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Abstract

Emergency departments are fundamental for providing high-quality care, and their op-
erations directly impact the logistics of the hospitals in their entirety. Poor emergency
department performance leads to delays, prolonged hospitalization, and improper allocation
of resources, reducing the quality of the provided care and increasing costs. Describing
the variability embedded in real clinical data in a useful way is essential for improving the
organization of hospitals in the near future. However, it is a challenging task due to clinical
complexity and the lack of an established bridge between logistic systems and the clinical
insights of the hospital. Therefore, this work aims to design and implement a simplified
process model describing patient flow within an emergency department, which could allow
the evaluation of the clinical impact of complex patient characteristics on the system’s
logistics. To achieve this, a novel nonlinear mixed-effects approach with hospital medical
records was applied to design patient flow within the emergency department in the form
of a multi-state Markov process. Four independent training data samples were extracted
from the main dataset. For each of them, the set of covariates that could lead to the most
significant improvement in the values of the employed likelihood indicators was selected.
Through statistical tests, analysis of the outputs, and a validation process carried out on a
fifth and independent dataset, it was possible to obtain a final model containing the most
relevant and significant covariates for describing each of the modeled state transitions and
confirming their clinical meaningfulness and relevance. The results achieved in this thesis
can lead to future improvement of the healthcare logistics systems by extending the use of
nonlinear mixed-effects approaches to the estimation of the covariate impact on emergency
department flows.

Keywords: Emergency Department, Nonlinear Mixed-Effects Modeling, Healthcare
Logistics, Patient Flow Modeling, Patient Pathways, Markov Process.
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Abstract in lingua italiana

I reparti di Pronto Soccorso sono fondamentali per la fornitura di assistenza sanitaria di
alta qualità, ed il loro funzionamento ha un impatto diretto sulla logistica degli ospedali
nella loro interezza. Prestazioni carenti di un reparto di Pronto Soccorso comportano
ritardi assistenziali, prolungamenti della durata dell’ospedalizzazione, assegnazione erronea
delle risorse, peggioramento della qualità dell’assistenza fornita, ed incremento dei costi.
Al fine di migliorare l’organizzazione degli ospedali in un prossimo futuro, è fondamentale
descrivere la variabilità contenuta nei dati clinici reali. Tuttavia, si tratta di un compito
gravoso per via della elevata complessità clinica e della carenza di una preesistente inter-
faccia tra sistemi logistici e comprensione clinica degli ospedali. Pertanto, questa tesi si
prefigge il compito di progettare ed implementare un modello di processo semplificato
in grado di descrivere il flusso di pazienti attraverso un reparto di Pronto Soccorso, che
possa consentire di valutare l’impatto clinico delle caratteristiche complesse dei pazienti
sulla logistica del sistema. Al fine di raggiungere tale obiettivo, un approccio innovativo di
modellizzazione ad effetti misti non lineari a partire dalle cartelle cliniche ospedaliere è
stato impiegato per progettare il flusso di pazienti attraverso un reparto di Pronto Soccorso,
sotto forma di processo Markoviano a stati multipli. Quattro set indipendenti di dati per
il training del modello sono stati campionati dal set di dati principale. Per ciascuno di
essi, è stato selezionato il set di covariate la cui introduzione nel modello fosse in grado
di comportare il più significativo miglioramento del valore degli indicatori di “likelihood”
utilizzati. Mediante l’impiego di test statistici, l’analisi dei risultati, ed il processo di
validazione, effettuati su un quinto set indipendente di dati, è stato possibile ottenere
un modello finale contenente le covariate più rilevanti e significative per la descrizione
di ciascuna delle transizioni tra stati che sono state modellizzate, ed è stato possibile
giustificare la loro significatività e rilevanza. I risultati conseguiti in questa tesi hanno il
potenziale di portare a futuri miglioramenti dei sistemi di logistica healthcare, mediante
l’estensione dell’uso di approcci di modellizzazione ad effetti misti non lineari alla stima
dell’effetto delle covariate sui flussi di pazienti dei dipartimenti di Pronto Soccorso.

Parole chiave: Pronto Soccorso, Modellizzazione ad Effetti Misti Non Lineari, Lo-



gistica Healthcare, Modellizzazione del Flusso di Pazienti, Patient Pathways, Processo
Markoviano
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1

Introduction

Emergency departments (EDs) strive to provide high-quality 24/7 emergency care to
severely ill or injured patients. ED performance and overcrowding have been shown to
affect the functioning of other parts of the hospital and, indirectly, the "healthcare systems
and communities at large" [1]. Poor performance of the ED and overcrowding lead to
delays, prolonged hospitalization, and improper allocation of resources, which reduce the
quality of the provided care and increase costs. Moreover, these negative consequences
can "compromise the patient health outcomes and lead to high admission and re-admission
rates" [1] or produce adverse outcomes for the providers, the healthcare system, and the
community [1]. When the providers are exposed to intense workload, for instance, timely
service provision and clinical decision-making are hindered, thus increasing the length
of stay (LOS) [1]. This consequence is particularly relevant since longer lengths of stay
increase the risk of contracting hospital-acquired infections [2] and "are associated with
higher patient mortality and worse outcomes" [3]. Therefore, to guarantee the proper
functioning of the hospitals in their entirety and, thus, improve patient outcomes, it is
crucial to monitor and enhance the performance of the EDs continuously.

To achieve this, it is necessary to find a suitable way to evaluate the clinical impact
of complex patient characteristics on the logistics of an emergency department and to
support hospital management in better understanding and better intervening regarding
the problems leading to excessive LOS within the ED. In this perspective, patient flow
modeling based on real-world data can help find which factors have the highest impact
on the system performance in given situations, support decisions concerning resource
allocation and utilization, and help improve the pathways for a process and perform
patient stratification [4].

Comprehensive healthcare framework

Healthcare systems are complex organizations whose primary goal is to provide high-quality
health services efficiently [5]. However, their physical facilities and resources are limited
[4, 6, 7], the level of variability and uncertainty is high [6], and the performance goals to
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be met are several and often conflicting. To enumerate some of these goals, Bhattacharjee
and Ray [4] mentioned: "minimizing the cost of healthcare, maximizing the utilization
of physical and human resources, improving the quality of care by providing efficient
diagnostic systems, handling an increasing number of patients effectively within a limited
time span, arranging varieties of healthcare facilities in a single location, and improving
overall healthcare system performance within limited and predetermined budget and time".
In short, such systems are supposed to provide health service effectively, efficiently, and
without compromising the quality of care [5], while handling the rising cost of operations
and maintenance [4].

Within the healthcare systems, one of the leading roles is covered by hospitals, which are
healthcare sub-systems that work as "integrated service units attending to the needs of the
patients under treatment" [4]. They usually include various departments and sub-units,
such as the ED and diagnostic imaging services, e.g., the radiology department, all located
within the same organization. Each department is characterized by its specialization and
operational issues. Therefore, the overall hospital operational performance results from the
interaction between the operational performances of all its departments and sub-units [4].

Among the numerous and, in most cases, interconnected hospital units, the emergency
departments (EDs) constitute the specific area in this thesis’s focus. Such departments
are essential since they provide 24/7 emergency care to severely ill or injured patients,
whose health conditions would likely worsen too rapidly for non-emergency healthcare
to be effective on them. Furthermore, the emergency departments are responsible for
processing the patients before their potential admission to a hospital ward. Modeling both
patients’ arrival and process flow is challenging due to high patient volumes and clinical
variability. However, the importance and tight coupling of the EDs with many other
hospital departments make continuous monitoring and improvement of their performance
advisable and necessary to guarantee the proper functioning of the hospitals in their
wholeness and improve patient outcomes.

Problem

This section aims to briefly provide a broader definition of the problem addressed in this
thesis and an introduction to the encountered engineering issues.



| Introduction 3

ED Operational issues

The operations of an emergency department are central to providing high-quality emergency
care and depend on clinical, economic, regulatory, and cultural factors, some of which
are often also affected by local influences, e.g., a potential region-specific behavior of the
population towards alcohol and drugs [8]. EDs face access blocks and overcrowding issues
enhanced by increased cost [4], complexity, [9] and patient demand [3, 7, 8]. Moreover, the
aging of the population [3, 9] increases the pressure on the system by increasing the number
of patients needing care [10]. The resulting overcrowding of the EDs is acknowledged
as the most severe problem regarding their patient throughput. It often leads to long
waiting times (especially for the triage process), patient dissatisfaction, increased medical
errors, increased rate of patients who leave without having been seen (LWBS), delay of
care, poorer patient health outcomes, and increased patient length of stay (LOS) [11–13],
see figure 1. When these factors increase the acuity of a patient’s illness, the amount of
consumed time per patient rises even further [14].

Figure 1: Simplified representation of the operational issues affecting an ED.

Both internal and external factors introduce delays in patient care [11] which usually, in turn,
lead to overcrowding. Among them, particularly relevant are highly heterogeneous patient
characteristics, unoptimized ED staffing patterns, complexity for patients in accessing
healthcare providers, irregular patient arrival patterns, inappropriate management practices,
and inappropriate chosen strategies for testing and treatment [11]. Moreover, the delay
also derives from general inpatient crowding within the hospital [15]. Indeed, it was found
that there exists a nonlinear correlation between higher inpatient bed occupancy and
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longer ED waiting times [3]. This link exists since the increase in bed occupancy acts as an
access block against the ED patients who need inpatient care but cannot access hospital
beds in the correct department or any hospital bed at all within a reasonable time frame
[3]. This specific factor is particularly tricky to tackle, mainly because it can often be out
of reach for intervention for the stakeholders in the ED [15]. Furthermore, the effect of
the increase of the ratio between non-elective admissions and discharges was found by S.
Paling et al. [3] to affect the waiting time in the ED for two consecutive days after its
occurrence, thus highlighting the importance of maintaining proper discharge levels also
during the days of the week in which the bed occupancy is lower.

Although some of the sources of delay and inefficiency mentioned above cannot be elim-
inated, many others can be addressed with proper design and optimization [8]. Such
elements that introduce delays to the otherwise potentially regular patient flow and thus
lead to increased ED crowding often combine, leading to considerably significant increases
in the LOS. Therefore, given the importance of ensuring efficient, effective, and high-quality
care to patients, and given the difficulties in assessing the performance of emergency depart-
ments directly due to their high complexity, the systematic measuring and understanding
of the factors underlying ED operational performance thus become a task of primary
importance for at least two main reasons. In the first place, the care providers need to be
informed and updated about system performance, so to be able to identify which elements
in the system satisfy reasonable quality criteria and which others of them do not meet such
standards. In the second place, it is essential for them to actively measure performance
and what affects it, to be able to plan, test, and implement improvements in the system
over time. However, contextually, quantification and measurement of the performance of
such a complex system as the emergency department and its interactions with the rest of
the hospital are particularly complicated since service providers and patients (customers)
can have very different objectives and criteria around which to evaluate the performance
of the system. It is usually challenging to find a proper trade-off between the interests of
such two kinds of stakeholders.

Moving from a general overview to a specific case, the ED of Akademiska sjukhuset,
Uppsala University Hospital, is facing significant issues related to prolonged length of stay
(LOS) of its patients, also partially caused by bottlenecks related to different hospital
wards, given that a considerably high portion of incoming patients commonly needs to be
referred to the department of medical imaging or other specialistic care.
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Purpose

This thesis aims to find a suitable way to evaluate the clinical impact of complex patient
characteristics on the logistics of an emergency department to support hospital management
in better understanding and better intervening regarding problems leading to excessive
LOS within the emergency department. The attainment of such an aim is significant since
"longer lengths of stay are associated with higher patient mortality and worse outcomes"
[3]. This correlation also applies to EDs, and it could be argued that LOS can indirectly
cause worse health outcomes through more prolonged waiting times and treatment delays.
However, it could be equally true that more severe patients to be treated, e.g., patients
treated in the so-called Emergency Room of the ED, can require a more extended stay
within such a department, thus a longer LOS. Delimiting precisely to what extent longer
LOS is the cause of higher patient mortality and to what extent it could be seen as its
consequence is not trivial, and the sole information contained in the available datasets for
this thesis does not allow for performing such a distinguo confidently. Moreover, since in
the present work the real-world case mentioned above was studied, i.e., the emergency
department of the hospital "Akademiska sjukhuset", primarily due to the sample size, it
was not possible to explicitly include in the model a state describing patient death that
could lead to satisfactory results. Therefore, it was decided to aggregate the patients who
died within the ED (see table 2.3) with the category "Other, unspecified". This latter
aspect is better addressed in later parts of this thesis.

The primary benefit of the achievement of the goals of this thesis is that the employed
approach for evaluating the impact of clinical covariates on logistical outcomes could
become the starting point for future operational research studies aiming to test length of
stay optimization procedures in the emergency department. Consequently, it could become
easier to avoid the discussed negative consequences of longer LOS on patients, staff, and
management. For what concerns the focus on “clinical factors”, which is introduced in this
first chapter and can then be appreciated throughout this thesis, the reader could wonder
whether there is a difference between clinical and operational factors in a healthcare facility
and to what extent logistics can be considered “clinical”. An answer to these queries is
provided in section 4.1.

Goals

The main goal of this thesis is to design and implement a simplified and empirical process
model describing the ED system of Akademiska sjukhuset that could allow evaluation of
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the clinical impact of complex patient characteristics on the logistics of the ED system.
This model would thus become the framework for future studies aiming at testing LOS
optimization procedures that could be suitable for Akademiska sjukhuset. This thesis was
divided into the following three phases, each of them represented by some sub-goals:

• Phase 1: population analysis, data pre-processing, exploration of the state of the art
regarding modeling methods and techniques for process modeling in healthcare.

• Phase 2: choice of a general modeling approach (i.e., "nonlinear mixed-effects
modeling"), testing and evaluation of possible modeling design options, final selection
of a modeling technique (i.e., Markov Chains modeling) within the selected general
modeling approach.

• Phase 3: model optimization in terms of the number of states and the selection of
suitable covariates, parameter extraction for the designed process model, validation
and discussion of the model and the results, analysis of the limitations and the
potential future developments of this work.

Research methodology

The methodology choices regarding this thesis can be divided into "choice of a general
modeling approach" and "choice of a modeling technique within the selected general
modeling approach". Both are briefly introduced in the following two sub-sections and
then discussed in further detail in later chapters of this thesis.

Choice of a general modeling approach

For what concerns the choice of a general modeling approach that could allow evaluating
the clinical impact of complex patient characteristics on the logistics of the ED system, it is
important to keep into consideration that patient flow is affected by numerous factors both
within such characteristics and within the logistics of the specific ED in question. Among
such mentioned factors, relevant examples can be the patient arrival patterns, the existing
connection between ED and the imaging department, the discharge mechanism, and
"patient-intrinsic" factors such as age, sex, chief complaint, triage, ICD-10 main diagnosis.
However, it is necessary to discriminate which parameters are the most significant and
helpful in allowing for a proper explanation of the high variability in patient characteristics
without excessively increasing the complexity of the model and in a way that allows for
better management of patient volume. Nevertheless, the modeling techniques that are
traditionally applied to hospital medical records tend to select a pool of patient and
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system characteristics and apply them to macro sections of the model without allowing
neither for much differentiation among the parameters that are relevant and significant for
each of the modeled state transitions nor for the consideration of potential random errors.
Consequently, after a careful review of the current state of the art for what concerns
process modeling approaches, a decision was made to utilize an approach that is not
commonly employed to evaluate the impact of clinical covariates on logistical outcomes
and for which one main field of application resides in pharmacometrics. The approach
in question is the so-called "nonlinear mixed-effects modeling", whose goal is to "model
the relationship between a set of independent variables to some dependent variable", with
functions whose model parameters are nonlinear [16]. Moreover, a nonlinear mixed-effects
model allows extracting insight from the data using a population approach [16].

Alternatively to nonlinear mixed-effects modeling, a more conventional approach for
evaluating the clinical impact of complex patient characteristics on the logistics of the ED
system could have been chosen. Such a conventional approach is the so-called "Canonical
variate analysis" (CVA), which is "mathematically equivalent to a one-way multivariate
analysis of variance" and is extensible to longitudinal data [17]. However, it was decided
not to tackle the problem in question with a method from the family of "Canonical variate
analysis" and instead to employ nonlinear mixed-effects modeling. This choice was made
due to the belief of the latter being able to better describe the variability embedded into
the data, also in terms of individual-specific variability, and to differentiate among the
parameters that are relevant and significant for each of the modeled state transitions.

Choice of a modeling technique within the selected general mod-
eling approach

For what concerns choices of methodology for modeling the patient flow, several modeling
techniques can be exploited to tackle healthcare applications and it is of extreme importance
to identify and choose a suitable method for the application in question. To facilitate
the reader’s understanding of the performed method selection process, which is explained
in further detail in later chapters of this thesis, it is important to underline here that
this work was determined to design a process model with reduced complexity. Such a
decision was made to make it possible to achieve a higher understanding of the underlying
relationship between the modeled elements and the output of the system. Therefore, not
all the services provided by the emergency department of Akademiska sjukhuset were
included in the modeling process, but only those judged as pertaining and necessary.

Among the several available methods, which are better described in section 3.1, it was
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chosen to select the so-called analytical approaches. This choice results from a process of
testing and evaluating possible modeling design options, which can be better appreciated
in the later chapters. However, in short, analytical approaches resulted particularly easy
to frame within the "nonlinear mixed-effects" modeling approach for this thesis due to
their ease of implementation and ability to handle causal dependencies naturally [18].
Within the category of the analytical approaches, in particular, it was chosen to select
"Continuous-Time Markov Chains modeling". Even for what concerns this choice, the
reasoning behind it is better addressed in later parts of this thesis. However, in short,
this modeling technique is really valuable to the application in question, mainly due to
its capability of modeling both clinical and operational patient flow [4] and to its ease of
validation [19].

General ethical and moral perspective

Despite the overcrowding of the EDs being a primarily important issue in the last decades,
no comprehensive and effective solution has yet been implemented [8]. This scenario might
partially depend on the role played by hospital-specific and ED-specific issues, which
peculiarly characterize each case, and it might stack up with the more general and distinct
nation-wise reasons for overcrowding [8]. However, the problem also depends on how little
the general commitment of many hospitals to reducing crowding has been through the
years [8].

From a moral point of view, this situation constitutes a challenging problem since patients,
healthcare providers, and the healthcare system are significantly negatively affected by
overcrowding [8]. J. Joseph and B. White (2020) exemplified some of the possible negative
consequences of overcrowding in ED on patients. Namely, they listed "delayed time to
the administration of antibiotics in pneumonia and treatment of myocardial infarction,
decreased compliance with core measures for sepsis, decreased analgesia for patients with
acute pain", and an increased rate of LWBS patients [8].

From an ethical point of view, according to the framework of ethical principles called
"principlism", patients should be granted reasonably easy access to care and a reasonably
short length of stay in the emergency department, which also depends on the crowding
levels of such department, especially in order not to hinder the so-called principle of justice.
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Structure of the thesis

1. In chapter , which ends with this section, the importance of the treated topic is
stated, relevant introductory knowledge is provided, the terms and scope of the
topic of this thesis are displayed, the current scenario is outlined and evaluated,
the importance of the proposed research is identified, the research questions and
objectives are stated, and general ethical and moral issues are introduced.

2. In chapter 1, the theoretical background is presented in all its relevant subareas,
providing the readers with the required knowledge to understand this thesis and the
methodology choices that follow in the subsequent chapter.

3. In chapter 2, the followed research procedure is presented. In particular, it includes
information about the data acquisition, the preliminary data analysis, the initial
pre-processing, additional processing before implementing the Markov Chains model,
the selection of a general modeling approach, the performed research and comparison
of modeling techniques, the choice of potential modeling techniques within the
selected general modeling approach, the parameter extraction, the attempted and
then dismissed modeling ideas, the exploration of the remaining modeling techniques
and setups, the design of a procedural protocol for the chosen technique and setups,
the automatic covariate model building, and the validity assessment.

4. In chapter 3, the results of this thesis are presented, and their validity is analyzed.

5. In chapter 4, an interpretation of the obtained results is provided, and a discussion
about limitations, technical implementation challenges, and future work on the topic
in the question of this thesis is performed.

6. In chapter 5, conclusions on what is discussed in this thesis are given.

7. Thereafter, after including this thesis’ bibliography, appendices regarding the datasets
and the Monolix code are organized and reported at the end of this thesis.
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1| Background

Firstly, this chapter presents a short recap of what needs to be considered when unfolding
the theoretical background of this thesis. Secondly, an overview of the system modeling
approaches most commonly applied to healthcare is introduced. However, the main
advantages and disadvantages of such techniques are presented later in this thesis, in
section 3.1. To conclude, previous related work is addressed.

1.1. Healthcare needs and critical issues

Healthcare is a complex system based on "multiple interactions between many different
components" [20], whose primary goal is to provide high-quality health services efficiently
[5]. Due to being complex, healthcare is subject to a dynamic equilibrium that makes
it challenging to obtain good knowledge about the system in its wholeness. Moreover,
resource limitedness [4, 6, 7], rising costs for operations and maintenance [4], high variability
and uncertainty [6], dynamicity of technical development, of socio-economic pressure, and
of laws and guidelines, as well as conflicting performance criteria to be met, can hinder
the ability of healthcare systems to work effectively, efficiently, and without compromising
the quality of care.

1.1.1. Hospitals and ED critical issues

Hospitals are healthcare sub-systems that work as "integrated service units attending to
the needs of the patients under treatment" [4]. They are composed of a heterogeneous and
complex network of departments and sub-units that are particularly difficult to characterize
and optimize. The operations of the emergency departments (EDs), in particular, are
coupled with the activity of almost all the other units within the hospital and are dependent
on clinical, economic, regulatory, and cultural factors. The high complexity deriving from
the factors above makes it difficult to assess ED performance directly. Still, it does not
diminish the primary importance of performing such measurement and assessment, both
for what concerns evaluating the level of compliance with the preset performance and
quality standards and for planning, testing, and implementing improvements in the system
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over time. Such a performance measurement is usually carried out with the employment
of healthcare-specific performance metrics. Hence, the introduction of these metrics, the
introduction of modeling methods, the employment of the latter to improve the performance
described by the former, and scientific and engineering issues towards optimization of ED
performance are all addressed in the following parts of this chapter.

