ ∈ C∞c (Ω × [0, τ)) with ϕ|∂Ω = 0 for all t ∈ [0, τ). Moreover, we say that a
nonnegative function u ∈ L∞(Ω× (0, S)) for any S < τ is a subsolution (supersolution)
if it satisfies (1.3.28) with the inequality ” ≤ ” (” ≥ ”) instead of ” = ”, with ϕ ≥ 0.

Finally, let us recall the following well-known criterion, that will be used in the
sequel; we reproduce it for reader’s convenience. Let Ω ⊆ RN be an open set. Suppose
that Ω = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅, and that Σ := ∂Ω1 ∩ ∂Ω2 is of class C1. Let n be
the unit outwards normal to Ω1 at Σ. Let

u =

{
u1 in Ω1 × [0, T ),

u2 in Ω2 × [0, T ) ,
(1.3.35)

where ∂tu ∈ C(Ω1 × (0, T )), um1 ∈ C2(Ω1 × (0, T )) ∩ C1(Ω1 × (0, T )), ∂tu2 ∈ C(Ω2 ×
(0, T )), )um2 ∈ C2(Ω2 × (0, T )) ∩ C1(Ω2 × (0, T )).

Lemma 1.3.10. Let assumption (H) be satisfied.

(i) Suppose that

∂tu1 ≥
1

ρ
∆um1 + up1 for any (x, t) ∈ Ω1 × (0, T ),

∂tu2 ≥
1

ρ
∆um2 + up2 for any (x, t) ∈ Ω2 × (0, T ),

(1.3.36)

u1 = u2,
∂um1
∂n
≥ ∂um2

∂n
for any (x, t) ∈ Σ× (0, T ) . (1.3.37)

Then u, defined in (1.3.35), is a supersolution to equation (1.3.33), in the sense of
Definition 1.3.9.

(ii) Suppose that

∂tu1 ≤
1

ρ
∆um1 + up1 for any (x, t) ∈ Ω1 × (0, T ),

∂tu2 ≤
1

ρ
∆um2 + up2 for any (x, t) ∈ Ω2 × (0, T ),

(1.3.38)

u1 = u2,
∂um1
∂n
≤ ∂um2

∂n
for any (x, t) ∈ Σ× (0, T ) . (1.3.39)

Then u, defined in (1.3.35), is a subsolution to equation (1.3.33), in the sense of Defi-
nition 1.3.9.

Proof. Take any ϕ ∈ C∞c (Ω× [0, τ)) with ϕ|∂Ω = 0 for all t ∈ [0, τ), ϕ ≥ 0.

(i) We multiply by ϕ both sides of the two inequalities in (1.3.36), then integrating
two times by parts we get

−
∫ τ

0

∫
Ω1

ρ(u1ϕt + up1ϕ)dxdt

≥
∫ τ

0
um1 ∆ϕdxdt−

∫ τ

0

∫
Σ
um1

∂ϕ

∂n
dσdt+

∫ τ

0

∫
Σ
ϕ
∂um1
∂n

dσdt ,
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−
∫ τ

0

∫
Ω2

ρ(u2ϕt − up2ϕ)dxdt

≥
∫ τ

0
um2 ∆ϕdxdt+

∫ τ

0

∫
Σ
um2

∂ϕ

∂n
dσdt−

∫ τ

0

∫
Σ
ϕ
∂um2
∂n

dσdt .

Summing up the previous two inequalities and using (1.3.37) we obtain

−
∫ τ

0

∫
Ω
ρ(uϕt + upϕ) dxdt ≥

∫ τ

0
um∆ϕdxdt .

Hence the conclusion follows in this case. The statement (ii) can be obtained in the
same way. This completes the proof.

1.4 Global existence: proofs

In what follows we set r ≡ |x|. We want to construct a suitable family of supersolutions
of equation

ut =
1

ρ(x)
∆(um) + up in RN × (0,+∞). (1.4.40)

To this purpose, we define, for all (x, t) ∈
[
RN \B1(0)

]
× [0,+∞),

u(x, t) ≡ u(r(x), t) := Cζ(t)

[
1− rb

a
η(t)

] 1
m−1

+

, (1.4.41)

where η, ζ ∈ C1([0,+∞); [0,+∞)) and C > 0, a > 0.

Now, we compute

ut −
1

ρ
∆(um)− up.

To do this, let us set

F (r, t) := 1− rb

a
η(t)

and define

D1 :=
{

(x, t) ∈ [RN \B1(0)]× (0,+∞) | 0 < F (r, t) < 1
}
.

For any (x, t) ∈ D1, we have:

ut = Cζ ′F
1

m−1 + Cζ
1

m− 1
F

1
m−1

−1

(
−r

b

a
η′
)

= Cζ ′F
1

m−1 + Cζ
1

m− 1

(
1− rb

a
η

)
η′

η
F

1
m−1

−1 − Cζ 1

m− 1

η′

η
F

1
m−1

−1

= Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1
m−1 − Cζ 1

m− 1

η′

η
F

1
m−1

−1;

(1.4.42)

(um)r = −Cmζm m

m− 1
F

1
m−1

b

a
ηrb−1; (1.4.43)
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(um)rr = −Cmζm m

(m− 1)2
F

1
m−1

−1 b
2

a
ηrb−2

(
1− rb

a
η

)
+ Cmζm

m

(m− 1)2
F

1
m−1

−1 b
2

a
ηrb−2

− Cmζm m

m− 1
F

1
m−1

b(b− 1)

a
ηrb−2.

(1.4.44)

∆(um) = (um)rr +
(N − 1)

r
(um)r

= Cmζm
m

(m− 1)2
F

1
m−1

−1 b
2

a
ηrb−2

− Cmζm m

(m− 1)2
F

1
m−1

b2

a
ηrb−2

− Cmζm m

m− 1
F

1
m−1

b(b− 1)

a
ηrb−2

+
(N − 1)

r

(
−Cmζm m

m− 1
F

1
m−1

b

a
ηrb−1

)
= Cmζm

m

(m− 1)2

b2

a
ηF

1
m−1

−1rb−2

− Cm(N − 2)ζm
m

m− 1

b

a
ηF

1
m−1 rb−2

− Cmζm m2

(m− 1)2

b2

a
ηF

1
m−1 rb−2 .

(1.4.45)

We set u ≡ u,

w(x, t) ≡ w(r(x), t) :=

{
u(x, t) in [RN \B1(0)]× [0,+∞),

v(x, t) in B1(0)× [0,+∞),
(1.4.46)

where

v(x, t) ≡ v(r(x), t) := Cζ(t)

[
1− (br2 + 2− b)

2

η(t)

a

] 1
m−1

+

. (1.4.47)

We also define

K :=

(
m− 1

p+m− 2

)m−1
p−1

−
(

m− 1

p+m− 2

) p+m−2
p−1

> 0 ,

σ̄(t) := ζ ′ + ζ
1

m− 1

η′

η
+ Cm−1ζm

m

m− 1

b

a
ηk1

(
N − 2 +

bm

m− 1

)
,

δ̄(t) := ζ
1

m− 1

η′

η
+ Cm−1ζm

m

(m− 1)2

b2

a
ηk2,

γ̄(t) := Cp−1ζp(t) ,

σ̄0(t) := ζ ′ + ζ
1

m− 1

η′

η
+ Cm−1ζm

m

m− 1
Nbk1

η

a
,

δ̄0(t) := ζ
1

m− 1

η′

η
+ Cm−1b2 k2ζ

m m

(m− 1)2

η2

a2
.

(1.4.48)
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Proposition 1.4.1. Let ζ = ζ(t), η = η(t) ∈ C1([0,+∞); [0,+∞)). Let K, σ̄, δ̄, γ̄, σ̄0, δ̄0

be defined in (1.4.48). Assume (1.1.6), (1.2.10), and that, for all t ∈ (0,+∞),

η(t) < a , (1.4.49)

− η′

η2
≥ b2

a
Cm−1ζm−1(t)

m

m− 1
k2, (1.4.50)

ζ ′ + Cm−1ζm
b

a

m

m− 1
η

[
k1

(
N − 2 +

bm

m− 1

)
− k2b

m− 1

]
− Cp−1ζp ≥ 0, (1.4.51)

− η′

η3
≥ Cm−1

a2
k2ζ

m−1 m

m− 1
, (1.4.52)

ζ ′ +Nζm
Cm−1

a

m

m− 1
η k1 −Nζm

Cm−1

a2

m

(m− 1)2
η2 k2 − Cp−1ζp ≥ 0. (1.4.53)

Then w defined in (1.4.46) is a supersolution of equation (1.4.40).

Proof of Proposition 1.4.1. In view of (1.4.42), (1.4.43), (1.4.44) and (1.4.45), for any
(x, t) ∈ D1,

ūt −
1

ρ
∆(ūm)− ūp

= Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1
m−1 − Cζ 1

m− 1

η′

η
F

1
m−1

−1

− rb−2

ρ

{
Cmζm

m

(m− 1)2

b2

a
ηF

1
m−1

−1 − Cm(N − 2)ζm
m

m− 1

b

a
ηF

1
m−1

−Cmζm m2

(m− 1)2

b2

a
ηF

1
m−1

}
− CpζpF

p
m−1 .

(1.4.54)

Thanks to hypothesis (H), we have

rb−2

ρ
≥ k1, −r

b−2

ρ
≥ −k2 for all x ∈ RN \B1(0) . (1.4.55)

From (1.4.54) and (1.4.55) we get

ūt −
1

ρ
∆(ūm)− ūp

≥ CF
1

m−1
−1

{
F

[
ζ ′ + ζ

1

m− 1

η′

η
+ Cm−1ζm

m

m− 1

b

a
ηk1

(
N − 2 +

bm

m− 1

)]
−ζ 1

m− 1

η′

η
− Cm−1ζm

m

(m− 1)2

b2

a
ηk2 − Cp−1ζpF

p+m−2
m−1

}
.

(1.4.56)

From (1.4.56), taking advantage from σ̄(t), δ̄(t) and γ̄(t) defined in (1.4.48), we have

ūt −
1

ρ
∆(ūm)− ūp ≥ CF

1
m−1

−1
[
σ̄(t)F − δ̄(t)− γ̄(t)F

p+m−2
m−1

]
. (1.4.57)
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For each t > 0, set

ϕ(F ) := σ̄(t)F − δ̄(t)− γ̄(t)F
p+m−2
m−1 , F ∈ (0, 1) .

Now our goal is to find suitable C, a, ζ, η such that, for each t > 0,

ϕ(F ) ≥ 0 for any F ∈ (0, 1) .

We observe that ϕ(F ) is concave in the variable F , hence it is sufficient to have ϕ(F )
positive in the extrema of the interval of definition (0, 1). This reduces to the system{

ϕ(0) ≥ 0

ϕ(1) ≥ 0 ,
(1.4.58)

for each t > 0. The system is equivalent to{
−δ̄(t) ≥ 0

σ̄(t)− δ̄(t)− γ̄(t) ≥ 0 ,

that is 
− η′

η2 ≥ b2

a C
m−1ζm−1 m

m−1k2

ζ ′ + Cm−1ζm b
a

m
m−1η

[
k1

(
N − 2 + bm

m−1

)
− k2b

m−1

]
− Cp−1ζp ≥ 0,

which is guaranteed by (1.1.6), (1.4.50) and (1.4.51). Hence we have proved that

ūt −
1

ρ
∆(ūm)− ūp ≥ 0 in D1 .

Since ūm ∈ C1([RN \ B1(0)] × (0, T )), in view of Lemma 1.3.10-(i) (applied with
Ω1 = D1,Ω2 = RN \ [B1(0) ∪ D1], u1 = ū, u2 = 0, u = ū), we can deduce that ū is
a supersolution of equation

ūt −
1

ρ
∆(ūm)− ūp = 0 in

[
RN \B1(0)

]
× (0,+∞) , (1.4.59)

in the sense of Definition 1.3.9. Now let v be as in (1.4.47). Set

G(r, t) := 1− br2 + 2− b
2

η(t)

a
.

Due to (1.4.49),

0 < G(r, t) < 1 for all (x, t) ∈ B1(0)× (0,+∞) .

For any (x, t) ∈ B1(0)× (0,+∞), we have:

v̄t = Cζ ′G
1

m−1 + Cζ
1

m− 1

η′

η
G

1
m−1 − Cζ 1

m− 1

η′

η
G

1
m−1

−1; (1.4.60)
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(v̄m)r = −Cmbζm m

m− 1
G

1
m−1

η

a
r; (1.4.61)

(v̄m)rr = Cmζm
m

(m− 1)2
G

1
m−1

−1 η
2

a2
b2r2 − Cmbζm m

m− 1
G

1
m−1

η

a
. (1.4.62)

Therefore, for all (x, t) ∈ B1(0)× (0,+∞),

v̄t −
1

ρ
∆(v̄m)− v̄p

= CG
1

m−1
−1
{
G

[
ζ ′ +

ζ

m− 1

η′

η
+ b

N − 1

r
Cm−1ζm

m

m− 1

r

ρ

η

a
+
b

ρ
Cm−1ζm

m

m− 1

η

a

]
− ζ

m− 1

η′

η
− r2

ρ
b2Cm−1 m

(m− 1)2
ζm

η2

a2
− Cp−1ζpG

p+m−2
m−1

}
.

(1.4.63)
Using (1.2.9) and the fact that r ∈ (0, 1), (1.4.63) yields, for all (x, t) ∈ B1(0)×(0,+∞),

v̄t −
1

ρ
∆(v̄m)− v̄p

≥ CG
1

m−1
−1
{
G

[
ζ ′ +

ζ

m− 1

η′

η
+Nbk1C

m−1ζm
m

m− 1

η

a

]
− ζ

m− 1

η′

η
− Cm−1b2 k2

m

(m− 1)2

η2

a2
− Cp−1ζpG

p+m−2
m−1

}
= CG

1
m−1

−1
[
σ̄0(t)G− δ̄0(t)− γ̄(t)G

p+m−2
m−1

]
.

(1.4.64)

Hence, due to (1.4.64), we obtain for all (x, t) ∈ B1(0)× (0,+∞),

v̄t −
1

ρ
∆(v̄m)− v̄p ≥ CG

1
m−1

−1
[
σ̄0(t)G− δ̄0(t)− γ̄(t)G

p+m−2
m−1

]
. (1.4.65)

For each t > 0, set

ψ(G) := σ̄0(t)G− δ̄0(t)− γ̄(t)G
p+m−2
m−1 , G ∈ (0, 1) .

Now our goal is to verify that, for each t > 0,

ψ(G) ≥ 0 for any G ∈ (0, 1) .

We observe that ψ(G) is concave in the variable G, hence it is sufficient to have ψ(G)
positive in the extrema of the interval of definition (0, 1). This reduces to the system{

ψ(0) ≥ 0

ψ(1) ≥ 0 ,
(1.4.66)

for each t > 0. The system is equivalent to{
−δ̄0(t) ≥ 0

σ̄0(t)− δ̄0(t)− γ̄(t) ≥ 0 ,
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that is 
− η′

η3 ≥ b2C
m−1

a2 k2ζ
m−1 m

m−1

ζ ′ + Cm−1

a bN k1ζ
m m
m−1η − b

2Cm−1

a2 k2ζ
m m

(m−1)2 η
2 − Cp−1ζp ≥ 0,

which is guaranteed by (1.1.6), (1.4.52) and (1.4.53). Hence we have proved that

v̄t −
1

ρ
∆(v̄m)− v̄p ≥ 0 for all (x, t) ∈ B1(0)× (0,+∞) (1.4.67)

Now, observe that w̄ ∈ C(RN × [0,+∞)); indeed,

ū = v̄ = Cζ(t)

[
1− η(t)

a

] 1
m−1

+

in ∂B1(0)× (0,+∞) .

Moreover, w̄m ∈ C1(RN × [0,+∞)); indeed,

(ūm)r = (v̄m)r = −Cmζ(t)m
m

m− 1
b
η(t)

a

[
1− η(t)

a

] 1
m−1

+

in ∂B1(0)×(0,+∞) . (1.4.68)

In conclusion, by (1.4.59), (1.4.64), (1.4.68) and Lemma 1.3.10-(i) (applied with Ω1 =
RN \ B1(0),Ω2 = B1(0), u1 = ū, u2 = v̄, u = w̄), we can infer that w̄ is a supersolution
to equation (1.4.40) in the sense of Definition 1.3.9.

Remark 1.4.2. Let

p > p,

and assumptions (1.1.6) and (1.2.10) be satisfied. Let ω := Cm−1

a . In Theorem 1.2.1,
the precise hypotheses on parameters α, β, C > 0, ω > 0, T > 0 are the following:

condition (1.2.12),

β − b2ωk2
m

m− 1
≥ 0 , (1.4.69)

− α+ bω
m

m− 1

[
k1

(
N − 2 +

bm

m− 1

)
− k2b

m− 1

]
≥ Cp−1 , (1.4.70)

βT β ≥ b2
ω

a
k2

m

m− 1
, (1.4.71)

T β >
r0

a
(for r0 > 1), (1.4.72)

− α+ bω
m

m− 1

(
k1N − b

T−β

(m− 1)a
k2

)
≥ Cp−1 . (1.4.73)

Lemma 1.4.3. All the conditions in Remark 1.4.2 can be satisfied simoultaneously.
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Proof. We take α satisfying (1.2.12) and

α < min

 k1

(
N − 2 + bm

m−1

)
− k2b

m−1

k1 [m (N − 2 + b)− (N − 2)]
,

k1N

bk2 + (m− 1)k1N
,

1

m− 1

 . (1.4.74)

This is possible, since

p > p > m+
k2b

k1N
> m.

In view of (1.4.74), (1.1.6) and the fact that β = 1 − α(m − 1), we can take ω > 0 so
that (1.4.69) holds, the left-hand-side of (1.4.70) is positive, and

−α+ bω
m

m− 1
(k1N − ε) > 0 ,

for some ε > 0. Then, we choose C > 0 so small that (1.4.70) holds and

− α+ bω
m

m− 1
(k1N − ε) > Cp−1; (1.4.75)

therefore, also a > 0 is properly fixed, in view of the definition of ω. We select T > 0
so big that (1.4.71), (1.4.72) are valid and

k1N − b
T−β

(m− 1)a
k2 ≥ ε . (1.4.76)

From (1.4.76) and (1.4.75) inequality (1.4.73) follows.

Proof of Theorem 1.2.1. We prove Theorem 1.2.1 by means of Proposition 1.2.1. In view
of Lemma 1.4.3, we can assume that all the conditions of Remark 1.4.2 are fulfilled.

Set

ζ(t) = (T + t)−α, η(t) = (T + t)−β, for all t > 0 .

Observe that condition (1.4.72) implies (1.4.49). Moreover, consider conditions (1.4.50),
(1.4.51) of Proposition 1.4.1 with this choice of ζ(t) and η(t). Therefore we obtain

β − b2

a
Cm−1 m

m− 1
k2(T + t)−α(m−1)−β+1 ≥ 0 (1.4.77)

and

− α(T + t)−α−1 +
Cm−1

a

mb

m− 1

[
k1

(
N − 2 +

bm

m− 1

)
− k2b

m− 1

]
(T + t)−αm−β

− Cp−1(T + t)−αp ≥ 0 .
(1.4.78)

Since, β = 1− α(m− 1), (1.4.77) and (1.4.78) become

Cm−1 m

m− 1

b

a
≤ 1− α(m− 1)

k2b
, (1.4.79)
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{
−α+ b

Cm−1

a

m

m− 1

[
k1

(
N − 2 +

bm

m− 1

)
− k2b

m− 1

]}
(T + t)−α−1

≥ Cp−1(T + t)−αp .

(1.4.80)

Due to assumption (1.2.12),

β > 0, −α− 1 ≥ −pα. (1.4.81)

Thus (1.4.79) and (1.4.80) follow from (1.6.157), (1.4.69) and (1.4.70).

We now consider conditions (1.4.52) and (1.4.53) of Proposition 1.4.1. Substituting
ζ(t), η(t), α and β previously chosen, we get (1.4.71) and[

−α+ b
Cm−1

a

m

m− 1

(
k1N − b

(T + t)−β

(m− 1)a
k2

)]
(T + t)−α−1 ≥ Cp−1(T + t)−pα .

(1.4.82)
Condition (1.4.82) follows from (1.6.157) and (1.4.73).

Hence, we can choose α, β, C > 0, a > 0 and T so that (1.4.79), (1.4.80), (1.4.71)
and (1.4.82) hold. Thus the conclusion follows by Propositions 1.4.1 and 1.3.6.

1.5 Blow-up: proofs

Let

w(x, t) ≡ w(r(x), t) :=

{
u(x, t) in [RN \B1(0)]× [0, T ),

v(x, t) in B1(0)× [0, T ),
(1.5.83)

where u ≡ u is defined in (1.4.41) and v is defined as follows

v(x, t) ≡ v(r(x), t) := Cζ(t)

[
1− r2 η(t)

a

] 1
m−1

+

. (1.5.84)

Observe that for any (x, t) ∈ B1(0)× (0, T ), we have:

vt = Cζ ′G
1

m−1 + Cζ
1

m− 1

η′

η
G

1
m−1 − Cζ 1

m− 1

η′

η
G

1
m−1

−1; (1.5.85)

(vm)r = −2Cmζm
m

m− 1
G

1
m−1

η

a
r;

(vm)rr = 4Cmζm
m

(m− 1)2
G

1
m−1

−1 η

a
− 2Cmζm

m

m− 1
G

1
m−1

η

a

− 4Cmζm
m

(m− 1)2

η

a
G

1
m−1 ,

∆(vm) = 4Cmζm
m

(m− 1)2
G

1
m−1

−1 η

a
− 4Cmζm

m

(m− 1)2

η

a
G

1
m−1

− 2NCmζm
m

m− 1
G

1
m−1

η

a
.

(1.5.86)
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Therefore, from (1.5.85) and (1.5.86) we get, for all (x, t) ∈ B1(0)× (0, T ),

vt −
1

ρ
∆(vm)− vp

= CG
1

m−1
−1
{
G

[
ζ ′ +

ζ

m− 1

η′

η
+ 2NCm−1ζm

m

m− 1

1

ρ

η

a
+

4

ρ
Cm−1ζm

m

(m− 1)2

η

a

]
− ζ

m− 1

η′

η
− 4

ρ
Cm−1 m

(m− 1)2

η

a
− Cp−1ζpG

p+m−2
m−1

}
.

(1.5.87)
We also define

σ(t) := ζ ′ + ζ
1

m− 1

η′

η
+ Cm−1ζm

m

m− 1

b

a
ηk2

(
N − 2 +

bm

m− 1

)
,

δ(t) := ζ
1

m− 1

η′

η
+ Cm−1ζm

m

(m− 1)2

b2

a
ηk1,

γ(t) := Cp−1ζp,

σ0(t) := ζ ′ + ζ
1

m− 1

η′

η
+ 2Cm−1ζm

m

m− 1

(
N +

2

m− 1

)
ρ2
η

a
,

δ0(t) := ζ
1

m− 1

η′

η
+ 4

Cm−1

a
ζmρ1

m

(m− 1)2
η,

K :=

(
m− 1

p+m− 2

)m−1
p−1

−
(

m− 1

p+m− 2

) p+m−2
p−1

> 0.

(1.5.88)

Proposition 1.5.1. Let T ∈ (0,∞), ζ, η ∈ C1([0, T ); [0,+∞)). Let σ, δ, γ, σ0, δ0,K be
defined in (1.5.88). Assume (1.2.10) and that, for all t ∈ (0, T ),

K[σ(t)]
p+m−2
p−1 ≤ δ(t)[γ(t)]

m−1
p−1 , (1.5.89)

(m− 1)σ(t) ≤ (p+m− 2)γ(t) , (1.5.90)

K[σ0(t)]
p+m−2
p−1 ≤ δ0(t)[γ(t)]

m−1
p−1 , (1.5.91)

(m− 1)σ0(t) ≤ (p+m− 2)γ(t) . (1.5.92)

Then w defined in (1.5.83) is a weak subsolution of equation (1.4.40).

Proof of Proposition 1.5.1. In view of (1.4.42), (1.4.43), (1.4.44) and (1.4.45) we obtain

ut −
1

ρ
∆(um)− up

= Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1
m−1 − Cζ 1

m− 1

η′

η
F

1
m−1

−1

− rb−2

ρ

{
Cmζm

m

(m− 1)2

b2

a
ηF

1
m−1

−1 − Cmζm m

m− 1

b

a
ηF

1
m−1 − Cmζm m2

(m− 1)2

b2

a
ηF

1
m−1

}
− CpζpF

p
m−1 for all (x, t) ∈ D1 .

(1.5.93)



26 CHAPTER 1. The slowly decaying density case

In view of hypothesis (H), we can infer that

rb−2

ρ
≤ k2, −r

b−2

ρ
≤ −k1 for all x ∈ RN \B1(0) . (1.5.94)

From (1.5.93) and (1.5.94) we have

ut −
1

ρ
∆(um)− up

≤ CF
1

m−1
−1

{
F

[
ζ ′ + ζ

1

m− 1

η′

η
+ Cm−1ζm

m

m− 1

b

a
ηk2

(
N − 2 +

bm

m− 1

)]
−ζ 1

m− 1

η′

η
− Cm−1ζm

m

(m− 1)2

b2

a
ηk1 − Cp−1ζpF

p+m−2
m−1

}
.

(1.5.95)

Thanks to (1.5.88), (1.5.95) becomes

ut −
1

ρ
∆(um)− up ≤ CF

1
m−1

−1ϕ(F ), (1.5.96)

where, for each t ∈ (0, T ),

ϕ(F ) := σ(t)F − δ(t)− γ(t)F
p+m−2
m−1 .

Our goal is to find suitable C, a, ζ, η such that, for each t ∈ (0, T ),

ϕ(F ) ≤ 0 for any F ∈ (0, 1) .

To this aim, we impose that

sup
F∈(0,1)

ϕ(F ) = max
F∈(0,1)

ϕ(F ) = ϕ(F0) ≤ 0 ,

for some F0 ∈ (0, 1). We have

dϕ

dF
= 0 ⇐⇒ σ(t)− p+m− 2

m− 1
γ(t)F

p−1
m−1 = 0

⇐⇒ F = F0 =

[
m− 1

p+m− 2

σ(t)

γ(t)

]m−1
p−1

.

Then

ϕ(F0) = K
σ(t)

p+m−2
p−1

γ(t)
m−1
p−1

− δ(t) ,

where the coefficient K depending on m and p has been defined in (1.5.88). By hypoteses
(1.5.89) and (1.5.90), for each t ∈ (0, T ),

ϕ(F0) ≤ 0 , F0 ≤ 1 . (1.5.97)

So far, we have proved that

ut −
1

ρ(x)
∆(um)− up ≤ 0 in D1. (1.5.98)
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Furthermore, since um ∈ C1([RN \B1(0)]× (0, T )), due to Lemma 1.3.10 (applied with
Ω1 = D1,Ω2 = RN \[B1(0)∪D1], u1 = u, u2 = 0, u = u), it follows that u is a subsolution
to equation

ut −
1

ρ(x)
∆(um)− up = 0 in [RN \B1(0)]× (0, T ),

in the sense of Definition 1.3.9.

Let

D2 := {(x, t) ∈ B1(0)× (0, T ) : 0 < G(r, t) < 1} .

Using (1.2.9), (1.5.87) yields, for all (x, t) ∈ D2,

vt −
1

ρ
∆(vm)− vp

≤ CG
1

m−1
−1
{
G

[
ζ ′ +

ζ

m− 1

η′

η
+ 2

(
N +

2

m− 1

)
k2C

m−1ζm
m

m− 1

η

a

]
− ζ

m− 1

η′

η
− 4Cm−1 k1

m

(m− 1)2

η

a
− Cp−1ζpG

p+m−2
m−1

}
= CG

1
m−1

−1
[
σ0(t)G− δ0(t)− γ(t)G

p+m−2
m−1

]
.

(1.5.99)
Now, by the same arguments used to obtain (1.5.98), in view of (1.5.91) and (1.5.92)
we can infer that

vt −
1

ρ
∆vm ≤ vp for any (x, t) ∈ D2 . (1.5.100)

Moreover, since vm ∈ C1(B1(0)× (0, T )), in view of Lemma 1.3.10 (applied with Ω1 =
D2,Ω2 = B1(0) \D2, u1 = v, u2 = 0, u = v), we get that v is a subsolution to equation

vt −
1

ρ
∆vm = vp in B1(0)× (0, T ) , (1.5.101)

in the sense of Definition 1.3.9. Now, observe that w ∈ C(RN × [0, T )); indeed,

u = v = Cζ(t)

[
1− η(t)

a

] 1
m−1

+

in ∂B1(0)× (0, T ) .

Moreover, since b ∈ (0, 2],

(um)r ≥ (vm)r = −2Cmζ(t)m
m

m− 1

η(t)

a

[
1− η(t)

a

] 1
m−1

+

in ∂B1(0)× (0, T ) .

(1.5.102)
In conclusion, in view of (1.5.102) and Lemma 1.3.10 (applied with Ω1 = B1(0),Ω2 =
RN \ B1(0), u1 = v, u2 = u, u = w), we can infer that w is a subsolution to equation
(1.4.40), in the sense of Definition 1.3.9.

Remark 1.5.2. Let ω := Cm−1

a . In Theorem 1.2.4 the precise choice of the parameters
C > 0, a > 0, T > 0 are as follows.
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(a) Let p > m. We require that

K

{
1

m− 1
+ bk2ω

m

m− 1

(
bm

m− 1
+N − 2

)} p+m−2
p−1

≤ Cm−1

m− 1

[
b2k1ω

m

m− 1
+
p−m
p− 1

]
,

(1.5.103)

1 + ωmbk2

(
N − 2 +

bm

m− 1

)
≤ (p+m− 2)Cp−1 , (1.5.104)

K

[
1

m− 1
+ 2 k2ω

m

m− 1

(
N +

2

m− 1

)] p+m−2
p−1

≤ Cm−1

m− 1

[
4 k1ω

m

m− 1
+
p−m
p− 1

]
,

(1.5.105)

1 + k2ω

(
N +

2

m− 1

)
≤ (p+m− 2)Cp−1 ; (1.5.106)

(b) Let p < m. We require that

ω >
(m− p)(m− 1)

b2(p− 1)mk1
, (1.5.107)

a ≥ max


K
{

1
m−1 + ωk2

m
m−1b

(
N − 2 + bm

m−1

)} p+m−2
p−1

ω 1
m−1

[
ω m
m−1k1b2 − m−p

p−1

] ,

K
{

1
m−1 + 2ω k2

m
m−1

(
N + 2

m−1

)} p+m−2
p−1

ω 1
m−1

[
4 k1ω

m
m−1 −

m−p
p−1

]
 ,

(1.5.108)

(p+m− 2) (aω)
p−1
m−1 ≥max

{
1 + ωmbk2

(
bm

m− 1
+N − 2

)
,

1 + ω k2

(
N +

2

m− 1

)}
.

(1.5.109)

(c) Let p = m. We require that ω > 0,

a ≥ max


K
{

1
m−1 + ωk2

m
m−1b

(
N − 2 + bm

m−1

)}2

b2k1ω2 m
(m−1)2

,

K
{

1
m−1 + 2ω k2

m
m−1

(
N + 2

m−1

)}2

4 k1ω2 m
(m−1)2

,

1

2(m− 1)ω

[
1 + ωmb k2

(
bm

m− 1
+N − 2

)]
,

1

2(m− 1)ω

[
1 + ω k2

(
N +

2

m− 1

)]}
.

(1.5.110)



1.6. Blow-up for any nontrivial initial datum: proofs 29

Lemma 1.5.3. All the conditions of Remark 1.5.2 can hold simultaneously.

Proof. (a) We take any ω > 0, then we select C > 0 big enough (therefore, a > 0 is also
fixed, due to the definition of ω) so that (1.5.103)-(1.5.106) hold.

(b) We can take ω > 0 so that (1.5.107) holds, then we take a > 0 sufficiently large to
guarantee (1.5.108) and (1.5.109) (therefore, C > 0 is also fixed).

(c) For any ω > 0, we take a > 0 sufficiently large to guarantee (1.5.110) (thus, C > 0
is also fixed).

Proof of Theorem 1.2.4. We now prove Theorem 1.2.4, by means of Proposition 1.5.1.
In view of Lemma 1.5.3, we can assume that all the conditions in Remark 1.5.2 are
fulfilled. Set

ζ(t) = (T − t)−α , η(t) = (T − t)β

and

α =
1

p− 1
, β =

m− p
p− 1

.

Then

σ(t) =

[
1

m− 1
+ Cm−1 m

m− 1

b

a
k2

(
N − 2 +

bm

m− 1

)]
(T − t)

−p
p−1 ,

δ(t) :=

[
m− p

(m− 1)(p− 1)
+ Cm−1 m

(m− 1)2

b2

a
k1

]
(T − t)

−p
p−1 ,

γ(t) := Cp−1 (T − t)
−p
p−1 .

Let p > m. Conditions (1.5.103) and (1.5.104) imply (1.5.89) and (1.5.90), whereas
(1.5.105) and (1.5.106) imply (1.5.91) and (1.5.92). Hence, by Propositions 1.5.1 and
1.3.7 the thesis follows in this case.

Let p < m. Conditions (1.5.108) and (1.5.109) imply (1.5.89) and (1.5.90), whereas
conditions (1.5.105) and (1.5.106) imply (1.5.91) and (1.5.92). Hence, by Propositions
1.5.1 and 1.3.7 the thesis follows in this case, too.

Finally, let p = m. Condition (1.5.110) implies (1.5.89), (1.5.90), (1.5.91) and
(1.5.92). Hence, by Propositions 1.5.1 and 1.3.7 the thesis follows in this case, too.
The proof is complete.

1.6 Blow-up for any nontrivial initial datum: proofs

Proof of Theorem 1.2.6. Since u0 6≡ 0 and u0 ∈ C(RN ), there exist ε > 0, r0 > 0 and
x0 ∈ RN such that

u0(x) ≥ ε, for all x ∈ Br0(x0).

Without loss of generality, we can assume that x0 = 0. Let w be the subsolution of
problem (1.1.1) considered in Theorem 1.2.4 (with a > 0 and C > 0 properly fixed).
We can find T > 0 sufficiently big in such a way that

C T
− 1
p−1 ≤ ε, a T

−m−p
p−1 ≤ min{rb0, r2

0}. (1.6.111)
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From inequalities in (1.6.111), we can deduce that

w(x, 0) ≤ u0(x) for any x ∈ R.

Hence, by Theorem 1.2.4 and the comparison principle, the thesis follows.

Let us explain the strategy of the proof of Theorem 1.2.7. Let u be a solution to
problem (1.1.1) and let w be the subsolution to problem (1.1.1) given by Theorem 1.2.4.
We look for a subsolution z to the equation

zt =
1

ρ(x)
∆(zm) in RN × (0,∞) , (1.6.112)

such that
z(x, 0) ≤ u0(x) for any x ∈ RN , (1.6.113)

and
z(x, t1) ≥ w(x, 0) for any x ∈ RN (1.6.114)

for t1 > 0 and T > 0 large enough. Let τ > 0 be the maximal existence time of u. If
τ ≤ t1, then nothing has to be proved, and u(x, t) blows-up at a certain time S ∈ (0, t1].
Suppose that τ > t1. Since z is also a subsolution to problem (1.1.1), due to (1.6.113)
and the comparison principle,

z(x, t) ≤ u(x, t) for any (x, t) ∈ RN × (0, τ) . (1.6.115)

From (1.6.114) and (1.6.115),

u(x, t1) ≥ z(x, t1) ≥ w(x, 0) for any x ∈ RN .

Thus u(x, t+ t1) is a supersolution, whereas w(x, t) is a subsolution of problem{
ut = 1

ρ∆(um) + up in RN × (0,+∞)

u(x, t1) = w(x, 0) in RN × {0} .

Hence by Theorem 1.2.4, u(x, t) blows-up in a finite time S ∈ (t1, t1 + T ).

In order to construct a suitable family of subsolutions of equation (1.6.112), let us
consider two functions η(t), ζ(t) ∈ C1([0,+∞); [0,+∞)) and two constants C1 > 0,
a1 > 0. Define

z(x, t) ≡ z(r(x), t) :=

{
ξ(x, t) in [RN \B1(0)]× (0,+∞)

µ(x, t) in B1(0)× (0,+∞) ,
(1.6.116)

where

ξ(x, t) ≡ ξ(r(x), t) := C1ζ(t)

[
1− rb

a1
η(t)

] 1
m−1

+

(1.6.117)

and

µ(x, t) ≡ ξ(r(x), t) := C1ζ(t)

[
1− br2 + 2− b

2a1
η(t)

] 1
m−1

+

. (1.6.118)
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Let us set

F (r, t) := 1− rb

a1
η(t) , G(r, t) := 1− br2 + 2− b

2a1
η(t)

and define

D1 :=
{

(x, t) ∈ [RN \B1(0)]× (0,+∞) | 0 < F (r, t) < 1
}
,

D2 := {(x, t) ∈ B1(0)× (0,+∞) | 0 < G(r, t) < 1} .

Furthermore, for ε0 > 0 small enough, let

β0 =
b
k1

k2

(m− 1) (N − 2) + bm
, (1.6.119)

α0 :=
1− β0

m− 1
=

N − 2 +
b

m− 1

(
m− k1

k2

)
(m− 1) (N − 2) + bm

, (1.6.120)

β̃0 =
2
k1

k2
− ε0

N(m− 1) + 2
, (1.6.121)

α̃0 :=
1− β̃0

m− 1
=
N(m− 1) + 2− 2

k1

k2
+ ε0

(m− 1) [N(m− 1) + 2]
, (1.6.122)

Observe that

0 < β0 < 1, 0 < β̃0 < 1. (1.6.123)

Note that, if ε0 > 0 is small enough, then

0 < β0 < β̃0. (1.6.124)

Proposition 1.6.1. Let assumption (H) be satisfied. Assume that (1.2.21) holds, for
ε > 0 small enough. Let

β̄ ∈ (0, β0) , (1.6.125)

ᾱ :=
1− β̄
m− 1

. (1.6.126)

Suppose that

1 < p < m+
β̄

ᾱ
. (1.6.127)

Let T1 ∈ (0,∞),

ζ(t) = (T1 + t)−ᾱ, η(t) = (T1 + t)−β̄ .

Then there exist ω1 :=
Cm−1

1
a1

> 0, t1 > 0 and T > 0 such that z defined in (1.6.116) is
a subsolution of equation (1.6.112) and satisfies (1.6.113) and (1.6.114).
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Proof. We can argue as we have done to obtain (1.5.95), in order to get

ξt −
1

ρ
∆(ξm)

≤ C1F
1

m−1
−1

{
F

[
ζ ′ + ζ

1

m− 1

η′

η
+ Cm−1

1 ζm
m

m− 1

b

a1
ηk2

(
N − 2 +

bm

m− 1

)]
−ζ 1

m− 1

η′

η
− Cm−1

1 ζm
m

(m− 1)2

b2

a1
ηk1

}
for all (x, t) ∈ D1 .

(1.6.128)
We now define

σ(t) := ζ ′ + ζ
1

m− 1

η′

η
+ Cm−1

1 ζm
m

m− 1

b

a
ηk2

(
N − 2 +

bm

m− 1

)
,

δ(t) := ζ
1

m− 1

η′

η
+ Cm−1

1 ζm
m

(m− 1)2

b2

a
ηk1.

(1.6.129)

Hence, (1.6.128) becomes

ξt −
1

ρ
∆(ξm) ≤ C1F

1
m−1

−1ϕ̄(F ) in D1 , (1.6.130)

where

ϕ̄(F ) := σ(t)F − δ(t). (1.6.131)

Observe that ξ is a subsolution to equation

ξt −
1

ρ
∆(ξm) = 0 in D1 , (1.6.132)

whenever, for any t > 0

ϕ̄(F ) ≤ 0,

that is 
σ(t) > 0

δ(t) > 0

σ(t)− δ(t) ≤ 0.

for any t > 0 (1.6.133)

By using the very definition of ζ and η, we get

σ(t) = −ᾱ(T1+t)−ᾱ−1− β̄

m− 1
(T1+t)−ᾱ−1+

Cm−1
1

a1
k2

m

m− 1
b

(
N − 2 +

bm

m− 1

)
(T1+t)−ᾱm−β̄,

δ(t) = − β̄

m− 1
(T1 + t)−ᾱ−1 +

Cm−1
1

a1
k1

m

(m− 1)2
b2(T1 + t)−ᾱm−β̄ .

By (1.6.123), (1.6.125) and (1.6.126),

0 < β̄ < 1, ᾱ > 0 . (1.6.134)
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Due to (1.6.126), (1.6.133) becomes

−1 +
Cm−1

1

a1
k2mb

(
N − 2 +

bm

m− 1

)
> 0,

−β̄ +
Cm−1

1

a1
k1

m

m− 1
b2 > 0,

β̄ − 1 +
Cm−1

1

a1
bm

[
k2

(
N − 2 +

bm

m− 1

)
− k1

b

m− 1

]
≤ 0 ,

(1.6.135)

which reduces to

Cm−1
1

a1
≥ max


1

bmk2

(
N − 2 +

bm

m− 1

) , β̄(m− 1)

b2mk1

 , (1.6.136)

Cm−1
1

a1
≤ 1− β̄

bm

[
k2

(
N − 2 +

bm

m− 1

)
− k1

b

m− 1

] . (1.6.137)

If (1.6.136) and (1.6.137) are verified, then ξ is a subsolution to equation (1.6.132). We

now show that it is possible to find ω1 :=
Cm−1

1
a1

such that (1.6.136) (1.6.137) hold. Such
ω1 can be selected, if

1

bmk2

(
N − 2 +

bm

m− 1

) <
1− β̄

bm

[
k2

(
N − 2 +

bm

m− 1

)
− k1

b

m− 1

] , (1.6.138)

and
β̄(m− 1)

b2mk1
<

1− β̄

bm

[
k2

(
N − 2 +

bm

m− 1

)
− k1

b

m− 1

] . (1.6.139)

Conditions (1.6.138) and (1.6.139) are satisfied, if

β̄ < β0 . (1.6.140)

Finally, condition (1.6.140) is guaranteed by hypothesis (1.6.125). Moreover, by Lemma
1.3.10, ξ is a subsolution to equation

ξt −
1

ρ(x)
∆ξm = 0 in [RN \B1(0)]× (0, T ) . (1.6.141)

in the sense of Definition 1.3.9. We can argue as we have done to obtain (1.5.99), in
order to get

µt −
1

ρ
∆(µm)

≤ C1G
1

m−1
−1

{
G

[
ζ ′ +

ζ

m− 1

η′

η
+ b k2

m

m− 1

Cm−1
1

a1
ζm η

(
N +

2

m− 1

)]
− ζ

m− 1

η′

η
− 2 k1 b

Cm−1
1

a1

m

(m− 1)2
ζm η + (2− b) k2 b

Cm−1
1

a2
1

m

(m− 1)2
ζm η2

}
for any (x, t) ∈ D2 .

(1.6.142)
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We now define

σ0(t) := ζ ′ + ζ
1

m− 1

η′

η
+ b k2

Cm−1
1

a1
ζm

m

m− 1

(
N +

2

m− 1

)
η,

δ0(t) := − ζ

m− 1

η′

η
+ 2 k1 b

Cm−1
1

a1

m

(m− 1)2
ζm η − (2− b) k2 b

Cm−1
1

a2
1

m

(m− 1)2
ζm η2 .

Hence, (1.6.142) becomes,

µt −
1

ρ
∆(µm) ≤ C1G

1
m−1

−1 φ(G) in D2 , (1.6.143)

where
φ(G) := σ0(t)G− δ0(t) .

By arguing as above, we can infer that

µt −
1

ρ
∆(µm) ≤ 0 in D2 , (1.6.144)

provided that 
σ0(t) > 0

δ0(t) > 0

σ0(t)− δ0(t) ≤ 0 .

for any t ∈ (0, T1) (1.6.145)

By using the very definition of ζ and η, (1.6.145) becomes

− 1 + b k2
Cm−1

1

a1
m

(
N +

2

m− 1

)
> 0,

− β̄ + 2 b k1
Cm−1

1

a1

m

m− 1
− (2− b) b k2

Cm−1
1

a2
1

m

m− 1
(T1 + t)−β̄ > 0,

β̄ − 1 + b k2m
Cm−1

1

a1
N +

2

m− 1

(
1− k1

k2

)
+ (2− b) k2 b

Cm−1
1

a2
1

m

m− 1
(T1 + t)−β̄ ≤ 0 ,

(1.6.146)
which reduces to

Cm−1
1

a1
> max


1

bmk2

(
N +

2

m− 1

) ,
β̄(m− 1)

bmk2

[
2
k1

k2
− 2− b

a1
(T1 + t)−β̄

]
 , (1.6.147)

Cm−1
1

a1
≤ 1− β̄

bmk2

[
N +

2

m− 1

(
1− k1

k2

)
+

2− b
a1

(T1 + t)−β̄

m− 1

] . (1.6.148)

If (1.6.147) and (1.6.148) are verified then µ is a subsolution to equation

µt −
1

ρ
∆µm = 0 in D2 .



1.6. Blow-up for any nontrivial initial datum: proofs 35

In order to find ω1 =
Cm−1

1
a1

satisfying (1.6.147) and (1.6.148), we need

1

bmk2

(
N +

2

m− 1

) <
1− β̄

bmk2

[
N +

2

m− 1

(
1− k1

k2

)
+

2− b
a1

(T1 + t)−β̄

m− 1

] , (1.6.149)

and

β̄(m− 1)

bmk2

[
2
k1

k2
− 2− b

a1
(T1 + t)−β̄

] <
1− β̄

bmk2

[
N +

2

m− 1

(
1− k1

k2

)
+

2− b
a1

(T1 + t)−β̄

m− 1

] .
(1.6.150)

Now we choose in (1.2.21) ε = ε(a1, T1) > 0 so that

ε

a1
T−β̄1 ≤ ε0 , (1.6.151)

with ε0 used in (1.6.121) and (1.6.122) to be appropriately fixed. By (1.2.21), (1.2.22)
and (1.6.151),

2− b
a1

(T1 + t)−β̄ <
ε

a1
T−β̄1 ≤ ε0.

So, conditions (1.6.149) and (1.6.150) are fulfilled, if

1

bmk2

(
N +

2

m− 1

) <
1− β̄

bmk2

[
N +

2

m− 1

(
1− k1

k2

)
+

ε0
m− 1

] , (1.6.152)

and

β̄(m− 1)

bmk2

[
2
k1

k2
− ε
] <

1− β̄

bmk2

[
N +

2

m− 1

(
1− k1

k2

)
+

ε0
m− 1

] . (1.6.153)

Finally, conditions (1.6.152) and (1.6.153) are satisfied, if

β̄ < β̃0 , (1.6.154)

provided that ε0 > 0 is small enough. Observe that (1.6.154) is guaranteed due to
hypothesis (1.6.124) and (1.6.125). Moreover, since µm ∈ C1(B1(0)×(0, T1)), by Lemma
1.3.10, µ is a subsolution to

µt −
1

ρ
∆(µm) = 0 in B1(0)× (0, T1) , (1.6.155)

in the sense of Definition 1.3.9. Hence z is a subsolution of equation (1.6.112).

Since u0 6≡ 0 and u0 ∈ C(RN ), there exist r0 > 0 and ε > 0 such that

u0(x) > ε in Br0(0).
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Hence, if
supp z(·, 0) ⊂ Br0(0), (1.6.156)

and
z(x, 0) ≤ ε in Br0(0), (1.6.157)

then (1.6.113) follows. Moreover, if

supp w(·, 0) ⊂ supp z(·, t1) , (1.6.158)

and
w(x, 0) ≤ z(x, t1) for all x ∈ RN , (1.6.159)

then (1.6.114) follows.

We first verify that z satisfies condition (1.6.156) and (1.6.157). If we require that

a1 T
β̄
1 ≤

r2
0

2
. (1.6.160)

then
supp z(·, 0) ∩B1(0) ⊂ Br0(0) ,

and
supp z(·, 0) ∩ [RN \B1(0)] ⊂ Br0(0) ,

therefore (1.6.156) holds. Moreover, if

(a1 ω)
1

m−1 ≤ ε T ᾱ1 , (1.6.161)

then (1.6.157) holds. Obviously, for any T1 > 0 we can choose a1 = a1(T1) > 0 such
that (1.6.160) and (1.6.161) are valid. On the other hand,

supp w(·, 0) ∩B1(0) ⊂ supp z(·, t1) ∩B1(0) ,

and if
a1 (T1 + t1)β̄ ≥ a T

p−m
p−1 (1.6.162)

then,
supp w(·, 0) ∩ [RN \B1(0)] ⊂ supp z(·, t1) ∩ [RN \B1(0)].

Hence, (1.6.158) holds. If

C1 (T1 + t1)−ᾱ ≥ C T−
1
p−1 , (1.6.163)

then (1.6.159) holds. If we choose the equality in (1.6.163),

T1 + t1 =

(
C

C1

)− 1
ᾱ

T
1

(p−1)ᾱ ,

then (1.6.162) becomes (
C

C1

)− β̄
ᾱ

a1 T
β̄
ᾱ

1
(p−1) ≥ a T

p−m
p−1 .
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The latter holds, if

T
p−m− β̄ᾱ
p−1 ≤

(
C

C1

)− β̄
ᾱ a1

a
. (1.6.164)

Condition (1.6.164) is satisfied thanks to (1.6.127), for T > 0 sufficiently large. This
completes the proof.

Proof of Theorem 1.2.7. Let τ > 0 be the maximal existence time of u. If τ ≤ t1, then
nothing has to be showed, and u blows-up at a certain time S ∈ (0, t1]. Suppose τ > t1.
Let us consider the subsolution z of equation (1.6.112) as defined in (1.6.116). Since
p < p, we can find β̄ (and so ᾱ) such that (1.6.125), (1.6.126) and (1.6.127) hold. By
Proposition 1.6.1, z satisfies (1.6.113) and (1.6.114). Thanks to condition (1.6.113) and
the comparison principle, we have (1.6.115). From (1.6.114) and (1.6.115),

u(x, t1) ≥ z(x, t1) ≥ w(x, 0) for any x ∈ RN .

Thus u(x, t+ t1) is a supersolution, whereas w(x, t) is a subsolution of problem{
ut = 1

ρ∆(um) + up in RN × (0,+∞)

u = w in RN × {0} .

Hence by Theorem 1.2.4, u(x, t) blows-up in a finite time S ∈ (t1, t1+T ). This completes
the proof.

1.7 Further results: uniqueness

Proposition 1.7.1. Let assumption (H) be satisfied. Then there exist at most one
bounded solution u to problem (1.1.1).

1.7.1 Proof of Proposition 1.7.1

We denote by ν the outer normal at any point of the boundary. Let us consider any
two solutions to problem (1.3.27), u1 and u2. We define

a :=
um1 − um2
u1 − u2

when u1 6= u2 , (1.7.165)

Observe that a ∈ L∞(RN × [0, T ]). Let us also define the domains,

BR := {x ∈ Rn : |x| < R} , QRT := BR × (0, T ] . (1.7.166)

We introduce the approximation of a

an := a qn +
1

n
,
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where a is the extension by 0 of a to RN×R and qn is a sequence of mollifiers in RN×R.
Then an satisfies the following properties

(i) an ∈ C∞(RN × [0, T ]) ,

(ii) an >
1

n
,

(iii) an ≤ k ,

(H3)

for some k > 0. Moreover assume that

||a− a qn||2L2(QRT ) ≤
1

n2
−→ 0 as n −→ +∞ (1.7.167)

We now consider the backward problem
ρ(x)ψnt + an∆ψn = ρ(x)λψn 0 < t < T, x ∈ BR

ψn = 0 0 < t < T, x ∈ ∂BR
ψn(x, T ) = θ(x) x ∈ BR

(1.7.168)

where ρ satisfies hypotheses (i)− (ii) in (H), λ > 0 and

θ ∈ C∞0 (BR), 0 ≤ θ ≤ 1.

To prove Proposition 1.7.1 we need the following lemma.

