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Abstract

The main goal of this thesis is to develop solutions in the field of switched systems that
allow a network of robots to safely navigate an environment with obstacles while guar-
anteeing collision avoidance. The thesis extends previous works where a network of dif-
ferential wheeled robots is considered and only two motions are allowed: rotation on the
spot and roto-translation describing a circular path. To manage collision avoidance, the
problem is reformulated in terms of a model predictive control description, which, thanks
to its flexibility, allows to tackle several tasks for the network. In order to alleviate the
computational burden, a distributed approach has been developed along with a robust
and stochastic formulation of the model predictive control able to cope with disturbances
acting on the robots. To conclude, a novel robust model predictive control approach based
on disturbances reachable set is developed, resulting in a control scheme that improves
on previous solutions in terms of computational effort, flexibility, and robustness.

Keywords: mobile robotics, switched system, model predictive control, robust MPC,
stochastic MPC.





Abstract in lingua italiana

L’obiettivo principale di questa tesi è sviluppare soluzioni nel campo dei sistemi a com-
mutazione che consentano a una rete di robot di navigare in sicurezza in un ambiente con
ostacoli, garantendo al contempo di evitare le collisioni. La tesi estende lavori precedenti
in cui si considera una rete di robot a ruote differenziali per i quali sono ammessi solo
due moti, la rotazione sul posto e la roto-traslazione che descrive un percorso circolare.
Per evitare le collisioni, il problema viene descritto in modo da applicare una strategia di
controllo predittivo, che grazie alla sua flessibilità permette di affrontare diversi compiti
per la rete. Per alleggerire il carico computazionale, è stato sviluppato un approccio dis-
tribuito e una formulazione robusta e stocastica del controllo predittivo in grado di far
fronte ai disturbi che agiscono sui robot. In conclusione, è stato sviluppato un nuovo ap-
proccio di controllo predittivo robusto basato sull’insieme raggiungibile dai disturbi, che
ha portato a uno schema di controllo che migliora le formulazioni precedenti in termini di
sforzo computazionale, flessibilità e robustezza.

Parole chiave: robotica mobile, sistemi switched, model predictive control, MPC ro-
busto, MPC stocastico.
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1| Introduction

Literature overview

Mobile robotics has a large variety of applications, which range from the more classical
task of navigation and mapping to more complex tasks such as patrolling, search and
rescue, and many others. Different types of models can describe wheeled mobile robots as
unicycle, bicycle, or tractor-trailers. However, due to the complex nature of nonholonomic
constraints, highly nonlinear control strategies generally have to be employed for even the
most simple robot structure and simple environment in which no obstacles are present,
see for instance [1]. This problem is based on the fact that the necessary conditions for
the existence of time-invariant control law are violated [2]. The situation becomes even
more difficult in the case of multiple robot systems, a scenario enabling the possibility
to approach several other tasks as formation control [3, 4], flocking [5], coverage [6], ag-
gregation [7]. Of course, under this scenario, different strategies are required for motion
and coordination. This is even more evident once considered that often a centralized
controller, that has all the available information at its disposal, is not suitable due to
high computational demand or communication delay. To overcome this limitation, the
use of other control architectures can be useful, such as decentralized controller, where
each robot is controlled by an independent controller, disregarding possible connections
between robots, or a distributed controller, where the exchange of information between
controllers is allowed. Several approaches have been used to tackle the problem, as men-
tioned earlier. For instance, in [3], a feedback linearization approach exploiting only local
information is proposed with the scope of stabilizing the robot in a specified formation,
in [8] coordinated motion is obtained exploiting Lyapunov theory, in [9] the concept of
control barrier function is exploited to achieve collision-free motion, while in [10] a be-
haviour based approach is exploited to carry out several different tasks, other approaches
use distributed model predictive control (MPC) to perform several possible tasks such as
formation control and coverage [11].
The flexibility of MPC also allows to easily consider a large variety of input constraints,
such as the presence of a finite control set. There is indeed a strong connection between
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a system with a discrete control set and switched systems, [12, 13], which are a particu-
lar class of hybrid system, whose evolution is governed by both continuous and discrete
dynamics. Switched systems, and hybrid systems in general, have attracted a lot of at-
tention in the last period due to the peculiarity of the behaviour of their dynamics and
offer a suitable framework to model and analyze complex systems as the one considered
in this thesis.

1.1. Comparison with respect to the related litera-

ture

Inspired by some recent work [14, 15] in which the self-aggregation problem is considered,
in this thesis, an enhanced control strategy for trajectory tracking and aggregation of
planar multi robot system in the presence of disturbances is considered. Exploiting the
same setting in terms of robot motions, we consider a network of differential wheeled
circular robots with constrained dynamic determined by two fixed pairs of wheel veloci-
ties allowing rotation on the spot and roto-translation describing a circular path. In this
framework, the problem is recast in the context of switched system. In the literature, sev-
eral works cover the issue of stabilization of switched systems, exploiting the concept of
control Lyapunov function [16] or the use of Lyapunov-Metzler equation [13, 17] to obtain
the switching laws. Differently, in this thesis, the “parking” problem is reformulated as an
optimal control problem (OCP), where tracking and collision avoidance are considered.
Then, the associated cost function is used as Lyapunov function for the switching MPC
strategy.
Given the discrete nature of the actuation set, the optimal control problem is subject to
a considerable computational complexity. This can be alleviated when considering the
whole network in a distributed implementation, as in [11], where the original optimal
control problem is divided into several smaller problems that are more easily manageable.
Subsequently, it is shown how the developed strategy can be extended to other tasks such
as path-following and self-aggregation with the use of an outer layer managing the refer-
ence of the switching MPC. The presence of disturbances acting on the robot position is
also considered and the switching MPC strategy is modified, so as to guarantee a correct
navigation of the environment despite the presence of disturbances.
At first, a robust formulation is considered which guarantees collision avoidance at the
cost of obtaining a very conservative solution. To avoid the inherent conservativity present
in the robust formulation, also a stochastic version of switching MPC is presented which
makes use of chance-constraint on collision avoidance to obtain a trade-off between per-
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formance and conservativity.
An analysis of the resulting switched model for a differential wheeled robot is carried out,
highlighting the limitation of the techniques available in the literature for the case under
study. Moreover, a novel robust MPC formulation is developed based on the disturbances
reachable set. This strategy presents major computational advantages by addressing the
switched nature of the system with an auxiliary control law, which reduces the optimal
control problem to a simpler quadratic programming problem.

1.2. Main contribution

Spurred by the motivations and the challenges previously highlighted, the main contribu-
tions of this thesis with respect to the state of the art are the following:

• We have performed an analysis of the nonlinear switched model adopted to capture
the robots dynamics, and we have designed different stabilizing switching laws,
highlighting the current limitations in the literature;

• We have developed different stabilizing switching MPCs, able to handle the presence
of uncertainty and disturbances in both robust and stochastic frameworks;

• We have proposed a completely original switching MPC approach based on distur-
bances reachable set, highlighting the main advantages and potential extension;

• All the approaches have been deeply analyzed from a theoretical viewpoint, also
assessing their efficacy in realistic simulation scenarios.

1.3. Thesis outline

This thesis is organized as follows:

• In Chapter 2, the kinematic equations of a differential wheeled robot are derived,
and the corresponding switched model defined by a switching signal is obtained;
then the model is extended for a multi-robot system. To conclude the chapter,
different models incorporating disturbances are introduced.

• In Chapter 3, an analysis of the obtained switched system is carried out. The
limitations of available techniques present in the literature are pointed out; then,
switching laws are obtained for both the continuous-time and sampled data systems.
To conclude, an analysis of the effect of disturbances on the sampled domain control
system is carried out.
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• Chapter 4 deals with the optimal control formulation, taking into account avoidance
objectives. Exploiting the optimal control problem, a switching MPC formulation
is presented, and a distributed implementation is formulated; then the approach
is extended to the robust and stochastic cases. Simulation results are shown and
commented on for each of the developed algorithms.

• In Chapter 5, the reachability analysis described in Chapter 3 is exploited to develop
a novel MPC approach that presents a major computational advantage. At first, a
simple formulation is presented for both the centralized and distributed implemen-
tations; then a possible extension is developed.

• Finally, some conclusions are drawn, and future works are suggested in Chapter 6.
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2| Modelling of the system

This chapter presents the modelling of a differential wheeled mobile robot based on kine-
matic equations.

2.1. Kinematic modelling

A differential wheeled robot (see Figure 2.1) is composed of a passive castor wheel and
two controlled wheels. This configuration allows the robot to move in a plane by properly
defining the velocity of the two active wheels. In order to obtain a kinematic model for
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p
py

XY

vr

vl

diw

r
θ

Figure 2.1: Differential wheeled mobile robot.

the considered configuration, the passive castor wheel is usually ignored. In the following,
we shall consider diw as the distance between wheels, vl and vr as the linear velocities of
the left and right wheels, respectively, θ as the robot orientation.

During the motion of the differential wheeled robot, it is usually assumed that the wheel
of the robot rolls without slipping. Therefore, the motion of the wheel is constrained by
the instantaneous center of rotation (ICR), which lies in the common lateral axis of the
two active wheels.

Furthermore, during motion, there is a relationship between the angular speed of the



6 2| Modelling of the system

robot ω, the distance R of the ICR from the centroid p of the robot, and the linear wheel
velocities vl and vr, i.e.,

ω(R +
diw
2

) = vr

ω(R− diw
2

) = vl

(2.1)

which can be rearranged as:

R =
diw
w

(
vr + vl
vr − vl

)

ω =
1

diw
(vr − vl)

(2.2)

From the previous equations, the linear velocity of the centroid p of the robot in the global
frame of reference, namely vtx and vty, can be computed as:

v = ωR =
vr + vl

2

vtx = v cos θ

vty = v sin θ

(2.3)

With the previously computed relations, it is possible to obtain the kinematic model of
the mobile robot. By considering as state variable the robot posture (position of the robot
and orientation) in the global frame of reference p = [px, py, θ]

⊤ and a control action the
linear and angular velocity of the robot u = [v, ω]⊤ the time-invariant system model can
be written as:

ṗx = v cos θ

ṗy = v sin θ

θ̇ = ω

(2.4)

Systems of this type are known as non-holonomic systems, meaning that the system is
subject to constraints involving both the state p and its derivative ṗ.
It has to be noted that vt and ω are not the real inputs acting on the system, which are
instead vr and vl. The value of vr and vl can be recovered by exploiting the relations:

v =
vr + vl

2

ω =
1

diw
(vr − vl)

(2.5)
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2.2. Switched model and network

Previously, the dynamics of a mobile robot have been defined. In this section, the partic-
ular constrained set of motion and the resulting switched dynamics are introduced.
In more detail, the robots will be constrained to a very restrictive set of possible motions
as follows.

1. The first motion is defined by the relation v0 = 0, ω = ω0, which correspond in
terms of linear velocities of the wheel to:

vr0 = vl0

ω0 =
1

diw
(vr0 − vl0)

(2.6)

Considering the relation for vt0 and ω0 in the kinematic model (2.4) one has:

ṗx = 0

ṗy = 0

θ̇ = ω0

(2.7)

Therefore, this first possible motion is characterized by only a rotation of the robot
while maintaining its position unchanged.

2. The second motion is defined by v = v1 and ω = ω1, which correspond in terms of
linear velocities of the wheel to

v1 =
vr1 + vl1

2

ω1 =
1

diw
(vr1 − vl1)

(2.8)

considering the relation for vt0 and ω0 in the kinematic model (2.4) one has:

ṗx = v1 cos θ

ṗy = v1 sin θ

θ̇ = ω1

(2.9)

which corresponds to a circular trajectory.