Introduction to performance metrics

In the hospitals in general, and specifically in such complex and dynamic environments like
Emergency Departments, multiple variables and objectives must be considered to achieve
the preset goals. This need is especially true since the modern healthcare reimbursement
system is conceived to prioritize reducing unnecessary costs, maximizing operational
efficiency, and contextual conservation or improvement of quality [7]. To develop better
methods, policies, and decision tools meant for improving hospital systems and achieving
the objectives of an efficient healthcare system, it is essential to perform analyses of the
hospital processes [4]. Several metrics have been designed and are employed nowadays to
assess and monitor the status of the system and provide such information to the decision-
makers. According to previous studies, the most widely used metrics for measuring the
performance and assessing the care delivery processes in various hospital sub-units are
patient wait time by process step, average door to provider time, average waiting time for
activities supporting diagnoses, length of stay, inpatient throughput, patient readmission
rate, LWBS rate, staff utilization rate, and bed occupancy rate [4]. Among these, the most
important for this thesis is the length of stay, in other words, the amount of time that
goes from patients’ arrival to their disposition [15]. LOS was used in this thesis to model
the transition between the state regarding patients’ stay in the emergency department of
Akademiska sjukhuset and the exit state. Furthermore, LOS allows for evaluating the flow
of patients through the system throughout the whole process of care. Consequently, it is
an indicator of crucial importance concerning the throughput of emergency departments
and is a marker of overcrowding [11].

"Patient Flow is the movement of patients through the whole process of care" [4], and its
rate can be affected by numerous factors, including seasonal and local ones. Such patient
movement through a hospital starts with the patient’s arrival at the hospital facility, in
most cases happening through the outpatient department or the emergency one. For this
thesis, the focus is on the latter one. After arrival, the complex route of the patients
through their care process is personalized according to their health conditions and needs
and influenced by external factors, such as resource limitedness, which can lead to the
generation of queues and consequent waiting times [4]. In addition, several other factors
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can add to the pool of uncertainties and complexities, in particular, patients’ arrival
patterns, the randomness in service times, the evolution of patient’s health status, the
variability and length of the pathway that a patient can undertake, the uncertainties and
delays in physically transferring patients among different departments, the existence of
priority rules [4].

1.2. Healthcare and models

Measuring system performance and assessing patient flow can be highly challenging.
Moreover, it is difficult to navigate performance indicators to extract helpful insight. In
addition, the pressure to which the leaders in healthcare institutions are exposed regarding
monitoring and improving the system is constantly heavy[7]. Given these factors, and given
that the deployment of appropriate resource management strategies is needed to "avoid
preventable high resource utilization that might cause access blocks" [9], the computation of
a model of the system is often necessary or at least advisable. Modeling approaches exist
that can inform decision-making based on quantitative data provided by the performance
metrics. Using such supportive techniques and methodologies for aiding decision-making
is crucial to healthcare leaders in the decisional process [21].

In particular, patient flow modeling can help determine which factors have the highest
impact on the system performance in given situations. It can support decisions concerning
resource allocation and utilization, help improve the pathways for a process and perform
patient stratification [4]. Moreover, tackling patient flow and capacity issues in the whole
hospital, such as high bed occupancy, is proven to reduce waiting times in the emergency
department and improve its patient health outcomes [3]. Lastly, patient flow modeling can
be used to inform operational research, which is significant in improving the planning and
management of the hospitals [5] and their departments. Proper planning and organization,
together with the employment of Operational Research techniques to understand and
model patient flows, can support healthcare managers in performing the optimizations
required to reduce the idle times of resources and servers at each stage of the patient
flow [4, 5]. Many are the aspects of patient flows that can be modeled, such as arrival
distributions and transition probabilities, and it can often be challenging to isolate among
services offered by the hospital or by one specific of its departments, given that many of
such services interact with each other or at least share some resources. However, despite
the difficulties in isolating services, and since objectives, detailedness, and generality of a
model are interrelated [5], it is crucial to model only activities and services relevant to the
goals of the specific modeling case in question [5].
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1.2.1. Modeling employed to improve ED performance

Modeling in healthcare can be organized into conceptual modeling and actual model
implementation [5]. Conceptual modeling is substantially independent of the chosen
simulation software but dependent on the simulation methodology and is meant as a
blueprint of the model that is supposed to be built [5]. Among the methods in conceptual
modeling that are the most common, process flow diagrams are seen as the most suitable
for being applied to the modeling of patient-related processes in a hospital. This suitability
is due to their ease of build and understandability for both experts and non-experts [5].

Concerning the actual model implementation, numerous modeling approaches can be
exploited to tackle healthcare applications. Each modeling approach and possible opti-
mization technique presents its peculiar advantages and disadvantages. The choice of an
optimal approach to be used is determined by many factors, such as the general area of the
problem (e.g., emergency medical systems or epidemics models), the level of aggregation
of the input data, the length of the simulation horizon, and the goals that are sought to be
achieved [22]. In particular, according to Bhattacharjee and Ray [4], modeling methods
can be divided into three main categories: analytical approaches, simulation modeling,
and statistical or empirical modeling. It is possible to identify "queuing theoretic models"
and the so-called "Markov Chains" and compartmental models among the analytical
approaches. Simulation modeling can be subdivided into sub-categories as well: "discrete
event simulation (DES)", "system dynamics (SD)", "agent-based simulation (ABS)", and
"Monte Carlo methods (MC)", but hybrid approaches are not uncommon. Statistical or
empirical modeling is not divided into sub-categories. The possible modeling methods are
addressed in detail in section 3.1.

Scientific and engineering issues towards optimization of ED per-
formance

Several scientific and engineering issues underlie the modeling and the optimization of ED
performance.

1. When dealing with healthcare-related systems, understanding the current underlying
risks and how operational changes would modify these is more difficult than in
systems that are not healthcare-related. This difference is due to two main factors:
1) risks in healthcare are inhomogeneous since the sources of risks for patients and
operators vary broadly from field to field [23]; 2) risks that are directly related to the
disease itself, risks deriving from medical diagnosis and decisions, and risks related
to the way the chosen therapy is carried out, can combine in unpredictable ways [23].
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2. Another ground problem is given by the little correspondence between measured
outcomes in clinical and health research and the results achieved with operational
research [8]. This last important engineering issue that J. Joseph and B. White
(2020) [8] mentioned is related to the absence of a standardized operational workflow
among different EDs. Accordingly, applying the same intervention to two EDs
with comparable sizes, volumes, and patient populations could lead to different and
contradictory outcomes [8].

1.3. Previous related work

The two following sub-sections (1.3.1 and 1.3.2) briefly explain the prior work that was
applied to or used in this thesis and mention which prior work was instead not used.

1.3.1. Data collection from Akademiska sjukhuset

Structured data regarding all the patients who sought care from Akademiska sjukhuset’s
emergency department during 2019 were collected by the hospital and organized into
two datasets. One, addressed as "D1" in the rest of this thesis, contains the information
regarding all the patients accessing the ED during the selected year. The other one is
instead addressed as "D2" and contains information related to the sessions of medical
imaging performed on such ED patients. After patients’ names and surnames were
anonymized, both the datasets were made available for working on this project.

1.3.2. Complex model design in AnyLogic

A logistic model of the whole Akademiska sjukhuset, i.e., not only focused on the activities
that are strictly related to the emergency department, was already developed in AnyLogic
by a team from the same research department in which this thesis was produced. At its
current development, the model describes the ED system of Akademiska sjukhuset in its
high complexity, including the description of elements such as interactions with physicians
and nurses. Real clinical data and clinicians’ feedback were used to tune and validate such
a model. However, due to its complexity, the model did not allow estimating the impact
of patient characteristics on model parameters from the data.
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The first part of this chapter addresses what concerns the healthcare production data
used in this thesis. The latter includes the choice of a general modeling approach, the
performed research and comparison of modeling techniques, the choice of potential modeling
techniques within the selected general modeling approach, the parameter estimation, the
attempted and then dismissed modeling ideas, the exploration of the remaining modeling
techniques and setups, the design of a procedural protocol for the chosen technique and
setups, the automatic covariate model building, and the validity assessment (see figure
2.13). In section 2.5, to facilitate the reader in following the methodological approach
of this thesis, the experimental protocol for selecting the best set of covariates for each
training data sub-set is summarised in a scheme (see figure 2.12)

2.1. Materials

This section aims to introduce the reader to what concerns the datasets employed in this
thesis. Such an explanation is done in terms of data acquisition and datasets layout,
patient characteristics, pre-processing, and secondary data processing.

2.1.1. Data acquisition

Data sampling in this thesis was performed by Akademiska sjukhuset itself, as mentioned
in sub-section 1.3.1. The two datasets provided for this study contain anonymized
data regarding all the patients who sought care from Akademiska sjukhuset’s emergency
department during 2019. The link between these two datasets resides in the so-called
"contact_id", which works as a "case ID" for the patients. To be more specific, each
patient was assigned a new contact_id at each new time they visited the ED through
2019. Accordingly, it was possible to associate the medical imaging sessions contained in
the latter dataset with the visit to the ED during which corresponding patients underwent
such sessions.
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2.1.2. Preliminary data analysis

Before performing any study on the data and any of the steps described in the following
sections and sub-sections, the datasets were checked for duplicated entries. Two duplicates
were found in dataset D1 and therefore eliminated. Moreover, a brief study was performed
to define each variable’s meaning and investigate the possible values that each of them can
take. Afterward, the characteristics of the population from which ED data was sampled
were analyzed from several perspectives through Python programming. In particular, some
statistics regarding patients who sought care from the ED more than once during the year
2019 were calculated, as well as statistics related to the performed sessions of medical
imaging. The results of this analysis are reported here.

Despite the number of different patients visiting the ED during 2019 being equal to 33
866, the number of entries contained in dataset D1 is equal to 49 936. This mismatch is
due to 8772 patients visiting the ED more than once throughout the year. Whereas most
of these returning patients visited the department a small number of times in 2019 (e.g.,
5442 patients twice and 1776 three times), it is noteworthy to point out that a minority of
patients visited the ED numerous times during the same period, with a maximum of 65
times for one individual. For each patient, a variable for tracking the number of times
they entered the ED during 2019, named "times1Year", was computed and added to
dataset D1. For what instead concerns dataset D2, this counts 53 552 entries, where the
count is heavily affected by two main reasons. The first one is that most of the performed
imaging exams were recorded twice, once referred to as "partial decision" and once as
"final decision" (see "Radiology_Status" in appendix A.1). The second reason is that some
patients performed more than one kind of imaging exam. In total, 18 245 of the cases
treated by the ED during 2019 included at least one medical imaging procedure for the
corresponding patient, i.e., 35,54% of the total cases.

Information about "patient intrinsic characteristics" and "patient pathways character-
istics" were extracted. For what concerns the extracted information regarding patient
intrinsic characteristics, age distribution, and the count of patients by gender and
by the municipality of origin were all calculated. Moreover, the distribution of the most
represented "chief complaints" was plotted, where what is meant by chief complaint "is
a concise statement [...] of the symptoms that caused a patient to seek medical care",
which is recorded at the beginning of the medical care process [24]. Despite the chief
complaint being an easily readable description of the patients’ clinical conditions, it is
just a preliminary categorization based on a summary evaluation of the patient during
the triage process. Therefore, the formal classification that the main diagnosis of each



2| Materials and Methodology 19

patient received at a later stage, contextually to meeting a doctor, was also analyzed.
Such a formal classification is reported in dataset D1 by the employment of ICD-10, the
10th revision of the International Classification of Diseases, a medical classification list
maintained by the World Health Organization. Nevertheless, due to this classification
standard’s high level of detail, it would have been purposeless to calculate any distribution
or count of patients by their ICD-10 labeling. However, since all the diagnoses of each
principal macro diagnostic area are grouped under the same first letter in the ICD-10
terminology, it was possible to simplify the ICD-10 label for each entry in dataset D1 to
its first letter. Therefore, the count of patients by ICD-10 macro diagnostic area could
be calculated. Table 2.1 in this sub-section provides a list of such simplified codes, their
meaning, and the result regarding the computation of patient count for each code.

For what instead concerns the extracted information regarding patient pathways charac-
teristics, length of stay distribution, the count of patients reaching the ED by ambulance,
the count of patients by their assigned unit of medical alarm, and the count of patients
by mode of discharge, were all calculated. The outcome of all the above calculations is
reported hereunder for both kinds of patient characteristics.

Patient intrinsic characteristics

In figure 2.1a it is possible to see the age distribution of the ED population. Two peaks
seem to characterize the ED population, one around the age of 20 and another between
the ages of 70 and 80. For what instead concerns the gender of the patients who visited
the ED during the year, 25 433 were females, 24 502 were males, and such information is
not available for only one patient. Among the 49 936 total patients, 33 424 were residents
in the municipality of Uppsala, thus constituting 66,93% of the total.

Figure 2.2 shows the distribution of the so-called chief complaint (CC) among the patients,
giving the reader a general overview of the population. For readability purposes, the
plot in figure 2.2 shows only the chief complaints that appeared at least 100 times within
dataset D1.



20 2| Materials and Methodology

(a) Age distribution of the ED population. (b) Length of Stay distribution of the ED popula-
tion.

Figure 2.1: Plots of age distribution and LOS distribution among the patients.

Figure 2.2: Distribution of the main chief complaints in the ED population.
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Over a total of 49 936 entries, the five most represented chief complaints resulted in being
abdominal pain ("Buksmärta") with 7412 entries (14.84%), chest pain ("Bröstsmärta") with
5052 entries (10.12%), respiratory problems ("Andningsbesvär") with 3229 entries (6.47%),
extremity swelling or pain ("Extremitetssvullnad/värk") with 2871 entries (5.75%), and
neurological disorders ("Neurologiska besvär") with 2378 entries (4.76%). It is noteworthy
to highlight that the visits to the ED for declared poisoning ("Förgiftning") accounted for
1069 entries (2.14%), placing such a chief complaint within the 20 most represented ones.

Over 49 936 entries in dataset D1, for 49 649 entries, a diagnosis coded with ICD-10 was
recorded. Table 2.1 shows a grouping of the patients by macro diagnostic areas thanks
to simplifying the ICD-10 codes to their first letter. Most patients were assigned a code
belonging to the category "R", i.e., "symptoms, signs of disease and abnormal clinical and
laboratory findings not elsewhere classified". However, it is noteworthy to highlight that
category S, i.e., "Trauma injuries", was assigned to 7634 entries (15.29% of the assigned
ICD-10 codes). The category "X" was assigned to only one entry; it is thus reasonable
to report its complete ICD-10 code, X6499, and the related description (*): "intentional
self-destructive action through poisoning by exposure to other and unspecified drugs,
medicaments and biological substances [...]".

Patient pathways characteristics

Figure 2.1b shows the length of stay distribution among the ED population. Only one
peak of the length of stay can be identified, located between the four and six hours of
permanence within the ED. Concerning instead the count of patients reaching the ED by
ambulance, this is equal to 13 751 over a total of 49 936 entries (27,54%). This information
was employed in the design of the process model.

Table 2.2, which was constructed from the value of the variable named "MA_unit"
contained in dataset D1 and explained in appendix A.1, shows the count of patients by
their assigned medical alarm unit. In addition, table 2.3 shows the count of patients by
mode of discharge. Even this latter information was employed in the design of the process
model.
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Table 2.1: Counts of patients by first letter of the ICD-10-SE medical classification list.

Code Description Number of patients

R Not elsewhere classified 21 686

S Trauma injury 7634

M Musculoskeletal, connective 4008

K Digestive system 3073

I Circulatory system 2934

Z No specific disorder but warranted treatment 2205

N Genitourinary system 1717

T Intoxication 1392

J Respiratory system 1071

F Mental, behavioral disorders 776

A, B Infectious, parasitic diseases 689

G Nervous system 676

L Skin, subcutaneous tissue 580

E Endocrine, nutritional, metabolic 481

C, D Neoplasms 375

H Eye and its adnexa, ear, and mastoid process 330

O Pregnancy and other obstetric conditions 11

Q Malformations, abnormalities 6

P Perinatology 4

X (*) 1
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Table 2.2: Counts of patients by unit of Medical Alarm.

Most suitable care team Number of patients

Emergency medicine 22 707

Acute surgery 14 611

Acute orthopedics 8984

Acute infection 1445

Heart disease 1308

Trauma surgery 713

Lung and allergy diseases 101

Hand surgery 64

Neurology 2

Infectious diseases 1

Table 2.3: Counts of patients by Mode of discharge.

Mode of discharge Number of patients

Sent home 30 773

Admitted to another hospital ward 12 982

Other, unspecified 4746

Redirected 1273

Death of the patient 103

Taken in charge by consultants 61

2.1.3. Pre-processing

Additional pre-processing was carried out; this included:

• The number of accesses to the emergency department during 2019 for each patient
was computed and added to dataset D1 as a variable named "times1Y ".
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• A binary variable representing whether a patient who reached the ED was resident
in Uppsala or not was created and computed for all the patients. The variable was
added to the dataset D1 under the name "UppsalaYN ".

• A binary variable describing whether a patient reached the ED by ambulance was
created and computed for all the patients. The variable was added to dataset D1
under the name "AmbulYN ".

• A bridging between dataset D1, containing the general ED patient information, and
dataset D2, containing the information related to the performed medical imaging on
the same population of patients, was conducted through Python programming. Con-
sequently, the following columns were added: scan yes/no (named "ScanYN "),
the number of scans performed on each patient (named "number_of_scans"),
time spent by the patient while waiting for the imaging to be performed (named
"LOS_reqTOperf ").

• The other computable time contributions to the total length of stay were identified
and added to the dataset, and their first quartiles, medians, and third quartiles
were calculated. "LOS_docTOreq" represents for each patient the time that passed
from their first meeting with a doctor to the request of their first session of medical
imaging. "LOS_perfTOdisch" represents for each patient the time that passed from
the execution of the last session of medical imaging to the patient’s discharge or
admission to a ward. "LOS_docTOout" represents for each patient the time that
passed from the first meeting with a doctor to the patient’s discharge or admission
to a ward.

• A new categorical variable, containing for each patient a simplification of their ICD-10
code to its first letter, was added to dataset D1 under the name "simple_diag.

• Three variables for taking into consideration the crowding of the ED were computed
through Python programming and added to dataset D1, under the names "countIN ",
"countOUT", and "countAVG". To do it, it was first necessary to convert patients’
arrival and discharge times into the corresponding "nth” hour from the beginning of
the year 2019". The converted arrival times were saved as a new variable named
"hours_in". The converted discharge times were saved as "hours_out". Thirteen
patients were censored since they were discharged from the ED only at the beginning
of 2020.

• Ten patients whose age was unknown or unspecified were also censored from the
dataset since "age" is a variable used in the design of the process model, and
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having an empty cell for some patients for a continuous variable would have been
troublesome.

• The ED was subject to comparable pressure throughout the whole year 2019 in
terms of average patient count within the department since the standard deviation
of the monthly-averaged patient count was equal to 1,84 patients, whereas the mean
of such a monthly-averaged patient count was equal to 38,12 patients, thus implying
a score of 4,83% in terms of Coefficient of Variation (CV). Contextually, however,
the staffing and resource levels of the ED undergo a significant drop during June,
July, and August. Therefore, to study the system in its normal working conditions,
it was decided to exclude from the study all the patients who entered the emergency
departments during any of those three months.

• Among the remaining variables, the ones that were considered a priori irrelevant for
the modeling process or unusable at this stage, as well as the ones whose usefulness
was only temporary for performing the preliminary data analysis (sub-section 2.1.2)
or the pre-processing, were eliminated from the dataset. In particular, this was the
case for the variables "municipality", "first_doctor_contact_date", "contact_type",
"arrival_method", "main_diagnosis", "priority", "triage", "team_care_contact",
"triage_level", and "last_doctor_contact_date", all from dataset D1, and for the
variables "ExaminationDate" and "RegistrationDate", that had been imported from
dataset D2.

Relevant results of the above-described data pre-processing are shown in this same sub-
section in the paragraph named "relevant pre-processing outputs".

Further modifications of the final pre-processed dataset were performed at later stages
through Python programming to adapt the data to how the employed software interprets
information. Such a dataset was reformatted multiple times according to the method put
to the test at each stage.

Relevant pre-processing outputs

In dataset D1, the value of the variable "ARRIVAL_DATE" is available for all the entries
(49 936), but the value of the variable "first_doctor_contact_date" is available only for
or 47 594 of the entries, i.e., 95,31% of the total. Therefore, it was possible to compute
the value of the variable "LOS_inTOdoc" only for these 47 594 entries. As a result, the
first quartile for the variable in question was equal to 00:32:14, the median was equal to
01:13:31, and the third quartile was equal to 02:33:05.
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In dataset D1, the value of the variable "RegistrationDate" is available for 18 245 entries,
and for only 17 935 of these the value of the variable "first_doctor_contact_date" is also
available. Therefore, it was possible to compute the value of the variable "LOS_docTOreq"
only for these 17 935 entries, i.e., 35,92% of the total. As a result, the first quartile for
the variable in question was equal to 00:09:41, the median was equal to 00:30:08, and the
third quartile was equal to 01:05:18.

In dataset D1, both the variable "ExaminationDate" and the variable "RegistrationDate"
are available for the same 18 245 entries, i.e., 36,54% of the total. Therefore, it was possible
to compute the value of the variable "LOS_reqTOperf " for 18 245 entries. As a result,
the first quartile for the variable in question was equal to 00:48:00, the median was equal
to 01:27:00, and the third quartile was equal to 02:36:00.

In dataset D1, the value of the variable "DISCHARGE_DATE" is available for all the
entries (49 936), but the value of the variable "ExaminationDate" is available only for
18 245 of the entries, i.e., 36,54% of the total. Therefore, it was possible to compute the
value of the variable "LOS_perfTOdisch" only for these 18 245 entries. As a result, the
first quartile for the variable in question was equal to 01:13:14, the median was equal to
02:08:42, and the third quartile was equal to 03:46:24.

In dataset D1, the value of the variable "DISCHARGE_DATE" is available for all the
entries (49 936), but the value of the variable "first_doctor_contact_date" is available
only for 47 594 of them, i.e., 95,31% of the total. Therefore, it was possible to compute
the value of the variable "LOS_docTOout" only for these 47 594 entries. As a result, the
first quartile for the variable in question was equal to 01:28:50, the median was equal to
02:59:56, and the third quartile was equal to 05:19:53.

