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1. Introduction
In recent years, the integration of robotic
arms into real-world applications has opened
a new era of automation and efficiency in dif-
ferent industries. Nevertheless, new challenges
have arisen with the ever evolving technologies
and applications. Robotic manipulators have
been widely included into manufacturing indus-
tries, automation and lastly into mobile robotic
manipulators. Mobile manipulation systems
(MMSs) are robotic systems consisting of one
or more robot arms mounted on a mobile base,
the coupling of both enable the manipulator to
navigate and expand its operational workspace,
all while preserving its manipulative capabili-
ties. Nevertheless, with the increasing number
of applications it seems inevitable that more
dexterity(than 3-DOF) of the robotic manipu-
lators will be required independently from the
mobile part of the robot (e.g. for confined spaces
or coexistence with humans). This is the reason
why this work is focused on a novel solution for
obstacle avoidance and inverse kinematics con-
trol tailored for a 6-degrees-of-freedom robotic
arm operating in unknown environments, with-
out loss of generality of the proposed approach
that can be extended to the mobile part.

The core mission is to guide the robotic arm
safely toward the successful execution of desired
tasks in an environment that is characterized to
be unknown, with fixed or dynamic obstacles,
relying only on partial environmental informa-
tion provided by an exteroceptive sensor. The
complete architecture of the proposed system
embraces a hierarchical control system, compris-
ing a high-level strategy for generating obstacle-
free trajectories, a medium-level Model Predic-
tive Controller (MPC) as Inverse Kinematics
and reactive obstacle avoidance, and assumed
low-level controllers for joint set-point tracking.
More in detail, the overall framework will ad-
dress the tasks of Local Path Planning and End-
Effector positioning in the workspace.

2. Problem Statement
Local Path Planning emerged due to new
robotics applications within dynamical environ-
ments where the robot must be able to plan
its motion online and without an entire knowl-
edge of its environment. These local meth-
ods rely solely on local environmental informa-
tion(provided by sensors), suppressing a previ-
ous knowledge of a complete map. In this re-
gard, a new methodology for Local Path Plan-
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ners based on the generation of Convex Regions
of Obstacle-Free Space has been acquiring pop-
ularity during the last years and specifically in
the field of robotic manipulators [9][7][4]. This
method allows the generation of regions that
are convex and collision free that surpass ef-
ficiently the computational burden of collision
checking from standard motion planning tech-
niques. In detail, the trajectory planning un-
der an approximated obstacle free region can be
approached in Configuration space or Cartesian
space, and can be generated based on convex
optimization techniques(were constraints can be
enforced) or efficient algorithms. For example in
[4] the generation of convex polytopes is based
Cartesian space while in [9] [7] in configuration
spaces, both approaches by means of convex op-
timization techniques. Nevertheless, the com-
putational time presented for a 7DOF robot in
a cluttered environment is in order of the 103

seconds which can compromise an online itera-
tive algorithm. On the other hand, new compu-
tationally efficient methods based on Cartesian
space were developed in [3][8] showcasing its po-
tential for an online real implementation which
is the aim of this work.
On the other hand, the task of positioning the
end-effector in the workspace should involve an
Inverse Kinematics algorithm to map the tra-
jectory generated in task space into joint space
while reactively avoiding obstacles of the en-
vironment and respecting other enforced con-
straints. During the last years with the in-
creasing computational power, online-solvable
instantaneous constrained optimization has be-
come increasingly popular due to its capacity to
easily incorporate kinematic functions, position,
velocity, and acceleration constraints into the
problem formulation. For example, recent works
[1][2] propose Model Predictive Control(MPC)
to account for the system evolution over a pre-
diction horizon. This method provides a state
feedback controller which is optimal over the N
future time steps and complies with kinematic
constraints. Nevertheless, in this architecture
the Inverse Kinematics solution is given as a ref-
erence to the MPC which is formulated only in
joint space.
Therefore, in [5] the operational space task as a
reference of the MPC is included. This formu-
lation allows to impose not only kinematic con-