Lemma 1.7.2. Let assumptions (H)-(i)−(ii) and (H3) be satisfied. Moreover, consider
α, β, µ ∈ R such that

β >
N − 1

2
, (1.7.169)

α > 4kNβ(β + 1) , (1.7.170)

and
µ

(1 + |x|2)β
> θ(x) for all x ∈ BR. (1.7.171)

Then the solution ψn to problem (1.7.168) has the following properties:

(i)

0 ≤ ψn ≤ µ
e(α−λ)(T−t)

(1 + |x|2)β
in BR × [0, T ],

(ii) ∫ T

0

∫
BR

an|∆ψn|2 dx dt ≤ c1,

(iii)

sup
0<t<T

∫
BR

|∇ψn|2(t) dx ≤ c2,

for some c1, c2 independent of u.
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Proof of Lemma 1.7.2. Let us start by proving property (i). Consider the function

φ(x, t) :=
e(α−λ)(T−t)

(1 + |x|2)β
. (1.7.172)

We compute

∆φ = e(α−λ)(T−t)
[
− 2βN

(1 + |x|2)β+1
+

4β(β + 1)|x|2

(1 + |x|2)β+2

]
Observe that, by (H)-(i), (H3) and (1.7.170)

|an∆φ| ≤ k|∆φ|

≤ k e(α−λ)(T−t)
[

2βN

(1 + |x|2)β+1
+

4β(β + 1)|x|2

(1 + |x|2)β+2

]
≤ k e(α−λ)(T−t)

[
2βN

(1 + |x|2)β+1
+

4β(β + 1)(1 + |x|2)

(1 + |x|2)β+2

]
≤ k e(α−λ)(T−t)

(1 + |x|2)β+1
[2βN + 4β(β + 1)]

≤ k e
(α−λ)(T−t)

(1 + |x|2)β
[2βN + 4β(β + 1)]

1

(1 + |x|2)

≤ 4 kNβ(β + 1)φ ρ

< αρφ.

where k has been introduced in (H3). Hence we get

ρ φt + an ∆φ ≤ ρ φt + ραφ = −ραφ+ ρ λφ+ ραφ = ρ λφ.

Moreover, by (1.7.171),

ψn(x, T ) = θ(x) ≤ µ

(1 + |x|2)β
= µφ(x, T ).

Thus, by the maximum principle we have

0 ≤ ψn(x, t) ≤ µφ(x, t) for any 0 < t < T, x ∈ BR.

To prove (ii) and (iii), let us multiply the equation in problem (1.7.168) by
∆ψn
ρ

and

integrate in BR × (t, T ),∫ T

t

∫
BR

ψnt∆ψn dx dt+

∫ T

t

∫
BR

an
ρ
|∆ψn|2 dx dt

=

∫ T

t

∫
BR

λψn∆ψn dx dt .

Then by the integration by parts on BR and in the time interval (t, T ), we get,

−1

2

∫
BR

|∇ψn|2(x, T ) dx+
1

2

∫
BR

|∇ψn|2(x, t) dx+

∫ T

t

∫
BR

an
ρ
|∆ψn|2 dx dt

=− λ
∫ T

t

∫
BR

|∇ψn|2 dx dt
(1.7.173)
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From the latter we deduce∫ T

t

∫
BR

an
ρ
|∆ψn|2 dx dt ≤

1

2

∫
BR

|∇θ|2(x) dx− 1

2

∫
BR

|∇ψn|2(x, t) dx ≤ c,

where c is a positive real constant independent of u. Moreover, since ρ ∈ C(RN ), then
1

ρ
has a finite minimum in BR, thus

min
BR

1

ρ

∫ T

t

∫
BR

an|∆ψn|2 dx dt ≤
∫ T

t

∫
BR

an
ρ
|∆ψn|2 dx dt.

This ensures property (ii). From equality (1.7.173) we also deduce∫
BR

|∇ψn|2(x, t) dx ≤
∫
BR

|∇θ|2(x) dx ≤ ĉ

where ĉ is a positive real constant. By the arbitrarily of t ∈ (0, T ) we deduce property
(iii).

We now prove Proposition 1.7.1.

Proof of Proposition 1.7.1. Consider any two solutions u1 and u2 to problem (1.3.27).
By (1.3.9) and (1.7.166), subtracting u1 and u2 we get

−
∫ T

0

∫
BR

ρ(u1 − u2)ψt dx dt+

∫
BR

ρ(x)[u1(x, T )− u2(x, T )]ψ(x, T ) dx

=

∫ T

0

∫
BR

(um1 − um2 )∆ψ dx dt−
∫ T

0

∫
∂BR

(um1 − um2 )∇ψ · ν dσ dt

+

∫ T

0

∫
BR

ρ(up1 − u
p
2)ψ dx dt

(1.7.174)

Using the definition of a in (1.7.165), (1.7.174) can be rewritten as∫
BR

ρ(x)[u1(x, T )− u2(x, T )]ψ(x, T ) dx

=

∫ T

0

∫
BR

(u1 − u2)(ρψt + a∆ψ) dx dt−
∫ T

0

∫
∂BR

(um1 − um2 )∇ψ · ν dσ dt

+

∫ T

0

∫
BR

ρ(up1 − u
p
2)ψ dx dt

(1.7.175)

We aim to prove that∫
BR

ρ(x)[u1(x, T )− u2(x, T )]ψ(x, T ) dx −→ 0 as R→ +∞.
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Let us choose the test function in (1.7.175) equal to the solution ψn of problem (1.7.168).
Thus, (1.7.175) becomes∫

BR

ρ(x)[u1(x, T )− u2(x, T )]θ(x) dx

=

∫ T

0

∫
BR

ρ (u1 − u2)λψn dx dt+

∫ T

0

∫
BR

(u1 − u2)(a− an)∆ψn dx dt

−
∫ T

0

∫
∂BR

(um1 − um2 )
∂ψn
∂ν

dσ dt+

∫ T

0

∫
BR

ρ (up1 − u
p
2)ψn dx dt

(1.7.176)

Let us now define

I1 :=

∫ T

0

∫
BR

(u1 − u2)(a− an)∆ψn dx dt, (1.7.177)

I2 := −
∫ T

0

∫
∂BR

(um1 − um2 )
∂ψn
∂ν

dσ dt (1.7.178)

and

I3 :=

∫ T

0

∫
BR

ρ (u1 − u2)λψn dx dt+

∫ T

0

∫
BR

ρ (up1 − u
p
2)ψn dx dt. (1.7.179)

Then we estimate I1. Thanks to Hölder inequality and since u1, u2 ∈ L∞(RN × (0, T )),
we get

|I1| ≤
∫ T

0

∫
BR

|u1 − u2|
∣∣∣∣a− an√

an

∣∣∣∣ |√an∆ψn| dx dt,

≤ C
(∫ T

0

∫
BR

(a− an)2

an
dx dt,

)1/2(∫ T

0

∫
BR

an|∆ψn|2 dx dt,
)1/2 (1.7.180)

Now,

(∫ T

0

∫
BR

(a− an)2

an
dx dt,

)1/2

≤


∫ T

0

∫
BR

(
a− aqn −

1

n

)2

1/n
dx dt


1/2

≤
√
n

(∫ T

0

∫
BR

[
(a− a qn)2 +

1

n2

]
dx dt

)1/2

≤
√
n

(
||a− a qn||2L2(QRT ) +

1

n2

∫ T

0

∫
BR

dx dt

)1/2

≤
√
n

(
1

n2
+
TRN

n2

)1/2

≤ 1√
n

(
1 + TRN

)1/2 ≤ c(R)√
n
.

(1.7.181)
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Moreover, by Lemma 1.7.2,(∫ T

0

∫
BR

an|∆ψn|2 dx dt,
)1/2

≤ c1. (1.7.182)

Hence,

|I1| ≤
c1 c(R)√

n
−→ 0 as n −→ +∞. (1.7.183)

Let

J := {(x, t) : R− 1 ≤ |x| ≤ R, 0 < t < T}.

Let g, which is independent of t, be defined by

g(x, t) = g(x) :=
d

|x|N−2
+ e for (x, t) ∈ J (1.7.184)

where d and e satisfy,

d

(R− 1)N−2
+ e =

λe(α−λ)T

(1 + (R− 1)2)β
,

d

RN−2
+ e = 0.

(1.7.185)

Then g is such that

g ≥ ψn , g(x, t) = 0 on 0 < t < T, |x| = R . (1.7.186)

and
∂

∂ν
(g − ψn) (x, t) ≤ 0 for |x| = R , 0 < t < T. (1.7.187)

Then, since
∂ψn
∂ν
≤ 0,

sup
|x|=R
0<t<T

∣∣∣∣∂ψn∂ν (x, t)

∣∣∣∣ ≤ sup
|x|=R
0<t<T

∣∣∣∣∂g∂ν (x, t)

∣∣∣∣ for |x| = R , 0 < t < T, (1.7.188)

which gives an estimate on the normal derivative of ψn. Note that,

∆g = 0 on J.

Moreover, by (1.7.185),

g(R− 1) ≥ ψn(R− 1, t) for 0 < t < T,

g(R) = ψn(R, t) = 0 for 0 < t < T,

and by (1.7.168),

g(x) ≥ ψn(x, T ) for R− 1 < |x| < R.
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Therefore (1.7.186) holds by maximum principle and so does (1.7.187). It remains to

estimate
∂g

∂ν
over ∂BR. We have

∂g

∂ν
(x)

∣∣∣∣
|x|=R

=
(2−N)d

RN−1

=
2−N
RN−1

λe(α−λ)T

(1 + (R− 1)2)β

(
1

(R− 1)N−2
− 1

RN−2

)−1

.

(1.7.189)

Hence, ∣∣∣∣∂g∂ν (x)

∣∣∣∣
|x|=R

≤ N − 2

RN−1

λe(α−λ)T

(1 + (R− 1)2)β
RN−2(R− 1)N−2

RN−2 − (R− 1)N−2

≤ c

RN−1

1

(1 + (R− 1)2)β
RN−2 R2(N−2)

1 +
(
R−1
R

)N−2

≤ c

RN−1

1

(1 + (R− 1)2)β
RN−2

1 +
(
1− 1

R

)N−2

≤ c

RN−1

1

(1 + (R− 1)2)β
RN−2

(N − 2)R−1

≤ c

RN−1

1

(1 + (R− 1)2)β
RN−1

≤ c

R2β
.

(1.7.190)

Combining (1.7.190) together with (1.7.188), we have

sup
|x|=R
0<t<T

∣∣∣∣∂ψn∂ν (x, t)

∣∣∣∣ ≤ c

R2β
. (1.7.191)

Going back to (1.7.178),

|I2| ≤ ||um1 − um2 ||L∞(∂BR×(0,T ))
c

R2β
T RN−1 ≤ cRN−1−2β . (1.7.192)

Thus in (1.7.176) we get∫
BR

ρ(x)[u1(x, T )− u2(x, T )]θ(x) dx ≤ c1 c(R)√
n

+ cRN−1−2β + |I3|. (1.7.193)

Without lost of generality, we can set

θ(x) = sign[u1(x, T )− u2(x, T )]+ for x ∈ BR,

thus we have∫
BR

ρ(x)[u1(x, T )− u2(x, T )]+ dx

≤ c1 c(R)√
n

+ cRN−1−2β +

∫ T

0

∫
BR

ρ [λ(u1 − u2) + (up1 − u
p
2)]+ψn dx dt.

(1.7.194)
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By Lemma 1.7.2,

ψn(x, t) ≤ e(α−λ)(T−t)

(1 + |x|2)β
forx ∈ BR, 0 < t < T .

Thus, (1.7.194), letting n→ +∞, reads∫
BR

ρ(x)[u1(x, T )− u2(x, T )]+ dx

≤ cRN−1−2β +

∫ T

0

∫
BR

ρ
e(α−λ)(T−t)

(1 + |x|2)β
[λ(u1 − u2) + (up1 − u

p
2)]+ dx dt.

(1.7.195)

Let
s0 := max{‖u1‖∞, ‖u2‖∞}.

Let L be the Lipschitz constant of the function s→ sp over [−s0.s0]. Then choosing

λ > max{L,α}, (1.7.196)

(1.7.195) becomes

e(λ−α)T

∫
BR

ρ(x)[u1(x, T )− u2(x, T )]+ dx

≤ e(λ−α)T cRN−1−2β +

∫ T

0
e(λ−α)t

∫
BR

ρ 2λ (u1 − u2)+ dx dt.

(1.7.197)

Let

h(t) := e(λ−α)t

∫
BR

ρ(x) (u1 − u2)+ dx,

γ(t) := e(λ−α)T cRN−1−2β,

so, (1.7.197) implies

h(T ) ≤ γ(t) + 2λ

∫ T

0
h(t) dt.

Thanks to (1.7.196), by Gronwall’s Lemma,∫
BR

ρ(x)[u1(x, T )− u2(x, T )]+ dx ≤ e2λT cRN−1−2β (1.7.198)

If we change the role of u1 and u2, we obtain symmetrically,∫
BR

ρ(x)[u2(x, T )− u1(x, T )]+ dx ≤ e2λT cRN−1−2β (1.7.199)

By adding (1.7.198) and (1.7.199) we get∫
BR

ρ(x) |u1(x, T )− u2(x, T )| dx ≤ e2λT cRN−1−2β (1.7.200)

Finally, by (1.7.169), letting R going to +∞ in (1.7.200), we have∫
RN

ρ(x) |u1(x, T )− u2(x, T )| dx ≤ 0.

This completes the proof.



Chapter 2

The fast decaying density case

2.1 Introduction

We investigate global existence and blow-up of nonnegative solutions to problem{
ρ(x)ut = ∆(um) + ρ(x)up in RN × (0, τ)

u(x, 0) = u0(x) in RN × {0}
(2.1.1)

where N ≥ 3, p > 1,m > 1 and τ > 0. We always assume that{
(i) ρ ∈ C(RN ), ρ > 0 in RN ,
(ii)u0 ∈ L∞(RN ), u0 ≥ 0 in RN ,

(H)

and that

there exist k1, k2 ∈ (0,+∞) with k1 ≤ k2, r0 > 0 , q ≥ 2 such that

k1(|x|+ r0)q ≤ 1

ρ(x)
≤ k2(|x|+ r0)q for all x ∈ RN .

(2.1.2)

The parabolic equation in problem (2.1.1) is of the porous medium type, with a variable
density ρ(x) and a reaction term ρ(x)up. Clearly, such parabolic equation is degenerate,
since m > 1. Moreover, the differential equation in (2.1.1) is equivalent to

ut =
1

ρ(x)
∆(um) + up in RN × (0, τ);

thus the related diffusion operator is 1
ρ(x)∆, and in view of (2.1.2), the coefficient

1

ρ(x)
can positively diverge at infinity. The differential equation in (2.1.1), posed in the
interval (−1, 1) with homogeneous Dirichlet boundary conditions, has been introduced
in [73] as a mathematical model of evolution of plasma temperature, where u is the
temperature, ρ(x) is the particle density, ρ(x)up represents the volumetric heating of
plasma. Indeed, in [73, Introduction] a more general source term of the type A(x)up has
also been considered; however, then the authors assume that A ≡ 0; only some remarks
for the case A(x) = ρ(x) are made in [73, Section 4]. Then in [71] and [72] the Cauchy
problem (2.1.1) is dealt with in the case without the reaction term ρ(x)up.

45



46 CHAPTER 2. The fast decaying density case

In view of (2.1.2) the density ρ decays at infinity. Indeed,

1

k2(|x|+ r0)q
≤ ρ(x) ≤ 1

k1(|x|+ r0)q
for all |x| > 1 . (2.1.3)

Since we assume (2.1.2), we refer to ρ(x) as a fast decaying density at infinity. On
the other hand, in [92] it is studied problem (2.1.1) with a slowly decaying density, that
is (2.1.2) is assumed with q < 2.

There is a huge literature concerning various problems related to (2.1.1). For in-
stance, problem (2.1.1) with ρ ≡ 1,m = 1 is studied in [16, 24, 30, 31, 58, 62, 64,
83, 114, 118, 121, 135], problem (2.1.1) without the reaction term up is treated in
[25, 27, 49, 51, 50, 66, 67, 68, 69, 70, 71, 72, 73, 102, 59, 115, 116, 117]. Moreover,
problem (2.1.1) with m = 1 is addressed in [85] (see also [21]), where ρ satisfies (2.1.3)
with 0 ≤ q < 2. In particular, let us recall some results established in [119] for problem
(2.1.1) with ρ ≡ 1,m > 1, p > 1 (see also [36, 99]). We have:

• ([119, Theorem 1, p. 216]) For any p > 1, for all sufficiently large initial data,
solutions blow-up in finite time;

• ([119, Theorem 2, p. 217]) if p ∈
(
1,m+ 2

N

)
, for all initial data, solutions blow-up

in finite time;

• ([119, Theorem 3, p. 220]) if p > m+ 2
N , for all sufficiently small initial data with

compact support, solutions exist globally in time and belong to L∞(RN×(0,+∞)).

Similar results for quasilinear parabolic equations, also involving p-Laplace type oper-
ators or double-nonlinear operators, have been stated in [1], [3], [4], [20], [22], [23], [60],
[61], [86], [87], [88], [97], [98], [104], [125], [132] (see also [89] for the case of Riemannian
manifolds); moreover, in [54] the same problem on Cartan-Hadamard manifolds has
been investigated. In particular, in [86, Theorem 2] it is shown that if ρ(x) = (1+ |x|)−q
with 0 < q < 2, p > m, and u0 is small enough (in an appropriate sense), then there
exists a global solution; moreover, a smoothing estimate is given. Such result will be
compared below with one of our results (see Remark 2.2.5).

In [92] the following results for problem (2.1.1) are established, assuming (2.1.2)
with 0 ≤ q < 2.

• ([92, Theorem 2.1]. If

p > p̄,

u0 has compact support and is small enough, then there exist global in time
solutions to problem (2.1.1) which belong to L∞(RN×(0,+∞)); here p̄ is a certain
exponent, which depends on N,m, q, k1, k2. In particular, for k1 = k2 we have

p̄ = m+
2− q
N − q

.

• ([92, Theorem 2.3]). For any p > 1, if u0 is sufficiently large, then solutions to
problem (2.1.1) blow-up in finite time.
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• ([92, Corollary 2.4, Theorem 2.5]). If 1 < p < p, then for any u0 6≡ 0, solutions
to problem (2.1.1) blow-up in finite time. Here p ∈ (m, p̄) is a certain exponent
depending on N,m, q, k1, k2. For k1 = k2, p = p̄. Observe that for m < p < p,
some extra conditions are needed.

Analogous results, proved by different methods, can be found also in [86, 87], where also
more general double-nonlinear operators are treated.

2.1.1 Outline of our results

Let us now describe our main results. We distinguish between two cases: q = 2 and
q > 2. First, assume that (2.1.2) holds with q = 2.

• (Theorem 2.2.1). If

p > m,

u0 has compact support and is small enough, then there exist global in time
solutions to problem (2.1.1), which belong to L∞(RN × (0,+∞));

• (Theorem 2.2.2). For any p > m, if u0 is sufficiently large, then solutions to
problem (2.1.1) blow-up in finite time.

The proofs mainly relies on suitable comparison principles and properly constructed
sub- and supersolutions, which crucially depend on the behavior at infinity of the in-
homogeneity term ρ(x). More precisely, they are of the type

w(x, t) = Cζ(t)

[
1− log(|x|+ r0)

a
η(t)

] 1
m−1

+

for any (x, t) ∈
[
RN \B1(0)

]
× [0, T ),

(2.1.4)
for suitable functions ζ = ζ(t), η = η(t) and constants C > 0, a > 0. The presence of
log(|x| + r0) in w is strictly related to the assumption that q = 2. Observe that the
barriers used in [92] for the case 0 ≤ q < 2, which are of power type in |x|, do not
work in the present situation. Furthermore, note that the exponent p̄ introduced in [92]
for 0 ≤ q < 2, when q = 2 becomes p̄ = m. Hence Theorem 2.2.1 can be seen as a
generalization of [92, Theorem 2.1] to the case q = 2.

Now, assume that q > 2. We have the following results (see Theorem 2.2.3 and
Remark 2.2.4).

• Let 1 < p < m. Then for suitable u0 ∈ L∞(RN ) there exist global in time solutions
to problem (2.1.1). We do not assume that u0 has compact support, but we need
that it fulfills a decay condition as |x| → +∞. However, u0 in a compact subset
of RN can be arbitrarily large. We cannot deduce that the corresponding solution
belongs to L∞(RN × (0,+∞)), but it is in L∞(RN × (0, τ)) for each τ > 0.

• Let p > m ≥ 1. Then for suitable u0 ∈ L∞(RN ), problem (2.1.1) admits a solution
in L∞(RN × (0,+∞)). We need that

0 ≤ u0(x) ≤ CW (x) for all x ∈ RN ,
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where C > 0 is small enough and W (x) is a suitable function, which vanishes as
|x| → +∞. We should mention that, as recalled above, a similar result was been
obtained in [86, Theorem 2], where also double-non linear operators are treated;
see Remark 2.2.5 below.

• Let p = m > 1. Then for suitable u0 ∈ L∞(RN ), problem (2.1.1) admits a solution
in L∞(RN × (0,+∞)), provided that r0 > 0 in (2.1.2) is big enough.

Such results are very different with respect to the cases 0 ≤ q < 2 and q = 2. In fact,
we do not have finite-time blow-up, but global existence prevails, for suitable initial
data. The results follow by comparison principles, once we have constructed appropriate
supersolutions, that have the form

w(x, t) = ζ(t)W (x) for all (x, t) ∈ RN × (0,+∞),

for suitable ζ(t) and W (x). When p ≥ m, ζ(t) ≡ 1. Observe that we can also include
the linear case m = 1, whenever p > m. In this respect, our result complement the
results in [85], where only the case q < 2 is addressed. Finally, let us mention that
it remains to be understood whether in the case 1 < p < m solutions can blow-up in
infinite time or not.

2.2 Statements of the main results

For any R > 0, let BR as in (1.3.26).

For the sake of simplicity, sometimes instead of (2.1.2), we suppose that

there exist k1, k2 ∈ (0,+∞) with k1 ≤ k2 , q ≥ 2 , R > 0 such that

k1|x|q ≤
1

ρ(x)
≤ k2|x|q for all x ∈ RN \BR .

(2.2.5)

In view of (H)-(i),

for any R > 0 there exist ρ1(R), ρ2(R) ∈ (0,+∞) with ρ1(R) ≤ ρ2(R)

such that ρ1(R) ≤ 1

ρ(x)
≤ ρ2(R) for all x ∈ BR .

(2.2.6)

Obviously, (2.1.2) is equivalent to (2.2.5) and (2.2.6).

In the sequel we shall refer to q as the order of decaying of ρ(x) as |x| → +∞.

2.2.1 Order of decaying: q = 2

Let q = 2. The first result concerns the global existence of solutions to problem (2.1.1)
for p > m. We assume that

r0 > e,
k2

k1
< (N − 2)(m− 1)

p−m
p− 1

log r0 . (2.2.7)

Such technical request allow us to construct an appropriate supersolution, as it will be
apparent in the proof of Proposition 2.3.1 below.
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Theorem 2.2.1. Assume (H), (2.1.2) for q = 2 and (2.2.7). Suppose that

p > m ,

and that u0 is small enough and has compact support. Then problem (2.1.1) admits a
global solution u ∈ L∞(RN × (0,+∞)).
More precisely, if C > 0 is small enough, a > 0 is so that

0 < ω0 ≤
Cm−1

a
≤ ω1

for suitable 0 < ω0 < ω1, T > 0,

u0(x) ≤ CT−
1
p−1

[
1− log(|x|+ r0)

a
T
− p−m
p−1

] 1
m−1

+

for a.e. x ∈ RN , (2.2.8)

then problem (2.1.1) admits a global solution u ∈ L∞(RN × (0,+∞)). Moreover,

u(x, t) ≤ C(T+t)
− 1
p−1

[
1− log(|x|+ r0)

a
(T + t)

− p−m
p−1

] 1
m−1

+

for a.e. (x, t) ∈ RN×(0,+∞) .

(2.2.9)

Observe that if u0 satisfies (2.2.8), then

suppu0 ⊆ {x ∈ RN : log(|x|+ r0) ≤ aT
p−m
p−1 } .

From (2.2.9) we can infer that

suppu(·, t) ⊆ {x ∈ RN : log(|x|+ r0) ≤ a(T + t)
p−m
p−1 } for a.e. t > 0 . (2.2.10)

The choice of the parameters C > 0, T > 0 and a > 0 is discussed in Remark 2.3.2.

The next result concerns the blow-up of solutions in finite time, for every p > m > 1,
provided that the initial datum is sufficiently large. We assume that hypothesis (2.2.5)
holds with the choice

q = 2 , R = e . (2.2.11)

So we fix, in assumption (2.2.6),

ρ1(R) = ρ1(e) =: ρ1 , ρ2(R) = ρ2(e) =: ρ2 .

Let

s(x) :=


log(|x|) if x ∈ RN \Be,

|x|2 + e2

2e2
if x ∈ Be .
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Theorem 2.2.2. Let assumption (H), (2.2.5) and (2.2.11) hold. For any

p > m

and for any T > 0, if the initial datum u0 is large enough, then the solution u of problem
(2.1.1) blows-up in a finite time S ∈ (0, T ], in the sense that

‖u(t)‖∞ →∞ as t→ S− . (2.2.12)

More precisely, if C > 0 and a > 0 are large enough, T > 0,

u0(x) ≥ CT−
1
p−1

[
1− s(x)

a
T
m−p
p−1

] 1
m−1

+

, for a.e. x ∈ RN , (2.2.13)

then the solution u of problem (2.1.1) blows-up and satisfies the bound from below

u(x, t) ≥ C(T − t)−
1
p−1

[
1− s(x)

a
(T − t)

m−p
p−1

] 1
m−1

+

, for a.e. (x, t) ∈ RN × (0, S) .

(2.2.14)

Observe that if u0 satisfies (2.2.13), then

suppu0 ⊇ {x ∈ RN : s(x) < aT
p−m
p−1 } .

From (2.2.14) we can infer that

suppu(·, t) ⊇ {x ∈ RN : s(x) < a(T − t)
p−m
p−1 } for a.e. t ∈ [0, S) . (2.2.15)

The choice of the parameters C > 0, T > 0 and a > 0 is discussed in Remark 2.4.2.

2.2.2 Order of decaying: q > 2

Let q > 2. The first result concerns the global existence of solutions to problem (2.1.1)
for any p > 1 and m > 1, p 6= m. Let us introduce the parameter b̄ ∈ R such that

0 < b̄ < min{N − 2 , q − 2} . (2.2.16)

Moreover, we can find c̄ > 0 such that

(r + r0)−
b̄p
m ≤ c̄ for any r ≥ 0 , (2.2.17)

with r0 > 0 as in hypothesis (2.1.2).

Theorem 2.2.3. Let assumptions (H), (2.1.2) and (2.2.16) be satisfied with q > 2.
Suppose that

1 < p < m , or p > m ≥ 1 ,

and that u0 is small enough. Then problem (2.1.1) admits a global solution u ∈ L∞(RN×
(0, τ)) for any τ > 0. More precisely, we have the following cases.



2.3. Global existence: proofs 51

(a) Let 1 < p < m. If C > 0 is big enough, r0 > 0, T > 1, α > 0,

u0(x) ≤ CTα (|x|+ r0)−
b̄
m for a.e. x ∈ RN , (2.2.18)

then problem (2.1.1) admits a global solution u, which satisfies the bound from
above

u(x, t) ≤ C(T + t)α (|x|+ r0)−
b̄
m for a.e. (x, t) ∈ RN × (0,+∞) . (2.2.19)

(b) Let p > m ≥ 1. If C > 0 is small enough, r0 > 0 and (2.2.18) holds with
α = 0, then problem (2.1.1) admits a global solution u ∈ L∞(RN × (0,+∞)),
which satisfies the bound from above (2.2.19) with α = 0.

Remark 2.2.4. Observe that, in the case when p = m, if C > 0 is small enough, r0 > 0
big enough to have (

1

r0

) b̄p
m

≤ b̄k1(N − 2− b̄) ,

T > 0 and (2.2.18) holds with α = 0, then problem (2.1.1) admits a global solution
u ∈ L∞(RN × (0,+∞)) which satisfies the bound from above (2.2.19) for α = 0.

Note that in Theorem 2.2.3 we do not require that supp u0 is compact.

The choice of the parameters C > 0, T > 0 and a > 0 is discussed in Remark 2.3.5.

Remark 2.2.5. The statement in Theorem 2.2.3-(b) is in agreement with [86, Theorem
2], where it is assumed that p > m, ρ(x) = (1 + |x|)−q with q > 2,

∫
RN ρ(x)u0(x)dx <

+∞,
∫
RN ρ(x)[u0(x)]q̄dx < δ, for some δ > 0 small enough and q̄ > N

2 (p−m).
Note that the assumption on u0 is of a different type. In particular, in view of

(2.2.18) and (2.2.16), the initial datum u0 considered in Theorem 2.2.3-(b) not neces-
sarily satisfies

∫
RN ρ(x)u0(x)dx < +∞.

In [86] the proofs are based on the energy method, so they are completely different
with respect to our approach.

2.3 Global existence: proofs

Throughout this Chapter we deal with very weak solutions to problem (2.1.1) and to
the same problem set in different domains (see Section 1.3).

For every R > 0, let BR as in (1.3.26), then, for τ > 0, we consider the auxiliary
problem 

ut = 1
ρ(x)∆(um) + up in BR × (0, τ)

u = 0 on ∂BR × (0, τ)

u = u0 in BR × {0} .
(2.3.20)

The definition of solution to problem (2.3.20) is given in Definition 1.3.9.

In what follows we set r ≡ |x|. We construct a suitable family of supersolutions of
equation

ut =
1

ρ(x)
∆(um) + up in RN × (0,+∞). (2.3.21)
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2.3.1 Order of decaying: q = 2

We assume (H), (2.1.2) with q = 2 and (2.2.7). In order to construct a suitable family
of supersolutions of (2.3.21), we define, for all (x, t) ∈ RN × (0,+∞),

ū(x, t) := Cζ(t)

[
1− log(r + r0)

a
η(t)

] 1
m−1

+

, (2.3.22)

where η, ζ ∈ C1([0,+∞); [0,+∞)) and C > 0, a > 0, r0 > e.

Now, we compute

ūt −
1

ρ
∆(ūm)− ūp.

To this aim, let us set

F (r, t) := 1− log(r + r0)

a
η(t) ,

and define

D1 :=
{

(x, t) ∈ [RN \ {0}]× (0,+∞) | 0 < F (r, t) < 1
}
.

For any (x, t) ∈ D1, we have:

ūt = Cζ ′F
1

m−1 + Cζ
1

m− 1
F

1
m−1

−1

(
− log(r + r0)

a
η′
)

= Cζ ′F
1

m−1 + Cζ
1

m− 1

(
1− log(r + r0)

a
η

)
η′

η
F

1
m−1

−1 − Cζ 1

m− 1

η′

η
F

1
m−1

−1

= Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1
m−1 − Cζ 1

m− 1

η′

η
F

1
m−1

−1.

(2.3.23)

(ūm)r = −C
m

a
ζm

m

m− 1
F

1
m−1

1

(r + r0)
η. (2.3.24)

(ūm)rr = −C
m

a
ζm

m

(m− 1)2
F

1
m−1

−1

(
1− log(r + r0)

a
η

)
η

1

(r + r0)2 log(r + r0)

+
Cm

a
ζm

m

(m− 1)2
F

1
m−1

−1 η

(r + r0)2 log(r + r0)
+
Cm

a
ζm

m

m− 1
F

1
m−1

1

(r + r0)2
η

= −C
m

a
ζm

m

(m− 1)2
F

1
m−1 η

1

(r + r0)2 log(r + r0)

+
Cm

a
ζm

m

(m− 1)2
F

1
m−1

−1 η

(r + r0)2 log(r + r0)
+
Cm

a
ζm

m

m− 1
F

1
m−1

1

(r + r0)2
η.

(2.3.25)
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∆(ūm) =
(N − 1)

r
(ūm)r + (ūm)rr

=
(N − 1)

r

(
−C

m

a
ζm

m

m− 1
F

1
m−1

1

(r + r0)
η

)
− Cm

a
ζm

m

(m− 1)2
F

1
m−1 η

1

(r + r0)2 log(r + r0)

+
Cm

a
ζm

m

(m− 1)2
F

1
m−1

−1 η

(r + r0)2 log(r + r0)

+
Cm

a
ζm

m

m− 1
F

1
m−1

1

(r + r0)2
η

≤ N − 1

r + r0

(
−C

m

a
ζm

m

m− 1
F

1
m−1

1

(r + r0)
η

)
− Cm

a
ζm

m

(m− 1)2
F

1
m−1 η

1

(r + r0)2 log(r + r0)

+
Cm

a
ζm

m

(m− 1)2
F

1
m−1

−1 η

(r + r0)2 log(r + r0)

+
Cm

a
ζm

m

m− 1
F

1
m−1

1

(r + r0)2
η

(2.3.26)

We also define

K :=

[(
m− 1

p+m− 2

)m−1
p−1

−
(

m− 1

p+m− 2

) p+m−2
p−1

]
> 0 ,

σ̄(t) := ζ ′ + ζ
1

m− 1

η′

η
+
Cm−1

a
ζm

m

m− 1
ηk1 (N − 2) ,

δ̄(t) := ζ
1

m− 1

η′

η
+ Cm−1ζm

m

(m− 1)2

η

a

1

log(r0)
k2 ,

γ̄(t) := Cp−1ζp .

(2.3.27)

Proposition 2.3.1. Let ζ = ζ(t), η = η(t) ∈ C1([0,+∞); [0,+∞)). Let K, σ̄, δ̄, γ̄
be as defined in (2.3.27). Assume (H), (2.1.2) with q = 2, (2.2.7) and that, for all
t ∈ (0,+∞),

− η′

η2
≥ 1

log(r0)

Cm−1

a
ζm−1 m

m− 1
k2 (2.3.28)

and

ζ ′ +
Cm−1

a
ζm

m

m− 1
η

[
(N − 2)k1 −

k2

(m− 1) log(r0)

]
− Cp−1ζp ≥ 0 . (2.3.29)

then ū defined in (2.3.22) is a supersolution of equation (2.3.21).
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Proof. In view of (2.3.23), (2.3.24), (2.3.25) and (2.3.26), for any (x, t) ∈ D1,

ūt−
1

ρ
∆(ūm)− ūp

≥ Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1
m−1 − Cζ 1

m− 1

η′

η
F

1
m−1

−1

+
Cm

a
ζm

m

m− 1
η

1

ρ(r + r0)2
F

1
m−1

(
1

(m− 1) log(r + r0)
+N − 2

)
− Cm

a
ζm

m

(m− 1)2
F

1
m−1

−1 η

log(r + r0)

1

ρ(r + r0)2
− CpζpF

p
m−1 .

(2.3.30)

Thanks to hypothesis (H), (2.1.2) and (2.2.7), we have

1

log(r + r0)
≥ 0 , − 1

log(r + r0)
≥ − 1

log(r0)
for all x ∈ RN , (2.3.31)

1

ρ(r + r0)2
≥ k1 , − 1

ρ(r + r0)2
≥ −k2 for all x ∈ RN . (2.3.32)

From (2.3.30), (2.3.31) and (2.3.32) we get,

ūt −
1

ρ
∆(ūm)− ūp

≥ CF
1

m−1
−1

{
F

[
ζ ′ + ζ

1

m− 1

η′

η
+
Cm−1

a
ζm

m

m− 1
η(N − 2)k1

]
−ζ 1

m− 1

η′

η
− Cm−1

a
ζm

m

(m− 1)2

1

log(r0)
ηk2 − Cp−1ζpF

p+m−2
m−1

} (2.3.33)

From (2.3.33) and (2.3.27), we have

ūt −
1

ρ
∆(ūm)− ūp ≥ CF

1
m−1

−1
[
σ̄(t)F − δ̄(t)− γ̄(t)F

p+m−2
m−1

]
. (2.3.34)

For each t > 0, set

ϕ(F ) := σ̄(t)F − δ̄(t)− γ̄(t)F
p+m−2
m−1 , F ∈ (0, 1) .

Now our goal is to find suitable C, a, ζ, η such that, for each t > 0,

ϕ(F ) ≥ 0 for any F ∈ (0, 1) .

We observe that ϕ(F ) is concave in the variable F . Hence it is sufficient to have ϕ(F )
positive in the extrema of the interval (0, 1). This reduces, for any t > 0, to the
conditions

ϕ(0) ≥ 0 ,

ϕ(1) ≥ 0 .
(2.3.35)

These are equivalent to

−δ̄(t) ≥ 0 , σ̄(t)− δ̄(t)− γ̄(t) ≥ 0 ,
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that is

− η′

η2
≥ Cm−1

a
ζm−1 m

m− 1

1

log(r0)
k2 ,

ζ ′ +
Cm−1

a
ζm

m

m− 1
η

[
(N − 2) k1 −

k2

(m− 1) log(r0)

]
− Cp−1ζp ≥ 0 ,

which are guaranteed by (2.2.7), (2.3.28) and (2.3.29). Hence we have proved that

ūt −
1

ρ
∆(ūm)− ūp ≥ 0 in D1 .

Now observe that

ū ∈ C(RN × [0,+∞)) ,

ūm ∈ C1([RN \ {0}]× [0,+∞)) , and by the definition of ū ,

ū ≡ 0 in [RN \D1]× [0,+∞)) .

Hence, by Lemma 1.3.10 (applied with Ω1 = D1, Ω2 = RN \D1, u1 = ū, u2 = 0, u = ū),
ū is a supersolution of equation

ūt −
1

ρ
∆(ūm)− ūp = 0 in (RN \ {0})× (0,+∞)

in the sense of Definition 1.3.9. Since ūmr (0, t) ≤ 0 for any t > 0,

∆[ūm(x, t)] ≤ ρ(x)[ūt(x, t)− ūp(x, t)] for all (x, t) ∈ (RN \ {0})× (0,+∞),

by the same arguments as in the proof of the so-called Kato inequality (see [75, Lemma
A]), it can be easily seen that

∆(ūm) ≤ ρ(ūt − ūp) in D′
(
RN × (0,+∞)

)
(see also [54, proof of Proposition 4.1]. So, ū is a supersolution of equation (2.3.21) in
the sense of Definition 1.3.9.

Remark 2.3.2. Let

p > m

and assumption (2.2.7) be satisfied. Let ω := Cm−1

a . In Theorem 2.2.1 the precise
hypotheses on parameters C > 0, ω > 0, T > 0 are the following:

p−m
p− 1

≥ ω m

m− 1
k2

1

log(r0)
, (2.3.36)

ω
m

m− 1

[
k1(N − 2)− k2

(m− 1) log(r0)

]
≥ Cp−1 +

1

p− 1
. (2.3.37)

Lemma 2.3.3. All the conditions in Remark 2.3.2 can be satisfied simultaneously.
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Proof. Since p > m the left-hand-side of (2.3.36) is positive. In view of (2.2.7), we can
tale ω > 0 such that (2.3.36) holds and

ω
m

m− 1

[
k1(N − 2)− k2

(m− 1) log(r0)

]
>

1

p− 1
.

Then we take C > 0 so small that (2.3.37) holds (and so a > 0 is accordingly fixed).

Proof of Theorem 2.2.1. We prove Theorem 2.2.1 by means of Proposition 2.3.1. In
view of Lemma 2.3.3, we can assume that alla conditions in Remark 2.3.2 are fulfilled.
Set

ζ = (T + t)−α , η = (T + t)−β, for all t > 0 .

Consider conditions (2.3.28), (2.3.29) of Proposition 2.3.1 with this choice of ζ(t) and
η(t). Therefore we obtain

β − Cm−1

a

m

m− 1
k2(T + t)−α(m−1)−β+1 ≥ 0 (2.3.38)

and

−α(T + t)−α−1 +
Cm−1

a

m

m− 1

[
k1(N − 2)− k2

(m− 1) log(r0)

]
(T + t)−αm−β

− Cp−1(T + t)−αp ≥ 0 .

(2.3.39)

We take

α =
1

p− 1
, β =

p−m
p− 1

. (2.3.40)

Due to (2.3.40), (2.3.38) and (2.3.39) become

p−m
p− 1

≥ Cm−1

a

m

m− 1

k2

log(r0)
, (2.3.41)

Cm−1

a

m

m− 1

[
k1(N − 2)− k2

(m− 1) log(r0)

]
≥ Cp−1 +

1

p− 1
. (2.3.42)

Therefore, (2.3.28) and (2.3.29) follow from assumptions (2.3.36) and (2.3.37). Thus
the conclusion follows by Propositions 2.3.1 and 1.3.6.

2.3.2 Order of decaying: q > 2

We assume (H), (2.1.2) and (2.2.16) for q > 2 and (2.2.17). In order to construct a
suitable family of supersolutions of (2.3.21), we define, for all (x, t) ∈ RN × (0,+∞),

ū(x, t) ≡ ū(r(x), t) := Cζ(t)(r + r0)−
b̄
m ; (2.3.43)

where ζ ∈ C1([0,+∞); [0,+∞)) and C > 0, r0 > 0.

Now, we compute

ūt −
1

ρ
∆(ūm)− ūp.
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For any (x, t) ∈
[
RN \ {0}

]
× (0,+∞), we have:

ūt = C ζ ′ (r + r0)−
b
m . (2.3.44)

(ūm)r = − b̄ Cm ζm (r + r0)−b̄−1 . (2.3.45)

(ūm)rr = b̄ (b̄+ 1)Cm ζm (r + r0)−b̄−2 . (2.3.46)

Proposition 2.3.4. Let ζ = ζ(t) ∈ C1[0,+∞); [0,+∞)), ζ ′ ≥ 0. Assume (H), (2.1.2)
and (2.2.16) for q > 2, (2.2.17), and that

b̄k1(N − 2− b̄)Cmζm − c̄ Cpζp > 0 . (2.3.47)

Then ū defined in (2.3.43) is a supersolution of equation (2.3.21).

Proof of Proposition 2.3.4. In view of (2.3.44), (2.3.45), (2.3.46) and the fact that

1

(r + r0)b̄+1r
≥ 1

(r + r0)b̄+2
for any x ∈ RN ,

we get, for any (x, t) ∈ (RN \ {0})× (0,+∞),

ūt −
1

ρ
∆(ūm)− ūp

≥ Cζ ′(r + r0)−
b̄
m +

1

ρ

{
(N − 2− b̄)Cmζmb̄(r + r0)−b̄−2

}
− Cpζp(r + r0)−

b̄p
m .

(2.3.48)

Thanks to hypothesis (2.1.2), (2.2.16) and (2.2.17), we have

(r + r0)−b̄−2

ρ
≥ k1(r + r0)−b̄−2+q = k1 ,

− (r + r0)−
b̄p
m ≥ −c̄

(2.3.49)

Since ζ ′ ≥ 0, from (2.3.48) and (2.3.49) we get

ūt −
ρ

∆(ūm)− ūp ≥ k1b̄(N − 2− b̄)Cmζm − c̄ Cpζp . (2.3.50)

Hence we get the condition

k1b̄(N − 2− b̄)Cmζm − c̄ Cpζp ≥ 0 , (2.3.51)

which is guaranteed by (2.2.16) and (2.3.47). Hence we have proved that

ūt −
1

ρ
∆(ūm)− ūp ≥ 0 in (RN \ {0})× (0,+∞) .

Now observe that
ū ∈ C(RN × [0,+∞)) ,

ūm ∈ C1([RN \ {0}]× [0,+∞)) ,

ūmr (0, t) ≤ 0 .

Hence, thanks to a Kato-type inequality we can infer that ū is a supersolution to equation
(2.3.21) in the sense of Definition 1.3.9.



58 CHAPTER 2. The fast decaying density case

Remark 2.3.5. Let

q > 2

and assumption (2.2.16) be satisfied. In Theorem 2.2.3 the precise hypotheses on para-
meters α, C > 0, T > 0 are as follows.

(a) Let p < m. We require that

α > 0, (2.3.52)

b̄ k1(N − 2− b̄)Cm − c̄ Cp ≥ 0 (2.3.53)

(b) Let p > m. We require that

α = 0, (2.3.54)

b̄ k1(N − 2− b̄)Cm − c̄ Cp ≥ 0 (2.3.55)

Lemma 2.3.6. All the conditions in Remark 2.3.5 can hold simultaneously.

Proof. (a) We observe that, due to (2.2.16),

N − 2− b̄ > 0.

Therefore, we can select C > 0 sufficiently large to guarantee (2.3.53).
(b) We choose C > 0 sufficiently small to guarantee (2.3.55).

Proof of Theorem 2.2.3. We now prove Theorem 2.2.3 in view of Proposition 2.3.4. In
view of Lemma 2.3.6 we can assume that all conditions in Remark 2.3.5 are fulfilled.
Set

ζ(t) = (T + t)α, for all t ≥ 0 .

Let p < m. Inequality (2.3.47) reads

b̄ k1(N − 2− b̄)Cm(T + t)mα − c̄ Cp(T + t)pα ≥ 0 for all t > 0 .

This follows from (2.3.52) and (2.3.53), for T > 1. Hence, by Propositions 2.3.4 and
1.3.5 the thesis follows in this case.

Let p > m. Conditions (2.3.54) and (2.3.55) are equivalent to (2.3.47). Hence, by
Propositions 2.3.4 and 1.3.5 the thesis follows in this case too. The proof is complete.

2.4 Blow-up: proofs

In what follows we set r ≡ |x|. We construct a suitable family of subsolutions of equation

ut =
1

ρ(x)
∆(um) + up in RN × (0, T ). (2.4.56)



2.4. Blow-up: proofs 59

2.4.1 Order of decaying: q = 2

Suppose (H), (2.2.5) and (2.2.11). To construct a suitable family of subsolution of
(2.4.56), we define, for all (x, t) ∈ [RN \Be]× (0, T ),

u(x, t) ≡ u(r(x), t) := Cζ(t)

[
1− log(r)

a
η(t)

] 1
m−1

+

, (2.4.57)

and

w(x, t) ≡ w(r(x), t) :=

{
u(x, t) in [RN \Be]× (0, T ),

v(x, t) in Be × (0, T ),
(2.4.58)

where

v(x, t) ≡ v(r(x), t) := Cζ(t)

[
1− r2 + e2

2e2

η

a

] 1
m−1

+

. (2.4.59)

Let us set

F (r, t) := 1− log(r)

a
η(t) ,

and

G(r, t) := 1− r2 + e2

2e2

η(t)

a
.

For any (x, t) ∈ (RN \Be)× (0, T ), we have:

ut = Cζ ′F
1

m−1 + Cζ
1

m− 1
F

1
m−1

−1

(
− log(r)

a
η′
)

=

= Cζ ′F
1

m−1 + Cζ
1

m− 1

(
1− log(r)

a
η

)
η′

η
F

1
m−1

−1 − Cζ 1

m− 1

η′

η
F

1
m−1

−1 =

= Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1
m−1 − Cζ 1

m− 1

η′

η
F

1
m−1

−1.

(2.4.60)

(um)r = −C
m

a
ζm

m

m− 1
F

1
m−1

1

r
η. (2.4.61)

(um)rr = −Cmζm m

(m− 1)2
F

1
m−1

−1

(
1− log(r)

a
η

)
η

1

r2 log(r)

+
Cm

a
ζm

m

(m− 1)2
F

1
m−1

−1 η

r2 log(r)
+
Cm

a
ζm

m

m− 1
F

1
m−1

1

r2
η =

= −C
m

a
ζm

m

(m− 1)2
F

1
m−1 η

1

r2 log(r)

+
Cm

a
ζm

m

(m− 1)2
F

1
m−1

−1 η

r2 log(r)
+
Cm

a
ζm

m

m− 1
F

1
m−1

1

r2
η.

(2.4.62)
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For any (x, t) ∈ Be × (0, T ), we have:

vt = Cζ ′G
1

m−1 + Cζ
1

m− 1
G

1
m−1

−1

(
−r

2 + e2

2e2

η′

a

)
=

= Cζ ′G
1

m−1 + C
ζ

m− 1

(
1− r2 + e2

2e2

η

a

)
η′

η
G

1
m−1

−1 − Cζ 1

m− 1

η′

η
G

1
m−1

−1 =

= Cζ ′G
1

m−1 + Cζ
1

m− 1

η′

η
G

1
m−1 − Cζ 1

m− 1

η′

η
G

1
m−1

−1 .

(2.4.63)

(vm)r = −C
m

a
ζm

m

m− 1
G

1
m−1

r

e2
η . (2.4.64)

(vm)rr = −Cmζm m

m− 1
G

1
m−1

1

e2

η

a
+
Cm

a2
ζm

m

(m− 1)2
G

1
m−1

−1η2 r
2

e4
. (2.4.65)

We also define

σ(t) := ζ ′ + ζ
1

m− 1

η′

η
+
Cm−1

a
ζm

m

m− 1
ηk2

(
N − 2 +

1

m− 1

)
,

δ(t) := ζ
1

m− 1

η′

η
,

γ(t) := Cp−1ζp,

σ0(t) := ζ ′ +
ζ

m− 1

η′

η
+
N

e2
ρ2
Cm−1

a
ζm

m

m− 1
η ,

K :=

(
m− 1

p+m− 2

)m−1
p−1

−
(

m− 1

p+m− 2

) p+m−2
p−1

> 0.

(2.4.66)

Proposition 2.4.1. Let p > m. Let T ∈ (0,∞), ζ, η ∈ C1([0, T ); [0, T )). Let σ, δ, γ,
σ0, K be defined in (2.4.66). Assume that, for all t ∈ (0, T ),

σ(t) > 0, K[σ(t)]
p+m−2
p−1 ≤ δ(t)γ(t)

m−1
p−1 , (2.4.67)

(m− 1)σ(t) ≤ (p+m− 2)γ(t) . (2.4.68)

σ0(t) > 0, K[σ0](t)
p+m−2
p−1 ≤ δ(t)γ(t)

m−1
p−1 , (2.4.69)

(m− 1)σ0(t) ≤ (p+m− 2)γ(t) . (2.4.70)

Then w defined in (2.4.58) is a subsolution of equation (2.4.56).

Proof of Proposition 2.4.1. Let u be as in (2.4.57) and set

D2 :=
{

(x, t) ∈ (RN \Be)× (0, T ) | 0 < F (r, t) < 1
}
.

In view of (2.4.60), (2.4.61), (2.4.62), we obtain, for all (x, t) ∈ D2,

ut −
1

ρ
∆(um)− up

= Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1
m−1 − Cζ 1

m− 1

η′

η
F

1
m−1

−1

+ F
1

m−1
Cm

a
ζm

m

m− 1
η

1

ρr2

(
1

(m− 1) log(r)
+N − 1

)
− Cm

a
ζm

m

(m− 1)2
F

1
m−1

−1 η

log(r)

1

ρr2

− CpζpF
p

m−1 .
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In view of hypotheses (2.2.5) and (2.2.11), we can infer that

1

ρr2
≤ k2 , − 1

ρr2
≤ −k1 for all x ∈ RN \Be . (2.4.71)

Moreover,

− 1 ≤ − 1

log(r)
≤ 0 ,

1

log(r)
≤ 1 , for all x ∈ RN \Be . (2.4.72)

From (2.4.71) and (2.4.72) we have

ut −
1

ρ
∆(um)− up

≤ CF
1

m−1
−1

{
F

[
ζ ′ + ζ

1

m− 1

η′

η
+
Cm−1

a
ζm

m

m− 1
η k2

×
(
N − 2 +

1

m− 1

)]
−ζ 1

m− 1

η′

η
− Cp−1ζpF

p+m−2
m−1

}
.

(2.4.73)

Thanks to (2.4.66) and (2.4.73)

ut −
1

ρ
∆(um)− up ≤ CF

1
m−1

−1ϕ(F ), (2.4.74)

where
ϕ(F ) := σ(t)F − δ(t)− γ(t)F

p+m−2
m−1 . (2.4.75)

Due to (2.4.74), our goal is to find suitable C > 0, a > 0, ζ, η such that

ϕ(F ) ≤ 0 , for all F ∈ (0, 1) .

To this aim, we impose that

sup
F∈(0,1)

ϕ(F ) = max
F∈(0,1)

ϕ(F ) = ϕ(F0) ≤ 0 ,

for some F0 ∈ (0, 1). We have

dϕ

dF
= 0 ⇐⇒ σ(t)− p+m− 2

m− 1
γ(t)F

p−1
m−1 = 0

⇐⇒ F0 =

[
m− 1

p+m− 2

σ(t)

γ(t)

]m−1
p−1

.

Then,

ϕ(F0) = K
σ(t)

p+m−2
p−1

γ(t)
m−1
p−1

− δ(t)

where the coefficient K = K(m, p) has been defined in (2.4.66). By hypotheses (2.4.67)
and (2.4.68)

ϕ(F0) ≤ 0 , 0 < F0 ≤ 1 . (2.4.76)
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So far, we have proved that

ut −
1

ρ(x)
∆(um)− up ≤ 0 in D2 . (2.4.77)

Furthermore, since um ∈ C1([RN \ Be] × [0, T )), due to Lemma 1.3.10 (applied with
Ω1 = D2,Ω2 = RN \ [Be ∪D2], u1 = u, u2 = 0, u = u), it follows that u is a subsolution
to equation

ut −
1

ρ(x)
∆(um)− up = 0 in [RN \Be]× (0, T ) , (2.4.78)

in the sense of Definition 1.3.9.