The final pre-processed dataset, sometimes addressed as dataset "D3" in the next parts
of this thesis, includes 37495 entries that refer to the patients who visited the ED dur-
ing nine months of 2019, where June, July, and August were excluded. This dataset
contains the following 26 columns: contact_id, person_id, sex, age, cause_of_visit, sim-
ple_diag, reason_for_discharge, ARRIVAL_DATE, DISCHARGE_DATE, MA_unit,
times1Year, UppsalaYN, AmbulYN, ScanYN, number_of_scans, countIN, countOUT, coun-
tAVG, hours_in, hours_out, LoS_hours, LOS_inTOdoc, LOS_docTOreq, LOS_reqTOperf,
LOS_perfTOdisch, and LOS_docTOout. The explanation of their meaning is provided
above in this same sub-section for the variables created while performing the pre-processing.
Concerning instead the variables that were already present in the datasets D1 and D2,
these are described in appendix A.1.
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2.1.4. Dataset processing for Markov Chains modeling

To interpret the process as a continuous-time Markov Chain for performing the parameter
estimation from the data, the approach described in section 2.5, it was necessary to reshape
dataset D3 to introduce a time coordinate and an observation (state variable) for each
patient. In this framework, the variable "contact_id" (see appendix A.1) was used as an
identifier in Monolix. In contrast, the time coordinate was specifically created (named
"Time") so to have all the patients in one of the two initial states at time 0, in state 3
after one minute, and in one of the final states at the time "Length of stay + 1 minute".
For describing the observations, another variable was specifically introduced, in this case
to keep track of the number of the state at which each patient is associated at a given
time. Accordingly, figure 2.3 shows a sample of two patients from one of the processed
datasets, in the way the employed software groups the contact_id for this implementation.
No covariates are shown.

Figure 2.3: Two samples from one of the five dataset sub-samples for "Markov Chains"
modeling, without showing any covariate.

To obtain a suitable dataset for performing Markov Chains modeling like the one shown
in figure 2.3, starting from the pre-processed dataset (D3), the following elaborations were
achieved through Python programming.
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After having grouped four modalities of discharge as previously described, a column
for storing the value of the state was added with the name "State" and initialized for
each patient with the corresponding value of the rearranged (as explained in section 2.5)
modality of discharge, conveniently translated into a numerical identifier as shown in figure
2.11.

Afterward, from the complete dataset, five independent sub-samples were extracted
with five different random seeds, to be able to later perform the validity assessment as
described in section 2.7. Since the variable "simple_diag" is the only potentially useful
categorical covariate that can take more than two different values, since its meaning is,
at least theoretically, particularly relevant for the kind of process model that this thesis
was determined to design, and since only 0.55% of the entries of the pre-processed dataset
lacks a value for such a variable, the aforementioned extraction of the five sub-samples was
performed with a stratified sampling by proportionate allocation of the values taken by
simple_diag, excluding the patients having no such value recorded. Four of the extracted
samples contained 933 or 934 patients each and were used to extract sets of potentially
meaningful covariates as described in section 2.6; the fifth sample contained 5031 patients
and was used to assess the model’s validity as described in section 2.7.

For each of the five samples, all the entries were replicated to have two exactly equal rows
for each contact_id, and then a variable for storing the time information (named "Time")
was created and initialized with 0 and, for each contact_id, the value of such a variable was
changed for one of the two entries to the value of the variable "LoS_hours" for the same
contact_id. Then, for each of the five samples, a copy of the only entries with Time = 0

was saved and, on the copy itself, the state related to patients for which AmbulY N = 1

was set to 1, whereas the state related to patients for which AmbulY N = 0 was set to 2.
Going back to the original datasets, for all their entries, the time was increased by one
minute, and, after that, the state related to entries with Time equal to 1 was set to 3.
At this point, each of the five original datasets was merged with its corresponding copy,
all the times expressed in minutes were converted into hours, the value of the variable
"number_of_scans" was set to 0 for the patients for which its value was previously null,
and the variable "simple_diag" was converted into several binary variables, one per each
of the possible letters that it can assume.

Once all these steps were completed, the variables in the datasets that were not needed any-
more for implementing the process model were removed. Then the order of the remaining
columns was rearranged. The complete list of the removed variables includes: "per-
son_id", "LOS_inTOdoc", "LOS_docTOreq", "LOS_reqTOperf ", "LOS_perfTOdisch",
"LOS_docTOout", "ARRIVAL_DATE", "DISCHARGE_DATE", "hours_in", and
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"hours_out". Finally, from dataset D3, the five independent data sub-sets were sampled.
Their description is shown in the last part of this sub-section.

Figure 2.4: Categorical covariates distribution across modalities for the four training
sub-samples and the testing sub-sample.

Dataset sub-sampling

Figure 2.4 regroups in one table the distribution of the categorical covariates across
modalities for all the four randomly sampled independent "training" data sub-sets and the
"testing" sub-set. Despite the sampling being stratified only by proportionate allocation of
the values taken by simple_diag, the distribution of the other categorical covariates across
modalities is also consistent among the sub-sets. Furthermore, even the distribution of the
continuous covariates is consistent among all the sub-sets, as shown in figure 2.5.
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Figure 2.5: Statistics on continuous covariates distribution for the four training sub-samples
and the testing sub-sample.

2.2. Modeling approaches and techniques

In this section, sub-section 2.2.1 covers the chosen general modeling approach, i.e., non-
linear mixed-effects modeling (NLMEM), explaining its fundamental principles, its main
advantages, and thus the reasons why it was chosen over more traditional approaches.
Sub-section 2.2.2 describes what was done to compare the possible modeling techniques.
The results of such research and comparison of modeling techniques are reported in section
3.1 and lead to the choice of potential modeling techniques within the selected general
modeling approach.

2.2.1. General modeling approach: nonlinear mixed-effects mod-
eling

The modeling approach employed in this thesis is "nonlinear mixed-effects". The choice
of a nonlinear approach among the mixed-effects modeling ones was made since it is
well-known from previous literature that the distribution of the length of stay is, in turn,
nonlinear [25]. Additionally, such a choice was backed up by the plot of the LOS from the
data available for this thesis, which shows how this metric follows a log-normal distribution
(see figure 2.1b), i.e., it is nonlinear as well.

Less specifically, the choice of using nonlinear mixed-effects modeling as the general mod-
eling approach for this thesis was deduced from several factors. In particular, importance
was given to the possibility it provides for working with longitudinal data, i.e., with data
collected from the same sample (patients) at several distinct points in time. Alternatively
to a longitudinal study design, a cross-sectional study is often the applied approach for
hospital medical records [26]. In such studies, however, the regressor coefficients do not
keep track of changes in the population at the individual level in case of changes in the
covariate values [26].
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To provide the reader with a sufficient explanation of the principles of "nonlinear mixed-
effects modeling", this approach is hereunder introduced more in detail, using the nomen-
clature presented in the book "Mixed-Effects Models in S and S-PLUS" by J. Pinheiro
and D. Bates [27]. As previously stated, a "nonlinear mixed-effects" model includes both
fixed and random effects, where fixed effects represent typical population values, the same
for all the individuals, and random effects represent inter-individual, intra-individual, and
residual variability [28]. Its "purpose is to describe a response variable as a function of
the predictor (independent) variables", while recognizing "correlations within sample sub-
groups, providing a reasonable compromise between ignoring data groups entirely, thereby
losing valuable information, and fitting each group separately, which requires significantly
more data points" [28]. A general nonlinear mixed-effects model can be described by the
following equation:

yij = f(ϕij,vij) + ϵij, i = 1, ...,M, j = 1, ..., ni, (2.1)

where M is the number of individuals and ni is the number of observations on the ith

individual, f is a "general, real-valued, differentiable function of a individual-specific
parameter vector ϕij and a covariate vector vij, and ϵij is a normally distributed" within-
individual "error term" [27]. When equation 2.1 describes a mixed-effects model that is
nonlinear, then at least for one component of the individual-specific parameter vector ϕij

the function f must be nonlinear [27]. Such an individual-specific parameter vector ϕij is
modeled as follows:

ϕij = Aijβ +Bijbi, bi ∼ N (0,Ψ), (2.2)

where β is the vector of fixed effects and bi is the vector of the random effects for the
ith individual (with no dependence on j), which is associated to the variance-covariance
matrix Ψ [27]. Both the matrices Aij and Bij are individual-dependent and "possibly
dependent on the values of some covariates at the jth observation" [27].

To be taken into consideration is that in the hitherto described general nonlinear mixed-
effects model, the observations are assumed to be independent of other individuals, and the
intra-individual errors ϵij are assumed to be independently distributed as N (0, σ2), and
independent of the random effects vector bi [27]. However, the assumption of independence
and homoscedasticity for the intra-individual errors can be relaxed [27] if needed.
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2.2.2. Research and comparison of modeling techniques

This sub-section focuses on the methodology underlying research and comparison among
different possible modeling techniques to select the most suitable ones for realizing the
actual model implementation. The data analysis step served to understand which variables
could have been used to describe patient characteristics and get a first glance at the general
structure of the actual patient flow through the ED of Akademiska sjukhuset. Then, since
numerous different modeling approaches can be exploited to tackle healthcare applications,
and each of such modeling approaches and possible optimization techniques presents its
peculiar advantages and disadvantages, in a second step, an actual comparison between
relevant modeling techniques was performed, so to construct the theoretical basis on which
the choice of one or more modeling methods to be used for this thesis could be achieved.
This comparison between modeling techniques included methods from the categories of
analytical approaches, simulation modeling, and statistical or empirical modeling, all of
them presented according to their specific sub-categories. The corresponding results were
organized in tables which show the main advantages and disadvantages deriving from the
employment of each of them, and are reported in section 3.1.

2.2.3. Choice of potential modeling techniques within the se-

lected general modeling approach

The purpose of this section is to briefly introduce which modeling techniques were, at this
point of the model design, framed as potentially promising for being applied to this thesis
within the modeling approach of the nonlinear mixed-effects modeling.

Given the choice of NLMEM as a general modeling approach and the intention to exploit
the longitudinalization of the data, but also given the results of the preliminary data
analysis (see section 2.1.2), and the results of the comparison among modeling techniques
(see section 3.1), it was reasoned that the potentially suitable modeling techniques could
be Time-To-Event modeling (TTE), or a longitudinal model on day-wise time of arrival,
or longitudinal count data on hour-wise yearly time of arrival, or Markov Chains modeling.
Therefore, the former three techniques are addressed in section 2.4, whereas the latter is
described in section 2.5.

2.3. Parameters estimation

Since the chosen approach for data analysis and parameter estimation is to employ mixed-
effects modeling, which is not commonly applied to healthcare data and for which one main
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field of the application resides in pharmacometrics, it was decided to try to adapt to the
purpose of this thesis a software that is designed and optimized for pharmacometrics. The
software in question is Monolix, which is, according to its developers, "the most advanced
and simple solution for nonlinear mixed-effects modeling (NLME) for pharmacometrics"
[29]. It is based on the "Stochastic Approximation Expectation-Maximization" (SAEM)
algorithm, which is proven to provide reliable convergence for all types of data [29, 30].
Among the advantages of employing such software for this thesis, it is noteworthy that it
automatically generates interactive diagnostic plots, in which the population can be easily
split into subgroups or stratified by any included variable of interest [29].

In its native field of application, Monolix is mainly used by academic research institutes,
the pharmaceutical industry, and the pharmaceutical regulatory agencies, to perform
pre-clinical and clinical population pharmacokinetic and pharmacodynamic modeling, and
for systems pharmacology [29]. However, since the software can cover a wide range of data
types, models, and statistical features, it was reasoned that it could be compatible with
the patient flow data contained in the hospital datasets.

2.3.1. General setup before parameter estimation

Before parameter estimation, four steps must be completed.

The first step consists of importing the dataset and defining the variables intended to be
used in the model. At least one variable whose purpose is to function as an identifier, one
that serves as a time, and one that serves as observation, are mandatory for the application
of this thesis. For what concerns the observation, also its nature must be defined (e.g.,
continuous or categorical). Additionally, several other variables can be added and defined
(e.g., categorical covariate, occasion, event ID, ...). For what concerns this thesis, the only
variable types that were used are ID, time, observation, several categorical and continuous
covariates, and the label "IGNORE", which allows importing the whole dataset without
necessarily having to use all its variables for the computation.

The second step consists in defining a structural model. In this model, it is possible to
design which are the parameters to be estimated, which characteristics these must have,
whether these parameters must have some kind of inter-dependence between each other,
what is meant to be the designated output, what is the relationship between the parameters
to be estimated and the output, and which constraints define the simulation environment
(e.g., if a specific probability must be forced to 0). For what concerns this thesis, the
structural model was rewritten several times according to the modeling technique that
was put to the test.
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The third step consists in specifying the initial values for the parameters to be estimated.
The values that can be initialized are the fixed effects, the standard deviations of the
random effects, the dependency of the population parameters on the covariates, and the
residual error parameters. Still, the choice of each initial parameter can be constrained by
the statistical model, set up in the fourth step, that is selected for that specific parameter.
Only the former three kinds of values are relevant for what concerns this thesis. If this
step is skipped, Monolix applies an initial default value equal to 1 for the fixed effects
and the standard deviations of the random effects, equal to 0 for the dependency of the
population parameters on the covariates. Moreover, in this step, it is possible to choose
for each parameter to be estimated whether to estimate it with the "fixed" method, to use
the "Maximum Likelihood Estimation", or to use the "Maximum A Posteriori" estimation.
These three methods are discussed more in detail in sub-section 2.3.2.

The fourth step includes setting up the statistical model and the tasks to be performed.
These consist in specifying which parameters to be estimated are meant to be described by
a distribution, selecting which distributions to use, defining potential correlations between
different sources of random effect, defining for which parameters to include a dependency
on which covariates, defining which tasks to perform and defining the settings for each of
them. Changes in the statistical model can change the settings regarding the third step,
i.e., the choice of some of the initial values for parameter estimation. This happens, for
instance, when a new dependence on a covariate is added to the statistical model, which
leads to the creation of a new parameter to be initialized, i.e., the dependency of the
population parameter(s) on that covariate.

Distributions and automatic initialization of the parameters

For each parameter meant to be described by a distribution, it is required to select the
option "RANDOM EFFECTS" in the Monolix tab used for the above-described "fourth
step" of general setup. Such a "random effect" is the random variable used to describe the
inter-individual variability of each parameter for which the option is enabled [31]. The most
commonly used types of distribution to describe the parameters in nonlinear mixed-effects
modeling are normal, log-normal, logit-normal, and probit-normal distribution. Assuming
the existence of a Gaussian transformation of the parameters to be estimated, i.e., a
monotonic function h such that h(ψ) is normally distributed, then there exists a standard
deviation ω such that for each individual i [31]:

h(ψi) ∼ N (h(ψ̄i), ω
2), (2.3)
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where ψ̄i is the predicted value of ψi [31]. If no covariate is included in the estimation,
then the predicted value of ψi is ψ̄i = ψpop and, therefore, equation 2.3 can be rewritten
as follows [31]:

h(ψi) ∼ N (h(ψpop), ω
2).

Accordingly, the transformation h defines the distribution of ψi [31].

Normal distribution in (−∞,+∞) if h(ψi) = ψi:

ψi ∼ N (ψ̄i, ω
2) ⇐⇒ ψi = ψ̄i + ηi, where ηi ∼ N (0, ω2). (2.4)

Log-normal distribution in (0,+∞) if h(ψi) = log(ψi). A log-normally random
variable can only take positive values and it can be represented as follows [31]:

log(ψi) ∼ N (log(ψ̄i), ω
2) ⇐⇒ log(ψi) = log(ψ̄i) + ηi ⇐⇒

ψi = ψ̄ie
ηi , where ηi ∼ N (0, ω2) and ψ̄i is the median. (2.5)

Logit-normal distribution in (0,1) if h(ψi) = log( ψi

1−ψi
). A logit-normally random

variable can only take positive values in the interval (0,1) and it can be represented as
follows [31]:

logit(ψi) = log(
ψi

1− ψi
) ∼ N (logit(ψ̄i), ω2) ⇐⇒ logit(ψi) = logit(ψ̄i) + ηi,

where ηi ∼ N (0, ω2). (2.6)

Probit-normal distribution in (0, 1), which is the "inverse cumulative quantile function
Φ−1 associated with the standard normal distribution N (0, 1)", and can be represented as
follows [31]:

probit(ψi) = Φ−1(ψi) ∼ N (Φ−1(ψ̄i), ω
2). (2.7)

In this thesis, a feature for a first setup of the initial parameters, the so-called "auto-init",
was employed after having chosen which kinds of distributions to use to describe each of
the parameters. Thanks to this feature, some preliminary initial values were automatically
produced for all the parameters, not to find the perfect values but rather to have all the
parameters in a starting range that is good enough for performing the first estimation.
This initialization was computed without inter-individual variability and depended on a
random seed ("123456" was employed), using the data from the 12 first individuals and
all the observations mapped to a model output [32].
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After the population parameters were estimated at least once, it became possible to use
the last estimates as initial values for a new estimation [33]. This could be applied to all
the last estimates or only to the fixed effects [33].

Introduction of covariate effects

The modeling approach allowed for the inclusion of covariates on one, several, or all
fixed-effect parameters. Each time a covariate was added, a β term was added to the
individual model in a way that differed according to whether such covariate was continuous
or discrete. In the first case, the covariate was "added linearly to the transformed parameter,
with a coefficient β" [33]. In the second case, the initial value for the reference category
was set to the value of the fixed effects. In contrast, for all other categories, it was set
to the initial value for the fixed effect plus the initial value of the β, in the transformed
parameter space [33].

In this thesis, log-normal distributions were selected for all the estimated parameters for
the reasons reported in section 2.5. Therefore, the example provided here shows how
continuous and discrete covariates were introduced to estimate a parameter to be described
by a log-normal distribution. Let a parameter named q34 be defined as a transition rate
between two model states and let it be decided to describe it with a log-normal distribution,
then the basic formula to model such a parameter without including covariates will be the
following:

log(q34) = log(q34_pop) + η_q34, (2.8)

where q34_pop represents the value of the so-called "fixed effects", and η_q34 represents
the random effects. If a continuous covariate is added, e.g., age, the consequently added β
term will introduce an exponential relationship between the covariate and the parameter
q34. Therefore, the formula shown in equation 2.8 will be rewritten as follows:

log(q34) = log(q34_pop) + β_q34_age× age+ η_q34. (2.9)

Conversely, in case a categorical covariate is added, e.g., sex, the consequently added β
term will represent the difference between the typical population value for the reference
group, i.e., "man", and the value for the other group, i.e., "female", on the log-transform
space [34]. Therefore, the formula shown in equation 2.8 will be instead rewritten as
follows:

log(q34) = log(q34_pop) + β_q34_sex_Man× [sex =Man] + η_q34. (2.10)
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Accordingly, if both the continuous covariate age and the categorical covariate sex are
added, the formula will take into consideration both the contributions and will be the
following:

log(q34) = log(q34_pop) + β_q34_age× age

+β_q34_sex_Man× [sex =Man] + η_q34.
(2.11)

2.3.2. Probability distributions and parameter estimation

The first task performed on dataset D3 was the estimation of the population param-
eters, which was carried out using the SAEM algorithm, i.e., "Stochastic Approxima-
tion Expectation-Maximization". The latter was chosen due to its rigorously proven
convergence[30] and its capability to work efficiently with categorical data models, count
data models, and time-to-event (TTE) models [30], thus potentially offering a suitable
framework for this thesis.

SAEM comprises two phases: an exploratory phase over a vast parameter space, where the
goal is to move towards a neighborhood of the maximum likelihood, and a smoothing phase,
aiming to converge with greater precision towards the maximum likelihood. The algorithm
does not compute the likelihood explicitly; therefore, it does not know beforehand where
local maxima of the likelihood are located in the parameter space to be explored. This
implies that the SAEM algorithm "converges under quite general hypotheses to a maximum
[...] of the likelihood", [35] and the probability of converging to the global maximum after
a small number of iterations is high, but this probability is not equal to 1 [35].

Nevertheless, it is possible to take procedural precautions to help the algorithm escape
from local maxima when it falls into them [30]. Indeed, the probability of the algorithm
ending up being stuck on a local maximum can be drastically reduced, and, contextually,
the speed at which the algorithm reaches convergence can be drastically increased by using
proper parameter initial estimates [33]. By default, the software sets the initial values for
the fixed effects and the initial standard deviations of the random effects to 1. The initial
values for the dependency of the population parameters on the covariates are instead set
to 0 by default.

Three possible methods can be selected for the estimation of the parameters [33]. One
option is the so-called "Fixed" method, which implies that the parameter is not estimated
and is kept to its initial value [33]. Another option consists of the "Maximum Likelihood
Estimation" method (default option), which implies that the parameter is estimated using
the maximum likelihood criterion and employing only the information available from the
data [33]. The last possible option is the "Maximum A Posteriori estimation" (MAP)
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method, which requires the user to define a typical value and a standard deviation for
the parameter to be estimated [33], so to perform Bayesian estimation of the parameter,
i.e., produce an estimate that "maximizes a penalized version of the maximum likelihood"
based on the given prior distribution [36]. It is possible to combine Maximum A Posteriori
estimation for specific population parameters with Maximum Likelihood Estimation for
other population parameters [36].

Since no certain prior information about the population was provided, and since the
primary goal of this thesis, which is stated in detail in section , is to design and implement
an empirical model, it was decided not to employ the Bayesian estimation technique
for any of the population parameters. Conversely, the so-called "Fixed" method and
the "Maximum Likelihood Estimation" method were used. The Maximum Likelihood
Estimation (MLE) method maximizes the likelihood:

Ly(θ) = p(y; θ) =

∫
p(y, ψ; θ)dψ, (2.12)

that is the joint distribution of the observed data y and the population parameters θ,
in which ψ represents the individual parameters [36]. The likelihood in equation 2.12 is
maximized by finding the set of parameters:

θ̂MLE = argmax
θ

LLy(θ). (2.13)

To further reduce the risk of the algorithm being stuck on a local maximum, a feature that
in Monolix is called "simulated annealing" was enabled and employed throughout this
thesis. Given that the size of the parameter space that is explored during the "exploratory
phase" of SAEM "depends on the standard deviations of the random effects (ω) and on
the standard deviations of the residual error", by enabling the simulated annealing it was
possible to keep the explored parameter space larger for a longer time by constraining
"the variance of random effects and of the residual error to decrease by maximum 5%
between two iterations" [30]. This helped escape local maxima and improve the convergence
towards the global maximum because when the standard deviations of the population
parameters (ω) and thus also the standard deviations of the conditional distributions were
large (through equation 2.15), it remained still possible for the individual parameters
sampled at the kth iteration to be far away from the ones sampled at the (k − 1)st iteration,
which gave the algorithm better margin to escape local maxima [30].