straints of the joints but also secondary tasks in
the operational space such collision avoidance.
Even though the latter formulation shows sig-
nificant advantages, the prediction of the future
state of the system over an horizon has been
a topic of discussion. Thus, with the aim to
maintain the linear nature of the optimization
problem over an horizon, as proposed in [6][1][2]
a linearization of the task at each iteration k
is formulated by using the solution obtained at
time k−1 to compute the future trajectory vec-
tor of joint positions qk+i so that the overall
linear nature of the QP problem is preserved.
While the ultimate quadratic program (QP) is
an approximation of the initial non-linear prob-
lem, it allows the computational time to be of
the same order of magnitude of local methods(in
the order of milliseconds), but still conferring
the advantages of a predictive strategy.
On top of the mentioned approaches, this work
proposes a structural division. From one side,
the generation of obstacle-free regions[3][8] in
Cartesian space for the purpose of trajectory
generation by including the computational ef-
ficient algorithms in the current field of robotic
manipulators. While for the positioning of the
end effector, the present work proposes a QP
formulation of the IK-MPC which includes the
operational space task as a reference, a pre-
dictive strategy, direct acceleration constraints
(not only joint and velocity constraints), jerk pe-
nalization in the cost function, self-collision and
reactive obstacle avoidance as inequality con-
straints. The proposed partition guarantees a
double layer of safety(obstacle free trajectory
generation and reactive obstacle avoidance) for
obstacle avoidance which allows a safe motion
of the manipulator towards a target position in
a obstacle characterized environment .

3. Proposed Method
As mentioned, the proposed approach can be de-
composed in two main structures detailed in the
following sections. In detail, the overall control
architecture of the proposed method is shown in
Figure 1.
As it can be observed, the Local Path Plan-
ner anticipates a generated trajectory (posi-
tion XD and velocity ẊD) to the Inverse Kine-
matics block, and the latter provides the joint
references(q(k), q̇(k)) to the low level controllers
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Figure 1: Block diagram scheme of the architec-
ture

to perform the required motion. The feedback of
the actual position of the robot is computed by
its forward kinematic function Tf(q(k)) while
the point-cloud P of the position of the obsta-
cles in the environment is provided by the an
exteroceptive LiDAR sensor mounted in the end
effector of the robot.
The methodology adopted focuses in the devel-
opment of modular simpler algorithms which
together conforms the complete algorithm of
the proposed solution. Therefore, this section
is meant to present the formulation and algo-
rithms belonging to the Local Path Planning
stage and the Inverse Kinematics, both will
serve as ground for the understanding of the
complete structure presented in the last section.

3.1. Local Path Planning

3.1.1 Convex Approximation of the Free
Space

As mentioned, the manipulator has an exte-
roceptive sensor used to gather information of
its environment. The position and configura-
tion of this LiDAR sensor mounted in the head
of the robot recovers all the measurements of
the closest obstacles to the robot within the
range of measurement. Lets denote P(kt) =
[ρLi,kt(0), ..., ρLi,kt(NLi − 1)] the NLi readings
of the LiDAR sensor at time kt, pEE as the
position of the end effector of the manipulator
and Nobs the number of obstacles in the envi-
ronment. The convex hull W represents the
workspace of the robot and dstep, rLi are fixed
parameters. Therefore, for the purpose of gen-
erating obstacle free convex polytope S(kt) an
Algorithm (see Thesis Section 3.3.2) was devel-
oped:

S(kt)← polytope_gen(P(kt),W, pEE(kt),

dstep, rLi).

Where S(kt) is the intersection of the convex

polytope and the feasible workspace W of the
robot.

3.1.2 Obstacle Free Trajectory Genera-
tion

This section focuses on the proposed strategy
for the local path planning of the 6-degree-of-
freedom robotic manipulator operating in an un-
known environment. The key challenge is to
avoid obstacles in the environment that might
impede the robot’s movement toward its tar-
get location. The method involves a multi-
step strategy, starting with a Temporary Target
Shifting Strategy to the Trajectory Generation
of the obstacle-free reference path to be fed to
the Inverse Kinematics block.
The Temporary Target Shifting Strategy tack-
les the problem of finding an obstacle free path
when an obstacle obstructs the robot’s direct
path to its target position. The proposed strat-
egy selects a temporary target from the sensor
readings within a specific threshold range in or-
der to avoid trajectories towards an imminent
obstacle. The choice of this temporary target in-
volves vector-based strategies and it is detailed
within the Algorithm presented in Thesis Sec-
tion 3.3.3.
Following this strategy, the Trajectory Gener-
ation phase is deployed. Taking the convex
under-approximation of free space, this strat-
egy generates trajectories for the robot’s move-
ment from its current location to the temporary
target inside the region. This process involves
defining minimum jerk polynomial trajectories
to ensure smooth, controlled, and vibration-free
motion. The orientation of the robot’s end ef-
fector is also considered, aligning it towards the
target position.
Finally, exploiting the algorithms detailed
above, the complete Obstacle Free Trajectory
Generation algorithm is deployed (see Thesis Al-
gorithm 3.5). It synthesizes and combine these
steps to generate the robot’s path, handling ob-
stacle avoidance and orienting the robot towards
its target location. The trajectory is developed
to guarantee an obstacle-free path characterized
by smooth polynomial motions.
A 3D representation of the position and orien-
tation trajectories generated(result of the com-
plete Algorithm) inside the obstacle free convex
polytope is reported in Figure 2. Graphically,
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it can be observed that the orientation trajec-
tory is iteratively moving towards the direction
of the temporary target which is the desired be-
haviour.

