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Abstract

The objective of this research is to detect non-epidemiological regional factors that predict
the covid-19 cases density during the first two waves of the pandemic over the European
Union. In particular, we compare two approaches to do so: a pipeline of low complexity
that provides intuitive results such as association rules, and a geostatistical approach that
provides richer insights.

First, we propose a general pipeline that uses dichotomic data in order to evaluate different
factors and their interactions to find association rules of a general risk level. We find that
the significant rules found contain factors recognized by literature, while also discovering
group effects. The relevant features are related to demography (population density and
life expectancy), healthcare (available hospital beds and health personnel in the first wave,
and long-term care beds in the second wave), economy (amount of hours worked in the
first wave, and growth rate of regional GVA in the second wave), and mobility (stock of
vehicles in the second wave).

Second, we perform a geostatistical analysis that considers the spatial factor of neighboring
regions, by using variogram modelling and performing LISA clustering. We find that life
expectancy, along with economical factors, such as growth rate of regional GVA and
unemployment rate (the latter in the second wave only), and educational factors, such as
participation in education, NEET rate and early leavers from education, can be associated
with the development of COVID-19 spread. The model however explains regions with
lower densities better than the most critical ones, and spatial dependency is not as evident
as expected, possibly due to the amount and distribution of the observations.

We conclude that, in an application such as COVID-19 spread over a continent, a simple
approach provides an easier understanding regarding interacting factors, but we need to
consider the geographical factor, hence the two approaches studied are best used together
in order to gain interpretable but also rich insights.

Keywords: covid-19, lasso selection, association rules, geostatistics, variogram modeling,
lisa clustering





Abstract in lingua italiana

Questa ricerca ha l’obiettivo di trovare fattori regionali non epidemiologici che possano
predire la densità di casi di COVID-19 nelle prime due ondate della pandemia nell’Unione
Europea. Questo viene effettuato tramite due approcci: uno che mina regole di associ-
azione, e uno che impiega strumenti di geostatistica.

Anzitutto, si generalizza una pipeline che usa dati dicotomici per valutare diversi fattori
e le loro interazioni, per trovare regole di associazione di rischio. Le regole più significa-
tive comprendono fattori validati nella letteratura, mentre emergono anche interazioni di
gruppo. I fattori significativi includono variabili demografiche (la densità di popolazione e
la speranza di vita media), la robustezza del sistema sanitario (la quantità di letti disponi-
bili e l’ammontare di lavoro del personale competente per la prima ondata, nonchè i letti
di cura a lungo termine per la seconda), l’economia (la quantità di ore lavorate per la
prima ondata, e la tassa di crescita del VAL regionale per la seconda), e mobilità.

Successivamente, viene compiuta un’analisi geostatistica che considera il fattore spaziale
delle regioni vicine, usando modellazione di variogrammi e LISA clustering. Ne risulta
che la speranza di vita media, fattori economici (il tasso di crescita del VAL e il tasso di
disoccupazione nella seconda ondata) e fattori educazionali (partecipazione all’educazione,
percentuale di NEET e quantità di giovani che abbandonano prematuramente istruzione
e formazione) possono essere associati con lo sviluppo della diffusione del COVID-19. Il
modello risultante spiega in modo migliore la risposta delle regioni con meno densità di casi
rispetto alle regioni più critiche. Inoltre, la dipendenza spaziale è meno evidente di quanto
atteso, possibilmente a causa della quantità e distribuzione spaziale delle osservazioni.

In conclusione, un approccio semplice offre maggiore comprensione sui fattori che in-
tervengono. Tuttavia, non si può escludere la considerazione del fattore geografico. Si
dimostra più conveniente adottare i due approcci studiati in combinazione, con l’obiettivo
di trovare risultati tanto interpretabili quanto significativi.

Parole chiave: selezione lasso, regole di associazione, geostatistica, modelazione di var-
iogramma, lisa clustering
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Introduction

Motivation

COVID-19 is nowadays a wide topic to study from, which has provided the unprecedented
advantage of having large amounts of available data, for example at the level of regions,
where we consider non-epidemiological data, which is socio-economic information as com-
plementary information. In the case of the European Union (EU), we can combine the
long-term initiative of storing public social-demographic data at a high level of granular-
ity, with the recent unified measure of sharing records of COVID-19 positive cases with
detail over time and space.

Epidemiological data must be combined with other relevant factors, in order to try to
understand the COVID-19 spread [28]. Moreover, these relevant factors must be correctly
identified in order to detect control opportunities for either prevention or response to
an outbreak. Some efforts have been made for global datasets where factors are related
to intervention measures. This study focuses on the european continent and the factors
considered are the pre-pandemic regional context.

The motivation of this study is to detect the role of complementary predispositional
characteristics that can shed light on preemptive policies for a further preparation towards
a potential future outbreak. Contextual vulnerability can be corrected if opportunities
for action are detected, which can be more valuable when found early enough to perform
long term measures for some necessary cases.

Objective

It is of particular interest, when it comes to regional information that could have a role in
the pandemic, to predict a risk level that can help preparing the right measures. This has
two important aspects, the first being the capacity to foresee the accurate risk in order to
decide whether the situation will be influential or not, and the second being the capacity
to detect important factors that explain and predict such risk in order to know how to
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manage the situation when it is necessary.

We consider the COVID@Lombardy dataset [8], that considers regional social-demographic
data of the EU. In this case, we are interested in finding groups of interacting factors that
can reduce or increase the risk of having a high infection rate in the region. There is
evidence that sanitary, educational and demographic characteristics of the region can ex-
plain the difference of infection rates detected during the first and second waves in the
2020 outbreak.

The first approach considers using a proposition of a more general pipeline for dichotomic
data that has the advantage of being intuitive, even if it is at the trade-off of predictive
power. Intuition can be specially powerful to highlight clearly important characteristics
in order to make political decisions, or investigate further in social sciences, since they
are disciplines that can go further into qualitative analysis more than quantitative as in
statistics.

The second approach, instead, considers geo-statistical analysis, which is more complex
but attempts to make richer insights over the data. In this case, we add location informa-
tion of the regions to the dataset, and hence we can evaluate a spatial factor as possible
effect. Since this regards regional data, it is intuitive to take into account the distance
between the regions, or the overall location of each region.

Through this work, we attempt to contrast both methods and their results analyzing this
particular dataset. This way, we consider the points of strength and weakness of each,
while we verify if their results are too similar or different, in case they are able to provide
richer results when combined.

Outline

This work is presented as follows. Chapter 1 regards the original dataset description
and exploration. Chapters 2 and 3 explain each the entire process for each approach,
which covers the data pre-processing, explaining the methodology of each pipeline, and
presenting the obtained results along with a discussion and final observations for further
research opportunities. Chapter 4 presents the contrast between approaches and final
conclusions of the overall work. The appendices show complementary results for further
detail in each approach.

This work was performed using a Python notebook for the association rule mining ap-
proach, and an R script for the geo-statistical analysis approach. All code and saved files
are available on GitHub: https://github.com/fpjaa/geostats-covid.

https://github.com/fpjaa/geostats-covid
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1.1. Data presentation

The COVID@Lombardy dataset recovers data from 144 european regions, in 19 countries,
in which the number of cases reported by the authorities could be considered reliable. The
case density of each wave is registered, where we find:

• The first wave is considered between March 1st and August 20th in 2020.

• The second wave is considered between August 20th, 2020, and February 20th, 2021.

There are also measurements of 23 factors grouped in Education (5), Population (5),
Healthcare (4), Mobility (2), Primary sector (2) and Economy (5). They are described
by group order:

1. Early leavers from education and training: Percentage of people between 18 and 24
years old who left school, university or training classes after having started them,
over the total number of people who joined schools, universities and training.

2. Students enrolled in tertiary education by education level programme orientation:
Total number of students (independent from sex and age) enrolled in tertiary edu-
cation schools.

3. Young people neither in employment nor in education and training: Percentage of
people from 15 to 24 years old who are neither studying nor working over the total
number of people of that age. Also abbreviated as NEET rate.

4. Participation in education and training: Percentage of people between 25 and 64
years old who, in the last 4 weeks, has participated in educational and training
activities.

5. Pupils and students enrolled: Total number of students (independent from sex and
age) enrolled in school.

6. Life expectancy: Years of life expectancy for a person.
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7. Population density: Density people per square kilometer.

8. Population: Total population of the region.

9. Causes of death crude death rate: Deaths per 100,000 inhabitants, recorded in
the population for a given period divided by population in the same period. Also
abbreviated as death rate.

10. Deaths: Total number of deaths in each region.

11. Hospital discharges for respiratory diseases: Total number of people who left the
hospital after having suffered from respiratory diseases.

12. Long term care beds: Relative number of long term beds available for every 100.000
inhabitants.

13. Health personnel: Total health care staff active in the health care sector (doctors,
dentists, nurses, etc.).

14. Available hospital beds: Relative number of available hospital beds per 100.000
inhabitants.

15. Air passengers: Total number of passengers carried in the region in thousand scale.

16. Stock of vehicles: Total number of vehicles present in the region.

17. Farm labour force: Total agricultural labour force, expressed in persons and in
Annual Work Units (AWU, corresponds to the work performed by one full-time
worker).

18. Utilised agricultural area: Total land utilised for farming, occupied by the main
agricultural land uses (arable land, permanent grassland and land under permanent
crops).

19. Unemployment rate: Percentage of unemployment.

20. Employment thousand hours worked: Total sum of hours worked by employees in a
certain area, in scale of 1.000.

21. Real growth rate of regional gross value added (GVA) at basic prices: Percentage
change of GVA against the previous period. Also abbreviated as GVA growth rate.

22. Compensation of employees: Total sum of the compensations of all the employees
of a certain area in million euros.

23. GDP: Gross Domestic Product (GDP) at current market prices in million euros.
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1.2. Exploration analysis

First, we look at the behavior of the responses and features using box plots. Regarding
the response (see Figure 1.1), which is the case density for each wave, we can find a more
extreme behavior between regions on the first wave, that becomes more balanced on the
second wave.

Figure 1.1: Box plot of case density for each wave.

When it comes to the features (see Figures 1.2, 1.3 and 1.4), we group them by magnitude
to visualize their behavior, and notice that most of the features present only upper outliers,
with few exceptions such as growth rate of regional GVA, life expectancy and crude death
rate. Moreover, life expectancy is the only feature that presents only lower outliers.

Figure 1.2: Box plots of features with smallest values.
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Figure 1.3: Box plots of features with intermediate values.

Figure 1.4: Box plots of features with largest values.

Second, we provide the summary statistics of the features, grouped by type, as presented
in the previous section: Education, Population, Healthcare, Mobility, Primary sector, and
Economy (see Table 1.1).
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Count Mean Std. dev. Min. Median Max.

Early leavers
from ed.

118 11.766 5.385 1.4 10.55 27.0

Ter. ed. stud. 115 80688.626 100353.430 521.0 50211.0 713715.0

NEET rate 122 12.3834 6.224 3.5 10.5 33.6

Particip. in ed. 122 10.351 6.384 0.6 9.8 30.8

Pupils enrolled 125 127157.56 137216.813 1978 78218 831044

Life expectancy 104 81.452 3.002 73.7 82.3 85.8

Pop. density 125 457.937 1106.534 3.4 118.3 7526.7

Tot. population 141 2541890.894 2784562.194 29884 1611621 17947221

Death rate 125 1038.286 260.940 286.69 1017.94 1998.32

Total deaths 141 26201.738 28023.403 266 16658 206479

Resp. diseases
discharges

111 31544.640 26875.601 613.0 24310.0 123067.0

Long-term beds 92 543.871 987.408 0.0 177.97 6320.29

Health person. 118 8814.068 8790.370 222.0 5726.0 47481.0

Hospital beds 113 544.996 403.749 136.47 388.16 2688.020

Air passengers 114 11173.912 18187.845 3.0 3301.0 107991.0

Vehicles 120 1315559.383 1304883.749 0 949033 6967861

Farm lab. force 142 44581.127 53596.199 0 24080 279380

Util. agr. area 142 920012.394 1011654.138 0 592415 5295680

Unempl. rate 124 8.351 5.310 2.2 6.75 27.8

Worked hours 127 1544867.486 1538892.669 28751.89 1083673.4 9742156.29

GVA growth 125 109.002 6.262 94.7 108.7 137.6

Compensation
of employees

125 27992.660 41466.651 719.57 15832.0 382297.39

GDP 125 61514.957 85544.500 1358.82 35255.67 742569.25

Table 1.1: Summary statistics of the data.

Third, we verify the linear correlation score among the features, and between the features
and the responses. From Figure 1.5 we can note that, in general, there are few couples
of factors that show significant linear correlation, mostly positive ans intuitive (such as
total population and total number of deaths), but there is no strong linear correlation
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between the response of any wave and any feature. This can be considered in favor that
there must be a combination of interacting factors that can explain the phenomenon, with
more complex dynamics.

Figure 1.5: Correlation heat map of the data.

