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Abstract

In this thesis, we analyze two-phase flows with emphasis on geometric variables
that arise in their description. Two-phase flows play an important role in several
natural processes and engineering systems and their modelling is thus a highly
interdisciplinary research topic. They are characterized by the presence of an in-
terface which separates the bulk regions of the single phases. Two-phase flows are
classified into two main regimes: separated and disperse flows. However, inde-
pendently of the specific regime, the exchanges between two phases occur at the
interface and phase exchange terms are proportional to the interface area. Hence,
the computation of this quantity is a prerequisite in order to obtain an accurate
description of the phase exchanges themselves.
Evolution equations for the interface area density are typically obtained by means
of empirical approaches. One of the main goals of this thesis is the derivation of
dynamic equations for the interface area density through the Stationary Action
Principle (SAP). Moreover, the addition of source terms compatible with the sec-
ond principle of thermodynamics allows to obtain, in appropriate limiting regimes,
the classical pressure relaxation associated to the transport of the volume frac-
tion. Furthermore, thanks to a suitable interpretation of some parameters, it is
also possible to derive semi-empirical relationships for the interface area density
already known in the literature.
The other main goal of the thesis is the development of an effective computational
environment for the simulation of two-phase flows. More specifically, we propose a
Discontinuous Galerkin (DG) discretization suitable for a range of fluid dynamical
models in the framework of the deal.II library, which is based on matrix-free ap-
proach and provides Adaptive Mesh Refinement (AMR) tools. We first present an
implicit solver for the incompressible Navier-Stokes equations using an artificial
compressibility formulation. We then derive an extension for single-phase weakly
compressible flows with an implicit coupling between momentum and energy bal-
ance. A second order IMEX scheme is employed for the time discretization, with
the implicit part coinciding with the TR-BDF2 scheme used for the incompress-
ible Navier-Stokes equations, providing thus ample guarantees of robustness in
the low Mach regime. The proposed technique allows us the use of rather general
Equations of State (EOS) for non-ideal gases. More specifically, we propose a non
straightforward extension of existing semi-implicit approaches for the ideal gas
law for the Stiffened Gas (SG-EOS) and for the general cubic equation of state
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and we develop suitable refinement indicators for real gases.
Finally, we provide an extension for the full non-equilibrium two-phase Baer-
Nunziato models, developing also a filtering monotonization procedure in order
to avoid, or at least reduce, the under- and over-shoots that arise in presence of
discontinuities using high order discretizations. The effectiveness of all the pro-
posed methods is shown in a number of significant benchmarks.

Keywords: Two-phase flows, Baer-Nunziato model, Non-ideal gases, Discon-
tinuous Galerkin methods, IMEX scheme, Adaptive Mesh Refinement, Filtering
monotonization technique

II
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Sommario

In questa tesi, si analizzano flussi bifase ponendo l’attenzione anche su alcune
variabili geometriche che caratterizzano la loro descrizione. I flussi bifase giocano
un ruolo importante in diversi processi naturali and sistemi ingegneristici e la loro
modellazione è pertanto un argomento di ricerca interdisciplinare. Sono carat-
terizzati dalla presenza di un’interfaccia che separa le regioni bulk delle singole
fasi. I flussi bifase sono classificati in due regimi: flussi separati e flussi dispersi.
Indipendentemente dallo specifico regime, però, gli scambi tra le due fasi avven-
gono all’interfaccia e i termini di scambio tra le fasi sono proporzionali all’area
dell’interfaccia. Quindi, un calcolo affidabile di questa quantità è un prerequisito
per ottenere una descrizione accurata degli scambi tra le fasi.
Le equazioni di evoluzione per la densità d’area interfacciale sono tipicamente ot-
tenute attraverso considerazioni empiriche. Uno degli obiettivi principali della tesi
riguarda la derivazione di relazioni dinamiche per la densità d’area interfacciale
attraverso il Principio dell’Azione Stazionaria. Opportuni termini sorgenti sono
considerati compatibilmente con il secondo principio della termodinamica cos̀ı da
ottenere, in opportuni regimi limite, il classico rilassamento della pressione asso-
ciato all’equazione di trasporto della frazione di volume e, grazie ad un’opportuna
interpretazione di alcuni parametri, ritrovare relazioni semi-empiriche già note in
letteratura per l’evoluzione della densità d’area interfacciale.
L’altro obiettivo della tesi riguarda lo sviluppo di un ambiente computazionale
per la simulazione di fluidi bifase. Più in dettaglio, verrà proposta un’opportuna
discretizzazione Discontinuous Galerkin (DG) per un range di modelli per la di-
namica dei fluidi implementata nel framework della libreria deal.II, che è basata
su un approccio di tipo matrix-free e permette di utilizzare adattazione di griglia.
Lo sviluppo di un solver per le equazioni di Navier-Stokes incomprimibili utiliz-
zando una formulazione di tipo comprimibilità artificiale costituisce il punto di
partenza. In seguito, verrà derivata un’estensione per fluidi monofose debolmente
comprimibili con un accoppiamento implicito tra il bilancio della quantità di moto
e quello dell’energia. Uno schema IMEX del secondo ordine è utilizzato per la di-
scretizzazione temporale, la cui parte implicita coincide con lo schema TR-BDF2
utilizzato per le equazioni incomprimibili, fornendo pertanto ampia garanzia della
robustezza dell’approccio proposto nel limite di basso numero di Mach. La tecnica
proposta permette di utilizzare equazioni di stato di gas non ideali. Verrà pro-
posta un’estensione non banale per la Stiffened Gas (SG-EOS) e per l’equazione

III



i
i

“Tesi˙Multiphase˙Orlando˙Giuseppe” — 2023/4/3 — 9:12 — page IV — #8 i
i

i
i

i
i

di stato general cubic di approcci esistenti in letteratura per l’equazione di stato
di gas ideali e, inoltre, verranno derivati opportuni indicatori per il raffinamento
locale per gas non ideali.
Infine, verrà proposta un’estensione per il modello di non equilibrio di Baer-
Nunziato per fluidi bifase, sviluppando anche una procedura di monotonizzazione
tramite un filtro in modo da evitare, o quantomeno ridurre, gli under- e over-
shoots che sorgono in presenza di discontinuità quando vengono utilizzati metodi
di discretizzazione ad alto ordine. Le potenzialità dei vari metodi proposti sono
dimostrate in un numero di significativi benchmarks.

Parole chiave: Flussi bifase, modello di Baer-Nunziato, Gas non ideali, Metodi
Discontinuous Galerkin, schema IMEX, Adattazione di griglia, Monotonizzazione

IV
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CHAPTER1
Introduction

Multiphase flows are characterized by the presence of two or more phases with
different properties and play an important role in several natural processes and
engineering systems: their modelling is thus a highly interdisciplinary research
topic. We mention, among many other physical and industrial applications in-
volving multiphase flows, hybrid rocket engines (see e.g. [Gandolfi, 2019, Di Bat-
tista, 2021] and the references therein), atomization of a liquid jet [Vallet et al.,
2001, Lebas et al., 2009], spray combustion [Mortensen and Bilger, 2009], flows
in porous media [Whitaker, 1986], sediment transport [Chiodi et al., 2014] and
pyroclastic flows [Ramos, 1995].
A two-phase flow comprises only two phases. In the present work, we will focus on
liquid-gas mixtures and, therefore, we will not consider equation models for flows
in porous media, sediment transport or pyroclastic flows, for which one of the two
phases is solid. The full non-equilibrium Baer-Nunziato (BN) model [Baer and
Nunziato, 1986] has been proposed for detonation waves in granular explosives
and represents the most general formulation for compressible two-phase flows. It
assumes that each phase is compressible and evolves with its own pressure, tem-
perature and velocity, together with an evolution equation for the volume fraction
of one of the two phases. Reduced models have been derived by means of asymp-
totic expansions of the Baer-Nunziato model with assumptions of infinitely fast
relaxation towards the equilibrium for the velocity, pressure or temperature, see
e.g. [Kapila et al., 2001, Pelanti, 2022].
A moving interface delimits the bulk regions of the single phases. Two descrip-
tions are possible for the interface: a sharp interface configuration, in which a
single discontinuity across a surface separating the two fluids is considered, and
a diffuse interface configuration, for which the interface is assumed to be thick
and the properties change continuously between the equilibrium values of the two
phases. The diffuse interface approach has been employed e.g. in second gradient
models [Jamet et al., 2001] and assumes that the fluid is in a subcritical regime. In

1
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Chapter 1. Introduction

the present work, we will focus on the first description, whereas we refer to [Jamet
et al., 2001] for a description of methods employing the diffuse interface model.
According to the sharp interface geometrical configuration, two-phase flows can
then be classified into two main regimes: separated and disperse flows. A sepa-
rated flow is characterized by large regions of both phases. On the contrary, a
disperse flow is constituted of particles, such as bubbles or droplets, dispersed in
a carrier fluid which is called the continuous phase. One can make the distinction
between bubbly flows, i.e. gas inclusions in a liquid, and droplet flows, i.e. liquid
inclusions in a gas or in a second liquid, as in the case of emulsions. In both
separated and disperse flows, the exchanges between the two phases occur at the
interface and, moreover, it is well known that phase exchange terms are propor-
tional to the interface area [Drew and Passman, 1999]. Hence, the computation
of this quantity is a prerequisite to obtain reliable values of the exchange term,
especially in non-equilibrium conditions or when chemical reactions occur. The
use of suitable evolution equations to predict the interface area concentration has
a long tradition in the literature, see e.g. [Ishii, 1975, Drew, 1990, Drew and
Passman, 1999, Hibiki and Ishii, 2002], and has been employed also in the case
of flames [Candel and Poinsot, 1990]. This approach represents in the case of
disperse flows a popular alternative to the Population Balance Equation (PBE)
models, like that proposed in [Williams, 1958], which applies the method of mo-
ments to derive several transport equations for the moments of the considered
Probability Density Function (PDF) [McGraw, 1997]. The use of an equation for
the interface area evolution leads instead to a single transport equation, thus pro-
viding a significant advantage in terms of computational efficiency with respect to
the alternative PBE approach. The relations for the interfacial area concentration
are typically derived by means of empirical approaches under a set of assumptions
which are very specific of the phenomenon under consideration [Hibiki and Ishii,
2002, Lhuillier, 2004]. In the last years, the seminal contributions [Cordesse et al.,
2019, Drui et al., 2019, Di Battista, 2021] opened the way to the use of variational
principles to derive equations of motion for two-phase flows including geometric
variables. One of the goals of this work is to show how this methodology can be
adapted to obtain dynamic relations for the interfacial area density which provide
also as limiting case or as submodels well known relations present in the literature.

Any continuous model of two-phase flows must be complemented by suitable
numerical methods for its discretization, so that physically relevant simulations
can be performed. The efficient numerical solution of the compressible Navier-
Stokes equations which stem from the classical balance laws of fluid dynamics
poses several major computational challenges. In particular, for flow regimes char-
acterized by low Mach number values, severe time step restrictions are typically
required by standard explicit time discretization methods. The use of implicit and
semi-implicit methods has a long tradition in low Mach number flows, see e.g the
seminal papers [Robert, 1982, Casulli and Greenspan, 1984, Cullen, 1990]. The
Discontinuous Galerkin (DG) discretization method has proven itself a valuable
tool in fluid dynamics models, see for example [Giraldo et al., 2010] or the review
in [Bonaventura et al., 2012]. However, stability concerns are even more critical in
the regimes of interest for spatial discretizations based on the DG method [Karni-
adakis and Sherwin, 2005, Giraldo, 2020]. In the present work, we will combine, on
the one hand, accurate and flexible discontinuous finite element spatial discretiza-
tions, and on the other hand, efficient time discretizations, following an approach

2
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that has been shown to be quite successful for applications to numerical weather
prediction in [Tumolo et al., 2013, Tumolo and Bonaventura, 2015]. In order to
prove the effectiveness of the proposed approach, we first develop a solver for
the incompressible Navier-Stokes equations based on the artificial compressibility
formulation and the unconditionally stable TR-BDF2 method in time [Orlando
et al., 2022b]. We then propose an extension of this method to single-phase weakly
compressible flows, employing an IMEX scheme for the time discretization [Or-
lando et al., 2022a]. The implicit part of the considered IMEX method coincides
with the aforementioned TR-BDF2 method, thus providing ample guarantees of
robustness in the low Mach number regime. The discretization approach is able
to handle non-ideal equations of state (EOS), such as the general cubic equa-
tion of state, as well as other classical convex equations of state like the stiffened
gas equation of state (SG-EOS). This leads to a non straightforward extension of
many classical contributions which focus exclusively on the equations of motion of
an ideal gas [Bassi et al., 2007, Bassi et al., 2015, Busto et al., 2020, Boscheri and
Pareschi, 2021]. Finally, we derive an extension of the same approach to two-phase
flows equations and to Baer-Nunziato models [Baer and Nunziato, 1986].

The thesis is structured as follows: in Chapter 2, we provide an overview
of the different mathematical models for two-phase flows and we review the lo-
cal instantaneous evolution equations for geometrical features that characterize
two-phase flows. We derive through the Stationary Action Principle (SAP) an
evolution equation for the interface area density which should complement the
classical balance laws and we provide suitable choices for the EOS, performing
also an analysis of isentropic processes. Chapter 3 is devoted to the description
of the numerical methods proposed in order to discretize the model equations,
giving also a general overview of the Discontinuous Galerkin method. In Chapter
4, we provide some relevant numerical results for a range of fluid dynamic mod-
els. The proposed methods are implemented in the framework of the numerical
library deal.II [Bangerth et al., 2007, Arndt et al., 2022], which is based on a
matrix-free approach and provides Adaptive Mesh Refinement (AMR) tools, for
which we will employ suitable refinement indicators stemming from the analysis of
isentropic processes outlined in Chapter 2. Finally, we present some conclusions
and perspective for future works in Chapter 5.
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CHAPTER2
Model equations for compressible two-phase flows

In this Chapter, we derive the equations that govern compressible two-phase flows.
Notice that we will consider liquid-gas mixtures. In the present work, as in most
standard presentations of this topic, we represent the two fluids as interacting
continua separated by an interface across which the properties may vary abruptly
[Drew and Passman, 1999]. We first recall the local conservation laws which hold
in each bulk region of the domain and the corresponding jump conditions at the
separating interface [Gurtin, 1982]. Afterwards, we apply an averaging operation
to the previously described equations of motion. We then focus on the evolution
equations for geometric features which, in the case of a complex interface, could
provide a better description of the phase exchange terms [Drew, 1990, Drew and
Passman, 1999]. We then analyze the classical full non-equilibrium Baer-Nunziato
model [Baer and Nunziato, 1986] and a relaxed version of this system with four
equations. Finally, we derive through the SAP an evolution equation for the
interface area density and we give an overview of some possible choices for the
equations of state.

5



i
i

“Tesi˙Multiphase˙Orlando˙Giuseppe” — 2023/4/3 — 9:12 — page 6 — #30 i
i

i
i

i
i

Chapter 2. Model equations for compressible two-phase flows
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2.1. Local balance equations

2.1 Local balance equations

Let Ω ⊂ Rd, 2 ≤ d ≤ 3 be a connected open bounded set with a sufficiently smooth
boundary ∂Ω. The canonical form of a balance equation can be written as [Drew
and Passman, 1999]

∂ρΨ

∂t
+∇· (ρΨu) = ∇·J+ ρf in Ω. (2.1)

Herein Ψ is the conserved quantity (either a scalar or a tensorial one), ρ is the
density, u is the velocity, J is the flux (molecular or diffusion) of the variable Ψ
and f is the source density. For Ψ = 1,J = 0 and f = 0, we obtain the continuity
equation

∂ρ

∂t
+∇· (ρu) = 0 in Ω. (2.2)

For Ψ = u,J = T and f = b, we get the balance of momentum

∂ρu

∂t
+∇· (ρu⊗ u) = ∇·T+ ρb in Ω. (2.3)

Here T is the stress tensor and b is the body force. Eventually, for Ψ = E,J =
Tu− q and f = b · u+ rheat, we obtain the balance of energy

∂ρE

∂t
+∇· (ρEu) = ∇· (Tu− q) + ρ (b · u+ rheat) in Ω, (2.4)

where E is total energy per unit of mass, q is the heat flux and rheat is the heating
source per unit mass.

The relation (2.1) is based on the Reynolds Transport Theorem (RTT) [Gurtin,
1982, Slattery et al., 2007], which we briefly recall here for a generic function ϕ:

d

dt

∫
Ω

ϕdΩ =

∫
Ω

∂ϕ

∂t
dΩ +

∫
∂Ω

ϕu · ndΣ =

∫
Ω

ï
∂ϕ

∂t
+∇· (uϕ)

ò
dΩ, (2.5)

where n is the outward unit normal of ∂Ω. The statement holds also for the sin-
gle bulk regions corresponding to each phase. From now on, we assume that the
domain Ω consists of two subdomains Ω1(t) and Ω2(t), separated by an interface
Γ(t). Hence, we consider a single discontinuity across a smooth surface separat-
ing two parts occupied by the fluid where the fields are smooth. Suitable jump
conditions hold at the interface separating multicomponent materials [Drew and
Passman, 1999]:

[[ρΨ(u− vI) + J]] = m, (2.6)

with vI denoting the velocity of the interface Γ(t) and [[·]] being the jump across
the discontinuity defined for a generic scalar function ϕ as

[[ϕ]] = ϕ1n1 + ϕ2n2, (2.7)

for a generic vector function φ as

[[φ]] = φ1 · n1 +φ2 · n2 (2.8)

and for a generic tensor function Φ as

[[Φ]] = Φ1n1 +Φ2n2. (2.9)

7
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Chapter 2. Model equations for compressible two-phase flows

Notice that ϕk,φk and Φk, k = 1, 2 are the values of the function ϕ, φ and Φ,
respectively, on the interface Γ(t) from the side Ωk(t), and that n1 = −n2. We
derive now the jump condition for the continuity equation. The following integral
balance holds:∫

Ω

ï
∂ρ

∂t
+∇· (ρu)

ò
dΩ =

2∑
k=1

∫
Ωk(t)

ï
∂ρ

∂t
+∇· (ρu)

ò
dΩ = 0. (2.10)

Applying the divergence theorem [Gurtin, 1982] for each subdomain we obtain

2∑
k=1

∫
Ωk(t)

∂ρ

∂t
dΩ +

2∑
k=1

∫
∂Ωk(t)

ρu · ndΓ = 0. (2.11)

The boundaries ∂Ω1 and ∂Ω2 contain the separating interface Γ(t) moving at
velocity vI . Along this interface, the variables are discontinuous. Hence, thanks
to a generalized RTT discussed in [Slattery et al., 2007], (2.11) is equivalent to

2∑
k=1

∫
Ωk(t)

∂ρ

∂t
dΩ +

2∑
k=1

∫
∂Ωk(t)\Γ(t)

ρu · ndΓ +

∫
Γ(t)

[[ρvI ]] dΓ = 0, (2.12)

The flow velocities u1 and u2 still do not appear in (2.12). Therefore, we consider
the integrals computed on ∂Ωk(t)\Γ(t) also along Γ(t) with u1 and u2, respectively,
in the place of vI . This quantity must also be subtracted in order to keep the
balance unaltered, so as to obtain

2∑
k=1

∫
Ωk(t)

∂ρ

∂t
dΩ+

2∑
k=1

∫
∂Ωk(t)

ρu ·ndΓ−
∫
Γ(t)

[[ρu]] dΓ+

∫
Γ(t)

[[ρvI ]] dΓ = 0. (2.13)

By comparing (2.11) and (2.13), since we assume that no surface excess mass is
associated to the interface, the jump condition associated to the mass balance is
[Drew and Passman, 1999]

[[ρ (u− vI)]] = 0. (2.14)

The jump condition for the momentum balance is obtained in [Trusdell and
Toupin, 1960, Slattery et al., 2007] and reads as follows:

[[ρu⊗ (u− vI) +T]] = mI , (2.15)

with mI being the traction associated to the surface tension. Following [Drew
and Passman, 1999], the surface traction is defined as

mI = Hσn+∇sσ, (2.16)

where H is the mean curvature, σ is the surface tension coefficient and ∇s is
the gradient in surface coordinates whose definition will be specified later on in
Section 2.3. The jump condition for the energy balance reads as follows:

[[ρE (u− vI) +Tu− q]] = εI , (2.17)

where εI is the surface energy associated with the interface, which is given by

εI = Hσn · vI +∇· (σvI) . (2.18)

8
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2.1. Local balance equations

The aforementioned physical laws can be analyzed in a simpler way if the interface
conditions are directly incorporated in the balance equations. To do so, we define
the characteristic function Xk of phase k as

Xk(x, t) =

®
1, if x is in phase k at time t

0 otherwise
(2.19)

and we take the product of the equation (2.1) with the characteristic function
(2.19) so as to obtain

Xk
∂ρΨ

∂t
+Xk ∇· (ρΨu) = Xk ∇·J+Xkρf. (2.20)

Products including the characteristic functions are discontinuous, so that the
derivatives must be treated in a distributional sense [Drew and Passman, 1999]
(see also Appendix A.1). If we take the characteristic function inside the derivative
we get

∂(XkρΨ)

∂t
+∇· (XkρΨu)−∇· (XkJ)−Xkρf =

ρΨ

Å
∂Xk

∂t
+ u · ∇Xk

ã
− J · ∇Xk. (2.21)

Notice that with a slight abuse of notation we employ the same symbol for both
distributional and classical derivatives and the proper operator to be considered
will follow from the context. Let us briefly analyze the right-hand side of (2.21)
which can be rewritten as

ρΨ

Å
∂Xk

∂t
+ u · ∇Xk

ã
− J · ∇Xk =

ρΨ

Å
∂Xk

∂t
+ u · ∇Xk + vI · ∇Xk − vI · ∇Xk

ã
− J · ∇Xk =

[ρΨ(u− vI)− J] · ∇Xk. (2.22)

The last equality stems from the so-called topological equation for phase k, which
governs the evolution of the characteristic function [Drew and Passman, 1999] (see
also Appendix A.1):

∂Xk

∂t
+ vI · ∇Xk = 0. (2.23)

We substitute (2.22) into (2.21) so as to obtain

∂(XkρΨ)

∂t
+∇· (XkρΨu)−∇· (XkJ)−Xkρf = [ρΨ(u− vI)− J] · ∇Xk. (2.24)

Notice that, as outlined in [Junqua-Moullet, 2003, Morel, 2007], ∇Xk is the prod-
uct between δ(Γ), the Dirac delta distribution with support on the interface, and
the outward unit normal from phase k nk, namely

∇Xk = −nkδ(Γ). (2.25)

The distribution δ(Γ) is defined by the following relation:

< δ(Γ), ϕ >=

∫
Γ

ϕdΣ ∀ϕ ∈ C∞
0 (Ω) (2.26)

9
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Chapter 2. Model equations for compressible two-phase flows

and represents an interface area density. Indeed, with a slight abuse of notation,
the following relation holds: ∫

Ω

δ(Γ)dΩ = A, (2.27)

where A is the interface area. Hence, the interfacial source terms are proportional
to the interface area density, whose computation is therefore fundamental for an
accurate estimate of these exchange terms. A conceptually similar approach for
the derivation of the local balance laws in two-phase flows is followed in [Séro-
Guillaume and Rimbert, 2005], which we briefly recall here. Each quantity ϕk

associated to phase k is extended to 0 on the subdomain associated to the other
phase, so that it is now defined on the whole domain Ω. Using the relations (A.23)
and (A.24), one obtains the following balance equations:

∂ρk
∂t

+ ∇· (ρkuk) + ρk (uk − vI) · nkδ(Γ) = 0 (2.28)

∂ρkuk

∂t
+ ∇· (ρkuk ⊗ uk)−∇·Tk − ρkbk

+ ρkuk ⊗ (uk − vI) · nkδ(Γ)−Tknkδ(Γ) = 0 (2.29)

∂ρkEk

∂t
+ ∇· (ρkEkuk + qk −Tkuk)− ρkbk · uk

+ [ρkEk (uk − vI) + qk −Tkuk] · nkδ(Γ) = 0. (2.30)

Finally, the topological equation (2.23) can be rewritten as follows:

∂Xk

∂t
+∇· (Xkuk) + (uk − vI) · nkδ(Γ) = Xk ∇·uk. (2.31)

Notice that in (2.31), the advection velocity associated to the characteristic func-
tion Xk is uk, namely the local flow velocity of phase k. Moreover, two extra terms
appear in (2.31). The first one, (uk − vI) · nkδ(Γ), is associated to the exchange
between the phases at the interface, whereas the second one, ∇·uk is associated
to the dilatation-contraction effects of phase k.

2.2 Averaged formulation

Most multicomponent flows display a high variability in the evolution of the dif-
ferent phases and, in general, a macroscopic description is sufficient if we are still
able to obtain reliable results, especially for industrial applications. A microscopic
description is indeed too computational expensive to be adopted and it is there-
fore common to apply an averaging process in order to obtain the mean values of
fluid motions and properties [Nigmatulin, 1970, Drew and Passman, 1999, Kapila
et al., 2001]. The three different averaging processes that are often applied to
multicomponent flows are the ensemble average, the time average and the volume
average [Drew and Passman, 1999], which we will briefly recall in the following.

2.2.1 Ensemble average

The ensemble average allows us the interpretation of the phenomena in terms of
their repeatability. We denote by τ̃ a single realization of the process and by Ẽ

10
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2.2. Averaged formulation

the set of all realizations, known as ensemble. If f is some field, the ensemble
average of f is defined as:

f̄(x, t) =

∫
Ẽ
f(x, t; τ̃)dm(τ̃) (2.32)

where dm(·) is a probability density over the ensemble Ẽ . As discussed in [Drew
and Passman, 1999], even though it is rather customary in the literature to use
the time and volume averages even in the case of not stationary or not uniform
macroscopic processes, as it is typical in turbulence flows, this approach can be
justified only when the results are the same as those obtained by means of the
ensemble average. Time and volume averages are at best approximations of the
ensemble average for non-stationary or non-uniform flows and, therefore, the en-
semble average is fundamental, whereas time and volume averages are specific.
For these reasons, we focus in detail on the derivation of averaged relations by
means of the ensemble average. We define the characteristic function Xk of phase
k as

Xk(x, t; µ̃) =

®
1, if x is in phase k at time t for the realization µ̃

0 otherwise.
(2.33)

We apply the average operator to (2.24) so as to obtain

∂(XkρΨ)

∂t
+∇· (XkρΨu)−∇· (XkJ)−Xkρf = {ρΨ(u− vI)− J} · ∇Xk. (2.34)

Inside each phase we assume a regular behaviour, so that the integration and
differentiation can be interchanged. Therefore, it follows from definition (2.32)
that differential operators and average commute and we obtain

∂(XkρΨ)

∂t
+∇· (XkρΨu)−∇· (XkJ)−Xkρf = {ρΨ(u− vI)− J} · ∇Xk. (2.35)

The averaged continuity equation is obtained by taking Ψ = 1,J = 0 and f = 0:

∂(Xkρ)

∂t
+∇· (Xkρu) = ρ (u− vI) · ∇Xk. (2.36)

For the balance of momentum, we assume for the sake of simplicity that the only
acting body force is gravity and we denote by g the acceleration of gravity. Hence,
taking Ψ = u,J = T and f = g results in the following equation:

∂(Xkρu)

∂t
+∇· (Xkρu⊗ u)−∇· (XkT)−Xkρg =

ρu⊗ (u− vI)−T · ∇Xk. (2.37)

Eventually, if we take Ψ = E,J = Tu− q and f = g · u, we find the relation for
the balance of energy:

∂(XkρE)

∂t
+∇· (XkρEu)−∇· (Xk (Tu− q))−Xkρ (g · u) =

ρE (u− vI)− (Tu− q) · ∇Xk. (2.38)

11
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Chapter 2. Model equations for compressible two-phase flows

Now we introduce adequate average variables to describe two-phase flows. First
of all, following [Drew and Passman, 1999], we define

αk = Xk, (2.39)

which represents the fraction of occurrences where point x at time t is in the
domain occupied by phase k. It is customary to call this variable volume frac-
tion, even though its more correct interpretation is that of the ratio of the volume
occupied by phase k in a space-time domain centered around x, t to the total vol-
ume of the region itself [Drew and Passman, 1999]. The other averaged quantities
are either component-weighted variables, i.e. weighted with the function Xk, and

they are denoted by the symbol Ψ, or mass-weighted (Favre) variables [Garnier

et al., 2009], that is weighted by Xkρ, which are denoted by the symbol Ψ̂:

ρk =
Xkρ

αk

(2.40)

ûk =
Xkρu

Xkρ
=
Xkρu

αkρk
(2.41)

Êk =
XkρE

Xkρ
=
XkρE

αkρk
(2.42)

Tk =
XkT

αk

(2.43)

qk =
Xkq

αk

. (2.44)

It is also interesting to notice that, for a generic function Ψ, we obtain

XkΨ =
XkΨαk

αk

= XkΨαk. (2.45)

Hence, we can also express Favre averaged variables as

ûk =
Xkρu

ρk
=
ρkuk

ρk
(2.46)

Êk =
XkρE

ρk
=
ρkEk

ρk
. (2.47)

At the interface, several terms appear that represent the effects of convective and
molecular fluxes [Drew and Passman, 1999]. Convective fluxes across the interface
are represented by

Γk = ρ (u− vI) · ∇Xk (2.48)

Γu,k = ρu⊗ (u− vI) · ∇Xk (2.49)

ΓE,k = ρE ⊗ (u− vI) · ∇Xk, (2.50)

which represent the contribution to interfacial mass, momentum and energy sources,
respectively. For what concerns the molecular fluxes we define

Mk = −T∇Xk (2.51)

Λk = q · ∇Xk (2.52)

Wk = −(Tu) · ∇Xk, (2.53)

12



i
i

“Tesi˙Multiphase˙Orlando˙Giuseppe” — 2023/4/3 — 9:12 — page 13 — #37 i
i

i
i

i
i

2.2. Averaged formulation

where Mk represents the interfacial momentum source due to molecular fluxes,
Λk is the interfacial heat source and Wk is the interfacial work. The motion
of interfaces gives rise to quantities, and in particular velocities, that are not
generally equal to their average values. The fluctuations around mean values may
be due to turbulence or to the motion of the interfaces. Whatever their source,
the effects of fluctuations are taken into account introducing for a generic variable
Ψ the fluctuating field Ψ

′

Ψ
′
= Ψ−Ψ. (2.54)

For the sake of clarity, we denote by Ψ
′′
the fluctuations associated to the mass-

weighted variables so as to obtain

Ψ
′′
= Ψ− Ψ̂. (2.55)

Let us analyze now the term Xkρu⊗ u as a function of these new variables. We
obtain

Xkρu⊗ u = Xkρ
(
ûk + u

′′
k

)
⊗

(
ûk + u

′′
k

)
= Xkρûk ⊗ ûk +Xkρu

′′
k ⊗ u

′′
k

= αkρkûk ⊗ ûk − αkT
Re
k (2.56)

where TRe
k = −ρku

′
k ⊗ u

′
k = −ρk◊�u

′′
k ⊗ u

′′
k is known as the Reynolds stress tensor.

For what concerns the energy equation we first analyze XkρEu:

XkρEu = Xkρ
Ä
Êk + E

′′
k

ä (
ûk + u

′′
k

)
= XkρÊkûk +XkρE

′′
ku

′′
k

= αkρkÊkûk − αkq
Re
k , (2.57)

where qRe
k = −ρkE

′′
ku

′′
k = −ρk’E ′′

ku
′′
k is known as the Reynolds total energy flux.

We then consider XkTu:

XkTu = Tkuk = Tk

(
ûk + u

′′
k

)
= Tkûk + qT

k , (2.58)

where qT
k = Tku

′′
k is the Reynolds shear stress power. We then obtain the averaged

equations:

∂
(
αkρk

)
∂t

+∇·
(
αkρkûk

)
= Γk (2.59)

∂
(
αkρkûk

)
∂t

+∇·
(
αkρkûk ⊗ ûk

)
−∇·

î
αk

Ä
Tk +TRe

k

äó
=

αkρkg +Mk + Γu,k (2.60)

∂
Ä
αkρkÊk

ä
∂t

+∇·
Ä
αkρkÊkûk

ä
−∇·

î
αk

Ä
Tkûk − qk + qRe

k + qT
k

äó
=

αkρkûk · g + Λk +Wk + ΓE,k. (2.61)

The average stress can be written as

Tk = −pkI+ τk. (2.62)

13
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Chapter 2. Model equations for compressible two-phase flows

We want to separate mean field effects from local effects in the interfacial terms;
for this reason we introduce the interfacial pressure pkI and shear stress τkI :

pkI =
pnk · ∇Xk

Σ
= −pδ(Γ)

Σ
(2.63)

τkI =
τ (∇Xk · nk)

Σ
= −τ δ(Γ)

Σ
, (2.64)

where Σ = δ(Γ) is the average interfacial area concentration [Drew and Passman,
1999] and the values of p and τ are considered as limit values taken in each
subdomain Ωk(t). The interfacial force density Mk can be therefore rewritten as
follows:

Mk = −T∇Xk = p∇Xk − τ∇Xk = pkI∇Xk − τkI∇Xk −T
′
kI∇Xk

= pkI∇αk − τkI∇αk −T
′
kI∇Xk, (2.65)

where TkI = −p′

kII + τkI . Similarly, the interfacial work can be rearranged to
read:

Wk = −Tu · ∇Xk = −Tûk · ∇Xk −−Tv
′
k · ∇Xk = Mk · ûk +W

′

k, (2.66)

where W
′

k = −Tv
′
k · ∇Xk.

2.2.2 Time and volume averages

In this Section, we briefly present the time and volume averages. For a more com-
plete presentation of these techniques for two-phase flows, the reader is referred
to [Ishii, 1975] and [Kolev, 2002], respectively. Notice that with a slight abuse
of notation we employ the same symbol for the different averages and the proper
operator to be considered will follow from the context, even though the averages
are intrinsically different one from the other. Given a function f (x, t), we define
the time mean value as

1

∆t

∫ t0+
∆t
2

t0−∆t
2

f (x, t) dt, (2.67)

where ∆t is the time interval used for sampling and t0 is a reference instant. For a
fixed point x0, the various properties are subjected to jump discontinuities during
the time interval. Hence, in order to obtain averaged relations, we first take a
fixed time interval ∆t large enough to smooth out local variations of properties
but small compared to the characteristic time of unsteadiness of the flow; this is
a key point in the averaging process, because in some cases the relevant duration
of the phenomenon is in the order of some milliseconds and the time interval
considered has to be really small. After choosing a particular reference point
and time (x0, t0), the time interval goes from

(
t0 − ∆t

2

)
to

(
t0 +

∆t
2

)
and there

are well definite times t1, t2, ..., tj, ... when the point x0 actually belongs to the
interface. The effect of the interface on the physical variables is limited only to
the neighbourhood of the surface and the domain of influence is given by a thin
layer of thickness δ. Hence, we can define the time intervals τj as

τj =
δ

2 |vnI,j|
, (2.68)
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2.2. Averaged formulation

where vnI,j denotes the normal component of the interfacial velocity at time tj.
The assumption that the interface is a surface reduces to

lim
δ→0

τj = 0 if |vnI,j| ≠ 0. (2.69)

At this point we can extract from the time interval ∆t a set of subintervals in
which the characteristic of interface dominates denoted by [∆t]S, namely

[∆t]S = {t : t ∈ [tj − τj, tj + τj] , j = 1, ..., n} . (2.70)

The remaining part is denoted by [∆t]T which in turn can be decomposed into
intervals of phase 1 and 2, namely

[∆t]T = [∆t]1 + [∆t]2 . (2.71)

By introducing the sampling interval [∆t] , t ∈
(
t0 − ∆t

2
, t0 +

∆t
2

)
we obtain there-

fore

[∆t] = [∆t]S +
2∑

k=1

[∆t]k . (2.72)

We consider the characteristic function (2.19) to distinguish between the two
phases. It is worth to notice that, in view of (2.72), Xk(x, t) = 0, k = 1, 2 if the
point x at time t is on the interface. A general function f(x, t) associated with the
two-phase flow is assumed to be continuously differentiable everywhere except in
regions of thickness delta covering the interface. We introduce a general function
of the k-th phase at the averaging point x0:

fk(x0, t) = Xk(x0, t)f(x0, t) =

®
f(x0, t), if t ∈ [∆t]k
0, otherwise.

(2.73)

We are now ready to introduce the time average values of functions associated
with two-phase flows. The time average of a generic function f is defined as

f (x0, t0) = lim
δ→0

1

∆t

∫
[∆t]T

f (x0, t) dt. (2.74)

Analogously the mean value of the generic function fk for the phase k is defined
as

fk (x0, t0) = lim
δ→0

1

∆t

∫
[∆t]T

fk (x0, t) dt. (2.75)

Thanks to the definition (2.73) of fk, we find f(x, t) = f(x, t)
∑
k

Xk(x, t) =∑
k

fk(x, t) if t ∈ [∆t]T ; hence we obtain the following important relation:

f (x0, t0) =
2∑

k=1

fk (x0, t0) . (2.76)

We now focus instead on the volume average technique. Consider a control
volume V fixed in time and space. First of all we introduce a general function of
the k-th phase at the averaging instant t0 as

fk(x, t0) = Xk(x, t0)f(x, t0) =

®
f(x, t0), if x ∈ Vk

0, otherwise.
(2.77)
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Chapter 2. Model equations for compressible two-phase flows

We define the volume average as

f =
1

|V |

∫
V

fdΩ, (2.78)

where |V | is the measure of the control volume. Afterwards, we define the local
volume average for the function fk (2.77) as

fk =
1

|V |

∫
Vk

fkdΩ, (2.79)

where Vk is the volume occupied by phase k. Moreover we define the intrinsic
phase average as

fk
k
=

1

|Vk|

∫
Vk

fkdΩ, (2.80)

where |Vk| is the measure of Vk. The following relations hold:

fk =
1

|V |

∫
Vk

fkdΩ =
1

|V |

∫
V

fkdΩ (2.81)

fk
k

=
1

|Vk|

∫
Vk

fkdΩ =
1

|Vk|

∫
V

fkdΩ. (2.82)

The two averages are therefore related by the relation

fk
k
= αkfk, (2.83)

where αk =
Vk

V
is the volume fraction. This term represents the fraction of volume

occupied by phase k with respect to the whole control volume. Notice that here
the term volume fraction has a different meaning with respect to (2.39) due to
the intrinsic differences between the averages. We refer to [Ishii, 1975, Drew and
Passman, 1999, Kolev, 2002] on how differential operators and averages commute
dealing with distributional derivatives in order to derive the averaged balance laws
from (2.20).

2.2.3 Mixture model

The mixture model (or drift-flux model) is an alternative formulation to study two-
phase flows [Ishii, 1975]. The basic assumption is to consider the fluid as a mixture
of the two phases. Hence, the mixture model is simpler, even though it requires
strong constitutive assumptions, because we lose some important characteristics
of two-phase flows, such as the interfacial variables. The mixture model equations
are obtained by summing up (2.59), (2.60) and (2.61). We start by considering
the continuity equation, which reads as follows:

∂ρmix

∂t
+∇· (ρmixumix) =

2∑
k=1

Γk. (2.84)

Here ρmix is the mixture density defined as

ρmix =
2∑

k=1

αkρk, (2.85)
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with ρk defined in (2.40), and the mixture velocity umix is equal to

umix =

2∑
k=1

αkρkûk

ρmix

, (2.86)

where ûk is defined in (2.41). Notice that umix corresponds to the velocity of the
center of mass of the mixture. Since the total mass is conserved, we obtain

2∑
k=1

Γk = 0. (2.87)

The mixture momentum balance is obtained by summing up (2.60) so as to obtain

∂ρmixumix

∂t
+∇· (ρmixumix ⊗ umix)−∇·

(
Tmix +TRe

mix

)
= ρmixg +mmix, (2.88)

where Tmix =
2∑

k=1

αkTk is the mixture stress tensor, TRe
mix =

2∑
k=1

αkT
Re
k is the

mixture Reynolds stress tensor and mmix =
2∑

k=1

(Mk + Γk,u) is the surface tension

source [Drew and Passman, 1999]. Finally, the mixture energy balance reads as
follows:

∂ρmixEmix

∂t
+∇· (ρmixEmixumix)−∇·

(
Tmixumix − qmix + qRe

mix + qT
mix

)
=

ρmixumix · g + emix, (2.89)

where qmix =
2∑

k=1

αkqk is the mixture heat flux, qRe
mix =

2∑
k=1

αkq
Re
k , qT

mix =

2∑
k=1

αkq
T
k , and emix =

2∑
k=1

(Λk +Wk + ΓE,k) is the interfacial energy source [Drew

and Passman, 1999].

2.3 Evolution equations for interfacial quantities

In this Section, we analyze the evolution equations for a set of geometrical quanti-
ties that characterize the interface in two-phase flows. We assume that the inter-
face Γ(t) between two phases is a d− 1−dimensional manifold in a d-dimensional
Euclidean space with d = 2, 3. Notice that we assume that the surface Γ(t) is
closed without contact lines. Two representations of an interface in space can
be considered. In the first description, the surface is seen as the zero-level of a
suitable function F (x, t). The second representation is given by

x = x(α, t), (2.90)

where α are the surface coordinates. The velocity of a point on the surface with
coordinates α is defined as

vI =
∂x

∂t
. (2.91)

From now on, for the sake of simplicity, we omit the explicit dependence on space
and time for the different geometric variables. Since F is identically zero for all
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Chapter 2. Model equations for compressible two-phase flows

the points located on the interface, its Lagrangian derivative at velocity vI is null,
which entails the following kinematic equation:

∂F

∂t
+ vI · ∇F = 0. (2.92)

Moreover, the unit vector normal to the surface is given by:

n = ± ∇F
|∇F |

. (2.93)

From (2.92) and (2.93), it follows immediately that two different interfacial veloc-
ity fields with the same normal component induce the same motion. Indeed, if we
substitute (2.93) into (2.92), we obtain

∂F

∂t
± (vI · n) |∇F | = 0, (2.94)

from which it follows that only vI ·n contributes to the evolution of the Lagrangian
derivative. As discussed in [Drew and Passman, 1999, Junqua-Moullet, 2003,
Morel, 2007], the characteristic function Xk follows the same dynamics (2.23) (see
also Appendix A.1).

As discussed in Section 2.1, source terms are proportional to the interfacial
area density. The estimate of the interfacial area is therefore a prerequisite for
the correct prediction of the phase exchange terms, especially in thermodynamic
non-equilibrium conditions or when chemical reactions occur. For this purpose,
we aim to add to the classical set of balance laws an evolution equation for this
quantity. The first step consists of deriving the local instantaneous equation for
the Dirac delta distribution δ(Γ) with support on the interface. For this reason
we take the gradient of the evolution equation of the characteristic function (2.23)
and we obtain the following relation:

∂∇Xk

∂t
+∇ (vI · ∇Xk) = 0. (2.95)

There are functions, like the outward unit normal vector or the interfacial velocity,
whose definitions are properly meaningful only for the points on the surface Γ, as
explained in [Nadim, 1996]. Therefore, for these quantities, we have to employ
derivatives that are defined intrinsically on the surface. The relations for time and
space derivatives for a generic scalar function f of this kind have been introduced
in [Estrada and Kanwal, 1980, Estrada and Kanwal, 1985]:

∂sf

∂t
=

∂f̃

∂t
+ (vI · n)

Ä
∇f̃ · n

ä
(2.96)

∂sf

∂xi
=

∂f̃

∂xi
− ni

Ä
∇f̃ · n

ä
, (2.97)

where f̃ is any smooth extension of f outside Γ. In particular for a first-order
tensor f we have

∇s· f = (I− n⊗ n) : ∇f̃ = ∇· f̃ −
îÄ
∇f̃
ä
n
ó
· n. (2.98)
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Here, I is the d × d identity tensor and we define the gradient of a first-order
tensor f̃ as the second-order tensor whose components areî

∇f̃
ó
ij
=
∂f̃i
∂xj

. (2.99)

Notice that, as explained in [Estrada and Kanwal, 1985], given f defined only on

Γ, we mean by fδ(Γ) the distribution f̃ δ(Γ) for which

∇f̃ · n
∣∣∣∣
Γ

= 0. (2.100)

Analogous considerations hold in the case fδ(Γ), for which one needsîÄ
∇f̃
ä
n
ó ∣∣∣∣

Γ

= 0. (2.101)

Thanks to (2.100) and (2.101), we avoid therefore any dependence on the value

of f̃ or f̃ and this allows to consider f and f̃ or f and f̃ without distinction. On
the other hand, if f or f are already defined and regular in the whole space-time
domain Ω× (0, Tf ), one can define fδ(Σ) or fδ(Σ), but this distribution will also

depend on the value of ∇f · n
∣∣∣∣
Γ

or of [(∇f)n]

∣∣∣∣
Γ

. The following relation holds:

∂
Ä
f̃ δ(Γ)

ä
∂□

=
∂f̃

∂□
δ(Γ) +

∂δ(Γ)

∂□
f̃ , (2.102)

which reduces to [Estrada and Kanwal, 1985]

∂
Ä
f̃ δ(Γ)

ä
∂□

=
∂sf

∂□
δ(Γ) +

∂δ(Γ)

∂□
f, (2.103)

for quantities f defined uniquely on Γ. We recall here for the sake of the conve-
nience the relation (2.25)

∇Xk = −nkδ(Γ). (2.104)

Hence, we consider now the outward unit normal as a function defined in the
whole space-time domain by means of (2.93). Applying (2.102) and (2.104) to
∂∇Xk

∂t
, one obtains

∂∇Xk

∂t
= −∂ [δ(Γ)nk]

∂t
= −∂δ(Γ)

∂t
nk −

∂nk

∂t
δ(Γ). (2.105)

If we substitute (2.105) into (2.95) and we compute the scalar product by nk we
obtain

−∂δ(Γ)
∂t

− ∂nk

∂t
δ(Γ)·nk−∇· [(vI · nk)nkδ(Γ)]+(vI · nk) (∇·nk) δ(Γ) = 0. (2.106)

Since nk ·nk = 1, one can verify that ∂nk

∂t
·nk = 0 and therefore (2.106) reduces to

∂δ(Γ)

∂t
+∇· [(vI · nk)nkδ(Γ)]− (vI · nk) (∇·nk) δ(Γ) = 0. (2.107)
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Chapter 2. Model equations for compressible two-phase flows

This is a well known relation and it is described in several contributions [Marle,
1982, Drew, 1990, Soria and de Lasa, 1991, Lhuillier et al., 2000, Junqua-Moullet,
2003, Morel, 2007, Essadki et al., 2019]. In (2.107), the term ∇·nk is directly
related to curvature effects, since the following relation holds [Drew and Passman,
1999, Morel, 2007]:

H =
1

2
∇·nk, (2.108)

where we recall here that H denotes the mean curvature. Equation (2.107) can
be rewritten in other forms. First of all since ∇·nk = ∇s·nk [Nadim, 1996], we
immediately obtain

∂δ(Γ)

∂t
+∇· [(vI · nk)nkδ(Γ)]− (vI · nk) (∇s·nk) δ(Γ) = 0. (2.109)

Moreover, (2.107) is equivalent to

∂δ(Γ)

∂t
+ (vI · nk)nk · ∇δ(Γ) = −δ(Γ)∇ (vI · nk) · nk, (2.110)

a relation present in [Junqua-Moullet, 2003]. Indeed, the following relation holds:

∇· [(vI · nk)nkδ(Γ)] = (vI · nk)nk · ∇δ(Γ) +∇· [(vI · nk)nk] δ(Γ) (2.111)

= (vI · nk)nk · ∇δ(Γ) + (vI · nk)∇·nk +∇ (vI · nk) · nk.