Figure 2: The convex free region is represented
by the light-green geometry, the direct trajec-
tory towards the target is represented by the
solid red line, the trajectory towards the shifted
target in solid blue and the orientation axis(x,
y, z) are represented by the red, green and blue
lines centered at the initial and final positions.

3.2. Inverse Kinematics as an Opti-
mization Problem

In this section, the main formulation of the pro-
posed approach for the Inverse Kinematics as
an optimization problem is presented. First, the
system model is defined, based on the discrete-
time Linear Time-Invariant (LTI) system gov-
erning robotic kinematic chain. Second, the fun-
damental objective function is defined, denoted
as L, which the optimization routine seeks to
minimize.

3.2.1 System Model

Considering the discrete time LTI system
describing the linear kinematics as a dual-
integrator system, whose dynamic equation can
be written as :[

q(k + 1)
q̇(k + 1)

]
︸ ︷︷ ︸

z(k + 1)

=

[
In TsIn

0n×n In

]
︸ ︷︷ ︸

A

[
q(k)
q̇(k)

]
︸ ︷︷ ︸
z(k)

+

[
0.5Ts

2In
TsIn

]
︸ ︷︷ ︸

B

u(k)

(1)

Where u(k) = q̈(k) ∈ Rnu and z(0) =
[q(0)T , q̇(0)T ]T ∈ R2nq . The matrix In ∈
Rnq×nq refers to an identity matrix of the di-
mension of the joints (in this case nq = 6), Ts

is the discrete integration time and k as the dis-
crete time variable.

3.2.2 Cost Function

As discussed, the Inverse Kinematics problem
considers a specific coordinate task xd(k) that
the robot needs to reach at every time instant
k while complying with motion constraints.
First, a reference trajectory that can drive the
robot given its current configuration xe(k) ←
T b
e (q(k))(4,1:3) to a desired position xd(k) in M

steps can be computed beforehand (e.g. through
polynomial trajectories) obtaining a set of ref-
erences xd(k + i), i = 1, ...,M . Notice that the
construction of this trajectory does not enforce
any motion constraint in joint space. Then, a
MPC structure of the Inverse Kinematics can
be used to compute the sequence of control in-
puts to achieve the desired position in the op-
erational space. The nature of the MPC for-
mulation allows the computation of the control
inputs at each control interaction, allowing it
to deal with unforeseen events or dynamic sce-
narios. Moreover, as mentioned in Section ??,
constraints linearly dependent on the sequence
of control inputs can be easily included. At
each time instant k, the MPC problem is de-
fined as finding a M sequence of future control
inputs Uk = [u(0|k)T , u(1|k)T , ..., u(M−1|k)T ]T
that minimizes an specific cost function. The
proposed cost function for the purpose of this
work is shown in Equation (2) where the opera-
tional error and operational error velocity were
included as well the joint velocity, joint acceler-
ation and jerk for penalization purposes.

L =

4∑
i=1

Ji (2)

Where J1, ..., J4 are the desired tasks to mini-
mize defined as:

J1 =
M∑
i=1

∥JA(qk+i)q̇k+i − ẋdk+i

+K(xdk+i
− xe(qk+i)∥2W

J2 =
M∑
i=1

∥q̇k+i∥2S

J3 =

M∑
i=1

∥q̈k+i∥2R
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J4 =
M−1∑
i=1

∥∆q̈k+i∥2R∆q̈

The jerk is defined as ∆q̈(k + i) = q̈(k + i) −
q̈(k), M is the prediction horizon and K is a
positive definite weighting matrix related to the
convergence of the error. W , S, R and R∆q̈

are symmetric and positive definite weighting
matrices, and the following shorthand notation
was employed:

∥x∥2Q = xTQx ∈ R (3)