In addition, we keep in mind the amount of missing data in the features and response,
where 3 regions have missing values for their case density (see Figure 1.6). However, the
maximum amount of missing values for a feature reaches 36.1% (regions missing the value
of the given feature).
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Figure 1.6: Missing values by features.

Making the analysis by regions instead of features, we note that 90 regions have at least
1 feature with a missing value, with its maximum being 96.67% of its data. We find that
the 3 regions that have a missing value for their response were among the ones with most
of their data missing. Later on, when discarding these regions for the analysis, we note
that the maximum amount of missing data in a region reduces to 60.0%.

We also note that, in general, the lack of data follows from a lack of granularity by country,
given that the “NUTS2” division fits well the division by regions present in Italy, but is
less intuitive for german regions, which have a regional division that fits well the “NUTS1”
logic, which is less granular. Hence, we present the maximum amount of missing features
of the regions from each country, in order to visualize where the information is lacking
most (see Figure 1.7). In this case, we note that there are some countries that have their
regions with at most 1 feature missing (such as Bulgaria, Croatia, Denmark, Romania
and Spain), while the largest amount corresponds to regions in Germany (18), followed
by France (15) and Belgium (11).
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Figure 1.7: Maximum missing values by region.

Another thing to observe are the amount of regions by country that will be taken into
analysis. When discarding the regions without information about the response, we can
see the following amount of regions considered by country. In particular, we have some
countries accounted by just one region (Cyprus, Estonia, Latvia, Luxembourg and Malta),
while Italy has observations for all its regions, which are the largest amount (21), along
with Spain (19), France (18) and Germany (16), that follow in number.

Figure 1.8: Amount of regions by country.
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analysis

2.1. Data pre-processing

In order to dichotomize the data, we formulate couples of target-features, with the fol-
lowing proposed transformations for each:

1. The target variable, which is the case density of each wave by region, is proposed
to be dichotomized in three possible ways:

(a) Classified as either above the mean or under the mean, hence considering when
the density of cases is high relative to the total average of the data as value 1,
and 0 otherwise.

(b) Classified as either above the median or under the median, hence considering
when the density of cases is above the 50% quantile as value 1, and 0 otherwise.

(c) Classified as either above the 90% quantile or under the 90% quantile, hence
considering when the density of cases is exceptionally high relative to the 90%

quantile as value 1, and 0 otherwise.

2. The factors, considering the social-demographic data, is proposed to be dichotomized
in three possible ways:

(a) Classified as either above the median or under the median, hence considering
when each feature is above the 50% quantile with respect to the column as
value 1, and 0 otherwise.

(b) Classified as either out of the IQR or inside the IQR, hence considering when
each feature (column) is outside of the inter-quantile range (IQR) with respect
to the column as value 1, and value 0 when it is inside it.

(c) Classified as either above the IQR or below the IQR, hence considering when
each feature (column) is above the 75% quantile with respect to the column
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or when it is below the 25% quantile. Here we are formulating two columns
instead of one, like in previous cases, where the first column contemplates being
above the 75% quantile as value 1, and 0 otherwise, while the second column
contemplates being below the 25% quantile as value 1, and 0 otherwise.

As we noticed in the section 1.2 of chapter 1, we have 3 regions without data on the
response, so they will be discarded from the analysis. We can visualize the resulting
division of the data in Figure 2.1, were we highlight that the amount of regions to consider
is 141, hence there is no exact division considering the quantiles for cases 2 and 3 of the
dichotomization of the response.

2.2. Methodology

The overall pipeline for factor filtering and grouping is a generalization to the methodology
proposed on the thesis of Antonio Esposito [11]. The overall process is described as follows:

1. We evaluate individual significance by performing feature selection through LASSO.
Performing an LASSO penalized logistic regression, we select the factors that obtain
significant weights, and thereby obtain severity factors with a positive weight, and
mildness factors with a negative weight.

2. Depending on the case, we prepare the dataset by adding the complements of the
significant factors, hence adding as regional factor if the significant variables present
the contrary dichotomic state, with the assumption that they are significant factors
for the contrary response.

3. We evaluate significant interactions between selected factors by performing associ-
ation rules mining and selecting the most significant ones. These interactions are
classified as severity rules if they associate with a high case density response, while
mildness rules are the ones associated with a low case density response.

It is important to note that, for the first two cases of the features dichotomization, we can
formulate its complement, since they are a binary partition of the observations (which we
consider a “1-way division”). This means that when adding these complementary columns,
the sum of the values for each pair of vectors result in a vector of only ones, which will
have a clear interpretation in the association rule mining step. However, for the third case,
we note that the complements of each column overlap, since these consider a partition
between 3 states (where the middle state is having 0’s in both columns, hence we consider
this a “no-middle” formulation). For this reason, we maintain the two columns of the third
case as proposed, and no complements are considered for the association rule mining step.
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(a) Case 1 for target dichotomization.

(b) Case 2 for target dichotomization.

(c) Case 3 for target dichotomization.

Figure 2.1: Data division for each dichotomization case for the response.

The methodology is applied differently considering the stated observation, where the “1-
way” cases add the complementary column of the significant features for the AR mining
stage, while “no-middle” cases do not go through this intermediate step. The scenarios to
evaluate can be illustrated as in Figure 2.2.
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Figure 2.2: Cases diagram for the data pre-processing proposals.

2.2.1. LASSO selection

Lasso l1 regularized logistic regression is often used as an embedded feature selection
for classification problems. Its main advantage is that shrinks the weights assigned to
irrelevant features to 0, and it has been shown to provide strong generalization efficiency
in the presence of many unrelated features. Considering m observations where y(i) ∈
{0, 1} the dichotomic response and x(i) ∈ {0, 1}n the respective covariates vector, logistic
regression models the probability distribution of the class mark y(i) as in equation 2.1.

p(y(i) = 1|x(i); Θ) = σ(ΘTx(i)) =
1

1 + exp{−ΘTx(i)}
(2.1)

The Maximum a Posteriori estimate of the vector of coefficients of the logistic regression
model Θ with a LASSO penalization λ > 0 is obtained by the optimization problem stated
in 2.2.

min
Θ∈Rn

m∑
i=1

−log(p(y(i)|x(i); Θ)) + λ|Θ|l1 (2.2)

First, in order to find the optimal penalization parameter, we tune it providing a grid
of possible values and evaluate the performance of the feature selection using the aver-
age ROC-AUC score obtained through 10-fold cross validation. The ROC-AUC curve
is obtained formulating a confusion matrix that groups group true positives (TP ), false
positives (FP ), true negatives (TN) and false negatives (FN), to later plot the True
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Positive Rate (TPR, in equation 2.3a) against the False Positive Rate (FPR, in equation
2.3b), which gives a score between 0 and 1, where 1 is the best division of the data.

TPR =
TP

TP + FN
,

FPR =
FP

FP + TN

(2.3a)

(2.3b)

Hence, we look for the λ∗ ∈ {λi}i∈I among the provided values of the grid search where
the performance is closer to 1. The values provided are 76 equally spaced values between
10−3 and 102.

Second, we proceed to the selection of features, where we perform the penalized logistic
regression using the chosen parameter, and select the factors with absolute weights bigger
than 0.000001. This way, we consider only significant weights, where positive weights are
considered as individual severity factors (associated with the target response 1 of having
a high density of cases in a specific wave), or individual mildness factors (associated with
the target response 0 of having a high density of cases in a specific wave, hence having a
low density).

2.2.2. Association rules mining

Association rules mining is one of the most popular and well studied data mining tech-
niques, which aims to extract interesting correlations, frequent patterns, associations, or
casual structures within sets of items in transactional databases. Here, we perform class
association rules mining, where we consider the association between a specific class item
(the target, so the item is present where the response has value 1) and the rest of the
items (the rest of the items present, hence all factors with value 1) within all transactions,
which here are the covariates data vectors.

We are looking for associations that appear frequently enough and are strong enough,
hence we take into account 2 main measures, which are support (associated with fre-
quency) and confidence (associated with strength), that go over the observations count-
ing the appearances of X an antecedent (that can be a set of 1 or more items) and Y a
consequent (in our case, the response item). The measures are defined in equations 2.4a
and 2.4b, where #{X} is the count of observations that include the item (or set) X and
Ω is the total amount of observations.
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s(X ∪ Y ) =
#{X ∪ Y }

Ω
,

c(X ∪ Y ) =
s(X ∪ Y )

s(X)

(2.4a)

(2.4b)

In order to find significant groups of interacting factors, or association rules, we perform
the following steps:

1. Determine the minimum support and confidence, in order to formulate all possible
rules that are frequent and correlated enough. For this step, we perform a grid
search providing different support-confidence pairs, and assess the obtained rules
by performing an exact Fischer test on each, and computing the median of their
p-value as a statistic for the entire group. Then we select the support-confidence
pair with the lowest median p-value, in order to explore the group that should have
the rules of most interest.

2. Rule mining with selected parameters, using the apriori algorithm. After mining
the rules, we perform an exact Fischer test for each rule, and filter out the ones
that surpass a maximum p-value threshold, which is obtained by performing the
Bonferroni correction technique. The multiple testing of the rules is performed by
the direct approach.

The apriori algorithm makes the identification of frequent itemsets and the generation
of the rules more efficient by exploiting the anti-monotone properties of support and
confidence. Apriori takes into consideration the itemsets identified as frequent at the
previous pass, and by doing so it results in less generated itemsets, since if an itemset is
frequent, then its subset must be frequent too, as states the property of support in 2.5.

∀X, Y : X ⊆ Y ⇒ s(X) ≥ s(Y ) (2.5)

Then, when all the frequent itemsets have been identified, the anti-monotone property of
confidence can be used in order to reduce the number of candidate rules to be generated,
given the property stated in 2.6, where it considers singular items A,B,C,D, but can be
extended to any amount of items superior than 2 with the same logic.

∀A,B,C,D : c(ABC ⇒ D) ≥ c(AB ⇒ CD) ≥ c(A ⇒ BCD) (2.6)

Fisher’s exact test is used to determine whether two categorical variables have nonrandom
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associations. It is used especially when the sample size is small, and it is based on building
a contingency table, using Ω samples of two categorical variables X and Y , which under
the null hypothesis of no association, the probability of obtaining the observed frequencies
is as in equation 2.7 [15].

Pcut =
Y !Y C !X!XC !

Ω!(Y ∩X)!(Y C ∩X)!(Y ∩XC)!(Y C ∩XC)!
(2.7)

Bonferroni correction technique is used for dealing with multiple testing for Association
Rules, the correction sets the significance level threshold to α

n
with n the amount of tests

to perform [16]. It is a conservative technique, hence the rule filtering is significant.

The most common and successful approaches used for multiple testing for association
rules [20] are presented:

• The Direct Approach applies the correction for multiple testing directly on the
extracted rules, by looking at the same set of transactions used for mining. A
correction that is often used is Bonferroni correction. In this case, the α threshold
is divided by the number of rules to be tested.

• The Permutation Based Approach recalculates the p-value of the rules by randomly
shuffling the class labels of the data. Because the random shuffling breaks the
link between patterns and class labels, the distribution of recalculated p-values is
a close approximation of the null distribution, in which both sides of the rules
are independent. The permutation-based approach preserves patterns’ interactions,
allowing it to find a more precise cut-off p-value threshold than the direct adjustment
method. The permutation-based approach, on the other hand, is very expensive,
having to generate the possible permutations [20].

• The Holdout Approach aims to address the shortcomings of the previous two ap-
proaches. It divides a dataset into two: an exploratory and an evaluation dataset.
The exploratory dataset is used to extract association rules first. The set of rules
with a p-value of less than are then validated using the evaluation dataset. The
p-value of the rules on the evaluation dataset is adjusted using Bonferroni correction
to control false positives at level α, but now the number of tests is the number of
rules with a p-value no larger than α on the exploratory dataset, which is usually
a number orders of magnitude smaller than the number of all rules mined, thus the
holdout approach is expected to have a better chance of discovering rules with a
moderately low p-value. The partitioning of the dataset may have an impact on the
holdout approach’s performance. If a rule only appears in the exploratory dataset
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or the evaluation dataset, it will not be discovered. On the other hand, it becomes
harder for noise rules to turn out significant [29].

As mentioned at the beginning of the section, we choose the direct approach to perform
multiple testing. This is due to the country hierarchy present in the data, which is a
reason to discard having separate training data that even by shuffling could be missing
country-level information.

2.2.3. Output evaluation

Subject analysis

After selecting the significant rules, we use as predictor of high risk that the subject
satisfies one or more rules. According to this, we formulate a confusion matrix, in order
to group true positives (TP ), false positives (FP ), true negatives (TN) and false negatives
(FN). As performance indexes, we use the metrics of precision (defined in equation 2.8a),
recall (defined in equation 2.8b), accuracy (defined in equation 2.8c), and the F1 measure
(defined in equation 2.8d).