If we substitute (2.111) into (2.107), we recover (2.110). The relations (2.107),
(2.109) and (2.110) contain only the normal velocity (vI · nk)nk. To rewrite them
in order to make the complete interfacial velocity vI appear, we first define the
tangential velocity vIt as

vIt = vI − (vI · nk)nk = (I− nk ⊗ nk)vI . (2.112)

Adding and subtracting ∇· [vItδ(Γ)] to (2.107), we obtain the following relation:

∂δ(Γ)

∂t
+∇· [vIδ(Γ)]− (vI · nk) (∇·nk) δ(Γ)−∇· [vItδ(Γ)] = 0. (2.113)

It can be proven [Marle, 1982] that

∇· [vItδ(Γ)] = δ(Γ)∇s·vIt . (2.114)

If we now substitute (2.114) into (2.113), we get

∂δ(Γ)

∂t
+∇· [vIδ(Γ)]− (vI · nk) (∇·nk) δ(Γ)− δ(Γ)∇s·vIt = 0 (2.115)

It can be also shown [Morel, 2007] that

∇s·vI = ∇s·vIt + (vI · nk)∇·nk. (2.116)

Exploiting this relation in (2.115) leads to the following equation [Junqua-Moullet,
2003, Lhuillier, 2003, Morel, 2007]:

∂δ(Γ)

∂t
+∇· [vIδ(Γ)] = δ(Γ)∇s·vI . (2.117)
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We can rewrite the term ∇· (vIδ(Γ)) present in (2.117) as

∇· (vIδ(Γ)) = vI · ∇δ(Γ) + δ(Γ)∇·vI (2.118)

and, noticing that ∇s·vI = ∇·vI − [(∇vI)nk] · nk, we get

∂δ(Γ)

∂t
+ vI · ∇δ(Γ) = −δ(Γ) [(∇vI)nk] · nk (2.119)

or, equivalently,

∂δ(Γ)

∂t
+ vI · ∇δ(Γ) = −δ(Γ)nk ⊗ nk : ∇vI , (2.120)

which has been derived in [Lhuillier, 2003]. As discussed in [Junqua-Moullet,
2003], relation (2.120) is equivalent to

∂δ(Γ)

∂t
+ (vI · nk)nk · ∇δ(Γ) = −δ(Γ)∇ (vI · nk) · nk. (2.121)

One can also notice that

[(∇vI)nk] · nk = [∇· (vI ⊗ nk)] · nk − (∇·nk) (vI · nk) . (2.122)

Hence, we can rewrite (2.119) as follows:

∂δ(Γ)

∂t
+ vI · ∇δ(Γ) = δ(Γ) (∇·nk) (vI · nk)− δ(Γ) [∇· (vI ⊗ nk)] · nk. (2.123)

Relation (2.123) is particularly interesting because it provides an evolution equa-
tion for δ(Γ) in which the complete interfacial velocity is the advecting field and
a quantity related to the curvature, i.e. ∇·nk, appears as a forcing term. To the
best of our knowledge, this novel formulation is not present in the literature we
have reviewed and is presented here for the first time. Analogously, notice that

[(∇vI)nk] · nk = ∇ (vI · nk) · nk −∇· (nk ⊗ nk) · vI + (∇·nk) (vI · nk) , (2.124)

so as to obtain

∂δ(Γ)

∂t
+ vI · ∇δ(Γ) =

−δ(Γ) (∇·nk) (vI · nk)− δ(Γ)∇ (vI · nk) · nk + δ(Γ) [∇· (nk ⊗ nk)] · vI .(2.125)

It is worthwhile to recall once more that, in all the previous relations, we have
considered the outward unit normal vector and the interfacial velocity as variables
already defined in the whole space-time domain Ω × [0, Tf ]. Relations (2.107),
(2.109), (2.110), (2.113), (2.115), (2.117), (2.120), (2.121), (2.123) and (2.125)
are valid also by considering the outward unit normal vector and the interfacial
velocity as functions uniquely defined on the interface Γ and then analyzing their
extension, that, with a slight abuse of notation, we still denote by nk and vI .
However, in this situation, relation (2.101) allows to consider much simpler forms
for the evolution equation of the interfacial area density. As reported in [Estrada
and Kanwal, 1980, Estrada and Kanwal, 1985], the following relation holds:

∇δ(Γ) = [∇δ(Γ) · nk] · nk. (2.126)
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Moreover, thanks to (2.103), we can rewrite the term∇· [vIδ(Γ)] present in (2.117)
as

∇· [vIδ(Γ)] = vI · ∇δ(Γ) + δ(Γ)∇s·vI (2.127)

so as to obtain from (2.117)

∂δ(Γ)

∂t
+ vI · ∇δ(Γ) = 0 (2.128)

or, substituting (2.126) in (2.128),

∂δ(Γ)

∂t
+ (vI · nk)nk · ∇δ(Γ) = 0, (2.129)

a relation present in [Delhaye, 2001]. Equation (2.129) is clearly different from
(2.110). However, under the assumption that the fields involved depend only on
the surface coordinates, the following relation holds [Drew, 1990, Junqua-Moullet,
2003]:

δ(Γ)∇ (vI · nk) · nk = 0 (2.130)

and, therefore, (2.110) reduces to (2.129). It is important to notice that relations
(2.128) and (2.129) are rigorously valid and are equivalent to (2.107), (2.109),
(2.110), (2.113), (2.115), (2.117), (2.120), (2.121), (2.123) and (2.125), if one
analyzes variables defined uniquely on the surface and then considers an extension
satisfying the property (2.101). As pointed out at the beginning of the Section,
all the previous relations are only valid under the assumption that the surface Γ is
closed without contact lines. In case this hypothesis is not valid, we need to add
an extra term which takes into account the presence of the contact lines [Marle,
1982, Junqua-Moullet, 2003]:

∂δ(Γ)

∂t
+∇· [(vI · nk)nkδ(Γ)] = (vI · nk) (∇·nk) δ(Γ)− δ(∆)v∆ · tk. (2.131)

Here, δ(∆) is the Dirac delta distribution with support on the contact lines, v∆

represents the velocity field of the contact lines and tk is the unit vector tangent to
the interface and directed in outward normal direction with respect to the contact
lines. In the present work, we focus mainly on the interface area density. However,
evolution equations for higher order statistics such as curvatures or unit normal
vector can be considered. A brief overview about these supplementary relations
is reported in Appendix A.2 and we also refer to [Drew and Passman, 1999] for a
more exhaustive discussion.

Many physical situations are characterized by interfaces with a non trivial
shape. Thus, a tracking of the interface is not feasible in practice and one needs
to focus on relevant geometric features as main indicators of the topology of the
interface. We present now the application of the ensemble average procedure
outlined in Section 2.2 to the evolution equations of Xk and δ(Γ). We start from
(2.23) and we set αk = Xk. The ensemble average of (2.23) leads us to the
following relation:

∂αk

∂t
= νkΣ, (2.132)

where νk =
(vI ·nk)δ(Γ)

Σ
is the average scalar normal interfacial velocity and we recall

that Σ = δ(Γ) is the averaged interfacial area density. The averaging process
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applied to (2.109) yields [Drew and Passman, 1999]

∂Σ

∂t
+∇· (vI,nkΣ) = ΣνkHk + ΣSΣ. (2.133)

Here vI,nk = (vI ·nk)nkδ(Γ)
Σ

is the averaged interfacial velocity projected along the

normal direction and Hk = Hkδ(Γ)
Σ

is the average mean curvature, with Hk =
1
2
∇·nk. Moreover, SΣ is the interfacial source term per unit area defined as(
Hk −Hk

)
vI · nkδ(Γ). As is usual for averaging processes, there is a closure

problem for these equations, in particular for the term SΣ.

2.4 Baer-Nunziato type models for two-phase flows

The full non-equilibrium two-phase Baer-Nunziato (BN) model has been proposed
in [Baer and Nunziato, 1986]. It was meant originally to represent a model for
detonation waves in granular explosives, but it has been widely applied also in
other contexts. The model assumes that each phase is compressible and evolves
with its own pressure, temperature and velocity, together with an evolution equa-
tion for the volume fraction of one of the two phases. Considering each phase
as compressible can be seen as an unnecessary assumption in most of two-phase
flow problems. However, there are cases in which the pressure range is such that
the compressibility of both materials has to be taken into account. Moreover, it
is always possible to consider materials as compressible as a general assumption
[Saurel and Abgrall, 1999]. Starting from the original one, a wide set of BN-
type models have been proposed, see among many others [Saurel and Abgrall,
1999, Romenski et al., 2007, Müller et al., 2016], with different modelling and
closure assumptions. Reduced models have been derived by means of asymptotic
expansions of the BN model [Pelanti, 2022]. We mention, among them, the so-
called Kapila model [Kapila et al., 2001], which assumes velocity and pressure
equilibrium, and the four equations model which considers mechanical and ther-
mal equilibrium [Lund and Aursand, 2012, Saurel et al., 2016, Bacigaluppi et al.,
2022, Demou et al., 2022], which we will briefly review in the following Section.
Suitable source terms describe the coupling between the two phases. For the sake
of simplicity, we do not consider dissipative effects in our description and we focus
first on situations where no phase exchange occurs and the following system of
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partial differential equations is therefore considered:

∂α1

∂t
+ vI · ∇α1 = P̂

∂ (α1ρ1)

∂t
+∇· (α1ρ1u1) = 0

∂ (α1ρ1u1)

∂t
+∇· (α1ρ1u1 ⊗ u1) +∇ (α1p1)− pI∇α1 = −Û

∂ (α1ρ1E1)

∂t
+∇· [α1 (ρ1E1 + p1)u1]− pIvI · ∇α1 = −pIP̂ − vI · Û

α2 = 1− α1 (2.134)

∂ (α2ρ2)

∂t
+∇· (α2ρ2u2) = 0

∂ (α2ρ2u2)

∂t
+∇· (α2ρ2u2 ⊗ u2) +∇ (α2p2) + pI∇α1 = Û

∂ (α2ρ2E2)

∂t
+∇· [α2 (ρ2E2 + p2)u2] + pIvI · ∇α1 = pIP̂ + vI · Û,

for x ∈ Ω, t ∈ (0, Tf ], supplied with suitable initial and boundary conditions.
Here Tf is the final time, αk, ρk,uk, pk, Ek are the volume fraction, the density,
the velocity, the pressure and the total energy of phase k = 1, 2, respectively.
Moreover, vI is the interfacial velocity, whereas pI denotes the interfacial pressure,
which have both to be modelled. For the sake of simplicity, as in most standard
works of two-phase flows, see e.g. [Saurel and Abgrall, 1999, Re and Abgrall,
2022], we consider a unique value for the interface variables without distinction
for the specific subdomain, as done instead in (2.63). We assume the following
definitions:

vI =
α1ρ1u1 + α2ρ2u2

α1ρ1 + α2ρ2
= Y1u1 + Y2u2 pI = α1p1 + α2p2, (2.135)

where
Yk =

αkρk
α1ρ1 + α2ρ2

(2.136)

is the mass fraction. Notice that the choice of the interface variables is not unique.
As reported in [Saurel and Abgrall, 1999], most authors consider the liquid phase
as incompressible and, therefore, they consider uniquely the gas pressure. How-
ever, this choice leads to ill-posed problems as reported in [Saurel and Abgrall,
1999]. Other authors assume pI = 0 [Powers et al., 1990]. This choice yields a
hyperbolic system but it not physically justifiable. The velocity of the interface is
often taken equal to the velocity of the incompressible (or less compressible) phase
[Baer and Nunziato, 1986, Saurel, 1996]. Other authors [Delhaye and Bouré, 1982]
have considered the velocity of the center volume, i.e. vI = α1u1+α2u2. The esti-
mate in (2.135) is the velocity of the center of mass and corresponds to the velocity
to which the non-equilibrium system will relax [Saurel and Abgrall, 1999, Re and

Abgrall, 2022]. The quantities P̂ and Û represent mechanical relaxation terms
and their expression reads as follows:

P̂ = µ̂ (p1 − p2) (2.137)

Û = λ̂ (u1 − u2) , (2.138)
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2.4. Baer-Nunziato type models for two-phase flows

with µ̂ and λ̂ denoting suitable relaxation parameters. The total energy can be
rewritten as ρkEk = ρkek + ρkkk, where ek is the internal energy and kk =

1
2
∥uk∥2

is the kinetic energy. We also introduce the specific enthalpy hk = ek +
pk
ρk

and

remark that one can also write

(ρkEk + pk)uk =

Å
ek + kk +

pk
ρk

ã
ρkuk = (hk + kk) ρkuk. (2.139)

We now proceed to derive a non dimensional formulation of equations (2.134).
Hence, we introduce reference scaling values L, T ,Uk for the length, time and
velocity in phase k, respectively, as well as reference values Pk,Rk,Θk, Ek, Ik,Hk

for pressure, density, temperature, total energy, internal energy and enthalpy in
phase m, respectively. We assume for the sake of simplicity unit Strouhal number
Stk ≈ L

UkT
≈ 1 [Klein et al., 2001, Munz et al., 2003, Orlando et al., 2022a] for

both phases, from which we deduce U2

U1
= O (1), and we also assume that

Hk ≈ Ik +
Pk

Rk

Ek ≈ Ik + U2
k . (2.140)

Thanks to (2.135), we obtain

vI =
α1ρ1u1 + α2ρ2u2ρrel
α1ρ1 + α2ρ2ρrel

(2.141)

pI = α1p1 + α2p2prel, (2.142)

with ρrel =
R2

R1
and prel =

P2

P1
. Notice that, with a slight abuse of notation, we keep

the same notation to denote the non-dimensional variables. The model equations
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Chapter 2. Model equations for compressible two-phase flows

can therefore be written in non-dimensional form as follows:

∂α1

∂t
+ vI · ∇α1 = µ̂

L
U1

P1 (p1 − p2prel)

∂ (α1ρ1)

∂t
+∇· (α1ρ1u1) = 0

∂ (α1ρ1u1)

∂t
+∇· (α1ρ1u1 ⊗ u1) +

P1

R1U2
1

∇ (α1p1)−
P1

R1U2
1

pI∇α1 = −λ̂ L
U1R1

(u1 − u2)

∂ (α1ρ1E1)

∂t
+

∇·
ñ
α1ρ1u1

Ç
I1 +

P1

R1

E1
h1 +

U2
1

E
k21

åô
− P1

R1E1
pIvI · ∇α1 =

−µ̂ L
U1

P1
P1

R1E1
pI (p1 − p2prel)− λ̂

L
U1R1

U2
1

E1
vI · (u1 − u2)

α2 = 1− α1 (2.143)

∂ (α2ρ2)

∂t
+∇· (α2ρ2u2) = 0

∂ (α2ρ2u2)

∂t
+∇· (α2ρ2u2 ⊗ u2) +

P2

R2U2
2

∇ (α2p2) +
P2

R2U2
2

1

prel
pI∇α1 = λ̂

L
U1R2

(u1 − u2)

∂ (α2ρ2E2)

∂t
+

∇·
ñ
α2ρ2u2

Ç
I2 +

P2

R2

E2
h2 +

U2
2

E
k22

åô
+

P2

R2E2
1

prel
pIvI · ∇α1 =

µ̂
L
U1

P1
P1

R2E2
pI (p1 − p2prel) + λ̂

L
U1R2

U2
2

E2
vI · (u1 − u2) .

Introduce now the following definitions for Mach numbers

M2
k =

RkU2
k

Pk

. (2.144)

The previous definition does not coincide with the classical Mach number, but it
has already been used in previous works in the literature, see e.g. [Munz et al.,
2003, Orlando et al., 2022a]. In view of (2.144) and of the hypothesis U2

U1
= O(1),

we obtain

prel = ρrel
M2

1

M2
2

. (2.145)

We also assume that

Ik ≈
Pk

Rk

. (2.146)
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Thanks to these definitions, at low and moderate Mach numbers, we obtain

U2
k

Ek
=

1
Ik
U2
k
+ 1

=
1

1
M2

k
+ 1

= O(M2
k )

Ik +
Pk

Rk

Ek
=

Ik
U2
k
+ 1

M2
k

Ik
U2
k
+ 1

= O(1) (2.147)

Ik

Ek
= 1− U2

k

Ek
=

1

1 +M2
k

= O(1).

(2.148)

As a result, we can rewrite the following non-dimensional equations:

∂α1

∂t
+ vI · ∇α1 = µ̃

Å
p1 − p2ρrel

M2
1

M2
2

ã
∂ (α1ρ1)

∂t
+∇· (α1ρ1u1) = 0

∂ (α1ρ1u1)

∂t
+∇· (α1ρ1u1 ⊗ u1) +

1

M2
1

∇ (α1p1)−
1

M2
1

pI∇α1 = −λ̃ (u1 − u2)

∂ (α1ρ1E1)

∂t
+

∇·
[
α1ρ1u1

(
h1 +M2

1k1
)]

− pIvI · ∇α1 = −µ̃pI
Å
p1 − p2ρrel

M2
1

M2
2

ã
− λ̃M2

1vI · (u1 − u2)

α2 = 1− α1 (2.149)

∂ (α2ρ2)

∂t
+∇· (α2ρ2u2) = 0

∂ (α2ρ2u2)

∂t
+∇· (α2ρ2u2 ⊗ u2) +

1

M2
2

∇ (α2p2) +
1

M2
2

1

ρrel
pI∇α1 =

λ̃

ρrel
(u1 − u2)

∂ (α2ρ2E2)

∂t
+

∇·
[
α2ρ2u2

(
h2 +M2

2k2
)]

+
M2

2

M2
1

1

ρrel
pIvI · ∇α1 =

µ̃

ρrel

M2
2

M2
1

pI

Å
p1 − p2ρrel

M2
1

M2
2

ã
+

λ̃

ρrel
M2

2vI · (u1 − u2) ,

with µ̃ = µ̂ L
U1
P1 and λ̃ = λ̂ L

U1R1
. If phase 1 is liquid and phase 2 is gaseous,

then ρrel ≪ 1 and M1

M2
≪ 1. In case phase exchange is considered, the system is
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Chapter 2. Model equations for compressible two-phase flows

modified as follows [De Lorenzo et al., 2019, Han et al., 2017]:

∂α1

∂t
+ vI · ∇α1 = µ̃

Å
p1 − p2ρrel

M2
1

M2
2

ã
− η̃ (g1 − g2)

Σ

ρ1

− α1θ̃ (T1 − T2) Σ

∂ (α1ρ1)

∂t
+∇· (α1ρ1u1) = −η̃ (g1 − g2) Σ

∂ (α1ρ1u1)

∂t
+∇· (α1ρ1u1 ⊗ u1) +

1

M2
1

∇ (α1p1)−
1

M2
1

pI∇α1 = −λ̃ (u1 − u2)

− η̃ (g1 − g2) ΣvI

∂ (α1ρ1E1)

∂t
+

∇·
[
α1ρ1u1

(
h1 +M2

1k1
)]

− pIvI · ∇α1 = −µ̃pI
Å
p1 − p2ρrel

M2
1

M2
2

ã
− λ̃M2

1vI · (u1 − u2)

− bgη̃ (g1 − g2) Σ

− θ̃ (T1 − T2) Σ

α2 = 1− α1 (2.150)

∂ (α2ρ2)

∂t
+∇· (α2ρ2u2) = η̃ (g1 − g2) Σ

+ η̃ (g1 − g2) ΣvI

∂ (α2ρ2u2)

∂t
+∇· (α2ρ2u2 ⊗ u2) +

1

M2
2

∇ (α2p2) +
1

M2
2

1

ρrel
pI∇α1 =

λ̃

ρrel
(u1 − u2)

∂ (α2ρ2E2)

∂t
+

∇·
[
α2ρ2u2

(
h2 +M2

2k2
)]

+
M2

2

M2
1

1

ρrel
pIvI · ∇α1 =

µ̃

ρrel

M2
2

M2
1

pI

Å
p1 − p2ρrel

M2
1

M2
2

ã
+

λ̃

ρrel
M2

2vI · (u1 − u2)

+ bgη̃ (g1 − g2) Σ

+ θ̃ (T1 − T2) Σ,

where gk represents the chemical potential, θ̃ and η̃ are the relaxation parameters
for temperature and chemical relaxation and Σ is the interface area density, for
which possible evolution equations will be presented in Section 2.5.

2.4.1 Four-equation relaxed two-phase system

Considering non-equilibrium conditions for velocity, pressure and temperature is
a modelling assumption that can be relaxed in several physical processes different
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from those for which the original Baer-Nunziato model has been proposed. In
particular, this is valid for fluid dynamics phenomena with longer characteristic
times with respect to those of the relaxation terms in (2.149). Hence, a hierarchy
of relaxed models has been derived in the literature, see e.g. [Pelanti, 2022].
We focus here on a four equation model which describes a two-phase flow in
kinetic, mechanic and thermal equilibrium, i.e. u1 = u2 = u, p1 = p2 = p and
T1 = T2 = T , respectively. This model has been employed, among many others,
in [Bacigaluppi et al., 2022, Demou et al., 2022, Saurel et al., 2016] and represents
the minimal set of equations for describing phase transition. The model can be
obtained from the Baer-Nunziato system in the limit of velocity, pressure and
temperature equilibrium, namely considering µ̃ → ∞, λ̃ → ∞ and θ̃ → ∞. We
present first the dimensional set of equations which reads as follows:

∂α1ρ1
∂t

+∇· (α1ρ1u) = −Γ1

∂α2ρ2
∂t

+∇· (α2ρ2u) = Γ1

∂ρu

∂t
+∇· (ρu⊗ u) +∇p = 0 (2.151)

∂ρE

∂t
+∇· [(ρE + p)u] = 0,

where Γ1 is the mass transfer term. The system (2.151) is composed by two
continuity equations for the two phases and by a single momentum and energy
balance equation, analogous to the mixture model relations presented in Section
2.2.3. Viscous stresses, heat conduction, and gravity effects can be added, as done
for instance in [Demou et al., 2022, Saurel et al., 2016], so as to obtain

∂α1ρ1
∂t

+∇· (α1ρ1u) = −Γ1

∂α2ρ2
∂t

+∇· (α2ρ2u) = Γ1

∂ρu

∂t
+∇· (ρu⊗ u) +∇p = ∇·

ï
µ
(
∇u+∇uT

)
− 2

3
µ (∇ · u) I

ò
− ρgk (2.152)

∂ρE

∂t
+∇· [(ρE + p)u] = ∇·

ï
µ
(
∇u+∇uT

)
u− 2

3
µ (∇ · u)u

ò
+ ∇· (κ∇T )− ρgk · u

where µ is the dynamic viscosity, κ is the thermal conductivity, g is the modulus
of the acceleration of gravity. The thermodynamic closure for (2.152) reads as
follows [Saurel et al., 2016]:

T1 = T2 = T

p1 = p2 = p (2.153)

e = Y1e1 + Y2e2

α1 + α2 = 1.

The solution of this algebraic system depends on the specific choice of the equation
of state (EOS), as we will see in Section 2.6.
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Chapter 2. Model equations for compressible two-phase flows

The dimensional analysis for (2.152) can be performed in analogy to what we
did for the complete Baer-Nunziato model (see also [Orlando et al., 2022a]). We
consider as reference density the one of the gaseous phase, i.e. R2, so that the
Mach number is defined by

M2 =
R2U2

P
. (2.154)

Moreover, we assume constant values for the dynamic viscosity and the thermal
conductivity of the two phases and we consider as reference values µ2 and κ2. The
resulting system of equations reads therefore as follows:

∂α1ρ1
∂t

+∇· (α1ρ1u) = −Γ1

∂α2ρ2
∂t

+∇· (α2ρ2u) = Γ1

∂ρu

∂t
+∇· (ρu⊗ u) +

1

M2
∇p =

1

Re
∇·
ï
µ
(
∇u+∇uT

)
− 2

3
µ (∇ · u) I

ò
− ρ

Fr2
k (2.155)

∂ρE

∂t
+∇·

[(
h+ kM2

)
ρu

]
=

M2

Re
∇·
ï
µ
(
∇u+∇uT

)
u− 2

3
µ (∇ · u)u

ò
+

1

PrRe
∇· (κ∇T )− ρ

M2

Fr2
k · u,

where the Reynolds, Prandtl and Froude numbers are defined as

Re =
R2UL
µ2

κ2 =
cp2µ2

Pr
Fr2 =

U2

gL
(2.156)

with cp denoting the specific heat at constant pressure. As done before, we employ
with a slight abuse of notation the same symbols for the non-dimensional variables
and, therefore, the following relations hold:

µ =
µ1

µ2

α1 + α2 (2.157)

κ =
κ1
κ2
α1 + α2. (2.158)

2.5 Variational approach for two-phase system

In this Section, we employ the Stationary Action Principle (SAP) to derive the
structure of a two-phase model with an evolution equation for the interface area
density, following the contributions [Cordesse et al., 2019, Drui et al., 2019]. The
SAP only provides the conservative part for our model and we shall examine
suitable dissipative phenomena in the following. The relation (2.133) contains
terms for which non trivial closure relations would be needed. Hence, evolution
equations for the interface area density are typically derived by means of empirical
approaches and considerations, see e.g. [Lhuillier, 2004]. In this Section, we
analyze how to recover this kind of relations in an original way, bringing them
back into a variational framework. We express the interface area density Σ as the
sum of two contributions

Σ = Σ0 + Σ̃, (2.159)
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where Σ0 is the reference interface area density that obeys the following relation

∂Σ0

∂t
+∇· (Σ0u) = 0 (2.160)

and Σ̃ represents the perturbation with respect to the reference value. Two phase
flows which involve physical phenomena such as break-up or atomization can be
described using two scales: a large scale that describes the bulk fluid and a small
scale where droplets or bubbles of different size are present forming a polydisperse
spray [Cordesse et al., 2019, Drui et al., 2019, Cordesse et al., 2020]. In [Drui et al.,
2019], the authors derived by means of SAP a model which takes into account
volume fraction variations due to small scales variables, whereas we consider here
variations due to large scale quantities. We recall now for the convenience of the
reader the main steps in the modelling process. Firstly, in order to the derive a
system of equations, we need to define a Lagrangian energy L for the system. In
the present work, we consider a variation of the Lagrangian functional proposed
in [Drui et al., 2019]

L (ρ, Y,u, αL, DtαL) =
1

2
ρu · u− ρe (ρ, Y, αL) +

1

2
ν (αL, ρ, Y ) (DtαL)

2 , (2.161)

with αL denoting the large-scale volume fraction and Dt representing the material
derivative. Notice that we consider immiscible fluids, so that for the volume
fractions and the mass fractions the relations αL1 +αL2 = 1 and Y1 + Y2 = 1. For
convenience in the notation, we denote αL,1 by αL and Y1 by Y . Moreover, ρ is the
mixture density defined as αLρ1+(1− αL) ρ2 and e is the mixture internal energy.
The term 1

2
ν (DtαL)

2 was employed in [Drui et al., 2019] to model small-scale
kinematics and is now part of the kinetic energy to model large-scale oscillations.
The coefficient ν has the dimensions of [kg][m]−1 and is related to inertial effects.
Moreover, unlike [Drui et al., 2019], a dependence on the density ρ and on the
mass fraction Y is considered for ν. The following main assumptions are made:

1. there is no mass transfer between the two phases;

2. there is kinetic equilibrium between the two phases, namely the velocities of
the two phases are equal;

3. barotropic equations of state (EOS), i.e. pressure dependent only on the
density, are used for both phases;

4. interfacial forces are neglected.

We also postulate additional constraints for the two-fluid system. In view of our
hypotheses, the total mass and the mass fractions of each phase are conserved:

∂ρY

∂t
+∇· (ρY u) = 0 (2.162)

∂ρ

∂t
+∇· (ρu) = 0. (2.163)

Notice that, thanks to (2.163), (2.162) is equivalent to

∂Y

∂t
+ u · ∇Y = DtY = 0. (2.164)
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Chapter 2. Model equations for compressible two-phase flows

Finally, as usual, we define the Hamiltonian action by setting

A(ζ) =

∫
Ω

L (ρ, Y,u, αL, DtαL) dxdt (2.165)

and we compute the infinitesimal variation of the action

δA =

∫
Ω

ïÅ
∂L
∂ρ

ã
δρ+

Å
∂L
∂Y

ã
δY +

∂L
∂u

· δu+
∂L
∂αL

δαL +
∂L

∂DtαL

δDtαL

ò
.

(2.166)
We postulate, as usual, that the perturbation of all quantities vanish at the bound-
ary of the domain and at both initial and final time. After some manipulations
(see Appendix A.4), we obtain the following system

∂ρ

∂t
+∇· (ρu) = 0

DtY = 0

∂ (ρu)

∂t
+∇· (ρu⊗ u) +∇P = 0 (2.167)

∂

∂t
[ν (DtαL)] +∇· [ν (DtαL)u]−

1

2
(DtαL)

2 ∂ν

∂αL

+ ρ
∂e

∂αL

= 0,

with P = p + 1
2

Ä
ν − ρ∂ν

∂ρ

ä
(DtαL)

2 and p = ρ2 ∂e
∂ρ
. We define now the variable Σ̃

which, as aforementioned, represents the “fluctuating” part of the interfacial area
density:

DtαL = ξnνmΣ̃, (2.168)

with m being an arbitrary exponent to be fixed and ξ denoting a suitable physical
constant whose meaning will be specified later on. This definition is inspired by
the relation (2.132) obtained with the ensemble averaging approach. The system
(2.167) can be therefore rewritten as

∂ρ

∂t
+∇· (ρu) = 0

DtY = 0

∂ (ρu)

∂t
+∇· (ρu⊗ u) +∇P = 0 (2.169)

∂Σ0

∂t
+∇· (Σ0u) = 0

DtαL = ξnνmΣ̃

∂Σ̃

∂t
+∇·(Σ̃u) = −ξnνm

Å
m+

1

2

ã ∂ν
∂αL

ν
Σ̃2 + (m+ 1)ρ

∂ν
∂ρ

ν
(∇·u)Σ̃− ρ

νm+1ξn
∂e

∂αL

.

Notice that Σ̃ has no a priori definite sign.

2.5.1 Dissipation and second principle of thermodynamics

In this Section, we consider the introduction of dissipative terms in the two-phase
system in a way that is compatible with the second principle of thermodynam-
ics. In the barotropic case, it is customary to consider as mathematical entropy
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[Godlewski and Raviart, 1996, Drui et al., 2019]:

ρη
Ä
ρ, Y,u, αL, Σ̃

ä
=

1

2
ρu · u+

1

2
ν2m+1ξ2nΣ̃2 + ρe. (2.170)

We seek now an entropy flux function G such that

∂ (ρη)

∂t
+∇· (ρηu+G) ≤ 0, (2.171)

or, equivalently,
ρDtη +∇·G ≤ 0. (2.172)

We consider the following inequality, whose derivation is reported in detail in
Appendix A.4 ñ

DtΣ̃ + (∇·u) Σ̃− (m+ 1) ρ

∂ν
∂ρ

ν
(∇·u) Σ̃+

ρ

ξnνm+1

∂e

∂αL

+ ξnνm
Å
m+

1

2

ã ∂ν
∂αL

ν
Σ̃2

ô
Σ̃ ≤ 0. (2.173)

A simple way to satisfy the inequality (2.173) is considering an equation for which

we take at right-hand side − ϵ(αL,Y,ρ)
ν

Σ̃, with ϵ > 0 being a suitable function related
to dissipation effects, so as to obtain

DtΣ̃ + (∇·u) Σ̃− (m+ 1) ρ

∂ν
∂ρ

ν
(∇·u) Σ̃

+
ρ

ξnνm+1

∂e

∂αL

+ ξnνm
Å
m+

1

2

ã ∂ν
∂αL

ν
Σ̃2 = −ϵ (αL, Y, ρ)

ν
Σ̃. (2.174)

Hence, the final system reads:

∂ρ

∂t
+∇· (ρu) = 0

DtY = 0

∂ (ρu)

∂t
+∇· (ρu⊗ u) +∇P = 0 (2.175)

∂Σ0

∂t
+∇· (Σ0u) = 0

DtαL = ξnνmΣ̃

∂Σ̃

∂t
+∇·(Σ̃u) = −ξnνm

Å
m+

1

2

ã ∂ν
∂αL

ν
Σ̃2 + (m+ 1)ρ

∂ν
∂ρ

ν
(∇·u)Σ̃− ρ

νm+1ξn
∂e

∂αL

− ϵ

ν
Σ̃.

2.5.2 Analysis of eigenvalues and eigenvectors

In this Section, we study the hyperbolicity of system (2.175). This property en-
sures that all wave speeds are finite and that the system may be locally decoupled.
Moreover, from a mathematical point of view, this property is helpful in the con-
struction of Riemann solvers. This result is an original contribution of the thesis.
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Chapter 2. Model equations for compressible two-phase flows

The hyperbolicity of system (2.175) can be studied in a one-dimensional setting
by considering the following quasi-linear form:

∂V

∂t
+A (V)

∂V

∂x
= 0, (2.176)

with

V =


αL

ρ1
ρ2
Σ0

u

Σ̃

 , (2.177)

and the matrix A (V) equal to



u 0 0 0 0 0
0 u 0 0 ρ1 0
0 0 u 0 ρ2 0
0 0 0 u Σ0 0

p1−p2
ρ

+ ãu,αL

αLc
2
1

ρ
+ ãu,ρ1

(1−αL)c
2
2

ρ
+ ãu,ρ2 0 u ãu,Σ̃

0 0 0 0 Σ̃− Σ̃ (m+ 1) νρ
ρ
ν

u

 . (2.178)

Here we set

ãu,α = Σ̃ν,m

ï
ναL

m̃ν − ν

Å
νρ (ρ1 − ρ2) + ρ

∂νρ
∂αL

ãò
(2.179)

ãu,ρ1 = Σ̃ν,m

ï
−2mνρ

∂ν

∂ρ1
+ ν

Å
(1 + 2m)

∂ν

∂ρ1
− νραL − ∂νρ

∂ρ1
ρ)

ãò
(2.180)

ãu,ρ2 = Σ̃ν,m

ï
−2mνρ

∂ν

∂ρ2
ρ+ ν

Å
(1 + 2m)

∂ν

∂ρ2
− νρ (1− αL)−

∂νρ
∂ρ2

ρ

ãò
, (2.181)

with νρ = ∂ν
∂ρ
, ναL

= ∂ν
∂αL

, Σ̃ν,m = 1
2
ν2m−1ξ2mΣ̃2 and m̃ν = (2m+ 1) ν − 2mρνρ.

Notice that, for the sake of simplicity in the analysis, we consider as primary
variables ρ1 and ρ2 instead of Y and ρ. The densities ρ1 and ρ2 satisfy the
following conservation laws:

∂ [αLρ1]

∂t
+∇· [αLρ1u] = 0 (2.182)

∂ [(1− αL) ρ2]

∂t
+∇· [(1− αL) ρ2u] = 0. (2.183)

The equivalence between the system (2.176) and the system (2.175) without source
terms is established taking into account that, since we are considering barotropic
equations of state, ∂pk

∂ρk
= c2k, with ck denoting the speed of sound of phase k = 1, 2,

and that ∂e
∂αL

= p2−p1
ρ

. Indeed the mixture internal energy is defined by the

following relation:

e (ρ, Y, αL) = Y e1 (ρ1) + (1− Y ) e2(ρ2) (2.184)

= Y e1

Å
ρY

α

ã
+ (1− Y ) e2

Å
ρ (1− Y )

1− α

ã
,
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with ek, k = 1, 2, denoting the internal energy of phase k. Hence, since ∂ρ1
∂α

=

− 1
α2ρY and ∂ρ2

∂α
= ρ(1−Y )

(1−α)2
, we obtain

∂e

∂αL

= −Y
2

α2
ρ
∂e1
∂ρ1

− (1− Y )2

(1− α)2
ρ
∂e2
∂ρ2

= − ρ

ρ21

∂e1
∂ρ1

− ρ

ρ22

∂e2
∂ρ2

. (2.185)

Since ∂ek
∂ρk

= pk
ρ2k

[Vidal, 2001, Sandler, 2017], we get

∂e

∂αL

=
p2 − p1
ρ

. (2.186)

The eigenvalues of A are {u, u, u, u, u+ cΣ̃, u− cΣ̃}, where:

c2
Σ̃

= c2F + cν (2.187)

c2F =
αLρ1c

2
1 + (1− αL) ρ2c

2
2

ρ
(2.188)

cν = Σ̃ν,m

ñ
2 (m+ 1) (νρ)

2 ρ+

∂ν
∂ρ1
ρ1m̃ν

ρ
+

ν
Ä
(2m+ 1) ∂ν

∂ρ2
ρ2 + 2ν − ρ

Ä
∂νρ
∂ρ1
ρ1 +

∂νρ
∂ρ2
ρ2
ää

ρ
−

νρ

Å
2m

∂ν

∂ρ2
ρ2 + 2mν + 5ν

ãò
. (2.189)

Notice that in general the positivity of the quantity cν is not guaranteed. Con-
ditions to guarantee that cν > 0 in a general situation are not feasible since its
expression strongly depends on the choice of ν and, therefore, on the specific phys-
ical phenomenon under consideration. We will address the issue of the positivity
of cν for specific regimes in Section 2.5.3. Along with these eigenvalues, we have
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Chapter 2. Model equations for compressible two-phase flows

the following linearly degenerate eigenvectors:

r1 =



1
(νξ)2mΣ̃(ν−ρνρ)

0
0
0
0

p2−p1−Σ̃ν,m

[
ναL

m̃ν−ν
(
νρ(ρ1−ρ2)+ρ

∂ναL
∂ρ

)]
[(νξ)2mΣ̃(ν−ρνρ)]

2


(2.190)

r2 =


0
0

(νξ)2m Σ̃ (ν − ρνρ)
0
0

− (1− αL) c
2
2 − 1

2
Σ̃ν,m

î
∂ν
∂ρ2
m̃ν − ννρ (1− αL)− νρ∂νρ

∂ρ2

ó
 (2.191)

r3 =



0
0

(νξ)2m Σ̃
Ä
ν − ∂ν

∂ρ
ρ
ä

0
0

−αLc
2
1 − Σ̃ν,m

î
∂ν
∂ρ1
m̃ν − ννραL − νρ∂νρ

∂ρ1

ó
 (2.192)

r4 =


0
0
0
1
0
0

 (2.193)

and two truly non linear eigenvectors:

r5 =


0
ρ1
ρ2
Σ0

−cΣ̃
Σ̃− Σ̃ (1+m)ρνρ

ν

 (2.194)

r6 =


0
ρ1
ρ2
Σ0

cΣ̃
Σ̃− Σ̃ (1+m)ρνρ

ν

 (2.195)

The system is hyperbolic provided that the eigenvectors forms a basis. This
condition is fulfilled provided that cΣ ̸= 0, since the determinant is

det(r1, r2, r3, r4, r5, r6) = 2ρc3
Σ̃
. (2.196)
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2.5.3 Submodels and limiting cases

We aim now to study some limiting cases and submodels which stem from the
derived two-phase system. In particular, we will derive the conditions needed to
obtain the classical pressure relaxation term [Saurel and Abgrall, 1999, Saurel and
Pantano, 2018] and the evolution equation for interface area density obtained in
[Lhuillier, 2004] by means of empirical considerations.

If we want to obtain the usual pressure relaxation for the transport of αL, we
need to keep the last two terms of (2.174). We consider ϵ = ϵ̃ν−m so that, after
multiplication by νm+1, we get:

νm+1

ñ
∂Σ̃

∂t
+∇·

Ä
Σ̃u
äô

= −ξnν2m+1

Å
m+

1

2

ã ∂ν
∂αL

ν
Σ̃2

+ νm+1 (m+ 1) ρ

∂ν
∂ρ

ν
(∇·u) Σ̃

− ρ

ξn
∂e

∂αL

− ϵ̃Σ̃. (2.197)

We assume ν → 0 when Y → 0 along with
∂ν

∂αL

ν
=

Y→0
O(1) and

∂ν
∂ρ

ν
=

Y→0
O(1). In

this limit, we obtain the pressure relaxation:

DtαL = −1

ϵ̃
ρ
∂e

∂αL

, (2.198)

provided m > −1. In this case, ϵ̃ has the role of a relaxation coefficient and the
stiff source term in (2.198) drives the dissipation effects.