The considered set of motion composed by rotation and roto-translation could seem quite
arbitrary, but it is chosen in analogy to [14, 15], where it is considered the problem of
self-aggregation (also called consensus problem). In [15] an optimal controller is obtained
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which exploits only the described set of motion; in [14] the switched formulation exploits
the concept of control a Lyapunov function (see also [16]).
In analogy to these previous works, we define [ vl1 , vr1 , vl0 , vr0 ] = [−0.7,−1, 1,−1]vmax

where vmax is the maximum linear velocity of the wheel.
In order to recast the dynamics of the mobile robot as a nonlinear switched system, we
need to define the switching signal σ(t) ∈ {0, 1}, so obtaining:

ṗ(t) = fσ(t)(p(t)) (2.10)

where fσ(t) belong to the set of vector field {f0, f1} :

f0 =

 0
0
ω0

 f1 =

v1 cos θv1 cos θ
ω1

 (2.11)

Furthermore, a network of Nrob robots can be considered, by defining the switching string
Σ(t) = { σ1(t) , σ2(t) . . , σNrob

(t)}, while the network dynamics can be modelled as:

ṗ(t) =


ṗ[1](t)

.

.
ṗNrob(t)

 =


fσ1(t)(p

[1](t))
.
.

fσNrob
(t)(p

[Nrob](t))

 = fΣ(t)(p(t)) (2.12)

It is relevant to note that the dynamics of the different robots are not coupled. In fact,
the source of coupling between different robots resides in the constraint to be imposed on
the evolution of the robot network.

2.3. Perturbed system

A relevant point of focus of the work is the analysis and design of a switching law in the
presence of uncertainty and disturbances in the mobile robot dynamics. In particular,
two different models for the uncertainty, one multiplicative and one additive, will be
considered.
For the sake of simplicity, the perturbed model will be presented for a single mobile robot
since the extension to a network of Nrob is quite trivial.
The first perturbed model, which will be considered, describes the uncertainty present in
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the system as multiplicative:

ṗx = ((1 + d1) cos(θ)− d2 sin(θ))vσ

ṗy = ((1 + d1) sin(θ) + d2 cos(θ))vσ

θ̇ = (1 + d3)ωσ

(2.13)

where d1, d2, d3 represent perturbations related to the original system. In more detail, the
term d1 represents the difference between the wheels velocity and the linear velocity of
the mobile robot due to effects such as the wheel slip, the term d2 represents the lateral
velocity caused by skidding of the mobile robot, the term d3 represents the deviation
from the nominal angular velocity ωσ. For the remainder of the work, the term d3 will be
considered null or negligible since it is possible to translate its effect in the overall effect
of d1 and d2.
A possible sensible assumption is to consider the terms d1 and d2 bounded and uniformly
distributed: |di| < d̄ < 1 for i = 1, 2. These bounds reflect the fact that a magnitude
larger than 1 means that the perturbation would have a greater effect than the input
applied, thus making it impossible to modify the behavior of the mobile robot. Another
possible assumption is to consider a norm-bounded perturbation: d21 + d22 < d̄2 < 1.
Furthermore, it is also possible to consider the multiplicative uncertainty as a mode-
dependent disturbance acting on the system, i.e.,

ṗx = vσ cos(θ) + dx(σ)

ṗy = vσ sin(θ) + dy(σ)

θ̇ = ωσ

(2.14)

where:
dx(σ) = (d1 cos(θ)− d2 sin(θ))vσ

dy(σ) = (d1 sin(θ) + d2 cos(θ))vσ
(2.15)

Under the assumption d21 + d22 < d̄2 it is possible to show that:

d2x(σ) + d2y(σ) = v2σ(d
2
1 cos

2(θ)− 2d1d2 cos(θ) sin(θ)

+ d22 sin
2(θ)d21 sin

2(θ) + 2d1d2 cos(θ) sin(θ) + d22 cos
2(θ))

d2x(σ) + d2y(σ) = vσ(d
2
1 + d22) < vσd̄

(2.16)

It is relevant to note that, considering a multiplicative description of the uncertainty
acting on the system, implies that the effect of the uncertainty in the case of σ(t) = 0 is
null. This could be a stringent condition on the disturbances acting on the system since it
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prohibits the presence of external influences on the system dynamics, which can be taken
into account by allowing the additive disturbances as follows:

ṗx = vσ cos(θ) + dx

ṗy = vσ sin(θ) + dy

θ̇ = ωσ

(2.17)

The difference between (2.14) and (2.17) resides in the fact that in (2.17) the disturbances
are independent from the value of the switching signal σ. Furthermore, if instead of using
px and py as state variables, we consider the deviation ex and ey from a time-varying
reference position, the same model (2.17) is obtained, where the additive disturbances
can be interpreted as the rate of change with respect to the desired reference position.
So far, only the continuous time models have been considered. Discretized models will be
covered in later chapters, while discussing the receding-horizon control approach that is
the main focus of the present work.
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3| Switched system analysis

In this chapter, the analysis of the dynamics of a single robot is carried out. The result will
be useful to design and assess the performance of the control law, which will be proposed
in the later chapter. Furthermore, some general considerations on the stabilization of
nonholonomic systems are presented.

3.1. Preliminaries

We start by recalling the original model of the system:

ṗx = v cos θ

ṗy = v sin θ

θ̇ = ω

(3.1)

In order to further motivate the adopted switched approach, it is relevant to recall the
well-known Brockett’s condition [2]

Theorem 3.1. Consider the control system ẋ = f(x, u) with X = Rn and U = Rm, and
suppose that there exists a continuous feedback law u = k(x) satisfying k(0) = 0 which
makes the origin a (locally) asymptotically stable equilibrium of the closed-loop system
ẋ = f(x, k(x)). Then, the image of every neighborhood of (0, 0) in Rn × Rm under the
map

(x, u) → f(x, u)

contains some neighborhood of zero in Rn.

It is easy to show that system (3.1) does not satisfy Theorem 3.1. Therefore, it is not pos-
sible to stabilize the system with a continuous control law. This result further motivates
the use of a switched modelling of the system, being the switching signal σ intrinsically
associated with a discontinuous control action. This discussion is more relevant for the
continuous time case than for the discrete time one. For a general survey on switched
systems that also covers the non-holonomic case, see [18].
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3.2. Coordinate transformation

In order to simplify the analysis of the system (3.1) a change of coordinate is proposed:

z1 = px sin(θ)− py cos(θ)

z2 = px cos(θ) + py sin(θ)

z3 = θ

(3.2)

The proposed change of coordinates corresponds to a rotation of the reference of the frame
to the axis oriented as the mobile robot. It is relevant to note, that being a rotation, the
distance from the origin is preserved.

In the new set of coordinates, the system dynamics of the system can be easily computed
as:

ż1 = ṗx sin(θ) + px cos(θ)θ̇ − ṗy cos(θ) + py sin(θ)θ̇

= vσ(cos(θ) sin(θ)− cos(θ) sin(θ)) + ωσ(px cos(θ) + py sin(θ)) = ωσz2

= ṗx cos(θ)− px sin(θ)θ̇ + ṗy sin(θ) + py cos(θ)θ̇

ż2 = vσ(cos
2(θ) + sin2(θ)) + ωσ(−px sin(θ) + py cos(θ)) = −ωσz1 + vσ

ż3 = θ̇ = ωσ

(3.3)

Note that the state variable z3 does not affect the dynamics of the subsystem composed
by the state [z1, z2], furthermore the equilibrium p̄ = [0, 0, θ]⊤ is mapped into [z̄1, z̄2] =

[0, 0], therefore the problem of Cartesian regulation it is equivalent to the regulation of
the subsystem [z1, z2].
Overall, the evolution of the reduced state z = [z1, z2]

⊤ is governed by the switched affine
system (SAS):

ż = Aσz +Bσ (3.4)

where:
Aσ =

[
0 ωσ

−ωσ 0

]
Bσ =

[
0
vσ

]
(3.5)

There is a wide literature regarding the stabilization of this class of systems, see, for
instance, [19–21]. Despite all these contributions, the applicability of general methods
developed for SAS is limited due to some not respected assumptions.
For instance, some methods exploit the existence of an Hurwitz1 convex combination of
the matrices Aσ, i.e. the existence of non-negative real numbers αi summing to 1, such
that Aα =

∑N
i αiAi has all eigenvalues with real part strictly less than 0. In our case

1A square matrix A is said to be Hurwitz if every eigenvalue of A has strictly negative real part, i.e.
Re [λi] < 0 for each eigenvalue λi of A.
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N = 2 and it is easy to see that for our Ai there is no Hurwitz convex combination:

Aα = αA0 + (1− α)A1 =

[
0 ω1 + α(ω0 − ω1)

−ω1 − α(ω0 − ω1) 0

]
α ∈ [0, 1]

(3.6)

For all admissible values of α, the matrix Aα presents a couple of pure imaginary eigen-
values.
Other methods consider the linear and affine dynamics separately and revolve around the
stabilization of the linear switched system ż = Aσz exploiting methods such as Lyapunov-
Metzler function (see [12, 17] for a general survey about switched system).
Despite this limitation, it will be shown that it is still possible to find switching rules that
asymptotically stabilize the system.
In later section also the design of switching laws for the discretized version of model (3.4),
letting T be the sampling time and assuming that σ can change only at instants multiple
of T one can write:

z(k + 1) = Adσz(k) +Bdσ

Adσ = e(AσT ) Bdσ =

∫ T

0

eAστBτdτ
(3.7)

where:

Adσ =

[
cos(ωσT ) sin(ωσT )
− sin(ωσT ) cos(ωσT )

]
Bdσ =

[
−vσ(cos(ωσT )−1)

ωσ
vσ sin(ωσT )

ωσ

]
(3.8)

A similar argument to the continuous-time case can be made, and similar limitations
arise, see for instance [22, 23] for some results about SAS in discrete time, and [13] for
some general results about discrete-time switched systems.

3.3. Continuous-time analysis

In order to discuss the design of a stabilizing switching law for the system (3.4), we need
to recall that, in analogy with [14, 15] the wheel velocities of the mobile robot in the
mode associated with σ = 0 are [vl0, vr0] = [1, −1] while for the mode associated with
σ = 1 are [vl1, vr1] = [−0.7, −1].Therefore, the parameter of (2.4), (2.7) and (2.9) are
such that:

v0 = 0, v1 < 0, ω0 < 0, ω1 < 0, (3.9)

With these particular conditions on the parameters, the trajectories associated with σ = 0

are counterclockwise circular trajectories around the origin, while the trajectories associ-
ated with σ = 1 are counterclockwise circular trajectories around the equilibrium point
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z1

z2

z1

z2

c

Figure 3.1: Qualitative description of the trajectories in mode 0(left) and 1 (right) c = v1
ω1

( v1
ω1
, 0), as qualitatively shown in Figure 3.1. There are many stabilizing switching laws,

the one that will be considered here has been chosen since it avoids sliding motions, and
analysis is more streamlined.
Consider now the switching law:

σ =

1 if z1 < 0 ∧ z2 > 0

0 otherwise
(3.10)

Where ∧ represent the logical AND.

Theorem 3.2. the switching law (3.10) makes the origin of (3.4) a globally asymptotically
stable equilibrium point of the closed loop system (3.4).

Proof. As mentioned above, proving stability by exploiting Lyapunov function is not easy
for the system under study. This fact is due to difficulties in obtaining a monotonically
decreasing Lyapunov function. However, it is possible to evaluate the Lyapunov function
at each switching time. In fact, if for every pair of switching times (k, k+1), it holds that
V (t(k))− V (t(k)) < 0, stability is ensured.
To this aim, consider the distance from the origin as a candidate Lyapunov function

V (t(k)) =
√
z1(t(k))2 + z2(t(k))2 (3.11)

Assume for simplicity that the initial states belong to the switching surface z1(0) <

0,z2(0) = 0 and Lyapunov function V (t(0)). Therefore, the trajectories start on the
negative z1 axis. Then trajectory enters the third quadrant, where the active subsystem
is σ = 0. When σ = 0 the trajectories follow a circular path around the origin, therefore
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z1

z2

Figure 3.2: Qualitative behavior of the closed loop system, in red mode 0 is active in blue
mode 1 is active

V̇ = 0 and the trajectory crosses the switching surface associated with the positive z2

with the same value for the Lyapunov function V (t(0)). When the trajectory enters the
second quadrant, where the active subsystem is σ = 1, it is easy to show by simple
geometrical consideration that the Lyapunov function evaluated at the switching surface
z1 < 0, z2 = 0 will be

V (t(k + 1)) =

√
V (t(k))2 +

(
v1
ω1

)2

−
(
v1
ω1

)
(3.12)

Therefore, being V (t(k+1))−V (t(k)) < 0 asymptotical stability of the origin is ensured.