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

Accuracy =
TP + TN

TP + FP + TN + FN
,

F1−measure =
2 · Precision ·Recall

Precision+Recall

(2.8a)

(2.8b)

(2.8c)

(2.8d)

Feature analysis

After selecting the relevant features through LASSO selection and formulating the rules
through AR mining, we compare the feature weights from the LASSO logistic regression
model with the placing of said feature in the association rules. This means we are com-
paring the individual estimated risk type from the regression model and the estimated
risk type of the feature within the group of each rule.

This assessment is represented as confusion matrices for a global overview, by either
considering the counts of all the repetitions of the features, or counting each feature only
once. Most generally, it is first assessed graphically by highlighting the features that have
an opposite effect between its weight and the type of rule its found in, since it makes
it able to detect the specific feature that presents a mismatch. In our case, we mark in
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bold the features that present a mismatch in the listing of the rule, and explicit it when
presenting the confusion matrix.

2.3. Results

The LASSO selection procedure is done separately for each wave, hence obtaining a differ-
ent penalization parameter and a different set of significant factors for each. The filtering
behaves differently for each wave, since regional dynamics can change the relevance of the
regional factors considered.

Here we present the case of the target with the first choice of dichotomization (using
the mean) and the features with the second choice of dichotomization (using the inter-
quantile range), since it shows the best set of performance measures during the subject
analysis evaluation, which is displayed in Table 2.3. The rest of the results for each
case are presented in Appendix A, along with the comparison of all metrics between the
considered cases (some of them are discarded beforehand due to the lack of significant
rules for one or both waves).

We obtain the following regarding this first step

• For the grid search results of the LASSO penalization parameter, see Figures 2.3
and 2.4. We show the performance of the model in terms of the ROC AUC score, for
each penalization parameter candidate. The chosen parameter and its associated
score are highlighted in red.

• For the feature selection for each wave, see Figures 2.5 and 2.6. Here we consider
the weights of the regression model where a positive score classifies the feature as a
risk factor (associated with response value 1, high density of cases), and a negative
score classifies the feature as a mildness factor (associated with response value 0,
low density of cases).

• A general summary of the process can be seen in Table 2.1. We notice that the
second wave, with more sparse values for case density, takes into account more
relevant factors to explain the response, even when the penalization parameter is
higher.
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Figure 2.3: Chosen λ in grid search for wave 1.

Figure 2.4: Chosen λ in grid search for wave 2.

Figure 2.5: Weights of relevant features selected by LASSO in wave 1
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Figure 2.6: Weights of relevant features selected by LASSO in wave 1.

Selected features

λ ROC AUC Positive Negative

Wave 1 0.4642 0.7136 3 2
Wave 2 1.8478 0.7779 7 11

Table 2.1: LASSO feature selection summary.

As stated in section 2.1, the AR mining step considers the adding of complementary
columns for the selected features. This way, all regions have always the same amount of
items, where a single item can refer to the factor being outside the IQR or inside it.

The summary of statistics of the rules (for each type and each wave) can be seen in
Table 2.2. Further details of the conformation of the rules are listed below, along with
the description of the individual rules in a graphical format (see Fig. 2.7 and 2.8). We
note that, given that the second wave has a more balanced amount of high and low cases
density, the minimum support for the rules search is the same, and the case is opposite
for the first wave, since severity rules are associated to higher-than-mean cases that are
fewer.

• Wave 1

1. life expectancy (outside IQR), population density (outside IQR), participation
in education and training (inside IQR), young people neither in employment
nor in education and training (inside IQR) → higher than average cases
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Wave 1 Wave 2
Severity Mildness Severity Mildness

Amount 3 6 4 1

Support 0.0278 (min) 0.2014 (min) 0.2014 (min) 0.2222

0.0347 (max) 0.2986 (max) 0.2153 (max)

Confidence 0.625 (min) 0.9767 (min) 0.8056 (min) 0.7805

0.7143 (max) 1.0 (max) 0.8529 (max)

P-value 4.259e-04 (min) 1.219e-03 (min) 5.62e-05 (min) 2.528e-08

2.829e-03 (max) 4.499e-03 (max) 5.009e-04 (max)

Factors 4 (all) 2 (5) and 3 (1) 2 (all) 3 (all)

Table 2.2: AR mining results summary.

2. life expectancy (outside IQR), population density (outside IQR), young people
neither in employment nor in education and training (inside IQR), available
hospital beds (inside IQR) → higher than average cases

3. health personnel (outside IQR), population density (outside IQR), young peo-
ple neither in employment nor in education and training (inside IQR), available
hospital beds (inside IQR) → higher than average cases

4. participation in education and training (outside IQR), young people neither in
employment nor in education and training (outside IQR) → lower than average
cases

5. participation in education and training (outside IQR), employment thousands
hours worked (inside IQR) → lower than average cases

6. health personnel (inside IQR), young people neither in employment nor in
education and training (outside IQR) → lower than average cases

7. life expectancy (inside IQR), young people neither in employment nor in edu-
cation and training (outside IQR) → lower than average cases

8. participation in education and training (outside IQR), health personnel (inside
IQR) → lower than average cases

9. participation in education and training (outside IQR), health personnel (inside
IQR), employment thousands hours worked (inside IQR) → lower than average
cases
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• Wave 2

1. students enrolled in tertiary education (outside IQR), longterm care beds per
hundred thousand (inside IQR) → higher than average cases

2. early leavers from education and training (outside IQR), population (inside
IQR) → higher than average cases

3. early leavers from education and training (outside IQR), stock of vehicles (in-
side IQR) → higher than average cases

4. unemployment rate (outside IQR), real growth rate of regional GVA (in-
side IQR) → higher than average cases

5. life expectancy (inside IQR), students enrolled in tertiary education (inside
IQR), early leavers from education and training (inside IQR) → lower than
average cases

(a) Description of severity rules.

(b) Description of mildness rules.

Figure 2.7: Description of association rules for the first wave. We show the support count
of the rules (number of regions for whom the rules hold) as bar width, with the support
proportion inside the bar, and the confidence encoded by the color of the bar.
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(a) Description of severity rules.

(b) Description of mildness rules.

Figure 2.8: Description of association rules for the second wave. We show the support
count of the rules (number of regions for whom the rules hold) as bar width, with the
support proportion inside the bar, and the confidence encoded by the color of the bar.

From these rules, the subject analysis are done for each type of rule for each wave, see
Table 2.3 for a general summary, and the detail in Tables 2.4 and 2.5, where we see a
generally good performance, except for the recall of the severity rules in wave 1, that is
below 50%. Notice that for the mildness rules, satisfying 1 or more rules should predict
a low amount of cases, while for severity cases, satisfying 1 or more rules should predict
a high amount of cases. In particular, we note the difference between high case density
regions and low case density regions by comparing the average amount of rules of each type
they satisfy, and notice that it is coherent with the criteria, see Table 2.6. Additionally,
we notice the average is generally low, which also suggests that different rules include
different regions, rather than overlapping the same regions among many rules.

Feature analysis shows that most of the features coincide between their individual weight
from the regression model and the type of rule they belong to (see Tables 2.7 and 2.8),
with the exception of the real growth rate of regional GVA in the second wave, that the
regression model classifies as a risk factor when it is outside the IQR, but participates in
a severity rule when it is inside the IQR.
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Wave 1 Wave 2
Mildness Severity Mildness Severity

Precision 97.47% 60.00% 78.05% 77.11%

Recall 63.11% 47.37% 53.33% 79.01%

Accuracy 67.36% 88.89% 74.31% 75.00%

F1-measure 76.62% 52.94% 63.37% 78.05%

Table 2.3: Subject analysis summary.

Mildness Severity
1+ rules 0 rules 1+ rules 0 rules

High 2 20 9 10

Low 77 45 6 119

Table 2.4: Subject analysis for wave 1.

Mildness Severity
1+ rules 0 rules 1+ rules 0 rules

High 9 75 64 17

Low 32 28 19 44

Table 2.5: Subject analysis for wave 2.

Wave 1 Wave 2
Severity Mildness Severity Mildness

High 0.737 0.091 1.457 0.107

Low 0.056 1.770 0.397 0.533

Table 2.6: Average satisfied rules.

2.4. Discussion

Velavan and Meyer [27], with Aabed and Lashin [1], had suggested to consider population
density as a possible factor, where Ciotti et. al. [9] mention that a higher population
reduces the possibility of maintaining safer distances to avoid the virus spread. Moreover,
Roy and Ghosh [24] underlined that population density appears to be among the most
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Wave 1 Wave 2
Severity Mildness Severity Mildness

Severity 12 0 7 1

Mildness 0 13 0 3

Table 2.7: Feature analysis counting all repetitions.

Wave 1 Wave 2
Severity Mildness Severity Mildness

Severity 6 0 6 1

Mildness 0 5 0 3

Table 2.8: Feature analysis counting unique appearances.

relevant factors. Here we note the following,

• Wave 1

1. It is considered as a risk factor if the region is outside the IQR regarding
population density.

2. This factor is present in all severity rules.

3. Severity rules for the first wave have a not very high precision and a low recall.

4. Since this dichotomization for the features consider the half of the data with
either lowest or highest values, we could consider that this effect is better un-
derstood with another dichotomization closer to what is proposed on literature.

5. We note that in case 1-3 (see Annex A), population density is considered a risk
factor when above quantile 75, for the only significant rule found, which has a
higher precision, which supports the previous statement.

• Wave 2

1. It is considered a risk factor if the region is inside the IQR regarding its overall
population.

2. This factor is present in only one of the four significant rules of this type.

3. This rule alone is satisfied by almost half of high case density regions and a
very low amount of low density regions.
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4. We note that in other cases with a different feature dichotomization, there are
no significant rules that involve this type of factor.

5. For this wave, we could consider that there is a more complex relation with
this factor, possibly to sanitary measures taken by each region.

Farseev et al. [12] found that in EU regions, COVID-19 cases are positively correlated with
factors usually associated with modern developed economies, such as high health system
maturity. Allel et. al. [3] also stated that, among other factors, healthcare resources are
to be considered relevant. Here we notice that health system factors are significant:

• Wave 1

1. It is considered as risk factor to be inside the IQR regarding the amount of
available hospital beds.

2. This factor is in two of the three severity rules, and not present in any significant
rule for other feature dichotomization case.

3. It is also considered a risk factor to be outside the IQR regarding the amount
of health personnel.

4. It is considered a mildness factor for the region to be inside the IQR regarding
the amount of health personnel .

5. This factor is in only one of the three severity rules, but in half of the mildness
rules, where precision and recall are higher, and they are not present in any
significant rule for other feature dichotomization case.

6. We can propose this effect for further analysis with literature, since they are
considered relevant in these results.

• Wave 2

1. The relevant factor in this area is the amount of long-term care beds per hun-
dred thousand, where being inside the IQR with respect to the other regions
is a risk factor available hospital beds, health personnel.

2. This factor is present in one severity rule of 4.

3. In case 1-1, it is considered a risk factor to be under the quantile 50 with
respect to the amount of long-term care beds, in only one significant rule of
26.
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4. This factor could be considered still a relatively weak relation with the phe-
nomenon in this second wave, but can also be considered that it follows intuition
from the literature.

An additional finding from these authors is a relevant positive correlation with older people
and the illnesses associated with this demographic group. Allel et. al. [3] argues that high
life expectancy increases the risk of infection, while Roy and Ghosh [24] confirmed that
older populations tend to be directly correlated to the spread of the virus, and Kumar et.
al. [19] also confirmed that old age is one of the main factors correlated to the spread of
COVID-19. We notice in out results that life expectancy is always present as a factor for
either wave, more in detail,

• Wave 1

1. It is considered a mildness factor to be inside the IQR with respect to the rest
of the regions.

2. It is also considered a risk factor to be outside the IQR with respect to the rest
of the regions.

3. This factor appears in two of the three severity rules, but one of the six mildness
rules.

4. For case 1-1, it is considered a mildness factor to be below quantile 50, in half
of the significant rules of this type and wave, where these present a prefect
precision, but low performance for all other measures.

5. For case 1-3, it is considered a risk factor to be below quantile 25, in the only
significant severity rule found, presenting a similar precision from our case, but
very low recall and F1-measure.

6. We note inconsistencies among findings for this wave, where most regions
present a high life expectancy, and hence rare cases are younger countries,
hence we should make further inspections to find clearer views regarding this
factor.

• Wave 2

1. It is considered a mildness factor to be inside the IQR with respect to the rest
of the regions.

2. This factor is present in the only mildness rule found for this wave, that has a
fairly high precision, but a recall barely over 50%.
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3. In case 1-1, this factor is present in only one of the 26 significant severity rules,
where being over quantile 50 is considered a risk factor.

4. We can consider that, even if this factor has a relatively low prevalence for
this wave, it follows intuition from the literature, and can also raise research
questions when limiting observations to mostly older regions.