The ideal way of "following" convergence while estimating the parameters through the
SAEM algorithm would be to compute the likelihood explicitly, which is computationally
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not an easy task due to the need to integrate all the possible values of the individual
parameters [30]. Therefore, a convergence indicator was used to assess convergence during
the parameter estimation rather than explicitly computing the likelihood in the same
task. Such a convergence indicator, calculated at each SAEM step, is defined as the "joint
probability distribution of the data and the individual parameters and can be decomposed
using Bayes" law into two terms that have an analytical expression and are easy to
calculate [30]:

p(y, ψ(k); θk) = p(y|ψ(k); θk)p(ψ(k); θk), (2.14)

where the individual parameters ψ(k) are the same ones sampled from the conditional
distribution

p(ψi|yi, θk) (2.15)

at the kth SAEM iteration and used by the algorithm to compute new population parameters
at the same kth iteration [30], as is explained hereunder in a more detailed description of
the two phases of the algorithm. It is noteworthy that a typical convergence indicator curve
progressively decreases with the increase of the iteration number until it stabilizes [30],
i.e., until it starts having small oscillations around the same value without ever drifting
away from it.

• The exploratory phase consists of two steps. In the first step, the individual
parameters ψi are generated for each individual i in the dataset from the conditional
distribution expressed by the equation 2.15, in which yi consists of the observations
for the individual i and θk is the set of population parameters at the kth iteration of
the SAEM algorithm. For the first iteration, θk corresponds to the pre-set initial
conditions [30]. The conditional distribution in question has no analytical expression;
therefore, Monolix employs a Markov Chain Monte Carlo procedure to generate one
value per individual i.

In the second step, new population parameters are calculated for the iteration step
(k + 1)st by averaging over the sampled individual parameters [30]. Equation 2.16
shows how this is computed for the values of the fixed effects.

θk+1 =
1

N

N∑
i=1

ψi (2.16)

After the execution of the two steps that were introduced above, a new iteration can
start. Therefore, new individual parameters can be generated according to equation
2.15, where the set of population parameters θk at the kth iteration consists now in
the parameter set computed in the previous iteration [30]. A new set of population
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parameters can thus be generated according to equation 2.16, and this process can
continue until either the auto-stop criterion is met or the pre-set maximum number
of iterations is reached [30]. The net purpose of the exploratory phase is to "converge
to a neighborhood of the maximum likelihood" [30]. However, the user may not have
pre-set any auto-stop criterion, or such criterion might not get triggered within the
pre-set maximum number of iterations. In these two cases, after the convergence to a
neighborhood of the maximum likelihood is achieved, the algorithm keeps performing
a "random walk" in such a region of the likelihood up to the maximum number of
iterations. At this point, the algorithm automatically shifts to its next phase, i.e.,
the smoothing phase.

• The smoothing phase consists of two steps and is meant to make the algorithm
converge with greater precision towards the maximum likelihood. In the first step, as
in the exploratory phase, individual parameters ψi are generated from the conditional
distribution shown in equation 2.15 using a Markov Chain Monte Carlo procedure
[30]. However, in this case, θk for the first iteration corresponds to the last parameter
set produced in the exploratory phase [30].

In the second step, new population parameters θk+1 are computed from the individual
parameters ψi coming from all the previously computed smoothing iterations [30]:

θk+1 =
1

k

[
1

N

N∑
i=1

ψ
(1)
i +

1

N

N∑
i=1

ψ
(2)
i + ...+

1

N

N∑
i=1

ψ
(k)
i

]
. (2.17)

For computational reasons, since applying equation 2.17 would be extremely demand-
ing due to its requirement of memorizing all the previous individual parameters, and
since its first part at the (k + 1)st step corresponds to what would be computed at
the kth iteration, the equation can be rewritten as follows [30]:

θk+1 =
1

k

[
(k − 1)θk +

1

N

N∑
i=1

ψ
(k)
i

]
. (2.18)

Moreover, when the second step of the smoothing phase is applied to its first iteration,
however, only one set of individual parameters ψi is available. Therefore, for the
iteration in question, the second step of the smoothing phase behaves in the same
way as the second step of the exploratory phase, shown in equation 2.16.

After having performed the first task on the data for estimating the population parameters
using the SAEM algorithm, four more tasks were performed in this thesis before plotting
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the results. These tasks are addressed in detail in sub-sections 2.3.3, 2.3.4, 2.3.5, and 2.3.6.

However, before proceeding any further with explaining the other performed tasks, it is
important to provide more details about the functioning of the so-called "Markov Chain
Monte Carlo" procedure that the SAEM algorithm employs both during its exploratory
and during its smoothing phase. Therefore, this explanation is provided hereunder.

Markov Chain Monte Carlo procedure

In both the phases of the SAEM estimation, at each iteration, it is necessary to generate
individual parameters from the conditional distribution defined by equation 2.15 for each
individual i of the population. Such conditional distribution for an individual i "represents
the uncertainty of the individual parameter value", taking into consideration the observed
data for that individual, the covariate values for that individual, and the already estimated
population parameters in terms of both fixed effects and standard deviation of the random
effects [37]. As stated when describing the phases of the SAEM algorithm, however, the
conditional distribution has no analytical expression. Thus, it is impossible to directly
calculate the probability for a given set of individual parameters ψi for individual i, "but
it is possible to obtain samples from the distribution using a Markov Chain Monte Carlo
(MCMC) procedure" [37].

MCMC algorithms "consist of constructing a stochastic procedure which, in its stationary
state, yields draws from the probability distribution of interest", thus allowing to sample
from probability distributions for which it is usually difficult to perform direct sampling
[37]. Among the several algorithms within the class of MCMC methods, Monolix uses
the so-called Metropolis-Hastings (MH) algorithm, which was used in this thesis also
to compute the conditional distributions. Therefore, the functioning of the employed
MCMC algorithm is properly described directly in the following sub-section (2.3.3), which
is specifically dedicated to explaining the computation of the conditional distributions.

2.3.3. Conditional distribution

As briefly mentioned in the previous sub-section, the second task performed on the processed
dataset is the estimation of the individual conditional distributions for the individual
parameters and includes the sampling of sets of parameter values from these distributions
for each individual [37]. This task cannot be performed before the SAEM population
parameters estimation is completed since, thanks to it, the population distribution for
each parameter is made available[37].
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However, in addition to the information provided by the population parameters, it is
also important to look at single individuals in the dataset separately and estimate their
individual parameter values, which is the primary goal of this second task and is described
by a conditional distribution that is different for each parameter [37]. Such distribution,
which is shown in equation 2.19, is called "conditional" because it is conditional on the
already estimated population parameters, but it also considers the observed data yi for a
specific individual i and the fact that the individual belongs to the population distribution
[37]. If covariates are included in modeling a specific parameter, these will also appear for
all individuals in their conditional distributions related to such parameter [37].

p(ψi|yi; θ̂) (2.19)

Whereas in the "Empirical Bayes Estimates" (EBEs) task, which is described in sub-section
2.3.4, only the most probable value of each parameter for each individual is calculated,
i.e., the maximum of each conditional distribution (also called conditional mode), the
"conditional distribution" task instead estimates the whole conditional distribution for
each individual and each parameter [37]. This is done to obtain detailed information
about the uncertainty of the individual parameter values [37]. Anyways, as discussed
in sub-section 2.3.2, conditional distributions cannot be computed in close form. Thus,
it is impossible to calculate the probability for given parameters directly. Nevertheless,
obtaining samples from the distributions is possible using a Markov Chain Monte Carlo
procedure. The MCMC algorithm that was used in this thesis is the so-called Metropolis-
Hastings algorithm, which allows iteratively simulating a sequence of individual parameters
by rewriting the conditional distribution from equation 2.19 as follows [37]:

p(ψi|yi) =
p(yi|ψi)p(ψi)

p(yi)
, (2.20)

where p(yi|ψi) is the conditional density function of the data when the individual parameter
values are known, and p(ψi) is the density function of the individual parameters [37]. Both
p(yi|ψi) and p(ψi) can be computed, whereas the likelihood "p(yi) has no closed form
solution but it is constant" when the goal is to optimize the formula with respect to the
individual parameters ψi, since p(yi) does not depend on ψi [37, 38].

Accordingly, thanks to the Metropolis-Hastings MCMC algorithm, at each lth iteration and
for all the individuals, a new vector of random effect values η(l)i is drawn from a proposal
distribution and new individual parameters ψ(l)

i are calculated from such random effect
values [37]. These new individual parameters can be either accepted or rejected according
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to the value of their corresponding "acceptance probability" α, calculated as follows[37]:

α =
p(ψ

(l)
i ) p(yi|ψ(l)

i )

p(ψ
(l−1)
i ) p(yi|ψ(l−1)

i )
, (2.21)

which depends on the probability of the parameters in the population distribution p(ψi),
and on the likelihood of the individual data yi given these parameters, at the current (lth)
and at the previous (l − 1)st iteration. If α results to be greater than 1, i.e., if the combined
probability at the lth iteration is greater than the combined probability at the (l − 1)st

iteration, the new draw of individual parameters is accepted and kept. Conversely, if α
results to be smaller than 1, the new draw is kept only with probability α [37]. This so-far
described acceptance probability guarantees that the sequence of parameters converges to
the individual conditional distributions.

To draw new vectors of random effect values to be evaluated with the above-described
criterion, three types of proposal distributions (kernels) were used sequentially with a
(2,2,2) turnover pattern to make the Markov Chain more robust [37]. The first proposal
distribution to be used is the population distribution for the random effects [37]:

η
(l)
i ∼ N (0,Ω), (2.22)

where Ω is the estimated variance-covariance matrix for the random effects. The second
proposal distribution to be used is an unidimensional Gaussian random walk, in which
"each random effect drawn at the previous iteration is perturbed with a random variable
drawn from a normal distriburion" [37]:

η
(l)
i = η

(l−1)
i + ξ(l), with ξ(l) ∼ N (0, θ). (2.23)

The third proposal distribution to be used is a multidimensional Gaussian random walk,
in which each random effect drawn at the previous iteration is perturbed with a gaussian
vector [37]. For both the proposal distributions based on Gaussian random walks, the
variance of the Gaussian random variables was automatically adjusted by Monolix at each
iteration to reach an optimal acceptance ratio [37].

By extracting new vectors of random effect values with the aforementioned (2-2-2) pattern,
at each iteration six parameters are drawn iteratively from the three proposal distributions
[37]. At the first iteration, the equation for the acceptance probability (2.21) is rewritten
as:

α =
p(ψ

(1)
i ) p(yi|ψ(1)

i )

p(ψSAEM
i ) p(yi|ψSAEM

i )
. (2.24)
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This means that, for the first iteration, the employed reference value is the value of the
parameter estimated by the SAEM algorithm during the first task (sub-section 2.3.2). A
candidate value is thus drawn from distribution 2.22 and accepted or rejected according
to the acceptance probability α (equation 2.24), then another candidate is drawn from
distribution 2.22, and equation 2.21 is used to evaluate it against the previous candidate,
using the previous candidate as a reference if this was accepted before testing the new
candidate [37]. At this point, a candidate value is drawn from distribution 2.23 and
accepted or rejected according to the acceptance probability α (equation 2.21) [37]. The
same is applied to the second draw from distribution 2.23 and to both the draws from the
last type of proposal distribution. At the end of the sequence, only the last accepted value
out of the six is kept for the current iteration [37].

In the second iteration, the value used as a reference is the one accepted at the first
iteration, and so on. Eventually, the accepted values will "cover the whole distribution
since the acceptance rate allows enough flexibility to accept some values that may be far
from the peak" [37]. Therefore, after a transition period, the accepted values will follow the
conditional distribution, and together they will represent an estimation of the distribution
itself [37].

When, for all the parameters, the average conditional means and standard deviations of the
last 50 iterations do not deviate by more than 2.5% in each direction from the average and
standard deviation values at the kth iteration, the algorithm stops automatically [37] and
calculates the conditional mean (equation 2.25) and standard deviation for each parameter
for each individual, by averaging over the values drawn at all the iterations [37].

ψ̂mean
i =

1

K

K∑
k=1

ψki (2.25)

In this way, all the individual conditional distributions can be summarised even though they
have no explicit formula. Conditional mean and standard deviation for each individual, as
well as an average of the conditional mean over the whole population (E(ψ|y), equation
2.26), and the standard deviation of the conditional means over the entire population
(sd(ψ|y)), are all included in the output of this second task [37].

E(ψ|y) = 1

N

N∑
i=1

ψmean
i (2.26)

Furthermore, among all the samples from the conditional distributions drawn by the
algorithm, 10 of them are saved for being used to improve the performance of the diagnostic
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plots by including the uncertainty of the individual parameters and for being used to
perform statistical tests to diagnose the model [39]. Finally, a table containing a summary
of the estimated conditional mean is also generated, including minima, first quartiles,
medians, third quartiles, and maxima.

2.3.4. Empirical Bayes Estimates (EBEs)

The third task that was performed was the estimation of "the most probable value of the
individual parameters, given the estimated population parameters and the data of each
individual", i.e., the estimation of "the mode of the conditional parameter distribution for
each individual" (equation 2.27) [38].

ψ̂mode
i = argmax

ψi

p(ψi|yi; θ̂) (2.27)

Starting from the conditional distribution shown in equation 2.19, where ψi are the
individual parameters for individual i, θ̂ are the estimated population parameters, and yi
are the observations for individual i, the mode of the conditional parameter distribution
for each individual can be computed according to equation 2.27 [38]. However, since it is
not possible to calculate the probability for a given ψi directly, it is necessary to employ a
Markov Chain Monte Carlo procedure to obtain samples from the conditional distribution
[38], which allows rewriting the conditional distribution as in equation 2.20, as described
in the last part of sub-section 2.3.2, and in sub-section 2.3.3. Accordingly, equation 2.27
can be rewritten as [38]:

ψ̂mode
i = argmax

ψi

[p(yi|ψi) p(ψi)], (2.28)

where the first term represents the probability of the data for individual i given the
individual parameters ψi, and the second term represents the probability of the individual
parameters ψi. However, since ψ "is a multidimensional vector impacting the model
prediction, and this prediction may be the solution of an ODE system, for instance", the
computation of p(ψi) is complicated and demanding [38]. Therefore, since it does not use
derivatives, the so-called Nelder-Mead Simplex algorithm [40] was employed to find for
each individual i the ψi that maximizes the conditional distribution, i.e., the conditional
mode [38]. Once this task was done, its results could be used as individual parameters
for individual predictions, e.g., for the plots of the individual fits [39]. Moreover, each
individual’s minimum, first quartile, median, third quartile, and maximum were also
outputted, as well as the predictions based on the conditional modes [39].
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By running this task after having run the "conditional distribution" task (sub-section
2.3.3), it was possible to use the mean of the conditional distribution for each individual
as a starting point for the Nelder-Mead Simplex algorithm instead of having to use an
approximate mean calculated from the last iterations of SAEM algorithm (sub-section
2.3.2).

2.3.5. Standard errors

The fourth task that was performed could be carried out either by using the linearization
method or by using the stochastic approximation [41]. This task returns the correlation
matrix of the estimates and the uncertainty and relative uncertainty of the estimated
population parameters, which are calculated by estimating the so-called Fisher Information
Matrix (FIM) [41]. Furthermore, this task also computes a Wald test for each beta
parameter used for the covariate effect to check if the covariate effect is relevant, which
helps detect over-parameterization of the model [41].

For what concerns the evaluation of the uncertainty of the population parameters, the
Fisher Information Matrix I(θ̂) was computed as:

I(θ̂) = − ∂2

∂θ2
log(Ly(θ̂)), (2.29)

i.e., as minus the second derivatives of the observed likelihood [41]. The log-likelihood,
however, cannot be calculated in closed form and thus applied to the Fisher Information
Matrix [41]. Therefore, it was calculated by stochastic approximation [41]. After the
calculation of the Fisher Information Matrix is achieved, it is possible to calculate the
so-called variance-covariance matrix C(θ̂) as the inverse of the FIM I(θ̂) [41], as shown in
equation 2.30:

C(θ̂) = I(θ̂)−1. (2.30)

Thereafter, it is possible to calculate the standard errors for each parameter θ̂k as shown
in equation 2.31:

s.e(θ̂k) =

√
C̃kk(θ̂), (2.31)

i.e., "as the square root of the diagonal elements of the inverse of the Fisher Information
Matrix" [41]. In Monolix, however, the FIM and the variance-covariance matrix are
calculated on the transformed normally distributed parameters and, therefore, the jacobian
J had to be used to obtain the variance-covariance matrix C̃ for the untransformed
parameters, as in equation 2.32.

C̃ = JTCJ (2.32)
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Concerning the correlation matrix, instead, this is calculated from the off-diagonal element
of the variance-covariance matrix as in equation 2.33.

corr(θi, θj) =
C̃ij

s.e(θi) s.e(θj)
(2.33)

It contains the correlation between each pair of population parameters independently of
the correlation of the random effects, and it is essential because it can be used to detect
over-parameterization of the model. As a rule of thumb for being confident in the model
not being over-parameterized, the software automatically suggests making sure that the
so-called "condition number", which is the ratio between the maximum and the minimum
eigenvalue of the correlation matrix, results being smaller than 100.

Furthermore, the relative standard errors calculated by this task can be used to perform a
Wald test to suggest if any of the added covariates should be removed from the model [41].
It tests the null hypothesis for which the β parameter estimated by the SAEM algorithm
is equal to 0, and its test statistic is the following:

W =
β̂

se(β̂)
, (2.34)

where β̂ is the beta value estimated by SAEM, and se(β̂) is the associated standard error
calculated during the task described in this sub-section, i.e., "standard errors" [42]. The
test statistic described by equation 2.34 is compared to a t-distribution with one degree
of freedom, and the higher the p-value, the more likely the tested covariate should be
removed from the model [42].

2.3.6. Likelihood

The fifth task that was performed is the estimation of the hereunder defined log-likelihood:

LLy(θ̂) = log(Ly(θ̂)) ≜ log(p(y; θ̂)), (2.35)

where θ̂ contains the population parameter estimates for the model in use, and p(y; θ̂)

represents the probability distribution function of the observed data y given the estimates
of the population parameters θ̂ [43]. Although it cannot be computed explicitly for
nonlinear mixed-effects models, it is possible to estimate it using the "importance sampling
Monte Carlo method", which provides an unbiased estimation of the log-likelihood with
controllable variance, even for nonlinear models [43].
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Once the estimation of the log-likelihood was completed, two likelihood indicators were
computed: -2LLy(θ̂), and the "corrected Bayesian Information Criterion" (BICc). Starting
from the value of the former, the latter was computed as:

BICc = −2LLy(θ̂) + dim(θR) log(N) + dim(θF) log ntot, (2.36)

where N is the number of subjects. BICc penalizes not only with the logarithm of the
number of subjects log(N), but also with the size of θR, and with the size of θF, which
depend on the number of included covariates and are scaled with the logarithm of the total
number of observations (ntot). θR "represents the random effects and fixed covariate effects
involved in a random model for individual parameters", and θF "represents all other fixed
effects,[...] beta parameters involved in a non-random model for individual parameters, as
well as error parameters" [43].

Due to its penalization dependent on the number of included covariates, it was reasoned that
the corrected Bayesian Information Criterion would have been a more reliable indicator
to consider while selecting which covariate variables to include in the model. Such a
covariates selection process is described more in detail in section 2.6.

2.4. Time-To-Event modeling and Longitudinal data

modeling

This section addresses the first three of the four modeling ideas that were formerly
considered potentially promising for being applied to this thesis within the modeling
approach of the nonlinear mixed-effects modeling (sub-section 2.2.3). Conversely, the last
one is addressed in section 2.5. The first of the three techniques, discussed hereunder in
sub-section 2.4.1, is the so-called "Time-To-Event" modeling. The other two techniques
treated in this section are a longitudinal model on day-wise arrival time and a longitudinal
count data on hour-wise yearly time of arrival. These two are discussed afterward, in
sub-sections 2.4.2 and 2.4.3.

2.4.1. Time-To-Event modeling of patients’ discharge

The idea behind this Time-To-Event (TTE) approach is to use the "contact_id" (see
appendix A.1) as the identifier, the variable hours_in (see appendix A.1) as the time
variable, and as observation the status of the patients in terms of whether they are inside
the ED or they have been already discharged in one of the possible ways described by
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table 2.3. For describing the observations, a variable was introduced specifically for this
technique with the name "State". It takes a value equal to 0 for patients who are still in
the ED and 1 for the patients who have already been discharged.

For a TTE approach, the functions that play key roles in the analysis are the "survival
function", the "hazard function", and the "cumulative survival function" [44]. In this
framework, the hazard function h(t, ψi) gives the instantaneous rate of the event at time t,
i.e., "the patient is discharged", for the ith patient, if this has not occurred yet [44]. This
function is reported in equation 2.37:

h(t, ψi) = lim
dt→0

S(t, ψi)− S(t+ dt, ψi)

S(t, ψi)dt
. (2.37)

The cumulative hazard functionH(tstart+hours_ini, t;ψi) in the interval [tstart+hours_ini, t]
is defined for the ith patient as in equation 2.38 [44]:

H(tstart + hours_ini, t;ψi) =
∫ t

tstart+hours_ini

h(t, ψi) dt. (2.38)

The survival function S(t, ψi) gives the probability that the discharge of the patient
happens to the ith patient after time t > tstart + hours_ini, as is shown in equation 2.39
[44].

S(t, ψi) = P(Ti > t;ψi) = e−H(tstart+hours_ini,t;ψi) (2.39)

Some elaborations were needed to convert the dataset that constitutes the outcome of
the pre-processing described in section 2.1.3 into a dataset that could be suitable for
performing TTE modeling in Monolix, a sample of which is shown in figure 2.6. These
elaborations were performed in Python.

However, after such a reshaping of the dataset, as soon as the process of formulating
a structural model had begun, it was reasoned that this technique, even if practically
implementable, would have yielded results that would not have been appropriately centered
on the actual purpose of this thesis. Thus the study of this approach was discontinued.
The reasons behind this discontinuation are discussed more in detail in section 4.4.
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Figure 2.6: Two samples from the dataset for TTE modeling.