Therefore, the formalization of the optimization
problem at hand can be written as:

min
Uk

L(Uk, Q̂k,
ˆ̇Qk, Xd, Ẋd, k) (4)

Subject to :

z(i+ 1|k) = Az(i|k) +Bu(i|k)
q(i|k) = C1z(i|k)
q̇(i|k) = C2z(i|k)
AineqU(k) ≤ bineq

(5a)
(5b)
(5c)
(5d)

Notation z(i|k) denotes the value of z at time
k+i, predicted at time k. Where Q̂k and ˙̂

Qk are
the vectors related to the prediction through the
horizon of the future joint position and velocity
respectively. Xd and Ẋd are the vectors which
refer to the position and velocity of a partial
trajectory composed by M steps ahead. Aineq

and bineq are know inequality matrices defining
the boundaries of the joint position, velocity and
acceleration vectors. Additionally, the reactive
Obstacle Avoidance function as well as the self-
collision avoidance will be both also enforced as
inequality constraints.
Finally, the optimization problem in (4) can be
derived and solved as a Quadratic Program-
ming(QP) problem (see Thesis Section 3.4.5).
Thereby, in order to integrate the receding hori-
zon strategy, a numerical simulation of the sys-
tem model is required as well as a recursive im-
plementation of the overall Inverse Kinematics-
Model Predictive Control. To this end, a se-
quential iterative Algorithm was developed (re-
fer to Thesis Algorithm 3.7).

In the current section, modular algorithms were
developed and presented in order to build the

proposed hierarchical architecture. As stated,
both main Algorithms are subjected to the 3D
LiDAR sensor readings that are also simulated
by means of a developed Algorithm (refer to
Thesis Algorithm 3.1). A graphical scheme rep-
resenting the interaction of these Algorithms is
deployed in Figure 3. As it can be observed,
the proposed structure allows the inclusion of
other components such an offline or sequential
high level planner which can compute the ref-
erenced target ptarget based on the specific ap-
plication, or a customized low level control sys-
tem which can run at a different discrete time.
This characteristic makes the presented archi-
tecture adaptable and capable to be extended
with other motion or control techniques.

𝑞 𝑘 , ሶ𝑞(𝑘)

Low 
Level 

Control

𝑋𝐷 𝑘𝑡 , ሶ𝑋𝐷(𝑘𝑡)
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Figure 3: Block diagram scheme of the architec-
ture

4. Simulation Results
The evaluation of the proposed method for a 6
degrees of freedom robotic arm in unknown envi-
ronments provides insights into the effectiveness
and versatility of the developed framework. The
results will be summarized in an independent
test for the IK-MPC and then an example of
the overall framework in a challenging environ-
ment (for detailed results refer Thesis Chapter
4).
The tests were performed on a developed Digital
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Twin of a MyCobot280 Robotic Arm model. For
the purpose of a graphical representation of the
results, several toolboxes will be used such as
Simulink-Simscape(for dynamical motion sim-
ulation) and PeterCorke Robotic Toolbox (for a
kinematic representation of the robot). Regard-
ing the technical setup, the reported tests have
been executed on a laptop equipped with an
Intel core i7-11800H CPU, 16 GB of RAM ,
and MatlabR2023a version. For the optimiza-
tion algorithm the Active-Set method was cho-
sen accompanied by a 5-steps ahead prediction
horizon.
First, the IK-MPC will be tested with obstacles
obstructing the generated trajectory. To this
end, a linear polynomial trajectory was gener-
ated to a target position(returning to the same
position) with a sphere shape obstacle in the
middle of the path. The resultant performed
trajectory is presented in 3D-space in Figure 4.
It can be observed that the performed trajectory
avoids the obstacle even though the trajectory
was generated crossing the obstacle.

Figure 4: 3D Trajectory Tracking Results

Both algorithms, Trajectory Generation and IK-
MPC, are shown independently a satisfactory
performance according to what was required in
the problem formulation. Now it is possible
to test the coupled performance of the entire
architecture in a challenging environment sim-
ulating a real-world robotic application. This
scenario aims to challenge the robotic manip-

ulator with a common task such as "picking
an object under a table", where the environ-
ment will be also characterized with two addi-
tional aleatory obstacles generated within the
workspace apart from the table. The manipula-
tor will try to reach a target position ptarget =
(0.0944,−0.0956, 0.3855)[m] (with no direct vis-
ibility of the target) and then return to its initial
position pinit = (−0.0056,−0.2156, 0.1500)[m]
given an initial configuration of q(0) =
[π/2, 0, π/8, 0,−2.443, 0][rad]. Graphically this
initial state is represented in Figure 5.