Kumar et. al. [19] underline that a high level of economic wellness increases the possibil-
ities for the virus to spread, because the community is more dynamic and people interact
more with each other. For these type of factors, we find

• Wave 1

1. The amount of hours worked is a mildness factor for regions that are inside the
IQR.

2. This factor appears in one third of the significant mildness rules.

3. This factor does not appear in any other case when changing the factor di-
chotomization.

4. We can consider that, even if this factor is not too recurrent, it follows intuition
from the literature that not having an extreme amount of hours worked could
be associated with a lower regional case density.

• Wave 2

1. The growth rate of regional GVA is a risk factor for regions that are inside the
IQR.

2. This factor appears only in one of the 4 significant severity rules, while for
LASSO it was expected to be the contrary condition to be of risk.

3. In case 1-1, this factor appears in almost half of the significant mildness rules,
where being under quantile 50 is associated with lower risk, and these rules
have generally high values for all performance measures.

4. Given that there is a low prevalence and a different effect from this factor
when considered individually and in group, it should be further questioned
how relevant is this factor when considering the rest of the covariates.

5. The unemployment rate is a risk factor for regions that are outside the IQR.

6. This factor appears only in one of the 4 significant severity rules.
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We note that a general trend is to consider factors individually, and so we make some
observations for the group dynamics found for each wave, in order to make further research
questions.

During the first wave, we note that population and educational factors are recurring risk
factors that can be further grouped with risk factors related to healthcare. Further re-
search is proposed in order to detect if this triad of types of factors can characterize
specific risk dynamics seen for this wave. In the other hand, we note that complementary
educational factors are recurring mildness factors that can be further grouped with mild-
ness factors related to economy, population or healthcare. Further research is proposed
in order to detect if these types of factors can characterize specific protection dynamics
seen for this wave.

During the second wave, we note that educational factors are recurring risk types that
are grouped with risk factors of healthcare, population or economy. We also note that
a single severity rule grouping only economical factors. Further research is proposed in
order to detect if these three types of factors can characterize specific risk dynamics seen
for this wave. In the other hand, there is a single mildness rule that considers a triad of
education and population factors. Further research is proposed in order to detect if this
pair of types of factors can characterize specific protection dynamics seen for this wave,
where economy and healthcare do not seem to intervene.

2.5. Further developments

Since the pipeline is potentially applicable to any dataset with dichotomized data, it is
important to highlight the importance of preprocessing the data, in case it needs trans-
formations in order to prepare it as input. As seen in section 2.4, for our application
it could be more convenient to perform different transformations to dichotomize the fac-
tors, depending on their type or their expected interaction according to what is seen in
literature.

As we mentioned in section 2.2, we used the direct approach for multiple testing of the
rules, due to the case of our dataset. However, as the methodology is formulated with
the aim of becoming a general pipeline for other types of data, we have to highlight that
we could either obtain optimistic performance estimates, or filter out too many rules if
we start with a large amount. For this reason, the other approaches could perform better
when there is no hierarchy over the subjects with a large amount of groups, as in our case
with the countries of the regions.



31

3| Geo-statistical analysis

3.1. Data pre-processing

As a first step, we merge the current dataset with a locations dataset that contains latitude
and longitude from Eurostat [10], in particular, we take the central point of each region,
along with the polygons that delimit the entire region, and recover the complete amount
completing with records from 2021, 2013 and 2006. Afterwards, we continue to discard
the regions that do not have information about the cases density for each wave, which
results in the 141 regions to analyze. We can visualize the behavior of the cases densities
using geographical plots over Europe (see Figure 3.1), where the response is represented
by the color.

As a second step, we perform the following changes in the available data:

1. We fill missing data from Belgium, which has data at the NUTS 1 region level, with
data from their NUTS 2 sub-regions, for the following features:

• Death rate: We multiply the sub-regional death rate with the total population,
recovering the total amount of deaths, and divide between the sum of sub-
regional deaths and the sum of sub-regional population amounts, recovering a
NUTS 1 level death rate.

• Compensation of employees: We sum the total amounts from the sub-regional
amounts, to recover a NUTS 1 level amount of compensation.

• Life expectancy: We take the average of the life expectancy of the sub-regions,
to recover a NUTS 1 level life expectancy.

• GDP: We take the sum of the sub-regional GDP, to recover a NUTS 1 level
GDP.

2. We replace the available data for the GVA growth rate with the updated data from
EUROSTAT for 2019, since the original data for this feature did not match current
records for any year.
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(a) Cases density for the first wave.

(b) Cases density for the second wave.

Figure 3.1: Visualization of the cases density for each region in the map.
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As a third step, we fill the missing data considering the following approach:

1. We consider the following approximations:

• The mean of the known values for the rest of the regions in the country.

• The national value multiplied by the population proportion of the region.

• The mean of the known values for the nearest 3 neighbours of the region.

2. For each feature, evaluate the absolute percentage of error of the regions that have
known values regarding the usage of each approximation, and formulate an error
triad taking the maximum, median and mean statistics.

3. We validate and choose the approach with smallest error triad, that allows partial
or total completion of the data for each given feature. When the triad was not
completely minimal, the triad with a minimum pair was chosen (usually median
and mean, or maximum and mean), with an intermediate third value.

4. The features that refer to total amounts are returned to integers by rounding the
approximation results.

Table 3.1 summarizes the chosen method to approximate the data regarding each feature,
with its associated validation error triad and the amount of missing values approximated.
For the features of total deaths, farm labour force, population, and utilised agricultural
area, there were all 136 values, hence no approximation was needed. Instead, there were
some cases where the data was not able to be approximated, due to the validation error
range being too wide, and hence unreliable approximations were avoided.

In general, there was no trend on the validation errors that favored performing the ap-
proximation differently by country, hence the same method was used to approximate the
entire column. In addition, validation errors that were extremely high (and hence show-
ing a maximum error extremely high), constituted just few outliers, without a particular
trend of belonging to a specific country, so we discard a high probability of an extremely
bad approximation in these cases.

By this procedure, we reduce the amount of missing data as we visualize in Fig. 3.2. We
notice how significant the change is by seeing that Germany, previously the country in
which the maximum amount of missing data on any given region was 18, diminishes to
a maximum of 2 missing values in any region, and so the most critical country becomes
France, that still has a small amount of maximum 3 missing values in any region.
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Errors

Method Max. Median Mean NAs filled

Early leavers from ed. 1 - Mean 188.14% 16.71% 26.05% 22 (100%)

Ter. ed. stud. 2 - Population 399.81% 24.00% 50.20% 26 (100%)

NEET rate 1 - Mean 155.13% 18.37% 22.96% 18 (100%)

Particip. in ed. 1 - Mean 111.43% 10.15% 17.84% 18 (100%)

Pupils enrolled 2 - Population 91.08% 84.64% 84.77% 16 (100%)

Life expectancy 1 - Mean 2.84% 0.60% 0.79% 34 (100%)

Pop. density 2 - Population 100.00% 93.33% 85.69% 16 (100%)

Death rate 1 - Mean 52.52% 9.27% 11.95% 7 (50.0%)

Resp. diseases discharges 2 - Population 99.88% 99.78% 99.49% 15 (50.0%)

Long-term beds 3 - KNN 1001.41% 34.82% 61.39% 49 (100%)

Health person. 2 - Population 181.48% 10.18% 17.81% 17 (73.9%)

Hospital beds 3 - KNN 412.10% 15.54% 27.85% 28 (100%)

Air passengers Not approximated

Vehicles 2 - Population 335.09% 11.78% 21.19% 19 (95.0%)

Unempl. rate 1 - Mean 143.98% 16.95% 24.96% 17 (100%)

Worked hours 2 - Population 397.45% 8.19% 16.90% 14 (100%)

GVA growth 1 - Mean 11.94% 1.79% 2.48% 18 (94.7%)

Employ. compens. 2 - Population 86.31% 18.91% 24.66% 7 (50.0%)

GDP 2 - Population 69.56% 19.17% 21.80% 7 (50.0%)

Table 3.1: Summary of missing data approximation by feature.

In order to perform proper analysis over the data, missing values can’t be admitted.
Hence, we work with a subset of the data obtained in the following way:

1. We first discard the column with the largest amount of missing data, since it can’t
be considered a reliable factor, which is “Air passengers”.

2. We discard all regions that are missing at least one value in the remaining columns.

By performing the mentioned selection, we consider 22 covariates over 112 regions. Figure
3.3 visualizes the cases density of each of them over the european map for each wave of
the pandemic, while figure 3.4 shows the regions considered, distributed by country.
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(a) Remaining missing values by feature.

(b) Remaining missing values by critical region of each country.

Figure 3.2: Amount of missing values remaining after filling by approximation.
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(a) Cases density for the first wave.

(b) Cases density for the second wave.

Figure 3.3: Visualization of the cases density for each region of interest in the map.
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Figure 3.4: Regions considered for analysis by country.

3.2. Methodology

The overall process for the geo-statistical analysis of the data is described as follows:

1. We select a linear regression model transforming the response and performing fea-
ture selection through LASSO. Performing an LASSO penalized linear regression,
we select the factors that obtain significant weights, and validate the model by
verifying its assumptions through the Shapiro-Wilk test. We thereby obtain a mul-
tivariate linear model and its corresponding i.i.d. normal residuals for the specific
transformation of the response that allows its corresponding model to be valid.

2. We analyze the empirical variogram of the residuals, in order to fit a reasonable
model and estimate spatial dependency of the unexplained component of the linear
model response.

3. We perform independently a LISA cluster analysis over the cases density, over the
transformed response selected, and over the residuals of the formulated multivariate
linear models, in order to find and compare spatial dynamics.

The methodology is applied separately for each wave, hence it is allowed for each wave’s
cases density to have a different transformation that will result in a specific valid multi-
variate linear model, with different significant factors and amount of residuals.
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3.2.1. LASSO selection

Lasso l1 regularized linear regression is often used as an embedded feature selection for
linear regression problems in which there are a large amount of covariates. Its main
advantage is that shrinks the weights assigned to irrelevant features to 0, and it has
been shown to provide strong generalization efficiency in the presence of many unrelated
features. Considering m observations where y(i) ∈ R the real response and x(i) ∈ Rn the
respective covariates vector, we compute the Maximum a Posteriori estimate of the vector
of coefficients of the linear regression model β with a LASSO penalization λ > 0 by the
optimization problem stated in 3.1.

min
β∈Rn

m∑
i=1

(y(i) − βTx(i))2 + λ|β|l1 (3.1)

First, in order to find the optimal penalization parameter, we tune it providing a grid of
possible values and evaluate the performance of the feature selection using the average
MSE (mean squared error) obtained through 10-fold cross validation. Hence, we look
for the λ∗ ∈ {λi}i∈I among the provided values of the grid search where the error is
lowest. The values provided are 100 equally spaced values between 10−3 and 102. The
observations considered are only the ones that do not have missing values in any of the
covariates.

Second, we proceed to the selection of features, where we perform the penalized linear
regression using the chosen parameter, and select the factors with absolute weights bigger
than 0. This way, we consider only significant weights, where positive weights are con-
sidered as severity factors (associated with the target response being a higher density of
cases in a specific wave), or mildness factors (associated with the target response being a
lower density of cases in a specific wave).

As a third step, we proceed to analyze the residuals generated by the model, in order to
verify the assumption of i.i.d. normal distributed residuals with the Shapiro-Wilk test. Its
null hypothesis states that a sample {r1, ..., rm} came from a normally distributed popula-
tion. The test statistic is computed using r(i) the ith-smallest number in the sample r̄ the
mean of the sample, and ai the ith coefficient of a = cTV −1

∥V −1c∥ , where c is the vector made
of the expected values of the order statistics of independent and identically distributed
random variables sampled from the standard normal distribution, and V is the covariance
matrix of those normal order statistics. Finally, the statistic is stated in 3.2.
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W =
(
∑m

i=1 air(i))
2∑m

i=1(ri − r̄)2
(3.2)

We validate the model by not rejecting the null hypothesis with confidence α = 0.1,
meaning we expect the p-value to be outside of critical values, in this case 0.5 < p < 0.95.
For this reason, a specific transformation of the response may be chosen.

We consider the following transformations for the cases density of each wave y ∈ [0, 1]n:

• Logarithmic transformation: f(y) = log10(y + 1)

• Root transformations: f(y) = yp, p ∈ 1
3
, 1
2

• Logit transformation: f(y) = σ−1(y) = ln y
1−y

• Z transformation: f(y) = y−ȳ
sd(y)

3.2.2. Empirical variogram modeling

Definitions

A process of random variable Z(s) over locations s ∈ D is said second-order stationary if

1. E[Z(s)] = m ∀s ∈ D

2. Cov[Z(si)− Z(sj)] = C(si − sj) ∀si, sj ∈ D

Function C from the second condition is called the covariogram, which is characterized
by the following properties:

1. Positive definiteness:
∑

i

∑
j λiλjC(si − sj) ∀si, sj ∈ D; ∀λi, λj ∈ R

2. Symmetry: C(si − sj) = C(sj − si)

3. Boundedness: C(si − sj) ≤ C(0)

A process of random variable Z(s) over locations s ∈ D is said intrinsically stationary if

1. E[Z(s)] = m ∀s ∈ D

2. V ar[Z(si)− Z(sj)] = 2γ(si − sj) ∀si, sj ∈ D

Function γ from the second condition is called the semivariogram or variogram, which
fulfills the following algebraic properties in order to be valid:

1. Conditional negative definiteness:
∑

i

∑
j λiλjγ(si − sj) ∀si, sj ∈ D;λ ∈ R|D| :∑

i λi = 0
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2. Symmetry: γ(si − sj) = γ(sj − si)

3. Non-negativity: γ(si − sj) ≥ 0

4. Zero at the origin: γ(0) = 0

5. Sub-quadratic growth: lim∥si−sj∥→∞
2γ(si−sj)

∥si−sj∥2 = 0

We note that a second-order stationary process is also intrinsically stationary. In this
case, the semivariogram is related to the covariogram via the identity 3.3.