This result will not be used in later chapters, but it is useful to characterize the attainable
performance of the system. In fact, it shows that if infinitely fast switching is admissible,
it is possible to arbitrarily regulate the Cartesian position of the mobile robot. This
result has been validated through simulation. Physical parameters for the simulation can
be found in Table 3.1.

Value

Robot radius 0.055 m

Inter-wheel distance 0.105 m

Wheel radius 0.016 m

Maximum linear velocity 0.2 m/s

Table 3.1: Simulation parameter
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Figure 3.3: trajectory in z1, z2 coordinates (top-left), trajectory in the original coordinates
px, py (top-right), Lyapunov function with red lines highlighting the time instants where
(3.12) is evaluated (bottom)

To conclude this section it has to be noted that also Sum-of-Square (SOS) optimization,
see for a general survey [24], can be considered to obtain a better switching law and a
Lyapunov function exploiting the Lyapunov-Metzler inequality. Since the combination of
Sum-of-Square optimization and Lyapunov-Metzler inequality has not produced feasible
results, it will not be discussed.

3.4. Sampled-data analysis

In this section, analysis of the discretized version of the system will be carried out, in
terms of stabilizability of the unperturbed model and disturbance rejection of the designed
control law when perturbations are present.
Even in an ideal scenario, it is not possible to design a switching law for the system
(3.7) capable of asymptotically stabilizing the origin of the system. It is instead common
for this type of system to consider asymptotical practical stability (also called ultimate
boundedness). In short, asymptotical practical stability refers to the convergence of the
system trajectory not to an equilibrium point but to a neighborhood of it.
In a sampled-data setup, the presence of sliding motion is not a concern with respect
to the continuous time case. For this reason, we consider the use of control Lyapunov
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function (CLF) for the design of switching law. For the design of a switching law, we will
consider the candidate CLF:

V (z) = z21 + z22 (3.13)

The computation of ∆Vσ = V (fσ(z1, z2))− V (z1, z2) , after some computation, leads to

∆Vσ =
2vσ(z2 sin(Tωσ)− 2z1 sin

2(Tωσ

2
))

ωσ

+
4v2σ sin

2(Tωσ

2
)

ω2
1

(3.14)

Theorem 3.3. Assume that T ̸= n2π
ω0

with n ∈ N. Then, switching law:

σ̄ = argmin
σ

∆Vσ

ensure global practical asymptotical stability.

Proof. Since v0 = 0, the switching law ensures that ∆Vσ̄ ≤ 0, therefore V tends to a limit
as k tend to infinity. This result is not enough to verify asymptotical practical stability.
However, it is possible to prove the convergence of the trajectory to a ball centered in the
origin of radius Rc, where Rc is the distance of the switching surface to the origin, via
LaSalle type reasoning.

z1

z2

Rc

Figure 3.4: Region in red represent active mode 0 while in blue represent active mode 1

Trajectories have to converge to a set where ∆Vσ̄ = 0, depicted in blue in Figure 3.4.
Since all trajectories outside the ball of radius Rc eventually end in the set associated
with ∆Vσ̄ < 0, in red in Figure 3.4. Therefore, trajectories have to converge to the ball
around the origin of radius:

Rc =
2v1 sin

2(Tω1

2
)

w2
1

√
sin(Tω1)

w2
1

+ v1 sin
2(Tω1)

ω2
1

(3.15)
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The assumption T ̸= n2π
ω0

is required to avoid sampling time for which Ad0 = I, which
renders the system not stabilizable.
To conclude this section, simulation results for the switching law (3.3) are shown. The
physical parameter can be found in Table 3.1 while the considered sampling time is T =

0.1.
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Figure 3.5: left: trajectory in z1, z2 coordinate ;center: trajectory in x, y coordinate; right:
Lyapunov function

3.5. Perturbed case

In this section, the performance of the switching law of Theorem (3.3) will be carried out,
by considering the presence of persistent disturbances. We start by recalling the model
(2.17), with the change of variable ex = px − p̄x, ey = py − p̄y, where p̄x, p̄y are the desired
position of the robot. In particular, we will consider the exact discretization of the model
with sampling time T :

ex(k + 1) = ex(k) + vσ
sin(θ(k) + Tω1)− sin(θ(k))

ω1
+ d̄x(k)

ey(k + 1) = ey(k + 1) + vσ
− cos(θ(k) + Tω1) + cos(θ(k))

ω1

+ d̄y(k)

θ(k + 1) = θ(k) + ωσT

(3.16)

It is evident that the disturbances d̄x, d̄y represent both external disturbances acting on
the system and change of the desired reference position.

d̄x(k) = dx(k) + ∆p̄x(k)

d̄y(k) = dy(k) + ∆p̄y(k)
(3.17)

In the following, it will be assumed that the disturbances d̄x, d̄y are norm-bounded i.e.
d̄2x + d2y ≤ D̄2

M .



3| Switched system analysis 19

Performing the change of coordinate (3.2) from (3.16) one has

z(k + 1) = Adσz +Bdσ +Dz (3.18)

Where Adσ, Bdσ are the matrix in (3.5) and Dz =
[
dz1 dz2

]⊤. Recalling that the change of
coordinate is equivalent to a rotation of the original coordinates the disturbances dz1, dz2
are bounded and satisfy:

d2z1 + d2z2 ≤ D̄2
M (3.19)

This constraint on the admissible value of the disturbances can be outer approximated
with a polytope. Details on this approximation will be given later.

3.5.1. 0-Reachability of closed-loop system

Considering the switching law of Theorem 3.3, the closed-loop system assumes the form

z(k + 1) = Aiz(k) +Bi +Dz for z(k) ∈ Ωi (3.20)

Where Ωi is such that
⋃

Ωi = Rn . Systems of this form are called piecewise affine system
(PWA) and are a common model used to describe hybrid and nonlinear systems, see [25].
In this section, we are interested in assessing the effect of the disturbance through the
computation of the 0-Reachable set R of the system, which represents the set of reachable
states with the origin as the initial state.
Before discussing the reachability analysis for PWA system, it is useful to consider the
simpler case of linear systems, such as:

x(k + 1) = Fx(k) + Ed(k) (3.21)

Denote by RT the set of reachable states in T steps and d ∈ D. RT is given by:

RT = FRT−1 + ED (3.22)

This involves an operation such as a sum of sets and the image of a set. Given D it is
convenient to use a polyhedral set since they offer a simple description of the reachable
set in terms of vertices and convex hull, see [26]. In principle, it is possible to compute in
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an approximate way the infinite time reachability set as:

R∞ =
n⋃

i=1

Ri (3.23)

By using a large k, this set would be an internal approximation of R∞. However, it is
possible to prove that there exists an integer k̄ for all ϵ > 0 such that for k ≥ k̄:

Rk ⊆ R∞ ⊆ (1 + ϵ)Rk (3.24)

To achieve an external approximation several solutions are possible. One is to "enlarge"
the disturbance set D.
Although reachability analysis for PWA system is conceptually similar to the linear case,
it is considerably more difficult due to the hybrid nature of the system. Many approaches
are present in the literature which exploits s collection of polyhedra [27], hyperboxes [28],
zonotope [29]. When the evolution of the system remains in a single region, it is easy
to evaluate the reachable set; however, when the reachable set intersects a new region, a
new reachable set computation has to be performed from the new intersection. Due to
the low number of states and low number of regions of the system under study, a simple
algorithm based on the propagation of a collection of polyhedra can be devised.

Algorithm 3.1 Reachable set computation
H
1: Input:Initial set of state R0, set of admissible input U
2: Output: Set of reachable states R∞
3: Divide R0 into different polyhedra according to the region Ω
4: while k < kmax

5: Compute the reachable set in 1 step S from Rk coherently with the partition of the
system

6: Detect intersection and compute set difference to split polyhedra coherently with the
partition of the system.

7: Delete redundant polyhedra
8: Define the union of polyhedra Rk+1 = Rk

⋃
S

9: if Rk+1 ⊆ Rk

10: break
11: end
12: end
13: Return R

The algorithm is not particularly scalable in terms of number of states and regions, for
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which it is better to exploit algorithms with more efficient structures during set propaga-
tion.
Of particular importance is the quantity RM defined as:

RM = max{r| [z1, z2] ∈ R, z21 + z22 ≤ r2} (3.25)

That represents the maximum deviation from the origin considering the defined set of
disturbances. Therefore, once a switching rule σ(p, p̄) and the corresponding RM are
computed for a given set of disturbances D, it is possible to ensure that if the reference
trajectory is compatible with the set D the maximum deviation from the desired trajectory
is RM .This result will be fundamental for the algorithms that will be developed in Chapter
5. It can be seen that the discussion about reachability could be extended in the stochastic
framework; however, it becomes considerably more difficult [30, 31].

3.5.2. Results

In Figure 3.6 it is depicted the reachable space for different bounds on the disturbances
acting on the system with an upper bound proportional to the maximum speed of the
robot, with a constant of proportionality α, i.e., DM = a1Tα. Considering the switching
law (3.10) and a sampling time T = 0.033.
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Figure 3.6: Reachable space for continuous-time switching law;left α = 0.1, right α = 0.2

With the considered sampling time the switching law (3.10) is able to ensure robust prac-
tical stability for a sufficiently small value of α. This result has been validated using
simulation for several values of maximum disturbances allowed.
Figure 3.7 depicts the reachable space when the switching law (3.3) is used with a sam-
pling time T = 0.1.
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It is relevant to note that it is possible to obtain an approximate linear upper bound for
the relationship between the maximum allowed disturbance value DM and the maximum
deviation from the origin RM .
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Figure 3.8: Approximated upper bound on maximum deviation

With the parameter considered for the mobile robot, see Table 3.1. The linear upper
bound on the maximum deviation can be expressed as:

RM(DM) = K1DM +K2 (3.26)

where K1 = 15.8 and K2 = 0.026. In order to implement the algorithm, the Matlab MPT
toolbox has been exploited [32].
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4| Switching MPC

In this chapter, different MPC algorithms and relative finite-horizon optimal control prob-
lems will be presented for both the nominal and perturbed cases. The main focus will be
on the so-called parking problem, which consists in the regulation of the Cartesian posi-
tion of each robot. Furthermore, some other possible tasks (consensus, formation control)
will be taken into account in the unperturbed case, mainly to highlight the flexibility of
the proposed approach.

4.1. Switching finite horizon optimal control problem

The switching-MPC strategy exploits a system model to predict the trajectories of the
system for each switching signal, while the control objectives and constraints are em-
bedded in a finite-horizon optimal control problem (FHOCP) to be solved at each time
instant. In this section the various components of the FHOCP will be presented. For a
general introduction of MPC approaches, it is possible to refer to [33, 34] or a more recent
survey [35].

4.1.1. Model discretization

In order to be able to predict the trajectories of each mobile robot, it is necessary to derive
a discrete time model of the mobile robot i with sampling time T . Since the computational
complexity of the optimization problem is not really dependent on the complexity of the
model, an exact discretization of model (2.10) will be considered:

p[i](k + 1) = fσ(k)(p
[i](k)) (4.1)

where:

f0 =

 p
[i]
x (k)

p
[i]
y (k)

θ[i](k) + Tω0

 f1 =

 p
[i]
x (k) + v1

sin(θ[i](k)+Tω1)−sin(θ[i](k))
ω1

p
[i]
y (k) + v1

− cos(θ[i](k)+Tω1)+cos(θ[i](k))
ω1

θ[i](k) + Tω1

 (4.2)
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Once the discrete model for a single robot is obtained, the discrete network model can be
derived analogously to (2.12) as:

p(k) =


p[1](k)

.