Let

D3 := {(x, t) ∈ Be × (0, T ) | 0 < G < 1} .

In view of (2.4.63), (2.4.64) and (2.4.65), for all (x, t) ∈ D3,

vt −
1

ρ(x)
∆(vm)− vp

= CG
1

m−1
−1

{
G

[
ζ ′ +

ζ

m− 1

η′

η
+

1

ρ

Cm−1

a
ζm

m

m− 1

N − 1

e2
η

1

ρ

Cm−1

a
ζm

m

m− 1

1

e2
η

]
+ − ζ

m− 1

η′

η
− 1

ρ

Cm−1

a2
ζm

m

(m− 1)2

r2

e4
η2 − Cp−1ζpG

p+m−2
m−1

}
(2.4.79)

Using (2.2.6), (2.4.79) yield, for all (x, t) ∈ D3,

vt−
1

ρ
∆(vm)− vp

≤ CG
1

m−1
−1

{
G

[
ζ ′ +

ζ

m− 1

η′

η
+ ρ2

Cm−1

a
ζm

m

m− 1

N

e2
η

]
− ζ

m− 1

η′

η
− Cp−1ζpG

p+m−2
m−1

}
.

(2.4.80)

Thanks to (2.3.27) and (2.4.80),

vt −
1

ρ
∆(vm)− vp ≤ CG

1
m−1

−1ψ(G), (2.4.81)

where

ψ(G) := σ0(t)G− δ(t)− γ(t)G
p+m−2
m−1 . (2.4.82)

Now, by the same arguments used to obtain (2.4.78), in view of (2.4.69) and (2.4.70)
we can infer that

ψ(G) ≤ 0 0 < G ≤ 1 .

So far, due to (2.4.81), we have proved that

vt −
1

ρ(x)
∆(vm)− vp ≤ 0 for any (x, t) ∈ D3 . (2.4.83)
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Moreover, by Lemma 1.3.10 v is a subsolution of equation

vt −
1

ρ(x)
∆(vm)− vp = 0 in Be × (0, T ) , (2.4.84)

in the sense of Definition 1.3.9. Now, observe that w ∈ C(RN × [0, T )), indeed,

u = v = Cζ(t)

[
1− η(t)

a

] 1
m−1

+

in ∂Be × (0, T ) .

Moreover, wm ∈ C1(RN × [0, T )), indeed,

(um)r = (vm)r = −Cmζ(t)m
m

m− 1

1

e

η(t)

a

[
1− η(t)

a

] 1
m−1

+

in ∂Be × (0, T ) .

Hence, by Lemma 1.3.10 again, w is a subsolution to equation (2.4.56) in the sense of
Definition 1.3.9.

Remark 2.4.2. Let

p > m ,

and assumptions (2.2.5) and (2.2.11) be satisfied. Let define ω := Cm−1

a . In Theorem
2.2.2, the precise hypotheses on parameters C > 0, a > 0, ω > 0 and T > 0 is the
following.

max

{
1 +mk2

Cm−1

a

(
N − 2 +

1

m− 1

)
; 1 +mρ2

Cm−1

a

N

e2

}
≤ (p+m− 2)Cp−1 ,

(2.4.85)

K

(m− 1)
p+m−2
p−1

max

{[
1 +mk2

Cm−1

a

(
N − 2 +

1

m− 1

)] p+m−2
p−1

;

(
1 +mρ2

Cm−1

a

N

e2

) p+m−2
p−1

}
≤ p−m

(m− 1)(p− 1)
Cm−1 .

(2.4.86)

Lemma 2.4.3. All the conditions in Remark 2.4.2 can hold simultaneously.

Proof. We can take ω > 0 such that

ω0 ≤ ω ≤ ω1

for suitable 0 < ω0 < ω1 and we can choose C > 0 sufficiently large to guarantee (2.4.85)
and (2.4.86) (so, a > 0 is fixed, too).

Proof of Theorem 2.2.2. We now prove Theorem 2.2.2, by means of Proposition 2.4.1.
In view of Lemma 2.4.3 we can assume that all conditions of Remark 2.4.2 are fulfilled.
Set

ζ = (T − t)−α , η = (T − t)−β , for all t > 0 ,
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and α and β as defined in (2.3.40). Then

σ(t) :=

[
1

m− 1
+
Cm−1

a

m

m− 1
k2

(
1

m− 1
+N − 2

)]
(T − t)−

p
p−1 ,

δ(t) :=
p−m

(m− 1)(p− 1)
(T − t)−

p
p−1 ,

γ(t) := Cp−1(T − t)−
p
p−1 ,

σ0(t) :=
1

m− 1

[
1 +

ρ2Nm

e2

Cm−1

a

]
(T − t)−

p
p−1 .

(2.4.87)

Let p > m. Condition (2.4.85) implies (2.4.67), (2.4.68), while condition (2.4.86)
implies (2.4.69), (2.4.70). Moreover, w(x, 0), with w defined in (2.4.58), coincides with
the right hand side of (2.2.13). Hence by Propositions 2.4.1 and 1.3.7 the thesis follows.

2.5 Further results: non-uniqueness for q > 2

In the case when q > 2 we can prove a result of non-uniqueness of the solution to
problem (2.1.1) in the space L∞(RN × (0, T ]).

Proposition 2.5.1. Let hypothesis (H) be satisfied. Let

q > 2.

If there exists a supersolution V > 0 of problem

1

ρ
∆V = −1

lim
|x|→+∞

V (x) = 0 ,
(2.5.88)

then there exist infinitely many solutions u of problem (2.1.1) that belong to L∞(RN ×
(0, T ]), for some T > 0. In particular, for any c > 0, there exists a solution uc of
problem (2.1.1) such that

lim
|x|→+∞

1

T

∫ T

0
umc (x, t) dt = c

To prove Proposition 2.5.1, we introduce the following definitions.

Definition 2.5.2. Let g = {1,−1}. By a solution to the problem

∆V = g ρ(x) in RN (2.5.89)

we mean any function V ∈ C(RN ) such that∫
Ω
V∆ψ dx =

∫
∂Ω
V∇ψ · ν dσ + g

∫
Ω
ρ(x)ψ dx (2.5.90)

for any open bounded set Ω ⊂ RN with regular boundary ∂Ω and for any ψ ∈ C∞(Ω),
ψ ≥ 0 and ψ|∂Ω = 0. Subsolutions (supersolutions) of (2.5.89) are defined replacing
” = ” by ” ≥ ” (respectively ” ≤ ”) in equality (2.5.90).
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Moreover, we shall also consider the following auxiliary problems:
ut =

1

ρ
∆(um) + up in BR × (0, T ]

u = ϕ on ∂BR × (0, T ]

u = u0 on BR × {0},

(2.5.91)

and 
1

ρ
∆V = g in BR

V = χ on ∂BR.
(2.5.92)

Here BR := {x ∈ RN : |x| < R} and the functions ϕ ∈ C(∂BR×(0, T ]) and χ ∈ C(∂BR)
are given functions. Solutions to problems (2.5.91) and (2.5.92) are defined as follows.

Definition 2.5.3. By a solution to the problem (2.5.91) we mean any function u ∈
C(BR × (0, T ]) such that∫ t

0

∫
BR

{ρ uψt + um ∆ψ + ρ up ψ} dx dτ =

∫
BR

ρ(x){u(t)ψ(t)− u0 ψ(0)} dx

+

∫ t

0

∫
∂BR

um∇ψ · ν dσ dτ ,
(2.5.93)

for any t ∈ (0, T ] and any ψ ∈ C∞(BR×(0, T ]), ψ ≥ 0 and ψ = 0 on ∂BR×(0, T ]. Sub-
solutions (supersolutions) of (2.5.91) are defined replacing ” = ” by ” ≥ ” (respectively
” ≤ ”) in equality (2.5.93).

Definition 2.5.4. Let g = {1,−1}. By a solution to the problem (2.5.92) we mean any
function V ∈ C(Ω) such that∫

BR

V∆ψ dx =

∫
∂BR

V∇ψ · ν dσ + g

∫
BR

ρ(x)ψ dx (2.5.94)

for any ψ ∈ C∞(BR), ψ ≥ 0 and ψ = 0 on ∂BR. Subsolutions (supersolutions) of
(2.5.92) are defined replacing ” = ” by ” ≥ ” (respectively ” ≤ ”) in equality (2.5.97).

We now prove the existence of at least one solutions in L∞(RN × (0, T ]) to problem
(2.1.1) when q > 2.

We now prove the following Lemma.

Lemma 2.5.5. Let assumptions (H) and (2.1.2) follow. Then there exists a supersolu-
tion V to the problem

1

ρ
∆V = −1 in RN (2.5.95)

such that

V (x) −→ 0 as |x| → +∞.
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Proof of Lemma 2.5.5. Let us consider

V = (r0 + |x|)−b, in RN \ {0},

where
0 < b < min{N − 2 , q − 2},
r0 ≥ [b (N − 2− b)]q−2−b .

(2.5.96)

Then, thanks to (2.1.2) and (2.5.96),

1

ρ
∆V =

1

ρ
[Vrr +

(N − 1)

|x|
Vr]

=
1

ρ

[
(b2 + b)(r0 + |x|)−b−2 − (N − 1)

|x|
b (r0 + |x|)−b−1

]
≤ k2 (r0 + |x|)q

[
(b2 + b−Nb+ b)(r0 + |x|)−b−2

]
≤ −k2 b (N − 2− b)(r0 + |x|)q−2−b

≤ −1, in RN \ {0}.

Hence V is a supersolution to (2.5.95) in RN \ {0}, for any x ∈ RN \ {0}. Thanks to
a Kato-type inequality, since Vr ≤ 0, we can easily infer that V is a supersolution of
equation (2.5.95) , in the sense of Definition 2.5.4. Moreover,

lim
|x|→∞

V (x) = 0,

and
V > 0.

Finally we can say that
0 = inf

RN
V = lim

|x|→∞
V,

that corresponds to the desired hypotheses of Proposition 2.5.1.

We can finally prove Proposition 2.5.1.

Proof of Proposition 2.5.1. For any fixed c > 0, consider the problem{
ut = up in (0, T ]

u(0) = ω
(2.5.97)

such that ω ≥ max{||u0||∞, c
1
m 2

1
p−1 }. Then the solution is

u(t) =
ω

[1− (p− 1) t ωp−1]1/(p−1)
(≥ 0).

Take any 0 < T ≤ 1
2(p−1)ωp−1 . Let {uR,c} be the solution to

ρut = ∆(um) + ρup in BR × (0, T ]

u = c
1
m on ∂BR × (0, T ]

u = u0 in BR × {0}.
(2.5.98)
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Then, thanks to the comparison principle,

uR,c ≤ u,

and in particular,
uR,c ≤ u(T ) =: k in BR × (0, T ].

Moreover, û ≡ 0 is a subsolution to problem (2.5.98). Therefore

uR,c ≥ 0 in BR × (0, T ].

Thus we can say that
0 ≤ uR,c ≤ k in BR × (0, T ].

Thanks to compactness argument, we can extract a subsequence {uRl,c} where Rl → 0
as l → +∞ that converges to uc, uc being a solution to problem (2.1.1) in the sense of
Definition 1.3.1. Finally, it is still true that

0 ≤ u ≤ k in RN × (0, T ]. (2.5.99)

It remains to show that

lim
|x|→∞

1

T

∫ T

0
umc (x, T ) dx = c.

Define,

vRl,c :=

∫ T

0
umRl,c(x, t) dt x ∈ BR. (2.5.100)

For any ψ as in Definition 2.5.3, choosing ψ = ψ(x) in equality (2.5.93), we easily obtain∫
BRl

vRl∆ψ dx =

∫
BRl

ρ [uRl,c(x, T )− u0(x)]ψ dx−
∫
BRl

ρ

[∫ T

0
upRl,c dt

]
ψ dx

+

∫
∂BRl

c T ∇ψ · ν dσ

Moreover, observe that, thanks to (2.5.99)

|uRl,c(x, T )|+ |u0(x)|+
∫ T

0

∣∣∣upRl,c∣∣∣ dt ≤ 2 k + T kp := M. (2.5.101)

Thus, ∫
BRl

vRl,c∆ψ dx ≥
∫
∂BRl

vRl,c∇ψ · ν dσ −M
∫
BRl

ρψ dx (2.5.102)

Inequality (2.5.102) shows that, for any integer l, the function

F1,l :=
vRl,c
M

, (2.5.103)

is a subsolution of problem (2.5.92) for

g = −1, χ :=
c T

M
.
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Similarly, from Lemma 2.5.5, we have∫
BRl

V∆ψ dx ≤
∫
∂BRl

V∇ψ · ν dσ −
∫
BRl

ρψ dx (2.5.104)

where we have used that V ≥ 0 . We now consider the constant solution W = c of the
problem −

1

ρ
∆W = 0 in BR

W = c on ∂BR.

Then, for any ψ ∈ C∞(BR), ψ ≥ 0 and ψ = 0 on ∂BR, it follows that∫
BR

W∆ψ dx =

∫
∂BR

W∇ψ · ν dσ. (2.5.105)

We multiply (2.5.105) by
T

M
and we sum the result together with (2.5.104). Using the

definition of W we get,∫
BRl

(
V +

c T

M
∆ψ

)
dx ≤

∫
∂BRl

(
V +

c T

M
∇ψ · ν

)
dσ −

∫
BRl

ρψ dx. (2.5.106)

Defining,

F2,l := V +
c T

M
, (2.5.107)

inequality (2.5.106) becomes,∫
BRl

F2,l∆ψ dx ≤
∫
∂BRl

F2,l∇ψ · ν dσ −
∫
BRl

ρψ dx. (2.5.108)

This proves that F2,l is a supersolution to problem (2.5.92). By comparison results, it
follows that

F1,l ≤ F2,l.

Hence

vRl,c = M F1,l ≤M F2,l = M

[
V +

c T

M

]
= M V + c T in BRl .

Letting l −→∞ we obtain,

vc ≤M V + c T in RN , (2.5.109)

where
uc := lim

l→∞
uRl,c in RN × (0, T ],

vc :=

∫ T

0
umc (x, t) dt = lim

l→∞
vRl,c for x ∈ RN .

(2.5.110)

On the other hand, thanks to (2.5.99),∫
BRl

vRl,c∆ψ dx ≤
∫
∂BRl

vRl,c∇ψ · ν dσ +M

∫
BRl

ρψ dx (2.5.111)
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Inequality (2.5.111) shows that, for any integer l, the function F1,l defined in (2.5.103),
is a supersolution of problem (2.5.92) for

g = 1, χ :=
c T

M
.

Similarly, from Lemma 2.5.5, we have∫
BRl

(−V∆ψ) dx ≥
∫
∂BRl

(−V∇ψ · ν) dσ +

∫
BRl

ρψ dx, (2.5.112)

where we have used that V ≥ 0. We now consider the constant solution W = c as

defined in (2.5.105). Then, we multiply (2.5.105) by
T

M
and we sum the result together

with (2.5.112). Using the definition of W we get,∫
BRl

(
−V +

c T

M
∆ψ

)
dx ≥

∫
∂BRl

(
−V +

c T

M
∇ψ · ν

)
dσ +

∫
Ω
ρψ dx. (2.5.113)

Defining

F3,l := −V +
c T

M
, (2.5.114)

inequality (2.5.113) becomes∫
BRl

F3,l∆ψ dx ≥
∫
∂BR

c T

M
∇ψ · ν dσ +

∫
BRl

ρψ dx. (2.5.115)

This proves that F3,l is a subsolution to problem (2.5.92) with the choice

g = 1, χ :=
c T

M
.

By comparison results, it follows that

F1,l ≥ F3,l,

hence

vRl,c = M F1,l ≥M F3,l = M

[
−V +

c T

M

]
= −M V + c T in BRl .

Letting l −→∞ we obtain,

vc ≥ −M V + c T in RN . (2.5.116)

Combining (2.5.109) and (2.5.116), thanks to the property of V showed in Lemma 2.5.5,
we obtain

c T = lim
|x|→+∞

(−M V + c T ) ≤ lim
|x|→+∞

vc(x) ≤ lim
|x|→+∞

(M V + c T ) = c T. (2.5.117)

Thus
lim

|x|→+∞
vc(x) = c T, (2.5.118)

Recalling the definition of vc and uc in (2.5.110), the thesis follows.
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Chapter 3

The logarithmic decaying density
case

3.1 Introduction

We are concerned with global existence and blow-up of nonnegative solutions to the
Cauchy parabolic problem{

ρ(x)ut = ∆(um) + ρ(x)up in RN × (0, τ)

u = u0 in RN × {0} ,
(3.1.1)

where m > 1, p > 1, N ≥ 3, τ > 0. Furthermore, we always assume that{
(i) u0 ∈ L∞(RN ), u0 ≥ 0 in RN ;

(ii) ρ ∈ C(RN ), ρ > 0 in RN ;
(3.1.2)

the function ρ = ρ(x) is usually referred to as a variable density.

The differential equation in problem (3.1.1), posed in (−1, 1) with homogeneous
Dirichlet boundary conditions, has been introduced in [73] as a mathematical model of
a thermal evolution of a heated plasma.

We refer the reader to [92, Introduction], [93, Introduction] for a comprehensive
account of the literature concerning various problems related to (3.1.1). Here we limit
ourselves to recall only some contribution of that literature. Problem (3.1.1) without
the reaction term has been widely examined, e.g., in [25, 27, 49, 51, 50, 66, 67, 68, 69, 70,
71, 72, 108, 106, 107, 109, 115]. Furthermore, global existence and blow-up of solutions
of problem (3.1.1) with m = 1 and ρ ≡ 1 have been studied, e.g., in [31, 58]). If

p ≤ 1 +
2

N
,

then finite time blow-up occurs, for all nontrivial nonnegative data, whereas, for

p > 1 +
2

N
,

71
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global existence prevails for sufficiently small initial conditions. In addition, in [85] (see
also [21]), problem (3.1.1) with m = 1 has been considered.

Similar results for quasilinear parabolic equations, also involving p-Laplace type
operators or double-nonlinear operators, have been stated in [60], [86], [87], [88], [104],
[132] (see also [46] and [89] for the case of Riemannian manifolds); moreover, in [54] the
same problem on Cartan-Hadamard manifolds has been investigated.

Global existence and blow-up of solutions for problem (3.1.1) with ρ satisfying

1

k1|x|q
≤ ρ(x) ≤ 1

k2|x|q
for all |x| > 1 (3.1.3)

have been investigated in [92] for q ∈ [0, 2), and in [93] for q ≥ 2. In [92], for q ∈ [0, 2),
the following results have been established.

• ([92, Theorem 2.1]) If p > p, for a certain p = p(k1, k2, q,m,N) > m and the
initial datum is sufficiently small, then solutions exist globally in time. Observe
that

p = m+
2− q
N − q

when k1 = k2.

• ([92, Theorem 2.4]) For any p > 1, for all sufficiently large initial data, solutions
blow-up in finite time.

• ([92, Theorem 2.6]) For 1 < p < m, for any non trivial initial data, solutions
blow-ip in finite time.

• ([92, Theorem 2.7]) If m < p < p, for a certain p = p(k1, k2, q,m,N) ≤ p, then, for
any non trivial initial data, solutions blow-up in finite time, under specific extra
assumptions on ρ.

Such results extend those stated in [119] for problem (3.1.1) with ρ ≡ 1, m > 1, p > 1
(see also [36]).

Furthermore, assume that (3.1.3) holds with q ≥ 2. In [93] the following results have
been showed.

• ([93, Theorem 2.1]) If q = 2 and p > m, then, for sufficiently small initial data,
solutions exist globally in time.

• ([93, Theorem 2.2]) If q = 2 and p > m, then, for sufficiently large initial data,
solutions blow-up in finite time.

• ([93, Theorem 2.3]) If q > 2, then, for any p > 1, for sufficiently small initial data,
solutions exist globally in time.

Finally, in [46], (3.1.1) is addressed, when p < m. It is assumed that (3.1.2) is
satisfied, and that the weighted Poincaré inequality with weight ρ holds. Moreover, in
view of the assumption on ρ also the weighted Sobolev inequality is fulfilled. By using
such functional inequalities, it is showed that global existence for Lm data occurs, as
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well as a smoothing effect for the solution, i.e. solutions corresponding to such data are
bounded for any positive time. In addition, a quantitative bound on the L∞ norm of
the solution is given.

In what follows, we always consider two types of density functions ρ. To be more
specific, we always make one of the following two assumptions:

there exist k ∈ (0,+∞) and α > 1 such that

1

ρ(x)
≥ k (log |x|)α |x|2 for all x ∈ RN \Be(0) ;

(H1)

there exist k1, k2 ∈ (0,+∞) with k1 ≤ k2 and α > 1 such that

k1
|x|2

(log |x|)α
≤ 1

ρ(x)
≤ k2

|x|2

(log |x|)α
for all x ∈ RN \Be(0) .

(H2)

Assume (H1). For 1 < p < m and for suitable initial data u0 ∈ L∞(RN ), we show
the existence of global solutions belonging to L∞(RN × (0, τ)) for each τ > 0. Indeed, in
this case, the global existence follows from the results in [46] for u0 ∈ Lmρ (RN ). However,

now we consider a different class of initial data u0. In fact, u0 ∈ L∞(RN ) and satisfies
a decaying condition as |x| → +∞; however, u0 not necessarily belongs to Lmρ (RN ).

On the other hand, for p > m > 1, if u0 satisfies a suitable decaying condition as
|x| → +∞, then problem (3.1.1) admits a solution in L∞(RN × (0,+∞)).

Now, assume (H2). For any p > m, if u0 is sufficiently large, then the solutions to
problem (3.1.1) blow-up in finite time. Moreover, if p > m, u0 has compact support
and is small enough, then, under suitable assumptions on k1 and k2, there exist global
in time solutions to problem (3.1.1), which belong to L∞(RN × (0,+∞)).

The proofs mainly relies on suitable comparison principles and properly constructed
sub- and supersolutions, which crucially depend on the behavior at infinity of the density
function ρ(x). More precisely, they are of the type

w(x, t) = Cζ(t)

[
1− (log(|x|+ r0))q

a
η(t)

] 1
m−1

+

for any (x, t) ∈
[
RN \Be(0)

]
× [0, T ),

(3.1.4)
for suitable functions ζ = ζ(t), η = η(t) and constants C > 0, a > 0, r0 > 0 and q > 1.
Chapter 3 is organized as follows. In Section 3.2 we state our main results. In Section
3.3 we prove Theorem 3.2.1. The blow-up result (that is, Theorem 3.2.2) is proved in
Section 3.4. Finally, in Section 3.5 Theorem 3.2.3 is proved .

3.2 Statements of the main results

For any x0 ∈ RN and R > 0 we set

BR(x0) = {x ∈ RN : ‖x− x0‖ < R}. (3.2.5)

When x0 = 0, we write BR ≡ BR(0).
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3.2.1 Density ρ satisfying (H1)

The first result concerns the global existence of solutions to problem (3.1.1) for any
p > 1 and m > 1, p 6= m. We introduce the parameter b ∈ R such that

0 < b < α− 1. (3.2.6)

Moreover, since N ≥ 3, we can choose ε > 0 so that

N − 2− ε(b+ 1) > 0, (3.2.7)

and r0 > e so that
1

log(|x|+ r0)
< ε for any x ∈ RN . (3.2.8)

Finally, we can find c̄ > 0 such that

[log(|x|+ r0)]−
b̄p
m ≤ c̄ for any x ∈ RN . (3.2.9)

Observe that, thanks to (3.1.2)-(i) and (H1), we can say that there exists k0 > 0 such
that

1

ρ(x)
≥ k0 [log(|x|+ r0)]α (|x|+ r0)2 for any x ∈ RN . (3.2.10)

Theorem 3.2.1. Let assumptions (3.1.2), (H1), (3.2.6), (3.2.7) and (3.2.8) be satisfied.
Suppose that

1 < p < m , or p > m > 1 ,

and that u0 is small enough. Then problem (3.1.1) admits a global solution u ∈ L∞(RN×
(0, τ)) for any τ > 0. More precisely, we have the following cases.

(a) Let 1 < p < m. If C > 0 is big enough, T > 1, β > 0,

u0(x) ≤ CT β (log(|x|+ r0))−
b
m for any x ∈ RN , (3.2.11)

then problem (3.1.1) admits a global solution u, which satisfies the bound from
above

u(x, t) ≤ C(T + t)β (log(|x|+ r0))−
b
m for any (x, t) ∈ RN × (0,+∞) . (3.2.12)

(b) Let p > m > 1. If C > 0 is small enough, T > 0 and (3.2.11) holds with
β = 0, then problem (3.1.1) admits a global solution u ∈ L∞(RN × (0,+∞)),
which satisfies the bound from above (3.2.12) with β = 0.

3.2.2 Density ρ satisfying (H2)

The next result concerns the blow-up of solutions in finite time, for every p > m > 1,
provided that the initial datum is sufficiently large. We assume that hypotheses (3.1.2)
and (H2) hold. In view of (3.1.2)-(i), there exist ρ1, ρ2 ∈ (0,+∞) with ρ1 ≤ ρ2 such
that

ρ1 ≤
1

ρ(x)
≤ ρ2 for all x ∈ Be(0). (3.2.13)
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Let
b := α+ 1, (3.2.14)

and

s(x) :=


(log |x|)b if x ∈ RN \Be,

b |x|2

2e2
+ 1− b

2
if x ∈ Be .

Theorem 3.2.2. Let assumptions (3.1.2), (H2), (3.2.13) and (3.2.14) hold. For any

p > m

and for any T > 0, if the initial datum u0 is large enough, then the solution u of problem
(3.1.1) blows-up in a finite time S ∈ (0, T ], in the sense that

‖u(t)‖∞ →∞ as t→ S− . (3.2.15)

More precisely, if C > 0 and a > 0 are large enough, T > 0,

u0(x) ≥ CT−
1
p−1

[
1− s(x)

a
T
m−p
p−1

] 1
m−1

+

for any x ∈ RN , (3.2.16)

then the solution u of problem (3.1.1) blows-up and satisfies the bound from below

u(x, t) ≥ C(T − t)−
1
p−1

[
1− s(x)

a
(T − t)

m−p
p−1

] 1
m−1

+

for any (x, t) ∈ RN × (0, S) .

(3.2.17)

Observe that if u0 satisfies (3.2.16), then

suppu0 ⊇ {x ∈ RN : s(x) < aT
p−m
p−1 } .

From (3.2.17) we can infer that

suppu(·, t) ⊇ {x ∈ RN : s(x) < a(T − t)
p−m
p−1 } for all t ∈ [0, S) . (3.2.18)

The choice of the parameters C > 0, T > 0 and a > 0 is discussed in Remark 3.4.2.

The next result concerns the global existence of solutions to problem (3.1.1) for
p > m. We assume that ρ satisfies a stronger condition than (H2). Indeed, we suppose
that

k1
(|x|+ r0)2

(log(|x|+ r0))α
≤ 1

ρ(x)
≤ k2

(|x|+ r0)2

(log(|x|+ r0))α
for all x ∈ RN , (3.2.19)

where

r0 > e,
k2

k1
< m+ (N − 3)

(
m− 1

b

)
, (3.2.20)

and
b := α+ 2. (3.2.21)
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Theorem 3.2.3. Assume (3.1.2), (3.2.19), (3.2.20) and (3.2.21). Suppose that

p > m ,

and that u0 is small enough and has compact support. Then problem (3.1.1) admits a
global solution u ∈ L∞(RN × (0,+∞)).
More precisely, if C > 0 is small enough, a > 0 is so that

0 < ω0 ≤
Cm−1

a
≤ ω1

for suitable 0 < ω0 < ω1, T > 0,

u0(x) ≤ CT−
1
p−1

[
1− (log(|x|+ r0))b

a
T
− p−m
p−1

] 1
m−1

+

for any x ∈ RN , (3.2.22)

then problem (3.1.1) admits a global solution u ∈ L∞(RN × (0,+∞)). Moreover,

u(x, t) ≤ C(T + t)
− 1
p−1

[
1− (log(|x|+ r0))b

a
(T + t)

− p−m
p−1

] 1
m−1

+

(3.2.23)

for any (x, t) ∈ RN × (0,+∞).

Observe that if u0 satisfies (3.2.22), then

suppu0 ⊆ {x ∈ RN : (log(|x|+ r0))b ≤ aT
p−m
p−1 } .

From (3.2.23) we can infer that

suppu(·, t) ⊆ {x ∈ RN : (log(|x|+ r0))b ≤ a(T + t)
p−m
p−1 } for all t > 0 . (3.2.24)

The choice of the parameters C > 0, T > 0 and a > 0 is discussed in Remark 3.5.2.

3.3 Proof of Theorem 3.2.1

In what follows, we deal with very weak solutions to problem (3.1.1) and to the same
problem set in different domains (see Section 1.3).

In what follows we set r ≡ |x|. We assume (3.1.2), (H1), (3.2.6) and (3.2.7). We
want to construct a suitable family of supersolutions of equation

ut =
1

ρ(x)
∆(um) + up in RN × (0,+∞). (3.3.25)

In order to do this, we define, for all (x, t) ∈ RN × (0,+∞),

ū(x, t) ≡ ū(r(x), t) := Cζ(t) (log(r + r0))−
b
m ; (3.3.26)
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where ζ ∈ C1([0,+∞); [0,+∞)), C > 0 and r0 > e such that (3.2.8) is verified.

Now, we compute

ūt −
1

ρ
∆(ūm)− ūp.

For any (x, t) ∈
[
RN \ {0}

]
× (0,+∞), we have:

ūt = C ζ ′ (log(r + r0))−
b
m . (3.3.27)

(ūm)r = − bCm ζm (log(r + r0))−b−1

r + r0
. (3.3.28)

(ūm)rr = bCm ζm

{
(b+ 1)

(log(r + r0))−b−2

(r + r0)2
+

(log(r + r0))−b−1

(r + r0)2

}
. (3.3.29)

Proposition 3.3.1. Let ζ ∈ C1([0,+∞); [0,+∞)), ζ ′ ≥ 0. Assume (3.1.2), (H1),
(3.2.6), (3.2.7), (3.2.8), (3.2.9), (3.2.10) and that

k0b(N − 2− ε(b+ 1))Cmζm − c̄ Cpζp ≥ 0. (3.3.30)

Then ū defined in (3.3.26) is a supersolution of equation (3.3.25).

Proof of Proposition 3.3.1. In view of (3.3.27), (3.3.28), (3.3.29), (3.2.7) and (3.2.8), for
any (x, t) ∈ (RN \ {0})× (0,+∞),

ūt −
1

ρ
∆(ūm)− ūp

≥ Cζ ′ (log(r + r0))−
b
m +

1

ρ
{N − 2− ε(b+ 1)}Cmζmb(log(r + r0))−b−1

(r + r0)2

− Cpζp (log(r + r0))−
bp
m .

(3.3.31)

Thanks to hypotheses (3.2.6), (3.2.9) and (3.2.10), we have

1

ρ

(log(r + r0))−b̄−1

(r + r0)2
≥ k0

(log(r + r0))α−b̄−1

(r + r0)2
(r + r0)2 ≥ k0 ,

− (log(r + r0))−
bp
m ≥ −c̄ .

(3.3.32)

Since ζ ′ ≥ 0, from (3.3.32) we get

ūt −
1

ρ
∆(ūm)− ūp ≥ k0 b(N − 2− ε(b+ 1))Cmζm − c̄ Cpζp . (3.3.33)

Hence (3.3.33) is nonnegative if

k0 b(N − 2− ε(b+ 1))Cmζm − c̄ Cpζp ≥ 0 , (3.3.34)

which is guaranteed by (3.2.7) and (3.3.30). So, we have proved that

ūt −
1

ρ
∆(ūm)− ūp ≥ 0 in (RN \ {0})× (0,+∞) .
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Now observe that

ū ∈ C(RN × [0,+∞)) ,

ūm ∈ C1([RN \ {0}]× [0,+∞)) ,

ūmr (0, t) ≤ 0 .

Hence, thanks to a Kato-type inequality we can infer that ū is a supersolution to equation
(3.3.25) in the sense of Definition 1.3.9.

Remark 3.3.2. Let assumption (H1) be satisfied. In Theorem 3.2.1 the precise hypo-
theses on parameters β, C > 0, T > 0 are as follows.

(a) Let p < m. We require that

β > 0, (3.3.35)

k0 b(N − 2− ε(b+ 1))Cm − c̄ Cp ≥ 0 . (3.3.36)

(b) Let p > m. We require that

β = 0, (3.3.37)

k0 b(N − 2− ε(b+ 1))Cm − c̄ Cp ≥ 0 . (3.3.38)

Lemma 3.3.3. All the conditions in Remark 3.3.2 can hold simultaneously.

Proof. (a) We observe that, due to (3.2.7),

N − 2− ε(b+ 1) > 0.

Therefore, we can select C > 0 sufficiently large to guarantee (3.3.36).
(b) We choose C > 0 sufficiently small to guarantee (3.3.38).

Proof of Theorem 3.2.1. We now prove Theorem 3.2.1 in view of Proposition 3.3.1. In
view of Lemma 3.3.3 we can assume that all conditions in Remark 3.3.2 are fulfilled.
Set

ζ(t) = (T + t)β, for all t ≥ 0 .

Let p < m. Inequality (3.3.30) reads

k0 b(N − 2− ε(b+ 1))Cm(T + t)mβ − c̄ Cp(T + t)pβ ≥ 0 for all t > 0 .

This follows from (3.3.35) and (3.3.36), for T > 1. Hence, by Propositions 3.3.1 and
1.3.5 the thesis follows in this case.

Let p > m. Conditions (3.3.37) and (3.3.38) are equivalent to (3.3.30). Hence, by
Propositions 3.3.1 and 1.3.5 the thesis follows in this case too. The proof is complete.
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3.4 Proof of Theorem 3.2.2

We construct a suitable family of subsolutions of equation

ut =
1

ρ(x)
∆(um) + up in RN × (0, T ). (3.4.39)

We assume (3.1.2) and (H2). Let

w(x, t) ≡ w(r(x), t) :=

{
u(x, t) in [RN \Be(0)]× [0, T ),

v(x, t) in Be(0)× [0, T ),
(3.4.40)

where

u(x, t) ≡ u(r(x), t) := Cζ(t)

[
1− (log r)b

a
η(t)

] 1
m−1

+

(3.4.41)

and

v(x, t) ≡ v(r(x), t) := Cζ(t)

[
1−

(
br2

2e2
+ 1− b

2

)
η

a

] 1
m−1

+

. (3.4.42)

Let

F (r, t) := 1− (log r)b

a
η(t) ,

and

G(r, t) := 1−
(
br2

2e2
+ 1− b

2

)
η

a
.

Observe that for any (x, t) ∈ [RN \Be(0)]× (0, T ), we have:

ut = Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1
m−1 − Cζ 1

m− 1

η′

η
F

1
m−1

−1. (3.4.43)

(um)r = −b C
m

a
ζm

m

m− 1
F

1
m−1

(log r)b−1

r
η; (3.4.44)

(um)rr = −b C
m

a
ζm

m

m− 1
η

{
F

1
m−1

[
(b− 1)

(log r)b−2

r2
− (log r)b−1

r2

]

+
b

m− 1

(log r)b−2

r2

(
1− (log r)b

η

a

)
F

1
m−1

−1

− b

m− 1

(log r)b−2

r2
F

1
m−1

−1

}

= −b2C
m

a

(
m

m− 1

)2

ζmη
(log r)b−2

r2
F

1
m−1

+ b
Cm

a

m

m− 1
ζmη

(log r)b−2

r2
F

1
m−1

+ b
Cm

a

m

m− 1
ζmη

(log r)b−1

r2
F

1
m−1

+ b2
Cm

a

m

(m− 1)2
ζmη

(log r)b−2

r2
F

1
m−1

−1 .

(3.4.45)
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∆(um) =
Cm

a
ζmη

m

(m− 1)2
b2

(log r)b−2

r2
F

1
m−1

−1

− Cm

a
ζmη

(
m

m− 1

)2

b2
(log r)b−2

r2
F

1
m−1

+
Cm

a
ζmη

m

m− 1
b

(log r)b−2

r2
F

1
m−1

− Cm

a
ζmη

m

m− 1
b

(log r)b−1

r2
F

1
m−1 (N − 2)

(3.4.46)

Observe that for any (x, t) ∈ Be(0)× (0, T ), we have:

vt = Cζ ′G
1

m−1 + Cζ
1

m− 1

η′

η
G

1
m−1 − Cζ 1

m− 1

η′

η
G

1
m−1

−1, (3.4.47)

(vm)r = −C
m

a
ζm

m

m− 1
G

1
m−1

br

e2
η , (3.4.48)

(vm)rr = −C
m

a
ζm

m

m− 1

b

e2
η

[
G

1
m−1 − r

m− 1
G

1
m−1

−1 η

a

br

e2

]
. (3.4.49)

∆(vm) = −C
m

a
ζm

m

m− 1

b

e2
ηG

1
m−1 +

Cm

a2
ζm

m

(m− 1)2

b2 r2

e4
η2G

1
m−1

−1

− (N − 1)
Cm

a
ζm

m

m− 1

b

e2
ηG

1
m−1

=
Cm

a2
ζm

m

(m− 1)2

b2 r2

e4
η2G

1
m−1

−1 −N Cm

a
ζm

m

m− 1

b

e2
ηG

1
m−1

(3.4.50)

We also define

σ(t) := ζ ′ +
ζ

m− 1

η′

η
+
Cm−1

a
ζm

m

m− 1
η k2

(
b

m

m− 1
+N − 2

)
,

δ(t) :=
ζ

m− 1

η′

η

γ(t) := Cp−1ζp,

σ0(t) := ζ ′ +
ζ

m− 1

η′

η
+ ρ2N

b

e2

Cm−1

a
ζm

m

m− 1
η ,

K :=

(
m− 1

p+m− 2

)m−1
p−1

−
(

m− 1

p+m− 2

) p+m−2
p−1

> 0.

(3.4.51)

Proposition 3.4.1. Let T ∈ (0,∞), ζ, η ∈ C1([0, T ); [0,+∞)). Let σ, δ, γ, σ0,K be
defined in (3.4.51). Assume that, for all t ∈ (0, T ),

σ(t) > 0, K[σ(t)]
p+m−2
p−1 ≤ δ(t)γ(t)

m−1
p−1 , (3.4.52)

(m− 1)σ(t) ≤ (p+m− 2)γ(t) . (3.4.53)

σ0(t) > 0, K[σ0](t)
p+m−2
p−1 ≤ δ(t)γ(t)

m−1
p−1 , (3.4.54)

(m− 1)σ0(t) ≤ (p+m− 2)γ(t) . (3.4.55)

Then w defined in (3.4.40) is a subsolution of equation (3.4.39).
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Proof of Proposition 3.4.1. In view of (3.4.43), (3.4.44), (3.4.45) and (3.4.46) we obtain

ut −
1

ρ
∆(um)− up

= Cζ ′F
1

m−1 + C
ζ

m− 1

η′

η
F

1
m−1 − C ζ

m− 1

η′

η
F

1
m−1

−1

− 1

ρ

{
Cm

a
ζm

m

(m− 1)2
b2 η

(log r)b−2

r2
F

1
m−1

−1 +
Cm

a
ζm
(

m

m− 1

)2

b η
(log r)b−2

r2
F

1
m−1

−C
m

a
ζm

m

m− 1
b η

(log r)b−2

r2
F

1
m−1 +

Cm

a
ζm

m

m− 1
b η

(log r)b−1

r2
F

1
m−1 (N − 2)

}
− CpζpF

p
m−1 , for all (x, t) ∈ D1 .

(3.4.56)
In view of (H2) and (3.2.14), we can infer that

− 1

ρ

(log r)b−2

r2
≤ − k1

log r
≤ −k1, for all x ∈ RN \Be(0) , (3.4.57)

1

ρ

(log r)b−2

r2
≤ k2

log r
≤ k2, for all x ∈ RN \Be(0) , (3.4.58)

1

ρ

(log r)b−1

r2
≤ k2, for all x ∈ RN \Be(0) . (3.4.59)

From (3.4.56), (3.4.57), (3.4.58) and (3.4.59) we have

ut −
1

ρ
∆(um)− up

≤ CF
1

m−1
−1

{
F

[
ζ ′ +

ζ

m− 1

η′

η
+
Cm−1

a
ζm

m

m− 1
b ηk2

(
N − 2 + b

m

m− 1

)]
− ζ

m− 1

η′

η
− Cp−1ζpF

p+m−2
m−1

}
.

(3.4.60)
Thanks to (3.4.51), (3.4.60) becomes

ut −
1

ρ
∆(um)− up ≤ CF

1
m−1

−1ϕ(F ), (3.4.61)

where, for each t ∈ (0, T ),

ϕ(F ) := σ(t)F − δ(t)− γ(t)F
p+m−2
m−1 .

Our goal is to find suitable C, a, ζ, η such that, for each t ∈ (0, T ),

ϕ(F ) ≤ 0 for any F ∈ (0, 1) .

To this aim, we impose that

sup
F∈(0,1)

ϕ(F ) = max
F∈(0,1)

ϕ(F ) = ϕ(F0) ≤ 0 ,
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for some F0 ∈ (0, 1). We have

dϕ

dF
= 0 ⇐⇒ σ(t)− p+m− 2

m− 1
γ(t)F

p−1
m−1 = 0

⇐⇒ F = F0 =

[
m− 1

p+m− 2

σ(t)

γ(t)

]m−1
p−1

.

Then

ϕ(F0) = K
σ(t)

p+m−2
p−1

γ(t)
m−1
p−1

− δ(t) ,

where the coefficient K depending on m and p has been defined in (3.4.51). By (3.4.52)
and (3.4.53), for each t ∈ (0, T ),

ϕ(F0) ≤ 0 , F0 ≤ 1 . (3.4.62)

So far, we have proved that

ut −
1

ρ(x)
∆(um)− up ≤ 0 in D1. (3.4.63)

Furthermore, since um ∈ C1([RN \Be(0)]× (0, T )), due to Lemma 1.3.10 (applied with
Ω1 = D1,Ω2 = RN \[Be(0)∪D1], u1 = u, u2 = 0, u = u), it follows that u is a subsolution
to equation

ut −
1

ρ(x)
∆(um)− up = 0 in [RN \Be(0)]× (0, T ),

in the sense of Definition 1.3.9.
Let

D2 := {(x, t) ∈ Be(0)× (0, T ) : 0 < G(r, t) < 1} .

Using (3.2.13), (3.4.39) yields, for all (x, t) ∈ D2,

vt −
1

ρ
∆(vm)− vp

≤ CG
1

m−1
−1
{
G

[
ζ ′ +

ζ

m− 1

η′

η
+N ρ2

b

e2

Cm−1

a
ζm

m

m− 1
η

]
− ζ

m− 1

η′

η
− Cp−1ζpG

p+m−2
m−1

}
= CG

1
m−1

−1
[
σ0(t)G− δ(t)− γ(t)G

p+m−2
m−1

]
.

(3.4.64)

Now, by the same arguments used to obtain (3.4.63), in view of (3.4.55) and (3.4.56)
we can infer that

vt −
1

ρ
∆vm ≤ vp for any (x, t) ∈ D2 . (3.4.65)

Moreover, since vm ∈ C1(Be(0)× (0, T )), in view of Lemma 1.3.10 (applied with Ω1 =
D2,Ω2 = Be(0) \D2, u1 = v, u2 = 0, u = v), we get that v is a subsolution to equation

vt −
1

ρ
∆vm = vp in Be(0)× (0, T ) , (3.4.66)
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in the sense of Definition 1.3.9. Now, observe that w ∈ C(RN × [0, T )); indeed,

u = v = Cζ(t)

[
1− η(t)

a

] 1
m−1

+

in ∂Be(0)× (0, T ) .

Moreover, wm ∈ C1(RN × [0, T )); indeed,

(um)r = (vm)r = −Cmζ(t)m
m

m− 1

η(t)

a

b

e

[
1− η(t)

a

] 1
m−1

+

in ∂Be(0)× (0, T ) . (3.4.67)

In conclusion, in view of (3.4.67) and Lemma 1.3.10 (applied with Ω1 = Be(0),Ω2 =
RN \ Be(0), u1 = v, u2 = u, u = w), we can infer that w is a subsolution to equation
(3.4.39), in the sense of Definition 1.3.9.

Remark 3.4.2. Let

p > m ,

and assumptions (H2) and (3.2.13) be satisfied. Let define ω := Cm−1

a . In Theorem
3.2.2, the precise hypotheses on parameters C > 0, a > 0, ω > 0 and T > 0 are the
following.

max

{
1 +mk2 b

Cm−1

a

(
N − 2 + b

m

m− 1

)
; 1 +mρ2

Cm−1

a
b
N

e2

}
≤ (p+m− 2)Cp−1 ,

(3.4.68)

K

(m− 1)
p+m−2
p−1

max

{[
1 +mk2b

Cm−1

a

(
N − 2 + b

m

m− 1

)] p+m−2
p−1

;

(
1 +mρ2

Cm−1

a
b
N

e2

) p+m−2
p−1

}
≤ p−m

(m− 1)(p− 1)
Cm−1 .

(3.4.69)

Lemma 3.4.3. All the conditions in Remark 3.4.2 can hold simultaneously.

Proof. We can take ω > 0 such that

ω0 ≤ ω ≤ ω1

for suitable 0 < ω0 < ω1 and we can choose C > 0 sufficiently large to guarantee (3.4.68)
and (3.4.69) (so, a > 0 is fixed, too).

Proof of Theorem 3.2.2. We now prove Theorem 3.2.2, by means of Proposition 3.4.1.
In view of Lemma 3.4.3 we can assume that all conditions of Remark 3.4.2 are fulfilled.
Set

ζ = (T − t)−β , η = (T − t)λ , for all t > 0 ,

β =
1

p− 1
, λ =

m− p
p− 1

.
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Then

σ(t) :=

[
1

m− 1
+
Cm−1

a

m

m− 1
b k2

(
b

m

m− 1
+N − 2

)]
(T − t)−

p
p−1 ,

δ(t) :=
p−m

(m− 1)(p− 1)
(T − t)−

p
p−1 ,

γ(t) := Cp−1(T − t)−
p
p−1 ,

σ0(t) :=
1

m− 1

[
1 +

ρ2N mb

e2

Cm−1

a

]
(T − t)−

p
p−1 .

(3.4.70)

Let p > m. Condition (3.4.68) implies (3.4.53), (3.4.55), while condition (3.4.69) implies
(3.4.52), (3.4.54). Hence by Propositions 3.4.1 and 1.3.7 the thesis follows.

3.5 Proof of Theorem 3.2.3

We assume (3.1.2), (3.2.19) and (3.2.20). In order to construct a suitable family of
supersolutions of (3.3.25), we define, for all (x, t) ∈ RN × (0,+∞),

ū(x, t) ≡ ū(r(x), t) := Cζ(t)

[
1− (log(r + r0))b

a
η(t)

] 1
m−1

+

, (3.5.71)

where η, ζ ∈ C1([0,+∞); [0,+∞)), C > 0, a > 0, r0 > e and b as in (3.2.21).

Now, we compute

ūt −
1

ρ
∆(ūm)− ūp.

To this aim, set

F (r, t) := 1− (log(r + r0))b

a
η(t) ,

and

D1 :=
{

(x, t) ∈ [RN \ {0}]× (0,+∞) | 0 < F (r, t) < 1
}
.

For any (x, t) ∈ D1, we have:

ūt = Cζ ′F
1

m−1 + Cζ
1

m− 1
F

1
m−1

−1

(
−(log(r + r0))b

a
η′

)

= Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1
m−1 − Cζ 1

m− 1

η′

η
F

1
m−1

−1.

(3.5.72)

(ūm)r = −b C
m

a
ζm

m

m− 1
F

1
m−1

(log(r + r0))b−1

(r + r0)
η. (3.5.73)
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(ūm)rr = −b C
m

a
ζm

m

m− 1
η

{
F

1
m−1

[
(b− 1)

(log(r + r0))b−2

(r + r0)2
− (log(r + r0))b−1

(r + r0)2

]

+
b

m− 1

(log(r + r0))b−2

(r + r0)2

(
1− (log(r + r0))b

η

a

)
F

1
m−1

−1

− b

m− 1

(log(r + r0))b−2

(r + r0)2
F

1
m−1

−1

}

= −bC
m

a

m

m− 1
ζmη

[
b

m

m− 1
− 1

]
(log(r + r0))b−2

(r + r0)2
F

1
m−1

+ b
Cm

a

m

m− 1
ζmη

(log(r + r0))b−1

(r + r0)2
F

1
m−1

+ b
2Cm

a

m

(m− 1)2
ζmη

(log(r + r0))b−2

(r + r0)2
F

1
m−1

−1 .

(3.5.74)

∆(ūm) =
(N − 1)

r
(ūm)r + (ūm)rr

=
(N − 1)

r

(
−b C

m

a
ζm

m

m− 1
F

1
m−1

(log(r + r0))b−1

(r + r0)
η

)

− bC
m

a

m

m− 1
ζmη

[
b

m

m− 1
− 1

]
(log(r + r0))b−2

(r + r0)2
F

1
m−1

+ b
Cm

a

m

m− 1
ζmη

(log(r + r0))b−1

(r + r0)2
F

1
m−1

+ b
2Cm

a

m

(m− 1)2
ζmη

(log(r + r0))b−2

(r + r0)2
F

1
m−1

−1 .

(3.5.75)

We also define

σ̄(t) := ζ ′ +
ζ

m− 1

η′

η
+ b

Cm−1

a
ζm

m

m− 1
ηk1

(
b

m

m− 1
+N − 3

)
,

δ̄(t) :=
ζ

m− 1

η′

η
+ b

2 Cm−1

a
ζm

m

(m− 1)2
ηk2 ,

γ̄(t) := Cp−1ζp .

(3.5.76)

Proposition 3.5.1. Let ζ, η ∈ C1([0,+∞); [0,+∞)). Let σ̄, δ̄, γ̄ be as defined in
(3.5.76). Assume (H2), (3.2.19), (3.2.20), (3.2.21) and that, for all t ∈ (0,+∞),

− η′

η2
≥ b2 C

m−1

a
ζm−1 m

m− 1
k2, (3.5.77)

and

ζ ′ + b
Cm−1

a
ζm

m

m− 1
η

[(
b

m

m− 1
+N − 3

)
k1 −

b

(m− 1)
k2

]
− Cp−1ζp ≥ 0 . (3.5.78)

Then ū defined in (3.5.71) is a supersolution of equation (3.3.25).
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Proof of Proposition 3.5.1. In view of (3.5.72), (3.5.73), (3.5.74) and (3.5.75), for any
(x, t) ∈ D1,

ūt−
1

ρ
∆(ūm)− ūp

≥ Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1
m−1 − Cζ 1

m− 1

η′

η
F

1
m−1

−1

+
1

ρ
(N − 2) b

Cm

a
ζm

m

m− 1
F

1
m−1

(log(r + r0))b−1

(r + r0)2
η

+
1

ρ
b
Cm

a

m

m− 1
ζmη

[
b

m

m− 1
− 1

]
(log(r + r0))b−2

(r + r0)2
F

1
m−1

− 1

ρ
b
2Cm

a

m

(m− 1)2
ζmη

(log(r + r0))b−2

(r + r0)2
F

1
m−1

−1 − CpζpF
p

m−1 ,

(3.5.79)

where we have used the inequality

1

r(r + r0)
≥ 1

(r + r0)2
.

Thanks to (3.2.19) and (3.2.21), we have

1

ρ

(log(r + r0))b−2

(r + r0)2
≥ k1 for all x ∈ RN , (3.5.80)

− 1

ρ

(log(r + r0))b−2

(r + r0)2
≥ −k2 for all x ∈ RN , (3.5.81)

1

ρ

(log(r + r0))b−1

(r + r0)2
≥ k1 log(r + r0) ≥ k1 for all x ∈ RN . (3.5.82)

From (3.5.80), (3.5.81) and (3.5.82) we get

ūt −
1

ρ
∆(ūm)− ūp

≥ CF
1

m−1
−1

{
F

[
ζ ′ +

ζ

m− 1

η′

η
+ b

Cm−1

a
ζm

m

m− 1
η k1

(
b

m

m− 1
+N − 3

)]
− ζ

m− 1

η′

η
− b2 C

m−1

a
ζm

m

(m− 1)2
η k2 − Cp−1ζpF

p+m−2
m−1

}
(3.5.83)

From (3.5.83) and (3.5.76), we have

ūt −
1

ρ
∆(ūm)− ūp ≥ CF

1
m−1

−1
[
σ̄(t)F − δ̄(t)− γ̄(t)F

p+m−2
m−1

]
. (3.5.84)

For each t > 0, set

ϕ(F ) := σ̄(t)F − δ̄(t)− γ̄(t)F
p+m−2
m−1 , F ∈ (0, 1) .