γ(h) = C(0)− C(h) ∀h ∈ R (3.3)

The main properties of a variogram, that are further used for modeling, are the following:

1. Nugget: The discontinuity value at the origin, if existent, denoted as τ 2 = lim∥h∥→0 γ(h).
It can be interpreted as the measurement error in the data or its micro-scale vari-
ability, when estimating γ.

2. Sill: The sum of the nugget and the partial sill, denoted as τ 2+σ2 = lim∥h∥→∞ γ(h).
The existence of a finite limit indicates that the process is second-order stationary,
featured by a variance C(0) = τ 2 + σ2.

3. Range: The value where it reaches the sill R : γ(R) = τ 2+σ2. It quantifies the range
of influence of the process: for distances greater than the range, two elements of the
process are uncorrelated. If the variogram range is infinite but the sill is reached
asymptotically, one can define a practical range as R̃ : γ(R̃) = 0.95(τ 2 + σ2).

An intrinsic stationary process {Z(s), s ∈ D} is said isotropic if its variogram is isotropic,
V ar[Z(si) − Z(sj)] = 2γ(∥si − sj∥) ∀si, sj ∈ D. This condition can be verified when
the covariance structure is homogeneous over all the directions of Rd, hence we inspect
directional variograms, which are variograms computed for a number of fixed directions
in Rd. Directional variograms may reveal two main types of anisotropy [21]:

• Geometric anisotropy: It is found whenever the variogram slope near the origin
varies over the explored directions, it is commonly associated with different ranges
along different directions, and it can be corrected via a change of coordinates in the
domain D.

• Zonal anisotropy: It is found when the asymptotes shown by the directional vari-
ograms (if stationary) are different along different directions, it typically has effect
on the sills for different directions, so the variogram needs to be modelled in terms
of separation vector h.
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Models and estimation

To guarantee that the properties of a valid variogram are fulfilled, a number of parametric
valid model are commonly employed, with properties and the physical interpretation of
the corresponding parametrization known. We consider models with a sill (or transition
models), except for the first one [2] [23]:

• Pure Nugget: The associated random field is a white noise of variance τ 2, τ ∈ R.
Usually a building block combined with another valid model, since the sum of valid
models is a valid model. It provides discontinuity at the origin, hence its process
presents a highly irregular behavior and it is not L2-continuous. Since it is a model
without a sill, a covariance function does not exist and only the variogram model is
defined.

γ(h) =

{
τ 2 h > 0

0 h = 0
(3.4)

• Exponential model: The sill is σ2, σ ∈ R, the range is infinite, but one can define
the practical range as R̃ = 3a, a ∈ R. It is linear at the origin, which is common in
continuous but non-differentiable processes.

γ(h) =

{
σ2(1− e−h/a) h > 0

0 h = 0
(3.5)

• Spherical model: The range is a ∈ R, and the sill is σ2, σ ∈ R. It is linear at the
origin, which is common in continuous but non-differentiable processes.

γ(h) =



σ2 h ≥ a

σ2

[
3

2

h

a
− 1

2

(
h

a

)3
]

a > h > 0

0 h = 0

(3.6)

• Gaussian model: The sill is σ2, σ ∈ R, the range is infinite, but one can define the
practical range as R̃ =

√
3a, a ∈ R. It is quadratic at the origin.

γ(h) =

{
σ2(1− e−(h/a)2) h > 0

0 h = 0
(3.7)

In most analyses, the variogram estimate consists of two phases:
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1. Raw estimate from data, it usually does not lead to a valid model.

2. Fitting of a parametric valid model via least squares (LS).

For the first step, a finite number of distances h are actually observed, which are the
distances separating each couple of sampled locations, hence we can employ as estimate
one of the following [21]:

• Semivariogram cloud: It is the cloud of points corresponding to the values of
1
2
[Z(si)− Z(sj)]

2 which are actually observed. Such a cloud provides useful indica-
tions about the number of couples available for the estimation, and the dispersion
of the squared increments in the plane (e.g., a triangular disposition that is denser
in the bottom part is typical of a stationary variogram).

• Binned semivariogram: It is a discretization computed as average within a given
amount of classes of distances. This estimator is often preferred to the semivari-
ogram cloud for its convenience in highlighting the relevant features of the variogram.
In this case, the dimension of the classes (i.e., the lag used) is key to provide sensible
estimates, as a trade-off exists between overfitting and oversmoothing.

These give an unbiased estimate of γ if intrinsic stationarity holds true. We use the binned
semivariogram γ̂(h) = (γ̂(h1), ..., γ̂(hK))

T , with a discretization of K = 15 bins, and lag
width assessed visually to find a reasonable pattern. Lag is computed from locations in
latitude and longitude, using great circle distances in kilometers.

For the second step, we use the Weighted Least Squares optimization criterion, which con-
sists of looking for the parameters θ from a valid model γ(·, θ) which minimize expression
3.8. In our case, we use the weights wk = Nk/h

2
k, with Nk the amount of observations on

bin k.
K∑
k=1

1

wk

(γ̂(hk)− γ(hk, θ))
2 (3.8)

Model assessment and selection

After finding the best parameters of each model, we consider two types of assessment:

• Qualitative assessment: We verify that the fitted model shape is adequate when
looking into the directional variogram. We consider directions 0 deg, 45 deg, 90 deg, 135 deg,
in order to see the behavior over the main foci, without searching for overfit of po-
tential noise.

• Quantitative assessment: We look into three error indicators, which are the resid-
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ual sum of squares (SSErr), and the median and mean of the residuals of a GLS
prediction of the model over the locations where the observations are located.

We select as best model the one with lowest triplet of errors, or the model with two
indicators lowest, taking into account if the difference between the remaining indicator
and its lowest value is significant or not.

3.2.3. Local Indicators of Spatial Association

Moran’s I statistic is one of the most commonly used indicators of global spatial auto-
correlation. It is a cross-product statistic between a variable and its spatial lag, with the
variable expressed in deviations from its mean. For an observation of a variable x at loca-
tion i, considering n observations, we formulate the deviations from the mean zi = xi− x̄,
the spatial weights wij such that n =

∑
i

∑
j wij. Hence, Moran’s I statistic in this case

is stated in 3.9, where we can see the decomposition of the global statistic into local
statistics (or LISAs [4]) and simplify the expression using constant k = (

∑n
i=1 z

2
i )

−1. The
local statistics are then the product of the deviation value at location i with its spatial
lag, which is the weighted sum of the values at neighboring locations. They may be inter-
preted as indicators of local pockets of nonstationarity, or hot spots, or they may be used
to assess the influence of individual locations on the magnitude of the global statistic and
to identify “outliers”.

I =

∑n
i=1

∑n
j=1wijz

T
i zj∑n

i=1 z
2
i

=
n∑

i=1

Ii =
n∑

i=1

k · zTi
n∑

j=1

wijzj (3.9)

The spatial weights conform a row-standardized matrix W where a non-zero weight estab-
lishes that locations i and j are neighbors, hence represent the possible spatial interactions
between observations in space. By convention, the self-neighbor relation is excluded, so
that the diagonal elements of W are zero. There are different criteria to establish this
relation, among which are contiguity criteria [6] and based on distance [7]:

• Queen contiguity: The queen criterion, in analogy to the moves allowed for the
queen piece on a chess board, defines neighbors as spatial units sharing a common
edge or a common vertex.

• Rook contiguity: The rook criterion, in analogy to the moves allowed for the rook
piece on a chess board, defines neighbors by the existence of a common edge between
two spatial units.

• Distance-based criteria: It requires to compute a distance measure between each
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pair of spatial units, it defines neighbors by falling within a critical distance band
between two spatial units. It requires to define the critical distance threshold,
which can be chosen as the optimized distance threshold that guarantees that every
observation has at least one neighbor, among other values.

• K-Nearest neighbor criteria: It requires to compute a distance measure between each
pair of spatial units, it defines neighbors by being among the closest K units from
a given spatial unit. Among the mentioned criteria, this is the only one providing a
non-symmetric relation between spatial units.

We consider the queen contiguity criteria for the analysis, given that distance based
criteria cannot provide intuitive insights and is not suited when considering the shape of
the continent and the distribution of the considered regions. In the other hand, the rook
criteria is discarded due to considering a limited type of interactions between regions.

The null hypothesis of Moran’s I is spatial randomness, significance is based on a condi-
tional permutation method [4], where we calculate a reference distribution for the statistic
under the null hypothesis of spatial randomness by randomly permuting the observed val-
ues over the locations. The statistic is computed for each of these randomly reshuffled
data sets, which yields a reference distribution. This approach is not sensitive to potential
violations of underlying assumptions, which makes it robust but limited in generality to
the actual sample. In the case of local statistics, the value of each zi is held fixed at its
location i, and the remaining n−1 values are then randomly permuted to yield a reference
distribution for the local statistic (one for each location), hence the permutation is carried
out for each observation in turn.

The reference distribution is used to calculate a pseudo p-value, where R is the number
of times the computed statistic from the spatial random data sets (the permuted data
sets) is equal to or more extreme than the observed statistic, while M is the number of
permutations. The pseudo p-value is then p = R+1

M+1
. Local spatial clusters, sometimes

referred to as hot spots, may be identified as those locations or sets of contiguous locations
for which the LISA is significant.

After obtaining the local statistics, we can elaborate a Moran scatter plot [5], where
indication of significance is combined with the location of each observation, by classifying
the values for the spatial lag above and below the mean as high and low. It provides an
interpretable classification of spatial association into four categories, which are referred
to as High-High, Low-Low, Low-High and High-Low, relative to the mean, which are the
quadrants of the Moran scatterplot, with the mean in the center. Hence, we find positive
spatial autocorrelation clusters (similar values at neighboring locations, which are the
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high-high and low-low categories) or negative spatial autocorrelation outliers (dissimilar
values at neighboring locations, which are the high-low and low-high categories).

3.3. Results

3.3.1. First wave

We present the results regarding the logistic transformation for the response, see Fig.
3.5 for the comparison between the original cases density values and their transformation
over the considered regions. By performing LASSO selection, 5 factors are filtered out by
using an optimal penalization of 0.0057. Fig. 3.6a shows the decrease of the coefficients
for each factor for an increasing penalization, where the upper axis shows the amount
of considered factors, and the pointed vertical line shows the optimal penalization. Fig.
3.6b shows the cross-validation MSE evaluated for the considered grid for the penalization,
where the left pointed vertical line shows the optimal penalization (and hence shows the
minimum MSE), and the right pointed vertical line shows the lambda value with one
standard deviation to the right of the optimal one.

Figure 3.5: Histograms of original response and chosen transformation for wave 1.



46 3| Geo-statistical analysis

(a) LASSO coefficients in lambda grid.

(b) Cross-validation lambda tuning.

Figure 3.6: Lambda tuning and model selection for wave 1.



3| Geo-statistical analysis 47

Afterwards, we verify the performance of the model by looking into its R2 value, which
is 0.578, hence it barely performs better than using the sample mean to explain further
variability of the response. Note, however, that minimum MSE reached during the cross
validation stage is around 0.49, which is fairly high given the range of values for the
response, and so is coherent with the R2 value.

Looking into the coefficients with highest magnitude (see Fig. 3.7 for the visualization of
the coefficients for all factors), we find the following:

• Risk factors: Those with positive coefficient, hence leading to a higher response
(which is equivalent to a higher cases density)

– Life expectancy.

– Early leavers from education.

– GVA growth rate.

• Mildness factors: Those with negative coefficient, hence leading to a lower response
(which is equivalent to a lower cases density)

– Education participation.

– NEET rate.

We then verify the assumptions of the model by performing the Shapiro-Wilk test, where
we obtain a p-value of 0.135, hence we do not reject the hypothesis of having normally
distributed residuals, and hence the model is verified, see Fig. 3.8 for the visualization of
some of the diagnostic plots of the residuals. We note that the normality test is diputable
due to the spread of the tails of the residuals, which can be seen both in the histogram
and the QQ plot. In addition, inspecting both the residuals of the model and the response
over the european map, in general we find that original response values and residual values
do not necessarily show the same dynamics (see Fig. 3.9).
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Figure 3.7: Factor coefficients in selected model.