Figure 5: First Scenario: Initial Configuration

The complete 3D trajectory performed by the
manipulator is shown in Figure 6 while a de-
tailed task space trajectory tracking is shown in
Figure 7. It can be observed that the reference
orientation is not tracked as much as the posi-
tion, this was expected since the cost function
weights were focused most on the positioning
part(for the results in joint positions, velocities
and acceleration refer to Thesis Section 4.2.3. ).

Finally, the distances related to the obstacle
avoidance constraint are reported in Figure 8
while the ones related to the self-collision con-
straint in Figure 9. It should be noticed that the
new position of the obstacles is updated every
τLi = 0.5, which leads in some cases to a sudden
violation of the obstacle constraints, therefore,
the control input(acceleration) saturates trying
to return to the feasible region.
Additionally, for each trajectory, there was a
time allocated to generate the obstacle free poly-
tope and generate the trajectory, and a time to
solve the IK. In this case, the robot reached the
target and returned in 9 iterations, those val-
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Figure 6: First Scenario: Complete Performed
Trajectory.Red-Stars: Initial and target posi-
tions. Black triangle-dashed line: Trajectory
performed. Blue-line: intermediate trajectories.
Cyan triangles: Intermediate Shifted targets.
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Figure 7: Performed Trajectory(solid red) and
Generated Trajectory(blue dashed).

ues are reported in Table 1 respectively. From
the table can be concluded that the collected
time results show the efficiency of the method
with a lower than 2ms for the IK time period.
This shows the capability of the method to be
used for an online implementation since the IK
is solved much faster than the discrete time Ts.
While a maximum of 1s for the trajectory gen-
eration, trajectory that can be computed in par-
allel while the robot is still reaching its target.
Moreover, it is essential to mention the possi-
bilities of generating an obstacle free local map
while the robot is reaching the target. This fea-
ture can be exploited by means of the the union
of the intermediate convex polytopes generated,
for this example, graphically this is represented
in Figure 10.

5. Conclusions
This work presented a novel hierarchical control
framework for a 6-DOF robotic manipulator op-
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Figure 8: Distance from each link to each ob-
stacle
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Figure 9: Self-Collision Distances. Constraint
at 0.045 m

erating in unknown and dynamic environments.
Novel strategies for Local Path Planning and a
constrained IK-MPC were proposed, this parti-
tion guaranteed a double layer of safety (obsta-
cle free trajectory generation and reactive ob-
stacle avoidance) for obstacle avoidance.
In the Local Path Planning block, a Convex Ap-
proximation of the Free Space was developed
with the aim to generate obstacle free trajec-
tories towards a target, and an efficient strategy
for target shifting was presented and tested.
The Inverse Kinematics used a MPC approach,
which exhibited improved performance com-
pared to traditional one-step-ahead formula-
tions. The IK-MPC achieved accurate trajec-
tory following while satisfying the joint motion,
obstacle and self-collision avoidance constraints.
Despite the fact the robot is not redundant, the
self-collision avoidance constraint allowed differ-
ent reconfigurations of the robot while operat-
ing. The average time per iteration collected
showed its potential for an online real imple-
mentation.
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Iter. Traj. Gen.
Time [s]

Iter. Avg. Time
IK-MPC [s]

1 1.0055 1.5326 ×10−3

2 0.4278 0.7157 ×10−3

3 0.1409 0.9011 ×10−3

4 0.1742 0.5413 ×10−3

5 0.3018 0.6899 ×10−3

6 0.1303 0.9900 ×10−3

7 0.1863 0.4813 ×10−3

8 0.8454 0.4748 ×10−3

9 0.1931 0.4990 ×10−3

Table 1: First Scenario: Time Execution Re-
sults.

Figure 10: First Scenario: Complete Obstacle
Free Region.

In conclusion, the developed hierarchical control
framework exhibited promising capabilities for
robust and adaptable robotic manipulator oper-
ation in complex environments. In fact, the pro-
posed method was developed as general as possi-
ble to be able to include redundant, humanoids
or hexapods robots in future works. In addi-
tion, the proposed structure allows the inclusion
of other components that can compute the ref-
erenced target ptarget based on the specific ap-
plication, or a customized low level control sys-
tem. The results obtained elucidates a path for
continued advancements in the field of robotic
control systems, with potential applications in
diverse industrial and research domains.
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