The present model is able also to recover the conservative and compressible
contribution of Lhuillier’s equation [Lhuillier, 2004]:

∂Σ̃

∂t
+∇·

Ä
Σ̃u
ä
= 2

3
(∇·u) Σ̃ + S̃, (2.199)

where S̃ collects the source terms. Comparing (2.199) and the evolution equation
for Σ̃ in (2.169), one would need:

m = −1

2
(m+ 1) ρ

∂ν
∂ρ

ν
=

2

3
. (2.200)

This leads to
ν(ρ, Y, αL) = C(αL, Y )ρ

4
3 . (2.201)

Going back to definition (2.168), and recalling that [ν] = [kg][m]−1, we obtain

[ξn] = [s]−1[kg]
1
2 [m]

1
2 , (2.202)

and, fixing n = 1
2
for the sake of simplicity in the physical interpretation of ξ, we

get
[ξ] = [s]−2[kg][m] = [σ][m], (2.203)

where [σ] denotes the units of surface tension coefficient. The relation (2.201)
gives us a positive value of cν and therefore the system (2.176) is hyperbolic in
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Chapter 2. Model equations for compressible two-phase flows

this configuration. Indeed, taking m = −1
2
in (2.189), we obtain

cν =
1

2ν2ξ
Σ̃2

ï
(νρ)

2 ρ+

Å
∂ν

∂ρ1
ρ1 +

∂ν

∂ρ2
ρ2 − 4ν

ã
νρ+

2
ν2

ρ
− ν

Å
∂νρ
∂ρ1

ρ1 +
∂νρ
∂ρ2

ρ2

ãò
. (2.204)

Since νρ =
∂ν
∂ρ

= 4
3
ν
ρ
, we get

cν =
1

2ν2ξ
Σ̃2

ï
16

9

ν2

ρ
+

Å
∂ν

∂ρ1
ρ1 +

∂ν

∂ρ2
ρ2 − 4ν

ã
4

3

ν

ρ
+ 2

ν2

ρ
− ν

Å
∂νρ
∂ρ1

ρ1 +
∂νρ
∂ρ2

ρ2

ãò
=

1

2ν2ξ
Σ̃2

ï
112

9

ν2

ρ
+

Å
∂ν

∂ρ1
ρ1 +

∂ν

∂ρ2
ρ2

ã
4

3

ν

ρ
− ν

Å
∂νρ
∂ρ1

ρ1 +
∂νρ
∂ρ2

ρ2

ãò
. (2.205)

Moreover, we notice that the following relations hold:

∂νρ
∂ρ1

=
∂

∂ρ1

Å
4

3

ν

ρ

ã
=

4

3

Å
∂ν

∂ρ1

1

ρ
− ∂ρ

∂ρ1

ν

ρ2

ã
(2.206)

∂νρ
∂ρ1

=
∂

∂ρ2

Å
4

3

ν

ρ

ã
=

4

3

Å
∂ν

∂ρ2

1

ρ
− ∂ρ

∂ρ2

ν

ρ2

ã
. (2.207)

Hence, (2.205) reduces to

cν =
1

2ν2ξ
Σ̃2

ï
112

9

ν2

ρ
+

4

3

ν2

ρ2

Å
∂ρ

∂ρ1
ρ1 +

∂ρ

∂ρ2
ρ2

ãò
. (2.208)

Since ∂ρ
∂ρ1

= αL and ∂ρ
∂ρ2

= 1− αL, we obtain

cν =
1

2ν2ξ
Σ̃2

ï
112

9

ν2

ρ
+

4

3

ν2

ρ

ò
=

1

2ν2ξ
Σ̃2139

9

ν2

ρ
=

139

18

Σ̃2

ξρ
> 0. (2.209)

2.6 The equation of state

In this Section, we describe the equations of state required separately for each
phase to complete systems (2.143), (2.149) and (2.175). For the sake of clarity,
the description and the expressions will be reported without subscripts. The most
classical and simple choice is that of an ideal gas. In the non-dimensional variables
introduced above, the equation that links together pressure, density and internal
energy is given by

p = (γ − 1)

Å
ρE − 1

2
M2ρu · u

ã
, (2.210)

with γ denoting the specific heats ratio. The above relation is valid only in case
of constant γ [Vidal, 2001, Sandler, 2017]. Since we aim to consider more realistic
fluids, the ideal gas is not the only relation to be considered. An example of non-
ideal gas equation of state is given by the general cubic equation of state, whose
equation linking together internal energy, density and temperature, according to
[Vidal, 2001], is given in dimensional form by

e = e# (T ) +
a(T )− T da

dT

b
U (ρ, b, r1, r2) , (2.211)

38



i
i

“Tesi˙Multiphase˙Orlando˙Giuseppe” — 2023/4/3 — 9:12 — page 39 — #63 i
i

i
i

i
i

2.6. The equation of state

where e# denotes the internal energy of an ideal gas at temperature T . The
function U and the constants r1 and r2 depend on the specific equation of state,
whereas a and b are suitable parameters that characterize the gas behaviour.
Notice that, with a slight abuse of notation, we keep in the present description

the same notation for the dimensional variables. In case cv =
de#

dT
is constant, we

can write

e = cvT +
a(T )− T da

dT

b
U (ρ, b, r1, r2) . (2.212)

In case the previous hypothesis does not hold, we analogously define cv(T ) =
e#(T )

T
,

so that (2.211) reads as follows:

e = cv(T )T +
a(T )− T da

dT

b
U (ρ, b, r1, r2) . (2.213)

The quantity cv(T ) should not be understood as a real specific heat, but only as
a convenient way of writing the above EOS. We consider the van der Waals EOS,
for which r1 = r2 = 0 and

U = −bρ (2.214)

and the Peng-Robinson EOS, for which r1 = −1−
√
2, r2 = −1 +

√
2 and

U =
1

r1 − r2
log

Å
1− ρbr1
1− ρbr2

ã
. (2.215)

The link between pressure, density and temperature for the general cubic EOS in
dimensional form can be expressed as follows:

p =
ρRgT

1− ρb
− aρ2

(1− ρbr1) (1− ρbr2)
, (2.216)

with Rg denoting the specific gas constant. Notice that for a = b = 0, the
expression for the pressure of an ideal gas is retrieved. For the sake of clarity, we
introduce the following non-dimensional variables

R̃g =
RΘ

P
Rg ã = a

R2

P
b̃ = Rb, (2.217)

so that (2.216) can be rewritten in non-dimensional form as

p =
ρR̃gT

1− ρb̃
− ãρ2Ä

1− ρb̃r1
ä Ä

1− ρb̃r2
ä . (2.218)

Finally, we define c̃v (T ) = cv
RΘ
P , so that the non-dimensional version of (2.213)

reads as follows:

e = c̃v(T )T +
ã(T )− T dã

dT

b̃
U
Ä
ρ, b̃, r1, r2

ä
. (2.219)

Another example of non-ideal gas considered is represented by the Stiffened Gas
equation of state (SG-EOS) [Le Métayer and Saurel, 2016], which is interesting
for its convexity property and is given in dimensional variables by

p = (γ − 1)

Å
ρE − 1

2
ρu · u− ρq∞

ã
− γπ∞, (2.220)
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where q∞ and π∞ are parameters that determine the gas characteristics. No-
tice that, for this equation of state, the parameters have to be taken constant
[Le Métayer and Saurel, 2016]. We define analogously to what we did for the
general cubic equation of state

q̃∞ =
R
P
q∞ π̃∞ =

π

P
, (2.221)

so that (2.220) reads in terms of non-dimensional variables as follows:

p = (γ − 1)

Å
ρE − 1

2
M2ρu · u− ρq̃∞

ã
− γπ̃∞. (2.222)

Finally, the link between pressure, density and temperature for the SG-EOS can
be written as:

T =
p+ π∞

ρ (γ − 1) cv
. (2.223)

We define c̃v = cv
RΘ
P , with Θ being the reference temperature, so that the non-

dimensional version of (2.223) is given by

T =
p+ π̃∞

ρ (γ − 1) c̃v
. (2.224)

We consider the SG-EOS for the four-equation relaxed system (2.155). In this
case, we need an equation of state for the mixture to link the mixture internal
energy e with the pressure p, the mixture density ρ = α1ρ1+α2ρ2 and the volume
fractions α1 and α2. From (2.222), we notice that for the SG-EOS the following
relation holds:

ρe =
p+ γπ̃∞
γ − 1

+ ρq̃∞. (2.225)

Hence, we can compute the mixture internal energy as follows:

ρe =
2∑

k=1

αkρkek =
2∑

k=1

αk

Å
pk + γkπ̃∞,k

γk − 1
+ ρkq̃∞,k

ã
. (2.226)

Since p1 = p2 = p, we obtain

ρe =
2∑

k=1

αkρkek = p
2∑

k=1

αk

γk − 1
+

2∑
k=1

αk

Å
γkπ̃∞,k

γk − 1
+ ρkq̃∞,k

ã
, (2.227)

from which we also get

p =

ρe−
2∑

k=1

αk

Ä
γkπ̃∞,k

γk−1
+ ρkq̃∞,k

ä
2∑

k=1

αk

γk−1

. (2.228)

Notice that, for the sake of simplicity and as in most standard contributions,
see e.g. [Saurel et al., 2016], we consider the pure thermodynamics components
to compute the mixture quantities. However, as explained in [Sandler, 2017], the
true mixture properties should be in principle considered, which take into account
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the interaction between the phases. More accurate and general equations of state
are available in literature, see e.g. [Span, 2000, Lemmon and Span, 2006], but the
above choices are suitable for the regimes of interest, involve already non trivial
non-linearities and provide a sufficient level of complexity for the validation of the
numerical scheme we will propose in the next Chapter.

For what concerns the equations (2.175), we need to consider barotropic-type
equations of state, i.e. relations for which pressure depends only on the density.
Possible choices are the Tait equation of state [Tait, 1965] for the liquid phase

p =
ρlc

2
l

7.15

ñÅ
ρ

ρl

ã7.15

− 1

ô
+ p0, (2.229)

with ρl denoting the density of the liquid, cl being the speed of sound and p0 being
a reference pressure. The polytropic relation [Vidal, 2001] can be employed for
the gas phase

p = bργ, (2.230)

with b being a case-dependent constant and γ representing the polytropic expo-
nent. Finally, we point out that, as discussed in [Müller et al., 2016], the reported
choices of for the EOS, in combination with the definition (2.135) for the interfa-
cial velocity and pressure, lead to a system which is compatible with the second
principle of thermodynamics.

2.6.1 Analysis of isentropic processes for the general cubic equation
of state

In this Section, we perform an analysis of isentropic processes which is valid for

the general cubic equation of state in the case da
dT

= 0 and de#

dT
= cv = const.

For the sake of simplicity, in order to avoid the influence of reference quantities,
we report the computations using dimensional variables. We recall the Gibbs’
relation [Vidal, 2001, Sandler, 2017]

de = Tds− pdv = Tds+
p

ρ2
dρ, (2.231)

where s denotes the specific entropy. Dividing both sides in the previous equation
by T we obtain

1

T
de = ds+

p

ρ2T
dρ (2.232)

which in an isentropic process reduces to

1

T
de− p

ρ2T
dρ = 0. (2.233)

Under the specific assumptions made, we obtain

cv
T
dT +

a

b

1

T

∂U

∂ρ
dρ− p

ρ2T
dρ = 0. (2.234)

The EOS can be rewritten in the following form [Vidal, 2001]

T =

ï
p+

aρ2

(1− ρbr1) (1− ρbr2)

ò
(1− ρb)

ρRg

. (2.235)
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If we substitute (2.235) into (2.234), we obtain

cv
T
dT +

Å
a

b

∂U

∂ρ
ρ− p

ρ

ã
Rg

(1− ρb)

(1− ρbr1) (1− ρbr2)

p (1− ρbr1) (1− ρbr2) + aρ2
dρ = 0. (2.236)

In the case of van der Waals EOS, U = −bρ and ∂U
∂ρ

= −b, whereas in the case of

Peng-Robinson EOS one has

U =
1

r1 − r2
log

Å
1− ρbr1
1− ρbr2

ã
∂U

∂ρ
= − b

(1− ρbr1) (1− ρbr2)
.

Since, for van der Waals EOS r1 = r2 = 0, the expression

∂U

∂ρ
= − b

(1− ρbr1) (1− ρbr2)
(2.237)

can be applied for both van der Waals and Peng-Robinson EOS. Hence, (2.236)
reduces to

cv
T
dT − Rg

ρ (1− ρb)
dρ = 0, (2.238)

which can then be integrated to yield

cv log(T )− 2Rg atanh (2ρb− 1) = const (2.239)

or, equivalently,

log(T )− 2
Rg

cv
atanh (2ρb− 1) = const. (2.240)

From (2.238), it is immediate to verify that, in the non-dimensional case, we
obtain

β
def
= log(T ∗)− 2

R̃g

c̃v
atanh

Ä
2ρ∗b̃− 1

ä
= const, (2.241)

where the symbol ∗ denotes non-dimensional variables. As far as we know, the
variable β defined in (2.241) is a novel constant quantity for isentropic processes

described by the general cubic equation of state in the case da
dT

= 0 and de#

dT
=

cv = const. In the more general case da
dT

̸= 0, it can be shown that [Nederstigt,
2017]

p

ργpρ
= const, (2.242)

where

γpρ =
c2

M2

ρ

p
. (2.243)

The evaluation of this quantity is less straightforward than that of (2.241), since
it involves the computation of non trivial derivatives, see the discussions in [Ned-
erstigt, 2017] and [Orlando et al., 2022a].
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CHAPTER3
Numerical methods for two-phase flows

In this Chapter, we describe the strategies employed to discretize the system
(2.149) in space and time. The presentation will provide a clear overview of the
intermediate steps developed towards this goal. After a brief general introduction
of the space discretization scheme, we describe a novel filtering monotonization
technique [Orlando, 2023] developed in order to reduce the spurious oscillations
that arise around discontinuities using high order discretization methods. Then,
we present a novel implicit DG solver for the incompressible Navier-Stokes equa-
tions [Orlando et al., 2022b] that acts as the initial building block in order to
obtain a robust approach in the low Mach number limit. Afterwards, we describe
its extension to the single-phase compressible Navier-Stokes equations so as to ob-
tain a novel IMEX-DG solver [Orlando et al., 2022a] dealing also with non-ideal
gases. Finally, we provide the strategy to deal with two-phase flows and with the
non conservative coupling terms in (2.149).
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Chapter 3. Numerical methods for two-phase flows

3.1 The Discontinuous Galerkin method

The Discontinuous Galerkin (DG) method has become a very valuable tool over
the last decades and, to an increasing extent, is applied to problems which tradi-
tionally were solved using the FV method, in particular for applications in com-
putational fluid dynamics, see e.g. [Cockburn et al., 1989, Bassi and Rebay,
1997a, Bassi and Rebay, 1997b, Doleǰśı, 2004] among many others. The reason
for this trend is related to the intrinsic capability of the DG method to achieve
higher order accuracy at a lower computational cost. Indeed, second order FV
methods are based on ad hoc second order reconstruction procedure that use large
stencils. Their extensions to third order schemes require third order accurate re-
constructions which are quite cumbersome on unstructured meshes. Higher order
approximations are even more difficult to achieve on unstructured meshes. On
the other hand, the order of accuracy of the DG method, for problems with a
sufficiently regular solution, depends on the polynomial degree employed which
can easily be increased, allowing to achieve high order accuracy on unstructured
meshes in a straightforward way. A comparison between the DG method and the
FV method supporting these claims has been performed in [Orlando et al., 2022b]
and is recalled in Section 4.2. This guarantees flexibility in the distribution of the
employed polynomial degree. Moreover, the stencil of DG methods involves only
the neighbours of each element, providing a clear advantage in terms of paralleliza-
tion and local mesh refinement (h−refinement) capabilities. Discontinuous finite
element p−adaptive approaches were proposed, among many others, in [Hartmann
and Houston, 2002, Remacle et al., 2003, Tugnoli et al., 2017, Colombo et al., 2018]
and introduced in [Tumolo et al., 2013] for Numerical Weather Prediction (NWP)
applications. The two adaptive techniques have been also successfully combined
in several other fields, see e.g. [Houston and Süli, 2001, Toselli, 2002, Eskilsson,
2011].

We consider a decomposition of the domain Ω into a family of hexahedra Th

(quadrilaterals in the two-dimensional case) and denote each element by K. The
skeleton E denotes the set of all element faces and E = EI ∪ EB, where EI is the
subset of interior faces and EB is the subset of boundary faces. We also introduce
the following finite element spaces

Qr =
{
v ∈ L2(Ω) : v|K ∈ Qr ∀K ∈ Th

}
(3.1)

and
Qr = [Qr]

d , (3.2)

where Qr is the space of polynomials of degree r in each coordinate direction.
Notice that the above choice for the finite element spaces corresponds to that
implemented in the deal.II library [Bangerth et al., 2007, Arndt et al., 2022], which
will be employed for the numerical computation, but all the proposed approaches
can in principle also be applied to tetrahedral meshes and P -spaces.

Suitable jump and average operators are defined as customary for finite element
discretizations, see e.g. [Arnold et al., 2002]. A face F ∈ EI shares two elements
that we denote by K+ with outward unit normal n+ and K− with outward unit
normal n−, whereas for a face F ∈ EB we denote by n the outward unit normal.
For a scalar function φ the jump is defined as

[[φ]] = φ+n+ + φ−n− if F ∈ EI [[φ]] = φn if F ∈ EB, (3.3)
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3.1. The Discontinuous Galerkin method

where
φ+ = φ|K+ φ− = φ|K− . (3.4)

The average is defined as

{{φ}} =
1

2

(
φ+ + φ−) if F ∈ EI {{φ}} = φ if F ∈ EB. (3.5)

Similar definitions apply for a vector-valued function φ:

[[φ]] = φ+ · n+ +φ− · n− if F ∈ EI [[φ]] = φ · n if F ∈ EB (3.6)

{{φ}} =
1

2

(
φ+ +φ−) if F ∈ EI {{φ}} = φ if F ∈ EB. (3.7)

For vector-valued functions, it is also useful to define a tensor jump as:

⟨⟨φ⟩⟩ = φ+ ⊗ n+ +φ− ⊗ n− if F ∈ EI ⟨⟨φ⟩⟩ = φ⊗ n if F ∈ EB. (3.8)

For the sake of completeness, we outline here the development of a DG discretiza-
tion for both a non-linear conservation law and an elliptic problem. A non-linear
conservation law can be written as

∂Ψ

∂t
+∇·F (Ψ) = 0, (3.9)

where Ψ = Ψ (x, t) is the unknown, x ∈ Rd, and F (Ψ) denotes a d−dimensional
vector field that generally depends on Ψ in a non-linear way. We multiply (3.9)
by a test function Λ and, after integration by parts, we obtain the following local
formulation on each element K:∫

K

∂Ψ

∂t
ΛdΩ−

∫
K

F (Ψ) · ∇ΛdΩ +

∫
∂K

F̂
(
Ψ+,Ψ−) · nΛdΣ = 0. (3.10)

In the surface integral, we replace the term F (Ψ) with a numerical flux F̂ (Ψ+,Ψ−),
which depends on the solution on both sides of an interior face. A basic prop-
erty required by the flux is to be conservative [Bassi and Rebay, 1997a], i.e.

F̂ (Ψ+,Ψ−) = F̂ (Ψ−,Ψ+). An example of numerical flux is represented by the
Rusanov flux [Rusanov, 1962]:

F
(
Ψ+,Ψ−) = {{F (Ψ)}}+ λ

2
[[Ψ]] , (3.11)

where λ is the largest eigenvalue (in absolute value) of the Jacobian ∂F
∂Ψ

. Summing
up over all the elements, we obtain the following formulation:∑
K∈Th

∫
K

∂Ψ

∂t
ΛdΩ−

∑
K∈Th

∫
K

F (Ψ)·∇ΛdΩ+
∑
F∈E

∫
F

F̂
(
Ψ+,Ψ−)·[[Λ]] dΣ = 0, (3.12)

with E = EI ∪ EB. The prototype of an elliptic problem is instead the Poisson
equation

−∆Ψ = g, (3.13)

supplied with suitable initial and boundary conditions. We proceed as we did for
(3.9) so as to obtain for a single element K∫

K

∇Ψ · ∇ΛdΩ−
∫
∂K

F∗ (∇Ψ+,∇Ψ−) · nΛdΣ =

∫
K

gΛdΩ, (3.14)
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Chapter 3. Numerical methods for two-phase flows

where F∗ is a suitable numerical flux. A typical choice is represented by the
centered flux

F∗ = {{∇Ψ}} . (3.15)

In the rest of the work, we consider for second order spatial operators the so-called
Symmetric Interior Penalty (SIP) method [Arnold, 1982, Orlando et al., 2022b].
Hence, we obtain with the following formulation:∑

K∈Th

∫
K

∇Ψ · ∇ΛdΩ

−
∑
F∈E

∫
F

{{∇Ψ}} · [[Λ]] dΣ−
∑
F∈E

∫
F

[[Ψ]] · {{∇Λ}} dΣ +
∑
F∈E

∫
F

τ [[Ψ]] · [[Λ]] dΣ

=
∑
K∈Th

∫
K

gΛdΩ, (3.16)

with τ being a suitable penalization constant. The extension to Navier-Stokes
equations and related models will be described in the following Sections.

3.2 Monotonization technique

In this Section, we describe a novel monotonization technique for the Discontin-
uous Galerkin discretization of hyperbolic problems proposed in [Orlando, 2023].
It is known that spurious oscillations arise around shocks and other discontinu-
ities when high order spatial discretizations are used. Furthermore, maintaining
non negativity of the numerical solutions is essential to preserve the correct phys-
ical meaning of variables such as the volume fraction or the density. In order
to address these well known issues, a number of monotonization techniques have
been proposed in the literature for DG methods. In general, monotonization
techniques for DG methods have been inherited from finite difference and finite
volume approaches. For example, starting with [Cockburn and Shu, 1989, Cock-
burn et al., 1989], slope limiting techniques have been employed, while other au-
thors have investigated Weighted Essentially Non-Oscillatory (WENO) methods
[Shu, 2003, Shu, 2016] and Flux Corrected Transport (FCT) methods [Kuzmin
and Turek, 2002, Restelli et al., 2006, Kuzmin et al., 2012]. In recent years, the
very successful Multidimensional Optimal Order Detection (MOOD) approach
has been proposed in [Dumbser et al., 2014, Loubère et al., 2014, Zanotti et al.,
2015, Dumbser and Loubère, 2016], which is based on the identification of the
regions of discontinuity and on the switch from a high order DG method to a
monotonic first order Finite Volume method on a locally refined mesh built around
the quadrature nodes used by the DG method. However, this method is strongly
dependent on the choice and on the performances of a regularity indicator. We
present here a method proposed in [Orlando, 2023] and inspired by the filtering
approach outlined in [Bokanowski et al., 2016]. More specifically, a filter function
is employed in such a way that, where the solution is regular, we keep the high
order solution, whereas otherwise we switch to a low order method. While the pro-
posed strategy is conceptually similar to that of the MOOD approach, the main
novelty of the proposed method is that we do not rely on a regularity indicator
and that a monotonic solution is retrieved (almost) automatically.
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3.2. Monotonization technique

We consider as generic model problem the non-linear conservation law (3.9).
Simple examples are the linear advection equation and the Burgers equation. Each
stage of a numerical method can be represented as

u = S(v), (3.17)

where u,v denote the new and old values, respectively, of the vector containing
the discrete degrees of freedom which identify the spatial approximation to the
solutions of (3.9). S denotes formally the solution operator associated to a specific
time and space discretization. The transition from v to u can be interpreted as
an advancement in time ζ∆t time units, where the parameter ζ depends on the
details of the specific method and stage considered. We will denote by SM the
discrete operator associated to the monotonic, low order spatial discretization and
by SH that associated to a high order, not monotonic spatial discretization. We
now introduce the application of the filtering approach proposed in [Bokanowski
et al., 2016] in the above outlined context. First of all, a filter function F is
introduced. This can be defined in several ways, for example

F1(x) = x1|x|≤1 =

®
x if |x| ≤ 1

0 otherwise,
(3.18)

which corresponds to the Oberman-Salvador filter function originally employed in
[Oberman and Salvador, 2015] or

F2(x) = sign(x)max (1− ||x| − 1| , 0) , (3.19)

the so-called Froese and Oberman filter function originally presented in [Froese
and Oberman, 2013]. Figure 3.1 reports the plots of both F1(x) and F2(x). In

a)
b)

Figure 3.1: Plots of filter functions, a) Oberman-Salvador filter function, b) Froose-
Oberman filter function.

the simplest possible filtering approach, the filtered version of u can be defined as

uF = SM(v) + εζ∆tF
Å
SH(v)− SM(v)

εζ∆t

ã
, (3.20)

where the low order solution SM is computed on the nodes of the high order
solution SH and ε is a suitable parameter, depending on the time and space
discretization parameters, such that

lim
(∆t,h)→0

ε(∆t, h) = 0, (3.21)
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Chapter 3. Numerical methods for two-phase flows

with h = max{diam(K)|K ∈ Th}. Notice that the filter function is applied
componentwise to the vector of the discrete degrees of freedom v. In this way,
as discussed in [Bokanowski et al., 2016], the high order method is actually only
applied to the components i for which

|SH(v)i − SM(v)i|
εζ∆t

≤ 1, i = 1, ..., dim(Qr). (3.22)

As explained in [Bokanowski et al., 2016], ε has to be chosen in such a way that

ε ≥ c0h, (3.23)

where c0 is a sufficiently large constant. As discussed in Section (4.1), the afore-
mentioned approach is very dissipative and, unless a very large value of c0 is
adopted, it yields solutions that essentially coincide with the low order one. There-
fore, we propose the alternative filtering strategy

uF
i = SM(v)i + βSM(v)iF

Å
SH(v)i − SM(v)i

βSM(v)i

ã
, i = 1, ..., dim(Qr), (3.24)

where β > 0 is a suitable parameter which represents a tolerance for the com-

ponentwise relative difference SH(v)i−SM (v)i
SM (v)i

, so that when
∣∣∣SH(v)i−SM (v)i

SM (v)i

∣∣∣ ≤ β, we

resort to the high order solution. Also in this case, a too small value of β provides
results that are in practice coincident with the low order solution. An extension
for the Euler equations and for the two-phase flows system can be developed in a
straightforward way by applying (3.24) to each unknown. For the sake of clarity,
we report here the three relations to be employed for the Euler equations of the
gas dynamics:

ρF
i = SM(ρ)i

+ βρS
M(ρ)iF

Å
SH(ρ)i − SM(ρ)i

βρSM(ρ)i

ã
, i = 1, ..., dim(Qr) (3.25)

ρuF
i = SM(ρu)i

+ βρuS
M(ρu)iF

Å
SH(ρu)i − SM(ρu)i

βρuSM(ρu)i

ã
, i = 1, ..., dim(Qr) (3.26)

ρEF
i = SM(ρE)i

+ βρES
M(ρE)iF

Å
SH(ρE)i − SM(ρE)i

βρESM(ρE)i

ã
, i = 1, ..., dim(Qr),(3.27)

where ρ,ρu,ρE are the vectors of the degrees of freedom for the density, the
momentum and the energy per unit of mass, respectively, whereas βρ, βρu and βρE
are the corresponding tolerance parameters, which in principle are different from
each other. The choice of performing the filtering procedure for all the unknowns
follows standard approaches in literature, see e.g. [Loubère et al., 2014], in which
monotonization techniques are applied for all the variables. The method can be
successfully combined with h−refinement capabilities in order to reduce the size of
the region where the low order approximation is applied. The potentialities of the
proposed filtering approach are shown in a number of numerical experiments in
Section 4.1 and Section 4.5. We refer to [Orlando, 2023] for a complete description
of the monotonization technique.
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3.3 Discretization for the incompressible Navier-Stokes equations

In this Section, we present a novel discretization method for the classical unsteady
incompressible Navier-Stokes equations with uniform and constant density, pro-
posed also in [Orlando et al., 2022b]. The equations are written in non-dimensional
form as:

∂u

∂t
+∇· (u⊗ u) +∇p =

1

Re
∆u

∇·u = 0 (3.28)

for x ∈ Ω, t ∈ (0, Tf ], supplied with suitable initial and boundary conditions. Here
Tf is the final time, u is the fluid velocity, p is the pressure divided by density
and Re is the Reynolds number, which is usually defined as Re = UL/ν, where
U denotes a reference value of the velocity magnitude, L a reference length scale
and ν the fluid kinematic viscosity.

Projection methods [Chorin, 1968, Temam, 1969, Guermond et al., 2006] are
very popular for the discretization of this problem. However, difficulties arise in
the choice of the boundary conditions to be imposed for the Poisson equation
which is to be solved at each time step to compute the pressure, see e.g. the
discussion in [Guermond et al., 2006]. An alternative that allows to avoid (or at
least to reduce) some of these problems is the so-called artificial compressibility
formulation, originally introduced in [Chorin, 1967]. In this formulation, the in-
compressibility constraint is relaxed and a time evolution equation for the pressure
is introduced, which is characterized by an artificial sound speed c, so as to obtain

∂u

∂t
+∇· (u⊗ u) +∇p =

1

Re
∆u+ f

1

c2
∂p

∂t
+∇·u = 0. (3.29)

We introduce a discrete time step ∆t = Tf/N and discrete time levels tn =
n∆t, n = 0, . . . , N . Following then the projection approach described in [Della Rocca,
2018] and applying the TR-BDF2 method proposed in [Bank et al., 1985] and out-
lined in Appendix A.5 to system (3.29), the momentum predictor equation for the
first stage reads as follows:

un+χ,∗ − un

χ∆t
− 1

2Re
∆un+χ,∗ +

1

2
∇·
Ä
un+χ,∗ ⊗ un+χ

2

ä
=

1

2Re
∆un − 1

2
∇·
Ä
un ⊗ un+χ

2

ä
−∇pn (3.30)

un+χ,∗|∂Ω = un+χ
D .

Notice that χ = 2−
√
2 in order to guarantee L-stability and that, in order to avoid

solving a non-linear system at each time step, an approximation is introduced in
the non-linear momentum advection term, so that un+χ

2 is defined by extrapolation
as

un+χ
2 =

Å
1 +

χ

2 (1− χ)

ã
un − χ

2 (1− χ)
un−1. (3.31)

Alternatively, un+χ
2 can be replaced by un+χ,∗ in the left hand side and by un in the

right-hand side of (3.30), respectively, and un+χ,∗ can be determined by fixed point

49



i
i

“Tesi˙Multiphase˙Orlando˙Giuseppe” — 2023/4/3 — 9:12 — page 50 — #74 i
i

i
i

i
i

Chapter 3. Numerical methods for two-phase flows

iterations. Numerical experiments show that this fully non-linear formulation is
necessary to achieve accurate results for larger Courant number values [Orlando
et al., 2022b]. We set then δpn+χ = pn+χ − pn and impose

un+χ − un+χ,∗

χ∆t
= −∇δpn+χ

1

c2
δpn+χ

χ∆t
+∇·un+χ = 0. (3.32)

Substituting the first equation into the second in (3.32), one obtains the Helmholtz
equation

1

c2χ2∆t2
δpn+χ −∆δpn+χ = − 1

χ∆t
∇·un+χ,∗, (3.33)

which is solved with the boundary condition ∇δpn+χ ·n|∂Ω = 0. Once this equation
is solved, the final velocity update for the first stage

un+χ = un+χ,∗ − χ∆t∇δpn+χ (3.34)

can be computed. Notice that the previous procedure is equivalent to introducing
the intermediate update

un+χ,∗∗ = un+χ,∗ + χ∆t∇pn, (3.35)

solving
1

c2
pn+χ

χ2∆t2
−∆pn+χ = − 1

χ∆t
∇·un+χ,∗∗ +

1

c2
pn

χ2∆t2
(3.36)

and then setting
un+χ = un+χ,∗∗ − χ∆t∇pn+χ. (3.37)

The second TR-BDF2 stage is performed in a similar manner and we report it
here for the sake of completeness. We first define the second momentum predictor

un+1,∗ − un+χ

(1− χ)∆t
− ã33
Re

∆un+1,∗ + ã33∇·
Ä
un+1,∗ ⊗ un+ 3

2
χ
ä
= (3.38)

ã32
Re

∆un+χ − ã32∇·
(
un+χ ⊗ un+χ

)
+
ã31
Re

∆un − ã31∇· (un ⊗ un)−∇pn+χ

un+1,∗|∂ΩD = un+1
D ,

where one has

ã31 =
1− χ

2 (2− χ)
ã32 =

1− χ

2 (2− χ)
ã33 =

1

2− χ
. (3.39)

Again, in order to avoid solving a non-linear system at each time step, an approx-
imation is introduced in the non-linear momentum advection term, so that un+ 3

2
χ

is defined by extrapolation as

un+ 3
2
χ =

Å
1 +

1 + χ

χ

ã
un+χ − 1− χ

χ
un. (3.40)

50



i
i

“Tesi˙Multiphase˙Orlando˙Giuseppe” — 2023/4/3 — 9:12 — page 51 — #75 i
i

i
i

i
i

3.3. Discretization for the incompressible Navier-Stokes equations

Alternatively, un+ 3
2
χ can be replaced by un+1,∗, which can then be determined by

fixed point iteration. We set then δpn+1 = pn+1 − pn+χ and impose

un+1 − un+1,∗

(1− χ)∆t
= −∇δpn+1

1

c2
δpn+1

(1− χ)∆t
+∇·un+1 = 0. (3.41)

Substituting the first equation into the second in (3.41), one obtains the Helmholtz
equation

1

c2(1− χ)2∆t2
δpn+1 −∆δpn+1 = − 1

(1− χ)∆t
∇·un+1,∗, (3.42)

which is solved with the boundary condition ∇δpn+1 ·n|∂Ω = 0. Once this equation
is solved, the final velocity update is computed

un+1 = un+1,∗ − (1− χ)∆t∇δpn+1. (3.43)

Also for this second stage, notice that the procedure is equivalent to setting

un+1,∗∗ = un+1,∗ + (1− χ)∆t∇pn+χ, (3.44)

solving

1

c2
pn+1

(1− χ)2∆t2
−∆pn+1 = − 1

(1− χ)∆t
∇·un+1,∗∗ +

1

c2
pn+χ

(1− χ)2∆t2
(3.45)

and then setting
un+1 = un+1,∗∗ − (1− χ)∆t∇pn+1. (3.46)

Considering the well-posedness analyses in [Toselli, 2002, Schötzau et al., 2003],
the finite element spaces that will be used for the discretization of velocity and
pressure are Vh = Qr and Wh = Qr−1 ∩ L2

0(Ω), respectively, where L2
0(Ω) ={

v ∈ L2(Ω) :
∫
Ω
vdΩ = 0

}
and r ≥ 2. Notice that, while for the sake of coherence

with the time discretization and for comparison with second order finite volume
methods we will mostly consider the case r = 2, the formulation we present is
completely general and also the implementation validated in Section 4.2 supports
arbitrary values of r. The weak formulation of the momentum predictor equation
for the first stage is obtained multiplying equation (3.30) by a test function v ∈
Vh, integrating over each element K ∈ Th and applying Green’s theorem. To
impose the boundary conditions, we mirror the state of the adjacent internal

element and we set (un+χ,∗)
−

= − (un+χ,∗)
+
+ 2un+χ

D with
î
∇ (un+χ,∗)

+
ó
· n =î

∇ (un+χ,∗)
−
ó
· n. However, analogous results are obtained by directly imposing

the boundary value.
We now treat separately the discretization of the diffusion and advection con-

tributions, respectively. The approximation of the diffusion term is based on the
SIP [Arnold, 1982]. Two stabilization terms are added: a symmetrizing term
corresponding to fluxes obtained after integration by parts and a penalty term
imposing the weak continuity of the numerical solution. Following [Fehn et al.,
2019], we set for each face F of a cell K

σu
F,K = (r + 1)2

diam(F )

diam(K)
(3.47)
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and we define the penalization constant for the SIP method as

Cu =
1

2

(
σu
F,K+ + σu

F,K−

)
if F ∈ EI , Cu = σu

F,K if F ∈ EB. (3.48)

Taking into account boundary conditions as previously discussed and summing
over all K ∈ Th, we can define the following bilinear form:

a(1)u (u,v) =
1

2Re

∑
K∈Th

∫
K

∇u : ∇vdΩ

− 1

2Re

∑
F∈EI

∫
F

{{∇u}} : ⟨⟨v⟩⟩ dΣ− 1

2Re

∑
F∈EB

∫
F

(∇u)n · vdΣ (3.49)

− 1

2Re

∑
F∈EI

∫
F

⟨⟨u⟩⟩ : {{∇v}} dΣ− 1

2Re

∑
F∈EB

∫
F

(u⊗ n) : ∇vdΣ

+
1

2Re

∑
F∈EI

∫
F

Cu ⟨⟨u⟩⟩ : ⟨⟨v⟩⟩ dΣ +
1

2Re

∑
F∈EB

∫
F

2Cu (u · v) dΣ.

The approximation of the advection term employs the widely used Local Lax-
Friedrichs (LLF) flux, see e.g. [Giraldo, 2020]. Setting

λ = max
(∣∣∣Äun+χ

2

ä+
· n+

∣∣∣ , ∣∣∣Äun+χ
2

ä−
· n−

∣∣∣) (3.50)

and taking into account boundary conditions, we define the trilinear form

c(1)(un+χ
2 ,u,v) = −1

2

∑
K∈Th

∫
K

Ä
u⊗ un+χ

2

ä
: ∇vdΩ

+
1

2

∑
F∈EI

∫
F

Ä¶¶
u⊗ un+χ

2

©©ä
: ⟨⟨v⟩⟩ dΣ (3.51)

+
1

2

∑
F∈EI

∫
F

λ

2
⟨⟨u⟩⟩ : ⟨⟨v⟩⟩ dΣ +

1

2

∑
F∈EB

∫
F

λ (u · v) dΣ.
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3.3. Discretization for the incompressible Navier-Stokes equations

Finally, we also define the functional

F (1)
u (v)n+χ = − 1

2Re

∑
K∈Th

∫
K

∇un : ∇vdΩ

+
1

2Re

∑
F∈E

∫
F

{{∇un}} : ⟨⟨v⟩⟩ dΣ

+
1

2

∑
K∈Th

∫
K

Ä
un ⊗ un+χ

2

ä
: ∇vdΩ

− 1

2

∑
F∈E

∫
F

Ä¶¶
un ⊗ un+χ

2

©©ä
: ⟨⟨v⟩⟩ dΣ

+
∑
K∈Th

∫
K

pn∇·vdΩ−
∑
F∈E

∫
F

{{pn}} [[v]] dΣ (3.52)

− 1

2Re

∑
F∈EB

∫
F

(
un+χ
D ⊗ n

)
: ∇vdΣ

+
1

2Re

∑
F∈EB

∫
F

2Cu

(
un+χ
D · v

)
dΣ

− 1

2

∑
F∈EB

∫
F

Ä
un+χ
D ⊗ un+χ

2

ä
n · vdΣ

+
1

2

∑
F∈EB

∫
F

λ
(
un+χ
D · v

)
dΣ,

which also includes the terms representing the weak form of Dirichlet boundary
conditions. It is worth to point out that in the right-hand side no penalization
terms have been introduced for the variables computed at previous time-steps.
Moreover, for the sake of clarity, the face integrals related to the quantities at
previous time-steps are reported on the whole skeleton E , without distinguishing
between interior and boundary faces.

The complete weak formulation of the first stage velocity update reads then
as follows: given un+χ

2 ,un ∈ Vh and pn ∈ Wh, find un+χ,∗ ∈ Vh such that :∑
K∈Th

∫
K

1

χ∆t
un+χ,∗ · vdΩ + a(1)u (un+χ,∗,v) + c(1)(un+χ

2 ,un+χ,∗,v)

=
∑
K∈Th

∫
K

1

χ∆t
un · vdΩ + F (1)

u (v)n+χ ∀v ∈ Vh. (3.53)

For the projection steps defined by equation (3.36) we apply again the SIP method.
In order to impose homogeneous Neumann boundary conditions we prescribeî
∇ (pn+χ)

−
ó
·n = −

î
∇ (pn+χ)

+
ó
·n: for this reason, no contribution from bound-

ary faces arises. We then multiply by a test function q ∈ Wh, we apply Green’s
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Chapter 3. Numerical methods for two-phase flows

theorem and we define:

ap(p, q) =
∑
K∈Th

∫
K

∇p · ∇qdΩ−
∑
F∈EI

∫
F

{{∇p}} · [[q]] dΣ

−
∑
F∈EI

∫
F

[[p]] · {{∇q}} dΣ +
∑
F∈EI

∫
F

Cp [[p]] · [[q]] dΣ (3.54)

F (1)
p (q)n+χ =

∑
K∈Th

∫
K

1

χ∆t
un+χ,∗∗ · ∇qdΩ

−
∑
F∈E

∫
F

1

χ∆t

{{
un+χ,∗∗}} · [[q]] dΣ (3.55)

and again we set

σp
F,K = r2

diam(F )

diam(K)
, (3.56)

while we set

Cp =
1

2

Ä
σp
F,K+ + σp

F,K−

ä
if F ∈ EI , Cp = σp

F,K if F ∈ EB. (3.57)

The weak formulation of equation (3.36) reads then: given pn ∈ Wh, find p
n+χ ∈

Wh such that ∑
K∈Th

∫
K

1

c2χ2∆t2
pn+χqdΩ + ap(p

n+χ, q) =

∑
K∈Th

∫
K

1

c2χ2∆t2
pnqdΩ + F (1)

p (q)n+χ ∀q ∈ Wh. (3.58)

The second stage can be described in a similar manner and all the details are
reported in [Orlando et al., 2022b]. We now derive the fully discrete algebraic ex-
pressions corresponding to the first stage. We denote by φi(x) the basis functions
for the space Vh and by ψi(x) the basis functions for the space Wh, respectively,
so that the discrete approximations of u and p read as follows:

u ≈ uh =

dim(Vh)∑
j=1

uj(t)φj(x) p ≈ ph =

dim(Wh)∑
j=1

pj(t)ψj(x). (3.59)

The shape functions correspond to the products of Lagrange interpolation poly-
nomials for the support points of (r + 1)-order and (r + 2)-order Gauss-Lobatto
quadrature rule in each coordinate direction for Vh and Wh, respectively. For the
first stage, we take v = φi, i = 1, . . . , dim(Vh) and we exploit the representation
introduced above to obtain the matrices

Mij =
∑
K∈Th

∫
K

φj ·φidΩ (3.60)

An+χ
ij = a(1)u (φj,φi) (3.61)

Cij

Ä
un+χ

2

ä
= c(1)

Ä
un+χ

2 ,φj,φi

ä
(3.62)
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3.4. Extension to the single-phase compressible Navier-Stokes equations

After computing the integrals in the previous formulae by appropriate quadrature
rules, one obtains the algebraic systemÅ

1

χ∆t
M+An+χ +C

Ä
un+χ

2

äã
Un+χ,∗

h =
1

χ∆t
MUn

h + Fn+χ
u , (3.63)

where Uh denotes the vector of the discrete degrees of freedom associated to

the velocity field and Fn+χ
u is the vector obtained evaluating F

(1)
u (φi)

n+χ, i =
1, . . . , dim(Vh). The same procedure can be applied for the projection step, ob-
taining the matrices

Mp
ij =

∑
K∈Th

∫
K

ψjψidΩ (3.64)

Kij = ap(ψj, ψj). (3.65)

After computing the integrals in the previous formulae by appropriate quadrature
rules, one obtains the algebraic counterpart of (3.58)Å

1

c2χ2∆t2
Mp +K

ã
Pn+χ

h =
1

c2χ2∆t2
MpPn

h + Fn+χ
p , (3.66)

where again Ph denotes the vector of the discrete degrees of freedom associ-

ated to pressure and Fn+χ
p is the vector obtained evaluating F

(1)
p (ψi)

n+χ, i =
1, . . . , dim(Wh). The derivation of the algebraic formulation for the second stage
follows in a straightforward manner and is reported in [Orlando et al., 2022b].
Numerical test cases to validate the proposed method are presented in Section
4.2.

3.4 Extension to the single-phase compressible Navier-Stokes equations

In this Section, we derive an extension of the approach described in Section 3.3 to
single-phase compressible flows so as to obtain a novel IMEX-DG solver, originally
presented in [Orlando et al., 2022a]. We consider the following system written in
non-dimensional form:

∂ρ

∂t
+∇· (ρu) = 0

∂ρu

∂t
+∇· (ρu⊗ u) +

1

M2
∇p =

1

Re
∇·
ï(
∇u+∇uT

)
− 2

3
(∇ · u) I

ò
− ρ

Fr2
k (3.67)

∂ρE

∂t
+∇·

[(
h+ kM2

)
ρu

]
=

M2

Re
∇·
ï(
∇u+∇uT

)
u− 2

3
(∇ · u)u

ò
+

1

PrRe
∆T − ρ

M2

Fr2
k · u

for x ∈ Ω, t ∈ [0, Tf ], along with suitable initial and boundary conditions. Here
Tf is the final time, ρ is the density, u is the fluid velocity, p is the pressure, T
is the absolute temperature, ρE is the total energy, h = e + p/ρ is the specific
enthalpy, with e being the internal energy, and k = ∥u∥2/2 is the kinetic energy.
Notice that these non-dimensional equations are very similar to those obtained
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Chapter 3. Numerical methods for two-phase flows

in [Munz et al., 2003] and its derivation is rather close to the one described in
Section 2.4 for the two-phase flows system. All the details are reported in [Orlando
et al., 2022a]. The Reynolds, Prandtl, Mach and Froude numbers, which are the
non-dimensional numbers characterizing the flow, are defined as

Re =
RUL
µ

κ =
cpµ

Pr
M2 =

RU2

P
Fr2 =

U2

gL
(3.68)

where cp denotes the specific heat at constant pressure, κ is the thermal conduc-
tivity, µ is the shear viscosity, g is the modulus of the acceleration of gravity, U
is the reference velocity, L is the reference length, R is the reference density and
P is the reference pressure. Notice that we assume to neglect the bulk viscosity
and, for the sake of simplicity, we also assume constant values for both µ and
κ. This choice can be justified by considering that we aim to simulate regimes
with limited variations of temperature and density and, moreover, we are mainly
interested in time scales where thermal effects play a less relevant role. At this
stage, no specific assumptions are made on the fluid. The above equations are
then completed by one of the equations of state described in Section 2.6.

In the low Mach number limit, terms proportional to 1/M2 in (3.67) yield
stiff components of the resulting semi-discretized Ordinary Differential Equations
(ODE) system. Therefore, following [Casulli and Greenspan, 1984, Dumbser and
Casulli, 2016], it is appropriate to couple implicitly the energy equation to the
momentum balance, while the continuity equation can be discretized in a fully
explicit fashion. While this would be sufficient to yield an efficient time discretiza-
tion approach for the purely hyperbolic system associated to (3.67) in absence of
gravity, in regimes for which

Pr ≈ O(1), F r ≪ 1

thermal diffusivity and gravity terms would also have to be treated implicitly
for the time discretization methods to be efficient. Straightforward application
of any monolithic solver would then yield large algebraic systems with multiple
couplings between discrete Degrees Of Freedom (DOF) associated to different
physical variables. To avoid this, we resort to an operator splitting approach,
see e.g. [LeVeque, 2002], as commonly done in numerical models for atmospheric
physics. More specifically, after spatial discretization, all diffusive terms on the
right-hand side of (3.67) are split from the hyperbolic part on the left hand side.
The hyperbolic part is treated in a similar fashion to what outlined in [Dumbser
and Casulli, 2016], while the diffusive terms are treated implicitly. For simplicity,
the gravity terms will be treated explicitly in this first attempt and only a basic,
first order splitting will be described, which can be easily improved to second
order accuracy by the Strang splitting approach [Strang, 1968, LeVeque, 2002].