(a) Residuals against its fitted values. (b) QQ plot of residuals.

(c) Spread-Location plot. (d) Residuals against leverage values.

Figure 3.8: Residuals visualization and diagnostics for the model of the first wave.
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(a) Model residuals.

(b) Response (logit transform of the cases density).

Figure 3.9: Residual and response values for each region over the european map.



50 3| Geo-statistical analysis

After this procedure, we continue to analyse what the model was not able to explain, and
hence we investigate the possibility of spatial dependence in the residuals. As a first step,
we formulate the empirical variogram to study. We first find that there is a dependence
on longitude, and so we search for a variogram model over the residuals from a linear
dependence on this coordinate. We then find that a reasonable lag limit can be set to
1200 Km, given that it is close to a third of the maximum distance between any pair of
regions of interest (around 3200 Km), and we find a variogram shape that is intuitive
with having neglectable correlation between regions with a larger distance, since it is
harder to maintain significant interactions between them. Fig. 3.11 shows the residual
variogram following the mentioned trend, both neglecting direction and considering four
main directions.

(a) Residual variogram. (b) Directional variogram.

Figure 3.10: Empirical variogram of residuals from a linear trend depending on longitude.

We find that the gaussian model fits best the behavior found (more details in Annex B.1),
which has the following features:

• It has a nugget of 0.129325, the highest from all models, which means that the
discontinuity jump is relatively high.

• It has a partial sill of 0.230249, the lowest from all models, however we note that it
conforms 76% of the total sill.

• It has a practical range 362.2699 Km, the lowest from all models, and so we consider
that the residuals are fairly uncorrelated at a relatively short distance, even though
the sill is reached asymptotically.

• It is discontinuous at the origin, and quadratic near it, so we can consider that the
residuals have a quite continuous behavior when discarding the white noise.
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(a) Residual variogram. (b) Directional variogram.

Figure 3.11: Fitted variogram of residuals from a linear trend depending on longitude.

Finally, we inspect the LISA clusters over the european map. First, considering the cases
density (see Fig. 3.12a), we note the following:

• Spain is an important cluster with high-high dynamics, hence we detect a near
country-level behavior of high infections.

• Lombardy is not part of a significant cluster, however Piedmont is identified as a
high-high cluster, which also showed a high cases density in northern Italy.

• Northern Denmark has a low-low cluster, which is expected given their low cases
density over the country.

• Southern Italy shows low-low clusters in Apulia, Basilicata and Campania, which is
intuitive given that in this regions there were low values of cases density.

• Slovakia has low-low clusters extending until Austria, highlighting an interaction
between both countries.

Second, considering the response, which is the logit transformation, that has a higher
concentration of values towards a center to resemble a bell shape (see Fig. 3.12b), we
note the following:

• Spain has even wider high-high dynamics, adding a northern region, since its re-
sponse value is nearer to the rest of the region (its cases density originally was not
high, hence it was not considered in the previous case).

• Many northern regions of Italy conform a high-high cluster, including Lombardy,
which was expected given the national experience.
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• Denmark has an additional region within its low-low clusters, so their dynamics
become more generalized.

• Southern Italy maintains the same dynamics

• There is no low-low cluster in Austria, only Slovakia remains with its dynamics.

Third, considering the residuals, we find several differences within dynamics considering
single regions (see Fig. 3.12c), in particular:

• Spain has a smaller area with high-high dynamics.

• Less northern regions of Italy conform a high-high cluster, but Lombardy remains
included.

• Southern Denmark maintains its region as low-low cluster, while the northern re-
gions loses significance.

• In southern Italy, the low-low cluster shrinks and moves to the single region of
Calabria, while Campania from a low-low cluster to a high-low outlier.

• Slovakia’s low-low clusters lose significance.

• Germany shows a high-low outlier.

• Romania shows high-high clusters.

.
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(a) Cases density.

(b) Response.

(c) Residuals.

Figure 3.12: LISA clusters over considered regions for first wave.
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3.3.2. Second wave

We present the results regarding the normalization (Z transformation) for the response,
see Fig. 3.13 for the comparison between the original cases density values and their
transformation over the considered regions. By performing LASSO selection, 4 factors
are filtered out by using an optimal penalization of 0.0115. Fig. 3.14a shows the decrease
of the coefficients for each factor for an increasing penalization, where the upper axis
shows the amount of considered factors, and the pointed vertical line shows the optimal
penalization. Fig. 3.14b shows the cross-validation MSE evaluated for the considered grid
for the penalization, where the left pointed vertical line shows the optimal penalization
(and hence shows the minimum MSE), and the right pointed vertical line shows the
lambda value with one standard deviation to the right of the optimal one.

Figure 3.13: Histograms of original response and chosen transformation for wave 2.

Afterwards, we verify the performance of the model by looking into its R2 value, which is
0.619, hence it performs better than using the sample mean to explain further variability
of the response. Note, however, that minimum MSE reached during the cross validation
stage is around 0.62, which is high given the range of values for the response, and so is
coherent with not having a higher R2 value.
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(a) LASSO coefficients in lambda grid.

(b) Cross-validation lambda tuning.

Figure 3.14: Lambda tuning and model selection for wave 2.



56 3| Geo-statistical analysis

Looking into the coefficients with highest magnitude (see Fig. 3.15 for the visualization
of the coefficients for all factors), we find the following:

• Risk factors: Those with positive coefficient, hence leading to a higher response
(which is equivalent to a higher cases density)

– Life expectancy.

– Unemployment rate.

– GVA growth rate.

– Early leavers from education.

• Mildness factors: Those with negative coefficient, hence leading to a lower response
(which is equivalent to a lower cases density)

– Education participation.

– NEET rate.

Figure 3.15: Factor coefficients in selected model.
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(a) Residuals against its fitted values. (b) QQ plot of residuals.

(c) Spread-Location plot. (d) Residuals against leverage values.

Figure 3.16: Residuals visualization and diagnostics for the model of the second wave.

We then verify the assumptions of the model by performing the Shapiro-Wilk test, where
we obtain a p-value of 0.673, hence we do not reject the hypothesis of having normally
distributed residuals, and hence the model is verified (see Fig. 3.16). By inspecting both
the residuals of the model and the response over the european map, in general we find
that original response values and residual values show very similar dynamics (see Fig.
3.17).

We continue towards analyzing what the model was not able to explain, and hence we
investigate the possibility of spatial dependence in the residuals. As a first step, we
formulate the empirical variogram to study. We first find that there is a dependence
on latitude, and so we search for a variogram model over the residuals from a linear
dependence on this coordinate.
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(a) Model residuals.

(b) Response (Z transform of the cases density).

Figure 3.17: Residual and response values for each region over the european map.
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We then find that a reasonable lag limit can be set to 1100 Km, given that it is close to a
third of the maximum distance between any pair of regions of interest (around 3200 Km),
and we find a variogram shape that is intuitive with having neglectable correlation be-
tween regions with a larger distance, since it is harder to maintain significant interactions
between them. Fig. 3.19 shows the residual variogram following the mentioned trend,
both neglecting direction and considering four main directions.

(a) Residual variogram. (b) Directional variogram.

Figure 3.18: Empirical variogram of residuals from a linear trend depending on latitude.

We find that the gaussian model fits best the behavior found (more details in Annex B.2),
which has the following characteristics:

• It has a nugget of 0.13183, the highest from all models, which means that the
discontinuity jump is relatively high.

• It has a partial sill of 0.27286, the lowest from all models, we note however that it
conforms 81% of the total sill.

• It has a practical range 332.7346 Km, the lowest from all models, and so we consider
that the residuals are fairly uncorrelated at a relatively short distance, even though
the sill is reached asymptotically.

• It is discontinuous at the origin, and quadratic near it, so we can consider that the
residuals have a quite continuous behavior when discarding the white noise.

Finally, we inspect the LISA clusters over the european map. First, considering the cases
density (see Fig. 3.20a), we note the following:

• All Denmark and northern Germany conform a group of low-low clusters, which is
intuitive given their low values on cases density.
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(a) Residual variogram. (b) Directional variogram.

Figure 3.19: Fitted variogram of residuals from a linear trend depending on latitude.

• Northern Belgium and southern Netherlands conform a group of high-high clusters,
which is of interest given that they do not have exceptionally high values of cases
density, but their immediate surrounding regions do have lower values.

• Most of Spain, and a region of Portugal, make a large group of high-high clusters,
which is expected due to the high levels of infections in the entire area.

• Contiguous regions of north-west Spain and southern Portugal conform low-high
outliers, which are the regions with least cases compared to their neighbors.

• Northern Italy (Lombardy, Veneto and Trentino South Tyrol), along with some
regions of Austria, show high-high clusters, and high cases density.

Second, considering the response, which is its normalization (see Fig. 3.20b), we note
that the dynamics are the same. This is natural given that it is a translation and rescale
using the exact same parameters for all values, so relative effects should not change.

Third, considering the residuals, we find that only dynamics between Italy and Austria
are maintained (see Fig. 3.20c), while we find the following differences:

• Only southern Denmark and a region of east Germany have low-low clusters.

• Northern Belgium and southern Netherlands lose significance.

• Spain has a shrunken group of high-high clusters toward the east.

• A region of central Spain and northern Portugal conform low-high outliers.

• France has a north-east region considered a high-low outlier.
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(a) Cases density.

(b) Response.

(c) Residuals.

Figure 3.20: LISA clusters over considered regions for second wave.
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3.4. Discussion

As a first remark, we note that the regression models for both the first and second wave
are between 55% and 65%. These values, even if not considerably high, are still notable
given that there is no clinical data used for the covariates. This means that contextual
information regarding local socio-economic factors has a role when analyzing the spread
dynamics of the pandemic.

For both the first and second wave, we found that the following factors were most influ-
ential to their respective responses:

• Risk factors: Those with positive coefficient, hence leading to a higher response
(which is equivalent to a higher cases density)

– Life expectancy: We can expect that an older population is more vulnerable to
contagion, since high life expectancy has been found to be positively correlated
with COVID-19 spread [3] [24], while we also expect it to be one of the main
factors [19].

– Early leavers from education: We find this correlation intuitive, given that
earlier potential workers could potentially add to people exposed to contagion.

– GVA growth rate: We can expect that higher economical development is related
to more infections, since it is linked to higher activity and exposure [19].

• Mildness factors: Those with negative coefficient, hence leading to a lower response
(which is equivalent to a lower cases density)

– Education participation: We find this intuitive and coherent with the overall
model, given that more young people studying are linked to less early leavers.

– NEET rate: We find this intuitive and coherent with the overall model, given
that more young people not studying nor working are less active or exposed.

In addition, for the second wave, we found that an important risk factor was the un-
employment rate, which can be associated with social fragility, and hence a signal of
vulnerability that could indicate certain dynamics that can lead to higher infection rates.
This factor is generally considered within the Social Vulnerability Index, where one of the
15 factors considers unemployment [14], and has been studied by Karaye and Horney [18],
that found that overall SVI was associated with increased COVID-19 case counts. In our
case, we can find that during the second wave, a high unemployment rate is an important
risk factor towards having a high regional cases density, as a specific factor instead of
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considering a mixed index.

In general, we find that educational factors interact consistently with what is found in
literature. Kashem et. al. [17] found that lower education levels are positively correlated
with cumulative case rates, since a limited formal education plays an important role in
the virus’ prevalence and is also related to occupation and income, since lower levels of
education or training generally result in lower-paid work where remote work is often not
possible, and is more likely to require face-to-face interactions with few safety measures.
In our case, we can find that specific indicators related to education are important when
predicting risk, and that not any education indicator is selected as relevant.

As we have seen from the LISA clusters and their difference when verifying spatial de-
pendency among the regression model residuals, we are able to find that the linear model
explains better the spatial dependency on regions with lower cases density. This can be
reasonable since we see that more critical regions are concentrated in specific areas that
the model ignores, and so higher residuals remain concentrated in specific zones.

3.5. Further developments

This approach considers a geo-spatial model that is constructed by parts, instead of
performing a direct spatial regression. As we explained in the methodology, we first
formulate a multivariate linear model that considers as covariates regional factors, without
including any variable that is explicitly related to geography, and only later we consider
the spatial dependency over the residuals, that are the unexplained part of the linear
model. Hence, further research can be made by considering an integrated model.

In the other hand, spatial dependency emerges when knowing the response in neighboring
regions, however, we started with an incomplete dataset in terms of observed regions of
the European Union, and furthermore, we discarded regions with missing values in the
covariates. Hence, the model has regions in which the response is not best explained,
but further investigation could lead to more interesting and complete results when adding
missing observations and values to the dataset.
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4.1. Contrast between approaches

The motivation of this research was to study two different approaches where each had
specific advantages to their use. We first describe them for each approach:

• Association rule mining approach:

1. Association rules consider conceptually simple types of covariates, which are
modeled as attributes that are represented by a present or absent item in a
transaction. In this case, the transaction is an observation that has as items
the characteristics of the region.