2.4.2. Longitudinal model on day-wise time of arrival

The idea behind this modeling proposal is to use the chief complaint (see "cause_of_visit"
in appendix A.1) as the identifier instead of using the contact_id, to use a day-wise hour
of arrival as the time slot to which the observation of each patient is associated, and
to employ LoS_hr as observation for each patient (see appendix A.1). Concerning the
aforementioned day-wise hour of arrival, this variable was introduced specifically for this
technique with the name "ARRIVAL_TIME", and it represents the time of the day,
rounded to the nearest quarter of an hour, at which a given patient reached the emergency
department, regardless of which day of the year it happened.

The generation of the patients would have been performed by estimating the parameters of
a Poissonian distribution, and the length of stay would have been described as a function
of the chief complaint and other potential covariates.

Starting from the dataset that constitutes the outcome of the pre-processing described in
section 2.1.3, some elaborations of the dataset were necessary for it to be used to test the
technique in question. These elaborations were performed through Python programming,
and a sample of the processed dataset obtained in this way is shown in figure 2.7. The
latter, from which it is possible to appreciate how the entries are automatically grouped
by identifier, i.e., the chief complaints in this case, does not show the possibly usable
covariates.
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Figure 2.7: Sample of one chief complaint from the dataset for "Longitudinal model on
day-wise time of arrival".

However, right after having reshaped the dataset so to visualize it in Monolix in a meaningful
way, it became clear that this approach would not have had any real meaningfulness for
the aims of this study. Consequently, for the reasons discussed in section 4.4, also the
study of this approach was discontinued, and no actual result was produced.

2.4.3. Longitudinal count data on hour-wise yearly time of arrival

The idea behind this kind of longitudinal count data is to use the so-called "contact_id"
(see appendix A.1) as the identifier, the number of patients present in the emergency
department at a given time as observations, and the variables "hours_in" and "hours_out"
(see appendix A.1) as times at which the observations of each patient are evaluated.
Accordingly, the variables that are used as observations are "countIN " and "countOUT"
(see appendix A.1).

In this framework, when the ith patient reaches the emergency department, "countIN − 1"
patients are already there at the time of arrival. Then, after a time equal to "LoS_hours",
the same ith patient leaves the ED, when now the number of patients in the ED is equal
to "countOUT − 1".
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Figure 2.8: "Longitudinal count data on hour-wise yearly time of arrival".

Figure 2.9: Two samples from the dataset for "Longitudinal count data on hour-wise
yearly time of arrival".

The mock conceptual plot presented in figure 2.8, in which the three horizontal lines
represent three examples of patient length of stay, graphically shows the idea of creating a
model by describing the number of patients in the ED as a function of the arrival time, of
the length of stay, and of other potential covariates.

Starting from the dataset that constitutes the outcome of the pre-processing described in
section 2.1.3, several elaborations of the dataset were necessary for it to be used to test
the technique in question. These elaborations were performed in Python. Figure 2.9 shows
a sample of two patients from the so-processed dataset, hiding all the covariate variables,
in the way Monolix groups the contact_id for this implementation.
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By when it became possible to visualize the dataset in Monolix in a meaningful way and
start designing the structural model, however, it became clear that this approach would
not have had any real meaningfulness for this thesis for the reasons that are discussed in
section 4.4. Therefore, the study of this approach was discontinued, and no actual result
was produced.

2.5. Design of the Markov Chains technique

It was chosen to describe the logistic process as a Markov Chain with "memory 1". In such
a framework, the observed data can take values only in a finite and fixed set of nominal
categories {c1, c2, ..., ck} and the observations (yij, 1 ≤ j ≤ ni) for any ith individual consist
in a sequence of random variables [45]. The dependence between observations from the
same individual is defined so that, for all k = 1, 2, ..., K, to determine the distribution of
yij no older value than the one of the immediately preceding observation (yi,j−1) is needed
[45]. Accordingly, the probability of the jth observation for the ith individual to be equal
to the nominal category ck can be simplified as in equation 2.40 [45].

P(yij = ck|yi,j−1, yi,j−2, ..., ψi) = P(yij = ck|yi,j−1, ψi) (2.40)

In this thesis, it was decided to use the "contact_id" (see appendix A.1) as identifier in
Monolix, to use as observation the number of the nominal category of the chain, i.e., the
state to which the patient belongs at a given time, and to use as time variable the time at
which each of the patients starts being in a given associated state. Therefore, the times at
which each observation is reported are different for each patient. Consequently, it could
not have been possible to use a Discrete-Time Markov Chains (DTMC) approach, which
regards the observation times being regularly spaced. Conversely, a Continuous-Time
Markov Chains (CTMC) approach was selected since the latter allows to have irregular
time intervals between observations. In the CTMC, instead of reasoning in terms of
transitioning to a new state or the same one at each time step, as it is done in the discrete
case, the system instead "remains in the current state for some random amount of time
before transitioning" [45]. Therefore, to describe this Markov process, it is necessary to
define the so-called "Initial state probability" vector and a matrix of transition rates [45].
The initial state probability vector contains the values bk, which are the probability for
the first state in the sequence to be set at the category ck and are described by equation
2.41 [46].

bk = P(yi,1 = k|ψi) (2.41)
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For what concerns the transition rates, instead, for k ̸= l [45]:

P(yi(t+ h) = l|yi(t) = k, ψi) = hρkl(t, ψi) + o(h), (2.42)

and the probability that no transition happens between time t and time t+ h is [45]:

P(yi(s)) = k, ∀s ∈ (t, t+ h)|yi(t) = k, ψi) = ehρkk(t,ψi), (2.43)

given that in a Markov process with K nominal categories, for any ith individual and at
any time t, the transition rates ρkl(t, ψi) satisfy for any 1 ≤ k ≤ K the property described
by equation 2.44.

K∑
k=1

ρkl(t, ψi) = 0 (2.44)

Choices for implementing the Markov Chains modeling

One of the advantages of using a Markov Chains approach for modeling patient flow in the
emergency department is that it allows to easily change the structure of the model in terms
of which and how many states to include and in terms of which and how many transitions
between states to allow. The first approach that was attempted consisted in defining
seven possible states, one of which was common for each patient and represented "being
in the ED", whereas the other six steps represented the six possible modalities in which a
patient could leave the emergency department (shown in table 2.3). It was reasoned that,
despite this being a simple approach, it would have represented a good starting point for
modeling the system. Therefore, the pre-processed dataset was re-arranged accordingly,
and a structural model in Monolix was designed and implemented. However, due to how
Monolix interprets the starting conditions of a Markov chain and due to the software
not being initially designed for healthcare logistics, it was found that having a single and
common starting state for the chain would have led to the software misinterpreting the
starting conditions and therefore produced unreasonable results. This limitation could be
overcome in the future by designing ad hoc software for applying nonlinear mixed-effects
modeling to healthcare logistics.

Consequently, a second approach was designed, based on splitting the starting state into
two different options: "state 1" for the patients reaching the emergency department
by ambulance (AmbulY N = 1) and "state 2" for the patients reaching the emergency
department by other means of transportation (AmbulY N = 0), which are both followed
by a common state ("state 3") describing that a patient has reached the ED and is
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staying within it. From this common state, then, the patients could reach one of the
aforementioned discharging states, according to the options shown in table 2.3. In this
perspective, the transitions from state 1 to state 3, i.e., associated with the transition
rate "q13", and from state 2 to state 3, i.e., associated with the transition rate "q23", are
all dummy transitions that in this thesis serve the sole purpose of solving the problem
of the software misinterpreting the starting conditions in a Markov Chain with only one
possible starting state. However, since this change introduced one more step in each
patient flow through the Markov process, and thus the need for more entries in the dataset
and more parameters to be estimated, it was reasoned that the number of states describing
the discharge of the patients could be reduced without making the model less effective.
Accordingly, the possible output states were reduced from six to four by clumping the 1273
patients who were "redirected to other facilities" and the 61 patients who were "taken
in charge by consultants", together with the 4746 patients whose output was classified
as "other, unspecified", thus creating a new category called "other" that regrouped the
mode of discharge of 6080 patients. The layout of this newly designed chain can be seen
in figure 2.10.

Figure 2.10: 7-states Markov Chain Model.

Since the count of patients who died at the emergency department of Akademiska sjukhuset
during 2019 is equal to 103, and these represent 0.21% of all the patients in dataset D1 (49
936), a simplification of the model shown in figure 2.10 was designed, and such simplified
model is shown in figure 2.11.
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Figure 2.11: 6-states Markov Chain Model.

A complete estimation run, i.e., comprehensive of all the tasks described in the sub-sections
from 2.3.2 to 2.3.6, was performed with both the setups, in other words, with three or four
output states, on all the four training dataset sub-samples that were produced according
to what described in sub-section 2.1.4. Since the corresponding results achieved with both
the setups are consistent among the four training dataset sub-samples, and for a matter of
shortness, such results are reported in sub-section 3.2.1 only with regards to one of the
sub-samples mentioned above, i.e., for "Seed n°1". Due to the evident improvement given
by the reduction in the number of states from four to three, that can be appreciated by
comparing the outcomes of the use of both the setups (see sub-section 3.2.1), and due
to the deriving reduction in computational load and thus in required time for executing
a complete estimation run, it was decided to abandon the 7-states MC approach and
continue this work only with the 6-states one.

An experimental protocol was thus defined to process the available data and select suitable
and meaningful covariates to be included in the process model, with the intent of achieving
the goal of describing complex patient characteristics in relation to the length of stay
within the ED. The aforementioned protocol is explained by the scheme in figure 2.12, and
the extraction of the dataset sub-samples that are mentioned in such a scheme is discussed
more in detail in sub-section 2.1.4, together with the other elaborations of the dataset that
were necessary before implementing the Markov Chains modeling.
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Figure 2.12: Methodological approach for selecting the best set of covariates for each
sub-set of data.

Regarding the choice of which of the parameters to be estimated must be described by a
distribution, it was decided to do so only with the parameters q34 (transition from the
ED to the home), q35 (transition from the ED to a hospital ward), and q36 (transition
from the ED to another discharge category), for which the option for the estimation
of the random effects was enabled. Concerning instead the choice that was made in
terms of which type of distribution to use to describe the parameters of the model (see
the available options in 2.3.1), this was the same for all the parameters, i.e., for all of
them a log-normal distribution was selected. To clarify this choice, first of all, initial
state probabilities and transition rates are all necessarily non-negative, which induced
the rejection of the possibility of using a normal distribution. Furthermore, transition
rates are supposed to be able to assume values greater than 1, which led to discarding
from the available options also the logit-normal distributions and the probit-normal ones.
Moreover, the use of a log-normal distribution to describe transition rates is reasonable
also from a qualitative point of view since these transition rates are dependent on the
length of stay of the patients, and the probability density function of the latter resulted
being shaped as a log-normal distribution as well (confirmed by figure 2.1b). Finally, a
brief explanation of the working principle behind the automatic covariate model building
tool called "COSSAC", the employment of which is also part of the experimental protocol
in figure 2.12, is instead provided in section 2.6.

Throughout the execution of the discussed experimental protocol, the software’s general
settings and the code of its random seed were kept at the default values. The only exception
was made for what concerns the maximum number of iterations that the SAEM algorithm
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can perform during the exploratory phase, which was raised from the default value of 500
to a custom value of 800 since this seemed to improve the convergence of the estimations
for this thesis.

2.6. Automatic covariate model building

This section aims to describe the general functioning of the so-called "COSSAC" algorithm,
which is the automatic covariate model building algorithm employed in this thesis. COSSAC
stands for "COnditional Sampling use for Stepwise Approach based on Correlation tests"
and is an innovative covariate search strategy that was validated and published by Lixoft
[47].

Instead of blindly "trying" all the covariates as the starting point, as is done in more
conventional approaches, this algorithm exploits the information contained in the base
model run to choose which covariate to try first. To do so, it uses the correlation between
the individual parameters (or random effects) and the covariates as "hints at possibly
relevant parameter-covariate relationships" [48]. Such values of the correlation between
random effects and covariates are calculated using samples from the a posteriori conditional
distribution that is produced in the task "Conditional distribution" (see sub-section 2.3.3)
[48]. For evaluating the continuous covariates, the Pearson’s correlation test is used to
derive a p-value, whereas for evaluating the categorical covariates ANOVA is employed [48].
These so-extracted p-values are then used to sort all the possible random effect-covariate
relationships according to whether using them in the model or not [48]. After a first
initialization, the iterations of COSSAC thus alternate between "forward" and "backward"
selection according to the results of the performed correlation tests:

• Initialization: the base model is run, so to estimate population parameters, sample
from the conditional distributions, and estimate the log-likelihood [48]. Then, the
p-values of all the parameter-covariate relationships are calculated with Pearson’s
correlation tests if the covariate is continuous or with ANOVA if it is discrete [42, 48].
The first step after the initialization is a backward selection.

• Forward selection: the covariate with the smallest correlation p-value is added to
the model, "or the next smallest if the smallest has already been tried, and so on
until no correlation p-values above threshold remain" [48]. Then the model is run
with the same initial values as the base model, and the relationship is accepted or
rejected based on the value of the -2LLy(θ̂) or on the value of the BICc (see equation
2.36), i.e., the new model is not accepted if it does not improve the chosen criterion
over a certain pre-defined threshold [48]. At this point, all the parameter-covariate
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correlation p-values are calculated, and an attempt is made to perform a backward
selection in the next step [48].

• Backward selection: the currently included covariate with the highest correlation
p-value is removed from the model, "or the next highest if the highest has already
been tried, and so until no correlation p-values below a threshold remain" [48]. Then
the model is run with the same initial values as the base model and the "relationship
removal" is accepted or rejected based on the value of the -2LLy(θ̂) or on the value
of the BICc (see equation 2.36), i.e., the new model is not accepted if it does not
improve the chosen criterion over a certain pre-defined threshold [48]. Consequently,
all the parameter-covariate correlation p-values are calculated, and an attempt is
made to perform a forward selection in the next step [48].

The alternation between the forward and the backward selection continues until no selection
is possible anymore or until ten new relationships have been tested on the same model
[48].

In this thesis, the criterion employed to choose from which of the iterations of COSSAC
to extract a set of covariates to be tested on the data was mainly based on the value of
the corrected Bayesian Information Criterion" (BICc). This choice was made due to the
ability of BICc to penalize not only with the logarithm of the number of subjects log(N),
but also with the size of θR, and with the size of θF, which depend on the number of
included covariates and are scaled with the logarithm of the total number of observations
(ntot), as discussed in section 2.3.6. However, it was decided to take into consideration
also the value of the -2LLy(θ̂) in the cases in which picking the best BICc rather than
the second-best would have improved its value really mildly and at the expense of a much
worsened corresponding value of the log-likelihood. Accordingly, for these cases mentioned
above, the set of covariates associated with the second-best BICc was selected rather than
the one associated with the best BICc.

2.7. Validity assessment

The purpose of this section is to briefly describe how the process model designed in this
thesis was validated, according to figure 2.13. The outcomes of the procedure described
hereunder can be seen in section 3.3. These results are then discussed in sub-sections 4.1.1
and 4.1.2.
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Figure 2.13: Validation protocol.

The extraction of the dataset sub-samples mentioned in the figure above is discussed more
in detail in sub-section 2.1.4, together with the other elaborations of the dataset that were
necessary before implementing the Markov Chains modeling. The experimental protocol
explained by the scheme in figure 2.12 was executed to process the available data, assess
the meaningfulness and usability of the base model, and select suitable and meaningful
covariates to be included in such a model through the execution of the COSSAC algorithm
(see section 2.6) on each of the "training" data sub-samples, as shown in figure 2.12.

Starting from the base Markov Chains model, the initial estimates associated with that
model for the testing data sub-sample, and the four sets of covariates selected through the
employment of the COSSAC algorithm, each of the sets was then individually applied to
such a base model. For each of them, a run of parameter estimation was then executed on
the testing data sub-set. As shown in figure 2.13, the four outputs were compared, and a
process of a-posteriori covariate exclusion was performed. Afterward, the updated sets of
covariates, in other words, the ones which had been subjected to covariate exclusion, were
applied again to the base model and tested on the testing data sub-set. A final comparison
among all these outputs was performed, the resulting covariates were analyzed under a
clinical perspective (see sub-section 4.1.1), and conclusions were drawn accordingly. Lastly,
the best-performing final model was determined.
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This chapter presents the outcome of the modeling study described in chapter 2.

3.1. Comparison between modeling techniques

This section is meant to answer one of the first goals of this thesis (see section , "Phase
1"), i.e., the exploration of the state of the art regarding modeling methods and techniques
for process modeling in healthcare to allow the modeler to find suitable techniques for
modeling the system in question. Therefore, the outcomes of a comparison between families
of modeling techniques and of a comparison among their sub-categories are presented.

Firstly, table 3.1 shows a schematic comparison between "analytical approaches", "simula-
tion modeling", and "statistical or empirical modeling", which are the three main different
options for modeling in healthcare. These are examined in terms of the main advantages
and disadvantages deriving from the employment of each of the three.

After that, in sections 3.1.1, 3.1.2, and 3.1.3, the sub-categories of each of the macro
families of modeling techniques are described one by one, their main fields of application
are briefly introduced, and their advantages and disadvantages are compared in a table
format.
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Table 3.1: Three different approaches to modeling in healthcare.

Advantages Disadvantages

Analytical
ap-
proaches

• Less data is required [4]
• They can handle causal and time-
dependencies [18]
• Possibility to find an optimized
solution under applied constraints,
e.g., budget, resources, ... [49]

• Not great for dealing with nonlin-
earities [18]
• Even though they can handle time
dependencies, they do not deal well
with them [18]
• Non-intuitive inter-variable influ-
ence [18]

Simulation
modeling

• Choice of the specific technique
according to the required abstraction
[4]
• Good for modeling time-
dependencies [4]
• Great handling of complexity, vari-
ability, and uncertainty of dynamic
systems [22]
• Suitable for computing almost any
operational performance measure [4]
• Suitable for almost any type of
analysis [4]

• Generally, a lot of data is required
[4]
• Despite usually requiring a large
amount of modeling time, finding an
optimal solution is not even guaran-
teed [21]
• Execution time can be very long

Statistical
or
empirical
modeling

• Still in a nascent stage – more
applications might come [4]
• It can model both operational and
clinical flows [4]
• Possible to describe patients’ his-
tory as transitions between possible
medical conditions or care locations
[50]
• Possible to add patient frailties as
random effects [4]

• Still in a nascent stage – usage is
still limited [4]
• Cannot be used to determine wait-
ing time measures [4]
• Pure statistical modeling is still
rarely used. It is more common to
find it employed to inform simulation
approaches
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3.1.1. Analytical approaches

Queuing theoretic models compute performance metrics through analytical formulae
belonging to queuing theory. They are mainly applied to problems regarding appointment
scheduling, bed planning for inward patients, and emergency department resource allocation
[4]. In some cases, queueing models have been used to solve problems regarding ED queuing
times and to decrease the number of LWBS patients (Left Without Being Seen) [49].

Markov chains and compartmental models represent the states of patient flow as
the so-called Markov chains. Markov chains are stochastic processes whose state-space is
finite or countable and "in which the conditional distribution of any future state, given the
past states and the present state, is independent of the past states and depends only on
the present state" [4]. They are mainly applied to problems regarding modeling inpatient
clinical flow and regarding capacity planning in an outpatient environment [4].

The main advantages and disadvantages deriving from employing analytical approaches in
healthcare are presented in table 3.2.

Table 3.2: Comparison between queuing theoretic models and Markov chains and com-
partmental models.

Advantages Disadvantages

Queuing
theoretic
models

• Waiting time-related measures, con-
gestion, measures of idle time, and server
usage are common metrics [4]
• Good for determining the relation-
ship between influential parameters and
system outcomes [4]
• Good for flows with moderate complex-
ity [4]

• Not great for dealing with nonlinear-
ities [18] and with highly complex flows
[4]
• Not great for dealing with time and
causal dependencies [18]

Markov
chains and
compart-
mental
models

• Good for both clinical and operational
patient flow [4]
• Data requirement is usually lower than
in simulation modeling (e.g., DES) [19]
• Easy to validate [19]
• Suitable for computing almost any
operational performance measure [4]

• Not possible to analyze performance
metrics with regards to waiting time [4]
• Queuing theory models are in most
cases preferred over Markov Chain models
[4]
• Limited ability to capture patient’s
history [19]
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3.1.2. Simulation modeling

Monte Carlo simulations (MC) are sampling experiments aiming at estimating distri-
butions of some output variables, which are, in turn, dependent on several probabilistic
input variables [15]. They are mainly used to perform cohort studies, where the level of
detail lies between the high one given by DES and ABS, and the low one provided by the
SD approach [22]. The main areas of applications are problems regarding risk management
(e.g., identification and analysis of potential dangers and adverse events), health policy,
medical decisions, and forecasting of economic and clinical indicators, including evaluating
the "economic effectiveness of a project" [22]. However, in many applications, Monte Carlo
methods are commonly used to inform other families of simulation approaches, such as
DES, instead of being used as a self-standing method for the whole simulation. An example
of the exploitation of this concept can be found in the work performed by C. Zhang et
al. (2021), in which they generated "hypothetical cohorts of patients" using Monte Carlo
simulation and then used such patients as input for a discrete event simulation model [51].

Discrete event simulations (DES) model the system as a process, with sequences of
operations that the agents perform. Such operations can include delays and queues if
agents compete for limited resources, process branch selection, service by various resources,
and so on [18]. Elements such as service times and agents’ arrival times are usually
stochastic variables drawn from more or less complex probability distributions [18]. The
main goal of DES is to assess system effectiveness thanks to the estimation of quantitative
parameters (e.g., patient throughput, timeliness of care, and resource utilization [7]) and
the development of indicators [22]. Despite being the preferred method in most of the
categories of healthcare management problems, the application of discrete event simulations
has particularly dominant usage for experiments whose time horizon is within the short or
medium range and in the category of "healthcare system operations and improvements" [22],
e.g., for reducing waiting times, improving patient flow, maximizing staff and resources
utilization [7].

System dynamics simulations (SD) are based on tracking instantaneous changes
in a dynamic system by employing differential equations [5]. They represent, by their
quantities, discrete items such as people, products, and events; therefore, it is necessary to
identify the stocks and the flows affecting them [18]. Stocks keep track of the accumulated
level of the items and flows keep track of the rate of change of such items [5, 22]. The
main applications are those that are treatable at a higher and more aggregated level,
particularly in the domains of health policy and forecasting. Requiring only one replication,
SD simulations are also generally much applied to studies with a long-term horizon or
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cases in which a more general perspective is preferable for decision processes at the macro
scale [22].