.
pNrob(k)

 =


fσ1(k)(p

[1](k))
.
.

fσNrob
(k)(p

[Nrob](k))

 = fΣ(k)(p(k)) (4.3)

Furthermore, regarding the simulations presented in this chapter, the parameter in table
3.1 will be considered

4.1.2. Cost function

Cost functions are fundamental to define the objective of an optimal control problem.
Since for the case under study we are considering a reference tracking problem over a
prediction horizon of length Np and N robot, a quite natural expression to consider for
the parking problem is :

J =

Np∑
k=0

l(p(k), p̄) =

Np∑
k=0

Nrob∑
i=1

(p[i]x − p̄[i]x )
2 + (p[i]y − p̄[i]y )

2 (4.4)

where Np is the prediction horizon, N is the number of robot,p̄ is the reference signal for
the i− th robot.
A relevant property of the cost function is its separability in the N subproblems:

J =
N∑
i=1

J̄ [i]

J̄ [i] =

Np∑
k=0

l̄(p[i](k), p̄[i])

l̄(p[i](k), p̄[i]) = (p[i]x (k)− p̄[i]x )
2 + (p[i]y (k)− p̄[i]y )

2

(4.5)

This fact will be fundamental to develop a distributed implementation of the proposed
approach.

4.1.3. Constraint definition

In the following, some constraints will be taken into account in order to avoid collisions
among agents and avoid obstacles in the environment.
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Obstacle avoidance

During navigation, each robot must avoid collision with an obstacle present in the envi-
ronment. Without loss of generality, considering a circular obstacle of radius Robs, center
pobs, we also consider Rrob as the robot radius. The obstacle avoidance constraint for the
i-th robot can be formulated as:∥∥∥∥[pix(k)− pobsx

piy(k)− pobsy

]∥∥∥∥
2

> Rrob +Robs (4.6)

This type of constraint is nonlinear, but it can be approximated as a set of n linear in-
equalities as described in [11]. To approximate the constraint, it is possible to consider the
circular obstacle with its outer polytopic approximation. Once an outer polytopic approx-
imation is obtained, it will be possible to check for collision by evaluating n inequalities
of the type:

Hnp
[i](k) ≥ Sn (4.7)

If at least one of the inequalities is satisfied, the robot i lies in the exterior of the poly-
tope, and the collision is avoided, see Figure 4.1. Note that given the discrete nature of
the optimization problem, it is not an issue to check if at least one inequality it is satis-
fied. Therefore, selecting n̄ = argmin

[1...n]

(
Hnp

[i](k)− Sn

)
it is possible to enforce obstacle

avoidance with a linear constraint by including in the optimization the constraint

Hn̄p
[i](k) ≥ Sn̄ (4.8)

r
[j]
obs

r
P[j]

obs

p
[i]
k/k

p
[i]
k+N/k

p
[j]
obs

Figure 4.1: Polytope P [j]
obs (blue dashed lines) associated to the jth obstacle (red circle). The

pink area represents the linear approximation of the dashed red circle, while the green line
depicts the predicted trajectory of the ith robot (gray circle)
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This procedure in principle has to be applied to all robot-obstacle pairs. However, it is
convenient to consider constraints only between the robot and obstacle which are ”prox-
imal”, in order to reduce the complexity of the optimization problem. This can be done
by considering an obstacle ’proximal’ if it lies at a distance not greater than a predefined
distance Rp. To construct the approximation, we can exploit the following algorithm:

Algorithm 4.1 Outer polytopic approximation of a circular obstacle
1: Input: Radius Robs ,center Pobs of the obstacle, number of edges n of the polytopic

approximation and radius of the robot Rrob

2: Output: Matrix H and vector S defining the edge of the outer polytopic approxima-
tion

3: For:i=0:N-1
4: θi =

iπ
n

5: Hi = [cos(θi) sin(θi)]

6: Si = Robs + [cos(θi) sin(θi)]pobs

7: end
8: Return H,S

The number of edges of the polytope cannot be less than 3 (in order to obtain a closed
space), and the quality of the approximation increases with the number of edges at the
expense of complexity. From some experiments in simulation and as described in [11]
a number of edges equal to 20 allows to achieve a good approximation for the desired
scope. It has to be noted that the described procedure does not offer an advantage
in case no uncertainties are present, since the complexity of the optimization problem
to be solved is not affected by the nonlinear nature of the constraint. However, this
reformulation is useful to obtain tightened constraints in case of uncertainty and is also
useful to handle inter-robot collision avoidance in distributed implementation. Another
possible approximation could have exploited hyper-rectangle as in [36].
The proposed procedure could be generalized to a generic convex obstacle and the error
between the approximation and the original obstacle quantified. Since for the case under
study, we consider only circular obstacles, and the complexity of the approximation is
determined mainly by computational limitation, no further detail will be discussed.

Collision avoidance

The collision avoidance problem in the case of a centralized controller can be reformulated
in a similar way as the obstacle avoidance problem. For a centralized implementation,
it is possible to consider a robot as an obstacle with a time-varying position. Therefore,
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by exploiting the same procedure for obstacle avoidance (with slight modifications due
to the time-varying nature of the constraint), it is possible to construct constraints for
inter-robot collision avoidance with the matrix Hn(k) and Sn(k). In practice, for a generic
trajectory the following algorithm has to be executed to generate the constraint:

Algorithm 4.2 Collision avoidance constraint

1: Input: Trajectory p[i](k|k̄) of robot i

2: Output:Matrix H(k) and S(k) which define the collision avoidance constraint to be
satisfied.

3: Fori=k̄:k̄ +Np

4: Execute algorithm 4.1 taking as input Rrob for the obstacle radius and p[i](i|k̄) to
obtain H(i) and S(i)

5: end
6: Return H(k), S(k)

This procedure also allows to consider known moving obstacles, in the environment with-
out particular difficulties.
For a distributed implementation, coupling constraints need to be considered differently
since each controller has only partial information about the other robots position.

4.1.4. FHOCP and computational complexity

Having defined all the components of the optimization problem, the finite horizon optimal
control problem can be formalized as:

min
Σ∈W

J

s.t

p(l + 1|k) = fΣ(k)(p(l))

Hj
np

[i](l) ≥ Sj
n ∀ j = 1 . . .Nobs , i = 1 . . .Nrob

Hj
np

[i](l) ≥ Sj
n ∀ , i = 1 . . .Nrob, j ̸= i

∀ l = k . . .k +Np

(4.9)

The optimization problem is a binary integer linear programming problem. This type of
problem is known to be hard to solve since it belongs to the class of NP-hard problems.
The difficulties in obtaining a solution can be highlighted by considering the cardinality
of the set of possible sequences W. The cardinality of the set W is equal to 2NpNrob and
it grows exponentially with the length of the prediction horizon Np or the number of
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robots Nrob. In order to reduce the computational complexity, several relaxations could
be considered to decrease the amount of evaluations of the cost function. For instance, a
possible relaxation can be obtained by considering that only one robot in the network can
modify its dynamics at each time step or by considering move-blocking strategies [37].
Another possibility is to accept a suboptimal solution to the optimization problem.

4.2. Nominal switching model predictive control

In this section, a centralized and distributed formulation of switching MPC based on
the finite horizon optimal control problem constructed in the previous section will be
presented.

4.2.1. Centralized switching MPC

A centralized formulation can be directly obtained by solving at each time instant the
FHOCP (4.9). Therefore, at each time instant, the algorithm to be executed in order to
compute the switching signal to be applied is:

Algorithm 4.3 Centralized switching MPC
1: Input:p(k)
2: Output: First element of the optimal switching sequence Σ

3: ForeachΣi ∈ W
4: Evaluate the associated cost Ji through simulation of the system using the switching

sequence Σi

5: IF Σi does not violate constraint
6: Add i to set of feasible sequence I
7: end
8: end
9: Compute index of optimal solution:

iopt = argmin
i∈I

Ji

In case of multiple sequences with equal cost, consider the one that involves the
minimum amount of movement for each robot

10: Return The first element of the sequence Σi

It is relevant to note that the proposed algorithm does not exploit stabilizing terminal
constraints for which well-studied results exist [34]. There are other approaches which not
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exploit terminal conditions to guarantee stability; see [38, 39]. However, for the proposed
algorithm, it is possible to exploit a simpler approach to prove the following result:

Theorem 4.1. Assume that the initial state p(0) belongs to the set of states where opti-
mization Problem (4.9) has a solution. Then the equilibrium point p̄ defined by the Nrob

reference signal is stable and the trajectories converge to a local minima.

Proof. We start the proof by showing that if a feasible solution exists at the initial time
instant k = k̄, a feasible switching sequence will exist ∀ k. Consider the optimal sequence
computed at k = k̄

Σopt =
[
Σopt(k̄|k̄) . . . Σopt(k̄ +Np − 1|k̄)

]
(4.10)

Since the constraint involve only px, py and recalling that for σ = 0 we have that px(k+1) =

px(k) and py(k + 1) = py(k), a feasible sequence at k = k̄ + 1 is:

Σopt =
[

Σopt(k̄|k̄) . . . Σopt(k̄ +Np − 1|k̄) 0
]

(4.11)

This result ensures that at each time instant, at least one feasible sequence exists. Re-
garding stability, as standard in MPC theory, the cost function will be employed as a
Lyapunov function. For this scope, an analysis of the property of an optimal solution has
to be carried out. Let be given an optimal trajectory popt

popt =
[

popt(k̄|k̄) . . . popt(k̄ +Np − 1|k̄)
]

(4.12)

with associated optimal cost Jopt =
∑Np

k=k̄
l(popt(k), p̄), assume that the running cost

l(popt(k), p̄) has a minimum for k = kmin. Then, a feasible trajectory is:

pfeas =
[

pfeas(k̄|k̄) pfeas(k̄ + 2|k̄). . pfeas(kmin|k̄) . . pfeas(kmin|k̄)
]

(4.13)

With associated cost Jfeas =
∑Np

k=k̄
l(pfeas(k), p̄), being Jopt the optimal cost such that:

Jopt ≤ Jfeas

Np∑
k=k̄

l(popt(k), p̄) ≤
Np∑
k=k̄

l(pfeas(k), p̄)
(4.14)
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Simplifying the expression:

Np∑
k=kmin

l(popt(k), p̄) ≤
Np∑

k=kmin

l(pfeas(k), p̄) (4.15)

and recalling that l(popt(kmin), p̄) ≤ l(popt(k), p̄), the only possible solution for both in-
equality to hold is that l(pmin(k), p̄) = l(popt(k), p̄) ∀k = kmin, ., .Np. Therefore, for an
optimal solution:

l(popt(k̄ +Np), p̄) ≤ l(popt(k̄), p̄) (4.16)

From this inequality, it is easy to quantify the decrease of the cost function ∆J , since a
feasible solution at k = k̄ + 1 is:

popt =
[

popt(k̄ + 1|k̄) . . . popt(k̄ +Np − 1|k̄) popt(k̄ +Np − 1|k̄)
]

(4.17)

From which:

∆J = J(k + 1)− J(k) = l(popt(k̄ +Np), p̄)− l(popt(k̄), p̄) ≤ 0 (4.18)

In conclusion, J is a weak Lyapunov function, which proves the stability of the proposed
algorithm. In order to prove convergence, it can be simply noted that Step9 of Algorithm
4.3 ensures that the steady state condition is preferred to other possible limit cycles, this
fact concludes the proof.
One comment is in order. The fact that only simple stability can be inferred is not
surprising, since due to the limited set of motions at disposal, it is not always possible to
find a trajectory that leads to a decrease of the cost. Therefore, we can conclude that the
algorithm steers the robots to a (possibly only locally) optimal position.
A modification of the proposed algorithm which ensures practical stability is possible and
can be applied to all algorithms that will be described in this chapter. However, such a
modification involves the use of terminal constraint that due to the limited set of motions
at disposal is not easy to satisfy and limits the set of feasible initial conditions. For
completeness is shortly presented below.
Consider a modification to the cost function (4.5), in particular substitute l̄(p[i](k), p̄[i])

with:

l̄0(p
[i](k), p̄[i]) =

l̄(p[i](k), p̄[i])−R if l̄(p[i](k), p̄[i]) ≥ R

0 otherwise
(4.19)

With R ≥ Rc, where Rc is defined as in (3.15). Consider also the additional terminal set
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Xf :

(p[i]x − p̄[i]x )
2 + (p[i]y − p̄[i]y )

2 < R ∀i = 1, . , . , Nrob (4.20)

Note that these terminal constraints could also be approximated via a similar procedure
adopted for the obstacle avoidance problem.