2. Association rules have a direct interpretation, since the antecedent is directly
correlated to the consequent. In this case, the antecedent is the group of inter-
acting items, while the consequent is either having high or low cases density
with respect to the mean.

3. Association rules provide specific insights about how groups of factors interact
between them.

4. There is a lower impact when there are missing values in the dataset where this
approach is applied. Since the association rules are descriptive of the dataset,
this approach can work with a small amount of observations.

5. There are efficient algorithms for association rule mining in case of large datasets,
so this approach is not necessarily expensive in terms of resources [25].

• Geo-statistical analysis approach:

1. This approach considers spatial effects and patterns [22], which is critical in
a study about a virus diffusion within the EU territory. It has been observed
in previous studies that every country and region is affected differently by
COVID-19 spread [13].
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2. This approach works well with continuous data since we use linear models and
variogram models, hence it is not necessary to dicotomize them as in the other
approach. This is an important advantage given that the dataset has only
continuous variables, and so this approach has no information loss from data
dichotomization.

In the other hand, each approach has particular weaknesses, which we now enumerate:

• Association rule mining approach:

1. This approach requires specifically dichotomic variables, so that values equal to
one can represent a present item and zero an absent one. However, given that
the dataset has only continuous variables, this approach leads to information
loss from data dichotomization.

2. Association rules are only descriptive of the current dataset, since they show
patterns of co-occurrence rather than a specific relationship between attributes.
With this approach, it is not possible to make inference nor we gain predictive
power for new data [26].

• Geo-statistical analysis approach:

1. There is a higher impact when there are missing values, in terms of robustness
and confidence [22]:

– When approximating missing values over the covariates, this method is
particularly sensible to measurement and/or approximation errors within
the data.

– When removing observations due to having missing values in the covariates
that are not possible to approximate, this method is particularly sensible
to the distribution of locations considered, since we lose information of
neighboring regions.

2. This method is expensive in terms of resources [22], since it is complex even
when working with a small dataset, and, moreover, it requires a large amount
of observations in order to have significant results.

Note that, however, the points of strength of one approach consider a compensation to
the points of weakness of the other. Hence, we state that combining both approaches
can potentially take advantage of the strong points of each and compensate the points of
weakness, if formulated well enough.
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4.2. Contrast between results

In order to compare the results between both approaches, we verify the most important
factors selected by each, which are:

• For the association rule mining approach, the factors that appear in the significant
rules found.

• For the geo-statistical approach, the factors selected by LASSO with an absolute
weight of order equal or higher than e-4.

We first find that both approaches have a reasonable amount of factors that are considered
important by each, which are the following:

• First wave

– Severity

∗ Life expectancy: In the association rules, we find that regions with life
expectancy values outside the inter-quantile range are associated with a
high cases density (moreover, we find that also inside values are associated
with lower densities). In the geo-statistical approach, we find that the
linear model considers a positive weight for this variable, which means
that a higher life expectancy is linearly related to a higher cases density.

∗ Available hospital beds: In the association rules, we find that regions with
an amount of available hospital beds inside the inter-quantile range are
associated with a high cases density. In the geo-statistical approach, we
find that the linear model considers that a higher amount of beds is linearly
related to a higher cases density.

∗ Population density: In the association rules, we find that regions with a
population density outside the inter-quantile range are associated with a
high cases density. In the geo-statistical approach, we find that the linear
model considers a positive weight for this variable.

– Mildness

∗ Education participation: In the association rules, we find that regions with
participation values outside the inter-quantile range are associated with a
low cases density (moreover, we find that also inside values are associated
with higher densities). In the geo-statistical approach, we find that the
linear model considers a negative weight for this variable, which means
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that a higher participation is linearly related to a lower cases density.

∗ NEET rate: In the association rules, we find that regions with an amount
of available hospital beds outside the inter-quantile range are associated
with a low cases density (moreover, we find that also inside values are
associated with higher densities). In the geo-statistical approach, we find
that the linear model considers that a higher rate is linearly related to a
lower cases density.

• Second wave: Severity

– Early leavers from education: In the association rules, we find that regions with
an amount of early leavers outside the inter-quantile range are associated with
a high cases density (moreover, we find that also inside values are associated
with lower densities). In the geo-statistical approach, we find that the linear
model considers a positive weight for this variable, which means that a having
more early leavers is linearly related to a higher cases density.

– GVA growth rate: In the association rules, we find that regions with growth
rates inside the inter-quantile range are associated with a high cases density. In
the geo-statistical approach, we find that the linear model considers a positive
weight for this variable.

– Life expectancy: In the association rules, we find that regions with life ex-
pectancy values inside the inter-quantile range are associated with a low cases
density. In the geo-statistical approach, we find that the linear model considers
that a higher life expectancy is linearly related to a higher cases density.

– Unemployment rate: In the association rules, we find that regions with growth
rates outside the inter-quantile range are associated with a high cases den-
sity. In the geo-statistical approach, we find that the linear model considers a
positive weight for this variable.

In the other hand, each approach has a reasonable amount of factors that are valued
differently, which are the following:

• First wave

– Severity

∗ Health personnel: Only the association rules state that regions with an
amount of personnel outside the inter-quantile range are associated with
a high cases density. Moreover, here we find that also inside values are
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associated with lower densities.

∗ Early leavers from education: Only the geo-statistical approach considers
a positive weight for this variable in the linear model, which means that a
having more early leavers is linearly related to a higher cases density.

∗ GVA growth rate: Only the geo-statistical approach considers that a higher
rate is linearly related to a higher cases density.

∗ Death rate: Only the geo-statistical approach considers a positive weight
for this variable in the linear model.

– Mildness

∗ Worked hours: Only the association rules state that regions with an amount
of worked hours inside the inter-quantile range are associated with a low
cases density.

• Second wave

– Severity

∗ Long-term care beds: Only the association rules state that regions with an
amount of beds inside the inter-quantile range are associated with a high
cases density.

∗ Population: Only the association rules state that regions with a population
inside the inter-quantile range are associated with a high cases density.

∗ Stock of vehicles: Only the association rules state that regions with a stock
inside the inter-quantile range are associated with a high cases density.

∗ Available hospital beds: Only the geo-statistical approach considers a posi-
tive weight for this variable in the linear model, which means that a having
more beds available is linearly related to a higher cases density.

∗ Population density: Only the geo-statistical approach considers that a
higher population density is linearly related to a higher cases density.

– Mildness

∗ Students in tertiary education: Only the association rules state that re-
gions with an amount of students inside the inter-quantile range are asso-
ciated with a low cases density. Moreover, here we find that also outside
values are associated with higher densities.
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∗ Education participation: Only the geo-statistical approach considers a neg-
ative weight for this variable in the linear model, which means that a higher
participation is linearly related to a lower cases density.

∗ NEET rate: Only the geo-statistical approach considers that a higher rate
is linearly related to a lower cases density.

If we consider the type of factors that are selected as relevant by each approach, we note
the following:

• For the first wave, both approaches consider the same type of features, that are
demographic, educational, economical and healthcare factors.

• For the second wave, we find that both approaches mostly coincide, by considering
the same types of factors than the first wave, with the only difference that the
association rule mining approach includes an additional type, which is a factor
related to mobility.

4.3. Final considerations

We conclude that both methods should be considered, given that

• Different factors are found to be important on each stage, so the results can be used
as complementary in order to study further from more insights.

• There are common important factors on both stages, so we should consider that
there is a mutual validation between approaches.

• Simpler methods are a convenient first approach that can handle better additional
observations with faulty data, such as our dataset with missing values.

• More complex methods provide a richer analysis on a limited amount of observations
where missing values can be approximated.

In an application such as COVID-19 spread over a continent, a simple approach provides
an easier understanding of different factors and their interactions. However, we need
to consider the geographical factor, since it is an important aspect of the phenomenon.
Hence, the two approaches studied are best used together in order to gain interpretable
but also rich insights, so we can understand how the covariates behave and also predict
the spatial spread of COVID-19.
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A.1. Results for each case

A.1.1. Case 1-1

Here we present the case of the target with the first choice of dichotomization (using the
mean) and the features with the first choice of dichotomization (using the median). As
stated in section 2.1, the AR mining step considers the adding of complementary columns
for the selected features. This way, all regions have always the same amount of items,
where a single item can refer to the factor being over the median or under the median.

Figure A.1: 1-1: Chosen λ in grid search for wave 1.

Figure A.2: 1-1: Chosen λ in grid search for wave 2.
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Figure A.3: 1-1: Weights of relevant features selected by LASSO in wave 1

Figure A.4: 1-1: Weights of relevant features selected by LASSO in wave 2.

λ ROC AUC Selected features

Wave 1 0.2929 0.7136 3
Wave 2 0.631 0.7855 11

Table A.1: 1-1: LASSO feature selection summary.
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Wave 1 Wave 2

Severity Mildness Severity Mildness

Amount 2 6 26 602

Support 0.1042 (min) 0.3121 (min) 0.2014 (min) 0.1064 (min)

0.1111 (max) 0.4043 (max) 0.2569 (max) 0.1489 (max)

Confidence 0.8333 (min) 0.9661 (min) 0.8 (min) 0.9 (min)

0.7143 (max) 1.0 (max) 0.8409 (max) 1.0 (max)

P-value 1.276e-15 (min) 4.419e-04 (min) 4.545e-06 (min) 1.725e-07 (min)

3.391e-14 (max) 1.9856e-03 (max) 5.009e-04 (max) 9.252e-06 (max)

Factors 2 (all) 2 (4) and 3 (2) 2-6 (all) 2-9 (all)

Table A.2: 1-1: AR mining results summary.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Precision 86.36% 100.00% 73.47% 81.13%

Recall 100.00% 18.03% 88.89% 71.67%

Accuracy 97.92% 30.56% 75.69% 80.85%

F1-measure 92.68% 30.56% 80.45% 76.11%

Table A.3: 1-1: Subject analysis summary.

Mildness Severity

1+ rules 0 rules 1+ rules 0 rules

High 2 17 19 0

Low 76 46 3 122

Table A.4: 1-1: Subject analysis for wave 1.
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Mildness Severity

1+ rules 0 rules 1+ rules 0 rules

High 10 71 72 9

Low 43 17 26 37

Table A.5: 1-1: Subject analysis for wave 2.

Wave 1 Wave 2

Severity Mildness Severity Mildness

High 1.632 0.316 10.025 8.642

Low 0.048 2.492 2.984 164.266

Table A.6: 1-1: Average satisfied rules.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Severity 2 0 70 22

Mildness 2 12 1262 2552

Table A.7: 1-1: Feature analysis counting all repetitions.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Severity 2 0 11 5

Mildness 2 5 8 13

Table A.8: 1-1: Feature analysis counting unique appearances.
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A.1.2. Case 1-3

Here we present the case of the target with the first choice of dichotomization (using the
mean) and the features with the third choice of dichotomization (above and below the
IQR). As stated in section 2.1, the AR mining step does not add complementary columns
for the selected features. This way, regions have items only where they are above or below
the IQR, and not when they are inside it.

Figure A.5: 1-3: Chosen λ in grid search for wave 1.

Figure A.6: 1-3: Chosen λ in grid search for wave 2.
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Figure A.7: 1-3: Weights of relevant features selected by LASSO in wave 1

Figure A.8: 1-3: Weights of relevant features selected by LASSO in wave 2.
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λ ROC AUC Selected features

Wave 1 0.7356 0.9045 10
Wave 2 8.577 0.8292 43

Table A.9: 1-3: LASSO feature selection summary.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Amount 1 1 1 8

Support 0.03546 0.1528 0.111 0.0625

Confidence 0.7143 1.0 1.0 0.9

P-value 4.72e-4 1.883e-02 4.883e-05 1.716e-03

Factors 2 (all) 2 (all) 2 (all) 2-5 (all)

Table A.10: 1-3: AR mining results summary.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Precision 71.43% 100.00% 100.00% 90.00%

Recall 26.32% 18.03% 19.75% 15.00%

Accuracy 88.65% 30.56% 54.86% 63.89%

F1-measure 38.46% 30.56% 32.99% 25.71%

Table A.11: 1-3: Subject analysis summary.

Mildness Severity

1+ rules 0 rules 1+ rules 0 rules

High 0 22 5 14

Low 22 100 2 120

Table A.12: 1-3: Subject analysis for wave 1.
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Mildness Severity

1+ rules 0 rules 1+ rules 0 rules

High 1 83 16 65

Low 9 51 0 63

Table A.13: 1-3: Subject analysis for wave 2.