3.5. Proof of Theorem 3.2.3 87

Now our goal is to find suitable C, a, ζ, η such that, for each t > 0,

ϕ(F ) ≥ 0 for any F ∈ (0, 1) .

We observe that ϕ(F ) is concave in the variable F . Hence it is sufficient to have that
ϕ(F ) is positive at the extrema of the interval (0, 1). This reduces, for any t > 0, to the
conditions

ϕ(0) ≥ 0 ,

ϕ(1) ≥ 0 .
(3.5.85)

These are equivalent to

−δ̄(t) ≥ 0 , σ̄(t)− δ̄(t)− γ̄(t) ≥ 0 ,

that is

− η′

η2
≥ b2 C

m−1

a
ζm−1 m

m− 1
k2 ,

ζ ′ + b
Cm−1

a
ζm

m

m− 1
η

[(
b

m

m− 1
+N − 3

)
k1 −

b

(m− 1)
k2

]
− Cp−1ζp ≥ 0 .

which are guaranteed by (3.2.20), (3.5.77) and (3.5.78). Hence we have proved that

ūt −
1

ρ
∆(ūm)− ūp ≥ 0 in D1 .

Now observe that

ū ∈ C(RN × [0,+∞)) ,

ūm ∈ C1([RN \ {0}]× [0,+∞)) , and by the definition of ū ,

ū ≡ 0 in [RN \D1]× [0,+∞)) .

Hence, by Lemma 1.3.10 (applied with Ω1 = D1, Ω2 = RN \D1, u1 = ū, u2 = 0, u = ū),
ū is a supersolution of equation

ūt −
1

ρ
∆(ūm)− ūp = 0 in (RN \ {0})× (0,+∞)

in the sense of Definition 1.3.9. Thanks to a Kato-type inequality, since ūmr (0, t) ≤ 0, we
can easily infer that ū is a supersolution of equation (3.3.25) in the sense of Definition
1.3.9.

Remark 3.5.2. Let
p > m

and assumption (3.2.20) be satisfied. Let ω := Cm−1

a . In Theorem 3.2.3 the precise
hypotheses on parameters C > 0, ω > 0, T > 0 are the following:

p−m
p− 1

≥ b2 ω m

m− 1
k2, (3.5.86)

b ω
m

m− 1

[
k1

(
b

m

m− 1
+N − 3

)
− k2

(m− 1)
b

]
≥ Cp−1 +

1

p− 1
. (3.5.87)
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Lemma 3.5.3. All the conditions in Remark 3.5.2 can be satisfied simultaneously.

Proof. Since p > m the left-hand-side of (3.5.86) is positive. By (3.2.20), we can select
ω > 0 so that (3.5.86) holds and

b ω
m

m− 1

[
k1

(
b

m

m− 1
+N − 3

)
− k2

(m− 1)
b

]
≥ 1

p− 1
.

Then we take C > 0 so small that (3.5.87) holds (and so a > 0 is accordingly fixed).

Proof of Theorem 3.2.3. In view of Lemma 3.5.3, we can assume that all the conditions
in Remark 3.5.2 are fulfilled. Set

ζ(t) = (T + t)
− 1
p−1 , for all t ≥ 0 ,

and
η(t) = (T + t)

− p−m
p−1 , for all t ≥ 0 .

Let p > m. Consider conditions (3.5.77) and (3.5.78) with this choice of ζ and η. They
read

p−m
p− 1

≥ b̄2C
m−1

a

m

m− 1
k2,

− 1

p− 1
+ b

Cm−1

a

m

m− 1

[(
b

m

m− 1
+N − 3

)
k1 −

b

(m− 1)
k2

]
− Cp−1 ≥ 0 .

Therefore, (3.5.77) and (3.5.78) follow from assumptions (3.5.86) and (3.5.87). Hence,
by Propositions 3.5.1 and 1.3.5 the thesis follows.
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with reaction on Riemannian

manifolds
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Chapter 4

Global existence and smoothing
estimates for p > m

4.1 Introduction

We investigate existence of global in time solutions to nonlinear reaction-diffusion prob-
lems of the following type:{

ut = ∆um + up in M × (0, T )

u = u0 in M × {0} ,
(4.1.1)

where M is an N−dimensional complete noncompact Riemannian manifold of infinite
volume, ∆ being the Laplace-Beltrami operator on M and T ∈ (0,∞]. We shall assume
throughout this chapter that

N ≥ 3, m > 1, p > m,

so that we are concerned with the case of degenerate diffusions of porous medium type
(see [128]), and that the initial datum u0 is nonnegative.

Let Lq(M) be the space of those measurable functions f such that |f |q is integrable
w.r.t. the Riemannian measure µ. We shall always assume that M supports the Sobolev
inequality, namely that:

(Sobolev inequality) ‖v‖L2∗ (M) ≤
1

Cs
‖∇v‖L2(M) for any v ∈ C∞c (M), (4.1.2)

where Cs is a positive constant and 2∗ := 2N
N−2 . In one of our main results, we shall also

suppose that M supports the Poincaré inequality, namely that:

(Poincaré inequality) ‖v‖L2(M) ≤
1

Cp
‖∇v‖L2(M) for any v ∈ C∞c (M), (4.1.3)

for some Cp > 0. Observe that, for instance, (4.1.2) holds if M is a Cartan-Hadamard
manifold, i.e. a simply connected Riemannian manifold with nonpositive sectional
curvatures, while (4.1.3) is valid when M is a Cartan-Hadamard manifold satisfying
the additional condition of having sectional curvatures bounded above by a constant
−c < 0 (see, e.g., [39, 40]). Therefore, as is well known, in RN (4.1.2) holds, but (4.1.3)
fails, whereas on the hyperbolic space both (4.1.2) and (4.1.3) are fulfilled.
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4.1.1 On some existing results

The behaviour of solutions to (4.1.1) is influenced by competing phenomena. First of
all there is a diffusive pattern associated with the so-called porous medium equation,
namely the equation

ut = ∆um in M × (0, T ) , (4.1.4)

where the fact that we keep on assuming m > 1 puts us in the slow diffusion case. It
is known that when M = Rn and, more generally, e.g. when M is a Cartan-Hadamard
manifold, solutions corresponding to compactly supported data have compact support
for all time, in contrast with the properties valid for solutions to the heat equation,
see [128]. But it is also well-known that, qualitatively speaking, negative curvature
accelerates diffusions, a fact that is apparent first of all from the behaviour of solutions
of the classical heat equation. In fact, it can be shown that the standard deviation
of a Brownian particle on the hyperbolic space Hn behaves linearly in time, whereas
in the Euclidean situation it is proportional to

√
t. Similarly, the heat kernel decays

exponentially as t→ +∞ whereas one has a power-type decay in the Euclidean situation.

In the Riemannian setting the study of (4.1.4) has started recently, see e.g. [43], [47],
[48], [52], [53], [55], [111], [129], noting that in some of those papers also the casem < 1 in
(4.1.4), usually referred to as the fast diffusion case, is studied. Nonlinear diffusion gives
rise to speedup phenomena as well. In fact, considering again the particularly important
example of the hyperbolic space Hn (cf. [129], [48]), the L∞ norm of a solution to (4.1.4)

satisfies ‖u(t)‖∞ �
(

log t
t

)1/(m−1)
as t → +∞, a time decay which is faster than the

corresponding Euclidean bound. Besides, if the initial datum is compactly supported,
the volume V(t) of the support of the solution u(t) satisfies V(t) � t1/(m−1) as t→ +∞,
while in the Euclidean situation one has V(t) � tβ(N,m) with β(N,m) < 1/(m− 1).

The second driving factor influencing the behaviour of solutions to (4.1.1) is the
reaction term up, which has the positive sign and, thus, might drive solutions towards
blow-up. This kind of problems has been widely studied in the Euclidean case M = RN ,
especially in the case m = 1 (linear diffusion). The literature for this problem is huge
and there is no hope to give a comprehensive review here, hence we just mention that
blow-up occurs for all nontrivial nonnegative data when p ≤ 1 + 2/N , while global
existence prevails for p > 1 + 2/N (for specific results see e.g. [16], [24], [30], [31], [58],
[83], [114], [121], [134], [135]). On the other hand, it is known that when M = HN and
m = 1, for all p > 1 and sufficiently small nonnegative data there exists a global in time
solution, see [9], [130], [131], [110].

As concerns the slow diffusion case m > 1, in the Euclidean setting it is shown in
[119] that, when the initial datum is nonnegative, nontrivial and compactly supported,
for any p > 1, all sufficiently large data give rise to solutions blowing up in finite
time. Besides, if p ∈

(
1,m+ 2

N

)
, all such solutions blow up in finite time. Finally, if

p > m + 2
N , all sufficiently small data give rise to global solutions. For subsequent,

very detailed results e.g. about the type of possible blow-up and, in some case, on
continuation after blow-up, see [36], [99], [126] and references quoted therein.

For any x0 ∈ M , r > 0 let Br(x0) be the geodesic ball centered in x0 and radius r,
let gij the metric tensor. In [137], problem (4.1.1) is studied when M is a manifold with
a pole, µ(Br(x0)) ≤ Crα for some α > 2 and C > 0. Under an additional smallness
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condition on curvature at infinity, if u0 is sufficiently small and with compact support,
then there exists a global solution to problem (4.1.1). Global existence is also proved, for
some initial data u0, under the assumption that M has nonnegative Ricci curvature and
p > α

α−2m. It should be noticed that such result do not cover cases in which negative
curvature either does not tend to zero at infinity, or does so not sufficiently fast, in
particular the case of the hyperbolic space cannot be addressed.

The situation on negatively curved manifolds is significantly different, and the first
results in this connection have been shown in [54], where only the case of nonnegative,
compactly supported data is considered. Among the results of that paper, we mention
the case that a dichotomy phenomenon holds when p > m, in the sense that under
appropriate curvature conditions, compatible with the assumptions made in the present
work, all sufficiently small data give rise to solutions existing globally in time, whereas
sufficiently large data give rise to solutions blowing up in finite time. Results were only
partial when p < m, since it has been shown that when p ∈

(
1, 1+m

2

]
and again under

suitable curvature conditions, all solutions corresponding to compactly supported initial
data exist globally in time, and blow up everywhere pointwise in infinite time. When
p ∈

(
1+m

2 ,m
)
, precise information on the asymptotic behaviour is not known, since

blowup is shown to occur at worse in infinite time, but could in principle occur before.

4.1.2 Qualitative statements of our new results in the Riemannian
setting

Our results concerning problem (4.1.1) can be summarized as follows.

• (See Theorem 4.2.2) We prove global existence of solutions to (4.1.1), assuming
that the initial datum is sufficiently small, that

p > m+
2

N
,

and that the Sobolev inequality (4.1.2) holds; moreover, smoothing effects and
the fact that suitable Lq norms of solutions decrease in time are obtained. To be
specific, any sufficiently small initial datum u0 ∈ Lm(M)∩L(p−m)N

2 (M) gives rise
to a global solution u(t) such that u(t) ∈ L∞(M) for all t > 0 with a quantitative
bound on the L∞ norm of the solution.

• (See Theorem 4.2.5) We show that, if both the Sobolev and the Poincaré inequality
(i.e. (4.1.2), (4.1.3)) hold, then for any

p > m,

for any sufficiently small initial datum u0, belonging to suitable Lebesgue spaces,
there exists a global solution u(t) such that u(t) ∈ L∞(M). Furthermore, a
quantitative bound for the L∞ norm of the solution is satisfied for all t > 0.

Note that in Theorem 4.2.2 we only assume the Sobolev inequality and we require that
p > m + 2

N , instead in Theorem 4.2.5 we can relax the assumption on the exponent p,
indeed we assume p > m, but we need to further require that the Poincaré inequality
holds. Moreover, in the two theorems, the hypotheses on the initial data are different.
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The main results given in Theorems 4.2.2 and 4.2.5 depend essentially only on the
validity of inequalities (4.1.2) and (4.1.3), are functional analytic in character and hence
can be generalized to different contexts.

4.1.3 The case of Euclidean, weighted diffusion

As a particularly significant setting, we single out the case of Euclidean, mass-weighted
reaction diffusion equations, that has been the object of intense research. In fact we
consider the problem {

ρ ut = ∆um + ρ up in RN × (0, T )

u = u0 in RN × {0},
(4.1.5)

where ρ : RN → R is strictly positive, continuous and bounded, and represents a mass
variable density . The problem is naturally posed in the weighted spaces

Lqρ(RN ) =

{
v : RN → R measurable , ‖v‖Lqρ :=

(∫
RN

vqρ(x) dx

)1/q

< +∞

}
.

This kind of problem arises in a physical model provided in [73]. Such choice of ρ
ensures that the following analogue of (4.1.2) holds:

‖v‖L2∗
ρ (RN ) ≤

1

Cs
‖∇v‖L2(RN ) for any v ∈ C∞c (RN ) (4.1.6)

for a suitable positive constant Cs. In some cases we also assume that the weighted
Poincaré inequality is valid, that is

‖v‖L2
ρ(RN ) ≤

1

Cp
‖∇v‖L2(RN ) for any v ∈ C∞c (RN ), (4.1.7)

for some Cp > 0. For example, (4.1.7) is fulfilled when ρ(x) � |x|−a, as |x| → +∞, for
every a ≥ 2, whereas, (4.1.6) is valid for every a > 0.

Problem (4.1.5) under the assumption 1 < p < m has been investigated in [46].
Under the assumption that the Poincaré inequality is valid on M , it is shown that
global existence and a smoothing effect for small Lm initial data hold, that is solutions
corresponding to such data are bounded for all positive times with a quantitative bound
on their L∞ norm.

In [86, 87] problem (4.1.5) is also investigated, under certain conditions on ρ. It is
proved that if ρ(x) = |x|−a with a ∈ (0, 2),

p > m+
2− a
N − a

,

and u0 ≥ 0 is small enough, then a global solution exists (see [86, Theorem 1]). Note
that the homogeneity of the weight ρ(x) = |x|−a is essentially used in the proof, since the
Caffarelli-Kohn-Nirenberg estimate is exploited, which requires such a type of weight.
In addition, a smoothing estimate holds. On the other hand, any nonnegative solution
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blows up, in a suitable sense, when ρ(x) = |x|−a or ρ(x) = (1 + |x|)−a with a ∈ [0, 2),
u0 6≡ 0 and

1 < p < m+
2− a
N − a

.

Furthermore, in [87, 88], such results have been extended to more general initial data,
decaying at infinity with a certain rate (see [87]). Finally, in [86, Theorem 2], it is shown
that if p > m, ρ(x) = (1 + |x|)−a with a > 2, and u0 is small enough, a global solution
exists.

Problem (4.1.5) has also been studied in [92], [93], by means of suitable barriers,
supposing that the initial datum is continuous and with compact support. In particular,
in [92] the case that ρ(x) � |x|−a for |x| → +∞ with a ∈ (0, 2) is addressed. It is proved
that for any p > 1, if u0 is large enough, then the solution blows up in finite time. On
the other hand, if p > p̄, for a certain p̄ > m depending on m, p and ρ, and u0 is small
enough, then there exists a global bounded solution. Moreover, in [93] the case that
a ≥ 2 is investigated. For a = 2, blowup is shown to occur when u0 is big enough,
whereas global existence holds when u0 is small enough. For a > 2 it is proved that if
p > m, u0 ∈ L∞loc(RN ) and goes to 0 at infinity with a suitable rate, then there exists
a global bounded solution. Furthermore, for the same initial datum u0, if 1 < p < m,
then there exists a global solution, which could blow up as t→ +∞ .

Our main results concerning problem (4.1.5) can be summarized as follows. Assume
that ρ ∈ C(RN ) ∩ L∞(RN ), ρ > 0.

• (See Theorem 4.2.8) We prove that (4.1.5) admits a global solution, provided that

p > m+
2

N
;

moreover, certain smoothing effects for solutions are fulfilled. More precisely, for

any sufficiently small initial datum u0 ∈ Lmρ (RN ) ∩ L(p−m)N
2

ρ (RN ) there exists a

global solution u(t) such that u(t) ∈ L∞(RN ) for all t > 0 and a quantitative
bound on the L∞ norm is verified. Moreover, suitable Lq norms of solutions
decrease in time.

• (See Theorem 4.2.9) We show that, if the Poincaré inequality (4.1.7) holds and
one assumes the condition

p > m,

then, for any sufficiently small initial datum u0 belonging to suitable Lebesgue
spaces, there exists a global solution u(t) to (4.1.5) such that u(t) ∈ L∞(RN ),
with a quantitative bound on the L∞ norm.

Let us compare our results with those in [86]. Theorem 4.2.8 deals with a different
class of weights ρ with respect to [86, Theorem 1], where ρ(x) = |x|−a for a ∈ (0, 2),
and the homogeneity of ρ is used. As a consequence, also the hypotheses on p and the
methods of proofs are different. Furthermore, Theorem 4.2.9 requires the validity of the
Poincaré inequality, hence, in particular, it can be applied when ρ(x) = (1 + |x|)−a with
a ≥ 2 (see [49]). On the other hand, in Theorem [86, Theorem 2] it is assumed that
ρ(x) = (1 + |x|)−a for a > 2, so, the case a = 2 is not included.
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4.1.4 Organization of the chapter

In Section 4.2 we state all our main results. In Section 4.3 some auxiliary results con-
cerning elliptic problems are deduced together with a Benilan-Crandal type estimate.
In Section 4.4 we introduce a family of approximating problems. Then, for such solu-
tions, we prove that suitable Lq norms of solutions decrease in time, and a smoothing
estimate, in the case p > m + 2

N , supposing that M supports the Sobolev inequality.
Under such assumptions, global existence for problem (4.1.1) is shown in Section 4.5.
In Section 4.6 we prove that suitable Lq norms of solutions decrease in time, and L∞

bounds for solutions of the approximating problems, under the assumptions that p > m
and that M supports the Poincaré inequality as well. Then, under such hypotheses,
existence of global solutions to problem (4.1.1) is proved. Finally, a concise proof of
the results concerning problem (4.1.5) is given in Section 4.7 by adapting the previous
methods to that situation.

4.2 Statements of main results

We state first our results concerning solutions to problem (4.1.1), then we pass to the
ones valid for solutions to problem (4.1.5).

4.2.1 Global existence on Riemannian manifolds

Solutions to (4.1.1) will be meant in the very weak, or distributional, sense, according
to the following definition.

Definition 4.2.1. Let M be a complete noncompact Riemannian manifold of infinite
volume. Let m > 1, p > m and u0 ∈ L1

loc(M), u0 ≥ 0. We say that the function u is a
solution to problem (4.1.1) in the time interval [0, T ) if

u ∈ Lploc(M × (0, T ))

and for any ϕ ∈ C∞c (M × [0, T ]) such that ϕ(x, T ) = 0 for any x ∈ M , u satisfies the
equality:

−
∫ T

0

∫
M
uϕt dµ dt =

∫ T

0

∫
M
um ∆ϕdµdt +

∫ T

0

∫
M
up ϕdµdt

+

∫
M
u0(x)ϕ(x, 0) dµ.

First we consider the case that p > m+ 2
N and the Sobolev inequality holds on M .

In order to state our results we define

p0 := (p−m)
N

2
. (4.2.8)

Observe that p0 > 1 whenever p > m+ 2
N .
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Theorem 4.2.2. Let M be a complete, noncompact manifold of infinite volume such
that the Sobolev inequality (4.1.2) holds. Let m > 1, p > m + 2

N and u0 ∈ Lm(M) ∩
Lp0(M), u0 ≥ 0 where p0 has been defined in (4.2.8). Let

r > max

{
p0,

N

2

}
, s = 1 +

2

N
− 1

r
.

Assume that
‖u0‖Lp0 (M) < ε0 (4.2.9)

with ε0 = ε0(p,m,N, r, Cs) sufficiently small. Then problem (4.1.1) admits a solution
for any T > 0, in the sense of Definition 4.2.1. Moreover, for any τ > 0, one has
u ∈ L∞(M × (τ,+∞)) and there exists a numerical constant Γ > 0 such that, for all
t > 0, one has

‖u(t)‖L∞(M) ≤ Γ t−
γ
ms

{
‖u0‖δ1Lp0 (M) + ‖u0‖δ2Lp0 (M)

} 1
ms ‖u0‖

s−1
s

Lm(M),

where

γ =
p

p− 1

[
1− N(p−m)

2 p r

]
, δ1 = p

p−m
p− 1

[
1 +

N(m− 1)

2 p r

]
, δ2 =

p−m
p− 1

[
1 +

N(m− 1)

2 r

]
.

Moreover, let p0 ≤ q <∞ and
‖u0‖Lp0 (M) < ε̂0 (4.2.10)

for ε̂0 = ε̂0(p,m,N, r, Cs, q) small enough. Then there exists a constant C = C(m, p,N, ε0, Cs, q) >
0 such that

‖u(t)‖Lq(M) ≤ C t−γq‖u0‖
δq
Lp0 (M) for all t > 0 , (4.2.11)

where

γq =
1

p− 1

[
1− N(p−m)

2q

]
, δq =

p−m
p− 1

[
1 +

N(m− 1)

2q

]
.

Finally, for any 1 < q <∞, if u0 ∈ Lq(M) ∩ Lp0(M) ∩ Lm(M) and

‖u0‖Lp0 (M) < ε (4.2.12)

with ε = ε(p,m,N, r, Cs, q) sufficiently small, then

‖u(t)‖Lq(M) ≤ ‖u0‖Lq(M) for all t > 0 . (4.2.13)

Remark 4.2.3. We notice that the proof of the above theorem will show that one can
take an explicit value of ε0 in (4.2.9). In fact, let q0 > 1 be fixed and {qn}n∈N be the
sequence defined by:

qn =
N

N − 2
(m+ qn−1 − 1), ∀n ∈ N,

so that

qn =

(
N

N − 2

)n
q0 +

N(m− 1)

N − 2

n−1∑
i=0

(
N

N − 2

)i
. (4.2.14)
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Clearly, {qn} is increasing and qn −→ +∞ as n→ +∞. Fix q ∈ [q0,+∞) and let n̄ be
the first index such that qn̄ ≥ q. Define

ε̃0 = ε̃0(p,m,N,Cs, q, q0) :=

[
min

{
min

n=0,...,n̄

2m(qn − 1)

(m+ qn − 1)2
C2
s ;

2m(p0 − 1)

(m+ p0 − 1)2
C2
s

}] 1
p−m

.

(4.2.15)
Observe that ε0 in (4.2.15) depends on the value of q through the sequence {qn}. More

precisely, n̄ is increasing with respect to q, while the quantity minn=0,...,n̄
2m(qn−1)

(m+qn−1)2C
2
s

decreases w.r.t. q. We then let q0 = p0, take q = pr and define, for these choice of q0, q,

ε0 = ε0(p,m,N,Cs, r) = ε̃0(p,m,N,Cs, pr, p0) .

Furthermore, in (4.2.10) we can take

ε̂0 = ε̂0(p,m,N,Cs, q) = ε̃0(p,m,N,Cs, q, p0) . (4.2.16)

Similarly, one can choose the following explicit value for ε in (4.2.12):

ε = ε̄ ∧ ε0, (4.2.17)

where

ε̄ = ε̄(p,m,Cs, q) :=

[
min

{
2m(q − 1)

(m+ q − 1)2
C2
s ;

2m(p0 − 1)

(m+ p0 − 1)2C
2
s

}] 1
p−m

.

Remark 4.2.4. Observe that, for M = RN , in [119, Theorem 3, pag. 220] it is shown
that if p > m+ 2

N and u0 has compact support and is small enough, then the solution
to problem (4.1.1) globally exists and decays like

t
− 1
p−1 as t −→ +∞.

Note that under these assumptions, Theorem 4.2.2 can be applied. It implies that the
solution to problem (4.1.1) globally exists and decays like

t−
γ
ms as t −→ +∞.

It is easily seen that, for any p ≥ m
(
1 + 2

N

)
,

γ

ms
≥ 1

p− 1
;

instead, for any m+ 2
N < p < m

(
1 + 2

N

)
,

γ

ms
<

1

p− 1
.

Hence, when p ≥ m
(
1 + 2

N

)
the decay’s rate of the solution u(t), for large times, given

by Theorem 4.2.2 is better than that of [119, Theorem 3, pag. 220], while the opposite
is true for m + 2

N < p < m
(
1 + 2

N

)
. In both cases, the class of initial data considered

in Theorem 4.2.2 is wider.
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In the next theorem, we address the case that p > m, supposing that both the
inequalities (4.1.2) and (4.1.3) hold on M .

Theorem 4.2.5. Let M be a complete, noncompact manifold of infinite volume such
that the Sobolev inequality (4.1.2) and the Poincaré inequality (4.1.3) hold. Let

m > 1, p > m, r >
N

2
,

and u0 ∈ Lθ(M) ∩ Lpr(M) where θ = min{m, r}, u0 ≥ 0. Let

s = 1 +
2

N
− 1

r
.

Assume that

‖u0‖
Lp

N
2 (M)

< ε1 (4.2.18)

holds with ε1 = ε1(m, p,N, r, Cp, Cs) sufficiently small. Then problem (4.1.1) admits a
solution for any T > 0, in the sense of Definition 4.2.1. Moreover for any τ > 0 one
has u ∈ L∞(M × (τ,+∞)) and for all t > 0 one has

‖u(t)‖L∞(M) ≤
(

s

s− 1

) 1
m

‖u0‖
s−1
s

Lm(M)

[
‖u0‖pLpr(M) +

1

(m− 1)t
‖u0‖Lr(M)

] 1
ms

.

Moreover, suppose that u0 ∈ Lq(M) ∩ Lθ(M) ∩ Lpr(M) for some for 1 < q <∞,

‖u0‖
Lp

N
2 (M)

< ε2, (4.2.19)

for some ε2 = ε2(p,m,N, r, Cp, Cs, q) sufficiently small. Then

‖u(t)‖Lq(M) ≤ ‖u0‖Lq(M) for all t > 0 . (4.2.20)

Remark 4.2.6. We define, given q > 1:

ε̃1(q) :=

[
min

{
2m(q − 1)

(m+ q − 1)2
C;

2m
(
pN2 − 1

)(
m+ pN2 − 1

)2C
}] p+m+q−1

p(p+q−1)−m(m+q−1)

(4.2.21)

where C = C
2m/p
p C̃ and C̃ = C̃(Cs,m, p, q) > 0 is defined in (4.6.91) below, with the

choice θ := m(m+q−1)
p(p+q−1) . The proof will show that one can choose ε1 := mini=1,...,4 ε̃1(qi)

where q1 = m, q2 = p, q3 = pr and q4 = r.

Similarly, we observe that in (4.2.19) we can choose

ε2 = ε1 ∧ ε̃1(q) . (4.2.22)

In the next sections we always keep the notation as in Remarks 4.2.3 and 4.2.6.
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4.2.2 Weighted, Euclidean reaction-diffusion problems

We consider a weight ρ : RN → R such that

ρ ∈ C(RN ) ∩ L∞(RN ), ρ(x) > 0 for any x ∈ RN . (4.2.23)

Solutions to problem (4.1.5) are meant according to the following definition.

Definition 4.2.7. Let m > 1, p > m and u0 ∈ L1
ρ,loc(RN ), u0 ≥ 0. Let the weight

ρ satisfy (4.2.23). We say that the function u is a solution to problem (4.1.5) in the
interval [0, T ) if

u ∈ Lpρ,loc(R
N × (0, T ))

and for any ϕ ∈ C∞c (RN × [0, T ]) such that ϕ(x, T ) = 0 for any x ∈ RN , u satisfies the
equality:

−
∫ T

0

∫
RN

uϕt ρ(x) dx dt =

∫ T

0

∫
RN

um ∆ϕdx dt +

∫ T

0

∫
RN

up ϕρ(x) dx dt

+

∫
RN

u0(x)ϕ(x, 0) ρ(x) dx.

First we consider the case that p > m + 2
N . Recall that since ρ is bounded, the

Sobolev inequality (4.1.6) necessarily holds.

Theorem 4.2.8. Let ρ satisfy (4.2.23). Let m > 1, p > m + 2
N and u0 ∈ Lmρ (RN ) ∩

Lp0
ρ (RN ), u0 ≥ 0 with p0 defined in (4.2.8). Let

r > max

{
p0,

N

2

}
, s = 1 +

2

N
− 1

r
.

Assume that
‖u0‖Lp0ρ (RN ) < ε0

with ε0 = ε0(p,m,N, r, Cs) sufficiently small. Then problem (4.1.5) admits a solution
for any T > 0, in the sense of Definition 4.2.7. Moreover, for any τ > 0, one has
u ∈ L∞(RN × (τ,+∞)) and there exist Γ > 0 such that, for all t > 0, one has

‖u(t)‖L∞(RN ) ≤ Γ t−
γ
ms

{
‖u0‖δ1Lp0ρ (RN )

+
1

m− 1
‖u0‖δ2Lp0ρ (RN )

} 1
ms

‖u0‖
s−1
s

Lmρ (RN )
,

where

γ =
p

p− 1

[
1− N(p−m)

2 p r

]
, δ1 = p

p−m
p− 1

[
1 +

N(m− 1)

2 p r

]
, δ2 =

p−m
p− 1

[
1 +

N(m− 1)

2 r

]
.

Moreover, let p0 ≤ q <∞ and
‖u0‖Lp0ρ (RN ) < ε̂0

for ε̂0 = ε̂0(p,m,N, r, Cs, q) small enough. Then there exists a constant C = C(m, p,N, ε0, Cs, q) >
0 such that

‖u(t)‖Lqρ(RN ) ≤ C t−γq‖u0‖
δq

L
p0
ρ (RN )

for all t > 0 ,
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where

γq =
1

p− 1

[
1− N(p−m)

2q

]
, δq =

p−m
p− 1

[
1 +

N(m− 1)

2q

]
.

Finally, for any 1 < q <∞, if u0 ∈ Lqρ(RN ) ∩ Lp0
ρ (RN ) ∩ Lmρ (RN ) and

‖u0‖Lp0ρ (RN ) < ε

holds, with ε = ε(p,m,N, r, Cs, q) sufficiently small, then

‖u(t)‖Lqρ(RN ) ≤ ‖u0‖Lqρ(RN ) for all t > 0 .

A quantitative form of the smallness condition on u0 in the above theorem can be
given exactly as in Remark 4.2.3, see in particular (4.2.15), (4.2.16) and (4.2.17).

In the next theorem, we address the case p > m. We suppose that the Poincaré
inequality (4.1.7) holds.

Theorem 4.2.9. Let ρ satisfy (4.2.23) and assume that the inequality (4.1.7) hold. Let

m > 1, p > m, r >
N

2
,

and u0 ∈ Lθρ(RN ) ∩ Lprρ (RN ) where θ = min{m, r}, u0 ≥ 0. Let

s = 1 +
2

N
− 1

r
.

Assume that

‖u0‖
L
pN2
ρ (RN )

< ε1

holds with ε1 = ε1(m, p,N, r, Cp, Cs) sufficiently small Then problem (4.1.5) admits a
solution for any T > 0, in the sense of Definition 4.2.7. Moreover, for any τ > 0 one
has u ∈ L∞(RN × (τ,+∞)) and for all t > 0 one has

‖u(t)‖L∞(RN ) ≤
(

s

s− 1

) 1
m

‖u0‖
s−1
s

Lmρ (RN )

[
‖u0‖pLprρ (RN )

+
1

(m− 1)t
‖u0‖Lrρ(RN )

] 1
ms

.

Moreover, suppose that u0 ∈ Lqρ(RN ) ∩ Lθρ(RN ) ∩ Lprρ (RN ) for some for 1 < q <∞,

‖u0‖
L
pN2
ρ (RN )

< ε2,

for some ε2 = ε2(p,m,N, r, Cp, Cs, q) small enough. Then

‖u(t)‖Lqρ(RN ) ≤ ‖u0‖Lqρ(RN ) for all t > 0 .

A quantitative form of the smallness condition on u0 in the above Theorem can be
given exactly as in Remark 4.2.6, see in particular (4.2.21) and (4.2.22).
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4.3 Auxiliary results for elliptic problems

Let x0, x ∈ M . We denote by r(x) = dist (x0, x) the Riemannian distance between
x0 and x. Moreover, we let BR(x0) := {x ∈ M, dist (x0, x) < R} be the geodesic ball
with centre x0 ∈ M and radius R > 0. If a reference point x0 ∈ M is fixed, we shall
simply denote by BR the ball with centre x0 and radius R. Moreover we denote by µ
the Riemannian measure on M .

For any given function v, we define for any k ∈ R+

Tk(v) :=


k if v ≥ k ,
v if |v| < k ,

−k if v ≤ −k .
(4.3.24)

For every R > 0, k > 0, consider the problem
ut = ∆um + Tk(u

p) in BR × (0,+∞)

u = 0 in ∂BR × (0,+∞)

u = u0 in BR × {0},
(4.3.25)

where u0 ∈ L∞(BR), u0 ≥ 0. Solutions to problem (4.3.25) are meant in the weak sense
as follows.

Definition 4.3.1. Let m > 1 and p > m. Let u0 ∈ L∞(BR), u0 ≥ 0. We say that a
nonnegative function u is a solution to problem (4.3.25) if

u ∈ L∞(BR × (0,+∞)), um ∈ L2
(
(0, T );H1

0 (BR)
)

for any T > 0,

and for any T > 0, ϕ ∈ C∞c (BR × [0, T ]) such that ϕ(x, T ) = 0 for every x ∈ BR, u
satisfies the equality:

−
∫ T

0

∫
BR

uϕt dµ dt =−
∫ T

0

∫
BR

〈∇um,∇ϕ〉 dµ dt +

∫ T

0

∫
BR

Tk(u
p)ϕdµdt

+

∫
BR

u0(x)ϕ(x, 0) dµ.

We also consider elliptic problems of the type{
−∆u = f in BR ,

u = 0 in ∂BR ,
(4.3.26)

where f ∈ Lq(BR) for some q > 1.

Definition 4.3.2. We say that u ∈ H1
0 (BR), u ≥ 0 is a weak subsolution to problem

(4.3.26) if ∫
BR

〈∇u,∇ϕ〉 dµ ≤
∫
BR

fϕ dµ,

for any ϕ ∈ H1
0 (BR), ϕ ≥ 0 .
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In the next lemma we recall [46, Lemma 3.6], which will be used later.

Lemma 4.3.3. Let v ∈ L1(BR). Let k > 0. Suppose that there exist C > 0 and s > 1
such that

g(k) ≤ Cµ(Ak)
s for any k ≥ k̄.

Then v ∈ L∞(BR) and

‖v‖L∞(BR) ≤
s

s− 1
C

1
s ‖v‖1−

1
s

L1(BR)
+ k̄.

The following proposition contains an estimate in the spirit of the L∞ one of Stam-
pacchia (see, e.g., [76], [11] and references therein) in the ball BR; however, some dif-
ferences are in order. In fact, we aim at obtaining an estimate independent of the
radius R (see Remark 4.3.5). Since the volume of M is infinite, the classical estimate of
Stampacchia cannot be directly applied.

Proposition 4.3.4. Let f ∈ Lm(BR) where m > N
2 . Assume that v ∈ H1

0 (BR), v ≥ 0
is a subsolution to problem {

−∆v = f in BR ,

v = 0 on ∂BR ,
(4.3.27)

in the sense of Definition 4.3.2. Then

‖v‖L∞(BR) ≤
s

s− 1

(
1

Cs

) 2
s

‖f‖
1
s

Lm(BR)‖v‖
s−1
s

L1(BR)
, (4.3.28)

where

s = 1 +
2

N
− 1

m
. (4.3.29)

Remark 4.3.5. If in Proposition 4.3.4 we further assume that there exists a constant
k0 > 0 such that

max
{
‖v‖L1(BR), ‖f‖Lm(BR)

}
≤ k0 for all R > 0,

then from (4.3.28), we infer that the bound from above on ‖v‖L∞(BR) is independent of
R. This fact will have a key role in the proof of global existence for problem (4.1.1).

Proof of Proposition 4.3.4. We define

Gk(v) := v − Tk(v)

where Tk(v) has been defined in (4.3.24) and

Ak := {x ∈ BR : |v(x)| > k}.

Since Gk(v) ∈ H1
0 (BR) and Gk(v) ≥ 0, we can take Gk(v) as test function in problem

(4.3.27). Arguing as in the proof of [46, Proposition 3.3] we obtain∫
BR

|Gk(v)| dµ ≤ 1

C2
s

‖f‖Lm(BR)µ(Ak)
N+2
N
− 1
m . (4.3.30)
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By (4.3.29), setting

C =
1

C2
s

‖f‖Lm(BR),

we rewrite (4.3.30) as ∫
BR

|Gk(v)| dµ ≤ Cµ(Ak)
s.

Hence we can apply Lemma 4.3.3 to v and we obtain

‖v‖L∞(BR) ≤ C
1
s

s

s− 1
‖v‖

s−1
s

L1(BR)
+ k.

Taking the limit as k −→ 0 and we get the thesis.

We shall use the following Aronson-Benilan type estimate (see [6]; see also [118,
Proposition 2.3]).

Proposition 4.3.6. Let m > 1, p > m, u0 ∈ H1
0 (BR) ∩ L∞(BR), u0 ≥ 0. Let u be the

solution to problem (4.3.25). Then, for a.e. t ∈ (0, T ),

−∆um(·, t) ≤ up(·, t) +
1

(m− 1)t
u(·, t) in D′(BR).

Proof. The conclusion follows by minor modifications of the proof of [118, Proposition
2.3] (where p < m), due to the fact that we have p > m. We define

z = ut +
u

m− 1

and the operator

Lz = ∆
(
mum−1z

)
+mup−1z ,

where u is the solution to problem (4.3.25). Observe that

z(x, 0) ≥ 0 for x ∈ BR ,
z(x, t) ≥ 0 for x ∈ ∂BR and t ∈ (0, T ) .

Moreover, by direct computation, we get

zt − Lz ≥ 0 in BR × (0, T ).

Thus, arguing as in [118, Proposition 2.3], thanks to the comparison principle, we get,
for a.e. t ∈ (0, T ),

−∆um(·, t) ≤ Tk[up(·, t)] +
1

(m− 1)t
u(·, t) ≤ up(·, t) +

1

(m− 1)t
u(·, t) in D′(BR),

where we have used that Tk(u
p) ≤ up .
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4.4 Lq and smoothing estimates for p > m+ 2
N

Lemma 4.4.1. Let m > 1, p > m+ 2
N . Assume that inequality (4.1.2) holds. Suppose

that u0 ∈ L∞(BR), u0 ≥ 0. Let 1 < q <∞, p0 as in (4.2.8) and assume that

‖u0‖Lp0 (BR) < ε̄ (4.4.31)

with ε̄ = ε̄(p,m, q, Cs) sufficiently small. Let u be the solution of problem (4.3.25) in
the sense of Definition 4.3.1, such that in addition u ∈ C([0, T ), Lq(BR)) for any q ∈
(1,+∞), for any T > 0. Then

‖u(t)‖Lq(BR) ≤ ‖u0‖Lq(BR) for all t > 0 . (4.4.32)

Note that the request u ∈ C([0, T ), Lq(BR)) for any q ∈ (1,+∞), for any T > 0 is
not restrictive, since we will construct solutions belonging to that class (see the proof
of Theorem 4.2.2 below). This remark also applies to several other intermediate results
below.

Proof. Since u0 is bounded and Tk is a bounded and Lipschitz function, by standard
results, there exists a unique solution of problem (4.3.25) in the sense of Definition 4.3.1.
We now multiply both sides of the differential equation in problem (4.3.25) by uq−1,∫

BR

ut u
q−1 dµ =

∫
BR

∆(um)uq−1 dµ +

∫
BR

Tk(u
p)uq−1 dµ .

Now, formally integrating by parts in BR. This can be justified by standard tools, by
an approximation procedure. We get

1

q

d

dt

∫
BR

uq dµ = −m(q − 1)

∫
BR

um+q−3 |∇u|2 dµ +

∫
BR

Tk(u
p)uq−1 dµ . (4.4.33)

Observe that, thanks to Sobolev inequality (4.1.2), we have∫
BR

um+q−3 |∇u|2 dµ =
4

(m+ q − 1)2

∫
BR

∣∣∣∇(um+q−1
2

)∣∣∣2 dµ
≥ 4

(m+ q − 1)2
C2
s

(∫
BR

u
m+q−1

2
2N
N−2 dµ

)N−2
N

.

(4.4.34)

Moreover, the last term in the right hand side of (4.4.33), thanks to Hölder inequality
with exponents N

N−2 and N
2 , becomes∫

BR

Tk(u
p)uq−1 dµ ≤

∫
BR

up uq−1 dµ =

∫
BR

up−m um+q−1 dµ

≤ ‖u(t)‖p−m
L(p−m)N2 (BR)

‖u(t)‖m+q−1

L
(m+q−1) N

N−2 (BR)
.

(4.4.35)

Combining (4.4.34) and (4.4.35) we get

1

q

d

dt
‖u(t)‖qLq(BR) ≤ −

[
4m(q − 1)

(m+ q − 1)2
C2
s − ‖u(t)‖p−mLp0 (BR)

]
‖u(t)‖m+q−1

L
(m+q−1) N

N−2 (BR)
.

(4.4.36)
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Take any T > 0. Observe that, thanks to hypothesis (4.4.31) and the known continuity
of the map t 7→ u(t) in [0, T ], there exists t0 > 0 such that

‖u(t)‖Lp0 (BR) ≤ 2 ε̄ for any t ∈ [0, t0] .

Hence (4.4.36) becomes, for any t ∈ (0, t0],

1

q

d

dt
‖u(t)‖qLq(BR) ≤ −

[
4m(q − 1)

(m+ q − 1)2
C2
s − 2 ε̄p−m

]
‖u(t)‖m+q−1

L
(m+q−1) N

N−2 (BR)
≤ 0 ,

where the last inequality is obtained thanks to (4.4.31). We have proved that t 7→
‖u(t)‖Lq(BR) is decreasing in time for any t ∈ (0, t0], i.e.

‖u(t)‖Lq(BR) ≤ ‖u0‖Lq(BR) for any t ∈ (0, t0] . (4.4.37)

In particular, inequality (4.4.37) follows for the choice q = p0, in view of hypothesis
(4.4.31). Hence we have

‖u(t)‖Lp0 (BR) ≤ ‖u0‖Lp0 (BR) < ε̄ for any t ∈ (0, t0] .

Now, we can repeat the same argument in the time interval (t0, t1], where t1 is chosen,
due to the continuity of u, in such a way that

‖u(t)‖Lp0 (BR) ≤ 2ε̄ for any t ∈ (t0, t1] .

Thus we get

‖u(t)‖Lq(BR) ≤ ‖u0‖Lq(BR) for any t ∈ (0, t1] .

Iterating this procedure we obtain that t 7→ ‖u(t)‖Lq(BR) is decreasing in [0, T ]. Since
T > 0 was arbitrary, the thesis follows.

Using a Moser type iteration procedure we prove the following result:

Proposition 4.4.2. Let m > 1, p > m + 2
N . Assume that inequality (4.1.2) holds.

Suppose that u0 ∈ L∞(BR), u0 ≥ 0. Let u be the solution of problem (4.3.25) in
the sense of Definition 4.3.1, such that in addition u ∈ C([0, T ), Lq(BR)) for any q ∈
(1,+∞), for any T > 0. Let 1 < q0 ≤ q < +∞ and assume that

‖u0‖Lp0 (BR) < ε̃0 (4.4.38)

for ε̃0 = ε̃0(p,m,N,Cs, q, q0) sufficiently small. Then there exists C(m, q0, Cs, ε̃0, N, q) >
0 such that

‖u(t)‖Lq(BR) ≤ C t−γq‖u0‖
δq
Lq0 (BR) for all t > 0 ,

where

γq =

(
1

q0
− 1

q

)
N q0

2 q0 +N(m− 1)
, δq =

q0

q

(
q + N

2 (m− 1)

q0 + N
2 (m− 1)

)
. (4.4.39)
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Proof. Let {qn} be the sequence defined in (4.2.14). We start by proving a smoothing
estimate from q0 to qn̄ using a Moser iteration technique (see also [2]).

Let t > 0, we define

s =
t

2n − 1
, tn = (2n − 1)s . (4.4.40)

Observe that t0 = 0, tn̄ = t, {tn} is an increasing sequence w.r.t. n. Now, for any
1 ≤ n ≤ n, we multiply equation (4.3.25) by uqn−1−1 and integrate in BR × [tn−1, tn].
Thus we get∫ tn

tn−1

∫
BR

ut u
qn−1−1 dµ dt =

∫ tn

tn−1

∫
BR

∆(um)uqn−1−1 dµ dt+

∫ tn

tn−1

∫
BR

Tk(u
p)uqn−1−1 dµ dt.

Then we integrate by parts in BR × [tn−1, tn]. Thanks to Sobolev inequality and hypo-
thesis (4.4.38) we get

1

qn−1

[
‖u(·, tn)‖qn−1

Lqn−1 (BR)
− ‖u(·, tn−1)‖qn−1

Lqn−1 (BR)

]
≤ −

[
4m(qn−1 − 1)

(m+ qn−1 − 1)2
C2
s − 2ε̃

1
p−m
0

] ∫ tn

tn−1

‖u(τ)‖m+qn−1−1

L
(m+qn−1−1) N

N−2 (BR)
dτ,

(4.4.41)

where we have used the fact that Tk(u
p) ≤ up. We define qn as in (4.2.14), so that

(m+ qn−1 − 1)
N

N − 2
= qn. Hence, in view of hypothesis (4.4.38) we can apply Lemma

4.4.1 to the integral on the right hand side of (4.4.41), hence we get

1

qn−1

[
‖u(·, tn)‖qn−1

Lqn−1 (BR)
− ‖u(·, tn−1)‖qn−1

Lqn−1 (BR)

]
≤ −

[
4m(qn−1 − 1)

(m+ qn−1 − 1)2
C2
s − 2ε̃

1
p−m
0

]
‖u(·, tn)‖m+qn−1−1

Lqn (BR) |tn − tn−1|.
(4.4.42)

Observe that
‖u(·, tn)‖qn−1

Lqn−1 (BR)
≥ 0,

|tn − tn−1| =
2n−1 t

2n̄ − 1
.

(4.4.43)

We define

dn−1 :=

[
4m (qn−1 − 1)

(m+ qn−1 − 1)2
C2
s − 2ε̃

1
p−m
0

]−1 1

qn−1
. (4.4.44)

By plugging (4.4.43) and (4.4.44) into (4.4.42) we get

‖u(·, tn)‖m+qn−1−1
Lqn (BR) ≤ (2n̄ − 1)dn

2n−1 t
‖u(·, tn−1)‖qn−1

Lqn−1 (BR)
.

The latter formula can be rewritten as

‖u(·, tn)‖Lqn (BR) ≤
(

(2n̄ − 1)dn
2n−1

) 1
m+qn−1−1

t
− 1
m+qn−1−1 ‖u(·, tn−1)‖

qn−1
m+qn−1−1

Lqn−1 (BR)
.
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Thanks to the definition of the sequence {qn} in (4.2.14) we write

‖u(·, tn)‖Lqn (BR) ≤
(

(2n̄ − 1)dn−1

2n−1

) N
(N−2)

1
qn

t
− N

(N−2)
1
qn ‖u(·, tn−1)‖

qn−1
qn

N
N−2

Lqn−1 (BR)
. (4.4.45)

Define σ := N
N−2 . Observe that, for any 1 ≤ n ≤ n̄, we have(

(2n̄ − 1)dn−1

2n−1

)σ
=

[
2n̄ − 1

2n−1

(
4m(qn−1 − 1)

(m+ qn−1 − 1)2
C2
s − 2ε

1
p−m

)−1 1

qn−1

]σ

=

2n̄ − 1

2n−1

1

4mqn−1(qn−1 − 1)

(m+ qn−1 − 1)2
C2
s − 2ε̃

1
p−m
0 qn−1


σ

,

(4.4.46)

where
2n̄ − 1

2n−1
≤ 2n̄+1 for all 1 ≤ n ≤ n̄. (4.4.47)

Consider the function

g(x) :=

[
4m(x− 1)

(m+ x− 1)2
C2
s − 2ε̃

1
p−m
0

]
x for q0 ≤ x ≤ qn̄, x ∈ R.

Observe that, thanks to the definition of σ, g(x) > 0 for any q0 ≤ x ≤ qn̄. Moreover, g
has a minimum in the interval q0 ≤ x ≤ qn̄, call it x̃. Then we have

1

g(x)
≤ 1

g(x̃)
for any q0 ≤ x ≤ qn̄, x ∈ R. (4.4.48)

Thanks to (4.4.46), (4.4.47) and (4.4.48), we can say that there exist a positive constant
C, where C = C(N,Cs, ε, n̄,m, q0), such that(

(2n̄ − 1)dn−1

2n−1

)σ
≤ C , for all 1 ≤ n ≤ n̄. (4.4.49)

By using (4.4.49) and (4.4.45) we get, for any 1 ≤ n ≤ n̄

‖u(·, tn)‖Lqn (BR) ≤ C
1
qn t
− σ
qn ‖u(·, tn−1)‖

qn−1σ

qn

Lqn−1 (BR)
. (4.4.50)

Let us set
Un := ‖u(·, tn)‖Lqn (BR).

Then (4.4.50) becomes

Un ≤ C
1
qn t
− σ
qnU

qn−1σ

qn
n−1

≤ C
1
qn t
− σ
qn

[
C

σ
qn t
−σ

2

qn U
σ2 qn−2

qn
k−2

]
≤ ...

≤ C
1
qn

∑n−1
i=0 σi

t
− σ
qn

∑n−1
i=0 σi

U
σn

q0
qn

0 .
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We define

αn :=
1

qn

n−1∑
i=0

σi, βn :=
σ

qn

n−1∑
i=0

σi = σ αn, δn := σn
q0

qn
. (4.4.51)

By substituting n with n̄ into (4.4.51) we get

αn̄ :=
N − 2

2

A

qn̄
, βn̄ :=

N

2

A

qn̄
, δn̄ := (A+ 1)

q0

qn̄
, (4.4.52)

where A :=
(

N
N−2

)n̄
− 1. Hence, in view of (4.4.40) and (4.4.52), (4.4.50) with n = n̄

yields

‖u(·, t)‖Lqn̄ (BR) ≤ C
N−2

2
A
qn̄ t
−N

2
A
qn̄ ‖u0‖

q0
A+1
qn̄

Lq0 (BR) . (4.4.53)

We have proved a smoothing estimate from q0 to qn̄. Observe that if qn̄ = q then the
thesis is proved. Now suppose that q > qn̄. Observe that q0 ≤ q < qn̄ and define

B := N(m− 1)A+ 2 q0(A+ 1).

From (4.4.53) and Lemma 4.4.1 we get, by interpolation,

‖u(·, t)‖Lq(BR) ≤ ‖u(·, t)‖θLq0 (BR)‖u(·, t)‖1−θLqn̄ (BR)

≤ ‖u0(·)‖θLq0 (BR)C t
−N A

B
(1−θ) ‖u0‖

2q0
A+1
B

(1−θ)
Lq0 (BR)

= C t−
N A
B

(1−θ) ‖u0‖
2q0

A+1
B

(1−θ)+θ
Lq0 (BR) ,

(4.4.54)

where

θ =
q0

q

(
qn̄ − q
qn̄ − q0

)
. (4.4.55)

Combining (4.4.54), (4.4.39) and (4.4.55) we get the claim, noticing that q was arbitrary
in [q0,∞).

Remark 4.4.3. One can not let q → +∞ in the above bound. In fact, one can show
that ε −→ 0 as q →∞. So in such limit the hypothesis on the norm of the initial datum
(4.2.9) is satisfied only when u0 ≡ 0.

Proposition 4.4.4. Let m > 1, p > m+ 2
N , R > 0, p0 be as in (4.2.8), u0 ∈ L∞(BR),

u0 ≥ 0. Let

r > max

{
p0,

N

2

}
, s = 1 +

2

N
− 1

r
. (4.4.56)

Suppose that (4.2.9) holds for ε0 = ε0(p,m,N,Cs, r) sufficiently small. Let u be the
solution to problem (4.3.25), such that in addition u ∈ C([0, T ), Lq(BR)) for any q ∈
(1,+∞), for any T > 0. Let M be such that inequality (4.1.2) holds. Then there exists
Γ = Γ(p,m,N, r) > 0 such that, for all t > 0,

‖u(t)‖L∞(BR) ≤ Γ t−
γ
ms

{
‖u0‖δ1Lp0 (BR) +

1

m− 1
‖u0‖δ2Lp0 (BR)

} 1
ms

‖u0‖
s−1
s

Lm(BR), (4.4.57)
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where

γ =
p

p− 1

[
1− N(p−m)

2 p r

]
, δ1 = p

p−m
m− 1

[
1 +

N(m− 1)

2 p r

]
, δ2 =

p−m
m− 1

[
1 +

N(m− 1)

2 r

]
.