Theorem 4.2. Let X be the set of states of the optimization problem (4.9) with modified
cost function (4.19) and terminal constraint (4.20). The switching MPC control law with
modified cost function (4.19) and terminal constraint (4.20) ensure that the closed-loop
system is practically asymptotically stable with a domain of attraction X.

Proof. Recursive feasibility can be inferred as in the proof of Theorem 4.1. Regarding
stability, we consider as before the cost function as a Lyapunov function. In particular,
consider the optimal trajectory popt computed at k = k̄. Due to the additional terminal
constraint, the cost is such that:

l(popt(k̄ +Np), p̄) = 0 (4.21)

Then, at k = k̄ + 1 a feasible solution is obtained extending the previously computed
optimal switching sequence as in (4.11), therefore it exists a solution that ensures the
decrease of the cost function ∆J :

∆J = J(k + 1)− J(k) = l(popt(k̄ +Np), p̄)− l(popt(k̄), p̄) = −l(popt(k̄), p̄) (4.22)

Therefore ∆J < 0 ∀ p /∈ Xf , ensures the convergence of the trajectory to the set Xf , so
completing the proof.

Simulation results

In order to study the Switching-MPC controller performance, Algorithm 4.2 has been
proved in a randomly generated scenario for a network of mobile robots Nrob = 3 and
parameter Np = 2, T = 0.1. Since the cardinality of the set of possible sequences to
be explored is quite small, 26, it is possible to apply the algorithm without particular
relaxation. In Figure 4.2 the evolution of the robot network at different time instants is
represented. where red circles represent robot position, blue circles represent obstacles
and squares represent desired reference positions.
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Figure 4.2: State of the robot network at different time instants

In figure 4.2 red circles represent robot position, blue circles represent obstacles and
squares represent desired reference positions. The robot network reaches the desired
reference position while avoiding collision. It is also interesting to look at the behavior
of the cost function. In Figure 4.3 is possible to see that the cost function is always
non-increasing. For completeness, the switching sequence is also presented.
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Figure 4.3: Cost function and switching string of centralized switching MPC



4| Switching MPC 33

It is also possible to consider a larger network of robots and a longer prediction horizon.
However, considering that the set of possible sequences grows exponentially and some
relaxation is required. For the next example, a network of Nrob = 5 mobile robot and pa-
rameter Np = 5, T = 0.1 is considered. The cardinality of the set of possible sequences is
225, which is clearly not suitable. A possible relaxation is to early terminate the optimiza-
tion when a suboptimal solution, which ensures a decrease in the cost function is found.
Similarly to the previous simulation, the evolution of the network will be represented at
different time instants.
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Figure 4.4: State of the robot network at different time instants

While it is possible to see that the cost function is indeed non-increasing as depicted in
Figure 4.5, the obtained solution is clearly suboptimal, and the performance degrades
with the number of involved robots.
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Figure 4.5: Cost function and switching string of centralized switching MPC

4.2.2. Distributed switching MPC

The scope of this section is to develop a distributed non-cooperative formulation, see [40]
for a survey on distributed MPC. Since the cost function (4.5) is separable, the obstacle
avoidance constraint involves only a robot at a time and the dynamics of each robot are
decoupled from each other so that the distributed implementation regards the control of
the independent systems subject to coupling constraint (collision avoidance). In order to
obtain a suitable reformulation of the collision avoidance constraint the approach in [11]
will be used. In particular, each robot will exploit the previously predicted trajectories to
obtain a suitable constraint to enforce. To this scope, the algorithm needed to construct
this aim is modified as follows.

Algorithm 4.4 Construction of collision avoidance constraint

1: Input: Radius Rrob of the robots, previously predicted trajectory p[i](k|k̄), p[j](k|k̄)
k = k̄, ., .k̄ +NP , number of edge n of the polytopic approximation

2: Output: matrix H ij(k) and Sij(k) which define the collision avoidance constraint of
robot i with respect to robot j

3: Use Algorithm 4.1 to construct a polytopic approximation H̄j
n(k),S̄j

n(k) ∀ k = k̄ +

1, ., .k̄+NP +1for the collision constraint, using p
[j]
pre(k, k̄) ∀ k = k̄+1, ., .k̄+NP and

p
[j]
pre(k̄ +Np, k̄) for k = k̄ +Np + 1

4: Foreach k = k̄ + 1, ., .k̄ +NP + 1

5: Compute n̄(k) as: n̄ = argmax
n

H̄j
n(k)p

[i](k|k̄)− S̄j
n(k)

6: compute ρij(k) = H̄j
n̄(k)p

[i]
pre(k, k̄)− S̄j

n̄(k))
7: end
8: define H ij(k) = Hj

n̄(k),Sij(k) = S̄j
n̄(k) +

ρij(k)
2

9: Return H ij(k),Sij(k)



4| Switching MPC 35

In practice, the presented algorithm uses the predicted trajectory to divide the state
space for all time instants in 2 suitable half-planes constraining the trajectory of 2 differ-
ent robots. Enforcing this time-varying constraint trivially allows to satisfy the original
collision avoidance constraint. It is relevant to note that the constraints should be in-
cluded for all pairs of robots. Therefore, an all-to-all communication network supporting
the exchange of information between the robots would be required. However, it is evident
that these constraints are only meaningful if the robots are sufficiently close to each other.
To this scope, define Ci(k) the set of neighbor robot of the robot i as:

Ci(k) = {j |l̄(p[i](k|k), p[j](k|k)) < Rn} (4.23)

Where Rn defines the maximal distance for 2 neighbor robots and it has to be sufficiently
large in order to consider as a neighbor each robot pair that can collide. Furthermore,
differently from the centralized formulation, where it is easy to prove convergence due to
the property of the optimal trajectory, the complex time-varying nature of the constraint
defined in Algorithm 4.3 requires an additional terminal constraint which simplifies the
analysis:

l(p[i](k +Np|k), p̄i) ≤ l(p[i](k +Np− 1|k − 1), p̄i) (4.24)

Having reformulated the coupling constraints, the algorithm each robot has to execute in
order to compute the switching signal is the following one:

Algorithm 4.5 Distributed non-cooperative switching MPC

1: Input:pi(k),predicted trajectory p[j](k|k̄) k = k̄, ., .k̄ +NP ∀ j ∈ Ci(k)

2: Output: First element of the optimal switching sequence σ and predicted trajectory
p[i](k|k̄ + 1) k = k̄ + 1, ., .k̄ +NP + 1

3: execute Algorithm 3.3 ∀ j ∈ Ci(k) in order to obtain distributed constraint
4: For each σi ∈ W
5: Evaluate the associated cost J̄i through simulation of the system using the switching

sequence Σi

6: IF σi does not violate constraint:Add i to set of feasible sequence I
7: end
8: Compute index of optimal solution: iopt = argmin

i∈I
J̄i. In case of multiple sequences

with equal cost, consider the one that involves the minimum amount of movement for
each robot

9: Return The first element of the sequence σi and predicted trajectory pi(k|k̄ + 1)

k = k̄ + 1, ., .k̄ +NP + 1
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The algorithm ends by applying the obtained switching signal and by communicating
to the neighbors the predicted trajectory in preparation for the next execution of the
algorithm. A simple initialization procedure for the predicted trajectory is:

p[i]pre(k, 0) = p[i](0) ∀k = 0, ., ., Np − 1 (4.25)

which consists in initializing the predicted trajectory with the stationary initial position.
The proposed distributed algorithm has a non-cooperative nature since each controller
optimizes its own local cost function. Each distributed controller is evaluated in par-
allel, and each subsystem is allowed to change the predicted trajectories at each time
step. Other design procedures that allow cooperation are possible but typically involve
sequential optimization, [41], negotiation or consider limitations regarding the frequency
of update of the plan for each subsystem [42, 43]. Furthermore, artificial deadlocks due
to polytopic approximation are more likely with respect to the centralized case, and a
possible strategy to overcome this situation can be derived along the lines of [44].

For the proposed algorithm it is possible to prove the following result.

Proposition 4.1. Assume that the initial state p[i](0) belongs to the set of states where
Algorithm 4.5 has a solution. Then, the equilibrium point p̄[i] defined by the Nrob reference
signal is stable and the trajectory of each subsystem i converges to a local minima with
respect to J̄ [i]

Proof Recursive feasibility is ensured with a similar argument to the proof of Theorem
4.1 by considering an extended trajectory:

σopt =
[

σopt(k̄|k̄) . . . σopt(k̄ +Np − 1|k̄) 0
]

(4.26)

while constrain (4.20) ensures that the algorithm converges since the positive definite
function L = l(p[i](k +Np|k) is non-increasing.
It has to be noted that the additional constraint (4.20) is not strictly needed, and the
algorithm offers good performance even without it. However, it is possible to prove that
the complex nature of the time-varying constraint can lead to sporadic increase of the
cost. This situation arises more often when a longer sampling time is employed. As
a matter of fact, for a short sampling time the constraint becomes constant along the
prediction horizon and the same reasoning of Theorem 4.1 can be used to prove that the
cost function is non-increasing.
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Computational complexity

The proposed distributed algorithm presents strong computational advantages with re-
spect to the centralized algorithm. For the centralized algorithm the cardinality of the
set of the possible sequence W is equal to 2NpNrob while the distributed algorithm requires
to solve Nrob independent optimization problem each characterized by a set of cardinality
2Np . The cardinality of the set still grows exponentially with the length of the prediction
horizon. Therefore a relaxation could still be useful to reduce the computational burden.

Simulation results

In order to illustrate the distributed switching-MPC controller performance, the same
scenario as in Section 4.2.1 is considered, for a network composed by Nrob = 5 mobile
robots and Np = 5, T = 0.1. The evolution of the network is reported in (4.6).
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Figure 4.6: State of the robot network at different time instants

The distributed algorithm performs better than the centralized relaxed algorithm and is
more scalable with respect to the number of robots.
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Figure 4.7: Cost function and switching string of distributed switching MPC

In order to show the scalability of the proposed algorithm a similar scenario is considered
for a network composed of Nrob = 15 mobile robot and Np = 5, T = 0.1.
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Figure 4.8: State of the robot network at different time instants

It is relevant to note the non-cooperativity of the proposed algorithm, is quite evident in
the presence of multiple robots sharing the same reference position.
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Figure 4.9: Cost function and switching string of distributed switching MPC

4.3. Reference layer

The proposed algorithms make possible to steer each mobile robot to a desired reference
position while satisfying both obstacle avoidance and inter-robot collision constraints.
Exploiting this fact, it is possible to tackle several other problems by properly managing
the reference signal, such as path following and self-aggregation among many others.

4.3.1. Path following

Path following can be achieved by sampling the desired trajectory choosing as reference
signal the nearest sampled point, and selecting the successive one once convergence is
reached. This approach is valid for both centralized and distributed implementation.
It has to be noted that following this approach the cost function is allowed to increase
during a target change. Moreover, during a target change convergence constraints of the
distributed implementation are not to be considered in order to allow maximal freedom.