For the time discretization, an IMplicit-EXplicit (IMEX) Additive Runge Kutta
(ARK) method [Kennedy and Carpenter, 2003] will be used. We refer to [Giraldo
et al., 2013, Orlando et al., 2022a] and to the Appendix A.5 for a more complete
description and analysis of the chosen IMEX approach. IMEX-ARK methods are
represented compactly by the following two Butcher tableaux [Butcher, 2008]:

c A
bT

c̃ Ã

b̃T
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with A = {Aij} , b = {bi} , c = {ci} , Ã = {ãij} , b̃ =
¶
b̃i
©

and c̃ = {c̃i}. Co-

efficients alm, ãlm, cl and bl are determined so that the method is consistent of
a given order. We now describe the application of the specific IMEX method
and of the splitting approach outlined above to equations (3.67). Notice that,
for simplicity, we first present the time semi-discretization only, while maintain-
ing the continuous form of (3.67) with respect to the spatial variables, and the
detailed description of the algebraic problems resulting from the full space and
time discretization will be presented in the following. For each time step, we first
consider the discretization of the hyperbolic and forcing terms. Notice that, even
though we focus here on this specific second order method, the strategy we out-
line is applicable to a generic Diagonal Implicit Runge Kutta (DIRK) method. In
particular, higher order methods could be considered for coupling to high order
spatial discretization, even though the effective overall accuracy would be limited
by the splitting procedure if gravity and viscous terms are present. For the first
stage of the method, one simply has

ρ(n,1) = ρn u(n,1) = un E(n,1) = En. (3.69)

For the second stage, we can write formally

ρ(n,2) = ρn − a21∆t∇· (ρnun)

ρ(n,2)u(n,2) + ã22
∆t

M2
∇p(n,2) = m(n,2) (3.70)

ρ(n,2)E(n,2) + ã22∆t∇·
Ä
h(n,2)ρ(n,2)u(n,2)

ä
= ê(n,2),

where we have set

m(n,2) = ρnun

− a21∆t∇· (ρnun ⊗ un)− ã21
∆t

M2
∇pn − a21

∆t

Fr2
ρnk (3.71)

ê(n,2) = ρnEn

− ã21∆t∇· (hnρnun)− a21∆tM
2∇· (knρnun)

− a21
∆tM2

Fr2
ρnk · un.

A slight modification for the treatment of the gravity terms has been proposed in
[Orlando et al., 2023] by setting

m(n,2) = ρnun

− a21∆t∇· (ρnun ⊗ un)− ã21
∆t

M2
∇pn

− ã21
∆t

Fr2
ρnk− ã22

∆t

Fr2
ρ(n,2)k (3.72)

ê(n,2) = ρnEn

− ã21∆t∇· (hnρnun)− a21∆tM
2∇· (knρnun)

− ã21
∆tM2

Fr2
ρnk · un − ã22

∆tM2

Fr2
ρ(n,2)k · u(n,2).
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Chapter 3. Numerical methods for two-phase flows

Notice that, substituting formally ρ(n,2)u(n,2) into the energy equation and taking
into account the definitions ρE = ρe+M2ρk and h = e+ p/ρ, the above system
can be solved by computing the solution of

ρ(n,2)[e(p(n,2), ρ(n,2)) +M2k(n,2)]

− ã222
∆t2

M2
∇·
ñÇ

e(p(n,2), ρ(n,2)) +
p(n,2)

ρ(n,2)

å
∇p(n,2)

ô
(3.73)

+ ã22∆t∇·
ñÇ

e(p(n,2), ρ(n,2)) +
p(n,2)

ρ(n,2)

å
m(n,2)

ô
= ê(n,2)

in terms of p(n,2) according to the fixed point procedure described in [Dumbser and
Casulli, 2016]. More specifically, setting ξ(0) = p(n,1), k(n,2,0) = k(n,1), one solves
for l = 1, . . . , L the equation

ρ(n,2)e(ξ(l), ρ(n,2)) − ã222
∆t2

M2
∇·
ñÇ

e(ξ(l−1), ρ(n,2)) +
ξ(l−1)

ρ(n,2)

å
∇ξ(l)

ô
= ê(n,2) −M2ρ(n,2)k(n,2,l−1) (3.74)

− ã22∆t∇·
ñÇ

e(ξ(l−1), ρ(n,2)) +
ξ(l−1)

ρ(n,2)

å
m(n,2)

ô
and updates the velocity as

ρ(n,2)u(n,2,l) +
ã22∆t

M2
∇ξ(l) = m(n,2). (3.75)

If one uses the definitions (3.72), the following fixed point iteration is considered:

ρ(n,2)e(ξ(l), ρ(n,2)) − ã222
∆t2

M2
∇·
ñÇ

e(ξ(l−1), ρ(n,2)) +
ξ(l−1)

ρ(n,2)

å
∇ξ(l)

ô
= ê(n,2,l−1) −M2ρ(n,2)k(n,2,l−1) (3.76)

− ã22∆t∇·
ñÇ

e(ξ(l−1), ρ(n,2)) +
ξ(l−1)

ρ(n,2)

å
m(n,2)

ô
.

In the case of SG-EOS, ρ(n,2)e
(
ξ(l), ρ(n,2)

)
contains a term that only depends on

the density, as evident from Equation (2.222) and, therefore, it has to be properly
considered in the right-hand side of (3.74). On the other hand, the general cubic
EOS (2.219) contains products of quantities depending on temperature and on
density. For the sake of simplicity, in order to avoid the solution of a non-linear
equation for each quadrature node, in these cases we keep the temperature at the

58



i
i

“Tesi˙Multiphase˙Orlando˙Giuseppe” — 2023/4/3 — 9:12 — page 59 — #83 i
i

i
i

i
i

3.4. Extension to the single-phase compressible Navier-Stokes equations

value in the previous iteration of the fixed point procedure, so as to obtain

c̃v
(
T
(
ξ(l−1), ρ(n,2)

))
R̃g

ξ(l)
Ä
1− ρ(n,2)b̃

ä
−

ã222
∆t2

M2
∇·
ñÇ

e
Ä
ξ(l−1), ρ(n,2)

ä
+
ξ(l−1)

ρ(n,2)

å
∇ξ(l)

ô
=

ê(n,2) − ρ(n,2)k(n,2,l−1) −
c̃v(T

(
ξ(l−1), ρ(n,2)

)
)

R̃g

ã
(
T
(
ξ(l−1), ρ(n,2)

)) (
ρ(n,2)

)2Ä
1− ρ(n,2)b̃r1

ä Ä
1− ρ(n,2)b̃r2

ä Ä1− ρ(n,2)b̃
ä

−

ρ(n,2)

b̃

ï
ã
Ä
T
Ä
ξ(l−1), ρ(n,2)

ää
− T

Ä
ξ(l−1), ρ(n,2)

ä dã
dT

Ä
ξ(l−1), ρ(n,2)

äò
U
Ä
ρ(n,2)

ä
−

ã22∆t∇·
ñÇ

e
Ä
ξ(l−1), ρ(n,2)

ä
+
ξ(l−1)

ρ(n,2)

å
m(n,2)

ô
. (3.77)

The same considerations as in [Dumbser and Casulli, 2016] apply concerning the
favourable properties of the weakly non-linear system resulting from the discrete
form of (3.74) and (3.77). Once the iterations have been completed, one sets
u(n,2) = u(n,2,L) and E(n,2) accordingly. For the third stage, one can write formally

ρ(n,3) = ρn − a31∆t∇· (ρnun)− a32∆t∇·
Ä
ρ(n,2)u(n,2)

ä
ρ(n,3)u(n,3) + ã33

∆t

M2
∇p(n,3) = m(n,3) (3.78)

ρ(n,3)E(n,3) + ã33∆t∇·
Ä
h(n,3)ρ(n,3)u(n,3)

ä
= ê(n,3),

where the right-hand sides are defined as

m(n,3) = ρnun

− a31∆t∇· (ρnun ⊗ un)− ã31
∆t

M2
∇pn (3.79)

− a32∆t∇·
Ä
ρ(n,2)u(n,2) ⊗ u(n,2)

ä
− ã32

∆t

M2
∇p(n,2) (3.80)

− a31
∆t

Fr2
ρnk− a32

∆t

Fr2
ρ(n,2)k

ê(n,3) = ρnEn (3.81)

− ã31∆t∇· (hnρnun)− a31∆tM
2∇· (knρnun)

− ã32∆t∇·
Ä
h(n,2)ρ(n,2)u(n,2)

ä
− a32∆tM

2∇·
Ä
k(n,2)ρ(n,2)u(n,2)

ä
− a31∆t

M2

Fr2
ρnk · un − a32∆t

M2

Fr2
ρ(n,2)k · u(n,2)
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or as follows [Orlando et al., 2023]:

m(n,3) = ρnun

− a31∆t∇· (ρnun ⊗ un)− ã31
∆t

M2
∇pn (3.82)

− a32∆t∇·
Ä
ρ(n,2)u(n,2) ⊗ u(n,2)

ä
− ã32

∆t

M2
∇p(n,2)

− ã31
∆t

Fr2
ρnk− ã32

∆t

Fr2
ρ(n,2)k− ã33∆t

∆t

Fr2
ρ(n,3)k

ê(n,3) = ρnEn

− ã31∆t∇· (hnρnun)− a31∆tM
2∇· (knρnun)

− ã32∆t∇·
Ä
h(n,2)ρ(n,2)u(n,2)

ä
− a32∆tM

2∇·
Ä
k(n,2)ρ(n,2)u(n,2)

ä
− ã31∆t

M2

Fr2
ρnk · unã32∆t

M2

Fr2
ρ(n,2)k · u(n,2) − ã33∆t

M2

Fr2
ρ(n,3)k · u(n,3)

Again, the solution of this stage is computed by substituting formally ρ(n,3)u(n,3)

into the energy equation and computing the solution of

ρ(n,3)[e
Ä
p(n,3), ρ(n,3)

ä
+M2k(n,3)] (3.83)

− ã233
∆t2

M2
∇·
ñÇ

e
Ä
p(n,3), ρ(n,3)

ä
+
p(n,3)

ρ(n,3)

å
∇p(n,3)

ô
+ ã33∆t∇·

ñÇ
e
Ä
p(n,3), ρ(n,3)

ä
+
p(n,3)

ρ(n,3)

å
m(n,3)

ô
= ê(n,3).

More specifically, setting ξ(0) = p(n,2), k(n,3,0) = k(n,2), one solves for l = 1, . . . , L
the equation

ρ(n,3)e
Ä
ξ(l), ρ(n,3)

ä
− ã233∆t

2

M2
∇·
ñÇ

e(ξ(l−1), ρ(n,3)) +
ξ(l−1)

ρ(n,3)

å
∇ξ(l)

ô
= ê(n,3) − ρ(n,3)k(n,3,l) (3.84)

− ã33∆t∇·
ñÇ

e
Ä
ξ(l−1), ρ(n,3)

ä
+
ξ(l−1)

ρ(n,3)

å
m(n,3)

ô
or, in the case of (3.82), the equation

ρ(n,3)e
Ä
ξ(l), ρ(n,3)

ä
− ã233∆t

2

M2
∇·
ñÇ

e(ξ(l−1), ρ(n,3)) +
ξ(l−1)

ρ(n,3)

å
∇ξ(l)

ô
= ê(n,3,l−1) − ρ(n,3)k(n,3,l−1) (3.85)

− ã33∆t∇·
ñÇ

e
Ä
ξ(l−1), ρ(n,3)

ä
+
ξ(l−1)

ρ(n,3)

å
m(n,3)

ô
and updates the velocity as

ρ(n,3)u(n,3,l) + ã33
∆t

M2
∇ξ(l) = m(n,3). (3.86)
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Once again, in case of a non-ideal gas equation of state, the expression of the term
ρ(n,3)e

(
ξ(l), ρ(n,3)

)
is slightly different. For the sake of clarity, we report also for

this stage the fixed point equation for the general cubic EOS:

c̃v
(
T
(
ξ(l−1), ρ(n,3)

))
R̃g

ξ(l)
Ä
1− ρ(n,3)b̃

ä
−

ã233
∆t2

M2
∇·
ñÇ

e
Ä
ξ(l−1), ρ(n,3)

ä
+
ξ(l−1)

ρ(n,3)

å
∇ξ(l)

ô
=

ê(n,3) −M2ρ(n,3)k(n,3,l) −
c̃v
(
T
(
ξ(l−1), ρ(n,3)

))
R̃g

ã
(
T
(
ξ(l−1), ρ(n,3)

)) (
ρ(n,3)

)2Ä
1− ρ(n,3)b̃r1

ä Ä
1− ρ(n,3)b̃r2

ä Ä1− ρ(n,3)b̃
ä

−

ρ(n,3)

b̃

ï
ã
Ä
T
Ä
ξ(l−1), ρ(n,3)

ää
− T

Ä
ξ(l−1), ρ(n,3)

ä dã
dT

Ä
ξ(l−1), ρ(n,3)

äò
U
Ä
ρ(n,3)

ä
−

ã33∆t∇·
ñÇ

e
Ä
ξ(l−1), ρ(n,3)

ä
+
ξ(l−1)

ρ(n,3)

å
m(n,3)

ô
. (3.87)

After the weights step (see (A.104) in Appendix A.5), one considers now the
diffusive part of the Navier-Stokes equations that will be treated with an operator
splitting technique. Notice that at this stage, the computation of the density is
completed and, therefore, ρn+1 is available. For the sake of clarity, we denote with
∼ the quantities computed in this part of the scheme. The discretization of the
viscous terms is carried out by the implicit part of the IMEX method previously
described:

ρn+1ũ(n,2) − ã22
∆t

Re
∇·
ï(
∇ũ+∇ũT

)
− 2

3
(∇ · ũ)I

ò(n,2)
= m̃(n,2)

ρn+1Ẽ(n,2) − ã22
∆tM2

Re
∇·
ï(
∇ũ+∇ũT

)
ũ− 2

3
(∇ · ũ)ũ

ò(n,2)
− ã22

∆t

PrRe
∆T̃ (n,2) = ẽ(n,2), (3.88)

where we have set

m̃(n,2) = ρn+1ũ(n,1) + ã21
∆t

Re
∇·
ï(
∇ũ+∇ũT

)
− 2

3
(∇ · ũ)I

ò(n,1)
(3.89)

ẽ(n,2) = ρn+1Ẽ(n,1)

+ ã21
∆tM2

Re
∇·
ï(
∇ũ+∇ũT

)
ũ− 2

3
(∇ · ũ)ũ

ò(n,1)
+ ã21

∆t

PrRe
∆T̃ (n,1).

Notice that the momentum equation in (3.88) is decoupled from the energy equa-
tion and can be solved independently, so that in a subsequent step the equation
for Ẽ(n,2) can be solved using temperature as an unknown. It is worth to mention
that, in case dã

dT
̸= 0 or dc̃v

dT
̸= 0, for the cubic EOS, we end up with a non-linear
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Chapter 3. Numerical methods for two-phase flows

equation. The following fixed point procedure is considered: setting ξ(0) = T̃ (n,1),
one solves for l = 1, . . . , L

c̃v
Ä
ξ(l)
ä
ξ(l+1) +

ã
(
ξ(l)

)
− ξ(l+1) dã

dT

(
ξ(l)

)
b̃

−ã22
∆tM2

Re
∇·
ï(
∇ũ+∇ũT

)
ũ− 2

3
(∇ · ũ)ũ

ò(n,2)
−ã22

∆t

PrRe
∆ξ(l+1) = ẽ(n,2). (3.90)

For the third stage, one can write formally

ρn+1ũ(n,3) − ã33
∆t

Re
∇·
ï(
∇ũ+∇ũT

)
− 2

3
(∇ · ũ)I

ò(n,3)
= m̃(n,3)

ρn+1Ẽ(n,3) − ã33
∆tM2

Re
∇·
ï(
∇ũ+∇ũT

)
ũ− 2

3
(∇ · ũ)ũ

ò(n,3)
(3.91)

− ã33
∆t

PrRe
∆T̃ (n,3) = ẽ(n,3),

where the right-hand sides are defined as

m̃(n,3) = ρn+1ũ(n,1) + ã31
∆t

Re
∇·
ï(
∇ũ+∇ũT

)
− 2

3
(∇ · ũ)I

ò(n,1)
+ ã32

∆t

Re
∇·
ï(
∇ũ+∇ũT

)
− 2

3
(∇ · ũ)I

ò(n,2)
(3.92)

ẽ(n,3) = ρn+1Ẽ(n,1)

+ ã31
∆tM2

Re
∇·
ï(
∇ũ+∇ũT

)
ũ− 2

3
(∇ · ũ)ũ

ò(n,1)
+ ã32

∆tM2

Re
∇·
ï(
∇ũ+∇ũT

)
ũ− 2

3
(∇ · ũ)ũ

ò(n,2)
+ ã31

∆t

PrRe
∆T̃ (n,1) + ã32

∆t

PrRe
∆T̃ (n,2).

Again, the momentum equation in (3.91) is decoupled from the energy equa-
tion and can be solved independently, so that in a subsequent step the equation
for Ẽ(n,3) can be solved using temperature as an unknown. Finally, since the
TR-BDF2 method is a stiffly accurate method and, therefore, the last stage is
actually equal to the update solution [Burrage and Tian, 2001], one sets

un+1 = ũ(n,3) En+1 = Ẽ(n,3) (3.93)

and the computation of the n−th time step is therefore completed with the update
of the pressure according to the obtained density and temperature.

Let us focus now on the spatial discretization. We then denote by φi(x) the
basis functions for the space Qr and by ψi(x) the basis functions for the space
Qr, the finite element spaces chosen for the discretization of the velocity and of
the pressure (as well as the density), respectively.

u ≈
dim(Qr)∑

j=1

uj(t)φj(x) p ≈
dim(Qr)∑

j=1

pj(t)ψj(x). (3.94)
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For what concerns the weak imposition of the boundary conditions, the free-slip
condition for the velocity is imposed by using ghost cells on which the velocity is
set as a reflection of the one inside of the wall [Abdi and Giraldo, 2016], i.e. using
the so-called reflector P = I− 2n⊗ n. This means that the ghost state u− is set
equal to

u− = u+ − 2
(
u+ · n

)
n. (3.95)

However, analogous results are obtained by means of a strong imposition of the
boundary condition. Given these definitions, the weak formulation for the mo-
mentum equation of the second stage (3.70) reads as follows:∑

K∈Th

∫
K

ρ(n,2)u(n,2) · vdΩ

−
∑
K∈Th

∫
K

ã22
∆t

M2
p(n,2)∇ · vdΩ +

∑
F∈E

∫
F

ã22
∆t

M2

¶¶
p(n,2)

©©
[[v]] dΣ

=
∑
K∈Th

∫
K

ρnun · vdΩ−
∑
K

∫
K

a21
∆t

Fr2
ρnk · vdΩ

+
∑
K∈Th

∫
K

a21∆t (ρ
nun ⊗ un) : ∇vdΩ +

∑
K∈Th

∫
K

ã21
∆t

M2
pn∇ · vdΩ

−
∑
F∈E

∫
F

a21∆t {{ρnun ⊗ un}} : ⟨⟨v⟩⟩ dΣ

−
∑
F∈E

∫
F

ã21
∆t

M2
{{pn}} [[v]] dΣ

−
∑
F∈E

∫
F

a21∆t
λ(n,1)

2
⟨⟨ρnun⟩⟩ : ⟨⟨v⟩⟩ dΣ, (3.96)

where
λ(n,1) = max

(∣∣∣un+ · n+
∣∣∣ , ∣∣∣un− · n−

∣∣∣) . (3.97)

One can notice that centered flux has been employed as numerical flux for the
quantities defined implicitly, whereas an upwind flux has been used for the quan-
tities computed explicitly. In view of the implicit coupling between the momentum
and the energy equations, we need to derive the algebraic formulation of (3.96)
in order to formally substitute the degrees of freedom of the velocity into the al-
gebraic formulation of the energy equation. We take v = φi, i = 1, . . . , dim(Qr)
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and we exploit the representation introduced above to obtain

∑
K∈Th

∫
K

ρ(n,2)
dim(Vr)∑

j=1

u
(n,2)
j φj ·φidΩ−

∑
K∈Th

∫
K

ã22
∆t

M2

dim(Qr)∑
j=1

p
(n,2)
j ψj∇ ·φidΩ

+
∑
F∈E

∫
F

ã22
∆t

M2

dim(Qr)∑
j=1

p
(n,2)
j {{ψj}} [[φi]] dΣ

=
∑
K∈Th

∫
K

ρnun ·φidΩ−
∑
K∈Th

∫
K

a21
∆t

Fr2
ρnk ·φidΩ

+
∑
K∈Th

∫
K

a21∆t (ρ
nun ⊗ un) : ∇φidΩ +

∑
K∈Th

∫
k

ã21
∆t

M2
pn∇ ·φidΩ

−
∑
F∈E

∫
F

a21∆t {{ρnun ⊗ un}} : ⟨⟨φi⟩⟩ dΣ

−
∑
F∈E

∫
F

ã21
∆t

M2
{{pn}} [[φi]] dΣ

−
∑
F∈E

∫
F

a21∆t
λ(n,1)

2
⟨⟨ρnun⟩⟩ : ⟨⟨φi⟩⟩ dΣ, (3.98)

which can be written in compact form as

A(n,2)U(n,2) +B(n,2)P(n,2) = F(n,2) (3.99)

where we have set

A
(n,2)
ij =

∑
K∈Th

∫
K

ρ(n,2)φj ·φidΩ (3.100)

B
(n,2)
ij =

∑
K∈Th

∫
K

−ã22
∆t

M2
∇ ·φiψjdΩ +

∑
F∈E

∫
F

ã22
∆t

M2
{{ψj}} [[φi]] dΣ(3.101)

with U(n,2) denoting the vector of the degrees of freedom associated to the velocity
field and P(n,2) denoting the vector of the degrees of freedom associated to the
pressure. Consider now the weak formulation for the energy equation of the second
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stage (3.70)∑
K∈Th

∫
K

ρ(n,2)E(n,2)wdΩ−
∑
K∈Th

∫
K

ã22∆th
(n,2)ρ(n,2)u(n,2) · ∇wdΩ

+
∑
F∈E

∫
F

ã22∆t
¶¶
h(n,2)ρ(n,2)u(n,2)

©©
· [[w]] dΣ

=
∑
K∈Th

∫
K

ρnEnwdΩ−
∑
K∈Th

∫
K

a21
∆tM2

Fr2
ρnk · unwdΩ

+
∑
K∈Th

∫
K

a21∆tM
2 (knρnun) · ∇wdΩ +

∑
K∈Th

∫
K

ã21∆t (h
nρnun) · ∇wdΩ

−
∑
F∈E

∫
F

a21∆tM
2 {{knρnun}} · [[w]] dΣ

−
∑
F∈E

∫
F

ã21∆t {{hnρnun}} · [[w]] dΣ

−
∑
F∈E

∫
F

a21∆t
λ(n,1)

2
[[ρnEn]] · [[w]] dΣ. (3.102)

Notice that, while the fully discrete formulation is presented here for the case of
an ideal gas, in the more general case it has to be modified properly as already
shown in (3.77) for the semi-discrete formulation. Take w = ψi and consider the
expansion for u(n,2) in (3.102) to get

∑
K∈Th

∫
K

ρ(n,2)E(n,2)ψidΩ−
∑
K∈Th

∫
K

ã22∆th
(n,2)ρ(n,2)

dim(Vr)∑
j=1

u
(n,2)
j φj · ∇ψidΩ

+
∑
F∈E

∫
F

ã22∆t

dim(Vr)∑
j=1

u
(n,2)
j

¶¶
h(n,2)ρ(n,2)φj

©©
· [[ψi]] dΣ

=
∑
K∈Th

∫
K

ρnEnψidΩ−
∑
K∈Th

∫
K

a21
∆tM2

Fr2
ρnk · unψidΩ

+
∑
K∈Th

∫
K

a21∆tM
2 (knρnun) · ∇ψidΩ +

∑
K∈Th

∫
K

ã21∆t (h
nρnun) · ∇ψidΩ

−
∑
F∈E

∫
F

a21∆tM
2 {{knρnun}} · [[ψi]] dΣ

−
∑
F∈E

∫
F

ã21∆t {{hnρnun}} · [[ψi]] dΣ

−
∑
F∈E

∫
F

a21∆t
λ(n,1)

2
[[ρnEn]] · [[ψi]] dΣ, (3.103)

which can be expressed in compact form as

C(n,2)U(n,2) = G(n,2) (3.104)
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where we have set

C
(n,2)
ij =

∑
K∈Th

∫
K

−ã22∆th(n,2)ρ(n,2)φj · ∇ψidΩ

+
∑
F∈E

∫
F

ã22∆t
¶¶
h(n,2)ρ(n,2)φj

©©
· [[ψi]] dΣ. (3.105)

Formally we can then derive U(n,2) = (A(n,2))−1
(
F(n,2) −B(n,2)P(n,2)

)
and obtain

the following relation

C(n,2)(A(n,2))−1
Ä
F(n,2) −B(n,2)P(n,2)

ä
= G(n,2). (3.106)

Taking into account that

ρ(n,2)E(n,2) = ρ(n,2)e(n,2)(p(n,2)) +M2ρ(n,2)k(n,2), (3.107)

we finally obtain

C(n,2)(A(n,2))−1
Ä
F(n,2) −B(n,2)P(n,2)

ä
= −D(n,2)P(n,2) + G̃(n,2) (3.108)

where we have set

D
(n,2)
ij =

∑
K∈Th

∫
K

ρ(n,2)e(n,2)(ψj)ψi =
∑
K∈Th

∫
K

1

γ − 1
ψjψidΩ (3.109)

and G̃(n,2) takes into account all the other terms (the one at previous stage and
the kinetic energy). As mentioned above, the discrete formulation has to take into
account the choice of the EOS. For the sake of clarity, we report for the present
stage the expression of the entries of the matrix D obtained by considering the
general cubic equation of state:

D
(n,2)
ij =

∑
K∈Th

∫
K

Ä
1− ρ(n,2)b̃

ä c̃v (T (
ξ, ρ(n,2)

))
R̃g

ψjψidΩ. (3.110)

The system (3.108) can be solved in terms of P(n,2) according to the fixed point
procedure described in [Dumbser and Casulli, 2016]. More specifically, setting
P(n,2,0) = P(n,1), k(n,2,0) = k(n,1), for l = 1, . . . , L one solves the equationÄ

D(n,2,l−1) −C(n,2,l−1)(A(n,2))−1B(n,2)
ä
P(n,2,l) = G̃(n,2,l−1) (3.111)

− C(n,2,l−1)(A(n,2))−1F(n,2,l−1)

and updates the velocity solving

A(n,2)U(n,2,l) = F(n,2,l−1) −B(n,2)P(n,2,l). (3.112)

For the third stage, we proceed in a similar manner. We start with the weak
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formulation of the momentum equation in (3.78):∑
K∈Th

∫
K

ρ(n,3)u(n,3) · vdΩ

−
∑
K∈Th

∫
K

ã33
∆t

M2
p(n,3)∇ · vdΩ +

∑
F∈E

∫
F

ã33
∆t

M2

¶¶
p(n,3)

©©
[[v]] dΣ

=
∑
K∈Th

∫
K

ρnun · vdΩ−
∑
K∈Th

∫
K

a31
∆t

Fr2
ρnk · vdΩ−

∑
K∈Th

∫
K

a32
∆t

Fr2
ρ(n,2)k · vdΩ

+
∑
K∈Th

∫
K

a31∆t (ρ
nun ⊗ un) : ∇vdΩ +

∑
K∈Th

∫
K

ã31
∆t

M2
pn∇ · vdΩ

+
∑
K∈Th

∫
K

a32∆t
Ä
ρ(n,2)u(n,2) ⊗ u(n,2)

ä
: ∇vdΩ +

∑
K∈Th

∫
K

ã32
∆t

M2
p(n,2)∇ · vdΩ

−
∑
F∈E

∫
F

a31∆t {{ρnun ⊗ un}} : ⟨⟨v⟩⟩ dΣ

−
∑
F∈E

∫
F

ã31
∆t

M2
{{pn}} [[v]] dΣ

−
∑
F∈E

∫
F

a32∆t
¶¶
ρ(n,2)u(n,2) ⊗ u(n,2)

©©
: ⟨⟨v⟩⟩ dΣ

−
∑
F∈E

∫
F

ã32
∆t

M2

¶¶
p(n,2)

©©
[[v]] dΣ

−
∑
F∈E

∫
F

a31∆t
λ(n,1)

2
⟨⟨ρnun⟩⟩ : ⟨⟨v⟩⟩ dΣ

−
∑
F∈E

∫
F

a32∆t
λ(n,2)

2

¨¨
ρ(n,2)u(n,2)

∂∂
: ⟨⟨v⟩⟩ dΣ, (3.113)

where
λ(n,2) = max

(∣∣∣u(n,2)+ · n+
∣∣∣ , ∣∣∣u(n,2)− · n−

∣∣∣) (3.114)

is employed for the upwind flux. Now, taking v = φi and exploiting the repre-
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sentation of u(n,3) and p(n,3), we obtain the following relation:

∑
K∈Th

∫
K

ρ(n,3)
dim(Qr)∑

j=1

u
(n,3)
j φj ·φidΩ−

∑
K∈Th

∫
K

ã33
∆t

M2

dim(Qr)∑
j=1

p
(n,3)
j ψj∇ ·φidΩ

+
∑
F∈E

∫
F

ã33
∆t

M2

dim(Qr)∑
j=1

p
(n,3)
j {{ψj}} [[φi]] dΣ

=
∑
K∈Th

∫
K

ρnun ·φidΩ−
∑
K∈Th

∫
K

a31
∆t

Fr2
ρnk ·φidΩ−

∑
K∈Th

∫
K

a32
∆t

Fr2
ρ(n,2)k ·φidΩ

+
∑
K∈Th

∫
K

a31∆t (ρ
nun ⊗ un) : ∇φidΩ +

∑
K∈Th

∫
K

ã31
∆t

M2
pn∇ ·φidΩ

+
∑
K∈Th

∫
K

a32∆t
Ä
ρ(n,2)u(n,2) ⊗ u(n,2)

ä
: ∇φidΩ +

∑
K∈Th

∫
K

ã32
∆t

M2
p(n,2)∇ ·φidΩ

−
∑
F∈E

∫
F

a31∆t {{ρnun ⊗ un}} : ⟨⟨φi⟩⟩ dΣ

−
∑
F∈E

∫
F

ã31
∆t

M2
{{pn}} [[φi]] dΣ

−
∑
F∈E

∫
F

a32∆t
¶¶
ρ(n,2)u(n,2) ⊗ u(n,2)

©©
: ⟨⟨φi⟩⟩ dΣ

−
∑
F∈E

∫
F

ã32
∆t

M2

¶¶
p(n,2)

©©
[[φi]] dΣ

−
∑
F∈E

∫
F

a31∆t
λ(n,1)

2
⟨⟨ρnun⟩⟩ : ⟨⟨φi⟩⟩ dΣ

−
∑
F∈E

∫
F

a32∆t
λ(n,2)

2

¨¨
ρ(n,2)u(n,2)

∂∂
: ⟨⟨φi⟩⟩ dΣ, (3.115)

which can be written in compact form as

A(n,3)U(n,3) +B(n,3)P(n,3) = F(n,3), (3.116)

where we have set

A
(n,3)
ij =

∑
K∈Th

∫
K

ρ(n,3)φj ·φidΩ (3.117)

B
(n,3)
ij =

∑
K∈Th

∫
K

−ã33
∆t

M2
∇ ·φiψjdΩ

+
∑
F∈E

∫
F

ã33
∆t

M2
{{ψj}} [[φi]] dΣ (3.118)

and U(n,3) denotes the vector of the degrees of freedom associated to the velocity
field, whereas P(n,3) denotes the vector of the degrees of freedom associated to the
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3.4. Extension to the single-phase compressible Navier-Stokes equations

pressure. Consider now the weak formulation for the energy equation in (3.78)∑
K∈Th

∫
K

ρ(n,3)E(n,3)wdΩ−
∑
K∈Th

∫
K

ã33∆th
(n,3)ρ(n,3)u(n,3) · ∇wdΩ

+
∑
F∈E

∫
F

ã33∆t
¶¶
h(n,3)ρ(n,3)u(n,3)

©©
· [[w]] dΣ

=
∑
K∈Th

∫
K

ρnEnwdΩ

−
∑
K∈Th

∫
K

a31
∆tM2

Fr2
ρnk · unwdΩ−

∑
K∈Th

∫
K

a32
∆tM2

Fr2
ρ(n,2)k · u(n,2)wdΩ

+
∑
K∈Th

∫
K

a31∆tM
2 (knρnun) · ∇wdΩ +

∑
K∈Th

∫
K

ã31∆t (h
nρnun) · ∇wdΩ

+
∑
K∈Th

∫
K

a32∆tM
2
Ä
k(n,2)ρ(n,2)u(n,2)

ä
· ∇wdΩ +

∑
K∈Th

∫
K

ã32∆t
Ä
h(n,2)ρ(n,2)u(n,2)

ä
· ∇wdΩ

−
∑
F∈E

∫
F

a31∆tM
2 {{knρnun}} · [[w]] dΣ

−
∑
F∈E

∫
F

ã31∆t {{hnρnun}} · [[w]] dΣ

−
∑
F∈E

∫
F

a32∆tM
2
¶¶
k(n,2)ρ(n,2)u(n,2)

©©
· [[w]] dΣ

−
∑
F∈E

∫
F

ã32∆t
¶¶
h(n,2)ρ(n,2)u(n,2)

©©
· [[w]] dΣ

−
∑
F∈E

∫
F

a31∆t
λ(n,1)

2
[[ρnEn]] · [[w]] dΣ

−
∑
F∈E

∫
F

a31∆t
λ(n,1)

2
[[ρnEn]] · [[w]] dΣ

−
∑
F∈E

∫
F

a32∆t
λ(n,2)

2

îî
ρ(n,2)E(n,2)

óó
· [[w]] dΣ. (3.119)
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Chapter 3. Numerical methods for two-phase flows

Take now w = ψi and consider the expansion for u(n,3) so as to obtain

∑
K∈Th

∫
K

ρ(n,3)E(n,3)ψidΩ−
∑
K∈Th

∫
K

ã33∆th
(n,3)ρ(n,3)

dim(Qr)∑
j=1

u
(n,3)
j φj · ∇ψidΩ

+
∑
F∈EI

∫
F

ã33∆t

dim(Qr)∑
j=1

u
(n,3)
j

¶¶
h(n,3)ρ(n,3)φj

©©
· [[ψi]] dΣ

=
∑
K∈Th

∫
K

ρnEnψidΩ

−
∑
K∈Th

∫
K

a31
∆tM2

Fr2
ρnk · unψidΩ−

∑
K∈Th

∫
K

a32
∆tM2

Fr2
ρ(n,2)k · u(n,2)ψidΩ

+
∑
K∈Th

∫
K

a31∆tM
2 (knρnun) · ∇ψidΩ +

∑
K∈Th

∫
K

ã31∆t (h
nρnun) · ∇ψidΩ

+
∑
K∈Th

∫
K

a32∆tM
2
Ä
k(n,2)ρ(n,2)u(n,2)

ä
· ∇ψidΩ +

∑
K∈Th

∫
K

ã32∆t
Ä
h(n,2)ρ(n,2)u(n,2)

ä
· ∇ψidΩ

−
∑
F∈E

∫
F

a31∆tM
2 {{knρnun}} · [[ψi]] dΣ

−
∑
F∈E

∫
F

ã31∆t {{hnρnun}} · [[ψi]] dΣ

−
∑
F∈E

∫
F

a32∆tM
2
¶¶
k(n,2)ρ(n,2)u(n,2)

©©
· [[ψi]] dΣ

−
∑
F∈E

∫
F

ã32∆t
¶¶
h(n,2)ρ(n,2)u(n,2)

©©
· [[ψi]] dΣ

−
∑
F∈E

∫
F

a31∆t
λ(n,1)

2
[[ρnEn]] · [[ψi]] dΣ

−
∑
F∈E

∫
F

a32∆t
λ(n,2)

2

îî
ρ(n,2)E(n,2)

óó
· [[ψi]] dΣ, (3.120)

which can be expressed in compact form as

C(n,3)U(n,3) = G(n,3), (3.121)

where

C
(n,3)
ij =

∑
K∈Th

∫
K

−ã33∆th(n,3)ρ(n,3)φj · ∇ψidΩ

+
∑
F∈E

∫
F

ã33∆t
¶¶
h(n,3)ρ(n,3)φj

©©
· [[ψi]] dΣ. (3.122)

Formally, one can derive U(n,3) = (A(n,3))−1
(
F(n,3) −B(n,3)P(n,3)

)
and obtain the

following relation

C(n,3)(A(n,3))−1
Ä
F(n,3) −B(n,3)P(n,3)

ä
= G(n,3). (3.123)
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3.4. Extension to the single-phase compressible Navier-Stokes equations

Taking into account that ρ(n,3)E(n,3) = ρ(n,3)e(n,3) +M2ρ(n,3)k(n,3), we obtain

C(n,3)(A(n,3))−1
Ä
F(n,3) −B(n,3)P(n,3)

ä
= −D(n,3)P(n,3) + G̃(n,3), (3.124)

where

D
(n,3)
ij =

∑
K∈Th

∫
K

ρ(n,3)e(n,3)(ψj)ψidΩ =

∫
K

1

γ − 1
ΨjΨidΩ (3.125)

and G̃(n,3) takes into account all the other terms (the one at previous stage and
the kinetic energy). We recall once more that the reported discrete formulation
depends on the EOS. As a matter of example, we obtain the following expression
of the matrix D for the general cubic equation of state

D
(n,3)
ij =

∑
K∈Th

∫
K

Ä
1− ρ(n,3)b̃

ä c̃v (T (
ξ, ρ(n,3)

))
R̃g

ψjψidΩ. (3.126)

Again, the system (3.124) is solved by a fixed point procedure. More specifically,
setting P(n,3,0) = P(n,2), k(n,3,0) = k(n,2) for l = 1, . . . , L one solves the equationÄ

D(n,3,l−1) −C(n,3,l−1)(A(n,3))−1B(n,3)
ä
P(n,3,l) = G̃(n,3,l−1) (3.127)

− C(n,3,l−1)(A(n,3))−1F(n,2,l−1)

and then updates the velocity solving

A(n,3)U(n,3,l) = F(n,3,l−1) −B(n,3)P(n,3,l). (3.128)

Once the iterations have been completed, one sets u(n,3) = u(n,3,L) and E(n,3)

accordingly. After the weights step, one proceeds to the implicit discretization
of the viscous terms, which, as already mentioned, is carried out by the implicit
part of the IMEX method described above and is analogous to the discretization
presented in Section 3.3. For the sake of completeness, we report here the weak
formulation for the bilinear form of the momentum balance reported in (3.88):

B (ũ,v) =
∑
K∈Th

∫
K

ρn+1ũ · vdΩ

+ ã22
∆t

Re

∑
K∈Th

∫
K

ï
∇ũ+∇ũT − 2

3
(∇· ũ) I

ò
: ∇vdΩ

− ã22
∆t

Re

∑
F∈E

∫
F

ßß
∇ũ+∇ũT − 2

3
(∇· ũ) I

™™
: ⟨⟨v⟩⟩ dΣ(3.129)

− ã22
∆t

Re

∑
F∈E

∫
F

⟨⟨ũ⟩⟩ :
ßß

∇v +∇vT − 2

3
(∇·v) I

™™
dΣ

+ ã22
∆t

Re

∑
F∈E

∫
F

C ⟨⟨ũ⟩⟩ : ⟨⟨v⟩⟩ dΣ.

The remaining formulations are obtained in an analogous manner. We would like
to stress that the method outlined above does not require to introduce reference
solutions, does not introduce inconsistencies in the splitting and only requires the
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Chapter 3. Numerical methods for two-phase flows

solution of linear systems of a size equal to that of the number of discrete degrees
of freedom needed to describe a scalar variable, as in [Dumbser and Casulli, 2016].
This contrasts with other low Mach approaches based on IMEX methods, such
as e.g. the technique proposed for the Euler equations in [Zeifang et al., 2019].
The proposed approach has been validated in a number of benchmarks reported
in Section 4.3 and Section 4.4.

3.5 Two-phase system

In recent years, weakly compressible two-phase flows have been finding their way
in the literature with both phases governed by compressible equations and a num-
ber of numerical studies have been devoted to this configuration, see [Kuhn and
Desjardins, 2021, Demou et al., 2022, Re and Abgrall, 2022]. The system (2.149)
can be expressed in the following vector form

∂Q

∂t
+∇·F (Q) +G (Q)∇α1 = S (Q) , (3.130)

with

Q =



α1

α1ρ1
α1ρ1u1

α1ρ1E1

α2ρ2
α2ρ2u2

α2ρ1E2


F (Q) =



0T

α1ρ1u
T
1

α1ρ1u1 ⊗ u1 +
1

M2
1
α1p1I

α1ρ1u
T
1 (h1 +M2

1k1)
α2ρ2u

T
2

α2ρ2u2 ⊗ u2 +
1

M2
2
α2p2I

α2ρ2u
T
2 (h2 +M2

2k2)


G (Q) =



vT
I

0
− 1

M2
1
pII

−pIvT
I

0
1

M2
1

1
ρrel

pII
M2

2

M2
1

1
ρrel

pIv
T
I


and

S (Q) =



µ̃
Ä
p1 − p2ρrel

M2
1

M2
2

ä
0

−λ̃ (u1 − u2)

−µ̃pI
Ä
p1 − p2ρrel

M2
1

M2
2

ä
− λ̃M2

1vI · (u1 − u2)

0
λ̃

ρrel
(u1 − u2)

µ̃
ρrel

M2
2

M2
1
pI
Ä
p1 − p2ρrel

M2
1

M2
2

ä
+ λ̃

ρrel
M2

2vI · (u1 − u2)


.

The main difference between the system (2.149) and (3.67) consists of the presence
of the non-conservative terms G (Q)∇α1 which define the coupling between the
two phases. In this Section, we provide an original extension of the IMEX scheme
introduced above for system (2.149). Notice that we are considering only the
hyperbolic operator for the sake of simplicity, and we give suitable strategies for
the discretization of the advection equation of the volume fraction and for the
numerical treatment of the non-conservatives terms. These approaches stem from
an analysis to preserve uniform fields in the framework of the proposed numerical
scheme.
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3.5. Two-phase system

3.5.1 Discretization of the hyperbolic operator and preservation of
uniform fields

For each time step, we consider the discretization of the hyperbolic terms of
system (2.149). We need to specify how to deal with the non-conservative terms
and the time discretization of the advection equation for the volume fraction
α1. We will focus on the treatment of non-conservative terms in the forthcoming
Section 3.5.2, whereas we discuss now the time discretization of the equation for
the volume fraction. One would be tempted to consider an explicit treatment of
the advection equation for α1 in analogy to the discretization of the continuity
equation in Section 3.4 so as to obtain for the second stage

α
(n,2)
1 = αn

1 − a21∆tv
n
I · ∇αn

1 . (3.131)

However, as we will show in a while, this approach does not comply with the non-
disturbance condition for velocity and pressure [Abgrall, 1996, Re and Abgrall,
2022], which prescribes that the numerical method should not induce variations
in velocity and pressure in the case of spatially uniform initial data. The non-
disturbance condition represents indeed an elementary form of consistency and
well-balancing. Analogous analyses have been performed for other physical prob-
lems, such as free-surface models, see e.g. [Gross et al., 2002], or shallow water
equations, see e.g. [Chalons and Del Grosso, 2022].
We recall here for the sake of convenience in the analysis the employed semi-
discretization for the continuity equation of phase 1, which is completely analogous
to those presented in (3.74) and reads as follows:

α
(n,2)
1 ρ

(n,2)
1 = αn

1ρ
n
1 − a21∆t∇· (αn

1ρ
n
1u

n
1 ) . (3.132)

Since, in case of spatially uniform velocity and pressure, p1 = p2 = pI and u1 =
u2 = vI , the terms 1

M2
1
∇· (α1p1I)− 1

M2
1
pII∇α1 and ∇· (α1p1u1)−pIvI ·∇α1 in the

momentum and energy balance in (2.149), respectively, have to be identically equal
to zero. First of all, as a result of these considerations, the semi-discretization of
the momentum balance reduces to

α
(n,2)
1 ρ

(n,2)
1 u

(n,2)
1 = αn

1ρ
n
1u

n
1 − a21∆t∇· (αn

1ρ
n
1u

n
1 ⊗ un

1 ) . (3.133)

Thanks to (3.132), it follows that u
(n,2)
1 = un

1 independently on the time advancing

of α
(n,2)
1 . We then consider the semi-discretization of the energy balance for phase

1. Recalling that h1 = e1+p1/ρ1 and using the fact that∇· (α1p1u1)−pIvI ·∇α1 =
0, the semi-discretization of the energy balance for phase 1 reduces to

α
(n,2)
1 ρ

(n,2)
1 E

(n,2)
1 + ã22∆t∇·

Ä
α
(n,2)
1 ρ

(n,2)
1 e

(n,2)
1 u

(n,2)
1

ä
= (3.134)

αn
1ρ

n
1E

n
1 − ã21∆t∇· (αn

1ρ
n
1e

n
1u

n
1 )− a21∆tM

2
1 ∇· (αn

1k
n
1ρ

n
1u

n
1 ) .