Agent-based simulations (ABS) are based on autonomous entities called agents,
individual people or groups of people who can interact both with other agents and with the
surrounding environment, whose state varies over time, and who can make independent
decisions based on pre-defined rules and the current situation [22]. ABS method is bottom-
up, starting from defining the environment, the agents, and their relationship; the state
of the model depends on the state of the environment and the collective states of the
agents populating it [22]. ABS technique is good for enhancing the knowledge about the
behavior of the system; it allows to register the history of each entity in detail, and it is
usually employed for problems requiring mutual relations between specific entities to be
mapped in the model and for cases in which most of the activities to be modeled cannot
be described by fully predictable parameters [22]. It is mainly applied to studies where
the level of required detail is higher than the one provided by the employment of SD
[22]. Common targets of application are problems regarding health behaviors [52] and the
prediction of the spread of infective diseases [22] ("non-communicable disease control" [52])
and epidemics [22] ("infectious disease epidemiology" and "social epidemiology" [52]).

The main advantages and disadvantages deriving from the employment of simulation
modeling in healthcare are presented in tables 3.3 and 3.4.

3.1.3. Statistical or empirical modeling

According to the definition stated by Bhattacharjee and Ray [4], this approach is "entirely
based on observations of the system characteristics and experimentations on the system
for analyzing the relationship between the performance-related factors and the influencing
variables and parameters related to patient flows". Despite being an interesting technique,
since it is still at a nascent stage, there are still not many studies that capture patient
flows by applying an entirely empirical modeling technique [4]. When used on its own, it is
mainly applied to problems regarding extracting information related to care pathways [4].
A valid example is provided by S. Adeyemi and T. Chaussalet [53], who used a multinomial
logit random-effects model to extract information on patient pathways. In most other
cases, statistical modeling is commonly used to inform approaches from the category of
simulation modeling.
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Table 3.3: Comparison between DES, SD, ABS, and MC methods, part 1.

Advantages Disadvantages

Discrete
Event
Simulation

• It follows individual, dynamic enti-
ties, described by attributes [5, 22]
• It supports both low and medium
abstraction [18]. Flexible response to
scale change [5]
• Easy to model queues
• Able to relate risks, activities, and
interventions, with patients having
individual traits [22]
• Good for systems with plenty of
observable random factors [5, 22]
• Typical output includes time spent
by agents in the system [18]
• Reusable components [5]
• Patient flow is represented in a
visual way [5]

• Not very feasible for experiments
with a long time horizon [22]
• In models in which real and sim-
ulated performance are compared,
operational validity is particularly
critical [7]
• A lot of data is required [22]
• If more than 2 or 3 specific objec-
tives are defined (e.g., LOS, bed occu-
pancy rate), the model might create
an unfeasible set of tasks to complete
the simulation [7]
• In many cases, it is required to
have a high level of detail in such
input data [22]
• Need to carefully assess the de-
tailedness that the gathered data must
have [7]

System
Dynamics
approach

• It represents cohorts, not individu-
als [5]
• Very helpful to formalize a mental
model of a given problem [22]
• Good for systems having high non-
linearities, mutual interactions, circu-
lar causality concepts [5]
• Less data is required [22]
• Can analyze structure-behavior
relations after initialization of change
[22]
• Good at long-term prediction in
macro-scale models [5]
• Both quantitative and qualitative
aspects can be included

• It represents cohorts, not individu-
als [5]
• In complex systems, not possible
to forecast output changes by visual
inspection [22]
• Results are highly dependent on
adequately calibrating the parameters
for driving internal flows [22]
• Typically not designed for extract-
ing exact numerical predictions [22]
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Table 3.4: Comparison between DES, SD, ABS, and MC methods, part 2.

Advantages Disadvantages

Agent-
based
Simulation

• It follows individual, autonomous,
dynamic entities, described by at-
tributes [5, 22]
• Good when the overall system
behavior is unknown, but the behavior
of the agents is known [18]
• Wide range of supported abstrac-
tion levels [18]
• Good for exploring causal mecha-
nisms and testing theories of causa-
tion (since able to incorporate multi-
ple interacting causes) [52]
• Often possible to use simple rules
to describe complex behaviors [5]
• "Provides insight into the under-
lying mechanisms that give rise to
health behaviors and outcomes" [52]
• It can identify the minimum re-
quired "dose" of intervention for
achieving the sought result [52]
• Good for modeling dynamic, au-
tonomous, adaptive systems [5]

• Not very feasible for experiments
with a long time horizon [22]
• Datasets often lack useful info
regarding network influences and
strength of interactions between units
[52]
• A lot of data is required [22]
• When exploring causal mechanisms,
several configurations might lead to
the expected population pattern [52]
• Difficult to balance between sim-
plicity and model realism [52]
• Computation, validation, and run-
ning are significantly costly in terms
of time and resources [52]
• It can be challenging to validate
and parameterize the model [52]

Monte
Carlo
methods

• Good for evaluating the impact of
policy changes [22]
• Good for evaluating the risks in a
decision process [22]
• Good flexibility [22]
• It can estimate the variability in-
volved in the decision process [22]
• Easy to handle the modeling of
population-based disease [54]

• The validity of the conclusions
holds only for specific pre-defined
individuals [22]
• It usually requires a large number
of replications. The number of objects
cannot be too high [22]
• A lot of data is required [22]
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3.2. CTMC modeling

This section presents the modeling of the patient flow within the emergency department.
Sub-section 3.2.1 shows the comparison between a 7-states Markov Chain and a 6-states
one, which led to the choice of the latter approach over the former, whereas the other
sub-sections in this section show the results related to various steps of the experimental
protocol shown in figure 2.12. As discussed in sub-section 2.5, this protocol was designed
to process the available data and select meaningful covariates to be included in the model.

3.2.1. Comparison between 7-states and 6-states chain

This sub-section addresses the comparison between the Markov Chains model with four
output states (figure 2.10) and the one with only three output states (figure 2.11). As
stated in section 2.5, this comparison was performed for all the four random dataset
samples, and it resulted consistent from sample to sample. Therefore, for a matter of
shortness, this sub-section only shows the results for "random seed n°1".

Figures 3.1a and 3.1b show the population parameters estimated by using the SAEM
algorithm (see sub-section 2.3.2), as well as the standard errors and the relative standard
errors, calculated from the Fisher Information Matrix as discussed in sub-section 2.3.5,
respectively for the CTMC model with four output states and the one with three output
states. Excluding the value of the initial state probability p_pop, i.e., the probability of
having state 1 as the initial state, and the transition rates q13 and q23, which are just
the description of a quasi-instantaneous transition from the two input states to state 3
(see section 2.5), it is possible to appreciate how the rates of the relative standard errors
(R.S.E.) are for all the other parameters lower in the model with three output states than
in the one with four output states. In particular, in figure 3.1a, the two rates of the R.S.E.
colored in yellow resulted greater than 50%, i.e., the standard error on their corresponding
estimated population parameter was equal to more than 50% of the population parameter
itself. Contextually, as shown in table 3.5, a reduction in the number of states from four
to three leads to a substantial decrease in the so-called "condition number". According to
the rule of thumb described in sub-section 2.3.5, this shifts the model from being probably
over-parameterized to being almost surely not over-parameterized.

Moreover, a reduction in the number of states from four to three leads also to an improve-
ment in the likelihood, which is reported in table 3.5, according to both the considered
indicators. Lastly, concerning the residuals, normality and symmetry around 0 are greatly
achieved by both approaches.
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(a) CTMC model with four output states. (b) CTMC model with three output states.

Figure 3.1: Estimated population parameters on the dataset sub-sample generated with
"random seed n°1".

Table 3.5: Log-likelihood, corrected Bayesian Information Criterion, and condition number
from a CTMC model with four or three output states, both on the dataset sub-sample
generated with "random seed n°1".

Output states -2LL BICc Cond. number

4 2962.52 3045.43 186.86

3 2815.59 2883.73 5.3

3.2.2. First estimation and covariates check

The results concerning the first complete estimation run are reported in this first part
of sub-section 3.2.2. No covariates were included in it. Figure 3.2 shows the population
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parameters estimated with the SAEM algorithm (see sub-section 2.3.2), along with the
standard errors and the relative standard errors, which were calculated from the Fisher
Information Matrix (see sub-section 2.3.5). Aside from the transition rates q13 for the 2nd

and 3rd data sub-samples, which are anyways just the description of a quasi-instantaneous
transition from input state 1 to state 3 (see section 2.5), the relative standard error for all
the parameters is reasonable across all the data sub-samples.

Figure 3.2: Estimated population parameters for the four training data samples and the
testing sample with no covariates.

Table 3.6: Statistical tests on random effects and individual parameters, likelihood indica-
tors, and condition numbers with no covariates in the model.

Seed 1 Seed 2 Seed 3 Seed 4 Test

S.W. R.E. P-val>0.05? Yes Yes Yes Yes Yes

T-test R.E. P-val>0.05? Yes Yes Yes Yes Yes

S.W. I.P. P-val>0.05? Yes Yes Yes Yes Yes

-2LL 2815.59 2940.84 2911.28 2814.77 15 720.54

BICc 2883.73 3008.98 2979.42 2882.92 15 803.85

Cond. number 5.30 9.10 8.65 3.38 2.55

Table 3.6 regroups and compares the results of a Shapiro-Wilk normality test ("S.W. R.E.")
and a T-test ("T-test R.E.") on the random effects, as well as the results of a Shapiro-Wilk
normality test on the transformed individual parameters ("S.W. I.P."), two likelihood
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indicators, and the condition number, computed on all the four "training" data sub-sets
(seeds from 1 to 4) and on the "testing" sub-set for the basic model without covariates.
Both the Shapiro-Wilk normality tests show a p-value (p) greater than 0.05 for all the
random effects and all the transformed individual parameters on all the data sub-sets, thus
confirming their normality. Contextually, the T-test for the correlation between random
effects also shows a p-value greater than 0.05 on all the data sub-sets, thus implying
no correlation between random effects in any of them. Furthermore, the values of the
condition number indicate good confidence in the model not being over-parameterized for
all the data sub-samples since they are largely smaller than a value of 100 (see sub-section
2.3.5).

Lastly, figures 3.3, 3.4, and 3.5, show how the normalized prediction distribution errors
(NPDE), a nonparametric version of the population-weighted residuals, are normally
distributed and symmetric around 0 for all the data sub-samples. In each of the five
blocks in the figure, the comparison between the empirical and theoretical probability
density function is plotted on the left, whereas the comparison between the empirical and
theoretical cumulative distribution function is plotted on the right.

Figure 3.3: Probability Distribution Function and Cumulative Distribution Function of
the NPDE in the model without covariates for data sub-samples 1 and 2.
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Figure 3.4: Probability Distribution Function and Cumulative Distribution Function of
the NPDE in the model without covariates for data sub-samples 3 and 4.

Figure 3.5: Probability Distribution Function and Cumulative Distribution Function of
the NPDE in the model without covariates for the testing data sub-sample.

Covariate check

This last part of sub-section 3.2.2 is dedicated to showing which covariates, visible in
figures 3.6, 3.7, and 3.8, were a priori excluded before running the tool for automatic
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covariate model building (see section 2.6).

Figure 3.6: I.P. plotted against the covariates "number_of_scans" and "times1Year" for
the training data sub-samples 1 and 2.

Figure 3.7: I.P. plotted against the covariates "number_of_scans" and "times1Year" for
the training data sub-samples 3 and 4.
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Figure 3.8: I.P. plotted against the covariates "number_of_scans" and "times1Year" for
the testing data sub-sample.

The figures show the plot of the individual parameters (I.P.) against the two excluded
covariates, "number_of_scans" and "times1Year", for all the training data sub-samples
and the test sub-sample. Clearly, for none of the parameters in any of the sub-samples,
there exists any dependence of the individual parameter on such covariates.

3.2.3. 6-states CTMC Covariate model building

This sub-section aims to show the results produced by applying the COSSAC algorithm
to the four "training" data sub-sets and then by applying the selected sets of covariates to
the corresponding data sub-sets from which these were extracted.

Seed n°1

Tables 3.7 and 3.8 present the outcome of the COSSAC algorithm in terms of the selected
covariates and the likelihood of the Markov Chains model including such covariates, for
the data sub-set sampled in Python with random seed n°1.
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Table 3.7: COSSAC Results for random seed n°1 - Part 1.

It. Introduced Covariates -2LL BICc

1st None 2815.12 2883.26

2nd q35_K 2806.43 2881.41

3rd q34_sex, q35_K 2806.09 2887.91

4th q35_AmbYN, q35_K 2729.77 2811.58

5th q34_sex, q35_AmbYN, q35_K 2730.24 2818.89

6th q35_AmbYN, q35_K, q36_ScanYN 2728.71 2817.36

7th q35_AmbYN, q35_K, q36_MA 2710.91 2833.76

8th q34_T, q35_AmbYN, q35_K, q36_MA 2706.00 2835.69

9th q34_sex, q35_AmbYN, q35_K, q36_MA 2712.67 2842.35

10th q35_AmbYN, q35_K, q36_B, q36_MA 2711.08 2840.77

11th q35_AmbYN, q35_K, q36_MA, q36_ScanYN 2714.77 2844.46

12th q34_R, q35_AmbYN, q35_K, q36_MA 2711.46 2841.14

13th q34_countAVG, q35_AmbYN, q35_K, q36_MA 2712.37 2842.05

14th q35_AmbYN, q35_K, 36_MA, q36_Z 2698.93 2828.62

15th q34_T, q35_AmbYN, q35_K, q36_MA, q36_Z 2690.04 2826.56

16th
q34_T, q34_sex, q35_AmbYN, q35_K, q36_MA,

q36_Z
2693.09 2836.45

17th
q34_J, q34_T, q35_AmbYN, q35_K, q36_MA,

q36_Z
2694.46 2837.82

18th
q34_T, q35_AmbYN, q35_K,
q35_ScanYN, q36_MA, q36_Z

2669.89 2813.25

19th
q34_T, q35_AmbYN, q35_K, q35_ScanYN,

q36_B, q36_MA, q36_Z
2672.81 2823.02
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Table 3.8: COSSAC Results for random seed n°1 - Part 2.

It. Introduced Covariates -2LL BICc

20th
q34_T, q34_sex, q35_AmbYN, q35_K,

q35_ScanYN, q36_MA, q36_Z
2670.01 2820.20

21st
q34_T, q35_AmbYN, q35_K, q35_ScanYN,

q36_MA, q36_ScanYN, q36_Z
2672.08 2822.28

22nd
q34_T, q35_AmbYN, q35_K, q35_ScanYN,

q36_G, q36_MA, q36_Z
2672.07 2822.27

23rd
q34_T, q35_AmbYN, q35_D, q35_K,

q35_ScanYN, q36_MA, q36_Z
2670.37 2820.57

24th
q34_R, q34_T, q35_AmbYN, q35_K,

q35_ScanYN, q36_MA, q36_Z
2666.36 2816.56

25th
q34_T, q35_AmbYN, q35_K, q35_ScanYN,

q36_I, q36_MA, q36_Z
2674.59 2824.79

26th
q34_T, q34_countAVG, q35_AmbYN, q35_K,

q35_ScanYN, q36_MA, q36_Z
2669.66 2819.86

27th
q34_J, q34_T, q35_AmbYN, q35_K,

q35_ScanYN, q36_MA, q36_Z
2672.88 2823.08

According to the tables 3.7 and 3.8, the best BICc was scored at the 4th iteration. However,
since picking the best BICc rather than the second-best would have improved its value
really mildly at the expense of a much worsened corresponding value of the −2LL, the
covariates producing the second-best BICc were selected, in other words, the ones from
the 18th iteration: "T" for q34; "AmbulYN", "K", and "ScanYN" for q35; "MA_unit"
and "Z" for q36.

A second estimation run on the same sub-set, this time including the set of covariates
mentioned above, resulted in good R.S.E. on the estimated population parameters, normally
distributed NPDEs with symmetry around 0, and better −2LL and BICc than the ones in
the run without covariates with the same dataset ("Seed 1" in table 3.6). However, after
including such covariates, it became impossible to compute the standard error and R.S.E.
for the fixed effect of the MA_unit called "Infektion akut" on q36, as well as the standard
deviation of the random effect on q36, and the condition number. The correlation test
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between individual parameters and covariates revealed a p-value > 0.01 for the correlation
between q36 and being assigned to the MA_unit "Kirurgi akut" (P-val = 0.0115), and for
the correlation between q36 and being assigned to the MA_unit "Ortopedi akut" (P-val
= 0.0292), suggesting the possibility to remove these covariates from the model.

Seed n°2

Table 3.9 presents the outcome of the COSSAC algorithm in terms of selected covariates,
and the likelihood of the Markov Chains model including such covariates, for the data
sub-set sampled in Python with random seed n°2.

Table 3.9: COSSAC Results for random seed n°2.

It. Introduced Covariates -2LL BICc

1st None 2940.38 3008.51

2nd q36_Z 2904.47 2979.44

3rd q35_K, q36_Z 2893.17 2974.98

4th q35_K, q35_age, q36_Z 2760.95 2849.60

5th q34_countOUT q35_K, q35_age, q36_Z 2761.32 2856.81

6th q34_countAVG, q35_K, q35_age, q36_Z 2761.80 2857.29

7th q34_J, q35_K, q35_age, q36_Z 2759.37 2854.86

8th q34_R, q35_K, q35_age, q36_Z 2752.86 2848.35

9th q34_R, q35_K, q35_age, q36_B, q36_Z 2753.51 2855.84

10th q34_R, q35_K, q35_N, q35_age, q36_Z 2754.79 2857.12

11th q34_R, q34_countAVG, q35_K, q35_age, q36_Z 2758.40 2860.73

12th q34_R, q35_K, q35_age, q36_Z, q36_sex 2751.08 2853.41

13th q34_R, q34_countOUT, q35_K, q35_age, q36_Z 2754.12 2856.45

14th q34_J, q34_R, q35_K, q35_age, q36_Z 2750.76 2853.09

15th q34_R, q35_K, q35_age, q36_K, q36_Z 2754.17 2856.50

16th q34_R, q35_D, q35_K, q35_age, q36_Z 2754.58 2856.91

According to table 3.9, the best BICc was scored at the 8th iteration, so the selected
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covariates are: "R" for q34; "K" and "age" for q35; "Z" for q36. A second estimation run
on the same sub-set, this time including such covariates, resulted in 65.19 as condition
number, good R.S.E. on the population parameters, NPDEs normally distributed around
0, and better −2LL and BICc than in the run without covariates with the same dataset
("Seed 2" in table 3.6).

Seed n°3

Tables 3.10 and 3.11 present the outcome of the COSSAC algorithm in terms of selected
covariates and the likelihood of the Markov Chains model including such covariates, for
the data sub-set sampled in Python with random seed n°3.

Table 3.10: COSSAC Results for random seed n°3 - Part 1.

It. Introduced Covariates -2LL BICc

1st None 2910.61 2978.76

2nd q34_age 2818.32 2893.30

3rd q34_age, q36_T 2816.61 2898.44

4th q34_age, q35_I 2814.11 2895.93

5th q34_age, q35_MA 2799.23 2922.10

6th q34_age, q35_MA, q36_T 2799.43 2929.13

7th q34_age, q35_A, q35_MA 2796.65 2926.35

8th q34_M, q34_age, q35_MA 2791.38 2921.08

9th q34_M, q34_age, q35_MA, q36_T 2788.95 2925.50

10th q34_E, q34_M, q34_age, q35_MA 2789.68 2926.22

11th q34_M, q34_age, q35_A, q35_MA 2787.56 2924.10

12th q34_M, q34_age, q35_MA, q36_ScanYN 2771.34 2907.88

13th q34_M, q34_age, q35_A, q35_MA, q36_ScanYN 2768.30 2911.68

14th q34_M, q34_age, q35_MA, q36_ScanYN, q36_T 2773.32 2916.70

15th q34_M, q34_age, q35_MA, q36_K, q36_ScanYN 2765.45 2908.84

16th q34_M, q34_T, q34_age, q35_MA, q36_ScanYN 2773.40 2916.78

17th q34_E, q34_M, q34_age, q35_MA, q36_ScanYN 2772.43 2915.81
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Table 3.11: COSSAC Results for random seed n°3 - Part 2.

It. Introduced Covariates -2LL BICc

18th q34_M, q34_age, q35_MA, q36_A, q36_ScanYN 2755.92 2899.31

19th
q34_M, q34_age, q35_MA, q36_A, q36_K,

q36_ScanYN
2749.33 2899.55

20th
q34_M, q34_T, q34_age, q35_MA, q36_A,

q36_ScanYN
2758.56 2908.78

21st
q34_M, q34_age, q35_A, q35_MA, q36_A,

q36_ScanYN
2756.50 2906.72

22nd
q34_E, q34_M, q34_age, q35_MA, q36_A,

q36_ScanYN
2754.89 2905.11

23rd q34_M, q34_age, q35_MA, q35_Z, q36_A, q36_ScanYN 2751.26 2901.49

24th
q34_M, q34_age, q35_MA, q36_A, q36_ScanYN,

q36_UppsalaYN
2756.48 2906.70

25th
q34_M, q34_age, q35_MA, q36_A, q36_ScanYN,

q36_T
2757.66 2907.88

26th q34_M, q34_age, q35_I, q35_MA, q36_A, q36_ScanYN 2754.82 2905.04

27th
q34_M, q34_age, q35_MA, q35_age, q36_A,

q36_ScanYN
2735.07 2885.29

28th
q34_M, q34_age, q35_MA, q35_age, q36_A,

q36_K, q36_ScanYN
2727.48 2884.54

29th
q34_M, q34_age, q35_A, q35_MA, q35_age, q36_A,

q36_K, q36_ScanYN
2730.75 2894.65

30th
q34_M, q34_T, q34_age, q35_MA, q35_age, q36_A,

q36_K, q36_ScanYN
2729.10 2893.00

31st
q34_M, q34_age, q35_MA, q35_Z, q35_age, q36_A,

q36_K, q36_ScanYN
2726.53 2890.43

32nd
q34_E, q34_M, q34_age, q35_MA, q35_age, q36_A,

q36_K, q36_ScanYN
2728.64 2892.54

33rd
q34_M, q34_age, q35_MA, q35_age, q36_A, q36_G,

q36_K, q36_ScanYN
2722.86 2886.76

34th
q34_M, q34_age, q35_MA, q35_age, q36_A, q36_K,

q36_ScanYN, q36_UppsalaYN
2726.64 2890.54
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According to the tables 3.10 and 3.11, the best BICc was scored at the 28th iteration,
so the selected covariates are: "M" and "age" for q34; "MA_unit" and "age" for q35;
"A", "K", and "ScanYN" for q36. A second estimation run on the same sub-set, this time
including the aforementioned set of covariates, resulted in good R.S.E. on all the estimated
population parameters but the fixed effect of q13 (clinically meaningless transition rate), in
normally distributed NPDEs with symmetry around 0, and in better −2LL and BICc than
in the run without covariates with the same dataset ("Seed 3" in table 3.6). However, after
including such covariates, it became impossible to compute the condition number, and the
standard error and R.S.E. for the fixed effect of q23, for the fixed effect of the MA_unit
"Hjärtsjukdomar" on q35, and for the standard deviation of the random effects on q36.
Moreover, a Wald test (see sub-section 2.3.5) shows a p-value = 0.0434, i.e., greater than
0.01, for the effect on q34 of having "M" as simple_diag.