Wave 1 Wave 2

Severity Mildness Severity Mildness

High 0.263 0.000 0.198 0.095

Low 0.016 0.180 0.000 1.200

Table A.14: 1-3: Average satisfied rules.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Severity 2 0 2 0

Mildness 0 2 16 12

Table A.15: 1-3: Feature analysis counting all repetitions.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Severity 2 0 2 0

Mildness 0 2 3 2

Table A.16: 1-3: Feature analysis counting unique appearances.
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A.1.3. Case 2-1

Here we present the case of the target with the second choice of dichotomization (using the
median) and the features with the first choice of dichotomization (using the median). As
stated in section 2.1, the AR mining step considers the adding of complementary columns
for the selected features. This way, all regions have always the same amount of items,
where a single item can refer to the factor being over the median or under the median.

Figure A.9: 2-1: Chosen λ in grid search for wave 1.

Figure A.10: 2-1: Chosen λ in grid search for wave 2.
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Figure A.11: 2-1: Weights of relevant features selected by LASSO in wave 1

Figure A.12: 2-1: Weights of relevant features selected by LASSO in wave 2.

λ ROC AUC Selected features

Wave 1 0.2512 0.7704 5
Wave 2 1.8478 0.704 18

Table A.17: 2-1: LASSO feature selection summary.
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Wave 1 Wave 2

Severity Mildness Severity Mildness

Amount 4 1 7 1

Support 0.234 (min) 0.2128 0.1064 (min) 0.2057

0.2482 (max) 0.1348 (max)

Confidence 0.7234 (min) 0.9091 0.9 (min) 0.8056

0.7727 (max) 0.9412 (max)

P-value 1.344e-05 (min) 2.028e-08 4.063e-05 (min) 1.331e-05

1.906e-04 (max) 1.395e-04 (max)

Factors 2 (all) 3 (all) 3-5 (all) 3 (all)

Table A.18: 2-1: AR mining results summary.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Precision 68.29% 90.91% 89.74% 80.56%

Recall 78.87% 42.86% 49.30% 41.43%

Accuracy 70.92% 69.50% 71.63% 65.96%

F1-measure 73.20% 58.25% 63.64% 54.72%

Table A.19: 2-1: Subject analysis summary.

Mildness Severity

1+ rules 0 rules 1+ rules 0 rules

High 3 68 56 15

Low 30 40 26 44

Table A.20: 2-1: Subject analysis for wave 1.
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Mildness Severity

1+ rules 0 rules 1+ rules 0 rules

High 7 64 35 36

Low 29 41 4 66

Table A.21: 2-1: Subject analysis for wave 2.

Wave 1 Wave 2

Severity Mildness Severity Mildness

High 1.915 0.042 1.592 0.414

Low 0.671 0.429 0.129 0.099

Table A.22: 2-1: Average satisfied rules.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Severity 8 0 23 0

Mildness 0 3 0 3

Table A.23: 2-1: Feature analysis counting all repetitions.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Severity 4 0 8 0

Mildness 0 3 0 3

Table A.24: 2-1: Feature analysis counting unique appearances.
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A.1.4. Case 2-2

Here we present the case of the target with the second choice of dichotomization (using
the median) and the features with the second choice of dichotomization (using the inter-
quantile range). As stated in section 2.1, the AR mining step considers the adding of
complementary columns for the selected features. This way, all regions have always the
same amount of items, where a single item can refer to the factor being outside the IQR
or inside it.

Figure A.13: 2-2: Chosen λ in grid search for wave 1.

Figure A.14: 2-2: Chosen λ in grid search for wave 2.

Figure A.15: 2-2: Weights of relevant features selected by LASSO in wave 1
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Figure A.16: 2-2: Weights of relevant features selected by LASSO in wave 2.

λ ROC AUC Selected features

Wave 1 0.1359 0.644 1
Wave 2 1.3594 0.6643 17

Table A.25: 2-2: LASSO feature selection summary.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Amount 0 0 7 3

Support 0.1064 (min) 0.2057 (min)

0.1206 (max) 0.2340 (max)

Confidence 0.9375 (min) 0.8286 (min)

1.0 (max) 0.8684 (max)

P-value 1.495e-05 (min) 3.868e-08 (min)

1.395e-04 (max) 4.116e-06 (max)

Factors 3 (5) and 4 (2) 3 (all)

Table A.26: 2-2: AR mining results summary.



A| Appendix A 89

A.1.5. Case 2-3

Here we present the case of the target with the second choice of dichotomization (using
the median) and the features with the third choice of dichotomization (above and below
the IQR). As stated in section 2.1, the AR mining step does not add complementary
columns for the selected features. This way, regions have items only where they are above
or below the IQR, and not when they are inside it.

Figure A.17: 2-3: Chosen λ in grid search for wave 1.

Figure A.18: 2-3: Chosen λ in grid search for wave 2.
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Figure A.19: 2-3: Weights of relevant features selected by LASSO in wave 1

Figure A.20: 2-3: Weights of relevant features selected by LASSO in wave 2.
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λ ROC AUC Selected features

Wave 1 2.1544 0.6913 32
Wave 2 0.2512 0.7653 4

Table A.27: 2-3: LASSO feature selection summary.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Amount 5 1 1 0

Support 0.1135 (min) 0.08511 0.03546

0.1277 (max)

Confidence 0.8 (min) 0.8 1.0

0.8947 (max)

P-value 1.726e-04 (min) 1.21e-02 3.012e-02

3.718e-03 (max)

Factors 2-4 (all) 2 (all) 2 (all)

Table A.28: 2-3: AR mining results summary.
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A.1.6. Case 3-1

Here we present the case of the target with the third choice of dichotomization (using the
quantile 90) and the features with the first choice of dichotomization (using the median).
As stated in section 2.1, the AR mining step considers the adding of complementary
columns for the selected features. This way, all regions have always the same amount
of items, where a single item can refer to the factor being over the median or under the
median.

Figure A.21: 3-1: Chosen λ in grid search for wave 1.

Figure A.22: 3-1: Chosen λ in grid search for wave 2.
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Figure A.23: 3-1: Weights of relevant features selected by LASSO in wave 1

Figure A.24: 3-1: Weights of relevant features selected by LASSO in wave 2.

λ ROC AUC Selected features

Wave 1 0.4642 0.7417 6
Wave 2 0.4642 0.7318 5

Table A.29: 3-1: LASSO feature selection summary.
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Wave 1 Wave 2

Severity Mildness Severity Mildness

Amount 1 2 0 2

Support 0.06383 0.3262 (min) 0.2837

0.4184 (max)

Confidence 0.6 0.9833 (min) 1.0

1.0 (max)

P-value 4.151e-07 1.804e-03 (min) 4.862e-03

1.921e-03 (max)

Factors 4 (all) 2 (all) 2 (all)

Table A.30: 3-1: AR mining results summary.
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A.1.7. Case 3-2

Here we present the case of the target with the third choice of dichotomization (using
the quantile 90) and the features with the second choice of dichotomization (using the
inter-quantile range). As stated in section 2.1, the AR mining step considers the adding
of complementary columns for the selected features. This way, all regions have always the
same amount of items, where a single item can refer to the factor being outside the IQR
or inside it.

Figure A.25: 3-2: Chosen λ in grid search for wave 1.

Figure A.26: 3-2: Chosen λ in grid search for wave 2.
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Figure A.27: 3-2: Weights of relevant features selected by LASSO in wave 1

Figure A.28: 3-2: Weights of relevant features selected by LASSO in wave 2.

λ ROC AUC Selected features

Wave 1 0.7356 0.6788 7
Wave 2 0.5412 0.7803 4

Table A.31: 3-2: LASSO feature selection summary.
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Wave 1 Wave 2

Severity Mildness Severity Mildness

Amount 10 1 1 1

Support 0.02128 (min) 0.3262 0.03546 0.2482

0.03546 (max)

Confidence 0.7143 (min) 1.0 0.625 1.0

1.0 (max)

P-value 1.285e-04 (min) 1.804e-03 3.215e-04 1.060e-02

3.720e-03 (max)

Factors 4-6 (all) 2 (all) 4 (all) 2 (all)

Table A.32: 3-2: AR mining results summary.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Precision 72.73% 100.00% 62.50% 100.00%

Recall 53.33% 36.51% 33.33% 27.78%

Accuracy 92.91% 43.26% 90.78% 35.46%

F1-measure 61.54% 53.49% 43.48% 43.48%

Table A.33: 3-2: Subject analysis summary.

Mildness Severity

1+ rules 0 rules 1+ rules 0 rules

High 0 15 8 7

Low 46 80 3 123

Table A.34: 3-2: Subject analysis for wave 1.
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Mildness Severity

1+ rules 0 rules 1+ rules 0 rules

High 0 15 5 10

Low 35 91 3 123

Table A.35: 3-2: Subject analysis for wave 2.

Wave 1 Wave 2

Severity Mildness Severity Mildness

High 2.133 0.0 0.333 0.0

Low 0.048 0.365 0.024 0.278

Table A.36: 3-2: Average satisfied rules.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Severity 35 13 4 0

Mildness 0 2 0 2

Table A.37: 3-2: Feature analysis counting all repetitions.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Severity 6 3 4 0

Mildness 0 2 0 2

Table A.38: 3-2: Feature analysis counting unique appearances.
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A.1.8. Case 3-3

Here we present the case of the target with the first choice of dichotomization (using the
mean) and the features with the third choice of dichotomization (above and below the
IQR). As stated in section 2.1, the AR mining step does not add complementary columns
for the selected features. This way, regions have items only where they are above or below
the IQR, and not when they are inside it.

Figure A.29: 3-3: Chosen λ in grid search for wave 1.

Figure A.30: 3-3: Chosen λ in grid search for wave 2.

Figure A.31: 3-3: Weights of relevant features selected by LASSO in wave 1
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Figure A.32: 3-3: Weights of relevant features selected by LASSO in wave 2.

λ ROC AUC Selected features

Wave 1 0.2154 0.742 1
Wave 2 0.8577 0.7273 14

Table A.39: 3-3: LASSO feature selection summary.

Wave 1 Wave 2

Severity Mildness Severity Mildness

Amount 0 0 2 0

Support 0.02128

Confidence 0.75

P-value 3.720e-03

Factors 3 (all)

Table A.40: 3-3: AR mining results summary.
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A.2. Comparison between cases

Given that cases 2-2, 2-3, 3-1 and 3-3 do not find significant rules of all types for all waves,
they are discarded from the comparison to consider the pre-processing that presents the
most satisfying results. With the remaining cases, we plot for each metric the performance
of each pre-processing case, in order to find the best set of performances by measure. These
are showed in Figure A.33.

(a) Precision by case. (b) Recall by case.

(c) Accuracy by case. (d) F1-measure by case.

Figure A.33: Subject analysis performance by pre-processing case.

We can notice that case 1-2 presents the best fitting set in recall, accuracy and F1-
measure. The only measure where it is outperformed is precision, where case 1-3 has the
best performing set, but performs far worse regarding specially accuracy and F1-measure.
For this reason, we choose case 1-2 as the best case for analysis, since its resulting rules
associate better to the proposed response.
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B.1. First wave variogram model selection

We fit the exponential, spherical and gaussian models, all added to a nugget model, in
order to find the best approximation considering the main characteristics of the shape of
such models. We do this by fitting the main residual variogram, visualizing their behavior
over the directional variograms, and measuring their approximation errors. We can assess
visually the fit of the discarded models (see Fig. B.1 and B.2), while Table B.1 shows
the results for all models, where we see that the lowest errors correspond to the gaussian
model.

Model Nugget Sill Range SSErr Med err Mean err

Exponential 0.07314 0.33311 414.4195 1.520e-05 0.1377 0.1285

Spherical 0.09069 0.27088 759.1032 1.206e-05 0.1004 0.1037

Gaussian 0.12522 0.23679 358.5561 9.883e-06 0.10259 0.09868

Table B.1: Summary fitted variogram models for wave 1.

(a) Residual variogram. (b) Directional variogram.

Figure B.1: Exponential model of residuals from a linear trend depending on longitude.
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(a) Residual variogram. (b) Directional variogram.

Figure B.2: Spherical model of residuals from a linear trend depending on longitude.

B.2. Second wave variogram model selection

We fit the exponential, spherical and gaussian models, all added to a nugget model, in
order to find the best approximation considering the main characteristics of the shape of
such models. We do this by fitting the main residual variogram, visualizing their behavior
over the directional variograms, and measuring their approximation errors. We can assess
visually the fit of the discarded models (see Fig. B.3 and B.4), while Table B.2 shows
the results for all models, where we see that the lowest errors correspond to the gaussian
model, except for the residual sum of squares that, however has a neglectable difference
with the other models.

Model Nugget Sill Range SSErr Med err Mean err

Exponential 0.06645 0.39698 386.9507 5.328e-06 0.2444 0.2240

Spherical 0.09043 0.31983 720.8476 3.617e-06 0.1932 0.1646

Gaussian 0.13183 0.27286 332.7346 5.387e-06 0.1918 0.1605

Table B.2: Summary fitted variogram models for wave 2.
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(a) Residual variogram. (b) Directional variogram.

Figure B.3: Exponential model of residuals from a linear trend depending on latitude.

(a) Residual variogram. (b) Directional variogram.

Figure B.4: Spherical model of residuals from a linear trend depending on latitude.
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