Recalling then that ρ1E1 = ρ1e1 +M2
1ρ1k1, we obtain

α
(n,2)
1 ρ

(n,2)
1 e

(n,2)
1 +M2

1α
(n,2)
1 ρ

(n,2)
1 k

(n,2)
1 + ã22∆t∇·

Ä
α
(n,2)
1 ρ

(n,2)
1 e

(n,2)
1 u

(n,2)
1

ä
=

αn
1ρ

n
1e

n
1 +M2

1α
n
1ρ

n
1k

n
1 − ã21∆t∇· (αn

1ρ
n
1e

n
1u

n
1 )− a21∆tM

2
1 ∇· (αn

1k
n
1ρ

n
1u

n
1 ) . (3.135)
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Chapter 3. Numerical methods for two-phase flows

Thanks to the continuity equation (3.132) and to the assumption that the velocity
field is uniform in space, we obtain

α
(n,2)
1 ρ

(n,2)
1 e

(n,2)
1 + ã22∆t∇·

Ä
α
(n,2)
1 ρ

(n,2)
1 e

(n,2)
1 u

(n,2)
1

ä
=

αn
1ρ

n
1e

n
1 − ã21∆t∇· (αn

1ρ
n
1e

n
1u

n
1 ) . (3.136)

Considering then for the sake of simplicity the equation of state of an ideal gas
(2.210), we obtain from (3.136)

1

γ1 − 1
α
(n,2)
1 p

(n,2)
1 +

ã22∆t

γ1 − 1
∇·
Ä
α
(n,2)
1 p

(n,2)
1 u

(n,2)
1

ä
=

1

γ1 − 1
αn
1p

n
1 −

ã21∆t

γ1 − 1
∇· (αn

1p
n
1u

n
1 ) . (3.137)

Since we are considering a spatial uniform pressure, the terms related to the
pressure can be simplified so as to obtain the following discretization for the
volume fraction:

α
(n,2)
1 = αn

1 − ã22∆tv
n
I · ∇α(n,2)

1 − ã21∆tv
n
I · ∇αn

1 , (3.138)

where we exploit once more the uniformity of the velocity in order to recover the
interfacial velocity. The semi-discretization (3.138) is therefore the only formula-
tion that complies with the non-disturbance condition in contrast to (3.131) and
results in a semi-implicit treatment of the volume fraction with linearization on
the velocity. Finally, since we have 1/M2

k , k = 1, 2 in front of the pressure inter-
face pI in (2.149), we treat the non-conservative terms implicitly. Hence, for the
second stage, one can write formally

α
(n,2)
1 = αn

1 − ã22∆tv
n
I · ∇α(n,2)

1 − ã21∆tv
n
I · ∇αn

1

α
(n,2)
1 ρ

(n,2)
1 = αn

1ρ
n
1 − a21∆t∇· (αn

1ρ
n
1u

n
1 )

α
(n,2)
1 ρ

(n,2)
1 u

(n,2)
1 + ã22

∆t

M2
1

∇
Ä
α
(n,2)
1 p

(n,2)
1

ä
− ã22

∆t

M2
1

p
(n,2)
I ∇α(n,2)

1 = m
(n,2)
1

α
(n,2)
1 ρ

(n,2)
1 E

(n,2)
1 + ã22∆t∇·

Ä
α
(n,2)
1 h

(n,2)
1 ρ

(n,2)
1 u

(n,2)
1

ä
− ã22∆tp

(n,2)
I v

(n,2)
I · ∇α(n,2)

1 = ê
(n,2)
1

α
(n,2)
2 = 1− α

(n,2)
1 (3.139)

α
(n,2)
2 ρ

(n,2)
2 = αn

2ρ
n
2 − a21∆t∇· (αn

2ρ
n
2u

n
2 )

α
(n,2)
2 ρ

(n,2)
2 u

(n,2)
2 + ã22

∆t

M2
2

∇
Ä
α
(n,2)
2 p

(n,2)
2

ä
+ ã22

∆t

M2
2

1

ρrel
p
(n,2)
I ∇α(n,2)

1 = m
(n,2)
2

α
(n,2)
2 ρ

(n,2)
2 E

(n,2)
2 + ã22∆t∇·

Ä
α
(n,2)
2 h

(n,2)
2 ρ

(n,2)
2 u

(n,2)
2

ä
+ ã22∆t

M2
2

M2
1

1

ρrel
p
(n,2)
I v

(n,2)
I · ∇α(n,2)

1 = ê
(n,2)
2 ,
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where we have set

m
(n,2)
1 = αn

1ρ
n
1u

n
1

− a21∆t∇· (αn
1ρ

n
1u

n
1 ⊗ un

1 )− ã21
∆t

M2
1

∇ (αn
1p

n
1 ) + ã21

∆t

M2
1

pnI∇αn
1

ê
(n,2)
1 = αn

1ρ
n
1E

n
1 (3.140)

− ã21∆t∇· (αn
1h

n
1ρ

n
1u

n
1 )− a21∆tM

2
1 ∇· (αn

1k
n
1ρ

n
1u

n
1 )

+ ã21∆tp
n
Iv

n
I · ∇αn

1

m
(n,2)
2 = αn

2ρ
n
2u

n
2

− a21∆t∇· (αn
2ρ

n
2u

n
2 ⊗ un

2 )− ã21
∆t

M2
2

∇ (αn
2p

n
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− ã21∆t∇· (αn
2h
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n
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2 )
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1 .

In analogy to what we presented in Section 3.4, we formally substitute α
(n,2)
1 ρ

(n,2)
1 u

(n,2)
1

and α
(n,2)
2 ρ

(n,2)
2 u

(n,2)
2 into the corresponding energy balance so as to obtain the two

non-linear relations for the pressures p
(n,2)
1 and p

(n,2)
2 . More specifically, we obtain

α
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1 ρ

(n,2)
1

î
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1 , ρ
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1 ) +
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ρ
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∇
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1 p
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äô
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∆t2
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∇·
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1 ) +
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ρ
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1

å
p
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I ∇α(n,2)

1

ô
(3.142)

+ ã22∆t∇·
ñÇ

e1(p
(n,2)
1 , ρ

(n,2)
1 ) +

p
(n,2)
1

ρ
(n,2)
1

å
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(n,2)
1

ô
= ê

(n,2)
1

in terms of p
(n,2)
1 and

α
(n,2)
2 ρ

(n,2)
2

î
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2 , ρ
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å
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(3.143)

+ ã22∆t∇·
ñÇ

e2(p
(n,2)
2 , ρ

(n,2)
2 ) +

p
(n,2)
2

ρ
(n,2)
2

å
m

(n,2)
2

ô
= ê

(n,2)
2

in terms of p
(n,2)
2 . The non-linear equations (3.142) and (3.143) are then solved

according to the fixed point procedure introduced in Section 3.4. More in detail,
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setting ξ
(0)
1 = p

(n,1)
1 , k

(n,2,0)
1 = k

(n,1)
1 , one solves for l = 1, . . . , L the equation

α
(n,2)
1 ρ
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1

î
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(3.144)

+ ã22∆t∇·
ñÇ

e1(ξ
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1 , ρ

(n,2)
1 ) +

ξ
(n,2,l−1)
1

ρ
(n,2)
1

å
m

(n,2)
1

ô
= ê

(n,2)
1

and updates the velocity as

α
(n,2)
1 ρ

(n,2)
1 u

(n,2,l)
1 +ã22

∆t

M2
1

∇
Ä
α
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p
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1 . (3.145)

On the other hand, setting ξ
(0)
2 = p

(n,1)
2 , k

(n,2,0)
2 = k

(n,1)
2 , one solves for l = 1, . . . , L

the equation

α
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2
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(3.146)

+ ã22∆t∇·
ñÇ

e2(ξ
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(n,2)
2 ) +

ξ
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2
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2

å
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and updates the velocity as
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The third stage can be expressed in a similar manner. We report the semi-
discretized relations for the sake of completeness:

α
(n,3)
1 = αn

1 − ã33∆tv
(n,2)
I · ∇α(n,3)

1 − ã32∆tv
(n,2)
I · α(n,2)

1 − ã31∆tv
n
I · ∇αn

1

α
(n,3)
1 ρ

(n,3)
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1ρ
n
1 − a32∆t∇·

Ä
α
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ä
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n
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1 (3.148)
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Chapter 3. Numerical methods for two-phase flows

where we have set

m
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Again, after the coupling between the momentum balances and the energy bal-

ances, we obtain the following two non-linear equations for p
(n,3)
1 and p

(n,3)
2 , re-

spectively:
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Setting ξ
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1 , one solves for l = 1, . . . , L the equation
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Finally, setting ξ
(0)
2 = p
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2 , k
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2 = k
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2 , one solves for l = 1, . . . , L the equation
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and updates the velocity as
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The spatial discretization of the conservative part is analogous to the one described
in Section 3.4, so that we will focus in the next Section on the spatial discretization
of the non-conservative terms.

3.5.2 Treatment of non-conservative terms

In this Section, we analyze the treatment of non-conservative terms for system
(2.149). We start by analyzing the discretization of the term ∇α1 in the advec-
tion equation for the volume fraction. Following [Bassi and Rebay, 1997a], the
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numerical approximation is based on a double integration by parts. We define
the discrete gradient of the volume fraction as the unique element ∇̃α1 ∈ Qr for
which:∫

K

vI · ∇̃α1φdΩ =

∫
K

∇· (α1vI)φdΩ−
∫
K

(∇·vI)α1φdΩ

= −
∫
K

α1vI · ∇φdΩ +

∫
∂K

‘α1vI · nφdΣ

+

∫
K

vI · ∇ (α1φ) dΩ−
∫
∂K

“vIα1 · nφdΣ (3.157)

=

∫
K

vI · ∇α1φdΩ +

∫
∂K

(‘vIα1 − “vIα1

)
· nφdΣ ∀φ ∈ Qr.

This approach guarantees, as expected, a null contribution from the non-conservative
terms in the case of uniform volume fraction, for which ‘vIα1 = “vIα1. Hence, as
observed in [Bassi and Rebay, 1997a] and remarked in [Tumolo and Bonaventura,
2015], it is possible to recast the non-conservative terms into the sum of two con-
tributions: the first one takes into account the elementwise gradient of α1, whereas
the second one considers its jumps across the element faces. Following the same
path, one defines:∫

K

Gjl
∂̃α1

∂xl
φjdΩ =

∫
K

∂

∂xl
(Gjlα1)φjdΩ−

∫
K

∂Gjl

∂xl
α1φjdΩ
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∫
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∂φj

∂xl
dΩ +

∫
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+

∫
K
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∂ (α1φj)

∂xl
dΩ−

∫
∂K

”Gjlα1φjnldΣ (3.158)

=

∫
K

Gjl
∂α1

∂xl
φjdΩ +

∫
∂K

Ä’Gjlα1 −”Gjlα1

ä
φjnldΣ.

We report now the algebraic formulation of the linear system associated to the
advection of the volume fraction (3.138) obtained using (3.157) for the non-
conservative terms. We get

L(n,2)α(n,2) = Vn, (3.159)

where

L
(n,2)
ij =

∑
K∈Th

∫
K

(φj + ã22∆tv
n
I · ∇φj)φidΩ (3.160)

+
∑
F∈E

∫
F

‘vn
Iφj · [[φi]] dΣ−

∑
F∈E

∫
F

v̂n
I · [[φjφi]] dΣ

V n
i =

∑
K∈Th

∫
K

vn
I · ∇αn

1φidΩ (3.161)

+
∑
F∈E

∫
F

’vn
Iα

n
1 · [[φi]] dΣ−

∑
F∈E

∫
F

v̂n
I · [[αn

1φi]] dΣ

and α(n,2) denotes the degrees of freedom associated to the discretization of the
volume fraction. An alternative approach would be to consider a single integration
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by parts for the non-conservative terms, namely:∫
K

Gjl
∂̃α1

∂xl
φjdΩ = −

∫
K

α1
∂

∂xl
(Gjlφj) dΩ +

∫
∂K

α̂1GjlφjnldΣ (3.162)

= −
∫
K

α1
∂Gjl

∂xl
φjdΩ−

∫
K

α1Gjl
∂φj

∂xl
dΩ +

∫
∂K

α̂1GjlφjnldΣ.

The relation (3.162) does not guarantee zero contribution from the non-conservative
terms in the case of uniform volume fraction. However, it is consistent with the
non-disturbance condition. Consider indeed the term 1

M2
1
∇ (α1p1) − 1

M2
1
pI∇α1,

whose discretization in case of uniform pressure should be identically equal to
zero. Hence, we obtain the following relation:∫

K

1

M2
1

∇ (α1p1) ·φdΩ−
∫
K

1

M2
1

pI∇̃α1 ·φ =

−
∫
K

1

M2
1

α1p1∇·φdΩ +

∫
∂K

1

M2
1

‘α1p1n ·φdΣ (3.163)

+

∫
K

1

M2
1

α1∇pI ·φdΩ +

∫
K

1

M2
1

α1pI ∇·φdΩ−
∫
∂K

1

M2
1

α̂1pIn ·φdΣ = 0.

The impact of the different possibilities will be discussed along with the numerical
results reported in Section 4.5.

3.5.3 Discretization of four-equation relaxed system

In this Section, we derive an extension of the IMEX scheme described in Sec-
tion 3.4 for the system (2.155) without mass transfer. The mixture EOS (2.226)
outlined in Section 2.6 shows that the mixture internal energy depends on the
volume fraction α1 as well as on the pressure p and the mixture density ρ. Since
we consider an explicit treatment of the continuity equations, the mixture den-
sity is immediately updated, but the same is not true for the volume fraction. A
straightforward way to overcome this issue consists in over-constraining system
(2.155) by solving an extra equation for the volume fraction before focusing on
momentum and energy balance equations. A similar over-constraining of the sys-
tem for algorithmic purposes was adopted in sharp-interface formulations, see e.g.
[Jemison et al., 2014]. Alternative approaches have been proposed e.g. in [Demou
et al., 2022] by considering a non-conservative version of system (2.155). Hence,
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we consider the following system of equations:

∂α1ρ1
∂t

+∇· (α1ρ1u) = 0

∂α2ρ2
∂t

+∇· (α2ρ2u) = 0

∂α1

∂t
+ u · ∇α1 = 0

∂ρu

∂t
+∇· (ρu⊗ u) +

1

M2
∇p =

1

Re
∇·
ï
µ
(
∇u+∇uT

)
− 2

3
µ (∇ · u) I

ò
− ρ

Fr2
k (3.164)

∂ρE

∂t
+∇·

[(
h+ kM2

)
ρu

]
=

M2

Re
∇·
ï
µ
(
∇u+∇uT

)
u− 2

3
µ (∇ · u)u

ò
+

1

PrRe
∇· (κ∇T )− ρ

M2

Fr2
k · u.

A conservative version of (3.164) can be written as follows:

∂α1ρ1
∂t

+∇· (α1ρ1u) = 0

∂α2ρ2
∂t

+∇· (α2ρ2u) = 0

∂ρα1

∂t
+∇· (ρα1u) = 0

∂ρu

∂t
+∇· (ρu⊗ u) +

1

M2
∇p =

1

Re
∇·
ï
µ
(
∇u+∇uT

)
− 2

3
µ (∇ · u) I

ò
− ρ

Fr2
k

∂
Ä
ρE + M2

We
|∇α1|

ä
∂t

+∇·
[(
h+ kM2

)
ρu

]
=

M2

Re
∇·
ï
µ
(
∇u+∇uT

)
u− 2

3
µ (∇ · u)u

ò
+

1

PrRe
∇· (κ∇T )− ρ

M2

Fr2
k · u.

(3.165)

Preliminary numerical experiments in Section 4.5.4 have shown that the discretiza-
tion of the non-conservative formulation for the advection of the volume fraction
in (3.164) is less diffusive with respect to that of the conservative version in (3.165)
and it is therefore preferable. Since we will resort again to an operator splitting
technique, we will describe here only the discretization of the hyperbolic part and
of the forcing terms. The treatment of the diffusive part is indeed completely
analogous to what we already described in 3.4. Consider therefore the second
stage of the IMEX time marching scheme. Following the discretization approach
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proposed in (3.138), one can write formally

α
(n,2)
1 ρ

(n,2)
1 = αn

1ρ
n
1 − a21∆t∇· (αn

1ρ
n
1u

n)

α
(n,2)
2 ρ

(n,2)
2 = αn

2ρ
n
2 − a21∆t∇· (αn

2ρ
n
2u

n)

α
(n,2)
1 + ã22∆tu

n · ∇α(n,2)
1 = α̂(n,2) (3.166)

ρ(n,2)u(n,2) + ã22
∆t

M2
∇p(n,2) = m(n,2)

ρ(n,2)E(n,2) + ã22∆t∇·
Ä
h(n,2)ρ(n,2)u(n,2)

ä
= ê(n,2),

where we have set

α̂(n,2) = αn
1 − ã21∆tu

n · ∇αn
1

m(n,2) = ρnun

− a21∆t∇· (ρnun ⊗ un)− ã21
∆t

M2
∇pn (3.167)

− ã21
∆t

Fr2
ρnk− ã22

∆t

Fr2
ρ(n,2)k

ê(n,2) = ρnEn

− ã21∆t∇· (hnρnun)− a21∆tM
2∇· (knρnun)

− ã21
∆tM2

Fr2
ρnk · un − ã22

∆tM2

Fr2
ρ(n,2)k · u(n,2).

The third stage can be expressed in a similar manner and we report it here for
the sake of completeness:

α
(n,3)
1 ρ

(n,3)
1 = αn

1ρ
n
1

− a31∆t∇· (αn
1ρ

n
1u

n)− a32∆t∇·
Ä
α
(n,2)
1 ρ

(n,2)
1 u(n,2)

ä
α
(n,3)
2 ρ

(n,3)
2 = αn

2ρ
n
2

− a31∆t∇· (αn
2ρ

n
2u

n)− a32∆t∇·
Ä
α
(n,2)
2 ρ

(n,2)
2 u(n,2)

ä
α
(n,3)
1 + ã33∆tu

(n,2) · ∇α(n,3)
1 = α̂(n,3) (3.168)

ρ(n,3)u(n,3) + ã33
∆t

M2
∇p(n,3) = m(n,3)

ρ(n,3)E(n,3) + ã33∆t∇·
Ä
h(n,3)ρ(n,3)u(n,3)

ä
= ê(n,3),
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where we have set

α̂
(n,3)
1 = αn

1 − ã32∆tu
(n,2) · ∇α(n,2)

1 − ã31∆tu
n · ∇αn

1

m(n,3) = ρnun

− a31∆t∇· (ρnun ⊗ un)− ã31
∆t

M2
∇pn (3.169)

− a32∆t∇·
Ä
ρ(n,2)u(n,2) ⊗ u(n,2)

ä
− ã32

∆t

M2
∇p(n,2)

− ã31
∆t

Fr2
ρnk− ã32

∆t

Fr2
ρ(n,2)k− ã33

∆t

Fr2
ρ(n,3)k

ê(n,2) = ρnEn

− ã31∆t∇· (hnρnun)− a31∆tM
2∇· (knρnun)

− ã32∆t∇·
Ä
h(n,2)ρ(n,2)u(n,2)

ä
− a32∆tM

2∇·
Ä
k(n,2)ρ(n,2)u(n,2)

ä
− ã31

∆tM2

Fr2
ρnk · un − ã32

∆tM2

Fr2
ρ(n,2)k · u(n,2) − ã33

∆tM2

Fr2
ρ(n,3)k · u(n,3).
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CHAPTER4
Numerical simulations

In this Chapter, we validate the numerical methods and strategies outlined in
Chapter 3 in a number of relevant benchmarks. Notice that, following e.g. [Tu-
molo et al., 2013, Tumolo and Bonaventura, 2015], we set H = min{diam(K)|K ∈
Th}. All the proposed schemes have been implemented using the open-source nu-
merical library deal.II, which is based on a matrix-free approach [Bangerth et al.,
2007, Arndt et al., 2022] and provides AMR tools. All the resulting symmet-
ric linear systems are solved with the preconditioned conjugate gradient method
[Hestenes and Stiefel, 1952, Quarteroni and Valli, 2008], whereas the Generalized
Minimal RESidual (GMRES) method [Saad, 1981, Quarteroni and Valli, 2008] is
employed for the solution of the non symmetric linear systems (see also Appendix
A.7 for some implementation details). First of all, we validate in Section 4.1 the fil-
tering monotonization technique introduced in Section 3.2 in a number of classical
test cases where discontinuities arise. Afterwards, we present the numerical results
for the proposed discretization of the incompressible Navier-Stokes equations in
Section 4.2, assessing the convergence properties of the method, comparing the
scheme with the Finite Volume method and performing also simulations in the
case of a complex geometry. Then, we focus in Section 4.3 and in Section 4.4
on single-phase compressible Navier-Stokes equations. We provide here results
obtained with both ideal gas and non-ideal gas equations of state and we derive
suitable refinement indicators for real gases. Finally, we present in Section 4.5
results for two-phase flows in the purely inviscid case in order to validate the
IMEX method for the full non-equilibrium Baer-Nunziato model and we consider
classical benchmarks for two-phase flows described by the system of equations
(2.155).
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4.1 Validation of the filtering monotonization technique

In this Section, we validate the filtering monotonization technique outlined in
Section 3.2. Notice that the results in this Section have been obtained using
dimensional variables as done in [Orlando, 2023], to which we refer for further
details. Concerning the time discretization, we will consider for the purpose of
validation the well known Total Variation Diminishing (TVD) Runge Kutta meth-
ods described in [Gottlieb et al., 2001, Gottlieb and Shu, 1998] (see also Appendix
A.5). These are high order time discretization schemes that preserve the strong
stability properties of first order explicit Euler time stepping and are known as
Strong Stability Preserving (SSP) methods. We chose to employ mainly as poly-
nomial degrees r = 1 and r = 2 in combination with the second order SSP and the
third order SSP schemes, respectively. Moreover, we consider the ideal gas law
(2.210) with γ = 1.4 for all the configurations and we define the Courant number

C = rc∆t/H, (4.1)

where c =
√
γp/ρ is the speed of sound. Applications of the filtering monotoniza-

tion technique in combination with the IMEX scheme described in Section 3.4
and 3.5 will be presented in Section 4.5.

4.1.1 Solid body rotation

We consider a classical benchmark for advection schemes, the so-called solid body
rotation, which has been studied in different configurations (see e.g. [Zalesak,
1979, LeVeque, 1996]). A stationary velocity field is considered, representing a
rotating flow with frequency ω = 1 s−1 around the point (0, 0) on the domain Ω =
(−0.5, 0.5)2. The initial datum is given by the following discontinuous function:

Ψ0(x) =

®
1 if X2 + Y 2 ≤ 1

0 otherwise,
(4.2)

where X = x−x0

σ̃
and Y = y−y0

σ̃
with x0 = y0 = 1

6
and σ̃ = 0.2. For this first

test, the computational grid is composed by 120 elements along each direction
with a time step such that the maximum Courant number is C ≈ 0.1. All the
results are presented at Tf = 2π s, when one rotation has been completed, so
that the solution coincides with the initial datum. We first consider the strategy
(3.20) depicted in Section 3.2 with the filter function F1(x) (3.18), the Oberman-
Salvador filter function, taking ε = 5hK , as suggested in [Bokanowski et al., 2016].
Figure 4.1 compares the results at t = Tf of the filtering approach with the Q1

non monotonized solution and with the Q0 one. As one can easily notice, with
this choice of the parameter, too much stabilization is added and therefore the
filtered solution essentially coincides with the low order one.

Increasing the value ε does not affect significantly the results until we take
ε = 104hK : in this case, as evident from Figure 4.2, the filtering approach works
quite well since it is able to provide an essentially monotonic solution, as confirmed
by Table 4.1, without smoothing it too much.
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Chapter 4. Numerical simulations

Figure 4.1: Computational results for the solid body rotation at t = Tf with r = 1
using filter (3.20) with ε = 5hK . The red line denotes the non filtered Q1 solution,
the green line denotes the Q0 solution, while the red dots represent the results of the
simulation with the filtering approach.

Figure 4.2: Computational results for the solid body rotation at t = Tf with r = 1
using filter (3.20) with ε = 104hK . The red line denotes the non filtered Q1 solution,
the green line denotes the Q0 solution, while the red dots represent the results of the
simulation with the filtering approach.

The situation can be further improved using mesh adaptivity so as to start
with a coarse mesh and perform refinement only in the zones where discontinu-
ity is detected. The indicator is based on the gradient of the variable Ψ; more
specifically, we define for each element K

ηK = max
i∈NK

|∇Ψ|i (4.3)

as local refinement indicator, where NK denotes the set of nodes over the element
K. The initial mesh is composed by 120 elements along each direction and we
allowed up to two local refinements. Figure 4.3 shows that the results at t = Tf
with a time step such that the maximum Courant number is C ≈ 0.1, using the
value ε = 104hK previously tested in the fixed grid configuration, compared with
the full resolution Q1 non monotonized solution and the corresponding Q0 one.
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One can easily notice that in this specific configuration the value of ε is still too
small and too much dissipation is provided.

Figure 4.3: Computational results for adaptive simulation of the solid body rotation
at t = Tf with r = 1 using filter (3.20) with ε = 104hK . The red line denotes the full
resolution non filtered Q1 solution, the green line denotes the full resolution Q0 solution,
while the red dots represent the results of the simulation with the filtering approach.

The situation improves increasing the value of ε. Figure 4.4 shows the results
using ε = 105hK , where an essentially monotonic solution is retrieved. The values
reported in Table 4.1 confirm the better quality of the solution.

Figure 4.4: Computational results for adaptive simulation of the solid body rotation at
t = Tf using filter (3.20) with ε = 105hK . The red line denotes the full resolution non
filtered Q1 solution, the green line denotes the full resolution Q0 solution, while the red
dots represent the results of the simulation with the filtering approach.

Value of ε Maximum value of Ψ Mininum value of Ψ

104hK 1.0 + 7.3× 10−3 0.0− 5.2× 10−3

105hK (adaptive) 1.0 + 1.0× 10−5 0.0− 1.9× 10−3

Table 4.1: Solid body rotation, maximum and minimum values for filtering approach
(3.20) at t = Tf with r = 1 both in case of fixed grid and adaptive simulations.
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The very large value of ε that is necessary to achieve monotonicity suggests
that the previous approach has shortcomings. We consider therefore the second
strategy (3.24) outlined in Section 3.2. We start again from a fixed grid configu-
ration, using the same mesh and the same time step previously described. After
some sensitivity study, β = 0.4 seems to yield an acceptable behaviour for the
solution, as evident from Figure 4.5. The discontinuity is less smeared out with
respect to the Q0 solution, while avoiding the spurious oscillations and retrieving
an essentially monotonic solution, as reported in Table 4.2.

Figure 4.5: Computational results for the solid body rotation at t = Tf with r = 1 using
filter (3.24) with β = 0.4. The red line denotes the non filtered Q1 solution, the green
line denotes the Q0 solution, while the red dots represent the results of the simulation
with the filtering approach.

Again, the h-adaptive version of the method, using the same configuration
and the same refinement criterion previously described, provides better results,
as confirmed by Table 4.2. The grid at t = Tf is reported in Figure 4.7 and is
composed by 28119 elements.

Value of β Maximum value of Ψ Mininum value of Ψ

0.4 1.0 + 9.2× 10−3 0.0 + 7.6× 10−3

0.4 (adaptive) 1.0 + 6.7× 10−3 0.0 + 4.0× 10−4

Table 4.2: Solid body rotation, maximum and minimum values for filtering approach
(3.24) at t = Tf both in case of fixed grid and adaptive simulations.
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Figure 4.6: Computational results for adaptive simulation of the solid body rotation at
t = Tf with r = 1 using filter (3.24) with β = 0.4. The red line denotes the full resolution
non filtered Q1 solution, the green line denotes the full resolution Q0 solution, while the
red dots represent the results of the simulation with the filtering approach.

Figure 4.7: Computational grid for adaptive simulation of the solid body rotation at
t = Tf with r = 1 using filter (3.24) with β = 0.4.

The same test has been repeated using r = 2, i.e. Q2 finite elements, and the
third order SSP time discretization strategy. We present here only a comparison
between the two strategies in case of an adaptive simulation using ε = 105hK and
β = 0.4, respectively. Again, we started with a mesh composed by 120 elements
along each direction, we allowed up to two local refinements and the employed
time step is such that the maximum Courant number is C ≈ 0.1. Figure 4.8
shows the results with the two different approaches at t = Tf , compared with a
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full resolution Q2 solution and the corresponding Q0 one. One can easily notice
that both strategies provide an essentially monotonic result, as confirmed by Table
4.3; moreover, the approach (3.24) is characterized by a sharper transition zone
and is therefore less dissipative, allowing to apply the filter on a reduced number
of elements. Moreover, as evident from Table 4.3, the filtering procedure (3.24)
appears to avoid undershoots and keeps a non negative solution, which is a crucial
fact in many applications in order to preserve the physical meaning of the results.
Hence, it will be the one used throughout the rest of the numerical experiments.

Figure 4.8: Computational results for adaptive simulations of the solid body rotation at
t = Tf with r = 2. The red line denotes the full resolution non filtered Q2 solution, the
green line denotes the full resolution Q0 solution, while the red dots and black diamonds
represent the results of the simulation with the filtering approaches (3.20) and (3.24)
using ε = 105hK and β = 0.4, respectively.

Value of the parameter Maximum value of Ψ Mininum value of Ψ

β = 0.4 (adaptive) 1.0 + 1.5× 10−3 0.0 + 3.8× 10−3

ε = 105hK (adaptive) 1.0 0.0− 1.9× 10−4

Table 4.3: Solid body rotation, maximum and minimum values comparing filtering
approaches at t = Tf with r = 2 in case of adaptive simulations.

For the sake of completeness, we report also the results obtained using the
filtering approach (3.24) with r = 3, β = 0.4 and a mesh composed by 240
elements along each direction. Figure 4.9 shows a comparison at t = Tf between
the filtering solution, the non monotonized Q3 solution and the corresponding Q0

one. All the considerations made so far remain valid and the overshoots are further
reduced with respect to Table 4.3. The overhead with respect to the unfiltered
DG scheme amounts to a factor ≈ 1.5 in terms of CPU time.

Value of the parameter Maximum value of Ψ Mininum value of Ψ

β = 0.4 1.0 + 1.2× 10−4 0.0 + 7.9× 10−6

Table 4.4: Solid body rotation, maximum and minimum values for filtering approach
(3.20) at t = Tf with r = 3 in case of adaptive simulations.

92



i
i

“Tesi˙Multiphase˙Orlando˙Giuseppe” — 2023/4/3 — 9:12 — page 93 — #117 i
i

i
i

i
i
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Figure 4.9: Computational results for solid body rotation at t = Tf with r = 3. The red
line denotes the non filtered Q3 solution, the green line denotes the Q0 solution, while
the red dots represent the results of the simulation with the filtering approaches (3.24)
using β = 0.4.

4.1.2 Sod shock tube problem

We consider now the classical Sod shock tube problem for the Euler equations of
gas dynamics proposed by [Sod, 1978], so as to assess the capability of the filtering
approach to reproduce correctly 1D waves such as shocks, contact discontinuities
or rarefaction waves. It consists of a right-moving shock wave, an intermediate
contact discontinuity and a left-moving rarefaction fan. The computational do-
main is Ω = (−0.5, 0.5), the final time is Tf = 0.2 s and the initial condition is
given as follows:

(ρ0, u0, p0) =

®
(1, 0, 1) if x < 0

(0.125, 0, 1) if x > 0,
(4.4)

in terms of density, velocity and pressure, respectively. Dirichlet boundary con-
ditions are imposed. We use as numerical flux the Rusanov [Rusanov, 1962] flux.
We start with a mesh composed by 100 elements, a time-step equal to 5 · 10−4 s
and polynomial degree r = 1, yielding a maximum Courant number C ≈ 0.12.
Figure 4.10 shows the results at t = Tf for the density of a simulation using
βρ = βρu = βρE = 0.4. One can easily notice the presence of significant under-
and over-shoots. This suggests that we need to decrease the value of the parame-
ter βρ in order to achieve a monotonic solution. The same considerations hold also
for the velocity and the pressure. After some sensitivity study, the combination
βρ = 0.2, βρu = 0.15, βρE = 0.2 could be shown to provide a better quality solution
with significantly reduced under- and over-shoots, as reported in Figure 4.10.

The situation can be further improved employing the Froese-Oberman filter
function F2(x), that is continuous and provides therefore a smoother transition
between the high order and the low order solutions. This allows also to increase
the values of the parameters βρ, βρu and βρE. Figure 4.11 shows the results at
t = Tf using βρ = βρu = βρE = 0.3 and one can easily notice that the shock wave
and the contact discontinuity are resolved in a sharper manner with only slight
undershoots for density and pressure and overshoots for the velocity in the tail
of the rarefaction fan. Table 4.5 reports the maximum and the minimum values
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Chapter 4. Numerical simulations

Figure 4.10: Computational results for Sod shock tube problem at t = Tf with r = 1.
The black line reports the analytical solution, the red line denotes the non filtered Q1

solution, the green line denotes the Q0 solution, the cyan squares represent the results of
the simulation with the filtering approach (3.18) using βρ = βρu = βρE = 0.4, whereas
the red circles represent the results of the simulation with the filtering approach (3.18)
using βρ = 0.2, βρu = 0.15, βρE = 0.2.

for density, velocity and pressure, as well as the L∞ norm errors, which confirm
the good results of the proposed method, also in comparison with the results
available in [Loubère et al., 2014] with the classical ADER-MOOD scheme. Figure
4.11 reports also the results at t = Tf using 250 elements, a time step equal to
2 · 10−4 s and the following parameters: βρ = 0.6, βρu = 0.6, βρE = 0.6. It can be
easily noticed that, as expected by increasing the resolution, the discontinuities are
better retrieved. The values reported in Table 4.6 confirm the improved results.

Variable Maximum value Mininum value L∞ error L∞ error ADER-MOOD

ρ 1.0 0.125 6.9 · 10−2 1.1 · 10−1

u 0.9275 + 5.0 · 10−2 0.0 4.8 · 10−1 -

p 1.0 0.1 8.2 · 10−2 -

Table 4.5: Computational results for Sod shock tube problem at t = Tf with r = 1
employing Froese-Oberman filter function and using βρ = 0.3, βρu = 0.3 and βρE = 0.3.
Results for ADER-MOOD scheme from [Loubère et al., 2014]. Maximum and minimum
values are referred to the corresponding variable declared in the left column.

Variable Maximum value Mininum value L∞ error

ρ 1.0 0.125 3.9× 10−2

u 0.9275 + 4.2× 10−2 0.0 2.9× 10−1

p 1.0 0.1 5.0 · 10−2

Table 4.6: Computational results for Sod shock tube problem at t = Tf with r = 1
and 250 elements employing Froese-Oberman filter function and using βρ = 0.6, βρu =
0.6 and βρE = 0.6. Maximum and minimum values are referred to the corresponding
variable declared in the left column.

The same test has been repeated using r = 2 and the third order SSP time
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a)

b)

c)

Figure 4.11: Computational results for Sod shock tube problem at t = Tf with r = 1,
a) density, b) velocity, c) pressure. The black line reports the analytical solution, the
red line denotes the non filtered Q1 solution, the blue dots are the results employing
Froese-Oberman filter function (3.19) and using βρ = 0.3, βρu = 0.3 and βρE = 0.3 with
100 elements, while the red dots represent the results employing Froese-Oberman filter
function (3.19) and using βρ = 0.6, βρu = 0.6 and βρE = 0.6 with 250 elements.

discretization scheme. Figure 4.12 reports the results at t = Tf using 250 elements,
a time step equal to 1 · 10−4 s and βρ = βρu = βρE = 1.4. The under- and over-
shoots are significantly reduced and a good agreement with the analytical solution
is established, as further confirmed by Table 4.7. The larger values of β parameters
can be explained by considering that the increase of the polynomial degree leads
generally to a more accurate solution with relatively large under- and over-shoots
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localized in a narrow region, where the low order solution has to be considered.
Approximately, the filtering is applied on the 10% of the degrees of freedom and
the overhead with respect to the non monotonized scheme corresponds to a factor
≈ 1.25 in terms of CPU time. Both data compare quite well with those reported
in [Zanotti et al., 2015] for the ADER-WENO approach, where the 15 % of the
cells was limited.

Variable Maximum value Mininum value L∞ error

ρ 1.0 + 2.0× 10−3 0.125− 2.0× 10−4 1.6× 10−2

u 0.9275 + 8.0× 10−3 0.0− 2.3× 10−3 2.2× 10−2

p 1.0 + 2.8× 10−3 0.1− 2.0× 10−4 1.3× 10−2

Table 4.7: Computational results for Sod shock tube problem at t = Tf with 250
elements and r = 2 employing Froese-Oberman filter function and using βρ = 1.4, βρu =
1.4 and βρE = 1.4. Maximum and minimum values are referred to the corresponding
variable declared in the left column.

4.1.3 Circular explosion problem

In this Section, we consider the two-dimensional explosion problem discussed in
[Dumbser et al., 2014, Zanotti et al., 2015]. This test is quite relevant since it
involves the propagation of waves that are not aligned with the mesh and therefore
it can be used to check the ability of the proposed method to preserve physical
symmetries of the problem as well as to validate it in multiple space dimensions.
The computational domain is Ω = (−1, 1)2, the final time is Tf = 0.2 s and the
initial condition is the following:

(ρ0, u0, v0, p0) =

®
(1, 0, 0, 1) if r̃ ≤ R

(0.125, 0, 0, 1) if r̃ > R,
(4.5)

with R = 0.5 denoting the radius of initial discontinuity and r̃ =
√
x2 + y2

representing the radial distance. As explained in [Toro, 2009], in two dimensions
we have cylindrical symmetry and a reference solution can be computed solving
a one dimensional problem in the radial direction with suitable geometric source
terms. Figure 4.13 shows the results obtained using Nel = 200 elements along
each direction, r = 1 and βρ = βρu = βρE = 1. One can easily notice that the
discontinuities are well reproduced, even using only first order degree polynomial
for the high order method, and their position is well captured with only slight
undershoots and overshoots in correspondence of the rarefaction wave.
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a)

b)

c)

Figure 4.12: Computational results for Sod shock tube problem at t = Tf with r = 2,
a) density, b) velocity, c) pressure. The black line reports the analytical solution, the red
line denotes the non filtered Q2 solution, the green line denotes the Q0 solution, while
the red dots represent the results of the simulation with Froese-Oberman filter function
using βρ = 1.4, βρu = 1.4 and βρE = 1.4.

The same test has been repeated increasing both the spatial resolution with
Nel = 400 and the high order polynomial degree with r = 2. Figure 4.14 reports
the results obtained using βρ = βρu = βρE = 1.7 and an excellent agreement
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a)

b)

Figure 4.13: Computational results for 2D explosion problem at t = Tf with r = 1,
a) density, b) pressure. The black line reports the reference solution computed solving
the 1D problem in the radial direction, while the red dots represent the results of the
simulation with Froese-Oberman filter function using βρ = 1, βρu = 1 and βρE = 1.

with the reference solution is achieved. Analogous results have been obtained in
[Zanotti et al., 2015], where however polynomials of degree 9 were employed, and,
for a 3D version of the problem, in [Loubère et al., 2014], with polynomials of
degree 3.

Finally, we have employed the h-adaptive version of the method, starting from
a coarse mesh with Nel = 200 elements along each direction and allowing up to
three local refinements which would correspond to a uniform grid with Nel =
1600. The employed local indicator is based on the gradient of the density; more
specifically we define for each element K

ηK = max
i∈NK

|∇ρ|i . (4.6)

The results for the one dimensional profiles are reported in Figure 4.15. Figure
4.16 shows the contour plot of the density and the final grid obtained at t = Tf
composed by 63136 elements. One can easily notice that more resolution is added
in correspondence of the discontinuities.
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a)

b)

Figure 4.14: Computational results for 2D explosion problem at t = Tf with r = 2,
a) density, b) pressure. The black line reports the reference solution computed solving
the 1D problem in the radial direction, while the red dots represent the results of the
simulation with Froese-Oberman filter function using βρ = 1.7, βρu = 1.7 and βρE = 1.7.

4.1.4 Two-dimensional Riemann problem

In this Section, we consider a two-dimensional Riemann problem corresponding
to the Configuration 4 proposed in [Kurganov and Tadmor, 2002], which we sum-
marize here for the convenience of the reader. The computational domain is
Ω = (0, 1)2 and the initial conditions are given by

(ρ0, u0, v0, p0) =


(1.1, 0, 0, 1) if x > 0.5 and y > 0.5

(0.5065, 0.8939, 0, 0.35) if x < 0.5 and y > 0.5

(1.1, 0.8939, 0.8939, 1.1) if x < 0.5 and y < 0.5

(0.5065, 0, 0.8939, 0.35) if x > 0.5 and y < 0.5.

(4.7)

The final time is Tf = 0.25 s. In view of the particularly challenging conditions,
we employ AMR with the indicator described in (4.6) in order to enhance the
resolution along strong discontinuities. The initial mesh is composed by 200 ele-
ments along each direction and we allow up to two local refinements. We consider
as high order polynomial degree r = 2. Figure 4.17 shows the results obtained for
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a)

b)

Figure 4.15: Computational results for 2D explosion problem at t = Tf with adaptive
grid and r = 2, a) density, b) pressure. The black line reports the reference solution
computed solving the 1D problem in the radial direction, while the red dots represent the
results of the simulation with Froese-Oberman filter function using βρ = 1.7, βρu = 1.7
and βρE = 1.7.

the density using βρ = βρu = βρE = 0.25. The filter tends to add more dissipation
than needed, but this is necessary in order to avoid large undershoots and over-
shoots and more in general oscillations which completely corrupt the unfiltered
solution. While not optimal, the results highlight the robustness of the proposed
approach and show that the primary goal of the filter, namely avoid or at least
reduce the oscillations, is achieved. Moreover, as pointed out in [Zanotti et al.,
2015], the effects of Kelvin-Helmholtz instability with several small-scale features
emerge at high resolution along the diagonal of the cocoon structure and this
confirms that the test is particularly challenging.

4.2 Numerical results for the incompressible Navier-Stokes equations

The numerical method outlined in Section 3.3 has been validated in a number of
relevant benchmarks (see also [Orlando et al., 2022b]). We define the stability
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a)
b)

Figure 4.16: Computational results for 2D explosion problem at t = Tf with r = 2 and
Froese-Oberman filter function using βρ = 1.7, βρu = 1.7 and βρE = 1.7, a) contour
plot of the density, b) adaptive grid at t = Tf .

Figure 4.17: 2D Riemann problem, isolines of the density at t = Tf with r = 2 and
Froese-Oberman filter function using βρ = 0.25, βρu = 0.25 and βρE = 0.25.

parameters
Cu = rU∆t/H, σ = r2∆t/(ReH2), (4.8)

where U is the magnitude of a characteristic velocity and σ defines the typical
stability parameter in the discretization of parabolic terms. We also recall here
that r is the polynomial degree of the finite element space chosen for the dis-
cretization of the velocity. In the following tests, unless differently stated, we take
the artificial speed of sound c = 103, which is the order of magnitude of the speed
of sound in water.
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4.2.1 Case tests with analytical solution

In order to verify the correctness of our implementation and to assess the con-
vergence properties of the scheme, we first perform numerical convergence studies
in two and three dimensions, respectively. In two dimensions, we consider as a
benchmark the classical Taylor-Green vortex [Green and Taylor, 1937] in the box
Ω = (0, 2π)2, for which an analytical solution is available:

u(x, t) =

Ç
cos(x) sin(y)e−

2t
Re

− sin(x) cos(y)e−
2t
Re

å
(4.9)

p(x, t) = −1

4
(cos(2x) + cos(2y)) e−

4t
Re . (4.10)

In three dimensions, an analogous study is carried out for the Arnoldi-Beltrami-
Childress (ABC) flow, see e.g. [Galloway and Frisch, 1987], whose exact solution
is

u(x, t) =

Ñ
(sin(z) + cos(y)) e−

t
Re

(sin(x) + cos(z)) e−
t

Re

(sin(y) + cos(x)) e−
t

Re

é
. (4.11)

p(x, t) = − sin(x) cos(z)− sin(y) cos(x)− sin(z) cos(y). (4.12)

For the two dimensional case, we performed a convergence test at Tf = 3.2 for
Re = 100 starting with an initial Cartesian mesh of 8× 8 elements and doubling
several times the number of elements Nel in each direction. The time step was
chosen so as to keep Cu = 1.63 constant for all resolutions (hyperbolic scaling),
so as to test the accuracy of the method for values of the time steps beyond
the stability limit of explicit schemes but not large enough to affect the second
order accuracy. The results for the Q2 − Q1 and Q3 − Q2 cases are reported
in Tables 4.8, 4.9 and 4.10, 4.11, respectively. It can be observed that the
expected convergence rates are recovered, without the necessity of employing fixed
point iterations to determine the velocity in the two stages of the TR-BDF2
scheme. Analogous results are obtained, see Table 4.12, 4.13 if distorted meshes
with similar characteristics are employed. As mentioned in Section 3.3, when
we increase the Courant number, also the TR-BDF2 scheme requires fixed point
iterations in the momentum predictor stages in order to preserve its accuracy. As
it can be noticed in Tables 4.14, 4.15 that the second order convergence rate is
still maintained.