(4.4.58)

Remark 4.4.5. If in Proposition 4.4.4, in addition, we assume that for some k0 > 0

max
{
‖u0‖Lm(BR); ‖u0‖Lp0 (BR)

}
≤ k0 for every R > 0 ,

then the bound from above for ‖u(t)‖L∞(BR) in (4.4.57) is independent of R.

Proof of Proposition 4.4.4. Let us set w = u(·, t). Observe that wm ∈ H1
0 (BR) and

w ≥ 0. Due to Proposition 4.3.6 we know that

−∆(wm) ≤
[
wp +

w

(m− 1)t

]
.

Observe that, since u0 ∈ L∞(BR) also w ∈ L∞(BR). Due to (4.4.56), we can apply
Proposition 4.3.4. So, we have that

‖w‖mL∞(BR) ≤
s

s− 1

(
1

Cs

) 2
s
∥∥∥∥wp +

w

(m− 1)t

∥∥∥∥ 1
s

Lr(BR)

‖wm‖
s−1
s

L1(BR)

≤ s

s− 1

(
1

Cs

) 2
s
{
‖wp‖Lr(BR) +

1

(m− 1)t
‖w‖Lr(BR)

} 1
s

‖w‖m
s−1
s

Lm(BR)

(4.4.59)
where s has been defined in (4.3.29). Thanks to (4.2.9), with an appropriate choice of
ε0, and (4.4.56) we can apply Proposition 4.4.2 with

q = pr, q0 = p0, γpr =
1

p− 1

[
1− N(p−m)

2pr

]
and δpr = δ1/p, δ1 defined in (4.4.58). Hence we obtain

‖wp‖Lr(BR) = ‖w‖pLpr(BR) ≤
[
C t−γpr‖u0‖δ1/pLp0 (BR)

]p
, (4.4.60)

where C > 0 is defined in Proposition 4.4.2. Similarly, by (4.2.9), with an appropriate
choice of ε0, and (4.4.56), we can apply Proposition 4.4.2 with

q = r, q0 = p0, γr =
1

p− 1

[
1− N(p−m)

2r

]
and δr = δ2 as defined in (4.4.58). Hence we obtain

‖w‖Lr(BR) ≤ Ct−γr‖u0‖δ2Lp0 (BR), (4.4.61)

where C > 0 is defined in Proposition 4.4.2. Plugging (4.4.60) and (4.4.61) into (4.4.59)
we obtain

‖w‖mL∞(BR) ≤
s

s− 1

(
1

Cs

) 2
s
{
‖wp‖Lr(BR) +

1

(m− 1)t
‖w‖Lr(BR)

} 1
s

‖w‖m
s−1
s

Lm(BR)

≤ s

s− 1

(
1

Cs

) 2
s
{
Cp t−p γpr‖u0‖δ1Lp0 (BR) +

1

(m− 1)t
C t−γr‖u0‖δ2Lp0 (BR)

} 1
s

‖w‖m
s−1
s

Lm(BR).
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Observe that −pγpr = −γr − 1 = γ, where γ has been defined in (4.4.58). Hence we
obtain

‖w‖mL∞(BR) ≤
s

s− 1

(
1

Cs

) 2
s

t−
γ
s

{
Cp ‖u0‖δ1Lp0 (BR) +

1

m− 1
C ‖u0‖δ2Lp0 (BR)

} 1
s

‖w‖m
s−1
s

Lm(BR).

Moreover, since u0 ∈ L∞(BR), we can apply Lemma 4.4.1 to w with q = m. Thus from
(4.4.32) with q = m we get

‖w‖mL∞(BR) ≤
s

s− 1

(
1

Cs

) 2
s

t−
γ
s

{
Cp ‖u0‖δ1Lp0 (BR) +

1

m− 1
C ‖u0‖δ2Lp0 (BR)

} 1
s

‖u0‖
m s−1

s

Lm(BR).

Finally define

Γ :=

[
s

s− 1

(
1

Cs

) 2
s

max
{
C
p
s ; C

1
s

}] 1
m

.

Hence we obtain

‖w‖L∞(BR) ≤ Γ t−
γ
ms

{
‖u0‖δ1Lp0 (BR) +

1

m− 1
‖u0‖δ2Lp0 (BR)

} 1
ms

‖u0‖
s−1
s

Lm(BR).

4.5 Proof of Theorem 4.2.2

Proof of Theorem 4.2.2. Let {u0,h}h≥0 be a sequence of functions such that

(a) u0,h ∈ L∞(M) ∩ C∞c (M) for all h ≥ 0,

(b) u0,h ≥ 0 for all h ≥ 0,

(c) u0,h1 ≤ u0,h2 for any h1 < h2,

(d) u0,h −→ u0 in Lm(M) ∩ Lp0(M) as h→ +∞ ,

where p0 has been defined in (4.2.8). Observe that, due to assumptions (c) and (d), u0,h

satisfies (4.2.9). For any R > 0, k > 0, h > 0, consider the problem
ut = ∆um + Tk(u

p) in BR × (0,+∞)

u = 0 in ∂BR × (0,∞)

u = u0,h in BR × {0} .
(4.5.62)

From standard results it follows that problem (4.5.62) has a solution uRh,k in the sense

of Definition 4.3.1; moreover, uRh,k ∈ C
(
[0, T ];Lq(BR)

)
for any q > 1. Hence, by Lemma

4.4.1, in Proposition 4.4.2 and in Proposition 4.4.4, we have for any t ∈ (0,+∞),

‖uRh,k(t)‖Lm(BR) ≤ ‖u0,h‖Lm(BR); (4.5.63)

‖uRh,k(t)‖Lp(BR) ≤ C t−γp‖u0,h‖
δp
Lp0 (BR) ; (4.5.64)
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where

γp =
1

p− 1

[
1− N(p−m)

2p

]
, δp =

p−m
p− 1

[
1 +

N(m− 1)

2p

]
,

‖uRh,k‖L∞(BR) ≤ Γ t−
γ
ms

{
‖u0,h‖δ1Lp0 (BR) +

1

m− 1
‖u0,h‖δ2Lp0 (BR)

} 1
ms

‖u0,h‖
s−1
s

Lm(BR),

(4.5.65)
with s as in (4.4.56) and γ, δ1, δ2 as in (4.4.58). In addition, for any τ ∈ (0, T ), ζ ∈
C1
c ((τ, T )), ζ ≥ 0, max[τ,T ] ζ

′ > 0,∫ T

τ
ζ(t)

[(
(uRh,k)

m+1
2
)
t

]2
dµdt ≤ max

[τ,T ]
ζ ′C̄

∫
BR

(uRh,k)
m+1(x, τ)dµ

+ C̄ max
[τ,T ]

ζ

∫
BR

F
(
uRh,k(x, T )

)
dµ

≤ max
[τ,T ]

ζ ′(t)C̄‖uRh,k(τ)‖L∞(BR)‖uRh,k(τ)‖mLm(BR)

+
C̄

m+ p
‖uRh,k(T )‖pL∞(BR)‖u

R
h,k(T )‖mLm(BR)

(4.5.66)

where

F (u) =

∫ u

0
sm−1+p ds ,

and C̄ > 0 is a constant only depending on m. Inequality (4.5.66) is formally obtained by
multiplying the differential inequality in problem (4.3.25) by ζ(t)[(um)t], and integrating
by parts; indeed, a standard approximation procedure is needed (see [49, Lemma 3.3]
and [7, Theorem 13]).

Moreover, as a consequence of Definition 4.3.1, for any ϕ ∈ C∞c (BR × [0, T ]) such
that ϕ(x, T ) = 0 for any x ∈ BR, uRh,k satisfies

−
∫ T

0

∫
BR

uRh,k ϕt dµ dt =

∫ T

0

∫
BR

(uRh,k)
m ∆ϕdµdt +

∫ T

0

∫
BR

Tk[(u
R
h,k)

p]ϕdµdt

+

∫
BR

u0,h(x)ϕ(x, 0) dµ,

(4.5.67)
where all the integrals are finite. Now, observe that, for any h > 0 and R > 0 the
sequence of solutions {uRh,k}k≥0 is monotone increasing in k hence it has a pointwise

limit for k →∞. Let uRh be such limit so that we have

uRh,k −→ uRh as k →∞ pointwise.

In view of (4.5.63), (4.5.64) and (4.5.65), the right hand side of (4.5.66) is independent

of k. So, (uRh )
m+1

2 ∈ H1((τ, T );L2(BR)). Therefore, (uRh )
m+1

2 ∈ C
(
[τ, T ];L2(BR)

)
. We

can now pass to the limit as k → +∞ in inequalities (4.5.63), (4.5.64) and (4.5.65)
arguing as follows. From inequality (4.5.63) and (4.5.64), thanks to the Fatou’s Lemma,
one has for all t > 0

‖uRh (t)‖Lm(BR) ≤ ‖u0,h‖Lm(BR). (4.5.68)
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‖uRh (t)‖Lp(BR) ≤ C t−γp‖u0,h‖
δp
Lp0 (BR) ; (4.5.69)

On the other hand, from (4.5.65), since uRh,k −→ uRh as k →∞ pointwise and the right
hand side of (4.5.65) is independent of k, one has for all t > 0

‖uRh ‖L∞(BR) ≤ Γ t−
γ
ms

{
‖u0,h‖δ1Lp0 (BR) +

1

m− 1
‖u0,h‖δ2Lp0 (BR)

} 1
ms

‖u0,h‖
s−1
s

Lm(BR),

(4.5.70)
with s as in (4.4.56) and γ, δ1, δ2 as in (4.4.58). Note that (4.5.68), (4.5.69) and (4.5.70)
hold for all t > 0, in view of the continuity property of u deduced above. Moreover,
thanks to Beppo Levi’s monotone convergence theorem, it is possible to compute the
limit as k → +∞ in the integrals of equality (4.5.67) and hence obtain that, for any
ϕ ∈ C∞c (BR × (0, T )) such that ϕ(x, T ) = 0 for any x ∈ BR, the function uRh satisfies

−
∫ T

0

∫
BR

uRh ϕt dµ dt =

∫ T

0

∫
BR

(
uRh
)m

∆ϕdµdt+

∫ T

0

∫
BR

(
uRh
)p
ϕdµdt

+

∫
BR

u0,h(x)ϕ(x, 0) dµ.

(4.5.71)

Observe that all the integrals in (4.5.71) are finite, hence uRh is a solution to problem
(4.5.62), where we replace Tk(u

p) with up itself, in the sense of Definition 4.3.1. Indeed
we have, due to (4.5.68), uRh ∈ Lm(BR× (0, T )) hence uRh ∈ L1(BR× (0, T )). Moreover,
due to (4.5.69), uRh ∈ Lp(BR × (0, T )) indeed we can write∫ T

0

∫
BR

(
uRh
)p
dµ dt =

∫ T

0
‖uRh ‖

p
Lp(BR) dt

≤
∫ T

0

(
C t−γp‖u0,h‖

δp
Lp0 (BR)

)p
dt

= Cp ‖u0,h‖
pδp
Lp0 (BR)

∫ T

0
t−pγp dt.

(4.5.72)

Now observe that the integral in (4.5.72) is finite if and only if p γp < 1 . The latter
reads p > m+ 2

N , which is guaranteed by the hypotheses of Theorem 4.2.2.
Let us now observe that, for any h > 0, the sequence of solutions {uRh }R>0 is

monotone increasing in R, hence it has a pointwise limit as R→ +∞. We call its limit
function uh so that

uRh −→ uh as R→ +∞ pointwise.

In view of (4.5.63), (4.5.64), (4.5.65), (4.5.68), (4.5.69), (4.5.70), the right hand side

of (4.5.66) is independent of k and R. So, (uh)
m+1

2 ∈ H1((τ, T );L2(M)). Therefore,

(uh)
m+1

2 ∈ C
(
[τ, T ];L2(M)

)
. Since u0 ∈ Lm(M) ∩ Lp0(M), there exists k0 > 0 and

k1 > 0 such that
‖u0h‖Lm(BR) ≤ k0 ∀ h > 0, ∀ R > 0 ,

‖u0h‖Lp0 (BR) ≤ k1 ∀ h > 0, ∀ R > 0 .
(4.5.73)

Note that, in view of (4.5.73), the norms in (4.5.68), (4.5.69) and (4.5.70) do not depend
on R (see Lemma 4.4.1, Proposition 4.4.2, Proposition 4.4.4 and Remark 4.4.5). There-
fore, we pass to the limit as R → +∞ in (4.5.68), (4.5.69) and (4.5.70). By Fatou’s
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Lemma,

‖uh(t)‖Lm(M) ≤ ‖u0,h‖Lm(M), (4.5.74)

‖uh(t)‖Lp(M) ≤ C t−γp‖u0,h‖
δp
Lp0 (M) , (4.5.75)

furthermore, since uRh −→ uh as R→ +∞ pointwise,

‖uh‖L∞(M) ≤ Γ t−
γ
ms

{
‖u0,h‖δ1Lp0 (M) +

1

m− 1
‖u0,h‖δ2Lp0 (M)

} 1
ms

‖u0,h‖
s−1
s

Lm(M), (4.5.76)

with s as in (4.4.56) and γ, δ1, δ2 as in (4.4.58). Note that (4.5.74), (4.5.75) and (4.5.76)
hold for all t > 0, in view of the continuity property of uRh deduced above.

Moreover, again by monotone convergence, it is possible to compute the limit as
R → +∞ in the integrals of equality (4.5.71) and hence obtain that, for any ϕ ∈
C∞c (M × (0, T )) such that ϕ(x, T ) = 0 for any x ∈M , the function uh satisfies,

−
∫ T

0

∫
M
uh ϕt dµ dt =

∫ T

0

∫
M

(uh)m ∆ϕdµdt+

∫ T

0

∫
M

(uh)p ϕdµdt

+

∫
M
u0,h(x)ϕ(x, 0) dµ.

(4.5.77)

Observe that, arguing as above, due to inequalities (4.5.74) and (4.5.75), all the integrals
in (4.5.77) are well posed hence uh is a solution to problem (4.1.1), where we replace
u0 with u0,h, in the sense of Definition 4.2.1. Finally, let us observe that {u0,h}h≥0 has
been chosen in such a way that

u0,h −→ u0 in Lm(M) ∩ Lp0(M).

Observe also that {uh}h≥0 is a monotone increasing function in h hence it has a
limit as h → +∞. We call u the limit function. In view (4.5.63), (4.5.64), (4.5.65),
(4.5.68), (4.5.69), (4.5.70), (4.5.74), (4.5.75) and (4.5.76) the right hand side of (4.5.66)

is independent of k,R and h. So, u
m+1

2 ∈ H1((τ, T );L2(M)). Therefore, u
m+1

2 ∈
C
(
[τ, T ];L2(M)

)
. Hence, we can pass to the limit as h→ +∞ in (4.5.74), (4.5.75) and

(4.5.76) and similarly to what we have seen above, we get

‖u(t)‖Lm(M) ≤ ‖u0‖Lm(M), (4.5.78)

‖u(t)‖Lp(M) ≤ C t−γp‖u0‖
δp
Lp0 (M) , (4.5.79)

and

‖u‖L∞(M) ≤ Γ t−
γ
ms

{
‖u0‖δ1Lp0 (M) +

1

m− 1
‖u0‖δ2Lp0 (M)

} 1
ms

‖u0‖
s−1
s

Lm(M), (4.5.80)

with s as in (4.4.56) and γ, δ1, δ2 as in (4.4.58). Note that both (4.5.78), (4.5.79) and
(4.5.80) hold for all t > 0, in view of the continuity property of u deduced above.



4.6. Estimates for p > m 115

Moreover, again by monotone convergence, it is possible to compute the limit as
h → +∞ in the integrals of equality (4.5.77) and hence obtain that, for any ϕ ∈
C∞c (M × (0, T )) such that ϕ(x, T ) = 0 for any x ∈M , the function u satisfies,

−
∫ T

0

∫
M
uϕt dµ dt =

∫ T

0

∫
M
um ∆ϕdµdt+

∫ T

0

∫
M
up ϕdµdt

+

∫
M
u0(x)ϕ(x, 0) dµ.

(4.5.81)

Observe that, due to inequalities (4.5.78) and (4.5.79), all the integrals in (4.5.81) are
finite, hence u is a solution to problem (4.1.1) in the sense of Definition 4.2.1.

Finally, let us discuss (4.2.13) and (4.2.11). Let p0 ≤ q < ∞, and observe that,
thanks to hypotheses (c) and (d), u0h satisfies hypothesis (4.2.10) for such q and q0 = p0

as u0, then we have

‖uRh,k(t)‖Lq(BR) ≤ C t−γq‖u0,h‖
δq
Lp0 (BR). (4.5.82)

Hence, due to (4.5.82), letting k → +∞, R → +∞, h → +∞, by Fatou’s Lemma we
deduce (4.2.11).

Now let 1 < q <∞. If u0 ∈ Lq(M)∩Lm(M)∩Lp0(M), we choose the sequence u0h

in such a way that it further satisfies

u0,h −→ u0 in Lq(M) as h→ +∞ ,

and observe that u0h satisfies also (4.2.12) for such q. Then we have that

‖uRh,k(t)‖Lq(BR) ≤ ‖u0,h‖Lq(BR). (4.5.83)

Hence, due to (4.5.83), letting k → +∞, R → +∞, h → +∞, by Fatou’s Lemma we
deduce (4.2.13).

4.6 Estimates for p > m

Lemma 4.6.1. Let m > 1, p > m. Assume that inequalities (4.1.3) and (4.1.2) hold.
Suppose that u0 ∈ L∞(BR), u0 ≥ 0. Let 1 < q <∞ and assume that

‖u0‖
Lp

N
2 (BR)

< ε̃1 (4.6.84)

for a suitable ε̃1 = ε̃1(p,m,N,Cp, Cs, q) sufficiently small. Let u be the solution of prob-
lem (4.3.25) in the sense of Definition 4.3.1, such that in addition u ∈ C([0, T );Lq(BR)).
Then

‖u(t)‖Lq(BR) ≤ ‖u0‖Lq(BR) for all t > 0 . (4.6.85)

Proof. Since u0 is bounded and Tk is a bounded and Lipschitz function, by standard
results, there exists a unique solution of problem (4.3.25) in the sense of Definition
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4.3.1. We now multiply both sides of the differential equation in problem (4.3.25) by
uq−1, therefore∫

BR

ut u
q−1 dµ =

∫
BR

∆(um)uq−1 dµ +

∫
BR

Tk(u
p)uq−1 dµ .

We integrate by parts. This can be justified by standard tools, by an approximation
procedure. Using the fact that T (up) ≤ up, we can write

1

q

d

dt

∫
BR

uq dµ ≤ −m(q − 1)

∫
BR

um+q−3 |∇u|2 dµ +

∫
BR

up uq−1 dµ

≤ − 4m(q − 1)

(m+ q − 1)2

∫
BR

∣∣∣∇(um+q−1
2

)∣∣∣2 dµ +

∫
BR

up+q−1 dµ.

(4.6.86)

Now we take c1 > 0, c2 > 0 such that c1 + c2 = 1. Thus∫
BR

∣∣∣∇(um+q−1
2

)∣∣∣2 dµ = c1

∥∥∥∇(um+q−1
2

)∥∥∥2

L2(BR)
+c2

∥∥∥∇(um+q−1
2

)∥∥∥2

L2(BR)
. (4.6.87)

Take any α ∈ (0, 1). Thanks to (4.1.3), (4.6.87) becomes∫
BR

∣∣∣∇(um+q−1
2

)∣∣∣2 dµ ≥ c1C
2
p ‖u‖

m+q−1
Lm+q−1(BR)

+ c2

∥∥∥∇(um+q−1
2

)∥∥∥2

L2(BR)

≥ c1C
2
p ‖u‖

m+q−1
Lm+q−1(BR)

+ c2

∥∥∥∇(um+q−1
2

)∥∥∥2+2α−2α

L2(BR)

≥ c1C
2
p ‖u‖

m+q−1
Lm+q−1(BR)

+ c2C
2α
p ‖u‖

α(m+q−1)
Lm+q−1(BR)

∥∥∥∇(um+q−1
2

)∥∥∥2−2α

L2(BR)
.

(4.6.88)
Moreover, using the interpolation inequality, Hölder inequality and (4.1.2), we have∫
BR

up+q−1 dµ, = ‖u‖p+q−1
Lp+q−1

≤ ‖u‖θ(p+q−1)
Lm+q−1(BR)

‖u‖(1−θ)(p+q−1)
Lp+m+q−1(BR)

≤ ‖u‖θ(p+q−1)
Lm+q−1(BR)

[
‖u‖

(1−θ) p
p+m+q−1

Lp
N
2 (BR)

‖u‖
(1−θ) m+q−1

p+m+q−1

L
(m+q−1) N

N−2 (BR)

]p+q−1

≤ ‖u‖θ(p+q−1)
Lm+q−1(BR)

‖u‖
(1−θ) p(p+q−1)

p+m+q−1

Lp
N
2 (BR)

(
1

Cs

∥∥∥∇(um+q−1
2

)∥∥∥
L2(BR)

)2(1−θ) p+q−1
p+m+q−1

(4.6.89)

where θ := m(m+q−1)
p(p+q−1) . By plugging (4.6.88) and (4.6.89) into (4.6.86) we obtain

1

q

d

dt
‖u(t)‖qLq(BR) ≤ −

4m(q − 1)

(m+ q − 1)2
c1C

2
p ‖u(t)‖m+q−1

Lm+q−1(BR)

− 4m(q − 1)

(m+ q − 1)2
c2C

2α
p ‖u(t)‖α(m+q−1)

Lm+q−1(BR)

∥∥∥∇(um+q−1
2

)∥∥∥2−2α

L2(BR)

+ C̃‖u(t)‖θ(p+q−1)
Lm+q−1(BR)

‖u(t)‖
(1−θ) p(p+q−1)

p+m+q−1

Lp
N
2 (BR)

∥∥∥∇(um+q−1
2

)∥∥∥2(1−θ) p+q−1
p+m+q−1

L2(BR)

(4.6.90)
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where

C̃ =

(
1

Cs

)2(1−θ) p+q−1
p+m+q−1

. (4.6.91)

Let us now fix α ∈ (0, 1) such that

2− 2α = 2(1− θ)
(

p+ q − 1

p+m+ q − 1

)
.

Hence we have
α =

m

p
. (4.6.92)

By substituting (4.6.92) into (4.6.90) we obtain

1

q

d

dt
‖u(t)‖qLq(BR) ≤ −

4m(q − 1)

(m+ q − 1)2
c1C

2
p ‖u(t)‖m+q−1

Lm+q−1(BR)

− 1

C̃

{
4m(q − 1)C

(m+ q − 1)2
− ‖u(t)‖

p(p+q−1)−m(m+q−1)
p+m+q−1

Lp
N
2 (BR)

}
× ‖u(t)‖α(m+q−1)

Lm+q−1(BR)

∥∥∥∇(um+q−1
2

)∥∥∥2−2α

L2(BR)
,

(4.6.93)

where C has been defined in Remark 4.2.6. Observe that, thanks to hypothesis (4.6.84)
and the continuity of the solution u(t), there exists t0 > 0 such that

‖u(t)‖
Lp

N
2 (BR)

≤ 2 ε̃1 for any t ∈ (0, t0] .

Hence (4.6.93) becomes, for any t ∈ (0, t0]

1

q

d

dt
‖u(t)‖qLq(BR) ≤ −

4m(q − 1)

(m+ q − 1)2
c1C

2
p ‖u(t)‖m+q−1

Lm+q−1(BR)

− 1

C̃

{
4m(q − 1)C

(m+ q − 1)2
− 2ε̃

p(p+q−1)−m(m+q−1)
p+m+q−1

1

}
‖u(t)‖α(m+q−1)

Lm+q−1(BR)

∥∥∥∇(um+q−1
2

)∥∥∥2−2α

L2(BR)

≤ 0 ,

provided ε̃1 is small enough. Hence we have proved that ‖u(t)‖Lq(BR) is decreasing in
time for any t ∈ (0, t0], i.e.

‖u(t)‖Lq(BR) ≤ ‖u0‖Lq(BR) for any t ∈ (0, t0] . (4.6.94)

In particular, inequality (4.6.94) holds q = pN2 . Hence we have

‖u(t)‖
Lp

N
2 (BR)

≤ ‖u0‖
Lp

N
2 (BR)

< ε̃1 for any t ∈ (0, t0] .

Now, we can repeat the same argument in the time interval (t0, t1] where t1 is chosen,
thanks to the continuity of u(t), in such a way that

‖u(t)‖ ≤ 2 ε̃1 for any t ∈ (t0, t1] .

Thus we get
‖u(t)‖Lq(BR) ≤ ‖u0‖Lq(BR) for any t ∈ (0, t1] .

Iterating this procedure we obtain the thesis.
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Proposition 4.6.2. Let m > 1, p > m, R > 0, u0 ∈ L∞(BR), u0 ≥ 0. Let

r >
N

2
, s = 1 +

2

N
− 1

r
. (4.6.95)

Suppose that (4.2.18) holds for ε1 = ε1(p,m,N, r, Cs, Cp) sufficiently small. Let u be
the solution to problem (4.3.25), such that in addition u ∈ C([0, T );Lq(BR)) for any
1 < q < +∞ and T > 0. Let M support the Sobolev and Poincaré inequalities (4.1.2)
and (4.1.3). Then there exists Γ = Γ(N,m, l, Cs) > 0 independent of T such that, for
all t > 0,

‖u(t)‖L∞(BR) ≤ Γ ‖u0‖
s−1
s

Lm(BR)

[
‖u0‖pLpr(BR) +

1

(m− 1)t
‖u0‖Lr(BR)

] 1
ms

. (4.6.96)

Remark 4.6.3. If in Proposition 4.6.2, in addition, we assume that for some k0 > 0

max
{
‖u0‖Lm(BR); ‖u0‖Lpr(BR); ‖u0‖Lr(BR)

}
≤ k0 for every R > 0 ,

then the bound from above for ‖u(t)‖L∞(BR) in (4.6.96) is independent of R.

Proof of Proposition 4.6.2. Let us set w = u(·, t). Observe that wm ∈ H1
0 (BR) and

w ≥ 0. Due to Proposition 4.3.6 we know that

−∆(wm) ≤
[
wp +

w

(m− 1)t

]
.

Observe that, since u0 ∈ L∞(BR) also w ∈ L∞(BR). Due to (4.6.95), we can apply
Proposition 4.3.4, so we have that

‖w‖mL∞(BR) ≤
s

s− 1

(
1

Cs

) 2
s
∥∥∥∥wp +

w

(m− 1)t

∥∥∥∥ 1
s

Lr(BR)

‖wm‖
s−1
s

L1(BR)
.

Therefore

‖w‖mL∞(BR) ≤
s

s− 1

(
1

Cs

) 2
s
{
‖wp‖Lr(BR) +

1

(m− 1)t
‖w‖Lr(BR)

} 1
s

‖w‖m
s−1
s

Lm(BR),

(4.6.97)
where s has been defined in (4.6.95). In view of (4.2.18) with a suitable ε1, since
u0 ∈ L∞(BR), we can apply Lemma 4.6.1. Hence we obtain

‖wp‖Lr(BR) = ‖w‖pLpr(BR) ≤ ‖u0‖pLpr(BR). (4.6.98)

Similarly, again for an appropriate ε1 in (4.2.18), since u0 ∈ L∞(BR), we can apply
Lemma 4.6.1 and obtain

‖w‖Lr(BR) ≤ ‖u0‖Lr(BR). (4.6.99)

Plugging (4.6.98) and (4.6.99) into (4.6.97) we obtain

‖w‖mL∞(BR) ≤
s

s− 1

(
1

Cs

) 2
s
{
‖w‖pLpr(BR) +

1

(m− 1)t
‖w‖Lr(BR)

} 1
s

‖w‖m
s−1
s

Lm(BR)

≤ s

s− 1

(
1

Cs

) 2
s
{
‖u0‖pLpr(BR) +

1

(m− 1)t
‖u0‖Lr(BR)

} 1
s

‖w‖m
s−1
s

Lm(BR).
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Moreover, since u0 ∈ L∞(BR), we can apply Lemma 4.6.1 to w with q = m. Thus from
(4.6.85) with q = m we get

‖w‖L∞(BR) ≤

[
s

s− 1

(
1

Cs

) 2
s

] 1
m

‖u0‖
s−1
s

Lm(BR)

[
‖u0‖pLpr(BR) +

1

(m− 1)t
‖u0‖Lr(BR)

] 1
ms

.

(4.6.100)
We define

Γ :=

[
s

s− 1

(
1

Cs

) 2
s

] 1
m

. (4.6.101)

Then from (4.6.100) we get

‖w‖L∞(BR) ≤ Γ‖u0‖
s−1
s

Lm(BR)

[
‖u0‖pLpr(BR) +

1

(m− 1)t
‖u0‖Lr(BR)

] 1
ms

.

Proof of Theorem 4.2.5. The proof of Theorem 4.2.5 follows the same line of arguments
of that of Theorem 4.2.2, with minor differences. Let {u0,h}h≥0 be a family of functions
such that

(a) u0,h ∈ L∞(M) ∩ C∞c (M) for all h ≥ 0,

(b) u0,h ≥ 0 for all h ≥ 0,

(c) u0,h1 ≤ u0,h2 for any h1 < h2,

(d) u0,h −→ u0 in Lθ(M) ∩ Lpr(M) where θ := min{m, r} as h→ +∞ ,

Observe that, due to assumptions (c) and (d), u0,h satisfies (4.2.18) for an appropriate
ε1 sufficiently small. Moreover, thanks by interpolation, since m < p < pr, we have

u0,h −→ u0 in Lp(M) as h→ +∞ .

For any R > 0, k > 0, h > 0, consider the problem
ut = ∆um + Tk(u

p) in BR × (0,+∞)

u = 0 in ∂BR × (0,∞)

u = u0,h in BR × {0} .
(4.6.102)

From standard results it follows that problem (4.6.102) has a solution uRh,k in the sense

of Definition 4.3.1; moreover, uRh,k ∈ C
(
[0, T ];Lq(BR)

)
for any q > 1. Hence, it satisfies

the inequalities in Lemma 4.6.1 and in Proposition 4.6.2, i.e., for any t ∈ (0,+∞),

‖uRh,k(t)‖Lm(BR) ≤ ‖u0,h‖Lm(BR);

‖uRh,k(t)‖Lp(BR) ≤ ‖u0,h‖Lp(BR);

‖uRh,k‖L∞(BR) ≤ Γ ‖u0,h‖
s−1
s

Lm(BR)

[
‖u0,h‖pLpr(BR) +

1

(m− 1)t
‖u0,h‖Lr(BR)

] 1
ms

,
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with r and s as in (4.6.95) and Γ as in (4.6.101). Arguing as in the proof of Theorem
(4.2.13), we can pass to the limit as k → +∞, R → +∞, h → ∞ obtaining a function
u, which satisfies

‖u(t)‖Lm(M) ≤ ‖u0‖Lm(M), (4.6.103)

‖u(t)‖Lp(M) ≤ ‖u0‖Lp(M), (4.6.104)

and

‖u‖L∞(M) ≤ Γ ‖u0‖
s−1
s

Lm(M)

[
‖u0‖pLpr(M) +

1

(m− 1)t
‖u0‖Lr(M)

] 1
ms

, (4.6.105)

with r and s as in (4.6.95) and Γ as in (4.6.101). Moreover, for any ϕ ∈ C∞c (M× (0, T ))
such that ϕ(x, T ) = 0 for any x ∈M , the function u satisfies

−
∫ T

0

∫
M
uϕt dµ dt =

∫ T

0

∫
M
um ∆ϕdµdt+

∫ T

0

∫
M
up ϕdµdt

+

∫
M
u0(x)ϕ(x, 0) dµ.

(4.6.106)

Observe that, due to inequalities (4.6.103), (4.6.104) and (4.6.105), all the integrals in
(4.6.106) are finite, hence u is a solution to problem (4.1.1) in the sense of Definition
4.2.1. Finally, using hypothesis (4.2.19), inequality (4.2.20) can be derived exactly as
(4.2.13).

4.7 Proofs of Theorems 4.2.8 and 4.2.9

We use the following Aronson-Benilan type estimate (see [6]; see also [118, Proposition
2.3]); it can be shown exactly as Proposition 4.3.6.

Proposition 4.7.1. Let m > 1, p > m, u0 ∈ H1
0 (BR) ∩ L∞(BR), u0 ≥ 0. Let u be the

solution to problem (4.7.107). Then, for a.e. t ∈ (0, T ),

−∆um(·, t) ≤ ρup(·, t) +
ρ

(m− 1)t
u(·, t) in D′(BR).

For any R > 0, consider the following approximate problem
ρ(x)ut = ∆um + ρ(x)up in BR × (0, T )

u = 0 in ∂BR × (0, T )

u = u0 in BR × {0} ,
(4.7.107)

where BR denotes the Euclidean ball with radius R and centre in the origin O.

We exploit the following estimate, which can be proved as that in Lemma 4.4.1.

Lemma 4.7.2. Let

m > 1, p > m+
2

N
.
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Suppose that inequality (4.1.6) holds. Suppose that u0 ∈ L∞(BR), u0 ≥ 0. Let 1 < q <
∞, p0 be as in (4.2.8) and assume that

‖u0‖Lp0ρ (BR) < ε̄,

for ε̄ = ε̄(p,m,Cs, q) small enough. Let u be the solution of problem (4.7.107), such that
in addition u ∈ C([0, T ), Lqρ(BR)) for any q ∈ (1,+∞), for any T > 0. Then

‖u(t)‖Lqρ(BR) ≤ ‖u0‖Lqρ(BR) for all t > 0 .

The following smoothing estimate is also used; the proof is the same as that of
Proposition 4.4.2.

Proposition 4.7.3. Let

m > 1, p > m+
2

N
,

Assume (4.2.23) and (4.1.6). Suppose that u0 ∈ L∞(BR), u0 ≥ 0. Let u be the solu-
tion of problem (4.7.107), such that in addition u ∈ C([0, T ), Lqρ(BR)) for any q ∈
(1,+∞), for any T > 0. Assume that (4.2.9) holds for ε0 = ε0(p,m,N, r, Cs) suffi-
ciently small. There exists C(m, q0, Cs, ε,N, q) > 0 such that

‖u(t)‖Lqρ(BR) ≤ C t−γq‖u0‖
δq

L
q0
ρ (BR)

for all t > 0 ,

where

γq =

(
1

q0
− 1

q

)
N q0

2 q0 +N(m− 1)
; δq =

q0

q

(
q + N

2 (m− 1)

q0 + N
2 (m− 1)

)
.

Proof of Theorem 4.2.8. The conclusion follows by repeating the same arguments as in
the proof of Theorem 4.2.2. We use Lemma 4.7.2 instead of Lemma 4.4.1, Proposition
4.7.3 instead of 4.4.2 and Proposition 4.7.1 instead of Proposition 4.3.6.

4.7.1 Proof of Theorem 4.2.9

We consider problem (4.7.107). We use the following estimate, which can be proved as
that in Lemma 4.6.1.

Lemma 4.7.4. Let
m > 1, p > m.

Assume that (4.1.6) and (4.1.7) hold. Suppose that u0 ∈ L∞(BR), u0 ≥ 0. Let 1 < q <
∞ and assume that and assume that

‖u0‖
Lp

N
2 (BR)

< ε̃1

for a suitable ε̃1 = ε̃1(p,m,N,Cp, Cs, q) sufficiently small. Let u be the solution of prob-
lem (4.7.107), such that in addition u ∈ C([0, T ), Lq(BR)) for any q ∈ (1,+∞), for any T >
0. Then

‖u(t)‖Lq(BR) ≤ ‖u0‖Lq(BR) for all t > 0 .

Proof of Theorem 4.2.9. The conclusion follows arguing step by step as in the proof of
Theorem 4.2.5. We use Lemma 4.7.4 instead of Lemma 4.6.1 and Proposition 4.7.1
instead of Proposition 4.3.6.
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Chapter 5

Global existence and smoothing
estimates for p < m

5.1 Introduction

Let M be a complete noncompact Riemannian manifold of infinite volume, whose di-
mension N will be required throughout the chapter to satisfy the bound N ≥ 3. Let us
consider the following Cauchy problem, for any T > 0{

ut = ∆um + up in M × (0, T )

u = u0 in M × {0}
(5.1.1)

where ∆ is the Laplace-Beltrami operator. We shall assume throughout this chapter
that 1 < p < m and that the initial datum u0 is nonnegative. We let Lq(M) be as
usual the space of those measurable functions f such that |f |q is integrable w.r.t. the
Riemannian measure µ and make the following basic assumptions on M , which amount
to assuming the validity of both the Poincaré and the Sobolev inequalities on M :

(Poincaré inequality) ‖v‖L2(M) ≤
1

Cp
‖∇v‖L2(M) for any v ∈ C∞c (M); (5.1.2)

(Sobolev inequality) ‖v‖L2∗ (M) ≤
1

Cs
‖∇v‖L2(M) for any v ∈ C∞c (M), (5.1.3)

where Cp and Cs are numerical constants and 2∗ := 2N
N−2 . The validity of (5.1.2),

(5.1.3) puts constraints on M , and we comment that it is e.g. well known that, on
Cartan-Hadamard manifolds, namely complete and simply connected manifolds that
have everywhere non-positive sectional curvature, (5.1.3) always holds. Furthermore,
when M is Cartan-Hadamard and, besides, sec ≤ −c < 0 everywhere, sec indicating
sectional curvature, it is known that (5.1.2) holds as well, see e.g. [39, 40]. Thus,
both (5.1.2), (5.1.3) hold when M is Cartan-Hadamard and sec≤ −c < 0 everywhere,
a case that strongly departs from the Euclidean situation but covers a wide class of
manifolds, including e.g. the fundamental example of the hyperbolic space Hn, namely
that Cartan-Hadamard manifold whose sectional curvatures equal -1 everywhere (or the
similar case in which sec = −k everywhere, for a given k > 0).

123
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In Chapter 4, (where [46] is reproduced), problem (5.1.1) has been studied when
p > m. We refer the reader Section 4.1 for a comprehensive account of the literature.

5.1.1 Qualitative statements of main results in the manifold setting

We extend here the results of [54] in two substantial aspects. In fact, we summarize our
main results as follows.

• The methods of [54] rely heavily on explicit barrier arguments, that by their very
same nature are applicable to compactly supported data only and, in addition,
require explicit curvature bounds in order to be applicable. We prove here global
existence for Lm data and prove smoothing effects for solutions to (5.1.1), where
by smoothing effect we mean the fact that Lm data give rise to global solutions
u(t) such that u(t) ∈ L∞ for all t > 0, with quantitative bounds on their L∞

norm. This will be a consequence only of the validity of Sobolev and Poincaré
inequalities (5.1.3), (5.1.2), see Theorem 5.2.2.

• As a consequence, combining this fact with some results proved in [54], we can
prove that, on manifolds satisfying e.g. −c1 ≤ sec ≤ −c2 with c1 ≥ c2 > 0,
thus encompassing the particularly important case of the hyperbolic space Hn

(somewhat weaker lower curvature bounds can be assumed), any solution u(t) to
(5.1.1) corresponding to an initial datum u0 ∈ Lm exists globally and, provided
u0 is sufficiently large, it satisfies the property

lim
t→+∞

u(x, t) = +∞ ∀x ∈M,

namely complete blowup in infinite time occurs for such solutions to (5.1.1) in the
whole range p ∈ (1,m), see Theorem 5.2.3.

Our results can also be seen as an extension of some of the results proved in [118].
However, the proof of the smoothing estimate given in [118, Theorem 1.3] is crucially
based on the assumption that the measure of the domain where the problem is posed is
finite. This is not true in our setting. So, even if we use some general idea introduced
in [118], our proofs and results are in general quite different from those in [118].

For detailed reference to smoothing effect for linear evolution equations see [19],
whereas we refer to [127] for a general treatment of smoothing effects for nonlinear
diffusions, and to [12, 49, 48] for connections with functional inequalities in the nonlinear
setting.

We mention phenomena similar to the ones discussed in the present chapter occur
in qualitatively related but different settings. For example, we mention that solutions
to the heat equation with Dirichlet boundary conditions in a twisted tube (namely a
straight tube in R3 whose cross-section is twisted in a given compact region) give rise to
smoothing estimates that are stronger for large times than the ones corresponding to the
untwisted situation, i.e. the geometry improves the smoothing effects, see [79, 78, 44].
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5.1.2 Qualitative statements of main results for Euclidean, weighted
reaction-diffusion equations

The main result given in Theorem 5.2.2 depend essentially only on the validity of in-
equalities (5.1.2) and (5.1.3), and as such is almost immediately generalizable to different
contexts. As a particularly significant situation, we single out the case of Euclidean,
mass-weighted reaction diffusion equations. In fact we consider the problem{

ρ ut = ∆um + ρ up in RN × (0, T )

u = u0 in RN × {0},
(5.1.4)

in the Euclidean setting, where ρ : RN → R is strictly positive, continuous and bounded,
and represents a mass density . The problem is naturally posed in the weighted spaces

Lqρ(RN ) =

{
v : RN → R measurable , ‖v‖Lqρ :=

(∫
RN

vqρ(x) dx

)1/q

< +∞

}
,

This kind of models originates in a physical model provided in [73]. There are choices
of ρ ensuring that the following analogues of (5.1.2) and (5.1.3) hold:

‖v‖L2
ρ(RN ) ≤

1

Cp
‖∇v‖L2(RN ) for any v ∈ C∞c (RN ) (5.1.5)

and

‖v‖L2∗
ρ (RN ) ≤

1

Cs
‖∇v‖L2(RN ) for any v ∈ C∞c (RN ) (5.1.6)

for suitable positive constants. In fact, in order to make a relevant example, if ρ(x) �
|x|−a for a suitable a > 0, it can be shown that (5.1.5) holds if a ≥ 2 (see e.g. [49] and
references therein), whereas also (5.1.6) is obviously true for any a > 0 because of the
validity of the usual, unweighted Sobolev inequality and of the assumptions on ρ. Of
course more general cases having a similar nature but where the analogue of (5.1.6) is
not a priori trivial, could be considered, but we focus on that example since it is widely
studied in the literature and because of its physical significance.

In [86, 87] a large class of nonlinear reaction-diffusion equations, including in partic-
ular problem (5.1.4) under certain conditions on ρ, is investigated. It is proved that a
global solution exists, (see [86, Theorem 1]) provided that ρ(x) = |x|−a with a ∈ (0, 2),

p > m+
2− a
N − a

,

and u0 ≥ 0 is small enough. In addition, a smoothing estimate holds. On the other
hand, if ρ(x) = |x|−a or ρ(x) = (1 + |x|)−a with a ∈ [0, 2), u0 6≡ 0 and

1 < p < m+
2− a
N − a

,

then any nonnegative solution blows up in a suitable sense. Such results have also been
generalized to more general initial data, decaying at infinity with a certain rate (see



126 CHAPTER 5. Global existence and smoothing estimates for p < m

[87]). Finally, in [86, Theorem 2], it is shown that if p > m, ρ(x) = (1 + |x|)−a with
a > 2, and u0 is small enough, a global solution exists.

Problem (5.1.4) has also been studied in [92], [93], by constructing and using suitable
barriers, initial data being continuous and compactly supported. In particular, in [92]
the case that ρ(x) � |x|−a for |x| → +∞ with a ∈ (0, 2) is addressed. It is proved that
for any p > 1, if u0 is large enough, then blowup occurs. On the other hand, if p > p̄, for
a certain p̄ > m depending on m, p and ρ, and u0 is small enough, then global existence
of bounded solutions prevails. Moreover, in [93] the case that a ≥ 2 is investigated. For
a = 2, blowup is shown to occur when u0 is big enough, whereas global existence holds
when u0 is small enough. For a > 2 it is proved that if p > m, u0 ∈ L∞loc(RN ) and
goes to 0 at infinity with a suitable rate, then there exists a global bounded solution.
Furthermore, for the same initial datum u0, if 1 < p < m, then there exists a global
solution, which could blow up as t→ +∞ .

Our main results in this setting can be summarized as follows.

• We prove in Theorem 5.2.5 global existence and smoothing effects for solutions
to (5.1.4), assuming that the weight ρ : RN → R is strictly positive, smooth and
bounded, so that (5.1.6) necessarily holds, and assuming the validity of (5.1.5).
In particular, Lm data give rise to global solutions u(t) such that u(t) ∈L∞ for
all t > 0, with quantitative bounds on their L∞ norm. By constructing a specific,
delicate example, we show in Proposition 5.6.6 that the bound on the L∞ norm
(which involves a quantity diverging as t → +∞) is qualitatively sharp, in the
sense that there are examples of weights for which our running assumption holds
and for which blow-up of solutions in infinite time holds pointwise everywhere (we
refer to this property by saying that complete blowup in infinite time occurs). We
also prove, by similar methods which follow the lines of [118], different smoothing
effects which are stronger for large times, when ρ is in addition assumed to be
integrable, see Theorem 5.2.6.

Let us mention that the results in [93] for 1 < p < m are improved here in various
directions. In fact, now we consider a larger class of initial data u0, since we do not
require that they are locally bounded; moreover, in [93] no smoothing estimates are
addressed. Furthermore, the fact that for integrable weights ρ we have global existence
of bounded solutions does not have a counterpart in [93], nor has the blowup results in
infinite time.

5.1.3 On some open problems

As stated above, the present chapter settles the problem of global existence of solutions
to problem (5.1.1) on manifolds M supporting both the Sobolev and the Poincaré in-
equalities, in the case 1 < p < m and for data belonging to Lm(M). It is also shown that
solutions corresponding to such data are bounded for all t > 0, with quantitative bounds
on the L∞(M) norm of solutions for all t > 0. We also settle the long-time behaviour
of solutions to problem (5.1.1) on manifolds M whose curvature is pinched between two
strictly negative constants, where 1 < p < m and data belong to Lm(M), showing that
they blowup pointwise in infinite time. The following questions are however open for
further investigation:
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• Does similar results hold for data in Lebesgue spaces Lq(M) with q 6= m? The
present method of proof does not extend to such data.

• Do all initial data in Lq(M) blow up in infinite time, or the long-time asymptotic
of small data is different?

5.1.4 Organizazion of the chapter

In Section 5.2 we collect the relevant definitions and state our main results, both in the
setting of Riemannian manifolds and in the Euclidean, weighted case. In Section 5.3
we prove some crucial results for an auxiliary elliptic problem, that will then be used in
Section 5.4 to show bounds on the Lp norms of solutions to certain evolution problems
posed on geodesic balls. In Section 5.5 we conclude the proof of our main results for
the case of reaction-diffusion problems on manifolds. In Section 5.6 we briefly comment
on the adaptation to be done to deal with the weighted Euclidean case, and prove the
additional results valid in the case of an integrable weight. We also discuss there a
delicate example showing that complete blowup in infinite time may occur under the
running assumptions.

5.2 Preliminaries and statement of main results

We first define the concept of solution to (5.1.1) that we shall use hereafter. It will be
meant in the very weak, or distributional, sense.

Definition 5.2.1. Let M be a complete noncompact Riemannian manifold of infinite
volume. Let 1 < p < m and u0 ∈ Lm(M), u0 ≥ 0. We say that the function u is a
solution to problem (5.1.1) in the time interval [0, T ) if

u ∈ Lm(M × (0, T )) ,

and for any ϕ ∈ C∞c (M × [0, T ]) such that ϕ(x, T ) = 0 for any x ∈ M , u satisfies the
equality:

−
∫ T

0

∫
M
uϕt dµ dt =

∫ T

0

∫
M
um ∆ϕdµdt +

∫ T

0

∫
M
up ϕdµdt

+

∫
M
u0(x)ϕ(x, 0) dµ.

Theorem 5.2.2. Let M be a complete, noncompact manifold of infinite volume such
that the Poincaré and Sobolev inequalities (5.1.2) and (5.1.3) hold on M . Let 1 < p < m
and u0 ∈ Lm(M), u0 ≥ 0. Then problem (5.1.1) admits a solution for any T > 0, in
the sense of Definition 5.2.1. Moreover for any T > τ > 0 one has u ∈ L∞(M × (τ, T ))
and there exist numerical constants c1, c2 > 0, independent of T , such that, for all t > 0
one has

‖u(t)‖L∞(M) ≤ c1e
c2t

‖u0‖
2m

2m+N(m−p)
Lm(M) +

‖u0‖
2m

2m+N(m−1)

Lm(M)

t
N

2m+N(m−1)

 . (5.2.7)
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Besides, if q > 1 and u0 ∈ Lq(M) ∩ Lm(M), then there exists C(q) > 0 such that

‖u(t)‖Lq(M) ≤ eC(q)t‖u0‖Lq(M) for all t > 0 . (5.2.8)

One may wonder whether the upper bound in (5.2.7) is qualitatively sharp, since
its r.h.s. involves a function of time that tends to +∞ as t → +∞. This is indeed
the case, since there is a wide class of situations covered by Theorem 5.2.2 in which
classes of solutions do indeed satisfy ‖u(t)‖∞ → +∞ as t → +∞ and show even the
much stronger property of blowing up pointwise everywhere in infinite time. In fact, as
a direct consequence of Theorem 5.2.2, of known geometrical conditions for the validity
of (5.1.2) and (5.1.3), and of some results given in [54], we can prove the following
result. We stress that this property has no Euclidean analogue for the corresponding
reaction-diffusion problem.

Theorem 5.2.3. Let M be a Cartan-Hadamard manifold and let sec denote sectional
curvature, Rico denote the Ricci tensor in the radial direction with respect to a given
pole o ∈ M . Assume that the following curvature bounds hold everywhere on M , for
suitable k1 ≥ k2 > 0:

Rico(x) ≥ −k1; sec ≤ −k2 .

Then the results of Theorem 5.2.2 hold. Besides, consider any nonnegative solution u to
(5.1.1) corresponding to an initial datum u0 ∈ Lm(M) which is sufficiently large in the
sense that u0 ≥ v0 for a suitable nonnegative and sufficiently large function v0 ∈ C0

c (M).
Then u satisfies

lim
t→+∞

u(x, t) = +∞ ∀x ∈M.

Observe that, as it will appear from the proof, for the function v0 in Theorem 5.2.3
we require that v0 > 0 in a geodesic ball BR with R > 0 and m := infBR v0 both
sufficiently large.

5.2.1 Weighted reaction-diffusion equations in the Euclidean space

As mentioned in the Introduction, the methods used in proving Theorem 5.2.2 are
general enough, being based on functional inequalities only, to be easily generalized to
different contexts. We single out here the one in which reaction-diffusion equations are
considered in the Euclidean setting, but in which diffusion takes place in a medium
having a nonhomogeneous density, see e.g. [73], [86], [87], [88] and references quoted
therein.

We consider a weight ρ : RN → R such that

ρ ∈ C(RN ) ∩ L∞(RN ), ρ(x) > 0 for any x ∈ RN , (5.2.9)

and the associated weighted Lebesgue spaces

Lqρ(RN ) = {v : RN → R measurable | ‖v‖Lqρ < +∞},

where ‖v‖Lqρ :=
∫
RN ρ(x) |v(x)|q dx.Moreover, we assume that ρ is such that the weighted

Poincaré inequality (5.1.5) holds. By construction and by the assumptions in (5.2.9) it
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follows that the weighted Sobolev inequality (5.1.6) also holds, as a consequence of the
usual Sobolev inequality in RN and of (5.2.9).

Moreover, we let u0 : RN → R be such that

u0 ∈ Lmρ (RN ), u0(x) ≥ 0 for a.e. x ∈ RN

and consider, for any T > 0 and for any 1 < p < m, problem (5.1.4).

The definition of solution we use will be again the very weak one, adapted to the
present case.

Definition 5.2.4. Let 1 < p < m and u0 ∈ Lmρ (RN ), u0 ≥ 0. Let the weight ρ satisfy
(5.2.9). We say that the function u is a solution to problem (5.1.4) in the interval [0, T )
if

u ∈ Lmρ (RN × (0, T ))

and for any ϕ ∈ C∞c (RN × [0, T ]) such that ϕ(x, T ) = 0 for any x ∈ RN , u satisfies the
equality:

−
∫ T

0

∫
RN

uϕt ρ(x) dx dt =

∫ T

0

∫
RN

um ∆ϕdx dt +

∫ T

0

∫
RN

up ϕρ(x) dx dt

+

∫
RN

u0(x)ϕ(x, 0) ρ(x) dx.