Simulation results

In order to study the performance of distributed switching-MPC for a path-following task,
the proposed strategy is simulated for a network of Nrob = 10 mobile robots and param-
eter Np = 2, T = 0.1.
In Figure 4.10 red circles represent the position of the robots, blue circles represent obsta-
cles in the environment and the blue line represents the path to be followed by the robot
network.
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Figure 4.10: State of the robot network at different time instants

The approach makes all mobile robots follow as much as possible the given path. Further-
more, in Figure 4.11 it is possible to see that the cost function temporarily increases, this
happens when the target position is changed in order to advance the reference position
or due to obstacles that make impossible further improvement are present.
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Figure 4.11: Cost function and switching string of distributed switching MPC for path
following
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4.3.2. Self-aggregation

Regarding problems that involve coordination, such as self-aggregation, the situation is
different. In the case of a centralized implementation, no particular adjustments have
to be made, since several problems can be tackled by modifying the reference signal.
For instance, in the case of self-aggregation the reference signal could be chosen as the
centroid of the group of robots. The case of a distributed implementation problem which
involves coordination are more challenging and could require more complex reference
selection and even additional constraints. For instance, a possible approach is to obtain
the reference signal exploiting a discrete time averaging algorithm, see [45], to achieve
consensus regarding the reference signals. Another possibility is to let each controller
consider in the optimization also a hypothetical plan for a neighboring agent, see [43]. In
addition, also the connectivity of the network has to be ensured which can be done by
adding suitable connectivity constraints.
To summarize, a possible approach to achieve self-aggregation is

• compute for each agent the reference position using an averaging algorithm, i.e.,

p̄[i](k + 1) = average(p̄[i](k), {p̄[j](k),∀ neighbour robot j}) (4.27)

It is possible to prove that if the graph G composed by a robot (node) and a com-
munication link (edge) is connected, the algorithm achieves asymptotic consensus,
see [45]. It is relevant to note that the algorithm does not achieve average consensus
on the initial position due to the fact that some robots can have greater influence
depending on the number of neighbors.

• The averaging algorithm achieves consensus only if the communication graph G is
connected, to this scope an additional constraint to maintain pairwise connectivity
with a maximum communication distance of Rcom can be imposed:

p[i](k) ∈ B(p
[i](k) + p[j](k)

2
,
Rcom

2
)

p[j](k) ∈ B(p
[i](k) + p[j](k)

2
,
Rcom

2
)

(4.28)

where B(c, r) is a ball centered in c with radius rc. The constraints in practice limit
the maximum distance between 2 robots to Rcom. This nonlinear constraint can
be managed in a similar way as for obstacle avoidance previously described, using
inner polytopic approximation, obtaining a set of n inequalities. A main difference
between the two cases is that for connectivity maintenance robots are required to lie
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inside the polytope, and therefore all the following inequalities have to be satisfied:

Hip
[i](k) ≤ Si ∀i = 1, ., ., n (4.29)

The described constraints are quite conservative in enforcing network connectivity
since they require maintaining each connection present. In order to relax the con-
straint it is possible to maintain the connectivity only with respect to a sub-graph
of G which shares the same connected component, see [46] for more detail.

Simulation results

To study the performance of the proposed approach for a self-aggregation task, the algo-
rithm has been tested on a randomly generated network of Nrob = 20 mobile robots and
parameter Np = 2, T = 0.1, Rcom = 1. In Figure 4.12 red circle represents robot position
while black circle represents the reference position for each robot.
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Figure 4.12: State of the robot network at different time instants

The network correctly aggregates in one cluster, due to the fact that as shown in (4.12)
the communication graph is connected.
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Figure 4.13: Cost function, switching string and number of neighbors

If the communication graph never becomes connected the network aggregates in multiple
clusters.
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Figure 4.14: State of the robot network at different time instants

The majority of the network aggregates 2 larger clusters, while some mobile robots that
never enter the communication range remain stationary.
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Figure 4.15: Number of neighbour and switching string

4.4. Robust switching MPC

In this section, a robust formulation for the switched MPC controller is obtained based
on the multiplicative disturbances model (2.14). Algorithm 4.3 and 4.4 will be used as a
baseline and a proper modification needed to obtain a robust formulation will be presented.
In this section we will focus on a robust tube-based approach as formalized in [26, 47]
with a fundamental modification. Due to the discrete nature of the switching signal, it
is difficult to parametrize the switching law along the prediction horizon. Therefore, the
algorithm is constrained to adopt an "open loop" strategy, [48]. The choice of an open-
loop strategy affects the prediction of disturbances along the prediction horizon limiting
the algorithm since no auxiliary control law is exploited in the prediction. In a later
chapter, a different strategy able to cope with additive disturbances will be presented.
Before characterizing the required constraint tightening and the modification to be applied
to the cost function for a robust implementation, we recall the model equations:

p[i](k + 1) = fσ(k)(p
[i](k)) (4.30)

where:

f0 =

 p
[i]
x (k)

p
[i]
y (k)

θ[i](k) + Tω0

 f1 =

 p
[i]
x (k) + v1

sin(theta[i](k)+Tω1)−sin(θ[i](k))
ω1

+ dx(k)

p
[i]
y (k) + v1

− cos(theta[i](k)+Tω1)−cos(θ[i](k))
ω1

+ dy(k)

θ[i](k) + Tω1

 (4.31)

where d2x + d2y < Tvσd̄ = DM as discussed in Section 2.3.
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4.4.1. Constraint tightening and worst-case cost function

A common approach used to obtain a robust formulation for MPC is to consider the
worst-case cost during optimization. Obtaining analytically such a cost is quite difficult.
It is possible to consider an upper bound, trying to characterize the possible trajectory
of the system along the prediction horizon once that σ[i](k) is defined.
In particular the prediction error of the cartesian position e(k) =

[
ex(k) ey(k)

]
is con-

tained in the set:
E(k) = E(k − 1)⊕ σ[i](k)B(0, DM)

E(0) = {0}
(4.32)

where ⊕ is the Minkowski sum1, B(0, DM) is the set that defines a ball centered at the
origin with radius DM .
It is easy to show that the set E is equal to:

E(k) = B(0, Rt(k))

Rt(k + 1) = Rt(k) +DM

Rt(0) = 0

(4.33)

Therefore, it is possible to define the worst-case cost function as:

Jw =
N∑
i=1

J̄ [i]
w

J̄ [i]
w =

Np∑
k=0

l̄w(p
[i](k), p̄[i], R[i]

c (k))

(4.34)

Where lw is defined as the maximum distance from the desired set point for a point located
on a ball centered on p[i](k) with radius R

[i]
t (k).

Regarding robust constraint satisfaction, we can consider a progressive tightening of the
original constraint defined in Section 4.1.3.
In particular, given a polytopic approximation of the distance constraint Hn̄p

[i](k) ≥ Sn̄

it is possible to ensure the fulfillment of the robustness property at a generic time instant
k̄ of the prediction horizon by enforcing the constraint:

Hn̄p
[i](k) ≥ Sn̄ +R

[i]
t (k) (4.35)

This constraint ensures that there is a margin of R[i]
t (k) from the violation of the con-

1The Minkowski sum of two sets A and B is formed by adding each vector in A to each vector in B.



46 4| Switching MPC

straint, and therefore the original constraint is automatically satisfied for each possible
disturbance realization. In case of a constraint that involves two robots, it is necessary to
consider the uncertainty related to all the robots involved, and therefore the considered
tightening will be Rt(k) = R

[i]
t (k) + R

[j]
t (k). Considering the described modification, the

robust optimization problem to be solved at each time instant is:

min
Σ∈W

Jw

s.t

p(l + 1|k) = fΣ(k)(p(l))

R[i]
c (l + 1) = R[i]

c (l) + σ[i](l)DM ∀i = 1 . . . Nrob

Hj
np

[i](l) ≥ Sj
n +R[i]

c (l) ∀ j = 1 . . .Nobs , i = 1 . . .Nrob

Hj
np

[i](l) ≥ Sj
n +R[j]

c (l) +R[i]
c (l) ∀ j = 1 . . .Nobs , i = 1 . . .Nrob, j ̸= i

∀ l = k . . .k +Np

(4.36)

With this robust formulation of the FHOCP (4.9) it is possible to reformulate the MPC
strategy described for the nominal case.

4.4.2. Robust centralized switching MPC

A centralized formulation can be directly obtained by solving at each time instant the
FHOCP (4.36), therefore at each time instant the algorithm to be executed in order to
compute the switching signal to apply is the following:

Algorithm 4.6 Robust centralized switching MPC
1: Input:p(k)
2: Output: First element of the optimal switching sequence Σ

3: ForeachΣi ∈ W
4: Evaluate the associated cost Jwi and the constraint tightening R

[i]
c through simulation

of the system using the switching sequence Σi

5: IF Σi does not violate tightened constraint:Add i to set of feasible sequence I
6: end
7: Compute index of optimal solution: iopt = argmin

i∈I
Jwi. In case of multiple sequences

with equal cost, consider the one which involves the minimum amount of movement
for each robot

8: Return The first element of the sequence Σi

Similar comments to Algorithm 4.3 can be made regarding the absence of terminal con-
straint and the possibility of using a modified cost function as in (4.2). However, following
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the same step of Theorem 4.1 it is possible to prove the following result.

Theorem 4.3. Assume that the initial state p(0) belongs to the set of states where opti-
mization Problem 4.36 has a solution. Then the equilibrium point p̄ defined by the Nrob

reference signal is stable, and the trajectories converge to a local minima.

Proof. The proof follows the same step of the proof of Theorem 4.1 once noticed that
the value l̄w(p

[i](k), p̄[i], R
[i]
c (k)) does not depend on the particular realization of the dis-

turbances.

Simulation results

In order to study the robust switching-MPC controller performance, it is first shown a
simulation for an obstacle-free scenario for a network of Nrob = 3 mobile robots, parame-
ters Np = 2, T = 0.1 and disturbances acting on each robot characterized by DM = a1T

2
,

corresponding to a maximum uncertainty equal to half of the movement of the robot.

-2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4

XG(m)

-2.4

-2

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

2

2.4

Y
G
(m

)

Global Frame - Simulation time : 0:1 sec

-2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4

XG(m)

-2.4

-2

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

2

2.4

Y
G
(m

)

Global Frame - Simulation time : 10 sec

-2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4

XG(m)

-2.4

-2

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

2

2.4

Y
G
(m

)

Global Frame - Simulation time : 20 sec

-2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4

XG(m)

-2.4

-2

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

2

2.4

Y
G
(m

)

Global Frame - Simulation time : 30 sec

Figure 4.16: State of the robot network at different time instants

The network converges to the desired reference position. However, differently from a
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scenario without disturbances acting on the system, the controller accepts a sub-optimal
steady state position due to the impossibility of ensuring a decrease in cost with further
movement.
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Figure 4.17: Cost function and switching string of robust centralized switching MPC

From Figure 4.17 it is possible to see that the algorithm ensures the non-increase of the
cost function. The conservativism of the proposed algorithm is more evident in the case
of an environment dense with obstacles.
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Figure 4.18: State of the robot network at different time instants
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In Figure 4.19 it is possible to see that the non-increase of the cost function is ensured.
The conservativism of the algorithm is evident for obstacle avoidance, whereas it can be
seen in Figure 4.18, that the robots are unable to reach the desired reference position
due to the tightened constraints. This type of situation is clearly more common for short
prediction horizon.
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Figure 4.19: Cost function and switching string of robust centralized switching MPC

4.4.3. Robust distributed switching MPC

Obtaining a distributed formulation for the proposed robust algorithm is quite straight-
forward, and it can be done with mild modifications to the procedure described in section
4.2.2

• Consider the worst case cost function Jw, described in (4.34), in place of the original
cost function J .

• Consider for obstacle avoidance the constraint tightening R
[i]
c (k) as described in

(4.33).

• Regarding inter-robot collision avoidance, the robots need to communicate besides
the predicted trajectory, also the related constraint tightening and use in Algorithm
4.4 the tightened constraint with uncertainty R

[i]
c (k|k − 1) +R

[j]
c (k|k − 1)

Considering these modifications, the same results as in Theorem 4.1 can be obtained,
without particular differences.