For the three dimensional case, an analogous convergence test was performed
again at Tf = 3.2 but using Re = 1, due to the stability characteristics of the ABC
flow, see e.g. the discussion in [Galloway and Frisch, 1987]. We have considered
an initial Cartesian mesh of 8× 8× 8 elements and we have refined the mesh by
doubling each time the number of elements Nel in each direction, while keeping
Cu = 1.63 constant (hyperbolic scaling). The results for the Q2−Q1 and Q3−Q2

cases are reported in Tables 4.16, 4.17 and 4.18, 4.19, respectively. It can be
observed that the expected convergence rates are recovered for the lower degree
case, also in this case without the necessity of fixed point iterations, while less
accurate results are obtained in the higher degree case. Since in this case the
problem is diffusion dominated, rather than advection dominated, the loss of
accuracy can be readily explained by the very large values obtained in this test
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for the parabolic stability parameter σ. Repeating the test at constant σ (parabolic
scaling), one obtains the results displayed in Tables 4.20, 4.21 and 4.22, 4.23,
which show a clear improvement both in errors and convergence rates.

We have also used the two dimensional Taylor Green benchmark at Re = 100
to compare our results with analogous simulations carried out using using the
classical PISO method [Issa et al., 1986] as implemented in the OpenFoam package
[Chen et al., 2014]. In both cases, the computation was carried out at a very small
value of the Courant number, so that the spatial discretization error is dominant.
We are aware of the difficulties of comparing different discretizations schemes
both in space and time implemented in different frameworks and, therefore, the
following analysis has to be interpreted merely as first stress test to highlight the
superior flexibility of the proposed DG implementation. We have performed a
test using both Q2 −Q1 and Q3 −Q2 elements on regular and distorted meshes.
An example of the coarsest distorted mesh is shown in Figure 4.18, while the
results of the convergence test for both L2 and L∞ norms are reported in Figure
4.19. While the OpenFoam discretization appears to outperform the Q2−Q1 DG
approximation at lower resolutions, it can be seen that it is much more sensitive to
the mesh distortion than DG approximations, especially with respect to L∞ errors.
Furthermore, as expected from polynomial approximation theory, the Q3−Q2 DG
approximation clearly shows its faster convergence properties, which are achieved
within the same mathematical and implementation framework. Instead, as also
discussed in Section 3.1, higher order accuracy for finite volume formulations
entails the use of complex and often ad hoc reconstruction procedures with large
stencils.

∆t Nel σ H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.64 8 0.04 1.5× 100 3.8× 10−1

0.32 16 0.08 6.5× 10−1 1.22 9.5× 10−2 2.01

0.16 32 0.17 1.2× 10−1 2.45 1.6× 10−2 2.58

0.08 64 0.33 2.3× 10−2 2.38 3.1× 10−3 2.37

Table 4.8: Convergence test for the Green-Taylor vortex benchmark computed at Cu =
1.63 with Q2 −Q1 elements, relative errors for the velocity in H1 and L2 norms.

∆t Nel σ L2 rel. error p L2 rate p

0.64 8 0.04 4.3× 10−1

0.32 16 0.08 1.4× 10−1 1.60

0.16 32 0.17 4.0× 10−2 1.72

0.08 64 0.33 1.1× 10−2 1.91

Table 4.9: Convergence test for the Green-Taylor vortex benchmark computed at Cu =
1.63 with Q2 −Q1 elements, relative errors for the pressure in L2 norm.
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∆t Nel σ H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.43 8 0.06 2.8× 10−1 6.2× 10−2

0.21 16 0.12 3.3× 10−2 3.12 6.8× 10−2 3.18

0.11 32 0.25 4.4× 10−3 2.88 4.4× 10−4 3.93

0.053 64 0.50 5.9× 10−4 2.92 3.1× 10−5 3.85

Table 4.10: Convergence test for the Green-Taylor vortex benchmark computed at
Cu = 1.63 with Q3 −Q2 elements, relative errors for the velocity in H1 and L2 norms.

∆t Nel σ L2 rel. error p L2 rate p

0.43 8 0.06 8.7× 10−2

0.21 16 0.12 1.1× 10−2 2.93

0.11 32 0.25 7.5× 10−4 3.92

0.053 64 0.50 2.9× 10−5 4.72

Table 4.11: Convergence test for the Green-Taylor vortex benchmark computed at
Cu = 1.63 with Q3 −Q2 elements, relative errors for the pressure in L2 norm.

∆t Nel σ H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.52 8 0.05 1.2× 100 3.2× 10−1

0.22 16 0.12 5.5× 10−1 1.13 8.1× 10−2 1.96

0.11 32 0.25 1.2× 10−1 2.16 1.2× 10−2 2.77

0.052 64 0.50 2.1× 10−2 2.51 2.3× 10−3 2.41

Table 4.12: Convergence test for the Green-Taylor vortex benchmark computed on a
distorted mesh at Cu = 1.63 with Q2 − Q1 elements, relative errors for the velocity in
H1 and L2 norms.

∆t Nel σ L2 rel. error p L2 rate p

0.52 8 0.05 4.3× 10−1

0.22 16 0.12 7.7× 10−2 2.02

0.11 32 0.25 2.4× 10−2 1.68

0.052 64 0.50 6.4× 10−3 1.91

Table 4.13: Convergence test for the Green-Taylor vortex benchmark computed on a
distorted mesh at Cu = 1.63 with Q2 −Q1 elements, relative errors for the pressure in
L2 norm.

∆t Nel σ H1 rel. error u H1 rate u L2 rel. error u L2 rate u

1.18 8 0.08 1.33× 100 3.9× 10−1

0.59 16 0.15 6.3× 10−1 1.07 1.1× 10−1 1.79

0.29 32 0.31 1.2× 10−1 2.35 2.8× 10−2 2.02

0.15 64 0.61 2.8× 10−2 2.17 5.9× 10−3 2.23

Table 4.14: Convergence test for the Green-Taylor vortex benchmark computed at
Cu = 3 with Q2 −Q1 elements, relative errors for the velocity in H1 and L2 norms.
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∆t Nel σ L2 rel. error p L2 rate p

1.18 8 0.08 4.9× 10−1

0.59 16 0.15 1.3× 10−1 1.87

0.29 32 0.31 4.0× 10−2 1.60

0.15 64 0.61 1.3× 10−2 1.75

Table 4.15: Convergence test for the Green-Taylor vortex benchmark computed at
Cu = 3 with Q2 −Q1 elements, relative errors for the pressure in L2 norm.

∆t Nel σ H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.32 8 2.08 1.9× 10−2 7.8× 10−3

0.16 16 4.15 5.4× 10−3 1.85 2.2× 10−3 1.86

0.08 32 8.30 1.4× 10−3 1.98 5.6× 10−4 1.99

0.04 64 16.60 3.6× 10−4 1.91 1.7× 10−4 1.75

Table 4.16: Convergence test for the ABC flow benchmark computed at Cu = 1.63 with
Q2 −Q1 elements, relative errors for the velocity in H1 and L2 norms.

∆t Nel σ L2 rel. error p L2 rate p

0.32 8 2.08 1.0× 100

0.16 16 4.15 1.3× 10−1 2.93

0.08 32 8.30 3.9× 10−2 1.74

0.04 64 16.60 1.1× 10−2 1.79

Table 4.17: Convergence test for the ABC flow benchmark computed at Cu = 1.63 with
Q2 −Q1 elements, relative errors for the pressure in L2 norm.

∆t Nel σ H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.21 8 3.11 3.6× 10−3 1.9× 10−3

0.11 16 6.23 1.0× 10−3 1.80 6.8× 10−3 2.05

0.053 32 12.45 3.7× 10−4 1.5 1.4× 10−4 1.68

Table 4.18: Convergence test for the ABC flow benchmark computed at Cu = 1.63 with
Q3 −Q2 elements, relative errors for the velocity in H1 and L2 norms.

∆t Nel σ L2 rel. error p L2 rate p

0.21 8 3.11 2.5× 10−1

0.11 16 6.23 3.3× 10−2 2.93

0.053 32 12.45 9.7× 10−3 1.72

Table 4.19: Convergence test for the ABC flow benchmark computed at Cu = 1.63 with
Q3 −Q2 elements, relative errors for the pressure in L2 norm.
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∆t Nel Cu H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.32 8 1.57 1.9× 10−2 7.1× 10−3

0.08 16 0.79 4.5× 10−3 2.05 1.3× 10−3 2.5

0.02 32 0.39 1.2× 10−3 1.97 3.1× 10−4 2.02

0.005 64 0.20 2.9× 10−4 1.98 5.3× 10−5 2.54

Table 4.20: Convergence test for the ABC flow benchmark computed at σ = 2 with
Q2 −Q1 elements, relative errors for the velocity in H1 and L2 norms.

∆t Nel Cu L2 rel. error p L2 rate p

0.32 8 1.57 1.0× 10−1

0.08 16 0.79 1.6× 10−1 2.66

0.02 32 0.39 4.2× 10−2 1.93

0.005 64 0.20 1.1× 10−2 1.94

Table 4.21: Convergence test for the ABC flow benchmark computed at σ = 2 with
Q2 −Q1 elements, relative errors for the pressure in L2 norm.

∆t Nel Cu H1 rel. error u H1 rate u L2 rel. error u L2 rate u

0.14 8 1.05 2.5× 10−3 8.9× 10−4

0.034 16 0.52 2.4× 10−4 2.70 1.1× 10−4 3.08

0.0086 32 0.26 7.1× 10−5 1.78 1.8× 10−5 2.51

Table 4.22: Convergence test for the ABC flow benchmark computed at σ = 2 with
Q3 −Q2 elements, relative errors for the velocity in H1 and L2 norms.

∆t Nel Cu L2 rel. error p L2 rate p

0.14 8 1.05 2.0× 10−1

0.034 16 0.52 2.7× 10−2 2.89

0.0086 32 0.26 4.3× 10−3 2.65

Table 4.23: Convergence test for the ABC flow benchmark computed at σ = 2 with
Q3 −Q2 elements, relative errors for the pressure in L2 norm.

4.2.2 Two-dimensional lid-driven cavity

The lid-driven cavity flow is a classical benchmark for the two-dimensional incom-
pressible Navier-Stokes equations. Reference solutions obtained with high order
techniques are reported, among many others, in [Botella and Peyret, 1998, Auteri
et al., 2002, Bruneau and Saad, 2006]. For this two-dimensional problem, is it
customary to represent the flow also in terms of the streamfunction Ψ, which is
defined as the solution of the Laplace problem

−∆Ψ = ∇× u = ω in Ω (4.13)

Ψ|∂Ω = 0

where the symbol ∇× denotes the curl operator and the vorticity ω is therefore
the scalar field defined as

ω =
∂v

∂x
− ∂u

∂y
. (4.14)
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4.2. Numerical results for the incompressible Navier-Stokes equations

Figure 4.18: Example of distorted mesh for the Taylor-Green vortex

a) b)

c) d)

Figure 4.19: Taylor-Green vortex at Re = 100 and t = 3.2, absolute errors as function
of the number of degrees of freedom, a) L2 errors for the velocity, b) L2 errors for the
pressure, c) L∞ errors for the velocity, d) L∞ errors for the pressure. The black line
denotes the solution with Q2 −Q1 on regular grids, the blue line represents the results
with Q2 −Q1 on distort grids, the red line reports the results with Q3 −Q2 on regular
grids, the green line denotes the solution with Q3 −Q2 on distort grids, the yellow line
represents the results with OpenFoam on regular grids and the magenta line represents
the results with OpenFoam on distort grids.
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We consider the case Re = 1000 computed with Q2−Q1 elements on a Cartesian
mesh composed of Nel = 128 square elements in each coordinate direction, with
a time step chosen so that the Courant number Cu is approximately 1.3. The
computation is performed until the steady state is reached up to a tolerance of
10−7, which occurs around Tf = 70. The streamfunction contours at steady
state are shown in Figure 4.20 using the same isoline values as in [Bruneau and
Saad, 2006]. It can be observed that all the main flow structures are correctly
reproduced.

a) b)

Figure 4.20: Lid-driven cavity benchmark at Re = 1000: a) flow field, b) streamfunc-
tion contours. Contour values are chosen as in [Bruneau and Saad, 2006].

For a more quantitative comparison, we report in Figure 4.21 the u component
of the velocity and the vorticity ω along the middle of the cavity, together with the
reference results of [Botella and Peyret, 1998]. Good agreement with the reference
solution is achieved. The maximum horizontal velocity along the centerline was
computed as umax = 0.3732 which implies a relative error with respect to the
reference solution of the order of 10−2. The vorticity value at the center of the
cavity was computed as ωcen = 1.9594, which implies again a relative error with
respect to the reference solution of the order of 10−2.

a) b)

Figure 4.21: Lid-driven cavity benchmark at Re = 1000: a) u velocity component
values along the middle of the cavity, b) ω values along the middle of the cavity. The
continuous line denotes the numerical solution and the dots the reference solution values
from [Botella and Peyret, 1998].

We have also repeated this test using the adaptive tools present in the deal.II
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4.2. Numerical results for the incompressible Navier-Stokes equations

library. In each element K we define the quantity

ηK = diam(K)2 ∥ω∥2K (4.15)

that acts as local refinement indicator. We then started from a uniform Cartesian
mesh with Nel = 8 in each coordinate direction and we allowed refinement or
coarsening based on the distribution of the values of ηK , refining 10% of the
elements with largest indicator values and coarsening 30% of the elements with
the smallest indicator values. This remeshing procedure was carried out every
1000 time steps. However, in order to avoid using a too coarse mesh for too
long in the initial stages of the simulation, every 50 time steps the maximum
difference between the velocities at two consecutive time steps was checked and
the remeshing was performed whenever this quantity was greater then 10−2. The
minimum element diameter allowed was H = 1

128
, so as to obtain again Cu ≈ 1.3.

A maximum element diameter equal to 1
32

was also required, in order to avoid
an excessive reduction of the spatial resolution. The final adapted mesh and the
streamline contours are reported in Figure 4.22. It can be observed that the
refinement indicator allows to enhance automatically the resolution along the top
boundary of the domain and in other regions of large vorticity values.

a) b)

Figure 4.22: Lid-driven cavity benchmark at Re = 1000, adaptive simulation: a)
final mesh after adaptive refinement, b) streamfunction contours. Contour values as in
[Bruneau and Saad, 2006].

For a more quantitative point of view, we compare again in Figure 4.23 the
u component of the velocity and the vorticity ω along the middle of the cavity
with the reference results in [Botella and Peyret, 1998]. The maximum horizontal
velocity along the centerline is now umax = 0.3739 which implies a relative error of
the order of 10−2, as in the corresponding non adaptive simulation. The vorticity
value at the center of the cavity is now ωcen = 1.9652, which also implies a
relative error with respect to the reference solution of the order of 10−2. In Figure
4.24, instead, the absolute difference between the velocities computed in the fixed
mesh and adaptive simulations is plotted over the whole domain, showing that no
substantial loss of accuracy has occurred. This result has been obtained with a
reduction of about 25% of the required computational time. While showing the
potential of the adaptivity procedures available in the present implementation,
this is still far from optimal. Experiments with more specific error indicators and
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Chapter 4. Numerical simulations

less restrictive options for the refinement parameters will be carried out in future
work.

a) b)

Figure 4.23: Lid-driven cavity benchmark at Re = 1000, adaptive simulation: a) u
velocity component values along the middle of the cavity, b) ω values along the middle of
the cavity. The continuous line denotes the numerical solution and the dots the reference
solution values from [Botella and Peyret, 1998].

Figure 4.24: Lid-driven cavity benchmark at Re = 1000, difference for velocity magni-
tude between the fixed grid simulation and the adaptive simulation (interpolated to the
fixed grid).

4.2.3 Three-dimensional lid-driven cavity

We now consider the three-dimensional analogue of the previously studied lid-
driven cavity benchmark. Among several others, we consider the configuration
and reference solutions provided in [Albensoeder and Kuhlmann, 2005], which
we summarize here for convenience. We consider a rectangular cavity of the size
d× h× l in the x, y and z direction, respectively. The flow is driven by the wall
at x = d

2
, which moves tangentially in the y direction with constant velocity V.

The length d is used to introduce non dimensional space variables, so that the
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4.2. Numerical results for the incompressible Navier-Stokes equations

effective computational domain is given by

Ω =

ï
− h

2d
,
h

2d

ò
×
ï
−1

2
,
1

2

ò
×
ï
− l

2d
,
l

2d

ò
.

We have considered here the h
d
= 1, l

d
= 1 case, computed with Q2 −Q1 elements

on a Cartesian mesh composed of 64× 64× 48 square elements, with a time step
chosen so that the Courant number is approximately 1. Notice that the same mesh
was employed in [Albensoeder and Kuhlmann, 2005], in which however the authors
employed a much more accurate spectral collocation method. The computation
is performed until the steady state is reached up to a tolerance of 10−4, which is
achieved around Tf = 40. We take as reference results those presented in Tables 5
and 6 in [Albensoeder and Kuhlmann, 2005]. Notice that, in that paper, a different
non dimensional scaling is employed, so that their results have been appropriately
rescaled in order to compare them with those obtained here. In Figure 4.25 we
report the results for the v velocity component values along the x axis and the u
component of the velocity along the y axis, respectively. We see that, in spite of
the relatively coarse mesh, a reasonable accuracy is achieved.

a) b)

Figure 4.25: 3D lid-driven cavity benchmark at Re = 1000, fixed mesh simulation, a)
v velocity component values along the x axis b) u velocity component values along the
y axis. The continuous line denotes the numerical solution and the dots the reference
solution values from [Albensoeder and Kuhlmann, 2005].

In Figure 4.26 and 4.27 we show instead the velocity field on the three median
plane sections of the cavity, highlighting the presence of vortices near the centerline
of the cavity. The results are in good qualitative agreement with those reported
in [Jiang et al., 1994].

a) b) c)

Figure 4.26: 3D lid-driven cavity benchmark at Re = 1000, a) flow field vectors for
the plane x = 0, b) flow field vectors for the plane y = 0, c) flow field vectors for the
plane z = 0.
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Chapter 4. Numerical simulations

a) b) c)

Figure 4.27: 3D lid-driven cavity benchmark at Re = 1000, a) vorticity (ωx) contours
at x = 0, b) vorticity (ωy) contours at y = 0, vorticity (ωz) contours at z = 0.

We have also exploited again the mesh adaptivity tool provided by deal.II with
the same refinement indicator (4.15) introduced for the two-dimensional test. In
particular, we started from a coarse mesh with Nel = 6 elements along each di-
rection and again we performed the refinement procedure on at most 10% of the
elements with the largest indicator value every 1000 time steps, while coarsening
on at most 30% of the elements with the smallest indicator values; moreover we
have checked every 50 time steps if the refinement procedure had to be performed
in advance in case the maximum difference between the velocities at two consec-
utive time steps was greater then 10−2. The minimum element diameter allowed
was H = 1

48
in order to obtain Cu ≈ 1. In Figure 4.28 and in Figure 4.29 we

report again the results for the v velocity component values along the x axis and
the u component of the velocity along the y axis, respectively, compared with
the results obtained using a fixed grid with Nel = 48 elements along each direc-
tion. One can notice very good agreement between the two simulations, while the
computational time required to perform the adaptive simulation is about half of
that required by the fixed grid simulation. Moreover, we have compared in Figure
4.30 the errors of the two components for the velocity for the fixed and adaptive
mesh, respectively. It is clear that, in spite of the different computational time,
no significant differences arise.

a) b)

Figure 4.28: 3D lid-driven cavity benchmark at Re = 1000, a) u velocity component
values along the y axis for adaptive mesh simulation, b) u velocity component values
along the y axis for fixed grid simulation. The continuous line denotes the numerical
solution, whereas the dots denote the reference solution values from [Albensoeder and
Kuhlmann, 2005].

The size of the configuration employed for this test (we have used 15925248
dofs for the velocity and 1572864 dofs for the pressure) makes this benchmark a
good candidate for a parallel scaling test. More specifically, we have performed
a strong scaling analysis executing the same simulation up to time t = 0.6 us-
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4.2. Numerical results for the incompressible Navier-Stokes equations

a) b)

Figure 4.29: 3D lid-driven cavity benchmark at Re = 1000, a) v velocity component
values along the x axis for adaptive mesh simulation, b) v velocity component values
along the x axis for fixed grid simulation. The continuous line denotes the numerical
solution, whereas the dots denote the reference solution values from [Albensoeder and
Kuhlmann, 2005].

a) b)

Figure 4.30: 3D lid-driven cavity benchmark at Re = 1000, a) u velocity component
comparison for the plane x = 0, z = 0 with reference solution values from [Albensoeder
and Kuhlmann, 2005] interpolated, b) v velocity component comparison for the plane
y = 0, z = 0 with reference solution values from [Albensoeder and Kuhlmann, 2005]
interpolated. The continuous black line denotes the result with fixed mesh, the blue one
denotes the results with Adaptive Mesh Refinement.

ing from 16 up to 1024 2xCPU x86 Intel Xeon Platinum 8276-8276L @ 2.4Ghz
cores of the HPC infrastructure GALILEO100 at the Italian supercomputing cen-
ter CINECA thanks to the computational resources made available through the
ISCRA-C project SIDICoNS-HP10CLPLXI. The results, reported in Figure 4.31
and in Table 4.24, show a very good linear scaling, and even superlinear due to
cache effects, up to 256 cores, while for a higher number of cores parallel perfor-
mance is less optimal. A degradation of the performance for higher numbers of
cores is observed, which we believe is mainly due to the fact that, given the size of
the problem we were able to run, for these numbers of cores the amount of degrees
of freedom owned by each core becomes very small so that the time needed by
each core for computation is dominated by the time needed for communication.
Indeed, using 1024 cores, the number of unknowns per core is only 15552 for the
velocity and 1536 for the pressure.
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Chapter 4. Numerical simulations

Figure 4.31: 3D lid-driven cavity benchmark at Re = 1000, strong scaling for the
proposed method. The speedup is computed with respect to the time required with 16
cores.

Number of cores Wall-clock time TR-BDF2

16 1.86× 103

32 7.39× 102

64 3.69× 102

128 1.81× 102

256 1.08× 102

512 6.24× 101

1024 3.46× 101

Table 4.24: Wall-clock times in seconds of the different simulations performed for the
strong scaling analysis.

A weak scaling analysis has been performed using 124416 dofs per core for the
velocity and 12288 dofs per core for the pressure. Figure 4.32 shows the obtained
results. One can easily notice that a good parallel efficiency is maintained up
to 1024 cores. The overperformance of the scheme up to 256 cores can be due
to a number of factors, such as the topology of the communication network in
the specific architecture employed or the handling of communications between
different groups of cores.

4.2.4 Flow past a cylinder

In this Section, we consider another classical benchmark for the incompressible
Navier-Stokes equations, namely the flow past a cylinder. The source code for
this test case is available at [Orlando, 2022]. We use the configuration described
in [Schäfer et al., 1996], that we summarize here for the convenience of the reader.
More in detail, the employed geometry and boundary conditions are reported in
Figure 4.33, where H = 0.41m makes the domain non-symmetric and allows the
vortex shedding in the wake of the cylinder. The inflow condition is

u(0, y) =

Å
4Um

y(H−y)
H2

0

ã
, (4.16)
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4.2. Numerical results for the incompressible Navier-Stokes equations

Figure 4.32: 3D lid-driven cavity benchmark at Re = 1000, weak scaling for the
proposed method. The efficiency is computed with respect to the time required with 16
cores.

with Um = 1.5m s−1. Following [Schäfer et al., 1996], we consider as reference
quantities the inflow velocity mean value U = 1.0m s−1, the diameter of the
cylinder equal to L = 0.1m and ν = 0.001m2 s−1, which yields Re = 100.

Figure 4.33: Flow past a cylinder benchmark, geometry and boundary conditions (im-
age from [Schäfer et al., 1996]).

We compute the drag and lift coefficients, defined as in [Schäfer et al., 1996].
Other reference values are the pressure drop ∆p(t) = p(0.15, 0.2, t)−p(0.25, 0.2, t)
and the Strouhal number St = Df

U
, where f is the frequency of separation com-

puted as a function of the lift coefficient CL. The final time is Tf = 400, which cor-
responds to a dimensional time of 40 s, since the reference time value is L

U
= 0.1 s,

and allows to obtain a fully developed wake. The grid is composed by 23552
elements and the time step ∆t = 5 · 10−3 is such that the maximum Courant
number is around 1. Figure 4.34 shows the contour plot of the velocity magnitude
at t = Tf and one can easily notice the formation of the vortices in the wake of
the cylinder. Figure 4.35 reports the evolution of the lift and drag coefficients
from t = 385 to t = Tf ; it can be observed that the expected periodic behaviour is
retrieved. The maximum drag coefficient and the pressure drop are 3.33 and 2.60,
respectively, which are slightly larger values than the intervals [3.22, 3.24] and
[2.46, 2.50] proposed in [Schäfer et al., 1996], even though they are in the overall
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range of the solutions proposed in the literature. The maximum lift coefficient is
1.01, which lies in the interval [0.99, 1.01] present in [Schäfer et al., 1996], while
the Strouhal number is equal to 0.3, which is again in the interval [0.295, 0.305]
reported in [Schäfer et al., 1996].

Figure 4.34: Flow past a cylinder benchmark, contour plot of velocity magnitude at
t = Tf .

a) b)

Figure 4.35: Flow past a cylinder benchmark, a) drag coefficient, b) lift coefficient.

The same test has been repeated using AMR with the same criterion (4.15)
described in Section 4.2.2. The initial mesh is composed by 5558 elements and we
allowed up to two local refinements, whereas the maximum element diameter is
kept equal to the one of the initial grid. The same remeshing procedure described
in 4.2.2 was applied every 5000 time steps. Figure 4.36a reports the final mesh
obtained and the values of the drag and lift coefficients. One can easily notice
that more resolution is added in the wake of the cylinder and on its boundary and
that the behaviour of the two coefficients is analogous to that in the uniform mesh
case. The final mesh consists of 11630 elements and a reduction of computational
time of about 50% is achieved with respect to the uniform mesh case. Analogous
results are obtained for the drag and lift coefficient in Figure 4.36b and Figure
4.36c, respectively.

4.2.5 Complex geometry

The matrix-free approach present in the deal.II library makes the proposed solver
attractive also for industrial applications that involve a large number of degrees of
freedom. For this purpose we have tested the solver on the complex geometry of an
heat exchanger of industrial interest [bur, 2018]. More specifically, a four channels
module of a designed checkerboard pattern heat exchanger has been considered,
with the goal of simulating its pure fluid-dynamic behaviour (i.e., in absence of
heat exchanges) between the inlet and the outlet. The channel is long 0.5m.
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a)

b) c)

Figure 4.36: Flow past a cylinder benchmark, adaptive simulation, a) grid at t = Tf ,
b) drag coefficient, c) lift coefficient.

Figure 4.37: Picture of the considered geometry

We consider Re = 5000, assuming unitary inflow velocity considering the chan-
nel length as reference length. We set c = 300, which is of the order of magnitude
of the speed of sound in air. The mesh consists of 129696 Q2−Q1 elements, which
yields 10505376 degrees of freedom for the discrete velocity variables and 1037568
for the discrete pressure variables. In order to verify the results of the simulation
at steady state, various simulations with an OpenFoam steady state solver have
been performed. More in detail, three meshes with different resolutions have been
used with the OpenFoam solver. The coarsest is the one previously described, an
intermediate resolution one consists of 1382120 elements while the finest is com-
posed by 2108119 elements. A comparison between the results obtained on each
mesh is reported in Figure 4.38 for the midlines of the four channels depicted in
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Figure 4.37. For the sake of simplicity, the channels are denote by A,B,C and D
from bottom to top, respectively.

Figure 4.38: Comparison between deal.II and OpenFOAM from line A (top) to line
D (bottom) for u component of the velocity, the one along x-axis (left), v component
of the velocity, the one along y-axis (center) and w component of the velocity, the one
along z-axis (right).

It can be observed that a good quantitative agreement between the two solvers
has been obtained, taking into account the different features. Moreover, the so-
lution computed with the DG approach is more similar to the results obtained
with the OpenFoam solver on the finest meshes, as evident especially for the ax-
ial component w. This is further confirmed by the pressure drop computed for
the four lines and reported in Table 4.25. Analogous considerations hold for the
sections highlighted in Figure 4.37 where we have compared the contour of the
velocity magnitude on the middle of the domain, at three-quarters of the domain
and on the outlet in Figure 4.39, Figure 4.40, and Figure 4.41, respectively.

OpenFOAM (coarse) OpenFOAM (middle) OpenFOAM (fine) deal.II

line A 18.6801 18.8735 18.9112 18.7687

line B 18.5748 18.7453 18.7973 18.6780

line C 18.2494 18.4158 18.4706 18.3596

line D 17.0799 17.2534 17.3135 17.2452

Table 4.25: Pressure drop along the four midlines of the channels for the different
simulations.
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with ideal gas law

a) b)

c) d)

Figure 4.39: Comparison between deal.II and OpenFOAM on the middle section, a)
OpenFOAM on coarse mesh, b) OpenFOAM on middle mesh, c) OpenFOAM on fine
mesh, d) deal.II.

4.3 Numerical results for the single-phase compressible Navier-Stokes equa-

tions with ideal gas law

The numerical scheme outlined in Section 3.4 has been validated in a number of
benchmarks (see also [Orlando et al., 2022a] and [Orlando et al., 2023]). In this
Section, we will focus on the results obtained using the ideal gas law, while we
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a) b)

c) d)

Figure 4.40: Comparison between deal.II and OpenFOAM at three-quarters section,
a) OpenFOAM on coarse mesh, b) OpenFOAM on middle mesh, c) OpenFOAM on fine
mesh, d) deal.II

will discuss benchmarks with non-ideal equations of state in the following Section.
As well as the advective Courant number Cu (4.8), for which we recall here the
definition for the sake of convenience, we define the acoustic number C

C =
1

M
rc∆t/H, Cu = rU∆t/H (4.17)

where c is the magnitude of the speed of sound. The factor 1
M

is due to the
scaling of the speed of sound, as reported in [Munz et al., 2003], for an ideal gas,
and proven in [Orlando et al., 2022a] in the monodimensional case for a general
equation of state (see also Appendix A.3). The fixed point loops are stopped at
the l-th iteration such that the relative difference for the pressure is below 10−10,
namely ∥∥ξ(l) − ξ(l−1)

∥∥
∥ξ(l)∥

< 10−10. (4.18)

For these tests using the ideal gas law, the value γ = 1.4 for the specific heat ratio
is employed, unless differently stated.
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with ideal gas law

a) b)

c) d)

Figure 4.41: Comparison between deal.II and OpenFOAM on the outlet, a) Open-
FOAM on coarse mesh, b) OpenFOAM on middle mesh, c) OpenFOAM on fine mesh,
d) deal.II

4.3.1 Isentropic vortex

As a first benchmark, we consider the two-dimensional inviscid isentropic vortex
also studied in [Tavelli and Dumbser, 2017, Zeifang et al., 2019]. For this test, an
analytic solution is available, that can be used to assess the convergence properties
of the scheme. The initial conditions are given as a perturbation of a reference
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state (ρ∞,u∞, p∞)

ρ(x, 0) = ρ∞ + δρ u(x, 0) = u∞ + δu p(x, 0) = p∞ + δp (4.19)

and the exact solution is a propagation of the initial condition at the background
velocity

ρ(x, t) = ρ(x−u∞t, 0) u(x, t) = u(x−u∞t, 0) p(x, t) = p(x−u∞t, 0). (4.20)

The typical perturbation is defined as

δ̃T =
1− γ

8γπ2
β̃2e1−r̃2 , (4.21)

with r̃2 = (x− x0)
2+(y − y0)

2 denoting the radial coordinate and β̃ being the vor-
tex strength. As explained in [Zeifang et al., 2019], however, in order to emphasize
the role of the Mach number M , we define

δT =
1− γ

8γπ2
M2β̃2e1−r̃2 (4.22)

and we set

ρ(x, 0) = (1 + δT )
1

γ−1 p(x, 0) =M2 (1 + δT )
γ

γ−1 . (4.23)

For what concerns the velocity, the typical perturbation is defined as

δ̃u = β̃

Å
−y
x

ã
e

1
2(1−r̃2)

2π
(4.24)

and also in this case we rescale it using M so as to obtain

δu = β̃M

Å
−y
x

ã
e

1
2(1−r̃2)

2π
. (4.25)

We apply the same reasoning also to the background velocity and therefore we de-
fine u∞ =M ũ∞ with ũ∞ = [10, 10]T . To avoid problems related to the definition
of boundary conditions, we choose a sufficiently large domain Ω = (−10, 10)2 and

periodic boundary conditions and we set ρ∞ = 1, p∞ = 1, x0 = y0 = 0, β̃ = 10,
the final time Tf = 1 and M = 0.1. Notice that we refrain from investigating
the properties of the method in the very low Mach number regime for this test,
since this entails an almost constant solution. The numerical experiments have
been carried out on Cartesian meshes of square elements with Nel elements in
each coordinate direction, choosing for each spatial resolution time steps so that
the Courant numbers remained constant (hyperbolic scaling).

We first consider the original IMEX-ARK scheme with a32 = 7−2χ
6

for the
explicit part. We observe in Tables 4.26 and 4.27 that, in general, convergence
rates of at least r + 1

2
are observed for r = 1 and for r = 2.
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with ideal gas law

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p

10 2.00× 10−3 1.19× 10−2 2.79× 10−3

20 7.86× 10−4 1.35 3.86× 10−3 1.62 1.11× 10−3 1.33

40 2.55× 10−4 1.62 1.07× 10−3 1.84 3.61× 10−4 1.62

80 7.15× 10−5 1.83 2.67× 10−4 2.00 1.01× 10−4 1.84

Table 4.26: Convergence test for the inviscid isentropic vortex at C ≈ 0.01, Cu ≈ 0.01
with r = 1 and a32 = 7−2χ

6 for the explicit part. Relative errors for the density, the
velocity and the pressure in L2 norm. Nel denotes the number of elements along each
direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p

10 6.38× 10−4 2.61× 10−3 9.08× 10−4

20 1.18× 10−4 2.43 3.54× 10−4 2.88 1.64× 10−4 2.47

40 1.81× 10−5 2.70 4.16× 10−5 3.09 2.53× 10−5 2.70

80 2.96× 10−6 2.61 5.18× 10−6 3.00 4.13× 10−6 2.60

Table 4.27: Convergence test for the inviscid isentropic vortex at C ≈ 0.01, Cu ≈ 0.01
with r = 2 and a32 = 7−2χ

6 for the explicit part. Relative errors for the density, the
velocity and the pressure in L2 norm. Nel denotes the number of elements along each
direction.

Analogous results are shown in Tables 4.28 and 4.29 for the modified scheme
with a32 = 0.5, chosen, as discussed in [Orlando et al., 2022a] and Appendix
A.5, in order to increase the region of absolute monotonicity without affecting too
much stability.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p

10 2.00× 10−3 1.19× 10−2 2.79× 10−3

20 7.86× 10−4 1.35 3.86× 10−3 1.62 1.11× 10−3 1.33

40 2.55× 10−4 1.62 1.07× 10−3 1.85 3.61× 10−4 1.62

80 7.15× 10−5 1.83 2.67× 10−4 2.00 1.00× 10−4 1.85

Table 4.28: Convergence test for the inviscid isentropic vortex at C ≈ 0.01, Cu ≈ 0.01
with r = 1 and a32 = 0.5 for the explicit part. Relative errors for the density, the
velocity and the pressure in L2 norm. Nel denotes the number of elements along each
direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p

10 6.38× 10−4 2.61× 10−3 9.08× 10−4

20 1.18× 10−4 2.43 3.54× 10−4 2.88 1.64× 10−4 2.47

40 1.81× 10−5 2.70 4.16× 10−5 3.09 2.53× 10−5 2.70

80 2.96× 10−6 2.61 5.18× 10−6 3.00 4.13× 10−6 2.60

Table 4.29: Convergence test for the inviscid isentropic vortex at C ≈ 0.01, Cu ≈ 0.01
with r = 2 and a32 = 0.5 for the explicit part. Relative errors for the density, the
velocity and the pressure in L2 norm. Nel denotes the number of elements along each
direction.

In further numerical experiments, we have observed that the lack of absolute
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Chapter 4. Numerical simulations

monotonicity strongly affects the computation of density and, as a consequence,
the stability of the whole numerical scheme. For Courant number around C ≈ 0.3
the original method becomes unstable, while the modified scheme with a32 = 0.5
is still able to recover the expected convergence rates at least in the r = 1 case, as
evident from Table 4.30, while for r = 2 reported in Table 4.31 we observe a small
degradation of the convergence rates due to increasing influence of the dominant
second order time discretization error. In order to be able to run at slightly longer
time steps we have then chosen to use the a32 = 0.5 value for the IMEX scheme
for the rest of the numerical simulations carried out in this paper. We notice
also that, for both schemes, the results compare well with the analogous results
presented in [Tavelli and Dumbser, 2017] and with those obtained in [Zeifang
et al., 2019] with a higher order IMEX method.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p

10 2.32× 10−3 1.19× 10−2 2.78× 10−3

20 7.63× 10−4 1.60 3.88× 10−3 1.62 1.06× 10−3 1.39

40 2.43× 10−4 1.65 1.08× 10−3 1.85 3.41× 10−4 1.64

80 6.84× 10−5 1.83 2.69× 10−4 2.01 9.55× 10−5 1.84

Table 4.30: Convergence test for the inviscid isentropic vortex at C ≈ 0.3, Cu ≈ 0.3
with r = 1 and a32 = 0.5 for the explicit part. Relative errors for the density, the
velocity and the pressure in L2 norm. Nel denotes the number of elements along each
direction.

Nel L2 rel. error ρ L2 rate ρ L2 rel. error u L2 rate u L2 rel. error p L2 rate p

10 6.43× 10−4 2.71× 10−3 9.15× 10−4

20 1.28× 10−4 2.33 3.89× 10−4 2.80 1.68× 10−4 2.44

40 2.10× 10−5 2.61 5.78× 10−5 2.75 2.70× 10−5 2.64

80 4.08× 10−6 2.36 1.13× 10−5 2.35 4.97 · 10−6 2.44

Table 4.31: Convergence test for the inviscid isentropic vortex at C ≈ 0.3, Cu ≈ 0.3
with r = 2 and a32 = 0.5 for the explicit part. Relative errors for the density, the
velocity and the pressure in L2 norm. Nel denotes the number of elements along each
direction.

For validation purposes, we have also tested in this case the h−adaptive version
of the method. The local refinement criterion is based on the gradient of the
density. More specifically, we define for each element K the quantity

ηK = max
i∈NK

|∇ρ|i (4.26)

that acts as local refinement indicator, where NK denotes the set of nodes over
the element K. Table 4.32 shows the relative errors for all the quantities on a
sequence of adaptive simulations keeping the maximum Courant numbers fixed.
The expected results are obtained, even though the relative errors are not sig-
nificantly reduced with respect to Table 4.30 in view of the smoothness of the
solution. Hence, the following results have to merely intended as a verification
of the correctness of the h−adaptive version of the scheme. Figure 4.42 shows
instead the density and the adapted mesh at t = Tf , from which it can be seen
that the refinement criterion is able to track the vortex correctly.
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4.3. Numerical results for the single-phase compressible Navier-Stokes equations
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Ncells L2 rel. error ρ L2 rel. error u L2 rel. error p

241 2.04× 10−3 1.19× 10−2 2.78× 10−3

541 7.31× 10−4 3.50× 10−3 1.03× 10−3

1951 2.09× 10−4 9.23× 10−4 2.92× 10−4

7537 6.07× 10−5 2.42× 10−4 8.51× 10−5

Table 4.32: Adaptive simulations of the inviscid isentropic vortex at different resolu-
tions with a maximum C ≈ 0.3, Cu ≈ 0.3, relative errors for the density, the velocity
and the pressure in L2 norm with r = 1. Ncells denotes the total number of cells.

a) b)

Figure 4.42: Adaptive simulation of the inviscid isentropic vortex benchmark: a) com-
putational mesh at t = Tf , b) contour plot of the density at t = Tf .

4.3.2 2D Lid-driven cavity

We consider now the classical 2D lid-driven cavity test case already treated in
Section 4.2.2. The computational domain is the box Ω = (0, 1) × (0, 1) which is
initialized with a density ρ = 1 and a velocity u = 0. The flow is driven by the
upper boundary, whose velocity is set to u = (1, 0)T , while on the other three
boundaries a no-slip condition is imposed. We set Re = 100 and M2 = 10−5. The
advantage of the proposed scheme is that the allowed time step is more than 100
times larger than that of a fully explicit scheme. Indeed, the time-step chosen is
such that the maximum advective Courant number Cu is around 0.12, while the
maximum Courant number C is around 49. The streamlines are shown in Figure
4.43 and highlight the formation of the main recirculation pattern. A comparison
of the horizontal component of the velocity along the vertical middle line and
of the vertical component of the velocity along the horizontal middle line with
the reference solutions in [Ghia et al., 1982, Tavelli and Dumbser, 2017] is also
presented.

We note a reasonable agreement between the different solutions, even though
there is a still visible discrepancy between our results and the reference ones.
Since the solution in [Tavelli and Dumbser, 2017] is obtained using third degree
polynomials, in order to further improve the results, we consider also the case
r = 2. For this higher order approximation we note that our results fit very well
both the reference solutions.
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Chapter 4. Numerical simulations

a) b)

Figure 4.43: Computational results for the 2D lid-driven cavity with r = 1, a) stream-
lines, b) comparison with the solutions in [Ghia et al., 1982] and in [Tavelli and Dumb-
ser, 2017]. Blue dots denote the results in [Ghia et al., 1982], red crosses the results in
[Tavelli and Dumbser, 2017] and the black line our numerical results.

a) b)

Figure 4.44: Computational results for the 2D lid-driven cavity with r = 2, a) stream-
lines, b) comparison with the solutions in [Ghia et al., 1982] and in [Tavelli and Dumb-
ser, 2017]. Blue dots denote the results in [Ghia et al., 1982], red crosses the results in
[Tavelli and Dumbser, 2017] and black line our numerical results.

We have also tested the h−adaptive version of the same algorithm, using the
refinement criterion based on the vorticity introduced in 4.15. More specifically,
we define

ηK = diam (K)2 ∥∇ × u∥22,K (4.27)

as local indicator. We start from a uniform Cartesian mesh withNel = 16 elements
along each direction. We allowed refinement for 5% of the elements with largest
indicator values and coarsening for 30% of the elements with the smallest indicator
values. The minimum element diameter allowed is H = 1

64
, while the maximum

element diameter is h = 1
16
. Figure 4.45 reports the computational mesh at

steady state and the computed streamlines. One can easily notice that the local
refinement criterion is able to enhance automatically the resolution in the zones

126



i
i

“Tesi˙Multiphase˙Orlando˙Giuseppe” — 2023/4/3 — 9:12 — page 127 — #151 i
i

i
i

i
i

4.3. Numerical results for the single-phase compressible Navier-Stokes equations
with ideal gas law

where vortices appear, as well as along the top boundary of the domain. For a
more quantitative view, in Figure 4.46 we compare again the components of the
velocity along the middle lines. Moreover, the absolute difference between the
velocities of the fixed mesh and those of adaptive simulations is plotted over the
whole domain, showing that no substantial loss of accuracy has occurred with a
reduction of around 25% of the required computational time.

a) b)

Figure 4.45: Adaptive simulation for the 2D lid-driven cavity, a) mesh at steady state,
b) streamlines.

a) b)

Figure 4.46: Adaptive simulation for the 2D lid-driven cavity, a) comparison with the
solutions in [Ghia et al., 1982] and in [Tavelli and Dumbser, 2017]. Blue dots denote
the results in [Ghia et al., 1982], red crosses the results in [Tavelli and Dumbser, 2017]
and black line our numerical results, b) difference for velocity magnitude between the
fixed grid simulation and the adaptive simulation (interpolated to the fixed grid).

4.3.3 Cold bubble

In this Section, we consider a test case proposed in [Restelli, 2007, Restelli and
Giraldo, 2009] for an ideal gas in which the gravity force is active. The com-
putational domain is the rectangle (0, 1000) × (0, 2000) and the initial condition
is represented by a thermal anomaly introduced in an isentropic background at-
mosphere with constant potential temperature θ0 = 303. The perturbation of
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potential temperature θ
′
defines the initial datum and it is given by

θ
′
=

{
A if r̃ ≤ r0

A exp
Ä
− (r̃−r0)

2

σ̃2

ä
if r̃ > r0,

(4.28)

with r̃2 = (x− x0)
2 + (y − y0)

2 and x0 = 500, y0 = 1250, r0 = 50, σ̃ = 100, and
A = −15. Moreover, we set Fr2 = 1

9.81
,M2 = 10−5, and Tf = 50. The expression

of the Exner pressure Π is given by

Π = 1− M2

Fr2
y

c̃pθ
, (4.29)

with y denoting the vertical coordinate and c̃p =
γ

γ−1
R̃g = 1.0045 · 10−2 denoting

the non-dimensional specific heat at constant pressure. Notice that these values
are obtained by considering R = 1kgm−3,Θ = 1K and P = 105Pa. The same
reference values will be used in Section 4.4.1. Moreover, it is to be remarked that,
unlike in [Restelli, 2007], no artificial viscosity has been added to stabilize the
computation. Wall boundary conditions are imposed at all the boundaries. The
time step is taken to be ∆t = 0.08, corresponding to a maximum Courant number
C ≈ 5.6 and a maximum advective Courant number Cu ≈ 0.18. For the purpose of
a quantitative comparison, a reference solution is computed with an explicit time
discretization given by the optimal third order SSP scheme outlined in [Gottlieb
et al., 2001] and recalled in Appendix A.5. Figure 4.47 shows the contour plot of
the potential temperature perturbation at t = Tf and one can easily notice that
we are able to recover correctly the shape of the reference solution. For a more
quantitative point of view, the profile of the density at y = 1000 is reported in
Figure 4.48 and a good agreement between the reference results and those obtained
with the IMEX scheme is established. The IMEX scheme allows to employ a time
step 40 times larger compared to the fully explicit scheme with a computational
saving of around 90%. Three fixed-point iterations were required on average for
each IMEX stage.