Seed n°4

Tables 3.12 and 3.13 present the outcome of the COSSAC algorithm in terms of selected
covariates, and the likelihood of the Markov Chains model including such covariates, for
the data sub-set sampled in Python with random seed n°4.

Table 3.12: COSSAC Results for random seed n°4 - Part 1.

It. Introduced Covariates -2LL BICc

1st None 2815.01 2883.16

2nd q35_A 2809.66 2884.65

3rd q35_I 2806.20 2881.19

4th q35_A, q35_I 2800.28 2882.11

5th q35_I, q35_K 2787.60 2869.42

6th q35_A, q35_I, q35_K 2780.37 2869.04

7th q34_M, q35_A, q35_I, q35_K 2773.31 2868.82

8th q34_M, q35_A, q35_I, q35_K, q36_G 2773.06 2875.41

9th q34_M, q34_ScanYN, q35_A, q35_I, q35_K 2736.07 2838.42

10th
q34_M, q34_ScanYN, q35_A, q35_I, q35_K,

q36_G
2742.29 2851.48
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Table 3.13: COSSAC Results for random seed n°4 - Part 2.

It. Introduced Covariates -2LL BICc

11th q34_E, q34_M, q34_ScanYN, q35_A, q35_I, q35_K 2738.29 2847.47

12th
q34_M, q34_ScanYN, q34_countOUT, q35_A,

q35_I, q35_K
2739.04 2848.22

13th q34_K, q34_M, q34_ScanYN, q35_A, q35_I, q35_K 2740.36 2849.54

14th q34_M, q34_ScanYN, q35_A, q35_I, q35_K, q36_E 2730.79 2839.97

15th q34_M, q34_ScanYN, q35_A, q35_I, q35_K, q36_Z 2712.52 2821.71

16th
q34_M, q34_ScanYN, q35_A, q35_I, q35_K,

q36_G, q36_Z
2707.09 2823.11

17th
q34_K, q34_M, q34_ScanYN, q35_A, q35_I,

q35_K, q36_Z
2704.29 2820.31

18th
q34_E, q34_K, q34_M, q34_ScanYN, q35_A,

q35_I, q35_K, q36_Z
2695.51 2818.37

19th
q34_E, q34_K, q34_M, q34_ScanYN, q34_age,

q35_A, q35_I, q35_K, q36_Z
2657.54 2787.25

20th

q34_E, q34_K, q34_M, q34_ScanYN,
q34_age, q35_A, q35_I, q35_K, q35_Z,

q36_Z
2645.86 2782.40

21st
q34_E, q34_K, q34_M, q34_ScanYN, q34_age,
q35_A, q35_H, q35_I, q35_K, q35_Z, q36_Z

2646.42 2789.80

22nd
q34_E, q34_K, q34_M, q34_ScanYN, q34_age,
q34_countOUT, q35_A, q35_I, q35_K, q35_Z,

q36_Z
2655.44 2798.82

23rd
q34_E, q34_K, q34_M, q34_ScanYN, q34_age,
q35_A, q35_I, q35_K, q35_Z, q36_G, q36_Z

2646.67 2790.05

24th
q34_E, q34_K, q34_M, q34_ScanYN, q34_age,
q35_A, q35_I, q35_K, q35_Z, q36_T, q36_Z

2652.96 2796.34

According to the tables 3.12 and 3.13, the best BICc was scored at the 20th iteration, so
the selected covariates are: "E", "K", "M", "ScanYN", and "age" for q34; "A", "I", "K",
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and "Z" for q35; "Z" for q36. As in the previous case, a second estimation run on the
same sub-set, this time including the aforementioned set of covariates, resulted in good
R.S.E. on all the estimated population parameters but the fixed effect of q13 (clinically
meaningless transition rate), in normally distributed NPDEs with symmetry around 0,
and in better −2LL and BICc than in the run without covariates with the same dataset
("Seed 4" in table 3.6). However, after including such covariates, it became impossible to
compute the condition number and the standard error and R.S.E. for the fixed effect of
having "A" as simple_diag on q35. Nevertheless, the Wald test (see sub-section 2.3.5)
showed no p-value greater than 0.01, thus not suggesting removing any covariates from
the model.

3.3. Validity Analysis

This section presents the outcomes of the validation process (section 2.7). Table 3.14
compares, for all the runs on the "testing" dataset, the results of a Shapiro-Wilk normality
test and a T-test on the random effects, as well as two likelihood indicators and the condition
number. Moreover, it includes the results of a Shapiro-Wilk test on the transformed
individual parameters for the model in which these do not depend on covariates and a
Kolmogorov Smirnov adequacy test ("K.S. I.P.") for the models in which parameters do
depend on covariates.

Table 3.14: Statistical tests on random effects and individual parameters, likelihood
indicators, and condition numbers on the testing data sub-set.

No cov. Set 1 Set 2 Set 3 Set 4

S.W. R.E. p>0.05? Yes Yes Yes Yes Yes

T-test R.E. p>0.05? Yes Yes Yes Yes Yes

S.W. I.P. p>0.05?
K.S. I.P. p>0.10?

Yes
/

/
Yes

/
Yes

/
Yes

/
Yes

-2LL 15 720.54 14 963.44 14 993.37 15 025.46 14 850.44

BICc 15 803.85 15 149.03 15 110.77 15 219.57 15 018.98

Cond. number 2.55 4108.50 40.74 2290.03 98.01

Only for table 3.14, the notation "p" is proposed as a more compact option for representing
the p-value. In the same table, the Shapiro-Wilk normality tests show a p-value (p) greater
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than 0.05 for all the random effects, thus confirming their normality. The same is valid
for all the transformed individual parameters in the test with no included covariates.
Contextually, the p-value of the Kolmogorov Smirnov adequacy test is ∼ 1 for all the
individual parameters in all the tests that include covariates, thus confirming that the
individual parameters are samples from a mixture of transformed normal distributions.

Concerning the T-test for the correlation between random effects, the p-value results
greater than 0.05 for the model without covariates but also for all the models with an
introduced set of covariates, thus implying no correlation between random effects in any of
the cases. Lastly, the values of the condition number indicate good confidence in the model
not being over-parameterized only for the model with no covariates and for the one with
the second set of covariates since such condition numbers are considerably smaller than
100 (see sub-section 2.3.5). For the model with the fourth set of covariates, the condition
number is smaller than 100 only with little margin. In contrast, for the first and third
sets of covariates, the condition number takes values that clearly indicate a high risk of
overfitting.

Figures 3.9, 3.10, 3.11, and 3.12, show the distribution of the parameters estimated on the
model with the four different sets of covariates on the same "testing" data sub-sample.

Figure 3.9: Covariates from seed n°1.
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Figure 3.10: Covariates from seed n°2.

Figure 3.11: Covariates from seed n°3.

Figure 3.12: Covariates from seed n°4.
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It is noticeable how the distribution of the transition rate q35 shows two distinct peaks only
in figure 3.12, i.e., only when using a model including the covariates extracted from the
analysis of the fourth "training" data sub-set. Lastly, the normalized prediction distribution
errors are normally distributed and symmetric around 0 for all sets of covariates.

A-posteriori exclusion of MA_unit from the sets of covariates

The sets of covariates selected from the analysis of the first and the third "training" data
sub-sets include the dependence of some parameters on the covariate MA_unit. For these
two cases, rerunning the same test, this time excluding only the dependence on such
covariate of q36 for the former set and of q35 for the latter set, leads to a mild worsening
of almost all the likelihood indicators, together with a great improvement of the condition
numbers. Specifically, −2LL increases from 14 963.44 to 15 074.56 in the model with
covariates set number 1 and from 15 025.46 to 15 071.25 in the model with covariates
set number 3. Furthermore, BICc increases from 15 149.03 to 15 200.48 in the first case
and, instead, it decreases from 15 219.57 to 15 205.69 in the second case. Contextually,
however, the condition number for the former model improves from 4108.50 to 14.26, and
for the latter model it improves from 2290.03 to 56.35.

Due to the reasons addressed in sub-section 4.1.2, after a thorough comparison and
evaluation of the four resulting models, one for each of the extracted sets of covariates,
the second one was selected. Figure 3.13 presents the population parameters estimated
with such a model from the testing dataset. Both fixed and random effects for this model
show good values of the relative standard error on all the clinically meaningful estimated
population parameters. In this context, to be considered is that, for instance, Monolix
suggests as good R.S.E. values the ones smaller than 50% [41]. Despite it being still
considered a good R.S.E. value, the one given by the effect of having an ICD-10 code
beginning with "R" ("beta_q34_R_1" in the figure below) resulted slightly higher than for
the other estimations. However, greater errors on such a covariate value are to be expected
since this refers to patients with generic symptoms, "Not elsewhere classified" according
to table 2.1, which account for a significant portion (43,43%) of the total population.
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Figure 3.13: Population parameters estimated with the second model from the testing
dataset.
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4| Discussion

This chapter provides the interpretation of the obtained results, discusses the value of the
approach employed in this thesis and its uncertainties, summarizes the encountered techni-
cal implementation challenges, gives a brief overview of the tried and failed approaches,
and introduces the future work.

4.1. Analysis of the results

From a theoretical point of view, it is challenging to separate clinical and operational
factors in a healthcare facility and clearly distinguish between such aspects by analyzing
the available data since these factors intertwine. In other words, the output can be
affected by innate characteristics of the patients, e.g., age, gender, etc, by characteristics
related to their main diagnosis, and by logistic factors relating to the treatment pathways.
Furthermore, the LOS, i.e., the metric evaluated in this thesis, constitutes a result of
both how the work within the healthcare facility is performed and how the patients are
clinically characterized, thus making it impossible to fully separate the two. Nevertheless,
it could be argued that logistics can be considered "clinical" to some extent. This is the
case since it is possible to employ the found correlations between patients’ characteristics
and their LOS to know beforehand what is important to consider for an incoming patient
with given characteristics to be treated effectively and efficiently. This would help reduce
the negative impact of the arrival of such a patient on the logistics of the whole system.
Consequently, from another perspective, if the final goal would be to use the approach
employed in this thesis to inform operational research, such an approach would allow
the modeler to "generate" patients for the simulation more representatively. With these
premises, this section aims to frame the results of this thesis into a clinical perspective
and discuss the meaningfulness of such results.

Starting from the samples whose stratification is described in sub-section 2.1.4, the designed
base process model with no covariates was applied to all of such sub-sets, and the model
parameters were estimated. This was done to set a benchmark for assessing how and how
much the model’s performance would change with the introduction of covariate variables.
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Since the design of a "simplified" model is within the goals of this thesis, this operation
was useful to objectively evaluate the goodness of the introduction of covariates in the
model in order not to a-priori exclude the hypothesis that its base version, i.e., without
covariates, could perform better than the version in which these are included. Furthermore,
the aim of choosing the optimal set of covariates was also of primary importance in the
reasoning process that led to the decision to employ a nonlinear mixed-effects approach
and apply the COSSAC algorithm during the model building phase.

Concerning the performance of the 6-states base process model on the sub-sets, in all five
cases none of the clinically meaningful parameters showed any large relative standard error
(%), the transformed random effects were normal and uncorrelated, thus not dependent on
the same source of variability, the transformed individual parameters resulted normally
distributed as well, and the NPDEs were normally distributed around 0. Moreover,
unlike the 7-states Markov Chains model, this base model showed no signs of overfitting.
According to the factors mentioned above, it was thus possible to confidently state that
the designed base model was meaningful and could be used as a foundation of this work.

4.1.1. Clinical perspective behind covariates selection

Through the execution of the COSSAC algorithm, after the "a-priori exclusion" of two
of the potential covariates ("number_of_scans" and "times1Year") due to their evident
independence on any of the parameters for any of the data sub-samples, it was possible
to select the four sets of covariates the inclusion of which could lead to the greatest
likelihood improvement. Some of the chosen covariates differ from data sub-sample to
data sub-sample. However, this is very likely ascribable to sample size issues and to the
potential correlation between some covariate effects.

Since the automatic covariate model building tool was applied to four data sub-samples to
find covariates able to capture the variability affecting three parameters (q34, q35, q36 ) in
each case, each covariate could be selected at most 12 times, and 28 different covariates
were included in the exploration. Among such 28 possible covariates, only 12 (42.86%)
were selected at least once by the algorithm for one of the 12 possible slots. In the last part
of this sub-section, comments on the clinical perspective behind the covariates selection
are reported. Figure 4.1 can be used as a guideline to follow the related discussion. In
a future step, however, such comments should undergo a review process by doctors and
members of the hospital management as an additional validation step.
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Figure 4.1: Count of the selected covariates.

Covariates selected three or more times

• The medical imaging covariate ScanYN (see appendix A.1) was selected three times,
once for each of the parameters (see figure 4.1). This is reasonable since the execution
of medical imaging can potentially increase the LOS of the patients, regardless of
how they are discharged. However, this result also provides strong proof of how
important is the role that such a variable plays in LOS variability. Therefore, it
constitutes a hint for where to focus future management improvement.

• The covariates that were selected four times are: Z, once on q35 (ED to ward) and
three times on q36 (ED to other); age, twice on q34 (ED to home) and twice on q35
(see figure 4.1). Z represents conditions in which no specific disorder was found, but
treatment was warranted (e.g., due to self-poisoning, dizziness, or abuse), and it was
selected by three in four runs of automatic covariates selection for what concerns the
transition rate q36. Such a result implies a strong capability that the variable Z has
in explaining the variability of the LOS for patients who are neither sent home nor
admitted to any hospital ward. This is reasonable since, on average, around half of
the patients having an ICD-10 code beginning with "Z" were discharged in one of the
ways included in the category "other" (mostly sent for consultation). To be specific,
the data analysis performed on dataset D1 revealed that the ICD-10 code "Z711",
i.e., "person with feared health complaint in whom no diagnosis is made", was the
fifth by count in the overall ranking of the most represented individual ICD-10 codes.
In most cases, the ED staff provided basic and immediate cures for these patients if
the health conditions were life-threatening, and then the patients were redirected to
specialized clinics.
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For what concerns age, it was selected by two in four runs of automatic covariates
selection for both q34 (ED to home) and q35 (ED to ward). One possibly reasonable
explanation for this output is that several young patients sought help from the ED
because of intoxication and poisoning, thus requiring immediate care and becoming
transferable to hospital wards or intensive care units relatively soon (short LOS within
the ED) due to the ease in understanding the causes of their health conditions, whereas
several elderly patients visited the ED for very simple needs (e.g., disorientation)
but could not leave the hospital facility until an ambulance or other special means
of transportation would be available for bringing them home or to an elderly care
home (prolonged LOS within the ED). This scenario would be compatible with the
presence of two age peaks in the age distribution plotted in figure 2.1a.

• Lastly, the covariate K, which refers to diseases of the digestive system, was selected
five times and at least once by each of the runs of the COSSAC algorithm: once
on q34 (ED to home), three times on q35 (ED to ward), and once on q36 (ED to
other). It seems to be the variable that most clearly describes LOS variability in the
model, especially concerning the patients discharged from the ED for being admitted
to a ward. This might be because, on average, more than half of the patients to
which an ICD-10 code starting with "K" was assigned had "abdominal pain" as chief
complaint, which is reasonably affected by great LOS variability due to how various
the causes of such pain could be and to the difficulty to evaluate them.

Covariates selected twice

Among the 12 selected covariates, three (25%) were selected twice (see figure 4.1): M
twice on q34 (ED to home), and both MA_unit and A once on q35 (ED to ward) and
once on q36 (ED to other). M represents diseases of the musculoskeletal system and
connective tissues. MA_unit (see A.1) contains the type of medical team whose operators’
skills could be the most suitable to treat a specific patient. A, together with B, refers to
infectious and parasitic diseases. M is chosen by two in four runs of automatic covariate
selection, and for the same transition rate (q34 ). This is reasonable because many of
the patients to which this code is assigned experienced pain and injuries or swelling in
a musculoskeletal district, and it is probable that, in many of these cases, these injuries
did not require monitoring or operations in the ward. In this framework, much variability
can arise since the execution of medical imaging may be necessary, or because there may
be the need to execute surgeries that do not imply admission to a ward but do indeed
increase the LOS.

For what instead concerns MA_unit, its impact was never selected as significant for
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the transition rate q34 (ED to home). Without receiving feedback from clinicians and
hospital management about this specific result, it would be difficult to discuss whether
this is meaningful or not without risking to end up producing foundation-less speculation,
especially since the parameter in question is assigned to patients for merely practical
reasons and is thus biased accordingly. Furthermore, since it can potentially take eight
different values, and five of these are largely underrepresented within the population, it
can be difficult to compute the correlation between some values of MA_unit and the
parameters in the model. This last concept, however, is discussed in greater detail in
sub-section 4.1.2.

Lastly, it might be reasonable that the covariate A was never selected for the transition
ratio q34 (ED to home) since it is hard to believe that, among the patients reaching the
ED and being sent home, for many the LOS could show significant variability due to
infectious or parasitic diseases.

Covariates selected only once

Among the 12 different selected covariates, five were selected only once (see figure 4.1):
T, R, and E for parameter q34 (ED to home); AmbYN and I for parameter q35 (ED to
ward). As reported in table 2.1, the covariate T represents cases of poisoning, whereas the
covariate R is associated with generic symptoms or not elsewhere classified pathologies,
and E refers to endocrine, nutritional, and metabolic diseases. Due to the clinical meaning
of these covariates, it can be argued that it is reasonable to find them to be significant
only for q34, i.e., the transition rate from being in the ED to being sent home. This is
because many of the medical conditions to which these codes are applied are diseases for
which the patient can either be quickly seen or treated within the ED and then sent home
(e.g., in case of high blood sugar, high blood pressure, neck pain, or electrical damage) or,
conversely, they are conditions in which the patients show generic symptoms that may
induce the doctors to request sessions of medical imaging to better clarify the situation.
In the latter case, eventually, many of these patients may have minor issues for which the
treatment can be quickly terminated in the ED or continued at home.

Patients with a simplified ICD-10 diagnosis I, i.e., presenting diseases of the circulatory
system, reaching the ED by ambulance, may very reasonably present symptoms and
diseases that in most cases cannot be treated at home in the short term (e.g., cardiac
arrest) and, therefore, the corresponding patients would need to be admitted to a ward.
Consequently, it is reasonable to find such covariates to be significant in terms of variability
of the LOS only for q35 (ED to ward), i.e., the transition rate from being in the ED to
being admitted to a ward.
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An important final consideration for what concerns the clinical perspective behind the
covariates selection regards the variables countIN, countOUT, and countAVG. It is note-
worthy that such indexes of ED crowding were not selected in any of the four proposed
sets of covariates. Although it could be interesting to investigate this matter further, a
probable reason behind this outcome resides in the dependence of these variables on the
crowding of the other wards of the hospital that receive patients from the ED throughout
the year, about which no data were given. Furthermore, since these variables assume the
same value for n patients at a given time, the variance to which they are associated can
be really low, thus leading to a weak statistical power for a potential inference.

4.1.2. Final model assessment

After the employment of the COSSAC algorithm with each of the four selected sets of
covariates on the corresponding training data sub-sample from which such set had been
selected, it was possible to assess the meaningfulness of these aforementioned sets in
helping the model describe the high clinical variability embedded into complex patient
characteristics. The first set of selected covariates includes: T on q34 ; AmbYN, K, and
ScanYN on q35 ; MA_unit and Z on q36. The second set includes: R on q34, K and age
on q35, Z on q36. The third set includes M and age on q34, MA_unit and age on q35 ; A,
K, and ScanYN on q36. Lastly, the fourth selected set includes: E, K, M, ScanYN, and
age on q34 ; A, I, K and Z on q35 ; Z on q36.

With all the sets of covariates, the model showed good R.S.E. on all the clinically meaningful
estimated population parameters, normally distributed NPDEs with symmetry around 0,
and a considerable improvement in the values of the likelihood indicators when comparing
them to the ones in the corresponding run without covariates with the same dataset.
However, these models also showed some problems in the computation of the effects of the
covariate MA_unit for seed n°1 and seed n°3 and a non-computable condition number for
the seeds 1, 3, and 4. Nevertheless, the latter issue was only related to the small sample
size of the employed "training" data sub-sets since the condition numbers could then be
properly calculated when a larger sample was applied to Markov Chains models with
the same sets of covariates, as discussed in the last part of this sub-section. Remarkably,
according to the output of the estimation runs performed with the selected covariates, again
on the training sets of data, it was already possible to easily have a hint of which covariates
could probably be removed to improve the model, in other words, number_of_scans and
times1Year, starting from the analysis of the estimated parameters. The ease and accuracy
of such early feedback constitute a powerful advantage of the approach employed in this
thesis.
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Validation

With the knowledge gathered and discussed so far in section 4.1, it was thus possible
to test the four sets of covariates on a larger data sub-sample, containing 5031 patients
and independent of the other sets. Once again, the random effects achieved with all the
four sets of covariates resulted normal and uncorrelated, and the NPDEs normal and
symmetric around 0. On such a larger data sample, it was also possible to compute the
condition number in all four cases, but its value clearly indicated overfitting with the first
and the third sets of covariates, and the first model also showed high R.S.E. on some of
the estimated parameters.