(5.2.10)

Theorem 5.2.5. Let ρ satisfy (5.2.9) and assume that the weighted Poincaré inequality
(5.1.5) holds. Let 1 < p < m and u0 ∈ Lmρ (RN ), u0 ≥ 0. Then problem (5.1.4) admits
a solution for any T > 0, in the sense of Definition 5.2.4. Moreover for any T > τ > 0
one has u ∈ L∞(RN×(τ, T )) and there exist numerical constants c1, c2 > 0, independent
of T , such that, for all t > 0 one has

‖u(t)‖L∞(RN ) ≤ c1e
c2t

‖u0‖
2m

2m+N(m−p)
Lmρ (RN )

+
‖u0‖

2m
2m+N(m−1)

Lmρ (RN )

t
N

2m+N(m−1)

 . (5.2.11)

Besides, if q > 1 and u0 ∈ Lqρ(RN ) ∩ Lmρ (RN ), then there exists C(q) > 0 such that

‖u(t)‖Lqρ(RN ) ≤ eC(q)t‖u0‖Lqρ(RN ) for all t > 0 .

Finally, there are examples of weights satisfying the assumptions of the present The-
orem and such that sufficiently large initial data u0 give rise to solutions u(x, t) blowing
up pointwise everywhere in infinite time, i.e. such that limt→+∞ u(x, t) = +∞ for all
x ∈ RN , so that in particular ‖u(t)‖∞ → +∞ as t → +∞ and hence the upper bound
in (5.2.11) is qualitatively sharp. One can take e.g. ρ � |x|−2 as |x| → +∞ for this to
hold.

In the case of integrable weights one can adapt the methods of [118] to prove a
stronger result.
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Theorem 5.2.6. Let ρ satisfy (5.2.9) and ρ ∈ L1(RN ). Let 1 < p < m and u0 ∈
L1
ρ(RN ), u0 ≥ 0. Then problem (5.1.4) admits a solution for any T > 0, in the sense of

Definition 5.2.4. Moreover for any T > τ > 0 one has u ∈ L∞(RN × (τ, T )) and there
exists C = C(m, p,N, ‖ρ‖L1(RN )) > 0, independent of the initial datum u0, such that,
for all t > 0, one has

‖u(t)‖L∞(RN ) ≤ C

{
1 +

[
1

(m− 1)t

] 1
m−1

}
. (5.2.12)

Remark 5.2.7. • The bound (5.2.12) cannot be replaced by a similar one in which
the r.h.s. is replaced by C

(m−1)t , that would entail ‖u(t)‖∞ → 0 as t → +∞, as
customary e.g. in the case of solutions to the Porous Medium Equation posed in
bounded, Euclidean domains (see [128]). In fact, it is possible that stationary,
bounded solutions to (5.1.4) exist, provided a positive bounded solution U to the
equation

−∆U = ρUa (5.2.13)

exists, where a = p/m < 1. If this fact holds, V := U
1
m is a stationary, bounded,

positive solution to the differential equation in (5.1.4), whose L∞ norm is of course
constant in time. In turn, a celebrated results of [15] entails that positive, bounded
solutions to (5.2.13) exist if e.g. ρ � |x|−2−ε for some ε > 0 as |x| → +∞ (in fact, a
full characterization of the weights for which this holds is given in [15]), a condition
which is of course compatible with the assumptions of Theorem 5.2.6.

• Of course, the bound (5.2.11), which gives stronger information when t → 0,
continues to hold under the assumptions of Theorem 5.2.6.

5.3 Auxiliary results for elliptic problems

Let x0, x ∈ M be given. We denote by r(x) = dist (x0, x) the Riemannian distance
between x0 and x. Moreover, we let

BR(x0) := {x ∈M,dist (x0, x) < R}

be the geodesics ball with center x0 ∈M and radius R > 0. Let x0 ∈M any fixed refer-
ence point. We set BR ≡ BR(x0) . As mentioned above, we denote by µ the Riemannian
measure on M .

For any given function v, we define for any k ∈ R+

Tk(v) :=


k if v ≥ k
v if |v| < k

−k if v ≤ −k
.

For every R > 0, k > 0, consider the problem
ut = ∆um + Tk(u

p) in BR × (0,+∞)

u = 0 in ∂BR × (0,+∞)

u = u0 in BR × {0},
(5.3.14)
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where u0 ∈ L∞(BR), u0 ≥ 0. Solutions to problem (5.3.14) are meant in the weak sense
as follows.

Definition 5.3.1. Let p < m. Let u0 ∈ L∞(BR), u0 ≥ 0. We say that a nonnegative
function u is a solution to problem (5.3.14) if

u ∈ L∞(BR × (0,+∞)), um ∈ L2
(
(0, T );H1

0 (BR)
)

for any T > 0,

and for any T > 0, ϕ ∈ C∞c (BR × [0, T ]) such that ϕ(x, T ) = 0 for every x ∈ BR, u
satisfies the equality:

−
∫ T

0

∫
BR

uϕt dµ dt =−
∫ T

0

∫
BR

〈∇um,∇ϕ〉 dµ dt +

∫ T

0

∫
BR

Tk(u
p)ϕdµdt

+

∫
BR

u0(x)ϕ(x, 0) dµ.

We also consider elliptic problems of the type{
−∆u = f in BR

u = 0 in ∂BR ,
(5.3.15)

with f ∈ Lq(BR) for some q > 1.

Definition 5.3.2. We say that u ∈ H1
0 (BR), u ≥ 0 is a weak subsolution to problem

(5.3.15) if ∫
BR

〈∇u,∇ϕ〉 dµ ≤
∫
BR

fϕ dµ,

for any ϕ ∈ H1
0 (BR), ϕ ≥ 0 .

The following proposition contains an estimate in the spirit of the celebrated L∞

estimate of Stampacchia (see, e.g., [76], [11] and references therein). However, the
obtained bound and the proof are different. This is due to the fact that we need an
estimate independent of the measure of BR, in order to let R → +∞ when we apply
such estimate in the proof of global existence for problem (5.1.1) (see Remark 5.3.4
below). Indeed recall that, obviously, since M has infinite measure, µ(BR) → +∞ as
R→ +∞.

Proposition 5.3.3. Let f1 ∈ Lm1(BR) and f2 ∈ Lm2(BR) where m1 >
N
2 , m2 >

N
2 .

Assume that v ∈ H1
0 (BR), v ≥ 0 is a subsolution to problem{

−∆v = (f1 + f2) in BR

v = 0 on ∂BR
. (5.3.16)

in the sense of Definition 5.3.2. Let k̄ > 0. Then

‖v‖L∞(BR) ≤
{
C1‖f1‖Lm1 (BR) + C2‖f2‖Lm2 (BR)

} 1
s ‖v‖

s−1
s

L1(BR)
+ k̄, (5.3.17)
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where

s = 1 +
2

N
− 1

l
, (5.3.18)

N

2
< l < min{m1 ,m2}, (5.3.19)

C1 =

(
s

s− 1

)s 1

C2
s

(
2

k̄

) 1
l
− 1
m1

, C2 =

(
s

s− 1

)s 1

C2
s

(
2

k̄

) 1
l
− 1
m2

, (5.3.20)

and

C1 = C1 ‖v‖
1
l
− 1
m1

L1(BR)
, C2 = C2 ‖v‖

1
l
− 1
m2

L1(BR)
. (5.3.21)

Observe that Proposition 5.3.3 generalizes Proposition 4.3.4.

Remark 5.3.4. If in Proposition 5.3.3 we further assume that there exists a constant
k0 > 0 such that

max(‖v‖L1(BR), ‖f1‖Lm1 (BR), ‖f2‖Lm2 (BR)) ≤ k0 for all R > 0,

then from (5.3.17), we infer that the bound from above on ‖v‖L∞(BR) is independent of
R. This fact will have a key role in the proof of global existence for problem (5.1.1).

5.3.1 Proof of Proposition 5.3.3

Let us first define

Gk(v) := v − Tk(v) , (5.3.22)

g(k) :=

∫
BR

|Gk(v)| dµ.

For any R > 0, for v ∈ L1(BR), we set

Ak := {x ∈ BR : |v(x)| > k}. (5.3.23)

We first state two technical Lemmas.

Lemma 5.3.5. Let v ∈ L1(BR). Then g(k) is differentiable almost everywhere in
(0,+∞) and

g′(k) = −µ(Ak).

We omit the proof since it is identical to the one given in [11].

Lemma 5.3.6. Let v ∈ L1(BR). Let k > 0. Suppose that there exist C > 0 and s > 1
such that

g(k) ≤ Cµ(Ak)
s for any k ≥ k̄. (5.3.24)

Then v ∈ L∞(BR) and

‖v‖L∞(BR) ≤ C
1
s

s

s− 1
‖v‖1−

1
s

L1(BR)
+ k̄. (5.3.25)
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Remark 5.3.7. Observe that if C in (5.3.24) does not depend on R and, for some
k0 > 0,

‖v‖L1(BR) ≤ k0 for all R > 0,

then, in view of the estimate (5.3.25), the bound on ‖v‖L∞(BR) is independent of R.

Proof of Lemma 5.3.6. Thanks to Lemma 5.3.5 together with hypotheses (5.3.24) we
have that

g′(k) = −µ(Ak) ≤ −
[
C−1 g(k)

] 1
s ,

hence

g(k) ≤ C [−g′(k)]s.

Integrating between k̄ and k we get∫ k

k̄

(
− 1

C
1
s

)
dτ ≥

∫ k

k̄
g′(τ) g(τ)−

1
s dg, (5.3.26)

that is:

−C−
1
s (k − k̄) ≥ s

s− 1

[
g(k)1− 1

s − g(k̄)1− 1
s

]
.

Using the definition of g, this can be rewritten as

g(k)1− 1
s ≤ g

(
k̄
)1− 1

s − s− 1

s
C−

1
s (k − k̄)

≤ ‖v‖1−
1
s

L1(BR)
− s− 1

s
C−

1
s (k − k̄) for any k > k̄.

Choose

k = k0 = C
1
s ‖v‖1−

1
s

L1(BR)

s

s− 1
+ k̄,

and substitute it in the last inequality. Then g(k0) ≤ 0. Due to the definition of g this
is equivalent to∫

BR

|Gk0(v)| dµ = 0 ⇐⇒ |Gk0(v)| = 0 ⇐⇒ |v| ≤ k0.

As a consequence we have

‖v‖L∞(BR) ≤ k0 =
s

s− 1
C

1
s ‖v‖1−

1
s

L1(BR)
+ k̄.

Proof of Proposition 5.3.3. Take Gk(v) as in (5.3.22) and Ak as in (5.3.23). From now
one we write, with a slight abuse of notation,

‖f‖Lq(BR) = ‖f‖Lq .
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Since Gk(v) ∈ H1
0 (BR) and Gk(v) ≥ 0, we can take Gk(v) as test function in problem

(5.3.16). Then, by means of (5.1.3), we get∫
BR

∇u · ∇Gk(v) dµ ≥
∫
Ak

|∇v|2 dµ

≥
∫
BR

|∇Gk(v)|2 dµ

≥ C2
s

(∫
BR

|Gk(v)|2∗ dµ
) 2

2∗

.

(5.3.27)

If we now integrate on the right hand side of (5.3.16), thanks to Hölder inequality, we
get∫
BR

(f1 + f2)Gk(v) dµ =

∫
Ak

f1Gk(v) dµ+

∫
Ak

f2Gk(v) dµ

≤
(∫

Ak

|Gk(v)|2∗ dµ
) 1

2∗
[(∫

Ak

|f1|
2N
N+2 dµ

)N+2
2N

+

(∫
Ak

|f2|
2N
N+2 dµ

)N+2
2N

]

≤
(∫

BR

|Gk(v)|2∗ dµ
) 1

2∗
[
‖f1‖Lm1µ(Ak)

N+2
2N

(
1− 2N

m1(N+2)

)

+‖f2‖Lm2µ(Ak)
N+2
2N

(
1− 2N

m2(N+2)

)]
.

(5.3.28)
Combining (5.3.27) and (5.3.28) we have

C2
s

(∫
BR

|Gk(v)|2∗ dµ
) 1

2∗

≤
[
‖f1‖Lm1µ(Ak)

N+2
2N

(
1− 2N

m1(N+2)

)

+‖f2‖Lm2µ(Ak)
N+2
2N

(
1− 2N

m2(N+2)

)]
.

(5.3.29)

Observe that ∫
BR

|Gk(v)| dµ ≤
(∫

BR

|Gk(v)|2∗ dµ
) 1

2∗

µ(Ak)
N+2
2N . (5.3.30)

We substitute (5.3.30) in (5.3.29) and we obtain∫
BR

|Gk(v)| dµ ≤ 1

C2
s

[
‖f1‖Lm1µ(Ak)

1+ 2
N
− 1
m1 + ‖f2‖Lm2µ(Ak)

1+ 2
N
− 1
m2

]
.

Using the definition of l in (5.3.19), for any k ≥ k, we can write∫
BR

|Gk(v)| dµ ≤ 1

C2
s

µ(Ak)
1+ 2

N
− 1
l

[
‖f1‖Lm1µ(Ak)

1
l
− 1
m1 + ‖f2‖Lm2µ(Ak)

1
l
− 1
m2

]
(5.3.31)

Set

C =
1

C2
s

[
‖f1‖Lm1

(
2

k̄
‖v‖L1(BR)

) 1
l
− 1
m1

+ ‖f2‖Lm2

(
2

k̄
‖v‖L1(BR)

) 1
l
− 1
m2

]
.
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Hence, by means of Chebychev inequality, (5.3.31) reads, for any k ≥ k̄,∫
BR

|Gk(v)| dµ ≤ C µ(Ak)
s , (5.3.32)

where s has been defined in (5.3.18). Now, (5.3.32) corresponds to the hypotheses of
Lemma 5.3.6, hence the thesis of such lemma follows and we have

‖v‖L∞ ≤
s

s− 1
C

1
s ‖v‖1−

1
s

L1 + k̄ .

Then the thesis follows thanks to (5.3.21).

5.4 Lq and smoothing estimates

Lemma 5.4.1. Let 1 < p < m. Let M be such that inequality (5.1.2) holds. Suppose
that u0 ∈ L∞(BR), u0 ≥ 0. Let u be the solution of problem (5.3.14). Then, for any
1 < q < +∞, for some constant C = C(q) > 0, one has

‖u(t)‖Lq(BR) ≤ eC(q)t‖u0‖Lq(BR) for all t > 0 . (5.4.33)

Proof. Let x ∈ R, x ≥ 0, 1 < p < m, ε > 0. Then, for any 1 < q < +∞, due to Young’s
inequality, it follows that

xp+q−1 = x(m+q−1)( p−1
m−1

)xq(
m−p
m−1

)

≤ εx(m+q−1)( p−1
m−1

)(m−1
p−1

)
+

(
1

ε

p− 1

m− 1

) p−1
m−p

x
q(m−p
m−1

)(m−1
m−p )

= εxm+q−1 +

(
1

ε

p− 1

m− 1

) p−1
m−p

xq.

(5.4.34)

Since u0 is bounded and Tk(u
p) is a bounded and Lipschitz function, by standard res-

ults, there exists a unique solution of problem (5.3.14) in the sense of Definition 5.3.1;
moreover, u ∈ C

(
[0, T ];Lq(BR)

)
. We now multiply both sides of the differential equation

in problem (5.3.14) by uq−1 and integrate by parts. This can be justified by standard
tools, by an approximation procedure. Using the fact that

Tk(u
p) ≤ up,

thanks to the Poincaré inequality, we obtain for all t > 0

1

q

d

dt
‖u(t)‖qLq(BR) ≤ −

4m(q − 1)

(m+ q − 1)2
C2
p‖u(t)‖m+q−1

Lm+q−1(BR)
+ ‖u(t)‖p+q−1

Lp+q−1(BR)
.

Now, using inequality (5.4.34), we obtain

1

q

d

dt
‖u(t)‖qLq(BR) ≤ −

4m(q − 1)

(m+ q − 1)2
C2
p‖u(t)‖m+q−1

Lm+q−1(BR)
+ε‖u(t)‖m+q−1

Lm+q−1(BR)
+C(ε)‖u(t)‖qLq(BR),
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where C(ε) =
(

1
ε
p−1
m−1

) p−1
m−p

. Thus, for every ε > 0 so small that

0 < ε <
4m(q − 1)

(m+ q − 1)2
C2
p ,

we have
1

q

d

dt
‖u(t)‖qLq(BR) ≤ C(ε)‖u(t)‖qLq(BR) .

Hence, we can find C = C(q) > 0 such that

d

dt
‖u(t)‖qLq(BR) ≤ C(q)‖u(t)‖qLq(BR) for all t > 0 .

If we set y(t) := ‖u(t)‖qLq(BR), the previous inequality reads

y′(t) ≤ C(q)y(t) for all t ∈ (0, T ) .

Thus the thesis follows.

Note that for the constant C(q) in Lemma 5.4.1 does not depend on R and k > 0;
moreover, we have that

C(q)→ +∞ as q → +∞ .

We shall use the following Aronson-Benilan type estimate (see [6]; see also [118,
Proposition 2.3]).

Proposition 5.4.2. Let 1 < p < m, u0 ∈ H1
0 (BR) ∩ L∞(BR), u0 ≥ 0. Let u be the

solution to problem (5.3.14). Then, for a.e. t ∈ (0, T ),

−∆um(·, t) ≤ up(·, t) +
1

(m− 1)t
u(·, t) in D′(BR).

Proof. By arguing as in [6], [118, Proposition 2.3] we get

−∆um(·, t) ≤ Tk[up(·, t)] +
1

(m− 1)t
u(·, t) ≤ up(·, t) +

1

(m− 1)t
u(·, t) in D′(BR),

since Tk(u
p) ≤ up .

Proposition 5.4.3. Let 1 < p < m, R > 0, u0 ∈ L∞(BR), u0 ≥ 0. Let u be the
solution to problem (5.3.14). Let M be such that inequality (5.1.3) holds. Then there
exists Γ = Γ(p,m,N,Cs) > 0 such that, for all t > 0,

‖u(t)‖L∞(BR) ≤ Γ

{[
eCt‖u0‖Lm(BR)

] 2m
2m+N(m−p)

+
[
eCt‖u0‖Lm(BR)

] 2m
2m+N(m−1)

[
1

(m− 1)t

] N
2m+N(m−1)

}
;

(5.4.35)

here the constant C = C(m) > 0 is the one given in Lemma 5.4.1 .
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Remark 5.4.4. If in Proposition 5.4.3, in addition, we assume that for some k0 > 0

‖u0‖Lm(BR) ≤ k0 for every R > 0 ,

then the bound from above for ‖u(t)‖L∞(BR) in (5.4.35) is independent of R.

Proof of Proposition 5.4.3. Let us set w = u(·, t). Observe that wm ∈ H1
0 (BR) and

w ≥ 0. Due to Proposition 5.4.2 we know that

−∆(wm) ≤
[
wp +

w

(m− 1)t

]
. (5.4.36)

Observe that, since u0 ∈ L∞(BR) also w ∈ L∞(BR). Let q ≥ 1 and

r1 > max

{
q

p
,
N

2

}
, r2 > max

{
q,
N

2

}
.

We can apply Proposition 5.3.3 with

r1 = m1, r2 = m2,
N

2
< l < min{m1 ,m2} .

So, we have that

‖w‖mL∞(BR) ≤
{
C1(r1)‖wp‖Lr1 (BR) + γC2(r2)‖w‖Lr2 (BR)

} 1
s ‖w‖m

s−1
s

Lm(BR) + k̄ , (5.4.37)

where s = 1+2/N−1/l and γ = 1/[(m−1)t]. Thanks to Hölder inequality and Young’s
inequality with exponents

α1 =
sm

p− q
r1

> 1, β1 =
sm

sm−
(
p− q

r1

) > 1.

we obtain, for any ε1 > 0

‖wp‖Lr1 (BR) =
∥∥∥wp−q/r1+q/r1

∥∥∥
Lr1 (BR)

=

[∫
BR

wr1(p−q/r1)wqdµ

] 1
r1

≤
[
‖wr1(p−q/r1)‖L∞(BR)‖wq‖L1(BR)

] 1
r1

= ‖w‖p−q/r1L∞(BR)

(∫
BR

wq dµ

) 1
r1

= ‖w‖p−q/r1L∞(BR) ‖w‖
q/r1
Lq(BR)

≤ εα1
1

α1
‖w‖

sm
p−q/r1

(p−q/r1)

L∞(BR) +
α1 − 1

α1
ε
− α1
α1−1

1 ‖w‖
β1q
r1

Lq(BR) .

(5.4.38)

We set

δ1 :=
εα1

1

α1
, η(x) =

x− 1

x
x
x−1

.

Thus from (5.4.38) we obtain

‖wp‖Lr1 (BR) ≤ δ1 ‖w‖smL∞(BR) +
η(α1)

δ
1

α1−1

1

‖w‖
smq
r1

1
sm−(p−q/r1)

Lq(BR) . (5.4.39)
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Similarly, again thanks to Hölder inequality and Young’s inequality with exponents

α2 =
sm

1− q
r2

> 1, β2 =
sm

sm−
(

1− q
r2

) > 1.

we obtain, for any ε2 > 0

‖w‖Lr2 (BR) ≤
∥∥∥w1−q/r2+q/r2

∥∥∥
Lr2 (BR)

≤ ‖w‖1−q/r2L∞(BR) ‖w‖
q/r2
Lq(BR)

≤ εα2
2

α2
‖w‖

sm
1−q/r2

(
1− q

r2

)
L∞(BR) +

α2 − 1

α2
ε
− α2
α2−1

2 ‖w‖
β2q
r2

Lq(BR) .

We set δ2 :=
ε
α2
2
α2

and thus we obtain

‖w‖Lr2 (BR) ≤ δ2 ‖w‖smL∞(BR) +
η(α2)

δ
1

α2−1

2

‖w‖
smq
r2

1
sm−(1−q/r2)

Lq(BR) . (5.4.40)

Plugging (5.4.39) and (5.4.40) into (5.4.37) we obtain

‖w‖msL∞(BR) ≤ 2s−1
{[
C1‖wp‖Lr1 (BR) + γC2‖w‖Lr2 (BR)

]
‖w‖m(s−1)

Lm(BR) + k̄s
}

≤ 2s−1

C1

δ1 ‖w‖smL∞(BR) +
η(α1)

δ
1

α1−1

1

‖w‖
smq
r1

1
sm−(p−q/r1)

Lq(BR)


+γC2

δ2 ‖w‖smL∞(BR) +
η(α2)

δ
1

α2−1

2

‖w‖
smq
r2

1
sm−(1−q/r2)

Lq(BR)

 ‖w‖m(s−1)
Lm(BR) + 2s−1k̄s.

Without loss of generality we can assume that ‖w‖mLm(BR) 6= 0. Choosing ε1, ε2 such
that

δ1 =
1

4C1‖w‖m(s−1)
Lm(BR)2

s−1
δ2 =

1

4γ C2‖w‖m(s−1)
Lm(BR)2

s−1

we thus have

1

2
‖w‖smL∞(BR) ≤ 4

1
α1−1 η(α1)

(
2s−1C1‖w‖m(s−1)

Lm(BR)

) α1
α1−1 ‖w‖

smq
r1

1
sm−(p−q/r1)

Lq(BR)

+ 4
1

α2−1 η(α2)
(

2s−1γC2‖w‖m(s−1)
Lm(BR)

) α2
α2−1 ‖w‖

smq
r2

1
sm−(1−q/r2)

Lq(BR)

+ 2s−1k̄s.

This reduces to

‖w‖L∞(BR) ≤ (2)
1
sm 4

1
sm(α1−1) η(α1)

1
sm

(
2
s−1
sm C

1
sm
1 ‖w‖

s−1
s

Lm(BR)

) α1
α1−1

‖w‖
q
r1

1
sm−(p−q/r1)

Lq(BR)

+ (2)
1
sm 4

1
sm(α2−1) η(α2)

1
sm

(
2
s−1
sm γ

1
smC

1
sm
2 ‖w‖

s−1
s

Lm(BR)

) α2
α2−1

‖w‖
q
r2

1
sm−(1−q/r2)

Lq(BR)

+ (2)
1
sm

(
2
s−1
s k̄
) 1
m
.
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This can be rewritten as

‖w‖L∞(BR) ≤
[
η(α1)

(
2α1s+1Cα1

1

) 1
α1−1

] 1
sm ‖w‖

α1
α1−1

s−1
s

Lm(BR) ‖w‖
q
r1

1
sm−(p−q/r1)

Lq(BR)

+
[
η(α2)

(
2α2s+1γα2Cα2

2

) 1
α2−1

] 1
sm ‖w‖

α2
α2−1

s−1
s

Lm(BR) ‖w‖
q
r2

1
sm−(1−q/r2)

Lq(BR)

+
(
2k̄
) 1
m .

(5.4.41)

Now we use the definitions of C1, C2, C1, C2 introduced in (5.3.21) and (5.3.20), obtain-
ing

‖w‖L∞(BR) ≤
[
η(α1)

(
2α1s+1C

α1

1

) 1
α1−1

] 1
sm

‖w‖
α1
α1−1

1
s

(
s−1+ 1

l
− 1
r1

)
Lm(BR) ‖w‖

q
r1

1
sm−(p−q/r1)

Lq(BR)

+

[
η(α2)

(
2α2s+1γα2C

α2

2

) 1
α2−1

] 1
sm

‖w‖
α2
α2−1

1
s

(
s−1+ 1

l
− 1
r2

)
Lm(BR) ‖w‖

q
r2

1
sm−(1−q/r2)

Lq(BR)

+
(
2k̄
) 1
m .

By taking limits as r1 −→ +∞ and r2 −→ +∞ we have

α1

α1 − 1
−→ ms

ms− p
;

α2

α2 − 1
−→ ms

ms− 1
;

η(α1) −→
[ p
ms

] p
ms−p

{
1− p

ms

}
;

η(α2) −→
[

1

ms

] 1
ms−1

{
1− 1

ms

}
;

C1 −→
(

s

s− 1

)s 1

C2
s

(
2

k

) 1
l

;

C2 −→
(

s

s− 1

)s 1

C2
s

(
2

k

) 1
l

.

Moreover we define

Γ̃1 :=

[( p

ms

) p
ms−p

(
ms− p
ms

)] 1
ms

[
2ms

2−p
(

s

s− 1

)s 1

C2
s

(
2

k

) 1
l

] 1
ms−p

,

Γ̃2 :=

[(
1

ms

) 1
ms−1

(
ms− 1

ms

)] 1
ms
[

2ms
2−1

(
s

s− 1

)s 1

C2
s

(
2

k

) 1
l

] 1
ms−1

,

Γ̃ := max{Γ̃1 , Γ̃2}.

Hence by (5.4.41) we get

‖w‖L∞(BR) ≤ Γ̃

[
‖w‖

m
ms−p(s−1+ 1

l )
Lm(BR) + ‖w‖

m
ms−1(s−1+ 1

l )
Lm(BR) γ

1
ms−1

]
+
(
2k̄
) 1
m . (5.4.42)



140 CHAPTER 5. Global existence and smoothing estimates for p < m

Letting l→ +∞ in (5.4.42), we can infer that

‖w‖L∞(BR) ≤ Γ

[
‖w‖

2m
2m+N(m−p)
Lm(BR) + ‖w‖

2m
2m+N(m−1)

Lm(BR) γ
N

2m+N(m−1)

]
+
(
2k̄
) 1
m , (5.4.43)

where

Γ1 =

(
1− pN

m(N + 2)

) N
m(N+2)

2

[(
pN

m(N + 2)

) pN
m(N+2)

22m(1+ 2
N )
(
N + 2

N

)N+2
N 1

C2
s

] N
2m+N(m−p)

,

Γ2 =

(
1− N

m(N + 2)

) N
m(N+2)

2

[(
N

m(N + 2)

) N
m(N+2)

22m(1+ 2
N )
(
N + 2

N

)N+2
N 1

C2
s

] N
2m+N(m−1)

;

Γ = max{Γ1 ; Γ2}.

Letting k̄ → 0 in (5.4.43) we obtain

‖w‖L∞(BR) ≤ Γ

[
‖w‖

2m
2m+N(m−p)
Lm(BR) + ‖w‖

2m
2m+N(m−1)

Lm(BR) γ
N

2m+N(m−1)

]
. (5.4.44)

Finally, since u0 ∈ L∞(BR), we can apply Lemma 5.4.1 to w with q = m. Thus from
(5.4.33) with q = m and (5.4.44), the thesis follows.

5.5 Proof of Theorems 5.2.2, 5.2.3

Proof of Theorem 5.2.2. Let {u0,h}h≥0 be a sequence of functions such that

u0,h ∈ L∞(M) ∩ C∞c (M) for all h ≥ 0,

u0,h ≥ 0 for all h ≥ 0,

u0,h1 ≤ u0,h2 for any h1 < h2,

u0,h −→ u0 in Lm(M) as h→ +∞ .

For any R > 0, k > 0, h > 0, consider the problem
ut = ∆um + Tk(u

p) in BR × (0,+∞)

u = 0 in ∂BR × (0,∞)

u = u0,h in BR × {0} .
(5.5.45)

From standard results it follows that problem (5.5.45) has a solution uRh,k in the sense

of Definition 5.3.1; moreover, uRh,k ∈ C
(
[0, T ];Lq(BR)

)
for any q > 1. Hence, it satisfies

the inequalities in Lemma 5.4.1 and in Proposition 5.4.3, i.e., for any t ∈ (0,+∞),

‖uRh,k(t)‖Lm(BR) ≤ eCt‖u0,h‖Lm(BR); (5.5.46)

‖uRh,k(t)‖L∞(BR) ≤ Γ

{[
eCt‖u0,h‖Lm(BR)

] 2m
2m+N(m−p)

+
[
eCt‖u0,h‖Lm(BR)

] 2m
2m+N(m−1)

[
1

(m− 1)t

] N
2m+N(m−1)

}
.

(5.5.47)
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In addition, for any τ ∈ (0, T ), ζ ∈ C1
c ((τ, T )), ζ ≥ 0, max[τ,T ] ζ

′ > 0,∫ T

τ
ζ(t)

[(
(uRh,k)

m+1
2
)
t

]2
dµdt ≤ max

[τ,T ]
ζ ′C̄

∫
BR

(uRh,k)
m+1(x, τ)dµ

+ C̄ max
[τ,T ]

ζ

∫
BR

F
(
uRh,k(x, T )

)
dµ

≤ max
[τ,T ]

ζ ′(t)C̄‖uRh,k(τ)‖L∞(BR)‖uRh,k(τ)‖mLm(BR)

+
C̄

m+ p
‖uRh,k(T )‖pL∞(BR)‖u

R
h,k(T )‖mLm(BR)

(5.5.48)

where

F (u) =

∫ u

0
sm−1+p ds ,

and C̄ > 0 is a constant only depending on m. Inequality (5.5.48) is formally obtained by
multiplying the differential inequality in problem (5.3.14) by ζ(t)[(um)t], and integrating
by parts; indeed, a standard approximation procedure is needed (see [49, Lemma 3.3]
and [7, Theorem 13]).

Moreover, as a consequence of Definition 5.3.1, for any ϕ ∈ C∞c (BR × [0, T ]) such
that ϕ(x, T ) = 0 for any x ∈ BR, uRh,k satisfies

−
∫ T

0

∫
BR

uRh,k ϕt dµ dt =

∫ T

0

∫
BR

(uRh,k)
m ∆ϕdµdt +

∫ T

0

∫
BR

Tk[(u
R
h,k)

p]ϕdµdt

+

∫
BR

u0,h(x)ϕ(x, 0) dµ.

(5.5.49)
Observe that all the integrals in (5.5.49) are finite. Indeed, due to (5.5.46), uRh,k ∈
Lm(BR× (0, T )) hence, since p < m, uRh,k ∈ Lp(BR× (0, T )) and uRh,k ∈ L1(BR× (0, T )).

Moreover, observe that, for any h > 0 and R > 0 the sequence of solutions {uRh,k}k≥0

is monotone increasing in k hence it has a pointwise limit for k → ∞. Let uRh be such
limit so that we have

uRh,k −→ uRh as k →∞ pointwise.

In view of (5.5.46), (5.5.47), the right hand side of (5.5.48) is independent of k. So,

(uRh )
m+1

2 ∈ H1((τ, T );L2(BR)). Therefore, (uRh )
m+1

2 ∈ C
(
[τ, T ];L2(BR)

)
. We can now

pass to the limit as k → +∞ in inequalities (5.5.46) and (5.5.47) arguing as follows.
From inequality (5.5.46), thanks to the Fatou’s Lemma, one has for all t > 0

‖uRh (t)‖Lm(BR) ≤ eCt‖u0,h‖Lm(BR). (5.5.50)

On the other hand, from (5.5.47), since uRh,k −→ uRh as k →∞ pointwise and the right
hand side of (5.5.47) is independent of k, one has for all t > 0

‖uRh (t)‖L∞(BR) ≤≤ Γ

{[
eCt‖u0,h‖Lm(BR)

] 2m
2m+N(m−p)

+
[
eCt‖u0,h‖Lm(BR)

] 2m
2m+N(m−1)

[
1

(m− 1)t

] N
2m+N(m−1)

}
.

(5.5.51)
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Note that both (5.5.50) and (5.5.51) hold for all t > 0, in view of the continuity property
of u deduced above. Moreover, thanks to Beppo Levi’s monotone convergence Theorem,
it is possible to compute the limit as k → +∞ in the integrals of equality (5.5.49) and
hence obtain that, for any ϕ ∈ C∞c (BR × (0, T )) such that ϕ(x, T ) = 0 for any x ∈ BR,
the function uRh satisfies

−
∫ T

0

∫
BR

uRh ϕt dµ dt =

∫ T

0

∫
BR

(uRh )m ∆ϕdµdt+

∫ T

0

∫
BR

(uRh )p ϕdµdt

+

∫
BR

u0,h(x)ϕ(x, 0) dµ.

(5.5.52)

Observe that, due to inequality (5.5.50), all the integrals in (5.5.52) are finite, hence uRh
is a solution to problem (5.5.45), where we replace Tk(u

p) with up itself, in the sense of
Definition 5.3.1.

Let us now observe that, for any h > 0, the sequence of solutions {uRh }R>0 is
monotone increasing in R, hence it has a pointwise limit as R→ +∞. We call its limit
function uh so that

uRh −→ uh as R→ +∞ pointwise.

In view of (5.5.46), (5.5.47), (5.5.50), (5.5.51), the right hand side of (5.5.48) is in-

dependent of k and R. So, (uh)
m+1

2 ∈ H1((τ, T );L2(M)). Therefore, (uh)
m+1

2 ∈
C
(
[τ, T ];L2(M)

)
. Since u0 ∈ Lm(M), there exists k0 > 0 such that

‖u0h‖Lm(BR) ≤ k0 ∀ h > 0, R > 0 . (5.5.53)

Note that, in view of (5.5.53), the norms in (5.5.50) and (5.5.51) do not depend on R
(see Proposition 5.4.3, Lemma 5.4.1 and Remark 5.4.4). Therefore, we pass to the limit
as R→ +∞ in (5.5.50) and (5.5.51). By Fatou’s Lemma,

‖uh(t)‖Lm(M) ≤ eCt‖u0,h‖Lm(M); (5.5.54)

furthermore, since uRh −→ uh as R→ +∞ pointwise,

‖uh(t)‖L∞(M) ≤ Γ

{[
eCt‖u0,h‖Lm(M)

] 2m
2m+N(m−p)

+
[
eCt‖u0,h‖Lm(M)

] 2m
2m+N(m−1)

[
1

(m− 1)t

] N
2m+N(m−1)

}
.

(5.5.55)

Note that both (5.5.54) and (5.5.55) hold for all t > 0, in view of the continuity property
of uRh deduced above.

Moreover, again by monotone convergence, it is possible to compute the limit as
R → +∞ in the integrals of equality (5.5.52) and hence obtain that, for any ϕ ∈
C∞c (M × (0, T )) such that ϕ(x, T ) = 0 for any x ∈M , the function uh satisfies,

−
∫ T

0

∫
M
uh ϕt dµ dt =

∫ T

0

∫
M

(uh)m ∆ϕdµdt+

∫ T

0

∫
M

(uh)p ϕdµdt

+

∫
M
u0,h(x)ϕ(x, 0) dµ.

(5.5.56)
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Observe that, due to inequality (5.5.54), all the integrals in (5.5.56) are well posed
hence uh is a solution to problem (5.1.1), where we replace u0 with u0,h, in the sense of
Definition 5.2.1. Finally, let us observe that {u0,h}h≥0 has been chosen in such a way
that

u0,h −→ u0 in Lm(M)

Observe also that {uh}h≥0 is a monotone increasing function in h hence it has a limit
as h→ +∞. We call u the limit function. In view (5.5.46), (5.5.47), (5.5.50), (5.5.51),
(5.5.54), (5.5.55), the right hand side of (5.5.48) is independent of k,R and h. So,

u
m+1

2 ∈ H1((τ, T );L2(M)). Therefore, u
m+1

2 ∈ C
(
[τ, T ];L2(M)

)
. Hence, we can pass to

the limit as h→ +∞ in (5.5.54) and (5.5.55) and similarly to what we have seen above,
we get

‖u(t)‖Lm(M) ≤ eCt‖u0‖Lm(M), (5.5.57)

and

‖u(t)‖L∞(M) ≤ Γ

{[
eCt‖u0‖Lm(M)

] 2m
2m+N(m−p)

+
[
eCt‖u0‖Lm(M)

] 2m
2m+N(m−1)

[
1

(m− 1)t

] N
2m+N(m−1)

}
.

(5.5.58)

Note that both (5.5.57) and (5.5.58) hold for all t > 0, in view of the continuity property
of u deduced above.

Moreover, again by monotone convergence, it is possible to compute the limit as
h → +∞ in the integrals of equality (5.5.56) and hence obtain that, for any ϕ ∈
C∞c (M × (0, T )) such that ϕ(x, T ) = 0 for any x ∈M , the function u satisfies,

−
∫ T

0

∫
M
uϕt dµ dt =

∫ T

0

∫
M
um ∆ϕdµdt+

∫ T

0

∫
M
up ϕdµdt

+

∫
M
u0(x)ϕ(x, 0) dµ.

(5.5.59)

Observe that, due to inequality (5.5.57), all the integrals in (5.5.59) are finite, hence u
is a solution to problem (5.1.1) in the sense of Definition 5.2.1.

Finally, let us discuss (5.2.8). Let q > 1. If u0 ∈ Lq(M) ∩ Lm(M), we choose the
sequence u0h so that it further satisfies

u0h → u0 in Lq(M) as h→ +∞ .

We have that

‖uRh,k(t)‖Lq(BR) ≤ eCt‖u0,h‖Lq(BR). (5.5.60)

Hence, due to (5.5.60), letting k → +∞, R → +∞, h → +∞, by Fatou’s Lemma we
deduce (5.2.8).

Proof of Theorem 5.2.3. We note in first place that the geometrical assumptions on M ,
in particular the upper curvature bound sec≤ −k2 < 0, ensure that inequalities (5.1.2)
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and (5.1.3) both hold on M , see e.g. [39, 40]. Hence, all the result of Theorem 5.2.2
hold, in particular solutions corresponding to data u0 ∈ Lm(M) exist globally in time.

Besides, it has been shown in [54] that if u0 is a continuous, nonnegative, nontrivial
datum, which is sufficiently large in the sense given in the statement, under the lower
curvature bound being assumed here the corresponding solution u satisfies the bound

u(x, t) ≥ Cζ(t)
[
1− r

a
η(t)

] 1
m−1

+
∀t ∈ (0, S), ∀x ∈M,

possibly up to a finite time explosion time S, which has however been proved in the
present chapter not to exist. Here, the functions η, ζ are given by:

ζ(t) := (τ + t)α , η(t) := (τ + t)−β for every t ∈ [0,∞) ,

where C, τ,R0, infBR0
u0 must be large enough and one can take 0 < α < 1

m−1 , β =
α(m−1)+1

2 . Clearly, u then satisfies limt→+∞ u(x, t) = +∞ for all x ∈ M , and hence u
enjoys the same property by comparison.

5.6 Proof of Theorems 5.2.5, 5.2.6

For any R > 0 we consider the following approximate problem
ρ(x)ut = ∆um + ρ(x)up in BR × (0, T )

u = 0 in ∂BR × (0, T )

u = u0 in BR × {0} ,
(5.6.61)

here BR denotes the Euclidean ball with radius R and centre in O.
We shall use the following Aronson-Benilan type estimate (see [6]; see also [118,

Proposition 2.3]).

Proposition 5.6.1. Let 1 < p < m, u0 ∈ H1
0 (BR) ∩ L∞(BR), u0 ≥ 0. Let u be the

solution to problem (5.6.61). Then, for a.e. t ∈ (0, T ),

−∆um(·, t) ≤ ρup(·, t) +
ρ

(m− 1)t
u(·, t) in D′(BR).

Proof of Theorem 5.2.5. The conclusion follows using step by step the same arguments
given in the proof of Theorem 5.2.2, since the necessary functional inequalities are being
assumed. We use Proposition 5.6.1 instead of 5.4.2. The last statement of the Theorem
will be proved later on in Section 5.6.1

In order to prove Theorem 5.2.6 we adapt the strategy of [118] to the present case,
so we shall be concise and limit ourselves to identifying the main steps and differences.
Define

dµ := ρ(x)dx .

For any R > 0, k > 0, for any v ∈ L1
ρ(BR), we set

Ak := {x ∈ BR : |v(x)| > k}
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and

g(k) :=

∫
BR

|Gk(v)|ρ(x) dx ,

where Gk(v) has been defined in (5.3.22).

Lemma 5.6.2. Let v ∈ L1
ρ(BR). Suppose that there exist C > 0 and s > 1 such that

g(k) ≤ Cµ(Ak)
s for any k ∈ R+.

Then v ∈ L∞(BR) and

‖v‖L∞(BR) ≤ C
(

s

s− 1

)s
‖ρ‖s−1

L1(RN )
.

Proof. Arguing as in the proof of Lemma 5.3.6, we integrate inequality (5.3.26) between
0 and k and using the definition of g, we obtain

g(k)1− 1
s ≤ ‖v‖1−

1
s

L1
ρ(BR)

− s− 1

s
C−

1
s k for any k ∈ R+ .

Choose

k = k0 = C
1
s ‖v‖1−

1
s

L1
ρ(BR)

s

s− 1
,

and substitute it in the last inequality. Then we have

g(k0) ≤ 0 ⇐⇒
∫
BR

|Gk0(v)| dµ = 0 ⇐⇒ |Gk0(v)| = 0

⇐⇒ |v| ≤ k0 ⇐⇒ |v| ≤ C
1
s ‖v‖1−

1
s

L1
ρ(BR)

s

s− 1
.

Thanks to the assumption that ρ ∈ L1(RN ), we can apply the weighted Hölder inequality
to get

‖v‖L∞(BR) ≤
s

s− 1
C

1
s ‖v‖1−

1
s

L∞(BR)‖ρ‖
1− 1

s .

Rearranging the terms in the previous inequality we obtain the thesis.

Lemma 5.6.3. Let ρ satisfy (5.2.9) and ρ ∈ L1(RN ). Let f1 ∈ Lm1
ρ (BR) and f2 ∈

Lm2
ρ (BR) where

m1 >
N

2
, m2 >

N

2
.

Assume that v ∈ H1
0 (BR), v ≥ 0 is a subsolution to problem{

−∆v = ρ(f1 + f2) in BR

v = 0 on ∂BR
.

Then

‖v‖L∞(BR) ≤ C1‖f1‖Lm1
ρ (BR) + C2‖f2‖Lm2

ρ (BR), (5.6.62)
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where

C1 =
1

C2
s

(
s

s− 1

)s
‖ρ‖

2
N
− 1
m1

L1(RN )
,

C2 =
1

C2
s

(
s

s− 1

)s
‖ρ‖

2
N
− 1
m2

L1(RN )
,

(5.6.63)

with s given by (5.3.18) .

Remark 5.6.4. If in Lemma 5.6.3 we further assume that there exists a constant k0 > 0
such that

‖f1‖Lm1
ρ (BR) ≤ k0, ‖f2‖Lm2

ρ (BR) ≤ k0 for all R > 0,

then from (5.6.62), we infer that the bound from above on ‖v‖L∞(BR) is independent of
R. This fact will have a key role in the proof of global existence for problem (5.1.4).

Proof of Lemma 5.6.3. By arguing as in the proof of Proposition 5.3.3, we get∫
BR

|Gk(v)| dµ ≤ 1

C2
s

[
‖f1‖Lm1

ρ
µ(Ak)

1+ 2
N
− 1
m1 + ‖f2‖Lm2

ρ
µ(Ak)

1+ 2
N
− 1
m2

]
.

Thus∫
BR

|Gk(v)| dµ ≤ 1

C2
s

µ(Ak)
1+ 2

N
− 1
l

[
‖f1‖Lm1

ρ
‖ρ‖

1
l
− 1
m1

L1(RN )
+ ‖f2‖Lm2

ρ
‖ρ‖

1
l
− 1
m2

L1(RN )

]
.

Now, defining

C̄ =
1

C2
s

[
‖f1‖Lm1 (BR)‖ρ‖

1
l
− 1
m1

L1(RN )
+ ‖f2‖Lm2 (BR)‖ρ‖

1
l
− 1
m2

L1(RN )

]
,

the last inequality is equivalent to∫
BR

|Gk(v)| dµ ≤ C̄ µ(Ak)
s , for any k ∈ R+ ,

where s has been defined in (5.3.18). Hence, it is possible to apply Lemma 5.6.2. By
using the definitions of C1 and C2 in (5.6.63), we thus have

‖v‖L∞(BR) ≤ C1 ‖f1‖Lm1
ρ (BR) + C2 ‖f2‖Lm2

ρ (BR) .

Proposition 5.6.5. Let 1 < p < m, R > 0, u0 ∈ L∞(BR), u0 ≥ 0. Let u be
the solution to problem (5.6.61). Let inequality (5.1.6) hold. Then there exists C =
C(p,m,N,Cs, ‖ρ‖L1(RN )) > 0 such that, for all t > 0,

‖u(t)‖L∞(BR) ≤ C

[
1 +

(
1

(m− 1)t

) 1
m−1

]
.
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Proof. We proceed as in the proof of Proposition 5.4.3, up to inequality (5.4.40). Thanks
to the fact that ρ ∈ L1(RN ), we can apply to (5.4.36) the thesis of Lemma 5.6.3. Thus
we obtain

‖w‖mL∞(BR) ≤ C1‖wp‖Lr1ρ (BR) + γC2‖w‖Lr2ρ (BR). (5.6.64)

Now the constants are
α1 =

m

p− q
r1

;

α2 =
m

1− q
r2

;

ε1 such that δ1 =
1

4C1
;

ε2 such that δ2 =
1

4γC2
.

Plugging (5.4.39) and (5.4.40) into (5.6.64) we obtain

‖w‖mL∞(BR) ≤ C1‖wp‖Lr1ρ (BR) + γC2‖w‖Lr2ρ (BR)

≤ C1

δ1 ‖w‖mL∞(BR) +
η(α1)

δ
1

α1−1

1

‖w‖
mq
r1

1
m−p+q/r1

Lqρ(BR)


+ γC2

δ2 ‖w‖mL∞(BR) +
η(α2)

δ
1

α2−1

2

‖w‖
mq
r2

1
m−1+q/r2

Lqρ(BR)

 .
(5.6.65)

Inequality (5.6.65) can be rewritten as

‖w‖L∞(BR) ≤
[
2η(α1) (4Cα1

1 )
1

α1−1

] 1
m ‖w‖

q
r1

1
m−p+q/r1

Lqρ(BR)

+
[
2η(α2) (4γα2Cα2

2 )
1

α2−1

] 1
m ‖w‖

q
r2

1
m−1+q/r2

Lqρ(BR)
.

Computing the limits as r1 −→∞ and r2 −→∞ we have

η(α1) −→
[ p
m

] p
m−p

{
1− p

m

}
;

η(α2) −→
[

1

m

] 1
m−1

{
1− 1

m

}
;

‖w‖
q
r1

1
(m−p+q/r1)

Lqρ(BR)
−→ 1;

‖w‖
q
r2

1
(m−1+q/r2)

Lqρ(BR)
−→ 1.

Moreover we define

Γ1 :=

[
2
( p
m

) p
m−p

(
1− p

m

)] 1
m

4
mp
m−pC

mp
m−p
1 ;

Γ2 :=

[
2

(
1

m

) 1
m−1

(
1− 1

m

)] 1
m

4
m
m−1C

m
m−1

1 ;

C := max{Γ1 ,Γ2}
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and notice that, by the above construction, the thesis follows with this choice of C.

Proof of Theorem 5.2.6. The conclusion follows by the same arguments as in the proof
of Theorem 5.2.2. However, some minor differences are in order. We replace Proposition
5.4.3 by Proposition 5.6.5. Moreover, since u0 ∈ L1

ρ(RN ), the family of functions {u0h}
is as follows:

u0,h ∈ L∞(RN ) ∩ C∞c (RN ) for all h ≥ 0,

u0,h ≥ 0 for all h ≥ 0,

u0,h1 ≤ u0,h2 for any h1 < h2,

u0,h −→ u0 in L1
ρ(RN ) as h→ +∞ .

Furthermore, instead of (5.5.46), (5.5.50), (5.5.54), (5.5.57), we use the following. By
standard arguments (see, e.g. proof of [118, Proposition 2.5-(i)]) we have that

‖uRh,k(t)‖L1
ρ(BR) ≤ C‖u0h‖L1

ρ(BR) for all t > 0 ,

for some positive constant C = C(p,m,N, ‖ρ‖L1(RN )), and, for any ε ∈ (0,m− p),∫ 1

0

∫
BR

(uRh,k)
p+ερ(x)dxdt ≤ C̃ ,

for some positive constant C̃ = C̃(p,m,N, ‖ρ‖L1(RN ), ‖u0‖L1
ρ(RN )). Hence, after having

passed to the limit as k → +∞, R→ +∞, h→ +∞, for any T > 0, ϕ ∈ C∞c (RN×(0, T ))
such that ϕ(x, T ) = 0 for every x ∈ RN , we have that∫ T

0

∫
RN

up+ερ(x)ϕdxdt ≤ C .

Therefore, (5.2.10) holds.

5.6.1 End of proof of Theorem 5.2.5: an example of complete blowup
in infinite time

We recall that we are assuming m > 1 and 1 < p < m. Let us set r := |x|. We now
construct a subsolution to equation

ρ ut = ∆um + ρ up in RN × (0, T ) , (5.6.66)

under the hypothesis that there exist k1 and k2 with k2 ≥ k1 > 0 such that

k1r
2 ≤ 1

ρ(x)
≤ k2r

2 for any x ∈ RN \Be. (5.6.67)

Moreover, due to the running assumptions on the weight there exist positive constants
ρ1, ρ2 such that

ρ1 ≤
1

ρ(x)
≤ ρ2 for any x ∈ Be . (5.6.68)
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Let

s(x) :=


log(|x|) if x ∈ RN \Be,

|x|2 + e2

2e2
if x ∈ Be .

The requested statements will follow from the following result.

Proposition 5.6.6. Let assumption (5.2.9), (5.6.67) and (5.6.68) be satisfied, and 1 <
p < m. If the initial datum u0 is smooth, compactly supported and large enough, then
problem (5.1.4) has a solution u(t) ∈ L∞(RN ) for any t ∈ (0,∞) that blows up in
infinite time, in the sense that

lim
t→+∞

u(x, t) = +∞ ∀x ∈ RN . (5.6.69)

More precisely, if C > 0, a > 0, α > 0, β > 0, T > 0 verify

0 < T−β <
a

2
. (5.6.70)

0 < α <
1

m− 1
, β =

α(m− 1) + 1

2
, (5.6.71)

and

u0(x) ≥ CTα
[
1− s(x)

a
T−β

] 1
m−1

+

, for any x ∈ RN ,

then the solution u of problem (5.1.4) satisfies (5.6.69) and the bound from below

u(x, t) ≥ C(T + t)α
[
1− s(x)

a
(T + t)−β

] 1
m−1

+

, for any (x, t) ∈ RN × (0,+∞) .

Proof. We construct a suitable subsolution of (5.6.66). Define, for all (x, t) ∈ RN ,

w(x, t) ≡ w(r(x), t) :=

{
u(x, t) in [RN \Be]× (0, T ),

v(x, t) in Be × (0, T ),

where

u(x, t) ≡ u(r(x), t) := C(T + t)α
[
1− log(r)

a
(T + t)−β

] 1
m−1

+

,

and

v(x, t) ≡ v(r(x), t) := C(T + t)α
[
1− r2 + e2

2e2

(T + t)−β

a

] 1
m−1

+

.