In order to further enhance the computational efficiency, we employ again the
code h−adaptivity capabilities. We use as refinement indicator the gradient of
the potential temperature, since this quantity allows to identify the cold bubble.
More specifically, we set

ηK = max
i∈NK

|∇θ|i (4.30)

as local indicator, where NK is defined as in (4.26), and we allow to refine when
ηK exceeds 10−1 and to coarsen below 6 · 10−2. The initial computational grid is
composed by 50× 100 elements and we allow up to two local refinements only, so
as to keep the advective Courant number under control and to recover the same
maximum resolution employed for the non adaptive mesh simulation. Notice that
there is no intrinsic limitation in the maximum number of refinement levels allowed
and more refinement levels will be indeed used in the following tests with non-
ideal gases in Section 4.4. The only constraint is about the necessity of not having
neighbouring cells with refinement levels differing by more than one. However,
a maximum number of allowed local refinements has to be set depending on the
chosen time step in order to fulfill the stability of the scheme. As one can easily
notice from Figure 4.49, the refinement criterion is able to track the bubble and the
one-dimensional density profile at y = 1000 in Figure 4.50 is correctly reproduced.
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a) b)

Figure 4.47: Cold bubble test case, results at t = Tf , a) contour plot of potential
temperature perturbation for the reference explicit simulation, b) contour plot of the
potential temperature perturbation for the simulation with IMEX scheme.

Figure 4.48: Cold bubble test case, results at t = Tf , density profile at y = 1000. The
continuous blue line represents the results for the reference explicit simulation, whereas
the red dots denote the results for the IMEX scheme.

The final mesh consists of 6914 elements instead of the 80000 elements of the full
resolution mesh and a further 50% reduction in computational time is achieved.
Three fixed-point iterations were required on average even with the h−adaptive
version of the scheme and, therefore, no deterioration in the performances of
the fixed-point loop occurred. We noticed instead an increase in the number of
iterations required by the GMRES linear solver applied to (3.111) and to (3.127).
The CPU time required for the mesh adaptation procedure represents less than
1% of the total CPU time.
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a) b)

Figure 4.49: Cold bubble test case, adaptive simulation, results at t = Tf , a) contour
plot of potential temperature perturbation, b) computational grid.

Figure 4.50: Cold bubble test case, adaptive simulation, results at t = Tf , density
profile at y = 1000. The continuous blue line represents the results for the reference
explicit simulation, whereas the red dots denote the results for the IMEX scheme.

4.3.4 Warm bubble

In order to test the method in presence of heat conduction, we now consider for
an ideal gas the test case of a rising warm bubble proposed in [Busto et al., 2020].
The domain is the square box Ω = (−0.5, 1.5)×(−0.5, 1.5) with periodic boundary
conditions on the lateral boundaries and wall boundary conditions on the top and
on the bottom of the domain. The initial temperature corresponds to a truncated
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Gaussian profile

T (x, 0) =


386.48 if r̃ > r0

p̃0

R̃g,air

Ç
1−0.1e

r̃2

σ̃2

å if r̃ ≤ r0, (4.31)

where r̃2 = (x− x0)
2 + (y − y0)

2 is the distance from the center with coordinates
x0 = 0.5 and y0 = 0.35, r0 = 0.25 is the radius and σ̃ = 2. For this test case,
we consider unitary reference values for density, pressure and temperature and,
therefore, we set p̃0 = 105 and R̃g,air = 287. The same reference values will be
used in Section 4.4.2. Moreover, following [Busto et al., 2020], we consider:

Re = 804.9 Pr = 0.71 Fr ≈ 0.004 M ≈ 0.01.

The grid is composed by 120 elements along each direction and the time step is
such that the maximum Courant number C ≈ 118 and the maximum value of
advective Courant number Cu is around 0.03. Figures 4.51, 4.52 and 4.53 show
the results at t = 10, 15, 20s both in terms of contours and plots along the same
specific sections along x−axis chosen in [Busto et al., 2020]. All the results are in
good agreement with the reference ones and we are able to recover the development
of the expected Kelvin-Helmholtz instability.

4.3.5 Inertia-gravity waves

The method depicted in Section 3.4 has been successfully applied to a number
of idealized benchmarks for atmospheric dynamics [Orlando et al., 2023]. The
model equations are the compressible Euler equations supplied with suitable initial
and boundary conditions. Notice that, as in most standard presentations of this
topic (see e.g [Melvin et al., 2019, Orlando et al., 2023]) and for the sake of
comparison with other results in literature, we express variables and background
fields using dimensional coordinates. The corresponding non-dimensional numbers
can be easily computed using the reported reference quantities. Moreover, as
common in the presentation of benchmark problems for atmosphere dynamics, we
denote by z the vertical component also in the two-dimensional setting. We start
by considering inertia-gravity waves in a two-dimensional vertical section of the
atmosphere, see e.g. [Skamarock and Klemp, 1994, Bonaventura, 2000, Melvin
et al., 2019]. In particular, we set the background potential temperature

θ̄ = Tref exp

Å
N2z

g

ã
(4.32)

where N = 0.01 s−1 denotes the buoyancy frequency and Tref = 300K. The
background density and pressure are defined as

p̄ = exp

ß
1− g2

N2

γ − 1

γ

ρref
pref

ï
1− exp

Å
−N

2z

g

ãò™
(4.33)

ρ̄ = ρref

Å
p

pref

ã 1
γ

exp

Å
−N

2z

g

ã
(4.34)

with pref = 105Pa and ρref =
pref

RgTref
. The domain is Ω = (0, 300)× (0, 10) km and

we consider the following perturbation for the potential temperature

θ
′
= 0.01

sin
(
πz
H

)
1 +

(
x−xc

a

)2 (4.35)
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Figure 4.51: Warm bubble test case, results at t = 10 s. From bottom to top: temper-
ature, horizontal velocity and vertical velocity.

with xc = 100 km, a = 5km and H = 10 km. For what concerns the boundary
conditions, we consider periodic boundary conditions for the horizontal direction
and wall boundary conditions for the vertical direction. A background horizontal
velocity u = 20m s−1 is imposed, leading to a Mach number M ≈ 0.068 and a
Froude number Fr ≈ 0.20. The grid is composed by 300×10 elements with r = 4,
while the time step is taken equal to 3 s yielding C ≈ 4.17 and Cu ≈ 0.24. Figure
4.54 shows the potential temperature perturbation at t = 3000 s, where one can
easily notice that inertia-gravity waves propagate from the initial perturbation
also reported in Figure 4.54. The results compare well with those available in the
literature, see e.g. [Tumolo and Bonaventura, 2015, Melvin et al., 2019]. Figure
4.55 shows the one-dimensional profile of the potential temperature perturbation
along z = 5km, which is symmetric about the position x = 160 km and in excellent
agreement with the results reported in [Giraldo and Restelli, 2008].
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Figure 4.52: Warm bubble test case, results at t = 15 s. From bottom to top: temper-
ature, horizontal velocity and vertical velocity.

4.3.6 Density current

In this Section, we consider the classical density current benchmark proposed in
[Straka et al., 1993]. The setup consists of a negative temperature perturbation
in a motionless isentropic atmosphere with background potential temperature
θ̄ = 300K and temperature T̄ = [300− zgγR/ (γ − 1)] K on the domain Ω =
(−25.6, 25.6)× (0, 6.4) km. The temperature perturbation T

′
is defined as

T
′
=

®
0 if r̃ > 1000

−151+cos(πr̃)
2

if r̃ ≤ 1000,
(4.36)

where r̃ =
√î

(x−xc)
xr

ó2
+
î
(z−zc)

zr

ó2
, xc = 0m, xr = 4000m, zc = 3000m and

zr = 2000m. Following [Straka et al., 1993], diffusive terms are included to
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Figure 4.53: Warm bubble test case, results at t = 20 s. From bottom to top: temper-
ature, horizontal velocity and vertical velocity.

stabilize the flow, so that the compressible Navier-Stokes equations in conservative
form are considered. We consider the diffusion coefficient ν = 75m2/s and we
set the thermal conductivity value κ so that the Prandtl number is Pr = 0.76.
The boundary conditions are periodic on the left and right boundaries and wall
boundary conditions on the top and bottom boundaries. The grid is composed by
1024×128 elements with r = 2 leading to a resolution equal to 25m. The time step
is taken equal to 0.1 s, yielding a maximum Courant number C ≈ 1.4 and Cu ≈
0.15. Figure 4.56 shows the deviation of the potential temperature with respect to
the background value at different times for the subdomain (0, 19.2)× (0, 4.8) km.
In view of the negative buoyancy, the structure falls and reaches the bottom
boundary. It then moves to the right, developing vortices. The front location is
located at x = 15 700m, in agreement with the results obtained in [Benacchio
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a)

b)

Figure 4.54: Inertia-gravity waves benchmark, potential temperature deviation a) t =
0 s, b) t = 3000 s. Contours are plotted from 0.001K to 0.01K with interval equal to
1× 10−3K for a) and from −0.0015K to 0.003K with interval equal to 5× 10−4K for
b).

et al., 2014, Melvin et al., 2019].

4.3.7 3D rising bubble

In this Section, we consider the 3D rising bubble benchmark proposed in [Melvin
et al., 2019]. A neutrally stratified isentropic atmosphere is assumed, with θ̄ =
300K in the domain Ω = (−500,−500,−500) × (500, 500, 1000)m. A spherical
perturbation θ

′
located at (x0, y0, z0) = (0, 0, 350)m is added to the potential

temperature

θ
′
=

®
0.25

î
1 + cos

Ä
πr
r0

äó
if r̃ ≤ r0

0 if r̃ > r0,
(4.37)

with r̃ =
»

(x− x0)
2 + (y − y0)

2 + (z − z0)
2 and r0 = 250m. Wall boundary

conditions are imposed for all the six boundaries and we take r = 2. In order to
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Figure 4.55: Inertia-gravity waves benchmark, potential temperature deviation at t =
3000 s along z = 5km height.

a) b)

c) d)

Figure 4.56: Current density benchmark, potential temperature deviation from back-
ground at: a) t = 0 s, b) t = 300 s, c) t = 600 s, d) t = 900 s. Contours are plotted from
−16K to −1K with interval equal to 1K.

enhance the computational efficiency, we use the h−adaptivity capabilities, with
the same refinement indicator (4.50) introduced in the Section 4.3.3, namely

ηK = max
i∈NK

|∇θ|i . (4.38)

The initial grid is composed by 24 × 24× 36 elements and we allowed up to two
local refinements which would correspond to a uniform mesh with 96× 96× 144
elements and to a resolution around 5m. The time step is taken to be equal
to ∆t = 0.4 s, leading to a maximum acoustic Courant number C ≈ 27 and
advective Courant number Cu ≈ 0.22. Figure 4.57 shows snapshots of the bubble
at t = 200 s and t = 400 s. At the later time, a Kelvin-Helmholtz instability starts
to develop, which is however still insufficiently well resolved by the present mesh.
Further refinement levels or higher polynomial degrees will have to be employed
in future simulations to achieve better accuracy at the later stage. Similar issue
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for an analogous test case are reported in [Busto et al., 2020]. The final grid is
composed by 62792 elements.

a) b)

c) d)

Figure 4.57: 3D rising bubble benchmark, results for y = 0m; on the left the adaptive
meshes at t = 200 s (a) and t = 400 s (c) are reported, whereas on the right potential
temperature deviations from the background at t = 200 s (b) and t = 400 s (d) are
reported.

The size of this benchmark makes it a good candidate for a parallel scal-
ing test. An initial mesh composed by 48 × 48 × 72 elements corresponding to
13436928 dofs for the velocity and 4478976 dofs for the remaining scalar variables
is considered. Two configurations are employed: in the first case we keep it fixed,
whereas in the second one we apply h−adaptivity with two local refinements,
roughly doubling the number of degrees of freedom. A strong scaling analysis is
performed executing the simulation up to time t = 8 s and we use from 32 up to
1024 2xCPU x86 Intel Xeon Platinum 8276-8276L @ 2.4Ghz cores of the HPC in-
frastructure GALILEO100 at the Italian supercomputing center CINECA thanks
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to the computational resources made available through the ISCRA-C projects
SIDICoNS-HP10CLPLXI and NUMNETF-HP10C06Y02.

The results, reported in Figure 4.58, are quite similar for the two configura-
tions. A good linear scaling is obtained up to 128 cores, even with superlinear
behaviour for the fixed mesh framework due to cache effects. Starting from 256
cores, the performance of the fixed mesh configuration exhibits a small degra-
dation and, for a higher number of cores, the speed-up is less optimal for both
configurations, due to overwhelming communication costs. The apparent better
behaviour of the h−adaptive version is due to the fact that more degrees of free-
doms are involved and, therefore, the role of communication costs is less evident.
The result also highlights that the local refining procedure has no significant im-
pact on the parallel performances and that both efficiency and scalability can be
achieved in this framework. These results are also similar to those reported in
Section 4.2.3.

Figure 4.58: 3D rising bubble benchmark, strong scaling analysis. The speedup is
computed with respect to the time required with 32 cores.

4.3.8 Hydrostatic flow over a hill

We now consider a number of tests concerning idealized flows over orography, that
since the seminal papers [Klemp and Durran, 1983, Klemp and Lilly, 1978] have
become a standard benchmark for numerical models of atmospheric flows, see
e.g. the results and discussions in [Bonaventura, 2000, Melvin et al., 2019, Pinty
et al., 1995, Tumolo and Bonaventura, 2015]. In a first test, the bottom boundary
is described by the function

h(x) =
hm

1 +
Ä
x−xc

ac

ä2 , (4.39)

the so-called versiera di Agnesi, where hm is the height of the hill and ac is the
half-width. The classical Gal-Chen height-based terrain-following coordinate [Gal-
Chen and Somerville, 1975] is used to build the mapping between the reference
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element and the physical one and to obtain a terrain following mesh in Cartesian
coordinates. We first consider the linear hydrostatic configuration presented e.g.
in [Giraldo and Restelli, 2008]. The computational domain is Ω = (0, 240) ×
(0, 30) km with hm = 1m, xc = 120 km and ac = 10 km. The final time is Tf =
45 000 s. The initial state of the atmosphere consists of a constant mean flow with
u = 20m s−1 and of an isothermal background profile with temperature T = 250K
leading to a Mach numberM ≈ 0.075 and a Froude number Fr ≈ 0.20. The initial
profile of the Exner pressure is given by

Π =

Å
p0
p

ã γ−1
γ

= exp

Ç
− g

cpT
z

å
. (4.40)

We recall that cp = γRg/ (γ − 1) denotes the specific heat at constant pressure
and that here p0 = 105Pa; moreover, since in an isothermal configuration the

Brunt-Väisälä frequency is N = g/
»
cpT , it can be easily checked that Nac

u
>> 1,

so that this configuration corresponds to a hydrostatic regime according to the
classification in [Pinty et al., 1995]. For what concerns the boundary conditions,
wall boundary conditions are used for the bottom boundary and non-reflecting
boundary conditions are required by the top boundary and the lateral boundaries.
For this purpose, we introduce a Rayleigh damping profile following [Melvin et al.,
2019]

λ =

®
0, if z < zB

λ sin2
î
π
2

Ä
z−zB
z−zT

äó
if z ≥ zB,

(4.41)

where zB denotes the height at which the damping starts and zT is the top height of
the considered domain. Analogous definitions apply for the two lateral boundaries.
In this case, we consider λ∆t = 0.3 and we apply the damping layer in the topmost
15 km of the domain and in the first and last 80 km along the horizontal direction.
The grid is composed by 100 × 75 elements with r = 4, yielding a resolution of
600m along x and 100m along z, whereas the time-step is equal to 2.5 s, leading
to C ≈ 1.84 and Cu ≈ 0.12. Following [Smith, 1979], we also define the vertical
momentum flux as

m(z) =

∫ ∞

−∞
ρ(z)u

′
(x, z)w

′
(x, z)dx, (4.42)

where u
′
and w

′
represent the deviation from the background state of the horizon-

tal and vertical velocity, respectively. This is a very important diagnostic quantity
in atmospheric modelling, used to check that the numerical model is correctly re-
producing the orographic forcing on the main flow. From the linear theory, the
analytical momentum flux is given by

mH = −π
4
ρsusNh

2
m, (4.43)

where ρs and us denote the surface background density and velocity, respectively.
Figure 4.59 shows the behaviour over time of the momentum flux normalized by
its analytical value. It can be noticed that the analytical value is approached as
the simulation reaches the steady state. Figure 4.60 shows instead the contour
plots of both horizontal and vertical velocity deviations, which are in agreement
with the reference results in [Giraldo and Restelli, 2008].
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Figure 4.59: Linear hydrostatic flow over a hill, evolution of normalized momentum
flux.

We consider now the more challenging, nonlinear hydrostatic case considered
in [Bonaventura, 2000, Pinty et al., 1995]. The computational domain is Ω =
(0, 512) × (0, 28) km with hm = 800m, xc = 256 km and ac = 16 km. The final
time is Tf = 60 000 s. The damping layer is applied starting from z = 11.5 km
and in the first and last 172 km along the horizontal direction. The background
velocity is u = 32m s−1, leading to a Mach numberM ≈ 0.12 and a Froude number
Fr ≈ 0.32, and the Brunt-Väisälä frequency N is equal to 0.02 s−1. The mesh is
composed by 160× 112 elements with r = 2, yielding a resolution of 1600m along
x and 125m along z, whereas the time step is equal to 10 s, yielding a maximum
Courant number C ≈ 1.41 and Cu ≈ 0.25. Figure 4.61 shows the contour plots
of both the horizontal velocity perturbation and vertical velocity, which compare
well with those presented e.g. in [Pinty et al., 1995]. The behaviour over time
of the normalized momentum flux is reported in Figure 4.62 and its value at the
surface at t = Tf is approximately equal to 1.22, which is comparable to the one
obtained in [Pinty et al., 1995]. The momentum flux differs from the analytical
one because we are no more in a linear regime. Moreover, as explained in [Durran
and Klemp, 1983], it is strongly dependent on the position of the absorbing layer.
These results confirm the stability and the accuracy of the proposed numerical
scheme also in presence of orography.

4.3.9 Nonhydrostatic flow over a hill

In this Section, we consider the nonhydrostatic regime, characterized by Nac
u

≈ 1.
The bottom boundary is again described by the function (4.39). We first adopt the
linear nonhydrostatic configuration described e.g. in [Giraldo and Restelli, 2008].
The computational domain is Ω = (0, 144) × (0, 30) km with hm = 1m, xc =
72 km and ac = 1km. The final time is Tf = 28 800 s. The initial state of
the atmosphere is described by the following potential temperature and Exner
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a)

a)

Figure 4.60: Linear hydrostatic flow over a hill at t = Tf , a) horizontal velocity
deviation. Contour values are between −2.5 · 10−2ms−1 and 2.5 · 10−2ms−1 with an
interval equal to 5 · 10−3ms−1, b) vertical velocity. Contour values are between −4 ·
10−3ms−1 and 4 · 10−3ms−1 with an interval equal to 5 · 10−4ms−1.

pressure, respectively:

θ = θref exp

Å
N2

g
z

ã
(4.44)

Π = 1 +
g2

cpθrefN2

ï
exp

Å
−N

2

g
z

ã
− 1

ò
, (4.45)

with θref = 280K and N = 0.01 s−1. The background velocity u is equal to
10m s−1, leading to a Mach number M ≈ 0.035 and a Froude number Fr ≈ 0.10.
Following [Klemp and Durran, 1983], the analytical momentum flux is given by

mNH = 0.457mH (4.46)

and this value will be used to compute the normalized momentum flux for the
present test case. Wall boundary conditions are applied on the bottom bound-
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a)

b)

Figure 4.61: Nonlinear hydrostatic flow over a hill at t = Tf , a) horizontal veloc-
ity deviation, values between −23m s−1 and 28m s−1 with contour interval of 2m s−1,
b) vertical velocity, values between −3.9m s−1 and 3.5m s−1 with contour interval of
0.5m s−1.

ary and non-reflecting boundary conditions are employed on the top and lateral
boundaries with λ such that λ∆t = 0.15. The damping layer is applied in the
topmost 14 km of the domain and in the first and last 40 km along the horizontal
direction. The mesh is composed by 200 × 50 elements with r = 4, yielding a
resolution of 180m along x and 150m along z, whereas the time step is equal to
1 s, leading to C ≈ 2.02 and Cu ≈ 0.06. Figure 4.63 reports the time evolution
of the normalized momentum flux and, as for the linear hydrostatic case in the
previous Section, the analytical value is approached as the simulation reaches the
steady state.

Finally, we consider a nonlinear nonhydrostatic case, see e.g. [Tumolo and
Bonaventura, 2015]. The computational domain is Ω = (0, 40) × (0, 20) km with
hm = 450m, xc = 20 km, ac = 1km, Tf = 36 000 s, N = 0.02 s−1, θref = 273K and
u = 13.28m s−1, leading to a Mach number M ≈ 0.047 and a Froude number

142



i
i

“Tesi˙Multiphase˙Orlando˙Giuseppe” — 2023/4/3 — 9:12 — page 143 — #167 i
i

i
i

i
i

4.3. Numerical results for the single-phase compressible Navier-Stokes equations
with ideal gas law

Figure 4.62: Nonlinear hydrostatic flow over a hill, normalized momentum flux evo-
lution

Figure 4.63: Linear nonhydrostatic flow over a hill, evolution of normalized momen-
tum flux.

Fr ≈ 0.13. The damping layer is applied in the topmost 11 km of the domain and
in the first and last 10 km along the horizontal direction. The mesh is composed
by 50× 50 elements with r = 4, yielding a resolution of 200m along x and 100m
along z. The time step is equal to 0.5 s, leading to a maximum Courant number
C ≈ 1.13 and Cu ≈ 0.08. Figure 4.64 shows the contour plots of both horizontal
velocity perturbation and vertical velocity, which are analogous to those reported
in [Tumolo and Bonaventura, 2015], as well as the time evolution of the normalized
vertical momentum flux. Notice that the momentum flux is normalized by the
analytical value (4.43).
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a) b)

c)

Figure 4.64: Nonlinear nonhydrostatic flow over a hill, a) horizontal velocity deviation,
values between −7.2m s−1 and 9.0m s−1 with contour interval of 1.16m s−1 at t = Tf ,
b) vertical velocity, values between −4.2m s−1 and 4.0m s−1 with contour interval of
0.586m s−1 at t = 18 000 s, c) normalized momentum flux evolution.

4.3.10 Schär hill

In this Section, we consider the well known Schär mountain test, which consists
of a steady-state flow over a five-peak mountain chain [Schär et al., 2002, Melvin
et al., 2019]. The domain is Ω = (−50, 50)× (0, 30) km with surface temperature
Tref = 288K, constant buoyancy frequency N = 0.01 s−1 and a background wind
ū = 10m s−1, leading to a Mach number M ≈ 0.035 and a Froude number Fr ≈
0.10. The mountain profile is defined as

h(x) = hm exp

ñÅ
− x

ac

ã2
ô
cos2

Å
πx

λc

ã
, (4.47)

with hm = 250m, ac = 5km and λc = 4km. Notice that this test is in the
hydrostatic regime, since Nac

u
> 1. The background density and pressure have

the same expression as in (4.33)-(4.34) with θref = 288K and the final time is
Tf = 18 000 s. The damping layer is applied in the topmost 10 km of the domain

and in the first and last 10 km along the horizontal direction with λ∆t = 1.2.
The mesh is composed by 100 × 50 elements with r = 4, leading to a resolution
of 250m along x and of 150m along z, whereas the time step is equal to 2.5 s,
yielding a maximum acoustic Courant number C ≈ 2.02 and a maximum advective
Courant number Cu ≈ 0.09. Figure 4.65 shows the contour plots of both horizontal
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velocity perturbation and vertical velocity, which are analogous to those reported
in [Giraldo and Restelli, 2008, Melvin et al., 2019].

a)

a)

Figure 4.65: Schär mountain test case at t = Tf , a) horizontal velocity deviation.
Contour values are between −2m s−1 and 2m s−1 with an interval equal to 0.2m s−1, b)
vertical velocity. Contour values are between −0.5m s−1 and 0.5m s−1 with an interval
equal to 5 · 10−2ms−1.

We consider now for this test case a non-conforming mesh refinement over the
soil, as presented in [Orlando et al., 2023]. We apply a coarsening above z = 2km,
so as to obtain a resolution of 500m along the horizontal direction and 300m along
the vertical direction. The grid is composed by 1550 elements. Figure 4.66 shows a
comparison of both horizontal and the vertical velocity deviation contours between
the results obtained using the non-conforming grid and those obtained with the
uniform mesh. A computational saving time of around 25% is achieved by the
use of the non-conforming grid and one can easily notice a good agreement of the
two solutions, without spurious reflections at the interface between the two grids.
This opens the way to the use of non-conforming grids for flows over orography.
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a)
b)

Figure 4.66: Schär mountain test case at t = Tf , a) horizontal velocity deviation.
Contour values are between −2m s−1 and 2m s−1 with an interval equal to 0.2m s−1, b)
vertical velocity. Contour values are between −0.5m s−1 and 0.5m s−1 with an interval
equal to 5 · 10−2ms−1. The black lines denote the solution with uniform grid, whereas
the red lines denote the solution with the non-conforming grid.

4.3.11 3D medium-steep bell-shaped hill

We finally consider the three-dimensional flow over a bell-shaped hill, see e.g.
[Melvin et al., 2019]. The computation domain is Ω = (0, 60)×(0, 40)×(0, 20) km.
The mountain profile is defined as

h(x, y) =
hm[

1 +
Ä
x−xc

ac

ä2
+
Ä
y−yc
ac

ä2]3/2 , (4.48)

with hm = 400m, ac = 1km, xc = 30 km and yc = 20 km. We consider as buoyancy
frequency N = 0.01 s−1 and a background velocity u = 10m s−1, leading to a
Mach number M ≈ 0.035 and a Froude number Fr ≈ 0.10. We are therefore in a
nonhydrostatic regime since Nac

u
= 1. The background density and pressure have

the same expression of (4.33) and (4.34) with θref = 293.15K and the final time
is Tf = 3600 s. The damping layer is applied in the topmost 6 km of the domain

and in the first and last 20 km along the lateral boundaries with λ∆t = 1.2. In
order to increase the resolution around the hill, we consider a non-uniform grid by
taking a resolution of 250m between x = 25 km and x = 40 km and a resolution
of 250m between y = 12 km and y = 28 km. A uniform resolution of 500m is
considered along the vertical direction z, as well as for the remaining part of the
lateral boundaries. The mesh is composed by 8288 elements with polynomial
degree r = 4, whereas the time step is equal to 2 s, yielding a maximum acoustic
Courant number C ≈ 1.95 and a maximum advective Courant number Cu ≈ 0.1.
The results in Figure 4.67 are in agreement with those reported in [Melvin et al.,
2019].

4.4 Numerical results for the single-phase compressible Navier-Stokes equa-

tions with non-ideal gas law

We consider now a number of tests for non-ideal gases which show the potential-
ities of the proposed method also in this framework.
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Figure 4.67: 3D mountain benchmark, x−y slice at z = 800m of the vertical velocity.
The values are between −1.5m s−1 and 1.3m s−1 with contour interval of 0.1m s−1

4.4.1 Cold bubble

We consider first the test case in Section 4.3.3 using non-ideal equations of state.
The definition of a potential temperature or of quantities with similar properties
is not trivial for non-ideal gases. For an ideal gas, the definition of the potential
temperature rises from the analysis of isentropic processes. Hence, we consider
here, as counterpart of the potential temperature, the quantity

β = log(T )− 2
R̃g

c̃v
atanh

Ä
2ρb̃− 1

ä
(4.49)

defined in (2.241), stemming from the original analysis of isentropic processes for
the general cubic equation of state depicted in Section 2.6.1. We first consider the

van der Waals equation with a constant c̃v given by c̃v = R̃g

γ−1
= 7.175 · 10−3, ã =

5 · 10−9 and b̃ = 5 · 10−4, so that the same specific heat at constant volume with
respect to the ideal gas case is obtained and z ≈ 1. The fluid is initialized using
the same pressure and the same density values as in the ideal gas case. Notice
that dã

dT
= dc̃v

dT
= 0 and so it is not necessary to explicitly compute the temperature

for (3.77) and (3.87). We expect a behaviour similar to the ideal gas one and this
is confirmed by the density profile reported in Figure 4.68.

We then consider the case with ã = 1.6 · 10−1 and b̃ = 5 · 10−4, which yield
an average compressibility factor z ≈ 0.83. In this case, we expect effects due to
conditions far from the ideal ones and so we first compute a reference solution
with the third order optimal SSP explicit time discretization scheme [Gottlieb
et al., 2001] (see also Appendix A.5). The time step for the IMEX simulation is
kept equal to ∆t = 0.08, yielding a maximum Courant number C ≈ 5.3 and a
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Figure 4.68: Cold bubble test case, van der Waals EOS with ã = 5 · 10−9 and b̃ =
5·10−4, results at t = Tf , density profile at y = 1000. The continuous blue line represents
the results for the reference explicit simulation, whereas the red dots denote the results
for the IMEX scheme.

maximum advective Courant number Cu ≈ 0.19. Figure 4.69 shows the contour
plot for β at t = Tf for both the reference explicit and the IMEX simulations. The
expected behaviour is retrieved and a good agreement with the reference results is
established. Also in this case, a computational saving of around 90% with respect
to the explicit simulation is obtained thanks to the IMEX scheme. Figure 4.70
reports the profile of the density for y = 1000 at t = Tf . One can notice the very
good agreement between the IMEX results and the reference ones. Furthermore,
a clear discrepancy with respect to the ideal gas can be observed. The higher
density values are due to the large value of ã, which means that strong forces of
attraction between the gas particles are present [Nederstigt, 2017].

Concerning the adaptive simulations, since as aforementioned the quantity

β = log(T )− 2 R̃g

c̃v
atanh

Ä
2ρb̃− 1

ä
is constant in an isentropic process with dã

dT
=

dc̃v
dT

= 0, we define the local refinement indicator for each element as

ηK = max
i∈NK

|∇β|i . (4.50)

We allow to refine when ηK exceeds 4 · 10−4 and to coarsen when the indicator is
below 2 · 10−4. The initial mesh is composed by 50× 100 elements and we allow
up to four local refinements. For this reason, in order to keep under control the
advective Courant number, we need to reduce the time step ∆t = 0.02, so as to
obtain a maximum acoustic Courant number C ≈ 5.3 and a maximum advective
Courant number Cu ≈ 0.18. Figure 4.71 confirms that β is an appropriate quan-
tity to track the bubble and the one-dimensional density profile in Figure 4.72
shows that no significant loss in accuracy occurs. The final mesh consists of 9086
elements.

The same analysis is carried out using the Peng-Robinson EOS. Hence, we
first consider R̃g = 2.87 · 10−3, c̃v = 7.175 · 10−3, ã = 5 · 10−9 and b̃ = 5 · 10−4, so
that z ≈ 1. The density profile reported in Figure 4.73 highlights, as expected, a
behaviour entirely analogous to that of the ideal gas.

Next, we take ã = 1.6 · 10−1 and b̃ = 5 · 10−4, so that z ≈ 0.83, and we
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a) b)

Figure 4.69: Cold bubble test case, van der Waals EOS with ã = 1.6 · 10−1 and
b̃ = 5 · 10−4, results at t = Tf , a) contour plot of β for the reference explicit simulation,
b) contour plot of β for the simulation with IMEX scheme.

Figure 4.70: Cold bubble test case, van der Waals EOS with ã = 1.6 · 10−1 and
b̃ = 5 · 10−4, results at t = Tf , density profile at y = 1000. The continuous blue line
represents the results for the full explicit simulation, the continuous black line reports
the results for the reference explicit simulation with an ideal gas, whereas the red dots
denote the results for the IMEX scheme.

perform both uniform mesh and adaptive simulations, using the same parameters
employed for the van der Waals EOS. The results are compared with a reference
solution computed with the explicit method. Figure 4.74 shows similar contour
plots for all the configurations as well as for the adaptive mesh at t = Tf , which
consists of 9137 elements and it is able to track the bubble correctly. Figure 4.75
reports the comparison for the one-dimensional profile of the density at y = 1000

149



i
i

“Tesi˙Multiphase˙Orlando˙Giuseppe” — 2023/4/3 — 9:12 — page 150 — #174 i
i

i
i

i
i

Chapter 4. Numerical simulations

a) b)

Figure 4.71: Cold bubble test case, van der Waals EOS with ã = 1.6 · 10−1 and
b̃ = 5·10−4, adaptive simulation, results at t = Tf , a) contour plot of β, b) computational
grid.

Figure 4.72: Cold bubble test case, van der Waals EOS with ã = 1.6 · 10−1 and b̃ = 5 ·
10−4, adaptive simulation, results at t = Tf , density profile at y = 1000. The continuous
blue line represents the results for the reference explicit simulation, the continuous black
line reports the results for the reference explicit simulation with an ideal gas, whereas
the red dots denote the results for the IMEX scheme in the non-ideal case.

and the same considerations of the van der Waals EOS are still valid. We want
to test in this case the refinement indicator based on (2.242). More specifically,
we set

ηK = max
i∈NK

∣∣∣∣∇Å p

ργpρ

ã∣∣∣∣
i

(4.51)

and we allow to refine in case ηK is above 4 · 10−4 and to coarsen below 2 · 10−4
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4.4. Numerical results for the single-phase compressible Navier-Stokes equations
with non-ideal gas law

Figure 4.73: Cold bubble test case, Peng-Robinson EOS with ã = 5 · 10−9 and b̃ =
5·10−4, results at t = Tf , density profile at y = 1000. The continuous blue line represents
the results for the reference explicit simulation, whereas the red dots denote the results
for the IMEX scheme.

with the same remeshing procedure adopted so far for non-ideal gases. Figure
4.76 shows the contour plot of (2.242) and the computational mesh at t = Tf .
The mesh consists of 8294 elements and one can easily notice that more resolution
is added only in correspondence of the bubble.

4.4.2 Warm bubble

We repeat now the test case in Section 4.3.4 using data for nitrous oxide (N2O)
from [Lias et al., 2010], which we report here for the convenience of the reader.
At temperature of 386.48K and pressure of 105Pa, µ = 1.8884 · 10−5Pa · s and
κ = 2.4855 · 10−2Wm−1K−1, so as to obtain

Re ≈ 716.1 Pr ≈ 0.73.

We consider the Peng-Robinson EOS, for which the expressions of ã(T ) and b̃ are
the following [Fernandez, 2009]:

ã(T ) = 0.45724
R̃2

gT̃
2
c

p̃c
α(T )2

α̃(T ) = 1 + Γ̃
Ä
1−

»
T
T̃c

ä
Γ̃ = 0.37464 + 1.54226ω − 0.26992ω2

b̃ = 0.0778 R̃gT̃c

p̃c
,

(4.52)

where T̃c denotes the non-dimensional critical temperature, p̃c the non-dimensional
critical pressure and ω the acentric factor. For what concerns N2O, we find from
[Lias et al., 2010] T̃c = 309.52, p̃c = 7.2450 · 106 and ω = 0.1613. Finally, the
function c̃v(T ) is computed using the following polynomial from [Lias et al., 2010]:

c̃v (T ) =
1

T

ññ
A

T

1000
+

1

2
B

Å
T

1000

ã2

+
1

3
C

Å
T

1000

ã3

+

1

4
D

Å
T

1000

ã4

− E
1000

T

ô
106

Mw

− R̃g,N2OT

ô
, (4.53)
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a) b)

a) b)

Figure 4.74: Cold bubble test case, Peng-Robinson EOS with ã = 1.6 · 10−1 and
b̃ = 5 · 10−4, results at t = Tf , a) contour plot of β for the reference explicit simulation,
b) contour plot of β for the constant mesh simulation with IMEX scheme, c) contour
plot of β for adaptive simulation with IMEX scheme, d) adaptive mesh.

with R̃g,N2O = 188.91, Mw = 44.0128 and A,B,C,D,E denoting suitable co-
efficients whose values are reported in Table 4.33. It is worth to mention once
more that c̃v(T ) is not a proper specific heat at constant volume, but it denotes

the non-dimensional counterpart of e#(T )
T

from (2.213), as shown in (2.219). The
fluid is initialized with the same temperature and the same pressure as the ideal
gas test case in Section 4.3.4. The same mesh and the time step are also used,
yielding to C ≈ 92 and Cu ≈ 0.03. Figure 4.77 shows the temperature, the hor-
izontal and the vertical velocity at t = 20 s. One can easily notice that a good
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4.4. Numerical results for the single-phase compressible Navier-Stokes equations
with non-ideal gas law

Figure 4.75: Cold bubble test case, Peng-Robinson EOS with ã = 1.6 ·10−1 and b̃ = 5 ·
10−4, adaptive simulation, results at t = Tf , density profile at y = 1000. The continuous
blue line represents the results for the reference explicit simulation, the continuous black
line reports the results for the reference explicit simulation with an ideal gas, the red
dots denote the results for the IMEX scheme, whereas the green squares represent the
results for the adaptive simulation with IMEX scheme.

a) b)

Figure 4.76: Cold bubble test case, Peng-Robinson EOS with ã = 1.6 · 10−1 and
b̃ = 5 ·10−4, adaptive simulation with criterion (4.51), results at t = Tf , a) contour plot
of (2.242), b) adaptive mesh

qualitative agreement compared with the results in Figure 4.53 is obtained. For
a more quantitative point of view, since an explicit solution cannot be computed
in view of the very large acoustic Courant number and the compressibility fac-
tor is z ≈ 0.997, a simulation with the ideal gas law (2.210) is performed, using

γ = 1.2879, which corresponds to c̃v(386.48)

R̃g
+ 1, so that the internal energy of the

ideal gas at T = 386.48 is the same as in the case e# (386.48). The temperature
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Chapter 4. Numerical simulations

profile at y = 0.8 shown in Figure 4.78 confirms the good quality of the solution,
with only slight differences due to the different equations of state.

A 27.67988

B 51.14898

C −30.64544

D 6.847911

E −0.157906

Table 4.33: Values for polynomial (4.53)

a) b)

c)

Figure 4.77: Warm bubble test case for N2O with Peng-Robinson EOS, results at
t = 20 s, a) horizontal velocity, b) vertical velocity, c) temperature.

In order to consider also non-ideal effects, we focus on conditions closer to the
vapor-liquid phase equilibrium conditions, which are definitely more challenging.
More in detail, we set p = 4 ·106 and we consider the following temperature profile

T (x, 0) =


298 if r̃ > r0

p̃0

R̃g,air

Ç
1−0.1e

r̃2

σ̃2

å − 88.48 if r̃ ≤ r0, (4.54)

which corresponds to a translation with respect to (4.31), yielding z ≈ 0.72.
We would like to point out that these conditions of pressure and temperature
are close to the vapour-liquid phase transition curve of N2O. The maximum
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4.5. Numerical results for two-phase flow systems

Figure 4.78: Warm bubble test case for N2O with Peng-Robinson EOS, temperature
profile for y = 0.8 at t = 20 s.

acoustic Courant is C ≈ 74.5, whereas the maximum advective Courant number
is Cu ≈ 0.06. Figure 4.79 shows the contour plots of the temperature at t = 15 s
and t = 20 s. For these conditions of temperature and pressure, we obtain from
[Lias et al., 2010] µ = 1.6680 · 10−5Pa · s, κ = 2.1201 · 10−2Wm−1K−1 and
cp = 1.5150 · 103 J kg−1K−1, so as to obtain

Re ≈ 810.7 Pr ≈ 1.19

One can easily notice the full development of the Kelvin-Helmholtz instability
with the formation of secondary vortices. The bubble reaches a higher altitude
with respect to the previous case.

Finally, we consider the SG-EOS with γ = 1.0936, c̃v = 1453.91 and π̃ = q̃ = 0.
The values for γ and c̃v are computed using the procedure described in [Gandolfi,
2019]. The maximum acoustic Courant is C ≈ 67, whereas the maximum advec-
tive Courant number is Cu ≈ 0.04. Figure 4.81 shows the contour plots of the
temperature at t = 15 s and t = 20 s. The different behaviour between the two
equations of state can be readily explained since, in the case of Peng-Robinson
EOS, the difference between the density of the bubble and the background density
is bigger with respect to SG-EOS, as evident from Figure 4.83 and, therefore, a
bigger upward buoyant force is exerted on the bubble. For this reason, in the
simulation with Peng-Robinson EOS reaches a higher level compared to that in
the SG-EOS simulation.

4.5 Numerical results for two-phase flow systems

In this Section, we present the results in a number of benchmarks for the two-phase
flow systems (2.149) and (3.164).

4.5.1 No mixing water-air mixture

The first two-phase test involves liquid water (phase 1) and air (phase 2) [Re and
Abgrall, 2022]. Phase 1 is governed by SG-EOS (2.222) with γ1 = 4.4, c̃v,1 =
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a) b)

Figure 4.79: Warm bubble test case for N2O with Peng-Robinson EOS, a) temperature
at t = 15 s, b) temperature at t = 20 s.

a) b)

Figure 4.80: Warm bubble test case for N2O with Peng-Robinson EOS, a) vertical
velocity at t = 15 s, b) vertical velocity at t = 20 s.

4.178 · 10−2, π̃∞,1 = 6.8 · 103 and q̃∞,1 = 0, whereas phase 2 is governed by the

ideal gas law (2.210) with γ2 = 1.4 and R̃g,2 = 2.8704 · 10−3. We recall once more

that c̃v and R̃g are the non-dimensional counter of the specific heat at constant
volume and of the specific gas constant, respectively. The previous parameters are
obtained considering R1 = R2 = 1kgm−3,Θ1 = Θ2 = 1K and P1 = P2 = 105Pa
so that cv,1 = 4178 J kg−1K, π∞,1 = 6.8 · 108Pa and Rg,2 = 287.04 J kg−1K. As
initial condition, the phases are uniformly dispersed with α1 = 0.5, in a shock
tube where a mild pressure jump occurs with pL = 100 and pR = 50. Here,
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4.5. Numerical results for two-phase flow systems

a) b)

Figure 4.81: Warm bubble test case for N2O with SG-EOS, a) temperature at t = 15 s,
b) temperature at t = 20 s.

a) b)

Figure 4.82: Warm bubble test case for N2O with SG-EOS, a) vertical velocity at
t = 15 s, b) vertical velocity at t = 20 s.

the subscripts L and R denote the left and right state, respectively. A uniform
temperature T = 270 is assumed. The domain is Ω = (−1, 1) and the initial
discontinuity is placed at xd = 0. Since no volume fraction gradient is present
and no relaxation is considered, each phase evolves independently from the other.
The computational grid is composed by Nel = 1000 elements with polynomial
degree r = 1, the final time is Tf = 1.6 ·10−4 and the time step is chosen in such a
way that max (C + Cu) ≈ 1.3 for the liquid phase. First of all we point out that, as
evident from Figure 4.84, using the formulation (3.158) with a double integration
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a) b)

Figure 4.83: Warm bubble test case for N2O, density deviation from background state
at t = 0, a) Peng-Robinson EOS, b) SG-EOS.

by parts for all the non-conservative terms allows to preserve the uniform volume
fraction, whereas the formulation (3.162) with a single integration by parts gives
raise to spurious oscillations in the volume fraction. Hence, from now on we
will employ the formulation (3.158) for the treatment of the non-conservative
terms. We also employ the filtering monotonization technique presented in Section
3.2 to reduce the oscillations that arise using high order spatial discretization
schemes. More in detail, we consider the Froese-Oberman filter function (3.19)
with βρα = βu = βp = 0.01 for the liquid phase and βρα = βu = βp = 0.1 for the
gaseous phase. Here, βρα represents the switching parameter for the continuity
equations, βu is the switching parameter for the velocity fields and, finally, βp is
the switching parameter for the pressure fields. For the low order solution, we
consider the Rusanov flux for both phases, whereas, for the high order solution,
we consider the upwind flux for liquid phase and the Rusanov flux for the gaseous
phase. The results in Figure 4.85 are analogous to those reported in [Re and
Abgrall, 2022].

Figure 4.84: No mixing test case, results at t = Tf . The blue line denotes the solution
obtained using the formulation (3.158), whereas the red line denotes the solution obtained
using the formulation (3.162).