Simulation results

In order to study the robust switching-MPC controller performance, it is first shown
a simulation for an obstacle-free scenario for a network of Nrob = 15 mobile robots,
parameters Np = 5, T = 0.1 and disturbances acting on each robot characterized by DM =
a1T
2

which correspond to a maximum uncertainty equal to half of the robot movement.
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In Figure 4.20 red circles represent the position of the robots, while squares represent the
desired reference position.
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Figure 4.20: State of the robot network at different time instants

The network converges to the desired reference position, however differently from a sce-
nario without disturbances acting on the system.
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Figure 4.21: Cost function and switching string of robust distributed switching MPC

Due to the non-cooperativity of the algorithm, the conservativism is increased with respect
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to the centralized case. This fact is more evident in an environment dense of obstacles.
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Figure 4.22: State of the robot network at different time instants

In Figure 4.22 almost all the network converge to the desired reference position. Some
robots do not reach the desired reference position due to the presence of obstacles and
other robots that obstruct their trajectory.
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Figure 4.23: Cost function and switching string of robust distributed switching MPC
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4.5. Stochastic switching MPC

The robust control laws described in the previous section are quite conservative, being
based on the worst-case scenario. This could lead to quite low performance, in case of
high uncertainty, since the controller could decide that the best solution is to not attempt
any movement.
In order to reduce the conservativism of the approach, we propose a reformulation in a
stochastic framework. For a general survey on stochastic MPC see [48, 49] where both
the linear and nonlinear cases are considered. In the following, a similar reformulation
of the constraint as done in [50] is adopted. Another possible approach is given by the
scenario approach, see [35, 51]; however, its sampling-based nature combined with the
already computationally demanding approach could lead to an excessive computational
burden.

4.5.1. Expected cost function and chance-constraint

In this section, model (4.31) will be considered, with the fundamental assumption on the
disturbances. In particular, the disturbances dx(k), dy(k) are considered to be zero-mean
white noise with covariance ΣD and possibly unbounded support.
As common in stochastic MPC formulation, the cost function is the expectation of the
original cost J over the distribution of the disturbance.

Js = E[J ] = E[
Np∑
k=0

l(p(k), p̄)] (4.37)

Similarly to 4.5:

Js =
N∑
i=1

E[J̄ [i]]

E[J̄ [i]] =

Np∑
k=0

E[l̄(p[i](k), p̄[i])]

E[l̄(p[i](k), p̄[i])] = E[(p[i]x (k)− p̄[i]x )
2 + (p[i]y (k)− p̄[i]y )

2]

(4.38)

which can be easily expressed in terms of expected value µ
[i]
x , µ

[i]
y and variance Σ

[i]
x ,Σ

[i]
y of

px, py as:

E[l̄(p[i](k), p̄[i])] = (µ[i]
x (k)− p̄[i]x )

2 + (µ[i]
y (k)− p̄[i]y )

2 + Σ[i]
x (k) + Σ[i]

y (k) (4.39)
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The mean and variance can be easily derived from model (4.31). Having the disturbances
an expected value equal to zero, the expected value µ

[i]
x , µ

[i]
y can be directly computed

from the nominal model (4.1). Furthermore, being the considered disturbances white
noise signals the variance can be computed as:

Σ[i]
x (k + 1) = Σ[i]

x (k) + σ[i](k)ΣD

Σ[i]
y (k + 1) = Σ[i]

y (k) + σ[i](k)ΣD

(4.40)

where Σx(0),Σy(0) depends on the initial uncertainty of the robot position and ΣD is the
covariance of the disturbances dx, dy.

Another possibility to reduce conservativism is to use chance constraints, in other words,
constraints that constrain the probability of violation.
Consider the chance constraint formulation of the obstacle avoidance constraint (4.7):

Pr(Hnp
[i](k) ≤ Sn) ≤ ϵ (4.41)

where ϵ is a design parameter that represents the maximum probability of violation allowed
and has to be tuned to obtain a tradeoff between performance and constraint satisfaction.
Constraints of this type can be reformulated in a deterministic framework resorting to
the Cantelli inequality [50, 52] as:

Hnµ
[i]
p (k) ≥ Sn + f(ϵ)

√
HnΣ

[i]
p (k)H⊤

n (4.42)

Where

f(ϵ) =

√
1− ϵ

ϵ
(4.43)

In case the disturbances are distributed according to a Gaussian probability distribution
it is possible to set, for ϵ ∈ (0, 0.5]

f(ϵ) = N−1(1− ϵ) (4.44)

Where N is the cumulative probability function of a Gaussian variable with zero mean
and unitary variance. It can be verified that

√
1−ϵ
ϵ

≥ N−1(1 − ϵ), therefore if informa-
tion about the Gaussianity of the disturbances is available, the less conservative solution
should be used.
The inter-robot collision avoidance constraint can be considered in a similar way, con-
sidering the total uncertainty related to the robots; therefore, in (4.42) the variance
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Σp(k) = Σ
[j]
p (k) + Σ

[i]
p , should be used.

The proposed stochastic formulation for the cost function and constraints helps to reduce
the conservativism present in the robust formulation described in the previous section;
however, it will be shown that the analysis of the algorithm becomes considerably more
complex, especially due to the presence of chance constraints.
A possibility to avoid this complication could be to consider a stochastic formulation for
the cost function while maintaining robust constraint satisfaction.

4.5.2. Stochastic centralized switching MPC

Before presenting the stochastic switching MPC algorithm, some general considerations
concerning stochastic MPC are needed. In the context of stochastic MPC the problem
of guaranteeing recursive feasibility is not trivial to solve, some approaches are based on
imposing suitable mixed probabilistic/worst case constraint tightening [53], while others
rely on a more flexible definition of the initial state of the optimal control problem at
the price of disregarding part of the current data [48], which is the strategy that will be
adopted. In this type of strategy, the initial state, formed by the pair of initial pose and
variance (p(0),Σp(0)), is taken as a free variable and is free to take two different values:
the current measured state of the system (p(k), 0) or the predicted state and variance of
the system (p(k|k − 1),Σp(k|k − 1)). In [48] three possible schemes are introduced:

1. Hybrid scheme: select the initialization strategy that, besides feasibility, guarantees
the minimization of the cost function.

2. Nominal scheme: For all time instants, select the nominal strategy (p(k|k−1),Σp(k|k−
1)).

3. Reset-based scheme: For all time instants, select the reset strategy,(p(k), 0), if fea-
sible, otherwise select the nominal one.

The three schemes offer different probabilistic characterization of the method. The nomi-
nal scheme allows to verify the fulfillment of the ’non-conditional’ expectation constraint
at each time instant, Pr(Hnp

[i](k) ≤ Sn|p[i](0)) ≤ ϵ. The reset scheme guarantees that
Pr(Hnp

[i](k) ≤ Sn|p[i](k)) ≤ ϵ is verified at all time instants when the feasibility of the
reset strategy is verified, when not verified allows to guarantee the conditional expectation
constraint with respect to the last feasible measurement. Hybrid schemes are optimal in
terms of the cost function minimization.
In the following, we will exploit the hybrid scheme with a slight modification:

• Modified hybrid scheme: select the reset strategy if it is feasible that leads to a
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decrease of the cost function with respect to the previous time instant, otherwise
use the nominal strategy. Furthermore, if convergence of the nominal strategy is
detected, the reset strategy is forced.

This choice offers a good trade-off between the exploitation of the information available
and the minimization of the cost function. Therefore, at each time instant, the algorithm
to be executed in order to compute the switching signal to apply is the following

Algorithm 4.7 Stochastic centralized switching MPC
1: Input:actual pose p(k), predicted pose p(k|k−1) and predicted variance Σp(k|k−1),

and previous value of the cost function Js(k − 1)

2: Output: First element of the optimal switching sequence Σ

3: ForeachΣi ∈ W
4: Evaluate the associated cost Jsi and the constraint tightening, through simulation of

the system using the switching sequence Σi and considering as initial position the
actual pose p(k) and zero variance.

5: IF Σi does not violate the tightened restriction
6: Add i to the set of feasible sequence I
7: end
8: Compute the index of the optimal solution:iopt = argmin

i∈I
Jsi. In case of multiple

sequences with equal cost, consider the one that involves the minimum amount of
movement for each robot.

9: If Jsiopt ≤ Js(k − 1) or Convergence of the nominal state p(k|k − 1) is detected
10: Return The first element of the sequence Σi

11: Else
12: Repeat points 3-8 considering the predicted pose p(k|k−1) and the predicted variance

Σp(k|k − 1) as the initial pose.
13: Return The first element of the sequence Σi

For the proposed Algorithm, it is possible to prove the following result.

Proposition 4.2. Assume that the initial state p(0) belongs to the set of states where
Algorithm 4.7 has a solution. Then, the equilibrium point p̄ defined by the reference signal
Nrob is stable in probability, and the trajectories converge to local minima.

Proof. The proof starts by showing that the algorithm ensures recursive feasibility in a
similar way as in (4.1), considering that at least a feasible solution exists and by extending
the nominal trajectory as in (4.11). Proving stability in probability is more challenging,
and two aspects need to be considered:
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1. When the modified hybrid scheme selects the nominal strategy with similar reason-
ing as in Theorem 4.1 it is possible to prove that ∆Js ≤ 0. Indeed, when the reset
strategy is chosen due to a possible decrease in cost trivially ∆Js ≤ 0 is ensured.

2. When the reset strategy is chosen due to convergence of the nominal strategy, an
increase of the cost function is allowed. However, since the nominal strategy has
reached a local minimum it is ensured that:

E[l(p(τ2))] ≤ l(p(τ1)) (4.45)

Here τ1, τ2, withτ2 ≥ τ1 are two generic time instants where the reset strategy is
used.

The relation, (4.45), allows us to characterize in a stochastic framework the evolution
of the system. Furthermore, considering the function l(p(τ1)) as a Lyapunov function
makes possible to prove stability in probability, see [54] for more detail on the stability
of stochastic discrete-time system. The proposed algorithm is computationally more ex-
pensive than the other algorithm described previously, however, the parameter ϵ, which
represents the maximum allowed probability of constraint violation, acts as a tuning knob
in order to achieve a trade-off between conservativism and constraint satisfaction.

Simulation results

In order to study the performances of stochastic switching-MPC the same scenario as
in Section 4.4.2 will be considered. Therefore, a network composed of Nrob = 3 mobile
robots and parameter Np = 2, T = 0.1 is considered. In order to better compare with
the simulation in Section 4.4.2 a disturbance standard deviation equal to ΣD = a1T

6
is

considered with a maximum allowed probability of violation ϵ = 0.01. In Figure 4.24
the red circle represents the actual position of the robot, the blue circle represents the
obstacle, and the black circle represents the expected position of the robots.
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Figure 4.24: State of the robot network at different time instants

Being the allowed probability of violation of constraint very small the algorithm is very
conservative.
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Figure 4.25: Cost function and switching string of stochastic switching MPC

Unlike the robust algorithm, it is possible to achieve a trade-off between conservativism
and performance by tuning the value of ϵ. To this aim, for the next simulation, the value
ϵ = 0.1 is considered.
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Figure 4.26: State of the robot network at different time instants

Allowing more freedom to the network the proposed control law is capable of steering
each robot to the desired reference position.
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Figure 4.27: Cost function and switching string of stochastic switching MPC

4.5.3. Stochastic distributed switching MPC

A distributed formulation for the proposed stochastic switching MPC can be obtained
along the lines of the procedure for robust distributed implementation, with mild modi-
fication. In more detail:

• Consider the expected value of the cost function Js described in (4.38) in place of
the original cost function J

• Consider the modified hybrid scheme described in the previous scheme for the ini-
tialization in the optimization phase

• Consider for obstacle avoidance the chance constraint (4.42)

• Regarding inter-robot collision avoidance, similarly to the distributed case, the robot
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needs to communicate besides the predicted trajectory, also the related variance.
Then, use Algorithm 4.4 to obtain the distributed reformulation of the chance con-
straint.

Similar result can be proven to the distributed nominal case described as in Theorem 4.1.