Moreover, let

F (r, t) := 1− log(r)

a
(T + t)−β ,

G(r, t) := 1− r2 + e2

2e2

(T + t)−β

a
.
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and define
D1 :=

{
(x, t) ∈ (RN \Be)× (0, T ) | 0 < F (r, t) < 1

}
.

For any (x, t) ∈ D1, we have:

ut = Cα(T + t)α−1F
1

m−1 − Cβ(T + t)α−1 1

m− 1
F

1
m−1 + Cβ(T + t)α−1 1

m− 1
F

1
m−1

−1.

(um)r = −C
m

a
(T + t)mα

m

m− 1
F

1
m−1

1

r
(T + t)−β.

(um)rr =
Cm

a
(T + t)mα

m

m− 1
F

1
m−1

(T + t)−β

r2

+
Cm

a2
(T + t)mα

m

(m− 1)2
F

1
m−1

−1 (T + t)−2β

r2
.

Due to (5.6.70)
0 < G(r, t) < 1 for all (x, t) ∈ Be × (0,+∞).

For any (x, t) ∈ Be × (0, T ), we have:

vt = Cα(T + t)α−1G
1

m−1 − Cβ(T + t)α−1 1

m− 1
G

1
m−1 + Cβ(T + t)α−1 1

m− 1
G

1
m−1

−1 .

(vm)r = −C
m

a
(T + t)mα

m

m− 1
G

1
m−1

r

e2
(T + t)−β .

(vm)rr = −C
m

a
(T+t)mα

m

m− 1
G

1
m−1

(T + t)−β

e2
+
Cm

a2
(T+t)mα

m

(m− 1)2
G

1
m−1

−1(T+t)−2β r
2

e4
.

For every (x, t) ∈ D1, by the previous computations we have

ut−
1

ρ
∆um − up

= Cα(T + t)α−1F
1

m−1 − Cβ(T + t)α−1 1

m− 1
F

1
m−1 + Cβ(T + t)α−1 1

m− 1
F

1
m−1

−1

+
1

ρ

{
−C

m

a
(T + t)mα−β

m

m− 1
F

1
m−1

1

r2
− Cm

a2
(T + t)mα−2β m

(m− 1)2
F

1
m−1

−1 1

r2

+(N − 1)
Cm

a
(T + t)mα−β

m

m− 1
F

1
m−1

1

r2

}
− Cp(T + t)pαF

p
m−1 .

(5.6.72)
Thanks to (5.6.67), (5.6.72) becomes, for every (x, t) ∈ D1

ut−
1

ρ
∆um − up

≤ CF
1

m−1
−1

{
F

[
α(T + t)α−1 − β

m− 1
(T + t)α−1 + (N − 2)k2

Cm−1

a

m

m− 1
(T + t)mα−β

]
+

β

m− 1
(T + t)α−1 − Cm−1

a2

m

(m− 1)2
k1(T + t)mα−2β − Cp−1(T + t)pαF

p+m−2
m−1

}
≤ CF

1
m−1

−1
{
σ(t)F − δ(t)− γ(t)F

p+m−2
m−1

}
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where
ϕ(F ) := σ(t)F − δ(t)− γ(t)F

p+m−2
m−1 ,

with

σ(t) =

[
α− β

m− 1

]
(T + t)α−1 +

Cm−1

a

m

m− 1
k2 (N − 2) (T + t)mα−β ,

δ(t) = − β

m− 1
(T + t)α−1 +

Cm−1

a2

m

(m− 1)2
k1(T + t)mα−2β ,

γ(t) = Cp−1(T + t)pα ,

Our goal is to find suitable C > 0, a > 0, such that

ϕ(F ) ≤ 0 , for all F ∈ (0, 1) .

To this aim, we impose that

sup
F∈(0,1)

ϕ(F ) = max
F∈(0,1)

ϕ(F ) = ϕ(F0) ≤ 0 ,

for some F0 ∈ (0, 1). We have

dϕ

dF
= 0 ⇐⇒ σ(t)− p+m− 2

m− 1
γ(t)F

p−1
m−1 = 0

⇐⇒ F0 =

[
m− 1

p+m− 2

σ(t)

γ(t)

]m−1
p−1

.

Then

ϕ(F0) = K
σ(t)

p+m−2
p−1

γ(t)
m−1
p−1

− δ(t)

where K =
(

m−1
p+m−2

)m−1
p−1 −

(
m−1
p+m−2

) p+m−2
p−1

> 0. The two conditions we must verify are

K[σ(t)]
p+m−2
p−1 ≤ δ(t)γ(t)

m−1
p−1 , (m− 1)σ(t) ≤ (p+m− 2)γ(t) . (5.6.73)

Observe that, thanks to the choice in (5.6.71) and by choosing

Cm−1

a
≥ 2β

(m− 1)

m

1

k1
,

we have

σ(t) ≤ Cm−1

a

m

m− 1
k2 (N − 2) (T + t)mα−β ,

δ(t) ≥ Cm−1

2a2

m

(m− 1)2
k1(T + t)mα−2β

and conditions in (5.6.73) follow. So far, we have proved that

ut −
1

ρ(x)
∆(um)− up ≤ 0 in D1 .
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Furthermore, since um ∈ C1([RN \ Be] × [0, T )) it follows that u is a subsolution to
equation (5.6.66) in [RN \Be]×(0, T ). Now, we consider equation (5.6.66) in Be×(0, T ).
We observe that, due to condition (5.6.70),

1

2
< G < 1 for all (x, t) ∈ Be × (0, T ). (5.6.74)

Similarly to the previous computation we obtain, for all (x, t) ∈ Be × (0, T ):

vt −
1

ρ
∆vm − vp ≤ CG

1
m−1

−1ψ(G) ,

where
ψ(G) := σ0G− δ0 − γG

p+m−2
m−1 ,

with

σ0(t) =

[
α− β

m− 1

]
(T + t)α−1 + ρ2

N

e2

m

m− 1

Cm−1

a
(T + t)mα−β ,

δ0(t) = − β

m− 1
(T + t)α−1

γ(t) = Cp−1(T + t)pα .

Due to (5.6.74), v is a subsolution of (5.6.66) for every (x, t) ∈ Be × (0, T ), if

2
p+m−2
m−1 (σ0 − δ0) ≤ γ .

This last inequality is always verified thanks to (5.6.71). Hence we have proved that

vt −
1

ρ(x)
∆(vm)− vp ≤ 0 in Be × (0, T ) ,

Moreover, wm ∈ C1(RN × [0, T )), indeed,

(um)r = (vm)r = −Cmζ(t)m
m

m− 1

1

e

η(t)

a

[
1− η(t)

a

] 1
m−1

+

in ∂Be × (0, T ) .

Hence, w is a subsolution to equation (5.6.66) in RN × (0, T ).
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Chapter 6

Nonexistence of solutions for a
class of quasilinear parabolic
inequalities

6.1 Introduction

In this chapter we investigate nonexistence of nonnegative, nontrivial global weak solu-
tions to quasilinear parabolic inequalities of the following type:

∂tu− div
(
|∇u|p−2∇u

)
≥ V uq in Ω× (0, T )

u = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} ;

(6.1.1)

where Ω is an open bounded connected subset of RN , N ≥ 3, p > 1 and q > max{p −
1, 1}. Furthermore, we assume that V > 0 a.e. in Ω × (0, T ) and the initial condition
u0 ≥ 0 a.e. in Ω.

Global existence and finite time blow-up of solutions for problem (6.1.1) has been
deeply studied when Ω = RN , see e.g. [33, 34, 35, 97, 98, 105, 104] and references
therein. In particular, in [98], nonexistence of nontrivial weak solutions is proved for
problem (6.1.1) when Ω = RN , V ≡ 1 and

p >
2N

N + 1
, q ≤ p− 1 +

p

N
.

Moreover, problem (6.1.1) has been investigated also in the Riemannian setting,
see e.g. [9, 89, 110, 56, 137] and references therein. In [89] problem (6.1.1) is studied
when Ω = M is a complete, N -dimensional, noncompact Riemannian manifold; it is
investigated nonexistence of nonnegative nontrivial weak solutions depending on the
interplay between the geometry of the underlying manifold, the power nonlinearity and
the behavior of the potential at infinity, assuming that u0 ∈ L1

loc(M), u ≥ 0 a.e. in M
and V ∈ L1

loc(M × [0,+∞)), V > 0 a.e. in M .
Furthermore, we mention that nonexistence results of nonnegative nontrivial solu-

tions have been also much investigated for solutions to elliptic quasilinear equation of

155
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the form
1

a(x)
div
(
a(x)|∇u|p−2∇u

)
+ V (x)uq ≤ 0 in M , (6.1.2)

where
a > 0, a ∈ Liploc(M), V > 0 a.e. on M, V ∈ L1

loc(M),

p > 1, q > p− 1 and M can be either the Euclidean space RN or a general Riemannian
manifold.

We refer to [17, 95, 96, 97, 98] for a comprehensive description of results related to
problem (6.1.2) and also more general problems on RN . Problem (6.1.2) when M is a
complete noncompact Riemannian manifold has been considered e.g. in [41, 42, 90, 123,
124]. In particular, in [90] it is showed how the geometry of the underlying manifold M
and the behavior of the potential V at infinity affect the nonexistence of nonnegative
nontrivial weak solutions for inequality (6.1.2). Finally, we mention that (6.1.2) posed
on an open relatively compact connected domain Ω ⊂ M has been studied in [100].
Under the assumptions that

a > 0, a ∈ Liploc(Ω), V > 0 a.e. on Ω, V ∈ L1
loc(Ω),

p > 1, q > p − 1, the authors investigate the relation between the behavior of the
potential V at the boundary of Ω and nonexistence of nonnegative weak solutions.

In the present work, we are concerned with nonnegative weak solutions to problem
(6.1.1). Under suitable weighted volume growth assumptions involving V and q, we
obtain nonexistence of global weak solutions (see Theorems 6.2.1, 6.2.2). The proofs
are mainly based on the choice of a family of suitable test functions, depending on two
parameters, that enables us to deduce first some appropriate a priori estimates, then
that the unique global solution is u ≡ 0. Such test functions are defined by adapting
to the present situation those used in [89]; however, some important differences occur,
since in [89] an unbounded underlying manifold is considered, whereas now we consider a
bounded domain. In some sense, the role of infinity of [89] is now played by the boundary
∂Ω. Obviously, this implies that such test functions satisfy different properties. To the
best of our knowledge, the definition and the use of such test functions are new.

As a special case, we consider in particular the semilinear parabolic problem
∂tu−∆u = V uq in Ω× (0,+∞)

u = 0 on ∂Ω× (0,+∞)

u = u0 in Ω× {0} ,
(6.1.3)

where q > 1, u0 ∈ L1
loc(Ω), u0 ≥ 0 a.e. in Ω, V ∈ L1

loc(Ω × [0,+∞)), with V ≥ 0, i.e.
problem (6.1.1) with p = 2.

As a consequence of our general results, we infer that nonexistence of global solutions
for problems (6.1.1) and (6.1.3) prevails, when

V (x, t) ≥ Cd(x)−σ1 for a.e. x ∈ Ω, t ∈ [0,+∞)

for some C > 0 and
σ1 > q + 1,
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where
d(x) := dist(x, ∂Ω) for any x ∈ Ω. (6.1.4)

Furthermore, we show the sharpness of this result for the semilinear problem (6.1.3) in
case ∂Ω is regular enough and V = V (x) is continuous and independent of t. Indeed,
under the assumption that

0 ≤ V (x) ≤ Cd(x)−σ1 for all x ∈ Ω

for some C > 0 and
0 ≤ σ1 < q + 1,

we prove the existence of a global classical solution for problem (6.1.3) (see Theorem
6.2.5), if the initial datum u0 is small enough. This existence result is obtained by means
of the sub– and supersolution’s method. In particular, we construct a supersolution to
problem (6.1.3), which actually is a supersolution of the associated stationary equation.
Such supersolution is obtained as the fixed point of a suitable contraction map. In order
to show that such a fixed point exists, we need to estimate some integrals involving the
Green function associated to the Laplace operator −∆ in Ω (see Lemmas 6.6.1-6.6.2).
Finally, we study the slightly supercritical case

V (x, t) ≥ d(x)−q−1f(d(x))q−1 for a.e. x ∈ Ω, t ∈ [0,+∞),

where f is a function satisfying suitable assumptions and such that limε→0+ f(ε) = +∞,
for which we prove nonexistence of nonnegative nontrivial weak solutions in Ω×(0,+∞)
(see Theorem 6.2.6). The proof of this result require a different argument with respect
to the previous nonexistence results, which makes use of linearity of the operator and
of the special form of the potential. Then the critical rate of growth d(x)−q−1 as x
approaches ∂Ω is indeed sharp for the nonexistence of solutions to problem (6.1.3). Our
results do not cover the case of critical rate of growth, i.e.

C1d(x)−q−1 ≤ V (x, t) ≤ C2d(x)−q−1

for some C1, C2 > 0, but we conjecture that also in this case no nonnegative nontrivial
supersolution of problem (6.1.3) exists.

Chapter 6 is organized as follows. In Section 6.2 we describe our main results and
some consequences for problem (6.1.1) (see Theorem 6.2.1, 6.2.2 and Corollaries 6.2.3,
6.2.4);). in particular, in Subsection 6.2.1 we give the statements of our results for the
semilinear problem (6.1.3) (see Theorem 6.2.5, 6.2.6 and Corollary 6.2.7). The definition
of weak solutions and some preliminaries inequalities are stated in Section 6.3. Finally
we prove the results obtained for problem (6.1.1) in Sections 6.4 and 6.5, while the
proofs of the results concerning the semilinear problem (6.1.3) are shown in Sections 6.6
and 6.7.

6.2 Statements of the main results

We now introduce the following two hypotheses HP1 and HP2 under which we will prove
nonexistence for problem (6.1.1). Let θ1 ≥ 1, θ2 ≥ 1; for each δ > 0, we define

S := Ω× [0,+∞) and Eδ :=
{

(x, t) ∈ S : d(x)−θ2 + tθ1 ≤ δ−θ2
}
, (6.2.5)



158 CHAPTER 6. Nonexistence of solutions for quasilinear parabolic inequalities

Observe that Eδ1 ⊂ Eδ2 for every δ1 > δ2 > 0 and that
⋃
δ>0Eδ = S. Moreover let

s̄1 :=
q

q − 1
θ2 , s̄2 :=

1

q − 1
,

s̄3 :=
pq

q − p+ 1
θ2 , s̄4 :=

p− 1

q − 1
,

(6.2.6)

HP1 Assume that there exist constants θ1 ≥ 1, θ2 ≥ 1, C0 > 0, C > 0, δ0 ∈ (0, 1) and
ε0 > 0 such that

(i) for any δ ∈ (0, δ0) and for any ε ∈ (0, ε0)∫
E

( 1
2)

1/θ2δ
\Eδ

t
(θ1−1)

(
q
q−1
−ε
)
V
− 1
q−1

+ε
dxdt ≤ Cδ−s̄1−C0ε |log(δ)|s2 (6.2.7)

for some 0 < s2 < s̄2;

(ii) for any δ ∈ (0, δ0) and for any ε ∈ (0, ε0)∫
E

( 1
2)

1/θ2δ
\Eδ

d(x)
−(θ2+1)

(
q

q−p+1
−ε
)
V
− p−1
q−p+1

+ε
dxdt ≤ Cδ−s̄3−C0ε |log(δ)|s4

(6.2.8)
for some 0 < s4 < s̄4.

HP2 Assume that there exist constants θ1 ≥ 1, θ2 ≥ 1, C0 > 0, C > 0, δ0 ∈ (0, 1) and
ε0 > 0 such that

(i) for any δ ∈ (0, δ0) and for any ε ∈ (0, ε0)∫
E

( 1
2)

1/θ2δ
\Eδ

t
(θ1−1)

(
q
q−1
−ε
)
V
− 1
q−1

+ε
dxdt ≤ Cδ−s̄1−C0ε |log(δ)|s̄2 ; (6.2.9)

∫
E

( 1
2)

1/θ2δ
\Eδ

t
(θ1−1)

(
q
q−1

+ε
)
V
− 1
q−1
−ε
dxdt ≤ Cδ−s̄1−C0ε |log(δ)|s̄2 ; (6.2.10)

(ii) for any δ ∈ (0, δ0) and for any ε ∈ (0, ε0)∫
E

( 1
2)

1/θ2δ
\Eδ

d(x)
−(θ2+1)

(
q

q−p+1
−ε
)
V
− p−1
q−p+1

+ε
dxdt ≤ Cδ−s̄3−C0ε |log(δ)|s̄4 ;

(6.2.11)∫
E

( 1
2)

1/θ2δ
\Eδ

d(x)
−(θ2+1)

(
q

q−p+1
+ε
)
V
− p−1
q−p+1

−ε
dxdt ≤ Cδ−s̄3−C0ε |log(δ)|s̄4 .

(6.2.12)

We can now state our main results.
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Theorem 6.2.1. Let p > 1, q > max{p− 1, 1}, V ∈ L1
loc(Ω× [0,+∞)), V > 0 a.e. in

Ω× (0,+∞) and u0 ∈ L1
loc(Ω), u0 ≥ 0 a.e. in Ω. Assume that condition HP1 holds. If

u is a nonnegative weak solution of problem (6.1.1), then u = 0 a.e. in S.

Theorem 6.2.2. Let p > 1, q > max{p− 1, 1}, V ∈ L1
loc(Ω× [0,+∞)), V > 0 a.e. in

Ω× (0,+∞) and u0 ∈ L1
loc(Ω), u0 ≥ 0 a.e. in Ω. Assume that condition HP2 holds. If

u is a nonnegative weak solution of problem (6.1.1), then u = 0 a.e. in S.

As a consequence of Theorem 6.2.1 we introduce the following Corollary 6.2.3. Let
d(x) and S be defined as in (6.1.4) and (6.2.5) respectively. Moreover we introduce the
functions h : Ω→ R and f : (0,+∞)→ R such that

h(x) ≥ C d(x)−σ1 |log(d(x))|−δ1 for a.e. x ∈ Ω, (6.2.13)

0 < f(t) ≤ C (1 + t)α for a.e. t ∈ (0,+∞), (6.2.14)

where σ1, δ1, α ≥ 0, C > 0. We can now state the following

Corollary 6.2.3. Let p > 1, q > max{p − 1, 1} and u0 ∈ L1
loc(Ω), u0 ≥ 0 a.e. in Ω.

Suppose that V ∈ L1
loc(Ω× [0,+∞) satisfies

V (x, t) ≥ h(x)f(t) for a.e. (x, t) ∈ S, (6.2.15)

where h and f satisfy (6.2.13) and (6.2.14) respectively. Moreover suppose that∫ T

0
f(t)

− 1
q−1 dt ≤ CT σ2 (log T )δ2∫ T

0
f(t)

− p−1
q−p+1 dt ≤ CT σ4 ,

(6.2.16)

for T > 0, σ2, σ4, δ2, δ4 ≥ 0 and C > 0. Finally assume that

(i) σ1 > q + 1;

(ii) 0 ≤ σ2 ≤ q
q−1 ;

(iii) δ1 < 1 and δ2 <
1−δ1
q−1 .

Now, if u is a nonnegative weak solution of problem (6.1.1), then u = 0 a.e. in S.

As an immediate consequence of Corollary 6.2.3, choosing f(t) ≡ 1, σ2 = σ4 = 1
and δ1 = δ2 = 0, we obtain the following

Corollary 6.2.4. Let p > 1, q > max{p − 1, 1} and u0 ∈ L1
loc(Ω), u0 ≥ 0 a.e. in Ω.

Suppose that V ∈ L1
loc(Ω× [0,+∞)) satisfies

V (x, t) ≥ Cd(x)−σ1 for a.e. (x, t) ∈ S, (6.2.17)

with σ1 > q + 1. If u is a nonnegative weak solution of problem (6.1.1), then u = 0 a.e.
in S.
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6.2.1 Further result for semilinear problems

We prove, for the semilinear problem (6.1.3), an existence result when V = V (x) is
continuous and independent of t and

0 ≤ V (x) ≤ Cd(x)−σ1 , x ∈ Ω,

with
0 ≤ σ1 < q + 1

(see Theorem 6.2.5). Then we show a nonexistence result that yield that all nonnegative
solutions of (6.1.3) are trivial if V blows up at the boundary ∂Ω faster than d(x)−q−1

(see Theorem 6.2.6 and Corollary 6.2.7 for precise statements).

Theorem 6.2.5. Suppose that ∂Ω is of class C3 and let u0 ∈ C(Ω), u0 ≥ 0 in Ω, be
such that there exists ε > 0 such that

0 ≤ u0 ≤ ε d(x) for any x ∈ Ω. (6.2.18)

Moreover let V ∈ C(Ω), V > 0 in Ω and assume that for some C > 0

V = V (x) ≤ Cd(x)−σ1 for any x ∈ Ω. (6.2.19)

with
0 < σ1 < q + 1. (6.2.20)

Then problem (6.1.3) admits a classical solution u in (Ω × (0,+∞)) if ε > 0 is small
enough.

For any ε > 0 sufficiently small, set

Ωε = {x ∈ Ω | d(x) ≥ ε}. (6.2.21)

Theorem 6.2.6. Let V ∈ L1
loc(Ω × [0,∞)), V > 0 a.e., and u0 ∈ L1

loc(Ω), u0 ≥ 0
a.e. Assume that there exists a nonincreasing function f : (0, ε0) → [1,∞) such that
limε→0+ f(ε) = +∞ and such that, for some C > 0, for every ε > 0 small enough∫ f(ε)

0

∫
Ω ε

2
\Ωε

V
− 1
q−1 dxdt ≤ C ε

2q
q−1 ,

∫ f(ε)

1
2
f(ε)

∫
Ω ε

2

V
− 1
q−1 dxdt ≤ C f(ε)

q
q−1 .

(6.2.22)

If u is a nonnegative weak supersolution of problem (6.1.3), see Definition 6.3.2, then
u = 0 a.e. in Ω× (0,+∞).

As a consequence of Theorem 6.2.6 we have the following

Corollary 6.2.7. Suppose that u0 ∈ L1
loc(Ω) with u0 ≥ 0 a.e. in Ω. Assume that V

satisfies for some C > 0

V (x, t) ≥ Cd(x)−q−1f(d(x))q−1 for a.e. x ∈ Ω, t ∈ [0,+∞), (6.2.23)

where f : (0,diam(Ω)]→ [1,+∞) is nonincreasing in a right-neighborhood of 0 and such
that limε→0+ f(ε) = +∞. If u is a nonnegative weak supersolution of problem (6.1.3),
see Definition 6.3.2, then u = 0 a.e. in Ω× (0,+∞).
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Remark 6.2.8. We note that an example of function f satisfying the assumptions of
Corollary 6.2.7 is

f(r) =

[ m times︷ ︸︸ ︷
log ◦ log ◦ . . . ◦ log

(
K +

1

r

)]β
, r > 0,

for any β > 0, m ∈ N and for K > 0 sufficiently large.

Remark 6.2.9. We note that our results do not cover the case of a potential V having
critical growth, i.e.

C1d(x)−q−1 ≤ V (x, t) ≤ C2d(x)−q−1,

even if we conjecture that Corollary 6.2.4 holds also when σ1 = q + 1.

Remark 6.2.10. From Remark 2 in [100] we see that the stationary problem

div
(
|∇u|p−2∇u

)
+ V uq ≤ 0 in Ω (6.2.24)

does not admit any nontrivial nonnegative solution if

V (x) ≥ Cd(x)−q−1| log d(x)|−1

for some C > 0. On the other hand, the function ϕ satisfying (6.6.136), which we
construct in the proof of Theorem 6.2.5 using a fixed point argument (for small values
of the parameter λ > 0), is a nonnegative nontrivial solution of problem (6.2.24) with
p = 2 in the case when

V ≤ Cd(x)−σ1 ,

with 0 ≤ σ1 < q + 1. Thus we see that the exponent q + 1 plays a special role both for
the elliptic and the parabolic problems.

For the sake of completeness, we also observe that in [100] an example was con-
structed in a unit ball, showing that problem (6.2.24) for p = 2 may admit a nontrivial
nonnegative solution if

V (x) = Cd(x)−q−1| log d(x)|−1−ε

for some ε > 0.

6.3 Preliminaries

Let us first give the precise definition of solution to problem (6.1.1).

Definition 6.3.1. Let p > 1, q > max{p − 1, 1}, V ∈ L1
loc(Ω × [0,+∞)), V > 0 a.e.

in Ω × (0,+∞) and u0 ∈ L1
loc(Ω), u0 ≥ 0 a.e. in Ω. We say that u ∈ W 1,p

loc (Ω ×
[0,+∞)) ∩ Lqloc(Ω× [0,+∞), V dxdt) is a weak solution of problem (6.1.1) if u ≥ 0 a.e.
in Ω × (0,+∞) and for every ϕ ∈ W 1,p(Ω × [0,+∞)), ϕ ≥ 0 a.e. in Ω × [0,+∞) and
with compact support, one has∫ ∞

0

∫
Ω
V uq ϕdxdt ≤

∫ ∞
0

∫
Ω
|∇u|p−2 〈∇u,∇ϕ〉 dxdt

−
∫ ∞

0

∫
Ω
u ∂tϕdxdt−

∫
Ω
u0 ϕ(x, 0) dx.

(6.3.25)
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Definition 6.3.2. Let p, q > 1, V ∈ L1
loc(Ω × [0,+∞)), V > 0 a.e. in Ω × (0,+∞)

and u0 ∈ L1
loc(Ω), u0 ≥ 0 a.e. in Ω. We say that u ∈ W 1,2

loc (Ω × [0,+∞)) ∩ Lqloc(Ω ×
[0,+∞), V dxdt) is a weak solution of problem (6.1.3) if u ≥ 0 a.e. in Ω × (0,+∞)
and for every ϕ ∈ Lip(Ω× [0,∞)), ϕ ≥ 0 in Ω× [0,+∞) and with compact support in
Ω× [0,∞), one has∫ ∞

0

∫
Ω
V uq ϕdxdt =

∫ ∞
0

∫
Ω
〈∇u,∇ϕ〉 dxdt−

∫ ∞
0

∫
Ω
u ∂tϕdxdt−

∫
Ω
u0 ϕ(x, 0) dx.

(6.3.26)
We say that u is a supersolution to problem (6.1.3) if it satisfies Definition 6.3.1 with
p = 2.

We now state some Lemmas that will be used in the proofs of Theorems 6.2.1 and
6.2.2. We omit here the proofs of these Lemmas that can be find in [89].

Lemma 6.3.3. Let s ≥ max
{

1, q
q−1 ,

pq
q−p+1

}
be fixed. Then there exists a constant C >

0 such that for every α ∈ 1
2 (−min{1, p− 1}, 0), for every nonnegative weak solution u

of problem (6.1.1) and for every ϕ ∈ Lip (Ω× [0,+∞)) with compact support, 0 ≤ ϕ ≤ 1
one has

1

2

∫ ∞
0

∫
Ω
V uq+α ϕs dx dt+

3

4
|α|
∫ ∞

0

∫
Ω
|∇u|puα−1 ϕs dxdt

≤ C
{
|α|−

(p−1)q
q−p+1

∫ ∞
0

∫
Ω
|∇ϕ|

p(q+α)
q−p+1 V

− p+α−1
q−p+1 dxdt

+

∫ ∞
0

∫
Ω
|∂tϕ|

q+α
q−1 V

−α+1
q−1 dx dt

}
.

(6.3.27)

Lemma 6.3.4. Let s ≥ max
{

1, q+1
q−1 ,

2pq
q−p+1

}
be fixed. Then there exists a constant C >

0 such that for every α ∈ 1
2

(
−min

{
1, p− 1, q − 1, q−p+1

p−1

}
, 0
)

, for every nonnegative

weak solution u of problem (6.1.1) and for every ϕ ∈ Lip (S) with compact support and
0 ≤ ϕ ≤ 1 one has∫ ∞

0

∫
Ω
V uq ϕs dx dt

≤ C
[
|α|−1

(
|α|−

(p−1)q
q−p+1

∫ ∞
0

∫
Ω
V
− p+α−1
q−p+1 |∇ϕ|

p(q+α)
q−p+1 dxdt+

∫ ∞
0

∫
Ω
V
−α+1
q−1 |∂tϕ|

q+α
q−1 dxdt

)] p−1
p

×

(∫ ∫
S\K

V uq+αϕs dx dt

) 1
q+α

(∫ ∫
S\K

V
− (1−α)(p−1)
q−(1−α)(p−1) |∇ϕ|

pq
q−(1−α)(p−1) dxdt

) q−(1−α)(p−1)
pq

+ C

(∫ ∫
S\K

V uq+α ϕs dxdt

) 1
q+α (∫ ∞

0

∫
Ω
V
− 1
q+α−1 |∂tϕ|

q+α
q+α−1 dxdt

) q+α−1
q+α

,

(6.3.28)
where K := {(x, t) ∈ S : ϕ(x, t) = 1} and S has been defined in (6.2.5).
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Corollary 6.3.5. Under the hypotheses of Lemma 6.3.4 one has∫ ∞
0

∫
Ω
V uq ϕs dx dt

≤ C
[
|α|−1

(
|α|−

(p−1)q
q−p+1

∫ ∞
0

∫
Ω
V
− p+α−1
q−p+1 |∇ϕ|

p(q+α)
q−p+1 dxdt+

∫ ∞
0

∫
Ω
V
−α+1
q−1 |∂tϕ|

q+α
q−1 dxdt

)] p−1
p

×

(∫ ∫
S\K

V uqϕs dx dt

) (1−α)(p−1)
pq

(∫ ∫
S\K

V
− (1−α)(p−1)
q−(1−α)(p−1) |∇ϕ|

pq
q−(1−α)(p−1) dxdt

) q−(1−α)(p−1)
pq

+ C

(
|α|−

(p−1)q
q−p+1

∫ ∞
0

∫
Ω
V
− p+α−1
q−p+1 |∇ϕ|

p(q+α)
q−p+1 dxdt+

∫ ∞
0

∫
Ω
V
−α+1
q−1 |∂tϕ|

q+α
q−1 dxdt

) 1
q+α

×
(∫ ∞

0

∫
Ω
V
− 1
q+α−1 |∂tϕ|

q+α
q+α−1 dxdt

) q+α−1
q+α

.

(6.3.29)

Lemma 6.3.6. Let s ≥ max
{

1, q+1
q−1 ,

2pq
q−p+1

}
be fixed. Then there exists a constant C >

0 such that for every α ∈ 1
2

(
−min

{
1, p− 1, q − 1, q−p+1

p−1

}
, 0
)

, for every nonnegative

weak solution u of problem (6.1.1) and for every ϕ ∈ Lip (S) with compact support and
0 ≤ ϕ ≤ 1 one has∫ ∞

0

∫
Ω
V uq ϕs dx dt

≤ C
[
|α|−1

(
|α|−

(p−1)q
q−p+1

∫ ∞
0

∫
Ω
V
− p+α−1
q−p+1 |∇ϕ|

p(q+α)
q−p+1 dxdt+

∫ ∞
0

∫
Ω
V
−α+1
q−1 |∂tϕ|

q+α
q−1 dxdt

)] p−1
p

×

(∫ ∫
S\K

V uq+αϕs dxdt

) 1
q+α

(∫ ∫
S\K

V
− (1−α)(p−1)
q−(1−α)(p−1) |∇ϕ|

pq
q−(1−α)(p−1) dxdt

) q−(1−α)(p−1)
pq

+ C

(∫ ∫
S\K

V uq ϕs dx dt

) 1
q (∫ ∞

0

∫
Ω
V
− 1
q−1 |∂tϕ|

q
q−1 dxdt

) q−1
q

,

(6.3.30)
where K := {(x, t) ∈ S : ϕ(x, t) = 1} and S has been defined in (6.2.5).

6.4 Proof of Theorem 6.2.1 and Corollary 6.2.3

Proof of Theorem 6.2.1. For any δ > 0 sufficiently small, let α := 1
log δ . Observe that

α < 0 and α→ 0− for δ → 0. We define for any (x, t) ∈ S

ϕ(x, t) :=


1 in Eδ[

d(x)−θ2 + tθ1

δ−θ2

]C1α

in (Eδ)
C
. (6.4.31)

where

C1 >
2(C0 + θ2 + 1)

θ2q
(6.4.32)
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θ1, θ2 ≥ 1 as in HP1 and Eδ has been defined in (6.2.5). Moreover, for any n ∈ N we
define

ηn(x, t) :=


1 in E δ

n

2−
(
δ

n

)θ2 [
d(x)−θ2 + tθ1

]
in E

( 1
2)

1/θ2 δ
n

\ E δ
n

0 in EC
( 1

2)
1/θ2 δ

n

. (6.4.33)

Let

ϕn(x, t) := ηn(x, t)ϕ(x, t). (6.4.34)

Observe that for any (x, t) ∈ S, ϕn ∈ Lip(S) and 0 ≤ ϕ ≤ 1. Moreover, for any a ≥ 1
we have

|∂tϕn|a = |ηn∂tϕ + ϕ∂tηn|a ≤ 2a−1 (|∂tϕ|a + ϕa|∂tηn|a) . (6.4.35)

|∇ϕn|a = |ηn∇ϕ + ϕ∇ηn|a ≤ 2a−1 (|∇ϕ|a + ϕa|∇ηn|a) . (6.4.36)

Let s ≥ max
{

1, q
q−1 ,

pq
q−p+1

}
, we apply Lemma 6.3.3 with ϕ replaced by the family of

functions ϕn. Then, for some positive constant C, for every n ∈ N and |α| > 0 we have∫ ∞
0

∫
Ω
V uq+α ϕsn dx dt

≤ C
{
|α|−

(p−1)q
q−p+1

∫ ∞
0

∫
Ω
|∇ϕn|

p(q+α)
q−p+1 V

− p+α−1
q−p+1 dxdt+

∫ ∞
0

∫
Ω
|∂tϕn|

q+α
q−1 V

−α+1
q−1 dxdt

}
≤ C|α|−

(p−1)q
q−p+1

[∫ ∞
0

∫
Ω
|∇ϕ|

p(q+α)
q−p+1 V

− p+α−1
q−p+1 dxdt+

∫ ∞
0

∫
Ω
ϕ
p(q+α)
q−p+1 |∇ηn|

p(q+α)
q−p+1 V

− p+α+1
q−p+1 dx dt

]
+ C

[∫ ∞
0

∫
Ω
|∂tϕ|

q+α
q−1 V

−α+1
q−1 dxdt+

∫ ∞
0

∫
Ω
ϕ
q+α
q−1 |∂tηn|

q+α
q−1 V

−α+1
q−1 dxdt

]
.

Let us define

Ẽδ,n := E
( 1

2)
1/θ2 δ

n

\ E δ
n
, (6.4.37)

and

I1 :=

∫ ∞
0

∫
Ω
|∇ϕ|

p(q+α)
q−p+1 V

− p+α−1
q−p+1 dxdt, (6.4.38)

I2 :=

∫ ∫
Ẽδ,n

ϕ
p(q+α)
q−p+1 |∇ηn|

p(q+α)
q−p+1 V

− p+α+1
q−p+1 dx dt, (6.4.39)

I3 :=

∫ ∞
0

∫
Ω
|∂tϕ|

q+α
q−1 V

−α+1
q−1 dxdt, (6.4.40)

I4 :=

∫ ∫
Ẽδ,n

ϕ
q+α
q−1 |∂tηn|

q+α
q−1 V

−α+1
q−1 dxdt. (6.4.41)

Then the latter inequality can be read, for a positive constant C and for every n ∈ N,
as ∫ ∞

0

∫
Ω
V uq+α ϕsn dxdt ≤ C|α|

− (p−1)q
q−p+1 [I1 + I2] + C [I3 + I4] . (6.4.42)
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In view of (6.4.31) and (6.4.33), for |α| > 0, C > 0 and for every n ∈ N, we have

I2 ≤
∫ ∫

Ẽδ,n

C n
C1αθ2

p(q+α)
q−p+1

(
δ

n

)θ2 p(q+α)
q−p+1 [

d(x)−θ2−1|∇d(x)|
] p(q+α)
q−p+1

V
− p+α+1
q−p+1 dx dt

≤ C nθ2
p(q+α)
q−p+1

(C1α−1)
δ
θ2
p(q+α)
q−p+1

∫ ∫
Ẽδ,n

d(x)
−(θ2+1)

p(q+α)
q−p+1 V

− p+α+1
q−p+1 dx dt.

(6.4.43)
Due to assumption HP1(ii) with ε = − α

q−p+1 > 0, (6.4.43) reduces to

I2 ≤ C nθ2
p(q+α)
q−p+1

(C1α−1)
δ
θ2
p(q+α)
q−p+1

(
δ

n

)− pq
q−p+1

−C0ε
∣∣∣∣log

(
δ

n

)∣∣∣∣s4 , (6.4.44)

with s4 as in HP1. Now observe that, due (6.4.32), we have

|α|
q − p+ 1

(−θ2 p+ C1 p θ2(q + α)− C0) ≥ |α|
q − p+ 1

.

Moreover, there exist C̄ > 0 such that

δ
α

q−p+1
[θ2p+C0]

= e
α

q−p+1
[θ2p+C0] log(δ)

= e
θ2p+C0
q−p+1 ≤ C̄.

Then from (6.4.44) we deduce, for some C > 0

I2 ≤ C n−
|α|

q−p+1

∣∣∣∣log

(
δ

n

)∣∣∣∣s4 . (6.4.45)

Similarly, in view of (6.4.31) and (6.4.33), for |α| > 0, C > 0 and for every n ∈ N
we have

I4 ≤ C
∫ ∫

Ẽδ,n

n
θ2C1α

(
q+α
q−1

)(
δ

n

)θ2( q+αq−1

) (
θ1t

θ1−1
) q+α
q−1

V
−α+1
q−1 dxdt

≤ Cnθ2
(
q+α
q−1

)
(C1α−1)

δ
θ2
(
q+α
q−1

) ∫ ∫
Ẽδ,n

t
(θ1−1)

(
q+α
q−1

)
V
−α+1
q−1 dxdt.

(6.4.46)

Due to assumption HP1(i) with ε = − α
q−1 > 0, (6.4.46) reduces to

I4 ≤ C n
θ2
(
q+α
q−1

)
(C1α−1)

δ
θ2
(
q+α
q−1

)(
δ

n

)− q
q−1

θ2−C0ε
∣∣∣∣log

(
δ

n

)∣∣∣∣s2
≤ C n

1
q−1

[C1αθ2(q+α)−αθ2+C0|α|] δ
1
q−1

[αθ2+C0α]
,

(6.4.47)

with s2 as in HP1. We now observe that, due to (6.4.32), we can write

n
− |α|
q−1

[C1θ2(q+α)−θ2−C0] ≤ n−
|α|
q−1 . (6.4.48)

Moreover, observe that there exist C̄ > 0 such that

δ
α
q−1

(θ2+C0)
= e

α
q−1

(θ2+C0) log(δ)
= e

θ2+C0
q−1 ≤ C̄. (6.4.49)
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By plugging (6.4.48) and (6.4.49) into (6.4.47) we get

I4 ≤ C n−
|α|
q−1

∣∣∣∣log

(
δ

n

)∣∣∣∣s2 . (6.4.50)

Let us now consider integral I1 defined in (6.4.38). By using the definition of ϕ in
(6.4.31) we can write

I1 ≤
∫ ∫

ECδ

[
C1|α|θ2

(
d(x)−θ2 + tθ1

δ−θ2

)C1α−1
d(x)−θ2−1

δ−θ2

] p(q+α)
q−p+1

V
− p+α−1
q−p+1 dxdt

≤ C
∫ ∫

ECδ

|α|
p(q+α)
q−p+1

[
d(x)−θ2 + tθ1

] (C1α−1)p(q+α)
q−p+1

d(x)
− (θ2+1)p(q+α)

q−p+1 δ
θ2C1αp(q+α)

q−p+1 V
− p+α−1
q−p+1 dxdt.

(6.4.51)
Similarly to (6.4.49), we can say that there exist C̄ > 0 such that

δ
θ2C1αp(q+α)

q−p+1 ≤ C̄,

hence (6.4.51), for some constant C > 0, reduces to

I1 ≤ C|α|
p(q+α)
q−p+1

∫ ∫
ECδ

V
− p+α−1
q−p+1 d(x)

− (θ2+1)p(q+α)
q−p+1

[(
d(x)−θ2 + tθ1

)− 1
θ2

]− θ2(C1α−1)p(q+α)
q−p+1

dxdt.

(6.4.52)

Claim: Let f : (0,+∞) → [0,+∞) be a non decreasing function and if HP1(ii)
holds then, for any 0 < ε < ε0 and for any 0 < δ < δ0 small enough, we can write

∫ ∫
(Eδ)C

f

([(
d(x)−θ2 + tθ1

)− 1
θ2

])
d(x)

−(θ2+1)p
(

q
q−p+1

−ε
)
V
− p−1
q−p+1

+ε
dxdt

≤ C
∫ 2

1
θ2 δ

0
f(z)z

− pq
q−p+1

θ2−C0ε−1| log z|s4 dz,

(6.4.53)
for some constant C > 0. To show the claim, we first observe that

f(x) ≤ f
(

δ

2
n
θ2

)
for all x ∈ E

δ
2

n+1
θ2

\ E
δ
2

n
θ2
.
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Hence, due to HP1(ii), we can write∫ ∫
(Eδ)C

f

([
d(x)−θ2 + tθ1

]− 1
θ2

)
d(x)

−(θ2+1)p
(

q
q−p+1

−ε
)
V
− p−1
q−p+1

+ε
dxdt

=
+∞∑
n=0

∫ ∫E
δ
2

n+1
θ2

\E
δ
2

n
θ2

 f
([
d(x)−θ2 + tθ1

]− 1
θ2

)
d(x)

−(θ2+1)p
(

q
q−p+1

−ε
)
V
− p−1
q−p+1

+ε
dxdt

≤
+∞∑
n=0

f

[ δ

2
n
θ2

]−θ2(− 1
θ2

)∫ ∫E
δ
2

n+1
θ2

\E
δ
2

n
θ2

 d(x)
−(θ2+1)p

(
q

q−p+1
−ε
)
V
− p−1
q−p+1

+ε
dxdt

≤ C
+∞∑
n=0

f

(
δ

2
n
θ2

)(
δ

2
n
θ2

)− pq
q−p+1

θ2−C0ε
∣∣∣∣log

(
δ

2
n
θ2

)∣∣∣∣s4
≤ C

+∞∑
n=0

∫ δ

2(n−1)/θ2

δ

2n/θ2

f(z)z
− pq
q−p+1

θ2−C0ε−1| log z|s4 dz

= C

∫ 21/θ2δ

0
f(z)z

− pq
q−p+1

θ2−C0ε−1| log z|s4 dz.

We now apply (6.4.53) with ε = |α|
q−p+1 > 0 to inequality (6.4.52). We get

I1 ≤ C|α|
p(q+α)
q−p+1

∫ 21/θ2δ

0
z
−θ2 (C1α−1)p(q+α)

q−p+1
− pq
q−p+1

θ2+
C0α
q−p+1

−1| log z|s4 dz. (6.4.54)

We define

b :=
1

q − p+ 1
(−θ2C1αp(q + α) + θ2pα+ C0α) , (6.4.55)

and due to (6.4.32), we observe that

b ≥ |α|
q − p+ 1

≥ 0.

By plugging (6.4.55) into inequality (6.4.54) we can write

I1 ≤ C |α|
p(q+α)
q−p+1

∫ 21/θ2δ

0
zb−1| log z|s4 dz. (6.4.56)

Let us now perform a change of variable, we define

y := b | log z|,

hence (6.4.56) reduces to

I1 ≤ C |α|
p(q+α)
q−p+1 b−s4−1

∫ 0

−∞
ey|y|s4 dy

≤ C |α|
p(q+α)
q−p+1

(
|α|

q − p+ 1

)−s4−1

≤ C |α|
pq

q−p+1
−s4−1

.

(6.4.57)
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with s4 as in HP1(ii).
Finally, let us consider I3 defined in (6.4.40). Due to the definition of ϕ in (6.4.31)

we get

I3 ≤
∫ ∫

ECδ

[
C1|α|θ2

(
d(x)−θ2 + tθ1

δ−θ2

)C1α−1
tθ1−1

δ−θ2

] q+α
q−1

V
−α+1
q−1 dxdt

≤ C
∫ ∫

ECδ

|α|
q+α
q−1

[
d(x)−θ2 + tθ1

] (C1α−1)(q+α)
q−1

t
(θ1−1)(q+α)

q−1 δ
θ2C1α(q+α)

q−1 V
−α+1
q−1 dxdt.

(6.4.58)
Arguing as in (6.4.49), we can say that there exist C̄ > 0 such that

δ
θ2C1α(q+α)

q−1 ≤ C̄ .

Hence (6.4.58), for some constant C > 0, reduces to

I3 ≤ C|α|
q+α
q−1

∫ ∫
ECδ

V
−α+1
q−1 t

(θ1−1)(q+α)
q−1

[(
d(x)−θ2 + tθ1

)− 1
θ2

]−θ2 (C1α−1)(q+α)
q−1

dxdt.

(6.4.59)
Let us now show the following
Claim: Let f : (0,+∞) → [0,+∞) be a non decreasing function and if HP1(i)
holds then, for any 0 < ε < ε0 and for any 0 < δ < δ0 small enough, we can write∫ ∫

ECδ

f

([(
d(x)−θ2 + tθ1

)− 1
θ2

])
t
(θ1−1)

(
q
q−1
−ε
)
V
− 1
q−1

+ε
dxdt

≤ C
∫ 2

1
θ2 δ

0
f(z)z

− q
q−1

θ2−C0ε−1| log z|s2 dz,

(6.4.60)

for some constant C > 0.
Inequality (6.4.60) can be proven similarly to (6.4.53) where one uses HP1(i) instead

of HP1(ii). We now apply (6.4.60) with ε = |α|
q−1 > 0 to inequality (6.4.59). We get

I3 ≤ C|α|
q+α
q−1

∫ 21/θ2δ

0
z
−θ2(C1α−1) q+α

q−1
− q
q−1

θ2+
C0α
q−1
−1| log z|s2 dz. (6.4.61)

We define

β :=
1

q − 1
(−θ2C1α(q + α) + θ2α+ C0α) , (6.4.62)

and due to (6.4.32), we can say that

β ≥ |α|
q − 1

> 0.

By plugging (6.4.62) into inequality (6.4.61), we get

I3 ≤ C|α|
q+α
q−1

∫ 0

−∞
ey
∣∣∣∣ yβ
∣∣∣∣s2 1

β
dy

≤ C |α|
q+α
q−1 β−s2−1

≤ C |α|
1
q−1
−s2 .

(6.4.63)
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with s2 as in HP1(i).

For any n ∈ N and δ > 0 small enough, due to inequalities (6.4.45), (6.4.50), (6.4.57)
and (6.4.63), inequality (6.4.42) reduces to

∫ ∞
0

∫
Ω
V uq+α ϕsn dxdt ≤ C|α|

− (p−1)q
q−p+1

[
|α|

pq
q−p+1

−s4−1
+ n

− |α|
q−p+1

∣∣∣∣log

(
δ

n

)∣∣∣∣s4]
+ C

[
|α|

1
q−1
−s2 + n

− |α|
q−1

∣∣∣∣log

(
δ

n

)∣∣∣∣s2] , (6.4.64)

where C > 0 does not depend on δ and n. By taking the limit in (6.4.64) as n→∞ for
a fixed δ > 0 small enough, we get

0 ≤
∫ ∫

Eδ

V uq+α dxdt ≤
∫ ∞

0

∫
Ω
V uq+α ϕsn dxdt

≤ C
[
|α|

p−1
q−p+1

−s4 + |α|
1
q−1
−s2
]
.

(6.4.65)

Observe that, due to the definitions of s2 in HP1(i) and s4 in HP2(ii)

1

q − 1
− s2 > 0 ,

p− 1

q − p+ 1
− s4 > 0 .

Hence we can take the limit in (6.4.65) as δ → 0 (and thus α → 0−) obtaining, by
Fatou’s Lemma ∫ ∞

0

∫
Ω
V uq dxdt = 0,

which concludes the proof.

As a consequence of Theorem 6.2.1 we prove Corollary 6.2.3.

Proof of Corollary 6.2.3. We show that under the assumptions of Corollary 6.2.3, hy-
pothesis HP1 is satisfied. Let us define

Eδ := E
( 1

2)
1
θ2 δ
\ Eδ

and observe that

Eδ ⊂
{
d(x) ≥ 2

− 1
θ2 δ
}
×
[
0, 2

1
θ1 δ
− θ2
θ1

]
=: Ωδ ×

[
0, 2

1
θ1 δ
− θ2
θ1

]
,
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where d(x) has been define in (6.1.4). Observe that

∫ ∫
Eδ

t
(θ1−1)

(
q
q−1
−ε
)
V
− 1
q−1

+ε
dxdt

≤
∫ ∫

Eδ

t
(θ1−1)

(
q
q−1
−ε
)

[f(t)h(x)]
− 1
q−1

+ε
dxdt

≤ C
∫

Ωδ

h(x)
− 1
q−1

+ε
dx

∫ 2
1
θ1 δ
− θ2
θ1

0
t
(θ1−1)

(
q
q−1
−ε
)
f(t)

− 1
q−1

+ε
dt

≤ C
∫

Ωδ

[
d(x)−σ1 | log(d(x))|−δ1

]− 1
q−1

+ε
dx

×
∫ 2

1
θ1 δ
− θ2
θ1

0
f(t)

− 1
q−1 (1 + t)αεt

(θ1−1)
(

q
q−1
−ε
)
dt

≤ C
∫

Ωδ

d(x)
σ1
q−1
−εσ1 |log(d(x))|

δ1
q−1
−εδ1 dx

×

δ− θ2θ1 [(θ1−1)
(

q
q−1
−ε
)

+αε
] ∫ 2

1
θ1 δ
− θ2
θ1

0
f(t)

− 1
q−1dt


≤ C |log(δ)|

δ1
q−1
−εδ1

[
δ
− θ2
θ1

[
(θ1−1)

(
q
q−1
−ε
)

+αε
]]
δ
− θ2
θ1
σ2 |log(δ)|δ2

≤ Cδ−
θ2
θ1

[
(θ1−1)

(
q
q−1
−ε
)

+αε+σ2

]
|log(δ)|

δ1
q−1
−εδ1+δ2 ,

(6.4.66)

for θ1, θ2 ≥ 1 as in HP1. For ε > 0 small enough, condition (6.2.7) of HP1 is satisfied
because

θ2

θ1

[
q

q − 1
− σ2

]
≥ 0 and δ2 +

δ1

q − 1
< s̄2 . (6.4.67)
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On the other hand, for ε > 0 sufficiently small∫ ∫
Eδ

d(x)
−(θ2+1)p

(
q

q−p+1
−ε
)
V
− p−1
q−p+1

+ε
dxdt

≤
∫ ∫

Eδ

d(x)
−(θ2+1)p

(
q

q−p+1
−ε
)

[f(t)h(x)]
− p−1
q−p+1

+ε
dxdt

≤
∫

Ωδ

d(x)
−(θ2+1)p

(
q

q−p+1
−ε
)
h(x)

− p−1
q−p+1

+ε
dx

∫ 2
1
θ1 δ
− θ2
θ1

0
f(t)

− p−1
q−p+1

+ε
dt

≤ C
∫

Ωδ

d(x)
−(θ2+1)p

(
q

q−p+1
−ε
) [
d(x)σ1 | log(d(x))|δ1

] p−1
q−p+1

−ε
dx

×

δ− θ2θ1 αε ∫ 2
1
θ1 δ
− θ2
θ1

0
f(t)

− p−1
q−p+1dt


≤ C

∫
Ωδ

d(x)
−(θ2+1)p

(
q

q−p+1
−ε
)

+σ1
p−1
q−p+1

−εσ1 | log(d(x))|δ1
p−1
q−p+1

−εδ1dx

×
[
δ
− θ2
θ1
αε
δ
− θ2
θ1
σ4 | log(δ)|δ4

]
≤ Cδ−

θ2
θ1

(αε+σ4)| log(δ)|δ4+δ1
(

p−1
q−p+1

−ε
)

×
∫

Ωδ

d(x)
−(θ2+1)p

(
q

q−p+1
−ε
)

+σ1
p−1
q−p+1

−εσ1dx

(6.4.68)

We define

β := −(θ2 + 1)p

(
q

q − p+ 1
− ε
)

+ σ1
p− 1

q − p+ 1
− εσ1

and we observe that β < −1 for θ2 sufficiently big. Therefore, due to the boundedness
of Ωδ, inequality (6.4.68) reduces to∫ ∫

Eδ

d(x)
−(θ2+1)p

(
q

q−p+1
−ε
)
V
− p−1
q−p+1

+ε
dxdt

≤ Cδ−
θ2
θ1

(αε+σ4)+β+1| log(δ)|δ4+δ1
(

p−1
q−p+1

−ε
) (6.4.69)

For ε > 0 small enough and for θ2/θ1 > 0 small enough, condition (6.2.8) is satisfied
because the hypotheses of the Corollary 6.2.3 guarantee that

σ1 −
θ2

θ1
σ4
q − p+ 1

p− 1
≥ q + 1 and δ4 + δ1

(
p− 1

q − p+ 1
− ε
)
< s̄4.