Grouping the information given by the condition number together with the hints that the
estimations on the training data sub-sets had produced at an earlier stage regarding the
potential need to remove MA_unit from the sets of covariates led to a confident belief
in the need to perform a-posteriori exclusion of such a covariate from the models 1 and
3. Since a new testing execution for these two models, this time without the covariate in
question, produced a good condition number in both models 1 and 3, the goodness of the
performed covariate exclusion was confirmed.

At this stage, it became possible to evaluate the best performing sets of covariates, so to
be able to propose a final model. The model that included the fourth set of covariates
was the one achieving the best values of the likelihood indicators but at the cost of a
relatively high condition number (98.01), which posed the reasonable question of whether
such a model was overfitted or not. By looking at the plot of the individual parameters
estimated with this fourth model (see figure 3.12), however, it was possible to see two
separated peaks in the estimation of the parameter q35 (ED to ward), which had never
happened in any of the other estimations. Due to the presence of such a second peak, the
high condition number, and the highest number of covariates included in the model, it was
reasoned that the latter was overfitted, or at least the worst in terms of generalization,
thus it was excluded. It was also possible to exclude the third model since it showed the
worst values in terms of likelihood indicators and the second-worst condition number after
the one scored by the fourth model.

With only two models left, these were compared not only in terms of likelihood values,
better in the second model, and in terms of condition number, better in the first model,
but also in terms of the number and quality of the covariates included in each of the two
models. Specifically, the first model included five covariates (without MA_unit), two of
which were not selected in any other model during the execution of the COSSAC algorithm.
Conversely, the second model included only four covariates, three of which were exactly
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the three most selected ones by COSSAC. Two of such covariates had been selected by the
algorithm also in two other models, and one had been selected by the algorithm also in
another model. To conclude, it was reasoned that, taking into consideration likelihood,
condition number, quantity and quality of the covariates and, thus, level of generalization,
the best model was the second one. The population parameters estimated with this model
from the testing data sub-set can be seen in figure 3.13. This last discussed aspect is
representative of how difficult handling this kind of real-world data can be since insidious
effects can arise, and the modeling decisions must be made only after carefully evaluating
several factors, which can sometimes be conflicting. Finally, concerning the values of the
relative standard error achieved by the best model (figure 3.13) and presented in section
3.3, obtaining a larger R.S.E. (14.60 %) on the effect of having an ICD-10 code beginning
with "R" ("beta_q34_R_1") can even be considered as a positive outcome. Indeed,
this is positive because it is very likely an indicator of the model being sensitive to the
higher generality of a specific group of patients. Moreover, since such a group is the one
associated with generic symptoms ("Not elsewhere classified" according to table 2.1), this
becomes particularly meaningful. In this context, the extreme over-representation of the
class in question should not be seen as an indicator of poor data quality but as additional
proof of the entity of clinical complexity and variability.

4.2. Value of the approach

Nonlinear mixed-effects modeling is not commonly employed to evaluate the impact of
clinical covariates on logistical outcomes in the context of process modeling. However,
since the execution of a preliminary data analysis revealed high complexity in patient
characteristics (sub-section 2.1.2) and data sparseness on some of the variables, and since
the assessment of the conventional approaches showed several relevant limitations that
these face when trying to properly describe the variability embedded into the data, it
was reasoned that the employment of a mixed-effects modeling approach would have
helped to design an effective process model, by allowing the modelers to differentiate
among the covariates that are relevant and significant for each of the modeled state
transitions, thus creating a bridge between the domain of covariate analysis and the
one of logistical simulation modeling. Furthermore, given that nonlinear mixed-effects
modeling has no requirements for "rich" or "dense" data, nor for it to have any particularly
structured sampling time [16], it was also reasoned that the employment of a mixed-effects
modeling approach would have made the designed model less affected by data sparseness
than if using more conventional approaches. Moreover, the modeling techniques that
are traditionally applied to health logistics data tend to select a pool of patient and
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system characteristics and apply them to macro sections of the model without allowing
neither for much differentiation among the covariates that are relevant and significant
for each of the modeled state transitions nor for the consideration of potential random
errors. Conversely, a nonlinear mixed-effects model incorporates both fixed effects and
random effects" [28], and allows extracting insight from the data using a population
approach [16], which is able to fit one model to data coming from all the subjects without
losing the notion of individuals, thus allowing to investigate the sources of variability very
specifically by discriminating between inter-individual and intra-individual variability [16].
The ability to estimate variability and covariate effects is relevant and powerful for this
area of application.

The employment of the approach used in this thesis also answers the research question
related to understanding the impact of complex patient characteristics on ED logistics
concerning the effect that the covariates underlying such characteristics produce on the LOS.
Due to limitations deriving from the available data and the system’s complexity, however,
at the current stage of the work, it is not possible to clearly state whether or not such
patient characteristics affect specific aspects of the overall ED logistics. Nevertheless, this
thesis tries, to a certain extent, to simultaneously study the effect of patient characteristics
on the logistics and characterize the logistics according to patient characteristics. On
the one hand, it employs the logistic output, in terms of LOS, to trace this back to the
underlying patient characteristics. On the other hand, the deriving acquisition of prior
knowledge about the probable implications of the arrival of a new patient with specific
characteristics has the potential to be employed in the future either for better informing
operational research or for practical implementations in the hospital settings. Despite this,
some challenges, discussed in section 4.3, are yet to be overcome.

4.3. Limitations

In this section, this thesis’s boundaries and limits are described, both regarding the chosen
approach and for what concerns the encountered technical implementation challenges.

4.3.1. Uncertainties in the approach

• The model in this study does not represent the real system in all its fine details
and is not meant to emulate the real system in its full complexity. Conversely, an
empirical process model was inferred directly from the real clinical data, achieving
to model the real system in a simplified way so that it could be suitable for potential
future testing of optimization procedures. Moreover, the boundaries of modeling
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and analysis were limited to the emergency department and to what concerns the
employment of the imaging department for patients belonging to the ED.

• Elements such as the impact of teamwork and subjective personal interactions among
clinicians, and the impact of potential biases towards some specific classes of patients,
have not been explicitly considered for the inference of the model. To be more
specific, the limits of the model in this sense are mostly limited to the data itself
since no assumptions regarding other knowledge have been made.

• The recent history proved that sudden and unexpected macro-scale events, e.g., a
global pandemic, can drastically change the functioning and the equilibrium of the
healthcare systems in all their components, despite these being usually stable and
consolidated otherwise. Therefore, since the process model elaborated in this thesis
does not introduce any automatic parameter update over time if the conditions of
the system change, further study might be needed to compare the post-pandemic
behavior of the ED of Akademiska sjukhuset to the pre-pandemic one, which is
the one represented in the data employed in this thesis. However, despite the
impossibility of studying some nonlinear effects such as overcrowding, an attempt
was made to address this specific factor by considering the effect of the covariates
countIN, countOUT, and countAVG.

• No real dataset is realistically devoid of outliers among the data it contains. A
process for outlier removal was not performed explicitly in this work on the values
of LOS, and it could be relevant to include such an activity in the pre-processing
procedure for future works with the approach proposed in this thesis. Anyway, the
lack of such an outlier removal was partially mitigated by making sure that the data
samples employed in this thesis for training, testing, and validation, were stratified by
proportionate allocation of the values taken by simple_diag and balanced according
to the remaining covariates, as can be seen in figures 2.4 and 2.5. Moreover, as shown
by figure 2.1b, the empirical distribution of the LOS in dataset D1 accurately follows
a log-normal probability density function. Therefore, it is implausible that the value
of the length of stay could take extreme values for a considerably high count of
patients in such a dataset. All that said, despite a process for outlier removal could
be relevant for future work, at least for what concerns the scope of this thesis, the
effect of the outliers on the designed model can be neglected.
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4.3.2. Technical implementation challenges

The main technical implementation challenge was related to the high computational
demand of the employed approach, which directly impacted this thesis in two ways:

• From the former population of patients visiting the ED during 2019, constituted
by 49 936 entries, the dataset had to be considerably sub-sampled to study the
feasibility of several modeling techniques and their possible variations without an
excessive time expense. For this purpose, it was decided to parallelize the approach
for the initial model exploration and later training purposes by using four samples
of ∼ 933 patients each, instead of a single and much larger sample, whereas a larger
sample, i.e., composed by 5031 patients, was used for testing and validation.

• The number of possible states and possible transitions included in the model had to
be carefully designed in order to not further extend computational times. Therefore,
the transition from state 1 to state 3 and the one from state 2 to state 3 were not
designed in a way that would give them any clinical or logistic meaning, so that it
could be possible to avoid estimating random effects and parameters distributions
for the parameters corresponding to such transitions.

A second technical implementation challenge was then given by the software chosen
for implementing a nonlinear mixed-effects approach. This is due to the considerable
differences between the intended use of the software and the readaptation that was operated
in this thesis to be able to apply it to modeling patient flow instead of pharmacokinetics.
To be specific, the main software-related implementation challenges were concerning the
interpretation of the initial conditions for the Markov Chains model and the slowness of the
software in dealing with large datasets since the available ones are much larger than what is
usually employed in pharmacokinetics. Monolix GUI certainly showed several advantages
of implementation. Contextually, however, for what concerns the computational slowness,
it also introduced the limitation of not being able to design a parallelization of the runs
through its GUI. Therefore, to facilitate the experiments for this thesis, two separated
devices were used simultaneously to run the sessions of parameters estimation, so to
increase the number of tests that could be successfully carried out on each day of work.
The two employed devices are a computer server (Intel(R) Xeon(R) CPU: E5-2630 v2 @
2.60 GHz, 64 bit processor. RAM: 62GB), and a laptop (MacBook Pro 15’ 2016. CPU:
Quad-Core Intel Core i7 @ 2,60 GHz, 64 bit processor. RAM: 16GB. GPU: AMD Radeon
Pro 450, 2GB VRAM).

Lastly, another important technical implementation challenge resided in the goal of
designing a model informed by real data since this implied having to deal with high clinical
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variability and with the possibility that there could be missed data points or wrongly
registered information in the datasets obtained from the healthcare provider.

4.4. Exclusion of modeling techniques

The purpose of this section is to briefly discuss the other modeling techniques and ideas
whose implementation was attempted in this thesis (see section 2.4), addressing why they
were early discontinued and, consequently, no actual modeling was performed with such
techniques.

For what concerns the Time-To-Event approach, introduced in sub-section 2.4.1, the
approach itself looked applicable and meaningful. However, it was reasoned that this idea
would not have exploited the full potential of the nonlinear mixed-effects modeling, and the
outcoming process model describing the relationship between the length of stay and the
covariates would not have helped to evaluate the impact of complex patient characteristics
on the logistics of the ED system more than what a multiple regression approach would
have done. Accordingly, this approach was discarded.

Concerning the longitudinal model on day-wise time of arrival, introduced in sub-
section 2.4.2, the CC was used as the identifier onto which to group the entries, i.e., the
observations associated with a patient with the same CC were interpreted by the employed
software as coming from the same "individual". Due to this choice, however, the volume
of information used to estimate the parameters was unbalanced among different chief
complaints because of the high variability in terms of patients count by chief complaint
(see sub-section 2.1.2). Therefore, the resulting model building would have very likely been
skewed by producing strong assumptions on the chief complaints for which the count is
high, whereas for several pathologies represented by small patient counts, e.g., "Abstinens",
the estimated random effects would have very likely been too preponderant. In this case, it
was reasoned that the technique in question could be meaningful in other similar situations,
e.g., if the scope of the analysis would aim at focusing exclusively on the most represented
sets of chief complaints. Given that this is not the research question of this thesis, the
attempts with this technique were also discontinued.

Lastly, for what concerns the longitudinal count data on hour-wise yearly time of
arrival, introduced in sub-section 2.4.3, the step that followed setting up the dataset for
this approach, i.e., the design of the structural model, revealed itself to be particularly
challenging in terms of formulation. Furthermore, further analysis of the data revealed
that this approach would not have had any real meaningfulness for this thesis since, as
mentioned in section 2.1.3, no significant crowding variability seems to exist throughout the
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year in the emergency department of Akademiska sjukhuset. It was reasoned, however, that
the technique in question still deserves mention in this thesis since it could be meaningful
to use it for other related engineering issues, e.g., characterizing the variability between
day hours and night hours in the logistics of an ED.

4.5. Future work

Due to the technical implementation challenges discussed in sub-section 4.3.2 and to the
novelty of this approach, which required a careful and time-consuming exploration of the
possible modeling techniques, a substantial part of the potential of the employed approach
was exploited, but there would still be good margin for further studies. Therefore, to
provide the reader with an advantageous starting point for further testing and application
of the approach employed in this thesis, the focus in this section will be on the most
important issues that should be addressed in future work.

First of all, a supplementary validation could be performed after having obtained sets
of covariates like the ones shown in sub-section 3.2.3. Starting from the parameters and
their distributions extracted from the real data according to the procedure followed in
this thesis, the second validation would consist in generating a new population of patients
based on these parameters for simulating their flow through the designed Markov Chains
model and, consequently, calculating their length of stay. Then it would be possible to
compare such simulated LOS with the one related to the real patients.

Afterward, the employed approach, which focused on patient flow modeling, could be
used to inform operational research, with the advantage that the latter would allow the
healthcare leaders to identify bottlenecks and answer "what-if" questions about real-world
scenarios without having to face the costs and dangers of performing “trial and error”
intervention on the real system. Among the techniques described in section 3.1, Discrete
Event Simulation modeling or Agent-based Simulation modeling could be suitable choices
for this purpose. To undertake the path of operational research, information regarding
staffing, resources, and their utilization, would be needed to be able to properly design a
simulation model. Since this kind of information was not included in the data, it was not
possible to implement a DES or an ABS model in this thesis, and such implementation is
thus highly recommended as potential future work.

Concerning the challenge in parallelizing the computation through Monolix GUI, which
was discussed in sub-section 4.3.2, a future project could consist in designing such missing
feature, or rather in re-writing the whole code from scratch. The latter approach, however,
would be time-consuming due to the need to write a function for defining the NLME
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approach and one for implementing the COSSAC algorithm, as well as to design the
Markov Chains model with the parameters obtained through the application of NLME
and COSSAC functions, and to finally optimize the code.

For what instead concerns the selection of the most significant covariates for each parameter
and each transition, it would be meaningful to perform a sensitivity analysis to compare
the results achieved with the COSSAC algorithm (see section 2.6) to what would be the
output of more traditional selection techniques, such as "Lasso regression", which has
already been applied for covariate selection in mixed-effects modeling [55], or machine
learning feature selection techniques, e.g., "Boruta feature selection" [56]. Moreover, it
could be possible to unfold some of the most represented ICD-10 codes from the grouping
by macro diagnostic area used in this thesis and compare the potential new model with the
previously validated one. This could allow for investigating some patient characteristics
that are currently not distinguishable due to the grouping.

Lastly, time-varying covariates could be introduced in the NLMEM formulation to account
for the potential yearly variability within the system. Moreover, a covariate describing
whether the arrival of the patients to the ED happens during the daytime or overnight could
be added since several hospital wards do not admit patients during the night. The latter
covariate could help further separate potential LOS variability deriving from the hospital’s
logistics from the LOS variability related to the patient characteristics. Additionally, since
the data regarding patients entering the ED from June to August were excluded from
the process model design, a new model could be generated just with the data coming
from the three months in question. This would allow comparing such a scenario with
the results produced with the data coming from the rest of the year. Alternatively to
the latter possibility, a covariate describing whether the arrival of the patients to the ED
happens during summer or the rest of the year could be added. Consequently, the effect of
understaffing of the ED could be accounted for, and dataset D1 could thus be used almost
in its entirety.
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In this thesis, mixed-effects modeling, an approach typically used in pharmacometrics,
was applied to hospital medical records. Within the chosen approach, a Markov Chains
model of patient flow that could capture and describe the impact of patient complex
characteristics on the logistics of the emergency department was designed, tested, and
validated. This was done with the purpose of establishing a bridge between logistical
systems and the clinical insights of the hospital, which is particularly challenging due to
the difficulty in dealing with high patient volumes and high clinical variability embedded
into real clinical data. Accordingly, this work aimed at improving the understanding of
how such data could be better exploited for healthcare modeling to potentially achieve a
better organization of the hospitals in the future, and it managed to develop an approach
for estimating covariate effects on parameters linked to the process description in the
emergency department. Furthermore, due to how much the performance of the emergency
department affects the functioning of the other hospital wards and, indirectly, healthcare
systems and communities at large, the technique applied in this thesis, as well as the
deriving model, were designed so that they could become the starting point for future
operational research studies aiming at testing length of stay optimization procedures on
the emergency department.
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A.1. Explanation of the variables

This section presents and describes the variables composing the two acquired datasets (D1
and D2). Whereas "contact_id" and "person_id" are respectively a case identifier and
a patient identifier, as it is described in sub-section 2.1.1, "municipality" refers to the
municipality of residence of each patient, and no explanation for the variables "sex" and
"age" is needed.

"ARRIVAL_DATE" in dataset D1 and "Contact_Start" in dataset D2 have the
same meaning, which consists of the date and time at which each patient entered the
ED. Similarly, both "DISCHARGE_DATE" in dataset D1 and "Contact_End" in
dataset D2 consist of the date and time at which each patient left the ED. Contextually,
"arrival_method" describes whether a patient reached the ED by ambulance or by other
means of transportation, and "reason_for_discharge" consists of the explanation of
the reason because of which each of them left the ED. The list of these possible reasons is
shown in table 2.3.

"first_doctor_contact_date" refers to the date and time at which each patient was
visited by a doctor or dentist, or medical student for the first time after having entered the
ED, where the variable "contact_type" describes which of these three kinds of healthcare
providers performed such a first visit for each patient. "last_doctor_contact_date"
refers to the date and time at which each patient was visited by a healthcare provider among
the kinds mentioned above for the last time before leaving ED in one of the possible ways
that are shown in table 2.3. Through Python programming, it was possible to determine
that for 36 462 patients (73,02% of the total) the variable "last_doctor_contact_date"
assumes the same value that the variable "first_doctor_contact_date" shows, i.e., these
patients were visited by a doctor, or dentist, or medicine student only once before leaving
the ED.

"priority" is supposed to refer to whether patients had life-threatening conditions that
granted them an overriding over other patients. However, feedback coming from experts of
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Akademiska sjukhuset revealed that the hospital did not have a clear and unified protocol
for when the healthcare providers had to write a patient in the registry as a priority
patient. It was thus advised by the experts against making use of such parameter for
modeling the process. "triage" refers to the triage category to which each patient was
assigned according to Akademiska sjukhuset’s 2019 triage system. An analysis of the
possible values that this variable could take during 2019 and a consultation of experts
from the hospital revealed the existence of six levels: "RED" for the patients in need of
immediate and continuous monitoring, "ORANGE" for those who needed monitoring or
surveillance every 20 minutes and to be seen by a doctor within 30 minutes to 60 minutes,
"YELLOW" for those who needed monitoring or surveillance every hour and to be seen by
a doctor within two hours, "GREEN" for those who needed monitoring or surveillance
every two hours to four hours and to be seen by a doctor within four hours, "BLUE"
for those who needed monitoring or surveillance every four hours and to be seen by a
doctor within four hours, "WHITE" for those whose triage surveillance process was over.
However, the same experts from the hospital referred that it was common during 2019 not
to have a systematic way of reporting the updates of the triage color over time, and thus
they advised against making use of the parameter in question for modeling the process.
"triage_level" is the numerical coding of the variable "triage", where 1 is assigned to
the "RED" codes, 2 is assigned to the "ORANGE" ones, 3 to the "YELLOW" ones, 4 to
the "GREEN" ones, 5 to the "BLUE" ones and 6 to the "WHITE" ones. However, by
computing the count of patients assigned to each of the levels, it was found that to no
entry in dataset D1 the "BLUE" code seems to be assigned. However, a consultation with
an expert from Akademiska sjukhuset revealed that the protocol for all the patients with
a "BLUE" code was to re-record the triage level when their need for monitoring ceased,
i.e., when the newly assigned code would have been "WHITE".

"MA_unit" refers to a label assigned to each patient during the first contact with a
doctor. This label indicates the type of medical team whose operators’ skills were thought
to be the most appropriate to treat a specific patient, whereas "team_care_contact"
refers to the actual medical team to which each patient was assigned, e.g., Acute care
team ("akutteam") or Medical team 1 ("Med team 1").

"cause_of_visit" refers to the "chief complaint" that was assigned to each of the patients.
An explanation of what is a chief complaint is provided in sub-section 2.1.2, whereas the
distribution of this variable among the patients can be seen in figure 2.2. Contextually,
"main_diagnosis" refers to the formal classification given to each patient according
to the "ICD-10" classification of their main diagnosis. An explanation of what is an
ICD-10 code is provided in sub-section 2.1.2, whereas a grouping of the patients by macro
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diagnostic areas thanks to a simplification of the ICD-10 codes to their first letter can be
seen in table 2.1.

"LoS_hours" in dataset D1 and "duration_contact" in dataset D2 have the same
meaning, which consists in the value of the metric "Length of stay", whose meaning is
explained in sub-section 1.1.1, expressed in hours.

"RegistrationDate" indicates on which date and at which time a doctor requested the
medical imaging session. "ExaminationDate" indicates on which date and at which
time the medical imaging session was performed. "ReportDate" indicates on which date
and at which time the outcome of the performed medical imaging session was written in
the hospital’s electronic record.

"RadiologyInvestigation" describes which type of medical imaging was performed and in
which body district. The entries for which "RadiologyInvestigation" only mentions a body
district consist of sessions of x-ray imaging; for the other entries, the type of performed
medical imaging is also specified.

"Contact_Status" consists of a categorical variable meant for declaring whether the
corresponding medical imaging session was actually performed or not. By analyzing the
whole dataset D2, it was possible to observe that all the listed sessions were performed.
"Radiology_Status" indicates whether the corresponding entry refers to a partial de-
cision or to a final decision over the outcome of a performed medical imaging session.
"Contact_Type" from dataset D2, which has a different meaning than the variable
"contact_type" from dataset D1, explains the type of the corresponding medical contact
for imaging purposes. The count of entries by "Contact_Type" was performed, and it
resulted in 53 408 entries being labeled as "reception visit" ("Mottagningsbesök"), 110 as
"activity" ("Aktivitet"), and 34 as "consultation" ("Konsultation").
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Figure B.1: Code for the 6-states CTMC structural model.
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