Simulation results

In order to study the performances of distributed switching MPC a network composed by
Nrob = 15 mobile robots with parameters Np = 3, T = 0.1, ϵ = 0.1 is considered, and as in
the case of centralized stochastic switching MPC a standard deviation of the disturbances
equal to ΣD = a1T

6
is also considered.
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Figure 4.28: State of the robot network at different time instants

The proposed algorithm is able to steer the network to the desired reference position
without particular difficulties.
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Figure 4.29: Cost function and switching string of distributed stochastic switching MPC

4.6. Comments

The algorithms described in this chapter offer a feasible approach for navigation and co-
ordination, both in a nominal situation and in a situation where uncertainty is present.
Despite the great reduction of the computational effort in the case of distributed imple-
mentation, the optimization problems to be solved are still quite demanding. In order to
alleviate this limitation, in the next section, some algorithms which do not present this
problem will be presented. Furthermore, even if not considered in the chapter, it is also
possible to include in the analysis without particular difficulties the presence of measure-
ment noise by acting on the initial uncertain set in the case of the robust formulation or
the initial variance in the case of the stochastic formulation.
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5| Tube-based switching MPC

In this chapter, a robust tube-based MPC control law will be developed. Differently
from the previous chapter, the MPC control law in this section takes advantage of the
knowledge of a stabilizing switching law to maintain the trajectories of the robot in a
tube centered around a nominal reference trajectory. This fact motivates the use of the
nomenclature tube MPC, since it presents similarities to general tube-based approach
available in the literature.

5.1. Rigid tube

For the algorithm in this chapter, the discretized version of the model with additive
disturbances (2.17) will be considered:

p[i](k + 1) = fσ(k)(p
[i](k)) (5.1)

where:

f0 =

p[i]x (k) + dx(k)

p
[i]
y (k) + dy(k)
θ[i](k) + Tω0

 f1 =

 p
[i]
x (k) + v1

sin(θ[i](k)+Tω1)−sin(θ[i](k))
ω1

+ dx(k)

p
[i]
y (k) + v1

− cos(θ[i](k)+Tω1)+cos(θ[i](k))
ω1

+ dy(k)

θ[i](k) + Tω1

 (5.2)

It will be assumed that the disturbances satisfy the norm bounded condition d2x(k) +

d2y(k) ≤ D2
d. Furthermore, it is assumed the knowledge of an auxiliary switching law

σ̄(p[i](k), p̄(k)) capable of practically stabilizing a single robot and the knowledge of the
related quantity RM , see Chapter 3 for a more detailed discussion about stabilizing switch-
ing law and analysis of the resulting closed loop system. In particular, the switching
signal to be applied will be calculated based on the switching law σ̄(p[i](k), p̄(k)), while
the reference p̄(k) will be computed in a receding horizon fashion exploiting the maximum
deviation of the trajectory RM to robustly enforce the fulfillment of the constraint.
In practice, once the set of possible external disturbances characterized by Dd and the set
of possible reference changes for the auxiliary switching law ∆p̄2(k) ≤ D2

p is defined, it
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is possible to exploit the procedure in Chapter 3 to compute RM from the knowledge of
DM = Dd + Dp. Then obstacle avoidance constraint and inter-robot collision avoidance
can be managed as described in Chapter 4. Moreover, the constraint on the admissible
value of ∆p̄2(k) can also be managed with the same polytopic approximation. Therefore,
at each time instant k̄ the switching signal to be applied can be computed by solving:

min
∆p̄(k)

Nrob∑
i=1

Np+k̄∑
k=k̄

p̄[i]⊤(k)p̄[i](k)

p̄(k + 1) = p̄(k) + ∆p̄(k)

Hj
np

[i](k) ≥ Sj
n +RM ∀ j = 1 . . .Nobs , i = 1 . . .Nrob

Hj
np

[i](k) ≥ Sj
n + 2RM ∀ j = 1 . . .Nobs , i = 1 . . .Nrob, j ̸= i

∆p̄(k) ∈ Dp

(5.3)

and evaluating:

σ[i](k̄) = σ̄(p[i](k̄), p̄(k̄)) (5.4)

It is relevant to note that differently from the algorithms described in the previous chap-
ter which involve the solution of an integer program, Problem 5.3 is a relatively simple
quadratic programming problem, which is considerably easier to solve and its complexity
scales better with both the length of the prediction horizon Np and number of robots
Nrob. The relatively low computational complexity of the approach allows to consider
without difficulties a longer prediction horizon and a larger number of robots, with only
the downside that considers as an effective radius of the robot the quantity RM +Rrob.
This fact can limit the ability of the network to navigate an environment of dense obstacles
or a particularly crowded scenario. This limitation is even more evident if a distributed
implementation, which can be obtained using the same approach described in Section
4.2.2 to handle constraint, is considered.

Simulation results

In order to study the performances, the proposed control strategy has been proved in
a similar scenario as the ones considered in Chapter 4. To start with, we considered a
centralized formulation for a network of Nrob = 10 mobile robots and Np = 5. It has
to be noted that the previously described algorithm would need to consider, during the
optimization, a set of cardinality 250 which is clearly not suitable to be solved at each
time instant. Furthermore, we consider a sampling time T = 0.1, no disturbances present,
and a value Dp = 0.4a1T . In Figure 5.1 the state of the robot network at different time
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instants is represented, where the red circle represents the robot position, black circle
represents the circle of radius RM where robots are ensured to be.
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Figure 5.1: State of the robot network at different time instants

The robot network reaches the desired reference position while avoiding collision. It is
also interesting to look at the behavior of the cost function.
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Figure 5.2: Cost function and switching string of centralized tube-based MPC

It is possible to see from Figure 5.1, that the effective radius RM + Rrob limits both
the capability of the network to navigate and the allowed steady state position. This
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limitation is enhanced by the presence of obstacles in the environment as can be seen in
the next simulation where it is even chosen a smaller value of Dp, equal to 0.2a1T , to
facilitate the navigation.
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Figure 5.3: State of the robot network at different time instants

The sub-optimality of the proposed algorithm is evident. Even if part of the network
reaches the desired position, several robots are unable to navigate in narrow passages
only because of the effective radius RM +Rrob.
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Figure 5.4: Cost function and switching string of centralized tube-based MPC
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This motivates the development of the approach that will be described in the next section.
Before discussing the next approach, it is shown a distributed implementation of the ap-
proach for the same scenario of Figure 5.1, with the presence of disturbances characterized
by Dd = 0.2a1T and by a maximum reference change for the auxiliary law Dp = 0.2a1T .
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Figure 5.5: State of the robot network at different time instants

It is relevant to note that the non-cooperativity of the algorithm renders more difficult to
reach the desired reference position. Moreover, the robots never reach a steady state, due
to the presence of persistent disturbances, while the reference position for the auxiliary
switching law reaches a steady state.
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Figure 5.6: Cost function and switching string of distributed tube-based MPC
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To solve (5.3) the software YALMIP has been used [55].

5.2. Time-varying tube

In order to increase the freedom of movement, it is possible to consider RM as an opti-
mization parameter along the prediction horizon. To this scope, it is possible to consider
a linear upper bound on the value of RM :

RM(DM) = K1DM +K2

DM = Dd +Dp(k)
(5.5)

Using this upper limit, the quadratic Program (5.3) can be modified, allowing for a
time-varying bound on the change of reference ∆p̄(k) that corresponds to a time-varying
constraint tightening RM . In more detail, the quadratic Program (5.3) has to be modified
by introducing additional constraints as in the following scheme:

• Constraint which defines the evolution of the time-varying constraint tightening

RM(k + 1) = K1(Dd +Dp(k)) +K2 (5.6)

• RM is not allowed to decrease along the prediction horizon to avoid situations where
trajectories exit the tube

RM(k + 1) ≥ RM(k) (5.7)

• the initial position must be compatible with the initial value of RM

e2x(0) + e2y(0) ≤ RM(0) (5.8)

and a polytopic approximation can be used to obtain linear constraint.

• Dp(k) must be upper bounded to avoid values for which it is not possible to ensure
that the deviation from the center of the tube remains limited. Also, it is neces-
sary to impose a lower bound greater than zero in order to avoid possible artificial
deadlock.

0 < DMIN ≤ Dp(k) ≤ DMAX (5.9)

With these modifications, the optimization problem law is allowed to act on the value RM ,
resulting in a maximum freedom of motion when possible, and limiting it when a smaller
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value of RM is useful in a very obstacle-dense environment or very crowded scenarios.
Furthermore, it is also possible to obtain a distributed implementation using the same
approach described in Section 4.2.2.

Simulation results

In order to study the performances of the proposed approach, it is considered the same
scenario with obstacles is considered in the previous section. Therefore, a network com-
posed of Nrob = 10 mobile robots and Np = 5 is considered. Furthermore no disturbances
are present and DMIN = 0.2a1T , DMAX = 0.4a1T are considered.
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Figure 5.7: State of the robot network at different time instants

From Figure 5.7 it is clear that allowing a time-varying radius RM can increase the
capability of the network to navigate an environment rich of obstacles and particularly
crowded scenarios. However, it is also evident how this approach can introduce a certain
degree of sub-optimality, in particular allowing for a small value of RM can hinder the
performance of the network by limiting how large the change of references for the auxiliary
control law can be. This drawback can be overcome by using a larger prediction horizon.
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Even if the optimization problem at each time instant is relatively simple, the construction
of the linear constraint is still a quite time-consuming task.
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Figure 5.8: Cost function, switching string and radius RM of modified centralized tube-
based MPC

One of the advantages is that the network is more capable of navigating the environment
when it is rich of obstacles as can be seen in the next simulation scenario.
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Figure 5.9: State of the robot network at different time instants

Differently from the approach of the previous section, with the additional degree of free-
dom RM the network is capable of navigating the environment and reaching the desired
reference position.
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Figure 5.10: Cost function, switching string and radius RM of modified centralized tube-
based MPC

Next, a distributed implementation of the proposed algorithm is considered, in order
to understand how the performances are affected by allowing for a time-varying radius
RM . To this extent, a network composed of a Nrob = 10 mobile robots is considered
with a prediction horizon of length Np = 5. Furthermore, presence of disturbances is
also considered with maximum value Dd = 0.2a1T and value DMIN = 0.1a1T , DMAX =

0.4a1T .
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Figure 5.11: State of the robot network at different time instants

While the additional degree of freedom RM helps the network to navigate the environment,
it does not totally overcome the problem of artificial deadlock in distributed implementa-
tion. Therefore an approach like the temporary target shifting in [44] could be beneficial.
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Figure 5.12: Cost function, switching string and radius RM of modified distributed tube-
based MPC

In Figure 5.12 it is possible to see that due to the presence of persistent disturbances,
the robots never reaches a steady state. Furthermore due to the presence of disturbances
the effective radius RM + Rrob is constrained to higher value with respect to previous
simulations.

5.3. Comments

The approaches presented in this chapter, apart from being able to tackle a broader class
of disturbances acting on the network, offer a suitable trade-off between the computa-
tional complexity required, quadratic programming instead of integer programming, and
optimality of the obtained trajectories.
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6| Conclusions

The aim of this thesis was to develop control strategies for the trajectory tracking of a mul-
tiple mobile robot system in situations where disturbances are present. The approaches
developed in this work rely on a switching model predictive control (MPC) strategy. These
are based on a switching model of the plant dynamics in analogy with [14, 15], where a
similar system setup is considered for a self-aggregation task and no disturbances acting
on the system.
The first developed approaches recast the original problem into a finite horizon optimal
control problem (FHOCP), relying on a discrete model for the system. Then, the FHOCP
is used to formulate a switching-MPC strategy aimed at minimizing the difference between
the position of the robot and the desired reference position. In order to consider the pres-
ence of disturbances, two different formulations have been proposed, one which ensures
robustly the fulfillment of the constraints and one which exploits the stochastic framework
to achieve a tradeoff between the conservativism of a robust formulation and satisfactory
performances. The proposed approaches have also been extended to consider distributed
formulations.
The last developed approaches are instead based on a deeper analysis of the underlying
switched system. In particular, the approaches are based on disturbances reachable set.
These approaches present similarities to the class of tube MPC strategies and offer major
computational advantages with respect to them.
For all the control strategies presented in this thesis, several simulated scenarios have been
illustrated, with the aim of highlighting the strengths and limitations of each approach.
Future developments can be done in many directions, such as considering more com-
plex robot models or a greater number of allowed motions, or integratings the design of
the proposed approaches with controllers located in an inner loop to limit the effect of
disturbances.
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