Thus HP1 holds and we can apply Theorem 6.2.1 and obtain the thesis.

6.5 Proof of Theorem 6.2.2

Proof of Theorem 6.2.2. Let us recall the family of functions ϕn defined in (6.4.34). We
claim that uq ∈ L1(Ω × (0,+∞), V dµdt). To prove this, we start by showing that for
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some constants A > 0, B > 0, s ≥ 1, for every δ > 0 small enough and every n ∈ N we
have ∫ ∞

0

∫
Ω
ϕsnu

qV dxdt ≤ A
(∫ ∞

0

∫
Ω
ϕsnu

qV dxdt

) p−1
pq

+ B. (6.5.70)

In order to prove (6.5.70) we apply Corollario 6.3.5 with ϕ replaced by the family of
functions ϕn. Let

C1 > max

{
2(1 + C0 + θ2p)

pθ2q
,

2(C0 + 1)

θ2(q − 1)q
,
C0 + 1

θ2q

}
, (6.5.71)

with C0 > 0 and θ2 ≥ 1 as in HP2. Then for any fixed s ≥ max
{

1, q+1
q−1 ,

2pq
q−p+1

}
, δ > 0

sufficiently small, α = 1
log δ < 0 and for every n ∈ N, we have

∫ ∞
0

∫
Ω
V uq ϕs dx dt

≤ C
[
|α|−1

(
|α|−

(p−1)q
q−p+1

∫ ∞
0

∫
Ω
V
− p+α−1
q−p+1 |∇ϕn|

p(q+α)
q−p+1 dxdt

+

∫ ∞
0

∫
Ω
V
−α+1
q−1 |∂tϕn|

q+α
q−1 dxdt

)] p−1
p

×

(∫ ∫
ECδ

V uqϕsn dx dt

) (1−α)(p−1)
pq

×

(∫ ∫
ECδ

V
− (1−α)(p−1)
q−(1−α)(p−1) |∇ϕn|

pq
q−(1−α)(p−1) dxdt

) q−(1−α)(p−1)
pq

+ C

[
|α|−

(p−1)q
q−p+1

∫ ∞
0

∫
Ω
V
− p+α−1
q−p+1 |∇ϕn|

p(q+α)
q−p+1 dxdt

+

∫ ∞
0

∫
Ω
V
−α+1
q−1 |∂tϕn|

q+α
q−1 dxdt

] 1
q+α

×
(∫ ∞

0

∫
Ω
V
− 1
q+α−1 |∂tϕn|

q+α
q+α−1 dxdt

) q+α−1
q+α

.

(6.5.72)
where Eδ has been defined in (6.2.5). We also define

J1 :=

∫ ∞
0

∫
Ω
V
− p+α−1
q−p+1 |∇ϕn|

p(q+α)
q−p+1 dxdt; (6.5.73)

J2 :=

∫ ∞
0

∫
Ω
V
−α+1
q−1 |∂tϕn|

q+α
q−1 dxdt; (6.5.74)

J3 :=

∫ ∫
ECδ

V
− (1−α)(p−1)
q−(1−α)(p−1) |∇ϕn|

pq
q−(1−α)(p−1) dxdt; (6.5.75)

J4 :=

∫ ∫
ECδ

V
− 1
q+α−1 |∂tϕn|

q+α
q+α−1 dxdt. (6.5.76)
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By using (6.5.73), (6.5.74), (6.5.75) and (6.5.76), inequality (6.5.72) reads∫ ∞
0

∫
Ω
V uq ϕs dx dt

≤ C
[
|α|−1− (p−1)q

q−p+1J1

] p−1
p

(∫∫
ECδ

V uqϕsn dx dt

) (1−α)(p−1)
pq

J
q−(1−α)(p−1)

pq

3

+ C
[
|α|−1J2

] p−1
p

(∫∫
ECδ

V uqϕsn dx dt

) (1−α)(p−1)
pq

J
q−(1−α)(p−1)

pq

3

+ C

[
|α|−

(p−1)q
q−p+1J1 + J2

] 1
q+α

J
q+α−1
q+α

4

≤ C
[
|α|−

(p−1)q
q−p+1J1

] p−1
p

(∫∫
ECδ

V uqϕsn dx dt

) (1−α)(p−1)
pq

×
[
|α|−

(p−1)q
q−(1−α)(p−1)J3

] q−(1−α)(p−1)
pq

+ CJ
p−1
p

2

(∫∫
ECδ

V uqϕsn dx dt

) (1−α)(p−1)
pq [

|α|−
(p−1)q

q−(1−α)(p−1)J3

] q−(1−α)(p−1)
pq

+ C

[
|α|−

(p−1)q
q−p+1J1 + J2

] 1
q+α

J
q+α−1
q+α

4 .

(6.5.77)

Let us prove that, for δ > 0 sufficiently small and |α| = − 1
log δ > 0 sufficiently small

lim sup
n→∞

(
|α|−

(p−1)q
q−p+1J1

)
≤ C, (6.5.78)

lim sup
n→∞

,

(
|α|−

(p−1)q
q−(1−α)(p−1)J3

)
≤ C, (6.5.79)

lim sup
n→∞

J2 ≤ C, (6.5.80)

lim sup
n→∞

J4 ≤ C, (6.5.81)

for some C > 0 independent of α.

We start by proving (6.5.78). Observe that

J1 ≤ C(I1 + I2), (6.5.82)

with I1 and I2 defined in (6.4.38) and (6.4.39), respectively. Similarly to proof of
Theorem 6.2.1, in view of (6.4.31) and (6.4.33) we obtain inequality (6.4.44). Then due
to condition (6.2.11) in HP2(ii) with ε = − α

q−p+1 > 0 we have, for every n ∈ N

I2 ≤ C nθ2
p(q+α)
q−p+1

(C1α−1)
δ
θ2
p(q+α)
q−p+1

(
δ

n

)− pq
q−p+1

θ2−C0ε
∣∣∣∣log

(
δ

n

)∣∣∣∣s̄4 , (6.5.83)
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with s̄4 as in (6.2.6). Now observe that due to (6.5.71)

|α|
q − p+ 1

(−θ2p+ C1pθ2(q + α)− C0) ≥ |α|
q − p+ 1

.

Moreover, there exists C̄ > 0 such that

δ
1

q−p+1
(θ2pq−θ2pq+θ2pα+C0α)

= e
α

q−p+1
(θ2p+C0) log(δ)

= e
θ2p+C0
q−p+1 ≤ C̄.

Then from (6.5.83) we deduce, for some positive constant C

I2 ≤ C n−
|α|

q−p+1

∣∣∣∣log

(
δ

n

)∣∣∣∣s̄4 . (6.5.84)

On the other hand, arguing as in the proof of Theorem 6.2.1, we deduce inequality
(6.4.57). Therefore

I1 ≤ C |α|
pq

q−p+1
−s4−1 ≤ C |α|

pq
q−p+1

−s̄4−1 ≤ C |α|
q(p−1)
q−p+1 . (6.5.85)

Combining (6.5.82), (6.5.84) and (6.5.85), for some C > 0 and for every n ∈ N, we have

|α|−
q(p−1)
q−p+1J1 ≤ C

(
1 + |α|−

q(p−1)
q−p+1n

− |α|
q−p+1

∣∣∣∣log

(
δ

n

)∣∣∣∣s̄4) . (6.5.86)

We can compute the limit as n→∞ on both sides of (6.5.86), thus we obtain (6.5.78).
Now observe that

J2 ≤ C(I3 + I4), (6.5.87)

with I3 and I4 defined in (6.4.40) and (6.4.41), respectively. Then arguing as in the proof
of Theorem 6.2.1, due to condition (6.2.9) in HP2(i) with ε = − α

q−1 > 0 we deduce, for
some positive constant C

I4 ≤ C n−
|α|
q−1

∣∣∣∣log

(
δ

n

)∣∣∣∣s̄2 , (6.5.88)

where s̄2 has been defined in (6.2.6). Moreover, from inequality (6.4.65) and (6.2.6) we
deduce, for some constant C > 0

I3 ≤ C. (6.5.89)

Combining (6.5.87), (6.5.88) and (6.5.89), for some C > 0 and for every n ∈ N, we have

J2 ≤ C
(

1 + n
− |α|
q−1

∣∣∣∣log

(
δ

n

)∣∣∣∣s̄2) .
Letting n→∞ we obtain (6.5.79).

We now proceed to estimate J4. Observe that

J4 ≤ C (I5 + I6) , (6.5.90)

where

I5 :=

∫ ∫
ECδ

V
− 1
q+α−1 |∂tϕ|

q+α
q+α−1 dxdt; I6 :=

∫ ∫
ECδ

V
− 1
q+α−1 |∂tηn|

q+α
q+α−1 dxdt.
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Due to (6.4.31) we have

I5 ≤ C
∫ ∫

ECδ

V
− 1
q+α−1 |α|

q+α
q+α−1

[
d(x)−θ2 + tθ1

δ−θ2

] (C1α−1)(q+α)
q+α−1

(
tθ1−1

δ−θ2

) q+α
q+α−1

dxdt

≤ C |α|
q+α
q+α−1

∫ ∫
ECδ

V
− 1
q+α−1

[
d(x)−θ2 + tθ1

] (C1α−1)(q+α)
q+α−1

δ
θ2C1α(q+α)
q+α−1 t

(θ1−1)
(

(q+α)
q+α−1

)
dxdt

≤ C |α|
q+α
q+α−1

∫ ∫
ECδ

V
− 1
q+α−1

[(
d(x)−θ2 + tθ1

)− 1
θ2

]−θ2(C1α−1)
(

q
q−1
− α

(q+α−1)(q−1)

)

× t(θ1−1)
(

q
q−1
− α

(q+α−1)(q−1)

)
dxdt,

(6.5.91)
where we have used that there exists a positive constant C̄ such that

δ
θ2C1α

(
q+α
q+α−1

)
= e

θ2C1α
(

q+α
q+α−1

)
log δ

= e
θ2C1

(
q+α
q+α−1

)
≤ C̄ .

Claim: Let f : (0,+∞) → [0,+∞) be a non decreasing function and if HP2(i)
holds then, for any 0 < ε < ε0 and for any 0 < δ < δ0 small enough, we can write∫ ∫

ECδ

f

([(
d(x)−θ2 + tθ1

)− 1
θ2

])
t
(θ1−1)

(
q
q−1

+ε
)
V
− 1
q−1
−ε
dxdt

≤ C
∫ 2

1
θ2 δ

0
f(z)z−s̄1−C0ε−1| log z|s̄2 dz,

(6.5.92)

for some constant C > 0 with s̄1 and s̄2 as in (6.2.6). Inequality (6.5.92) can be
proven similarly to (6.4.53) and (6.4.60) where one uses the condition (6.2.10) in HP2(i)

instead of HP1. By using the latter claim with ε = |α|
(q+α−1)(q−1) > 0 we obtain

I5 ≤ C |α|
q+α
q+α−1

∫ 2
1
θ2 δ

0
z
−θ2(C1α−1)

(
q+α
q+α−1

)
−s̄1−C0ε−1| log z|s̄2 dz.

Then observe that, due to (6.5.71)

−θ2(C1α− 1)

(
q + α

q + α− 1

)
− s̄1 − C0ε ≥

|α|
(q − 1)2

=: b

Now we define
y := b log z,

then there exists C̄ > 0 such that

I5 ≤ C |α|
q+α
q+α−1

∫ 0

−∞
ey
∣∣∣y
b

∣∣∣s̄2 1

b
dy

≤ C |α|
q+α
q+α−1 b−s̄2−1

∫ 0

−∞
ey|y|s̄2 dy

≤ C |α|
q+α
q+α−1

(
|α|

(q − 1)2

)−s̄2−1

≤ C |α|
q+α
q+α−1

− 1
q−1
−1 ≤ C̄ .

(6.5.93)
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On the other hand, due to (6.4.31) and condition (6.2.10) in HP2(i) with ε = |α|
(q+α−1)(q−1) ,

by using the definition of Ẽδ/n in (6.4.37), for every n ∈ N we have

I6 ≤ C
∫ ∫

Ẽδ/n

V
− 1
q+α−1

[
d(x)

n

θ2

tθ1−1

] q+α
q+α−1

n
θ2αC1

(
q+α
q+α−1

)
dxdt

≤ C nθ2(C1α−1)
(

q+α
q+α−1

)
δ
θ2
(

q+α
q+α−1

) ∫ ∫
Ẽδ/n

V
− 1
q−1
−ε
t
(θ1−1)

(
q
q−1

+ε
)
dxdt

≤ C nθ2(C1α−1)
(

q+α
q+α−1

)
δ
θ2
(

q+α
q+α−1

)(
δ

n

)−s̄1−C0ε
∣∣∣∣log

(
δ

n

)∣∣∣∣s̄2
≤ C n−

|α|
q+α−1

[
θ2C1(q+α)

θ2
q−1
− C0
q−1

]
δ

|α|
(q+α−1)(q−1)

[θ2−C0]

∣∣∣∣log

(
δ

n

)∣∣∣∣s̄2
(6.5.94)

Now observe that there exists a positive constant C̄ such that

δ
|α|

(q+α−1)(q−1)
[θ2−C0]

= e
|α|

(q+α−1)(q−1)
[θ2−C0] log δ

= e
C0−θ2

(q+α−1)(q−1) ≤ C̄ , (6.5.95)

and due to (6.5.71)

− |α|
q + α− 1

[
θ2C1(q + α)

θ2

q − 1
− C0

q − 1

]
≤ − |α|

(q − 1)2
. (6.5.96)

Combining (6.5.95) and (6.5.96) with (6.5.94) we obtain

I6 ≤ C n
− |α|

(q−1)2

∣∣∣∣log

(
δ

n

)∣∣∣∣s̄2 . (6.5.97)

We now substitute (6.5.93) and (6.5.97) into inequality (6.5.90) thus we have, for some
C > 0 and for every n ∈ N

J4 ≤ C
[
1 + n

− |α|
(q−1)2

∣∣∣∣log

(
δ

n

)∣∣∣∣s̄2] .
Letting n→∞ we get (6.5.81).

In order to estimate integral J3 defined in (6.5.75), we define, for sufficiently small
|α| > 0, the positive constant λ

λ :=
|α|q(p− 1)

(q − p+ 1)[q − (1− α)(p− 1)]
. (6.5.98)

Observe that, for sufficiently small |α| > 0

|α|q(p− 1)

(q − p+ 1)2
< λ <

2|α|q(p− 1)

(q − p+ 1)2
, (6.5.99)

and
pq

q − (1− α)(p− 1)
=
s̄3

θ2
+ λ p, (6.5.100)
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where s̄3 has been defined in (6.2.6) and θ2 ≥ 1 as in HP2. Thus by the definition of ϕn
in (6.4.34) and by (6.5.98), for sufficiently small |α| > 0 and for every n ∈ N we have

J3 ≤ C
∫ ∫

ECδ

V −λ−s̄4 |∇ϕ|
s̄3
θ2

+λ p
dxdt+ C

∫ ∫
Ẽδ/n

V −λ−s̄4 (ϕ|∇ηn|)
s̄3
θ2

+λ p
dxdt

=: I7 + I8 ,
(6.5.101)

where Ẽδ/n has been defined in (6.4.37). Due to the very definition of ϕ and ηn in
(6.4.31) and (6.4.33) respectively, and by (6.5.100) we get

I8 ≤ C
∫ ∫

Ẽδ/n

V −λ−s̄4n
C1αθ2

(
s̄3
θ2

+λ p
)(

δ

n

)θ2( s̄3θ2 +λ p
)
d(x)

−(θ2+1)
(
s̄3
θ2

+λ p
)
dxdt

≤ C n(C1α−1)(s̄3+λ pθ2)δs̄3+λ pθ2

∫ ∫
Ẽδ/n

V −λ−s̄4d(x)
−(θ2+1)p

(
q

q−p+1
+λ
)
dxdt

Now we use condition (6.2.12) in HP2(ii) with ε = λ and we obtain, for every n ∈ N
and for sufficiently small δ > 0

I8 ≤ C n
(C1α−1)pθ2

(
q

q−p+1
+λ
)
δ
p θ2

(
q

q−p+1
+λ
)(

δ

n

)− pq
q−p+1

θ2−C0λ
∣∣∣∣log

(
δ

n

)∣∣∣∣s̄4
≤ C nC1αpθ2

(
q

q−p+1
+λ
)
−λ pθ2+C0λ δp θ2λ−C0λ

∣∣∣∣log

(
δ

n

)∣∣∣∣s̄4 .
Due to the definition of λ in (6.5.98), inequality (6.5.99) and the definition of C1 in
(6.5.71), for sufficiently small |α| > 0 we write

C1αp θ2

(
q

q − p+ 1
+ λ

)
− λ pθ2 + C0λ

= (C1α− 1) p θ2
|α|q(p− 1)

(q − p+ 1)[q − (1− α)(p− 1)]
+ C1α

p q θ2

q − p+ 1
+

C0|α|q(p− 1)

(q − p+ 1)[q − (1− α)(p− 1)]

≤ (C1α− 1) p θ2
|α|q(p− 1)

(q − p+ 1)2
+ C1α

p q θ2

q − p+ 1
+
C0|α|q(p− 1)

(q − p+ 1)2

≤ C1α θ2

[
|α|q p2

(q − p+ 1)2
− |α|q p

(q − p+ 1)2
+

q p

q − p+ 1

]
− |α|q(p− 1)

(q − p+ 1)2
[pθ2 − C0]

≤ − |α|
(q − p+ 1)2

[C1θ2 p q(q + (p− 1)(|α| − 1)) + (p θ2 − C0)q(p− 1)]

≤ − |α|q
(q − p+ 1)2

[C1θ2 p q − C0(p− 1)]

≤ − |α|q p
(q − p+ 1)2

[C1θ2 q − C0]

≤ − |α|q p
(q − p+ 1)2

.

Moreover, since α = 1
log δ < 0, there exists C̄ such that

δλ(pθ2−C0) = eλ(pθ2−C0) log δ = e−λ(pθ2−C0)| log δ| < e
−|α| q (p−1)

(q−p+1)2
(p θ2−C0)| log δ| ≤ C̄
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Therefore we obtain the following bound on I8

I8 ≤ C n
− |α| p q

(q−p+1)2

∣∣∣∣log

(
δ

n

)∣∣∣∣s̄4 . (6.5.102)

On the other hand, by using the definition of ϕ in (6.4.31) we can write

I7 ≤ C |α|
pq

q−(1−α)(p−1)

∫ ∫
ECδ

V −λ−s̄4

[(
d(x)−θ2 + tθ1

δ−θ2

)C1α−1

δθ2d(x)−(θ2−1)

] s̄3
θ2

+λ p

dxdt ,

and we observe that there exists C̄ > 0 such that

δ
C1α θ2

(
s̄3
θ2

+λ p
)

= δ
C1α θ2

(
p q

q−(1−α)(p−1)

)
< δ

C1α θ2
(

p q
q−p+1

)
= e

C1α θ2
(

pq
q−p+1

)
log δ ≤ C̄ .

Therefore we get

I7 ≤ C |α|
pq

q−(1−α)(p−1)

∫ ∫
ECδ

V −λ−s̄4
[
d(x)−θ2 + tθ1

](C1α−1)
s̄3
θ2

+λ p
d(x)

−(θ2−1)
(
s̄3
θ2

+λ p
)
dxdt ,

We now state the following
Claim: Let f : (0,+∞) → [0,+∞) be a non decreasing function and suppose that
HP2(ii) holds. Then, for any 0 < ε < ε0 and for any 0 < δ < δ0 small enough, we can
write∫ ∫

ECδ

f

([(
d(x)−θ2 + tθ1

)− 1
θ2

])
d(x)

−(θ2+1)p
(

q
q−p+1

+ε
)
V
− p−1
q−p+1

−ε
dxdt

≤ C
∫ 2

1
θ2 δ

0
f(z)z−s̄3−C0ε−1| log z|s̄4 dz,

(6.5.103)

for some constant C > 0 with s̄3 and s̄4 as in (6.2.6). Inequality (6.5.103) can
be proven similarly to (6.4.53) and (6.4.60) where one uses the condition (6.2.12) in
HP2(ii) instead of HP1. By using the latter claim with ε = λ we get

I7 ≤ C |α|
pq

q−(1−α)(p−1)

∫ 2
1
θ2 δ

0
z
−θ2(C1α−1)

(
s̄3
θ2

+λ p
)
−s̄3−C0 λ−1| log z|s̄4 dz (6.5.104)

Observe that, since α < 0 and due to (6.5.71)

−θ2(C1α− 1)

(
s̄3

θ2
+ λ p

)
− s̄3 − C0 λ

= −θ2C1α
p q

q − (1− α)(p− 1)
+ p θ2

|α| q(p− 1)

(q − p+ 1)[q − (1− α)(p− 1)]
− C0

|α| q(p− 1)

(q − p+ 1)[q − (1− α)(p− 1)]

≥ |α|θ2C1
p q

(q − p+ 1)2
+ p θ2

|α| q(p− 1)

(q − p+ 1)2
− C0

2 |α| q(p− 1)

(q − p+ 1)2

≥ |α| q(p− 1)

(q − p+ 1)2
{θ2C1 − 2C0}

≥ |α| q(p− 1)

(q − p+ 1)2
=: a .
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We now set y := a log z then, by using the definition of s̄4 in (6.2.6), (6.5.104) becomes

I7 ≤ C |α|
pq

q−(1−α)(p−1)

∫ 0

−∞
ey |y|s̄4 dy ≤ C |α|

pq
q−(1−α)(p−1)

− q
q−p+1 . (6.5.105)

Combining together (6.5.101), (6.5.102) and (6.5.105), for any δ > 0 small enough and
for every n ∈ N we have

|α|−
q(p−1)

q−(1−α)(p−1)J3 ≤ C |α|−
q(p−1)

q−(1−α)(p−1)

[
|α|

pq
q−(1−α)(p−1)

− q
q−p+1 + n

− |α| p q
(q−p+1)2

∣∣∣∣log

(
δ

n

)∣∣∣∣s̄4] .
Then letting n → ∞, for every δ > 0 small enough we obtain (6.5.79). Now using
(6.5.78), (6.5.79), (6.5.80) and (6.5.81) in (6.5.77), for any δ > 0 sufficiently small and
for every n ∈ N we get

∫ ∞
0

∫
Ω
ϕsn u

q V dµdt ≤ C ′

(∫ ∫
ECδ

ϕsn u
q V dxdt

) (1−α)(p−1)
p q

+ C ′′

≤ C ′
(∫ ∞

0

∫
Ω
ϕsn u

q V dxdt

) (1−α)(p−1)
p q

+ C ′′

≤ C ′
(

1 +

∫ ∞
0

∫
Ω
ϕsn u

q V dxdt

) p−1
p q

+ C ′′

≤ A

(∫ ∞
0

∫
Ω
ϕsn u

q V dxdt

) p−1
p q

+ B ,

where A and B are positive constants and they are independent of n, δ and p−1
p q ∈ (0, 1).

This easily implies that there exists C > 0 such that, for sufficiently small δ > 0 and
for every n ∈ N ∫ ∞

0

∫
Ω
ϕsn u

q V dxdt ≤ C . (6.5.106)

By using the definition of ϕn in (6.4.31) we observe that

ϕn = 1 in Eδ

ϕn ≥ 0 in Ω× [0,+∞)

hence ∫ ∞
0

uq V dxdt ≤
∫ ∞

0

∫
Ω
ϕsn u

q V dxdt ≤ C .

Then letting δ → 0 we obtain that

uq ∈ L1 (Ω× (0,∞); V dxdt) (6.5.107)

Now, we want to show that ∫ ∞
0

uq V dxdt = 0.
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In order to do this, we use Lemma 6.3.6 where ϕ is replaced by ϕn∫ ∫
Eδ

uq V dxdt ≤
∫ ∞

0

∫
Ω
ϕsnu

q V dxdt

≤ C
[
|α|−1− q(p−1)

q−p+1

∫ ∞
0

∫
Ω
V
− p+α−1
q−p+1 |∇ϕn|

p(q+α)
q−p+1 dxdt

+ |α|−1

∫ ∞
0

∫
Ω
V
−α−1
q−1 |∂tϕn|

q+α
q−1 dxdt

] p−1
p

(∫ ∫
ECδ

ϕsnu
qV dxdt

) (1−α)(p−1)
p q

×

[∫ ∫
ECδ

V
− (1−α)(p−1)
q−(1−α)(p−1) |∇ϕn|

pq
q−(1−α)(p−1) dxdt

] q−(1−α)(p−1)
p q

+ C

[∫ ∫
ECδ

ϕsnu
q V dxdt

] 1
q [∫ ∞

0

∫
Ω
V
− 1
q−1 |∂tϕn|

q
q−1 dxdt

] q−1
q

≤ C

[
|α|−

q(p−1)
q−p+1J1

] p−1
p

(∫ ∫
ECδ

ϕsnu
qV dxdt

) (1−α)(p−1)
p q [

|α|−
q(p−1)

q−(1−α)(p−1)J3

] q−(1−α)(p−1)
p q

+ C J
p−1
p

2

(∫ ∫
ECδ

ϕsnu
qV dxdt

) (1−α)(p−1)
p q [

|α|−
q(p−1)

q−(1−α)(p−1)J3

] q−(1−α)(p−1)
p q

+ C

(∫ ∫
ECδ

ϕsnu
qV dxdt

) 1
q

J
q−1
q

5 ,

(6.5.108)
where J1, J2, J3 have been defined in (6.5.72), (6.5.73), (6.5.74) and

J5 :=

∫ ∞
0

∫
Ω
V
− 1
q−1 |∂tϕn|

q
q−1 dxdt .

Due to the definition of ϕn in (6.4.34) we have

J5 ≤ C
∫ ∞

0

∫
Ω
V
− 1
q−1 |∂tϕ|

q
q−1 dxdt +

∫ ∞
0

∫
Ω
V
− 1
q−1 |∂tηn|

q
q−1 dxdt

:= I9 + I10 .

(6.5.109)

By (6.4.31) we have

I9 ≤ C |α|
q
q−1

∫ ∫
ECδ

V
− 1
q−1

[(
d(x)−θ2 + tθ1

)− 1
θ2

]−θ2(C1α−1) q
q−1

t
(θ1−1) q

q−1 dxdt

(6.5.110)
We now state the following

Claim: Let f : (0,+∞) → [0,+∞) be a non decreasing function and suppose that
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HP2(i) holds. Then, for any 0 < δ < δ0 small enough, we can write∫ ∫
ECδ

f

([(
d(x)−θ2 + tθ1

)− 1
θ2

])
t
(θ1−1)

(
q
q−1

)
V
− 1
q−1 dxdt

≤ C
∫ 2

1
θ2 δ

0
f(z)z−s̄1−1| log z|s̄2 dz,

(6.5.111)

for some constant C > 0 with s̄1 and s̄2 as in (6.2.6). Inequality (6.5.111) can be
proven similarly to (6.4.53) and (6.4.60) where one uses the condition HP2(i) with
ε = 0 instead of HP1. We now use the latter claim to (6.5.110), thus we have

I9 ≤ C |α|
q
q−1

∫ 2
1
θ2 δ

0
z
−θ2(C1α−1) q

q−1
− q
q−1

θ2−1| log z|s̄2 dz

≤ C |α|
q
q−1

∫ 2
1
θ2 δ

0
z
−θ2C1α

q
q−1
−1| log z|s̄2 dz

≤ C |α|
q
q−1

∫ 0

−∞
e

1
γ

∣∣∣∣yγ
∣∣∣∣s̄2 1

γ
dy

≤ C |α|
q
q−1
−s̄2−1

≤ C

(6.5.112)

where
γ := |α| θ2C1

q

q − 1
and y := γ log z .

On the other hand, by (6.4.33) we have

I10 ≤ C

∫ ∫
Ẽ δ
n

V
− 1
q−1

[
nθ2 C1α

(
δ

n

)θ2
tθ1−1

] q
q−1

dxdt

≤ C n
θ2 (C1α−1) q

q−1 δ
θ2

q
q−1

∫ ∫
Ẽ δ
n

V
− 1
q−1 t(θ1−1)dxdt

Then, due to HP2(ii) with ε = 0 we have

I10 ≤ C n
θ2 (C1α−1) q

q−1
+ q
q−1

θ2 δ
θ2

q
q−1
− q
q−1

θ2

∣∣∣∣log

(
δ

n

)∣∣∣∣s̄2
≤ n−|α|θ2 C1

q
q−1

∣∣∣∣log

(
δ

n

)∣∣∣∣s̄2 (6.5.113)

Now, combining (6.5.109), (6.5.112) and (6.5.113) we get

J5 ≤ C

[
1 + n

−|α|θ2 C1
q
q−1

∣∣∣∣log

(
δ

n

)∣∣∣∣s̄2]
By letting n→∞ we obtain

J5 ≤ C (6.5.114)
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Finally we substitute inequality (6.5.72), (6.5.73), (6.5.74) and (6.5.114) into (6.5.108)
thus we have

∫ ∫
Eδ

uq V dxdt ≤ C

(∫ ∫
ECδ

ϕsn u
q V dxdt

) (1−α)(p−1)
pq

+

(∫ ∫
ECδ

ϕsn u
q V dxdt

) 1
q

 .
Passing to the lim sup as n→∞, we obtain for some constant C > 0

∫ ∫
Eδ

uq V dxdt ≤ C

(∫ ∫
ECδ

uq V dxdt

) (1−α)(p−1)
p

+

(∫ ∫
ECδ

uq V dxdt

) 1
q

 .
(6.5.115)

Now we can pass to the limit in (6.5.115) as δ → 0, and thus as α→ 0−, and conclude
by using Fatou’s Lemma and (6.5.107) that∫ ∞

0

∫
Ω
uq V dxdt = 0.

Thus u = 0 a.e. in Ω× [0,∞).

6.6 Proof of Theorem 6.2.5

Throughout this section we always assume that ∂Ω is of class C3. We now introduce
two Lemmas that will be used in the proof of Theorem 6.2.5. Let us first observe that,
under the assumptions of Theorem 6.2.5, the Green function G(x, y) associated to the
laplacian operator −∆ satisfies the following bound

G(x, y) ≤ C min

{
1,
d(x)d(y)

|x− y|2

}
|x− y|2−N , (6.6.116)

for some C > 0 and d(x) as in (6.1.4). See [57], [137]; see also [18], [28].

Lemma 6.6.1. Suppose that (6.6.116) holds and define

ψ(x) :=

∫
Ω
G(x, y) d(y)β dy, (6.6.117)

for −1 < β ≤ 0. Then, there exist c = c(β) > 0 such that

0 ≤ ψ(x) ≤ c d(x) for every x ∈ Ω, (6.6.118)

Proof. Let us fix x ∈ Ω such that d(x) > 0. Then, for any y ∈ Ω either

d(y) ≥ 2|x− y|, (6.6.119)

or

d(y) ≤ 2|x− y|. (6.6.120)
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Therefore we write

ψ(x) =

∫
{d(y)≥2|x−y|}

G(x, y)d(y)β dy +

∫
{d(y)≤2|x−y|}

G(x, y)d(y)β dy

Moreover observe that, for any z ∈ ∂Ω

|y − z| ≤ |x− z|+ |y − x|.

If we fix z ∈ ∂Ω such that d(x) = |x− z| then the latter can be rewrite as

|y − z| ≤ d(x) + |y − x|. (6.6.121)

Combining (6.6.119) and (6.6.121), it follows that

2|x− y| ≤ d(y) ≤ |y − z| ≤ d(x) + |y − x| =⇒ |x− y| ≤ d(x). (6.6.122)

Due to (6.6.116), (6.6.119) and (6.6.122)

0 ≤
∫
{d(y)≥2|x−y|}

G(x, y)d(y)β dy

≤ c
∫
{d(y)≥2|x−y|}

d(y)β

|x− y|N−2
dy

≤ c
∫
{d(y)≥2|x−y|}

d(x)d(y)β

|x− y|N−1
dy

≤ c
∫
{d(y)≥2|x−y|}

d(x)

|x− y|N−1−β dy.

Now, since −1 < β ≤ 0

c

∫
{d(y)≥2|x−y|}

d(x)

|x− y|N−1−β dy ≤ c d(x)

∫
BR(x)

1

|x− y|N−1−β dy ≤ c d(x), (6.6.123)

where R := diam(Ω) = sup{|x − y| : x, y ∈ Ω}. Similarly, due to (6.6.116), (6.6.120)
and (6.6.122)

0 ≤
∫
{d(y)≤2|x−y|}

G(x, y)d(y)β dy

≤ c
∫
{d(y)≤2|x−y|}

d(x)d(y)1+β

|x− y|N
dy

≤ c
∫
{d(y)≤2|x−y|}

d(x)

|x− y|N−(1+β)
dy

≤ c d(x)

∫
BR(x)

1

|x− y|N−(1+β)
dy

≤ c d(x)

(6.6.124)

Finally, due to (6.6.123) and (6.6.124), for any x ∈ Ω, there exists c = c(β) such that

0 ≤ ψ(x) ≤ c d(x).
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Lemma 6.6.2. Suppose that (6.6.116) holds. Let us recall the definition of ψ in
(6.6.117) and suppose that

− 2 < β ≤ −1. (6.6.125)

Then, there exist M > 0 such that

0 ≤ ψ(x) ≤M for any x ∈ Ω, (6.6.126)

Proof. By Lemma 6.6.1 we only need to consider the case −2 < β ≤ −1. For every
ε > 0 small enough, let Ωε be defined as in (6.2.21). Moreover let Gε(x, y) be the Green
function associated to the operator −∆ for x, y ∈ Ωε. For every ε > 0, let

uε(x) :=

∫
Ωε

Gε(x, y) d(y)β dy. (6.6.127)

Observe that, for every ε > 0, uε ∈ C∞(Ωε) ∩ C0(Ωε), uε > 0 in Ωε and it solves the
following problem {

−∆uε(x) = d(x)β in Ωε

uε = 0 on ∂Ωε

.

Moreover, due to assumption (6.6.125), see [106], there exists v : Ω̄ → R, v ∈ C0(Ω̄),
v > 0 in Ω such that v is a solution to problem{

−∆v(x) = d(x)β in Ω

v = 0 on ∂Ω

Observe that, due to the maximum principle, it follows that

0 < uε < v in Ωε for any ε > 0. (6.6.128)

Moreover, for 0 < ε1 < ε2 one has

uε2(x) ≤ uε1(x) for any x ∈ Ωε2 (6.6.129)

Hence, the sequence of functions {uε}ε>0, due to (6.6.128) and (6.6.129), admits a finite
limit for ε→ 0, in particular we write

lim
ε→0

uε(x) = w(x) for any x ∈ Ω, (6.6.130)

and 0 < w(x) ≤ v(x) for any x ∈ Ω. Now observe that

Gε(x, y)→ G(x, y) as ε→ 0 for any x, y ∈ Ω .

It follows, by the Monotone Convergence Theorem that for any ε > 0 one has

uε(x) =

∫
Ω
Gε(x, y)d(y)β dy −→

∫
Ω
G(x, y)d(y)β dy as ε→ 0. (6.6.131)

Hence, due to (6.6.130) and (6.6.131), for any x ∈ Ω we can write

w(x) =

∫
Ω
G(x, y)d(y)β dy, and 0 ≤

∫
Ω
G(x, y)d(y)β ≤ v(x) .
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Finally, since v is continuous in a closed and bounded domain, there exists M > 0 such
that

v(x) ≤M, for any x ∈ Ω̄,

and

0 ≤
∫

Ω
G(x, y)d(y)β dy ≤M.

We are now ready to prove Theorem 6.2.5.

Proof of Theorem 6.2.5. We want to construct a subsolution and a supersolution to
problem (6.1.3). Let u be the subsolution and u be the supersolution. We firstly set

u ≡ 0.

On the other hand, in order to construct u, let us define, for any λ > 0

Sλ = {v ∈ C0(Ω̄) : 0 ≤ v(x) ≤ λ d(x), ∀x ∈ Ω}. (6.6.132)

with d(x) as in (6.1.4). Moreover we define the map T : Sλ → Sλ such that

Tv(x) = λq
∫

Ω
G(x, y) dy +

∫
Ω
G(x, y)V (y)v(y)q dy. (6.6.133)

We prove that T is well defined and that it is a contraction map. Observe that due to
Lemma 6.6.1 with β = 0 one has, for some c1 > 0

0 ≤ λq
∫

Ω
G(x, y) dy ≤ c1 λ

qd(x), for every x ∈ Ω. (6.6.134)

Similarly, due to (6.2.19), Lemma 6.6.1 with β = −σ1 + q and (6.2.20), for some c2 > 0

0 ≤
∫

Ω
G(x, y)V (y)v(y)q dy ≤ c2 λ

q

∫
Ω
G(x, y)d(y)−σ1+q dy ≤ c2 λ

q d(x). (6.6.135)

By using (6.6.134) and (6.6.135), inequality (6.6.133), for some C > 0 and λ > 0 small
enough, reduces to

0 ≤ Tv(x) ≤ Cλq d(x) ≤ λ d(x) for any x ∈ Ω.

Hence, for a sufficiently small λ > 0, the function Tv : Ω̄ → R is continuous and thus
the map T : Sλ → Sλ is well defined. Let us now show that T is a contraction map. for
λ > 0 small enough. Fix w, v ∈ Sλ, then for any x ∈ Ω

|Tw(x)− Tv(x)| ≤
∫

Ω
G(x, y)V (y)|wq(y)− vq(y)| dy

≤
∫

Ω
G(x, y)V (y)qξ(y)q−1|w(y)− v(y)| dy,
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for some ξ(y) between w(y) and v(y). Then 0 ≤ ξ(y) ≤ λd(y) and hence, due to Lemma
6.6.2 with β = −σ1 + q − 1 and (6.2.20),

|Tw(x)− Tv(x)| ≤ C
(∫

Ω
G(x, y)d(y)−σ1+q−1 dy

)
λq−1‖w − v‖L∞(Ω)

≤ CM λq−1‖w − v‖L∞(Ω).

Thus we have, for λ > 0 small enough,

‖Tw − Tv‖L∞(Ω) ≤
1

2
‖w − v‖L∞(Ω),

hence T is a contraction map. Therefore, there exists ϕ ∈ Sλ such that ϕ = Tϕ. In
particular, we have

(i) 0 ≤ ϕ(x) ≤ λ d(x) for any x ∈ Ω̄;

(ii) ϕ is a solution of {
−∆ϕ = λq + V ϕq in Ω

ϕ = 0 on ∂Ω
(6.6.136)

(iii) ϕ > 0 in Ω.

We now set u(x, t) = ϕ(x) and show that u is a supersolution to problem (6.1.3).
Observe that

(i) ∂tu−∆u = −∆ϕ = λq + V ϕq ≥ V uq in Ω× (0,+∞);

(ii) u(x, t) = ϕ(x) = 0 for any x ∈ ∂Ω , for any t ∈ (0,+∞);

(iii) u ≥ 0 and u 6≡ 0;

(iv) 0 ≤ u0(x) ≤ u(x, 0) for any x ∈ Ω, if ε is small enough; indeed we can apply the
Hopf’s Lemma and if n denotes the inward normal unit vector to ∂Ω deduce that

∂ϕ

∂n
> 0, for any x ∈ ∂Ω.

Then, due to the compactness of Ω̄ and the continuity of ϕ in Ω we observe that
there exists α > 0 such that

ϕ ≥ αd(x) for any x ∈ Ω̄.

Now, if ε > 0 in (6.2.18) is sufficiently small, we have that

0 ≤ u0(x) ≤ ε d(x) ≤ αd(x) ≤ ϕ(x) = u(x, 0) for any x ∈ Ω̄.

Thus u : Ω̄ × [0,+∞) → R is a supersolution to problem (6.1.3), such that u ≥ u in
Ω̄ × [0,+∞). Finally, we conclude that there exists a solution u : Ω × [0,+∞) → R of
problem (6.1.3) such that

0 ≤ u(x) ≤ u(x) for any x ∈ Ω̄.
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6.7 Proof of Theorem 6.2.6 and of Corollary 6.2.7

We introduce some auxiliary Lemmas that are needed in the proof of Theorem 6.2.6.

Lemma 6.7.1. Let u0 ∈ C(Ω), u0 ≥ 0 in Ω. Moreover let V ∈ C(Ω× [0,+∞)), V > 0
in Ω × (0,+∞) and assume that u ≥ 0 is a classical solution of problem (6.1.3) with
initial datum u0. Let α > 2q

q−1 and ψ ∈ C2,1
x,t (Ω × [0,+∞)), ψ ≥ 0 a.e. in Ω × [0,+∞)

with compact support in Ω× [0,+∞) then∫ ∞
0

∫
Ω
uqV ψα dxdt ≤ 2

1
q−1

{∫ ∞
0

∫
Ω
V
− 1
q−1ψ

α− 2q
q−1
∣∣α(α− 1)|∇ψ|2 + αψ∆ψ

∣∣ q
q−1 dxdt

+

∫ ∞
0

∫
Ω
V
− 1
q−1ψ

α− 2q
q−1 |αψψt|

q
q−1 dxdt

}
.

(6.7.137)

Proof. Using Definition 6.3.1 and Young inequality with coefficients q and q
q−1 we write∫ ∞

0

∫
Ω
uqV ψα dxdt ≤

∫ ∞
0

∫
Ω
|u| |(ψα)t −∆(ψα)| dxdt−

∫
Ω
u0(x)ψα(x, 0) dx

≤
∫ ∞

0

∫
Ω
|u|V

1
qψ

α
q ψ
−α
q V
− 1
q |(ψα)t −∆(ψα)| dxdt−

∫
Ω
u0(x)ψα(x, 0) dx

≤ 1

q

∫ ∞
0

∫
Ω
|u|qV ψα dxdt+

q − 1

q

∫ ∞
0

∫
Ω

(V ψα)
− 1
q−1 |(ψα)t −∆(ψα)|

q
q−1 dxdt

Reordering the terms we get∫ ∞
0

∫
Ω
uqV ψα dxdt ≤

∫ ∞
0

∫
Ω

(V ψα)
− 1
q−1
∣∣αψα−1ψt − α(α− 1)ψα−2|∇ψ|2 − αψα−1∆ψ

∣∣ q
q−1 dxdt

≤
∫ ∞

0

∫
Ω
V
− 1
q−1ψ

− α
q−1

+
q(α−2)
q−1

∣∣αψψt − α(α− 1)|∇ψ|2 − αψ∆ψ
∣∣ q
q−1 dxdt

≤ 2
1
q−1

{∫ ∞
0

∫
Ω
V
− 1
q−1ψ

α− 2q
q−1
∣∣α(α− 1)|∇ψ|2 + αψ∆ψ

∣∣ q
q−1 dxdt

+

∫ ∞
0

∫
Ω
V
− 1
q−1ψ

α+ 2q
q−1 |αψψt|

q
q−1 dxdt

}
This proves the thesis.

Lemma 6.7.2. Let the assumptions of Lemma 6.7.1 hold. Moreover let K ⊂ (Ω ×
[0,+∞)) be a compact set and let ψ such that ψ ≡ 1 in K. Let Sk := (Ω× [0,+∞)) \K
then∫ ∞

0

∫
Ω
uqV ψα dxdt ≤ 2

1
q

(∫ ∫
Sk

|u|qV ψα dxdt
) 1
q

×

{[∫ ∫
Sk

V
− 1
q−1ψ

α− 2q
q−1
∣∣α(α− 1)|∇ψ|2 + αψ∆ψ

∣∣ q
q−1 dxdt

] q−1
q

+

[∫ ∫
Sk

V
− 1
q−1ψ

α− 2q
q−1 |αψψt|

q
q−1 dxdt

] q−1
q

}
.

(6.7.138)
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Proof. Similarly to the proof of Lemma 6.7.1, using the definition of weak solution of
problem (6.1.3) and Hölder inequality with coefficients q and q

q−1 we get∫ ∞
0

∫
Ω
uqV ψα dxdt ≤

(∫ ∞
0

∫
Ω
|u|qV ψα dxdt

) 1
q
(∫ ∞

0

∫
Ω
V
− 1
q−1ψ

− α
q−1 |(ψα)t −∆(ψα)|

q
q−1 dxdt

) q−1
q

≤
(∫ ∫

Sk

|u|qV ψα dxdt
) 1
q

×
(∫ ∫

Sk

V
− 1
q−1ψ

α− 2q
q−1
∣∣αψψt − α(α− 1)|∇ψ|2 − αψ∆ψ

∣∣ q
q−1 dxdt

) q−1
q

≤ 2
1
q

(∫ ∫
Sk

|u|qV ψα dxdt
) 1
q

×

{[∫ ∫
Sk

V
− 1
q−1ψ

α− 2q
q−1
∣∣α(α− 1)|∇ψ|2 + αψ∆ψ

∣∣ q
q−1 dxdt

] q−1
q

+

[∫ ∫
Sk

V
− 1
q−1ψ

α− 2q
q−1 |αψψt|

q
q−1 dxdt

] q−1
q

}
This proves the thesis.

We now need to introduce the so called Whitney distance δ : Ω → R+ which is a
function in C∞(Ω), regardless of the regularity of ∂Ω, such that for all x ∈ Ω

c−1 d(x) ≤ δ(x) ≤ c d(x) ,

|∇δ(x)| ≤ c ,
|∆δ(x)| ≤ c δ−1(x) ,

(6.7.139)

where d(x) has been defined in (6.1.4) and c > 0 is a constant independent of x. These
properties of the Whitney distance may be found in [8, 122].

Lemma 6.7.3. Let V ∈ L1
loc(Ω × [0,∞)), V > 0 a.e., and u0 ∈ L1

loc(Ω), u0 ≥ 0
a.e. Assume that there exists a nonincreasing function f : (0, ε0) → [1,∞) such that
limε→0+ f(ε) = +∞ and such that for every ε > 0 small enough conditions (6.2.22)
hold. Let u ≥ 0 be a weak solution of problem (6.1.3), then∫ +∞

0

∫
Ω
uqV dxdt < +∞ (6.7.140)

Proof. For every ε > 0 small enough, we consider a smooth function gε : [0,∞) → R
such that 0 ≤ gε ≤ 1, gε ≡ 1 in [ε,+∞), supp gε ⊂ [ ε2 ,+∞), 0 ≤ g′ε ≤ C

ε and |g′′ε | ≤ C
ε2

for some constant C > 0. We also introduce η a smooth function such that 0 ≤ η ≤ 1,
η ≡ 1 in [0, 1

2f(ε)], supp η ⊂ [0, f(ε)) and − C
f(ε) ≤ η

′ ≤ 0. Now let

ψε(x, t) := φε(x) η(t), (6.7.141)

where

φε(x) := gε(d(x)) =

{
1 δ(x) > 2ε

0 δ(x) < ε
, (6.7.142)



6.7. Proof of Theorem 6.2.6 and of Corollary 6.2.7 189

and δ is the Whitney distance defined in (6.7.139). Observe that, due to (6.7.141),
(6.7.142) and (6.7.139) for every x ∈ Ω we have

|∇ψε| = |g′ε(δ(x))∇δ(x)| ≤ C

ε
,

|∆ψε| = |g′′ε (δ(x))|∇δ(x)|2 + g′ε(δ(x))∆δ(x)| ≤ C

ε2
,

(6.7.143)

for some constant C > 0. Hence for every x ∈ Ω, t ∈ [0, T ) we have

|(ψε)t| ≤
C

f(ε)
,

∣∣α(α− 1)|∇ψε|2 + αψε∆ψε
∣∣ q
q−1 ≤ C

ε
2q
q−1

. (6.7.144)

Let Ω̃ε = {x ∈ Ω | δ(x) ≥ ε} and note that by (6.7.139) for every r > 0 we have

Ω̃r ⊂ Ω r
c0
, Ωr ⊂ Ω̃ r

c0
.

We now observe, applying Lemma 6.7.1 with the test function ψε defined in (6.7.141),
that∫ T

0

∫
Ωε

uq V dxdt ≤
∫ ∞

0
uq ψαε V dxdt

≤ C

{∫ ∞
0

V
− 1
q−1 ψ

α− 2q
q−1

ε

∣∣α(α− 1)|∇ψε|2 + αψε∆ψε
∣∣ q
q−1 dxdt

+

∫ ∞
0

V
− 1
q−1 ψ

α− 2q
q−1

ε |αψε(ψε)t|
q
q−1 dxdt

}
=: I1 + I2 .

(6.7.145)
Now, due to the definition of ψε in (6.7.141) and by (6.2.22) and (6.7.144), for every
small enough ε > 0 we have

I1 ≤
∫ 2T

0

∫
Ωε\Ω2ε

V
− 1
q−1
[∣∣α(α− 1)|∇ψε|2 + αψε∆ψε

∣∣] q
q−1 dxdt

≤ C

ε
2q
q−1

∫ 2T

0

∫
Ωε\Ω2ε

V
− 1
q−1 dxdt

≤ C .

(6.7.146)

where we set N = [2 log2 c0]+1. Similarly, due to (6.7.141) and by (6.2.22) and (6.7.144)
we can observe that

I2 ≤
∫ 2T

T

∫
Ωε

V
− 1
q−1 [|αψε(ψε)t|]

q
q−1 dxdt

≤ C

T
q
q−1

∫ 2T

T

∫
Ωε

V
− 1
q−1 dxdt

≤ C .

(6.7.147)

By substituting (6.7.146) and (6.7.147) into (6.7.145) and letting ε → 0 we obtain the
thesis.
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We are now ready to prove Theorem 6.2.6.

Proof of Theorem 6.2.6. For small enough ε > 0 consider the test function ψε defined
in (6.7.141). Define

Kε := Ω2ε × [0, T ] ; (6.7.148)

and

SKε := (Ω× [0,+∞)) \Kε . (6.7.149)

Observe that ψε ≡ 1 on Kε, hence we can apply Lemma 6.7.2 with the test function ψε,
thus we have∫ ∫

Kε

uq V dxdt ≤
∫ ∞

0

∫
Ω
uq ψαε V dxdt

≤ C

(∫ ∫
SKε

|u|qV ψα dxdt

) 1
q

×


[∫ ∫

SKε

V
− 1
q−1ψ

α− 2q
q−1
∣∣α(α− 1)|∇ψ|2 + αψ∆ψ

∣∣ q
q−1 dxdt

] q−1
q

+

[∫ ∫
SKε

V
− 1
q−1ψ

α− 2q
q−1 |αψψt|

q
q−1 dxdt

] q−1
q


=: I1 + I2 .

(6.7.150)
We can also use Lemma 6.7.3 hence we say that there exists C > 0 such that

I1 ≤ C , I2 ≤ C .

Thus we have ∫ ∫
Kε

uq V dxdt ≤ C

(∫ ∫
SKε

|u|qV ψα dxdt

) 1
q

.

Letting ε→ 0 we obtain ∫ T

0

∫
Ω
uq V dxdt = 0 , (6.7.151)

which proves the thesis.

Proof of Corollary 6.2.7. By (6.2.23) and the assumptions on f , for ε > 0 small enough
we have ∫ f(ε)

0

∫
Ω ε

2
\Ωε

V
− 1
q−1 dxdt ≤ Cf(ε)

∫
Ω ε

2
\Ωε

d(x)
q+1
q−1 f(d(x))−1 dx

≤ Cε
q+1
q−1

∫
Ω ε

2
\Ωε

dx ≤ Cε
2q
q−1



6.7. Proof of Theorem 6.2.6 and of Corollary 6.2.7 191

and ∫ f(ε)

1
2
f(ε)

∫
Ω ε

2

V
− 1
q−1 dxdt ≤ Cf(ε)

∫
Ω ε

2

d(x)
q+1
q−1 f(d(x))−1 dx

≤ Cf(ε) ≤ Cf(ε)
q
q−1 .

Thus conditions (6.2.22) are satisfied and by Theorem 6.2.6 u ≡ 0 a.e. in Ω× [0,∞).
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