4.5.2 Pure advection test case

Here, we investigate a pure advection problem. A column of water-air mixture
with a liquid volume fraction α1 = 0.7 initially located at 0.2 < x < 0.4 within the
domain Ω = (0, 1) is transported with unitary velocity. The volume fraction α1 is
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a) b)

c) d)

Figure 4.85: No mixing test case, results at t = Tf , a) velocity of phase 1, b) velocity
of phase 2, c) pressure of phase 1, d) pressure of phase 2. The blue line denotes the
results with the unfiltered discretization, whereas the red dots report the results obtained
using the filtering monotonization scheme.

initialized to α1 = 0.3 in the rest of the domain. A uniform pressure p1 = p2 = 1 is
considered and the initial temperature is T = 270 for both phases. The parameters
for the equations of state are the same as in the previous test. The final time is
Tf = 0.3 and we consider r = 0 and r = 1 as polynomial degree. The results
in Figure 4.86 show that no spurious oscillations arise neither in pressure nor
in velocity for both r = 0 and r = 1. For what concerns the volume fraction,
spurious oscillations are present using r = 1. The application of the filtering
monotonization technique for the volume fraction leads to spurious oscillations in
velocity and pressure, as one can notice from Figure 4.87. This phenomenon can
be readily explained as follows: since the monotonization technique is a sort of
blending between the low order and the high order solution, the relation (3.138)
is not satisfied at discrete level and, as a consequence, the relation (3.137) that
prescribes the uniform pressure cannot be satisfied.

We perform now a convergence analysis for the employed method. For this
purpose, we define the following regolarization of the volume fraction:

α0
1(x) =

0.4
exp(− 1

(x−0.1)(0.5−x))
exp(− 1

0.04)
+ 0.3 if 0.1 < x < 0.5

0.3 otherwise,
(4.55)

so that the exact solution is α1(x, t) = α0
1(x − t). The analysis is performed at

fixed Courant number. Table 4.34 and Table 4.35 show that expected convergence
rates of order r + 1 are achieved for both r = 0 and r = 1.
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a) b)

c)

Figure 4.86: Pure advection test case, results at t = Tf , a) velocity, b) pressure, c)
volume fraction. For a) and b), the red dots denote the results for phase 1, whereas the
blue line denotes the results for phase 2. In c), the red dots denote the results for r = 0,
the blue dots denote the results for r = 1.

a) b)

Figure 4.87: Pure advection test case, results at t = Tf , a) velocity phase 1, b)
pressure phase 1. The results are obtained using the filtering monotonization technique
with βα = βρα = βu = βp = 0.5.

∆t Nel L2 rel. error α1 L2 rate α1

8× 10−4 125 1.31× 10−1

4× 10−4 250 9.46× 10−2 0.47

2× 10−4 500 6.14× 10−2 0.62

1× 10−4 1000 3.62× 10−2 0.76

5× 10−5 2000 2.00× 10−2 0.86

Table 4.34: Convergence test for the pure advection benchmark with polynomial degree
r = 0, relative errors for the volume fraction in L2 norm. Nel denotes the number of
elements employed.
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∆t Nel L2 rel. error α1 L2 rate α1

8× 10−4 125 3.69× 10−3

4× 10−4 250 7.10× 10−4 2.38

2× 10−4 500 1.49× 10−4 2.25

1× 10−4 1000 3.39× 10−5 2.14

5× 10−5 2000 8.12× 10−6 2.06

Table 4.35: Convergence test for the pure advection benchmark with polynomial degree
r = 1, relative errors for the volume fraction in L2 norm. Nel denotes the number of
elements employed.

4.5.3 Solid contact

We consider now a test case known as solid contact [Coquel et al., 2017, Re
and Abgrall, 2022]. Notice that this test does not consider a low Mach number
configuration, however, it is part of a class of important and widely used test cases
for the verification of discretizations of the hyperbolic operator [Re and Abgrall,
2022]. Moreover, both fluids follow (2.210) with γ1 = γ2 = 1.4 and, therefore, it
is not appropriate to talk about solid, liquid or gas and we stick with the more
generic notation phase 1 and phase 2. The domain is Ω = (−0.5, 0.5) and the
initial discontinuity is placed at xd = 0. The initial conditions are reported in
Table 4.36. The computational grid is composed by Nel = 1000 elements, the
final time is Tf = 0.15 and we employ Nt = 200 time steps. We take pI = p1
and vI = u2 for the sake of comparison with the results reported in [Coquel
et al., 2017, Re and Abgrall, 2022]. For the non conservative terms, we employ an
upwind flux for the advection of the volume fraction and a centered flux for the
other equations, whereas, for the conservative terms, we employ an upwind flux at
the interface and a Rusanov flux elsewhere. We take βα = βρα = βu = βp = 0.01
for the filtering monotonization technique. These low values for the switching
parameters are necessary in order to avoid large undershoots and overshoots and
more in general oscillations which completely corrupt the unfiltered solution. The
results in Figure 4.88 are in good agreement with those in [Re and Abgrall, 2022]
with reduced under- and over-shoots. Moreover, one can notice that no spurious
oscillations arise from the advection of the volume fraction.

αL uL pL ρL αR uR pR ρR
Phase 1 0.2 −0.02609 0.3 0.21430 0.7 −0.03629 0.95776 0.96964

Phase 2 0.8 0.00007 1.0 1.00003 0.3 −0.00004 1.0 0.99993

Table 4.36: Initial conditions for the solid contact test case. The subscripts L and
R denote the left and right state, respectively, with respect to the initial discontinuity
location at xd = 0.

4.5.4 Rising bubble

We consider here a rising bubble test case for the relaxed systems (3.165) and
(3.164) inspired by the well-established benchmark proposed in [Hysing et al.,
2009] (see also [Demou et al., 2022]). This test case is used to assess the capability
of the proposed numerical method to capture topological changes of a moving
interface. The computational domain is Ω = (0, 2) × (0, 4) and the final time is
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a) b)

c)

Figure 4.88: Solid contact test case, results at t = Tf , a) velocity, b) pressure, c)
volume fraction. The red dots denote the results for phase 1, whereas the blue dots
denote the results for phase 2.

Tf = 3. Wall boundary conditions are imposed for the top and bottom boundaries,
while periodic conditions are prescribed in the horizontal directions. We set M ≈
2.21 · 10−3, Re = 35, F r = 1 and, moreover, we set ρ1

ρ2
= 10, µ1

µ2
= 10. Notice

that, in the original work [Hysing et al., 2009], incompressible Navier-Stokes with
a level-set formulation were considered. The initial velocity field is zero and the
pressure is uniform. We start by considering as polynomial degree r = 0 in order
to investigate the discretization of the volume fraction without the presence of
undershoots and overshoots that arise using high-order discretization techniques.
The computational grid is composed by 128× 256 elements and the chosen time
step ∆t = 3 · 10−4 yields a maximum acoustic Courant C ≈ 10 and a maximum
advective Courant number Cu ≈ 0.02. Figure 4.89 shows a comparison between
the non-conservative advection of the volume fraction present in (3.164) and the
conservative version in (3.165). One can easily notice that the non-conservative
formulation leads to less diffusion in the treatment of the interface. We then
consider r = 2 as polynomial degree and a computational grid composed by 64×
128 elements. As mentioned above, we need now to employ the monotonization
technique to avoid spurious oscillations for the volume fraction and the density
which completely corrupt the numerical solution. For this purpose, we take βα =
βρα = 0.1. Figure 4.90 shows both the volume fraction and the mixture density
with reduced undershoots and overshoots. We plan to investigate in the future
the effect of the surface tension in order to avoid the development of the Kelvin-
Helmholtz instability present in Figure 4.89 and Figure 4.90. Notice that the shape
of the rising bubble differs between Figure 4.89 and Figure 4.90 because, using
piecewise constant functions, the gradients are zero and, therefore, the diffusive
terms are not acting. On the contrary, in the case of quadratic polynomials, these
terms are different from zero and contribute to the smoothing of the interface.
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a) b)

Figure 4.89: Rising bubble test case, results at t = Tf with polynomial degree r = 0, a)
volume fraction with non-conservative advection, b) volume fraction with conservative
formulation.

a) b)

Figure 4.90: Rising bubble test case, results at t = Tf with polynomial degree r = 2,
a) volume fraction, b) mixture density. The results are obtained using βα = βρα = 0.1
for the filtering monotonization technique.
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CHAPTER5
Conclusions and further perspectives

In this Chapter, we try to draw some conclusions from the work presented in
this thesis and to give some indications for future developments. This thesis was
devoted to the development of models and methods for two-phase flows including
geometric variables. Phase exchange terms are indeed proportional to the inter-
face area density and the present work provides a possible approach to address the
prediction of this quantity. This goal could be achieved by including a suitable
evolution equation for the interface area density in classical models for two-phase
flows. The relations for the interface area density are typically derived by means
of empirical considerations. In this work, we first reviewed in Section 2.3 (see also
Appendix A.2) the evolution equations for a set of geometrical quantities that
characterize the interface in two-phase flows. In particular, we analyzed the local
instantaneous equations for the Dirac delta δ(Γ) with support on the interface.
In Section 2.5, we employed instead the Stationary Action Principle (SAP) to re-
cover well known relations in the literature for the evolution of the interface area
density which were obtained by means of empirical considerations, bringing them
back into a variational framework in an original way.
For what concerns the development of an effective computational environment to
perform relevant numerical simulations, we combined accurate and flexible Dis-
continuous Galerkin methods with a second order IMEX-ARK time discretization
scheme. We first developed a novel implicit solver for the incompressible Navier-
Stokes equation using an artificial compressibility formulation presented in [Or-
lando et al., 2022b]. The employed time discretization scheme in this framework
is the TR-BDF2, which is a second order implicit method introduced as a com-
bination of the Trapezoidal Rule method and of the Backward Differentiation
Formula of order 2. The discretization method is presented in Section 3.3 and its
validation is performed in Section 4.2, following the discussion already reported
in [Orlando et al., 2022b]. Here, we assessed the convergence properties of the
proposed scheme, comparing it also with the Finite Volume method, and we per-
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formed simulations in the case of a complex geometry as well as those of classical
benchmarks for incompressible flows. An original extension to single-phase com-
pressible flows presented in [Orlando et al., 2022a] is outlined in Section 3.4 and
a number of relevant benchmarks, also reported in [Orlando et al., 2022a] and
[Orlando et al., 2023], are presented in Section 4.3 and Section 4.4 to show the
potentialities of the proposed approach. After a suitable dimensional analysis, fol-
lowing [Casulli and Greenspan, 1984, Dumbser and Casulli, 2016], we considered
an implicit coupling between the momentum balance and the energy balance, so as
to obtain a method particularly well suited for low Mach number applications. We
employed a second order IMEX-ARK scheme for the time discretization (see also
Appendix A.5 for a review of the method and for an original analysis of the explicit
part in terms of absolute monotonicity). The implicit part of the IMEX method
coincides with the aforementioned TR-BDF2, thus providing ample guarantees of
robustness in the low Mach number limit. As discussed in Section 3.4 and also
in [Orlando et al., 2022a], since we aim to describe two-phase flows using more
realistic equations of state, the discretization approach provides a non straight-
forward extension of existing approaches in order to handle non-ideal EOS, such
as the general cubic equation of state, as well as another classical convex equation
of state like the SG-EOS. All the proposed schemes have been implemented in
the framework of the open-source library deal.II [Bangerth et al., 2007, Arndt
et al., 2022], which is based on a matrix-free approach and provides h−adaptivity
capabilities. The efficiency of the various implementations has been shown with
weak and strong scaling analyses reported in Section 4.2 and Section 4.3. The
source code for the incompressible Navier-Stokes equations is freely available at
[Orlando, 2022]. Moreover, in order to fully exploit the AMR tools, we developed
suitable refinement criteria for real gases stemming from an original analysis of
isentropic processes outlined in Section 2.6.1. Finally, we provided an extension
to the full non-equilibrium Baer-Nunziato model in Section 3.5 and we validated
it in Section 4.5 in a number of benchmarks. For this purpose, a novel filter-
ing monotonization technique has been developed in order to avoid (or at least
to reduce) the spurious oscillations that arise in presence of discontinuities using
high order discretization methods. The monotonization approach is presented in
Section 3.2 and [Orlando, 2023] for a scalar advection problem and then properly
extended to the Euler equations of gas dynamics. It is based on a filter function
that keeps the high order solution if regular, otherwise switching to a low order
monotonic solution. Its validation is performed in Section 4.1 (see also [Orlando,
2023]) using second and third order SSP explicit schemes. The monotonization
technique is then applied to a set of relevant two-phase flows test cases in Section
4.5 using the IMEX scheme.

Several open problems remain for the proposed approaches and several possi-
ble future developments can be envisaged. First of all, a validation of the IMEX
scheme in combination with heat and mass transfer source terms should be per-
formed. Afterwards, it would be interesting to compare the classical instantaneous
relaxations towards equilibrium, like those used in [Saurel and Abgrall, 1999] and
briefly recalled in Section 2.4 (see also Appendix A.6), with the model presented
in Chapter 2, which employs an ad-hoc evolution equation for the interface area
density. Finally, it is of interest to identify more general closure relations for the
terms in the averaged interfacial area density evolution equation (2.133) or a more
general expression for ν in the Lagrangian (2.161) defined for the SAP.
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APPENDIXA

A.1 Treating Generalized Functions

Two-phase flows are characterized by discontinuities in the various properties
and fields. Hence, for a generic quantity f , both ∂f

∂t
and ∇f have to be treated

as generalized functions or distributions [Estrada and Kanwal, 1980, Drew and
Passman, 1999].
Consider the space-time domain ΩT = Ω× (0, Tf ) and denote by Φ the set of test
function, namely

Φ = {ϕ : ϕ ∈ C∞
0 (ΩT ).} (A.1)

The distributional derivatives of f are defined by the following relations:∫
ΩT

ϕ
∂f

∂t
dΩ = −

∫
ΩT

∂ϕ

∂t
fdΩ ∀ϕ ∈ Φ (A.2)∫

ΩT

ϕ∇fdΩ = −
∫
ΩT

∇ϕfdΩ ∀ϕ ∈ Φ. (A.3)

An important function for which (A.2) and (A.3) hold is the characteristic function
Xk (2.19), of whom we recall here its definition:

Xk(x, t) =

®
1, if x is in phase k at time t

0 otherwise.
(A.4)

It can be shown that
∂Xk

∂t
+ vI · ∇Xk = 0 (A.5)

in the sense of distributions. Indeed:∫
ΩT

Å
∂Xk

∂t
+ vI · ∇Xk

ã
ϕdΩ =

∫
ΩT

∂Xk

∂t
ϕdΩ +

∫
ΩT

∇Xk · vIϕdΩ. (A.6)

167



i
i

“Tesi˙Multiphase˙Orlando˙Giuseppe” — 2023/4/3 — 9:12 — page 168 — #192 i
i

i
i

i
i

Appendix A.

If we assume that vI can be extended smoothly through phase k, we obtain∫
ΩT

Å
∂Xk

∂t
+ vI · ∇Xk

ã
ϕdΩ = −

∫
ΩT

∂ϕ

∂t
XkdΩ−

∫
ΩT

∇·(vIϕ)XkdΩ (A.7)

= −
∫
ΩT

ï
∂ϕ

∂t
+∇· (vIϕ)

ò
XkdΩ ∀ϕ ∈ Φ.

The domain ΩT can be split into its time and space contribution. Hence we get∫
ΩT

Å
∂Xk

∂t
+ vI · ∇Xk

ã
ϕdΩ = −

∫ Tf

0

®∫
Ωk(t)

ï
∂ϕ

∂t
+∇· (vIϕ)

ò
dx

´
dt (A.8)

= −
∫ Tf

0

d

dt

ñ∫
Ωk(t)

ϕdx

ô
dt = −

∫
Ωk(t)

ϕdx

∣∣∣∣t=Tf

t=0

= 0,

where Ωk(t) is the volume occupied by phase k at time t. It is of interest to analyze
the quantity ∇Xk which often appears in the treatment of two-phase flows. One
has ∫

Ω

ϕ∇XkdΩ = −
∫
Ω

Xk∇ϕdΩ = −
∫
Ωk

∇ϕdΩ ∀ϕ ∈ Φ. (A.9)

Thanks to the divergence theorem [Gurtin, 1982] we get therefore∫
Ω

ϕ∇XkdΩ = −
∫
∂Ωk

nkϕdΣ = −
∫
Ω

nkδ(Γ)ϕdΩ, (A.10)

where nk is the unit normal in direction exterior to phase k and δ(·) is the Dirac
delta with support on the interface Γ between the two phases. Hence we obtain

∇Xk = −nkδ(Γ). (A.11)

Assume now that the surface Γ is expressed implicitly by an equation of the form
F (x, t) = 0 and that F > 0 in phase k. Hence, according to [Estrada and Kanwal,
1980], we can relate δ(F ), which with a slight abuse of notation employed also in
[Estrada and Kanwal, 1980] denotes the Dirac delta distribution with support at
the points where F = 0, and δ(Γ) as follows:

δ(Γ) = δ(F ) |∇F | (A.12)

Therefore we also obtain

∇Xk = −nkδ(Γ) = −nkδ(F ) |∇F | = δ(F )∇F (A.13)

since nk = − ∇F
|∇F | . For what concerns the time derivative we exploit (A.5) to find

∂Xk

∂t
= −vI · ∇Xk = −vI · (δ(F )∇F ) = δ(F )

∂F

∂t
. (A.14)

We analyze now the quantity ∇(Xkf):∫
Ω

∇(Xkf)ϕdΩ = −
∫
Ω

Xkf∇ϕdΩ = −
∫
Ωk

f∇ϕdΩ. (A.15)
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Assuming f ∈ C1(Ω), the divergence theorem allows us to write

−
∫
Ωk

f∇ϕdΩ = −
∫
Γ

fϕnkdΓ +

∫
Ωk

ϕ∇fdΩ

= −
∫
Γ

fϕnkdΓ +

∫
Ω

Xkϕ∇fdΩ

=

∫
Ω

fϕ∇XkdΩ +

∫
Ω

Xkϕ∇fdΩ. (A.16)

Hence
∇(Xkf) = f∇Xk +Xk∇f (A.17)

Similarly one can prove that

∂(Xkf)

∂t
=
∂Xk

∂t
f +Xk

∂f

∂t
. (A.18)

We analyze now the behaviour of time and space derivatives for more general
distributions. A function f̂ defined on Rp+1, p ≥ 1 is called a regular singular
function with respect to Γ(t) if:

• f̂ has derivatives of all orders outside Γ(t)

• f̂ and all its derivatives have boundary values from both sides of Γ(t).

The following relations hold [Estrada and Kanwal, 1980, Estrada and Kanwal,
1985]: ‹∇f̂ = ∇f̂ −

îî
f̂
óó
δ(Γ) (A.19)

∂̃f̂

∂t
=

∂f̂

∂t
+
Ä
vI ·

îî
f̂
óóä

δ(Γ), (A.20)

where ‹∇ and ∂̃
∂t
denote the distributional derivatives and

îî
f̂
óó

represents the jump

across the interface already introduced in (2.14) and defined asîî
f̂
óó

= f̂1n1 + f̂2n2. (A.21)

By definition, a function f̂k coincides with the value of the function itself on phase
k whereas it is 0 outside. Hence it follows:îî

f̂k
óó

= f̂knk (A.22)

and therefore we obtain ‹∇f̂k = ∇f̂k − f̂knkδ(Γ) (A.23)

∂̃f̂k
∂t

=
∂f̂k
∂t

+ f̂k(vI · nk)δ(Γ). (A.24)

Notice that by considering f̂k = Xk in (A.23) and (A.24), we recover the relation
(2.23). Thanks to (A.5) and (A.11) we obtain the following relations:‹∇f̂k = ∇f̂k + f̂k‹∇Xk (A.25)

∂̃f̂k
∂t

=
∂f̂k
∂t

+ f̂k
∂̃Xk

∂t
. (A.26)
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If we notice that f̂k = Xkf̂k,
∂f̂k
∂t

= Xk
∂f̂k
∂t

and ∇f̂k = Xk∇f̂k, we derive the
following relations, which are formally similar to the product rule for derivatives:‹∇(Xkf̂k) = Xk∇f̂k + f̂k‹∇Xk (A.27)

∂̃(Xkf̂k)

∂t
= Xk

∂f̂k
∂t

+ f̂k
∂̃Xk

∂t
. (A.28)

For the sake of simplicity we will not distinguish explicitly between classical and
distributional derivatives and the appropriate definition to be employed will fol-
low from the context. Applying the ensemble average (2.32) to (A.17) and to
(A.18) leads to the so-called Gauss and Leibniz rules for the ensemble average,
respectively:

∇(Xkf) = f∇Xk +Xk∇f (A.29)

∂(Xkf)

∂t
=

∂Xk

∂t
f +Xk

∂f

∂t
. (A.30)

A.2 Evolution of geometric features

In this Appendix, we provide an overview of models for the evolution of geometric
features of interfaces separating the two phases in two-phase flows. The presen-
tation follows the dissertations in [Drew, 1990, Drew and Passman, 1999] even
though we do not restrict ourselves to situations where the tangential interfacial
velocity is equal to zero as considered instead in [Drew, 1990, Drew and Passman,
1999]. The phase exchange terms depend indeed on the geometry of the interface
and, therefore, considering higher order statistics as well as the volume fraction
and the interfacial area density could significantly improve the description of such
terms. We analyze the time evolution of the unit normal n since, as already men-
tioned, we can directly obtain information about the curvature from this quantity.
We recall the evolution equation (2.92) of the function F (x, t) = 0 which describes
implicitly the interface and the definition of the normal vector (2.93):

∂F

∂t
+ vI · ∇F = 0 (A.31)

n = ± ∇F
|∇F |

. (A.32)

We will consider the definition n = ∇F
|∇F | , but all the computations can be ex-

tended in a straightforward manner with the opposite sign. Moreover, as already
discussed in Section 2.3, relation (A.32) defines the normal vector for the whole
space-time domain ΩT = Ω× (0, Tf ]. After some manipulations, we obtain

∂n

∂t
=

1

|∇F |
∂∇F
∂t

− 1

|∇F |3
Å
∇F · ∂∇F

∂t

ã
∇F

=
1

|∇F |
(I− n⊗ n)

∂∇F
∂t

. (A.33)

Taking the gradient of (A.31), it follows

∂∇F
∂t

= − (∇vI)
T ∇F − [∇ (∇F )]T vI . (A.34)
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Moreover, after some manipulations, it can be shown that

∇n =
1

|∇F |
î
∇ (∇F )− n⊗∇ (∇F )T n

ó
=

1

|∇F |
(I− n⊗ n)∇ (∇F ) . (A.35)

If we assume that F is sufficiently regular, thanks to the Schwarz theorem [Rudin,

1976], [∇ (∇F )]T = ∇ (∇F ) and substituting (A.35) into (A.34) we obtain the
following relation:

∂∇F
∂t

= − (∇vI)
T ∇F − |∇F |

î
(I− n⊗ n)−1 (∇n)

ó
vI . (A.36)

Finally, substituting (A.36) into (A.33), we obtain

∂n

∂t
+ (∇n)vI = (n⊗ n− I) (∇vI)

T n (A.37)

or equivalently

dn

dt
= (n⊗ n− I) (∇vI)

T n = [(n⊗ n) : ∇vI ]n− (∇vI)
T n, (A.38)

a relation derived in [Candel and Poinsot, 1990, Lhuillier, 2003]. On the other
hand, substituting (A.32) into (A.31), we obtain the following relation:

∂F

∂t
+ (vI · n) |∇F | = 0. (A.39)

Taking the gradient of (A.39), we get

∂∇F
∂t

+∇ (vI · n) |∇F |+ (vI · n)∇ (|∇F |) = 0. (A.40)

Since ∇ (|∇F |) = [∇ (∇F )]T n = [∇ (∇F )]n, we obtain from (A.40)

∂∇F
∂t

= −∇ (vI · n) |∇F | − (vI · n) [∇ (∇F )]n. (A.41)

Substituting (A.35) into (A.41), we obtain

∂∇F
∂t

= −∇ (vI · n) |∇F | − (vI · n) |∇F | (I− n⊗ n)−1 (∇n)n. (A.42)

If we employ the previous relation into (A.33), we obtain

∂n

∂t
+ (vI · n) (∇n)n = (n⊗ n− I)∇ (vI · n) (A.43)

or, equivalently, thanks to (2.96) and (2.97)

∂sn

∂t
= −∇s (vI · n) . (A.44)

Notice that the equation (A.43) can be directly obtained from (A.37) considering
only the normal component of the interfacial velocity, namely vI = (vI · n)n.
Notice also that, as discussed in Section 2.3, if one considers the unit normal
vector and the interfacial velocity as defined uniquely on the interface and analyzes
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their extension, (∇n)n = 0 and ∇ (vI · n) · n = 0 tanks to (2.101) and (2.100),
respectively. Hence, (A.43) reduces to

∂n

∂t
= −∇ (vI · n) , (A.45)

a relation present in [Drew and Passman, 1999]. Moreover, if |∇F | is constant,
the second order tensor ∇n is symmetric and therefore, in this situation, (A.43)
reduces to

∂n

∂t
= (n⊗ n− I)∇ (vI · n) . (A.46)

By comparing (A.37) and (A.43), we obtain the following relation:

(∇n)vIt +(n⊗ n− I) (∇n)T vI = (∇n)vIt +(n⊗ n− I) (∇n)T vIt = 0. (A.47)

The relation (A.47) can be also proven in the following way. We first notice that
(∇n)vIt = (∇sn)vIt . Indeed, thanks to (2.97), we get

∇sn = ∇n− (∇n)n⊗ n = ∇n−∇n (n⊗ n) = ∇n (I− n⊗ n) . (A.48)

Since vIt · n = 0, it follows:

(∇sn)vIt = ∇n (I− n⊗ n)vIt = (∇n)vIt . (A.49)

Moreover, the second order tensor ∇sn is symmetric. Indeed, if we substitute
(A.35) into (A.48), we obtain

∇sn =
1

|∇F |
(I − n⊗ n) [∇ (∇F )] (I − n⊗ n) , (A.50)

which is a symmetric tensor if F is sufficiently regular and the Schwarz theorem
holds. Hence, (A.47) reduces to

(∇n)vIt + (n⊗ n− I) (∇n)T vIt = (∇sn)vIt + (n⊗ n− I) (∇n)T vIt

= (∇sn)vIt − (∇sn)
T vIt = 0. (A.51)

It is of interest to study also the behaviour of the material derivative following
the surface of the normal vector. We notice two properties of the Lagrangian
derivative. First of all, the convective derivative following the surface can be
simplified as follows:

dsn

dt
=
∂sn

∂t
+ (∇sn) [vIt + (vI · n)n] =

∂sn

∂t
+ (∇sn)vIt , (A.52)

since (∇sn)n = 0. Furthermore, thanks to (2.97), the following identity holds:

dsn

dt
=

∂sn

∂t
+ (∇sn)vI =

∂n

∂t
+ (vI · n) (∇n)n+ (∇n) (I− n⊗ n)vI

=
∂n

∂t
+ (vI · n) (∇n)n+ (∇n)vI − (vI · n) (∇n)n

=
∂n

∂t
+ (∇n)vI =

dn

dt
. (A.53)
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It is interesting to point out that an analogous relation holds for a generic scalar
field f ; indeed:

dsf

dt
=

∂sf

∂t
+ vI · ∇sf =

∂f

∂t
+ (vI · n) (∇f · n) + vI · [∇f − (∇f · n)n]

=
∂sf

∂t
+ vI · ∇f + (vI · n) (∇f · n)− (vI · n) (∇f · n)

=
∂f

∂t
+ vI · ∇f =

df

dt
. (A.54)

The mean curvature H is directly linked to the outward unit normal by relation
[Drew and Passman, 1999, Morel, 2007]

H =
1

2
∇·n. (A.55)

Taking the divergence of (A.37), we derive the evolution equation for the mean
curvature (2.108). Notice that

∇· [(∇n)vI ] = 2vI · ∇H +∇n : (∇vI)
T (A.56)

and that

∇·
î
(n⊗ n− I) (∇vI)

T n
ó

= 2H (∇vI)n · n+ (∇vI)
T n · (∇n)n

+ (n⊗ n− I) :
î
∇
î
(∇vI)

T n
óóT

. (A.57)

Hence, the evolution equation for the mean curvature reads as follows:

dH

dt
= H (∇vI)n · n− 1

2
∇n : (∇vI)

T

+
1

2
(∇vI)

T n · (∇n)n+
1

2
(n⊗ n− I) :

î
∇
î
(∇vI)

T n
óóT

. (A.58)

Starting from (A.43), we obtain the following relation:

∂H

∂t
+ (vI · n)n · ∇H = H∇ (vI · n) · n (A.59)

+
1

2
(n⊗ n− I) : ∇ [∇ (vI · n)]

− 1

2
(∇n) : [(vI · n)n]T +

1

2
(∇n)n · ∇ (vI · n) .

Notice that, as already observed for (A.43) and (A.37), relation (A.59) can be
directly obtained from (A.58) considering only the normal component of the in-
terfacial velocity. We recall here the relation between the Gaussian curvature K
and the unit normal vector [Weatherburn, 1930]:

K =
1

2
∇· [n (∇·n) + n× (∇× n)] . (A.60)

It can be shown that (A.59) reduces to

∂sH

∂t
= −

(
2H2 −K

)
(vI · n)−

1

2
∇s· [∇s (vI · n)] . (A.61)
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In order to prove the equivalence between (A.61) and (A.59), we first notice that

∇s (vI · n) = ∇ (vI · n)− [∇ (vI · n) · n]n = (I− n⊗ n)∇ (vI · n) (A.62)

and that

∇s· [∇s (vI · n)] = (I− n⊗ n) : ∇ [∇s (vI · n)]
= (I− n⊗ n) : ∇ [(I− n⊗ n)∇ (vI · n)] . (A.63)

Since

∇ [(I− n⊗ n)∇ (vI · n)] = −∇n [∇ (vI · n) · n]− n⊗ [∇n]T ∇ (vI · n)
+ (I− n⊗ n)∇ [∇ (vI · n)] , (A.64)

we obtain

(I− n⊗ n) : ∇ [(I− n⊗ n)∇ (vI · n)] = −H∇ (vI · n) · n (A.65)

+ (I− n⊗ n) : ∇ [∇ (vI · n)] .

If we substitute into (A.61), we obtain

∂sH

∂t
= −

(
2H2 −K

)
(vI · n) +H∇ (vI · n) · n (A.66)

+
1

2
(n⊗ n− I) : ∇ [∇ (vI · n)] .

Comparing (A.66) with (A.59), since ∂sH
∂t

= ∂H
∂t

+ (vI · n)n · ∇H, we notice that
the equivalence between (A.61) and (A.59) is established if

1

2
(∇n)n · ∇ (vI · n)−

1

2
∇n : ∇ [(vI · n)n]T = −

(
2H2 −K

)
(vI · n) . (A.67)

Starting from (A.60), we notice that

K = 2H2 + n · ∇H +
1

2
|∇ × n|2 − 1

2
n · [∇× (∇× n)] (A.68)

and, therefore, we get

−
(
2H2 −K

)
(vI · n) = (vI · n)n · ∇H +

1

2
(vI · n) |∇ × n|2

− 1

2
(vI · n)n · [∇× (∇× n)] . (A.69)

Hence, (A.66) reduces to

∂H

∂t
= H∇ (vI · n) · n+

1

2
(n⊗ n− I) : ∇ [∇ (vI · n)]

+
1

2
(vI · n) |∇ × n|2 − 1

2
(vI · n)n · [∇× (∇× n)] . (A.70)

Since
∇× (∇× n) = ∇ (∇·n)−∇· (∇n) = 2∇H −∇· (∇n) (A.71)

and
|∇ × n|2 = − [∇· (∇n)] · n−∇n : (∇n)T , (A.72)
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we obtain

∂H

∂t
+ (vI · n)n · ∇H = H∇ (vI · n) · n+

1

2
(n⊗ n− I) : ∇ [∇ (vI · n)]

− 1

2
(vI · n)∇n : (∇n)T . (A.73)

Finally, since

(vI · n)∇n : (∇n)T = ∇n : [(vI · n)n]T − (∇n)n · ∇ (vI · n) , (A.74)

we recover (A.59). Relation (A.61) represents an extension of the evolution equa-
tion derived in [Drew and Passman, 1999], which we report here for the conve-
nience of the reader:

∂H

∂t
= −

(
2H2 −K

)
(vI · n)−

1

2
∇· [∇ (vI · n)] . (A.75)

Relation (A.75) reduces to (A.61) if all the variables are uniquely defined on the
interface and one considers extensions which satisfy the properties (2.100) and
(2.101). Analogously, starting from (A.60), one can show that the evolution for
the Gaussian curvature reads as follows:

∂sK

∂t
= 2HK (vI · n) + 2H∇s· [∇s (vI · n)] . (A.76)

A.3 Eigenvalues of 1D Euler equations

In this Appendix, we compute the eigenvalues for the Euler equations in non-
dimensional form for a general equation of state. For the sake of simplicity, we
focus on 1D case and so the equations can be written as follows:

∂ρ

∂t
+

∂

∂x
(ρu) = 0

∂ρu

∂t
+

∂

∂x

(
ρu2

)
+

1

M2

∂p

∂x
= 0 (A.77)

∂ρE

∂t
+

∂

∂x
[(ρE + p)u] = 0.

This is equivalent to

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂ρ

∂t
u+

∂u

∂t
ρ+ u2

∂ρ

∂x
+ 2ρu

∂u

∂x
+

1

M2

∂p

∂x
= 0 (A.78)

∂ρ

∂t
E +

∂E

∂t
ρ+ (ρE + p)

∂u

∂x
+ u

Å
∂ρ

∂x
E +

∂E

∂x
ρ+

∂p

∂x

ã
= 0.

Thanks to the continuity equation and to the relation E = e+ 1
2
M2u2, we obtain

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+

1

ρM2

∂p

∂x
= 0 (A.79)

∂e

∂t
+
p

ρ

∂u

∂x
+ u

∂e

∂x
= 0.
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In general e = e(p, ρ), so that

∂e

∂t
=
∂e

∂ρ

∂ρ

∂t
+
∂e

∂p

∂p

∂t

and
∂e

∂x
=
∂e

∂ρ

∂ρ

∂x
+
∂e

∂p

∂p

∂x
.

Hence, the system reduces to

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+

1

ρM2

∂p

∂x
= 0 (A.80)

∂p

∂t
+

Ä
p
ρ
− ρ ∂e

∂ρ

ä
∂e
∂p

∂u

∂x
+ u

∂p

∂x
= 0,

which can be rewritten in vector notation as ∂Q
∂t

+A∂Q
∂x

= 0 with

Q =

ρu
p

 (A.81)

and

A =

u ρ 0
0 u 1

ρM2

0
( p
ρ
−ρ ∂e

∂ρ)
∂e
∂p

u

 . (A.82)

The eigenvalues of (A.82) are u− 1
M

1
ρ

…
p− ∂e

∂ρ
ρ2

∂e
∂p

, u and u+ 1
M

1
ρ

…
p− ∂e

∂ρ
ρ2

∂e
∂p

. The first

law of thermodynamics, already recalled in Section 2.6.1, provides us the following
relation:

Tds = de− p

ρ2
dρ =

Å
∂e

∂ρ
− p

ρ2

ã
dρ+

∂e

∂p
dp, (A.83)

or, equivalently,

dp =

p
ρ2

− ∂e
∂ρ

∂e
∂p

dρ+
T
∂e
∂p

ds. (A.84)

Hence, following [Vidal, 2001], we have

c2 =
∂p

∂ρ

∣∣∣∣
s

=

p
ρ2

− ∂e
∂ρ

∂e
∂p

(A.85)

and, therefore, the eigenvalues of (A.82) are

u− c

M
u u+

c

M

also for a generic equation of state, and not only in the case of an ideal gas, as
already discussed in [Munz et al., 2003]. This justifies the definition (4.17) also in
the case of non-ideal gases.
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A.4 Derivation of the two-phase model

In this Appendix, we report the computations needed to obtain the system of
equations (2.169) reported in Section 2.5. The infinitesimal variations for density,
mass fraction and velocity, respectively, are given by

δρ = −∇· (ρη) (A.86)

δY = −η · ∇Y (A.87)

δu = Dtη − (∇u)η. (A.88)

Hence, after some manipulations, the action is given by

δA = −
∫
∂ (ρu)

∂t
· η −

∫
[∇· (ρu⊗ u)] · η −

∫
∇
Å
ρ2
∂e

∂ρ

ã
· η

−
∫
ρ
∂e

∂αL

∇αL · η −
∫

1

2

∂ν

∂ρ
(DtαL)

2∇· (ρη)

+

∫
1

2

∂ν

∂αL

(DtαL)
2 δαL +

∫
ν (DtαL) δ (DtαL)

−
∫
ρ
∂e

∂αL

δαL (A.89)

Since δ (DtαL) = DtδαL + δu · ∇αL, we get

δA = −
∫
∂ (ρu)

∂t
· η −

∫
[∇· (ρu⊗ u)] · η −

∫
∇
Å
ρ2
∂e

∂ρ

ã
· η

−
∫
ρ
∂e

∂αL

∇αL · η +

∫
∇
ï
1

2

∂ν

∂ρ
(DtαL)

2

ò
ρ · η

+

∫
1

2

∂ν

∂αL

(DtαL)
2 δαL

+

∫
ν (DtαL)DtδαL +

∫
ν (DtαL)∇αL · δu

−
∫
ρ
∂e

∂αL

δαL. (A.90)

After a new integration by parts, we obtain

δA = −
∫
∂ (ρu)

∂t
· η −

∫
[∇· (ρu⊗ u)] · η −

∫
∇
Å
ρ2
∂e

∂ρ

ã
· η

−
∫
ρ
∂e

∂αL

∇αL · η +

∫
∇
ï
1

2

∂ν

∂ρ
(DtαL)

2

ò
ρ · η

−
∫
∂ [ν (DtαL)∇αL]

∂t
· η −

∫
{∇· [ν (DtαL)∇αL ⊗ u]} · η

−
∫
ν (DtαL) (∇u)T ∇αL · η (A.91)

−
∫

∂

∂t
[ν (DtαL)] δαL −

∫
∇· [ν (DtαL)u] δαL

+

∫
1

2

∂ν

∂αL

(DtαL)
2 δαL

−
∫
ρ
∂e

∂αL

δαL.
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The momentum equation associated to the volume fraction reads therefore as
follows:

∂

∂t
[ν (DtαL)] +∇· [ν (DtαL)u]−

1

2
(DtαL)

2 ∂ν

∂αL

+ ρ
∂e

∂αL

= 0. (A.92)

Thanks to the previous relation, we find

∂ [ν (DtαL)∇αL]

∂t
+∇· [ν (DtαL)∇αL ⊗ u]

+ ν (DtαL) (∇u)T ∇αL + ρ
∂e

∂αL

∇αL =

∇αL

ï
1

2
(DtαL)

2 ∂ν

∂αL

− ρ
∂e

∂αL

ò
+ ν (DtαL)

ï
∂∇αL

∂t
+∇ (∇αL)u

ò
+ ν (DtαL) (∇u)T ∇αL + ρ

∂e

∂αL

∇αL =

1

2
∇αL (DtαL)

2 ∂ν

∂αL

+ ν (DtαL)∇ (DtαL) (A.93)

Notice that

∇
Å
1

2
ν (DtαL)

2

ã
=

1

2
(DtαL)

2∇ν + 1

2
ν∇ (DtαL)

2

=
1

2
(DtαL)

2 ∂ν

∂αL

∇αL +
1

2
(DtαL)

2 ∂ν

∂ρ
∇ρ

+ ν (DtαL)∇ (DtαL) , (A.94)

so as to obtain

∂ [ν (DtαL)∇αL]

∂t
+∇· [ν (DtαL)∇αL ⊗ u]

+ ν (DtαL) (∇u)T ∇αL + ρ
∂e

∂αL

∇αL −∇
ï
1

2

∂ν

∂ρ
(DtαL)

2

ò
ρ =

∇
ï
1

2

Å
ν − ρ

∂ν

∂ρ

ã
(DtαL)

2

ò
. (A.95)

We provide now the computations performed in order to consider dissipative ef-
fects. First, we notice that

ρDtη = ρ
∂η

∂ρ
Dtρ+ ρ

∂η

∂Y
DtY + ρ

∂η

∂u
·Dtu+ ρ

∂η

∂αL

DtαL + ρ
∂η

∂Σ̃
DtΣ̃ (A.96)

and that

∂η

∂ρ
=

Å
m+

1

2

ã
ν2mξ2nΣ̃2

ρ

∂ν

∂ρ
− 1

2

ν2m+1ξ2nΣ̃2

ρ2
+
∂e

∂ρ
∂η

∂u
= u

∂η

∂αL

=

Å
m+

1

2

ã
ν2mξ2nΣ̃2

ρ

∂ν

∂αL

+
∂e

∂αL

(A.97)

∂η

∂Σ̃
=

ν2m+1ξ2n

ρ
Σ̃.
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Moreover, thanks to the system (2.169), the following relations hold:

Dtρ = −ρ (∇·u) Dtu = −1

ρ
∇P. (A.98)

Hence, we get

ρDtη = −ρ2 (∇·u)
Ç
∂e

∂ρ
+

Å
δ +

1

2

ã
ν2mξ2nΣ̃2

ρ

∂ν

∂ρ
− 1

2

ν2m+1ξ2nΣ̃2

ρ2

å
− u · ∇P

+ ρ

Ç
∂e

∂αL

+

Å
m+

1

2

ã
ν2mξ2nΣ̃2

ρ

∂ν

∂αL

å
ξnνmΣ̃ (A.99)

+
Ä
ν2m+1ξ2nΣ̃

ä
DtΣ̃.

After a few manipulations, we obtain

ρDtη = −∇· (Pu) + (∇·u)
ïÅ
ν − (δ + 1) ρ

∂ν

∂ρ

ã
ξ2nν2mΣ̃2

ò
+ ρ

ñ
∂e

∂αL

+

Å
m+

1

2

ã
ν2mξ2nΣ̃2

ρ

∂ν

∂αL

ô
ξnνmΣ̃ (A.100)

+
Ä
ν2m+1ξ2nΣ̃

ä
DtΣ̃.

The second principle of thermodynamics reduces therefore to

∇· (G− Pu) + (∇·u)
ïÅ
ν − (m+ 1) ρ

∂ν

∂ρ

ãÄ
ξ2nν̃2mΣ̃2

äò
+ ρ

ñ
∂e

∂αL

+

Å
m+

1

2

ã
ν2mξ2nΣ̃2

ρ

∂ν

∂αL

ô
ξnνmΣ̃

+
Ä
ν2m+1ξ2nΣ̃

ä
DtΣ̃ ≤ 0. (A.101)

Taking G = Pu and dividing by ν2m+1ξn, which is positive since both ν and ξ
are assumed to be positive, we recover (2.173).

A.5 Time discretization methods

In this Appendix, we review the time discretization methods employed throughout
the thesis. The TR-BDF2 method is a second order implicit scheme, originally
introduced in [Bank et al., 1985] as a combination of the Trapezoidal Rule (or
Crank-Nicholson) method and of the Backward Differentiation Formula method
of order 2. For a generic time dependent problem u′ = N (u), the incremental
form of the TR-BDF2 method can be described in terms of two stages, the first
from tn to tn+χ = tn + χ∆t and the second from tn+χ to tn+1:

un+χ − un

χ∆t
=

1

2
N

(
un+χ

)
+

1

2
N (un) (A.102)

un+1 − un+χ

(1− χ)∆t
=

1

2− χ
N

(
un+1

)
+

1− χ

2 (2− χ)
N

(
un+χ

)
+

1− χ

2 (2− χ)
N (un) .

Here, un denotes the approximation at time n = 0, ..., N . Notice that, in order
to guarantee L-stability, one has to choose χ = 2 −

√
2. The TR-BDF2 scheme
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has been fully analyzed in [Hosea and Shampine, 1996], where the method was
shown to be an L-stable Explicit Singly Diagonal Impicit Runge Kutta (ESDIRK)
method. The TR-BDF2 has been shown to be stiffly accurate in [Hosea and
Shampine, 1996] and has been very successfully employed in simulations of low
Mach number flows with gravity in [Tumolo and Bonaventura, 2015]. Uncondi-
tionally strong stability preserving extensions of TR-BDF2 have been derived
in [Bonaventura and Della Rocca, 2017]. Explicit methods that complement
TR-BDF2 as second order IMEX pairs have been introduced in [Giraldo et al.,
2013] and successfully employed in [Bonaventura et al., 2018, Garres-Dı́az and
Bonaventura, 2021, Orlando et al., 2022a]. These methods are useful for time
dependent problems that can be formulated as u

′
= fS(u, t) + fNS(u, t), where

the S and NS subscripts denote the stiff and non-stiff components of the system,
to which the implicit and explicit companion methods are applied, respectively.
If vn ≈ u(tn), the generic s−stage IMEX-ARK method can be defined as

v(n,l) = vn + ∆t
s−1∑
m=1

Å
almfNS(v

(n,m), t+ cm∆t)

+ ãlmfS(v
(n,m), t+ cm∆t)

ã
+ ∆t ãll fS(v

(n,l), t+ cl∆t),

(A.103)

where l = 1, . . . , s. After computation of the intermediate stages, vn+1 is com-
puted as

vn+1 = vn +∆t
s∑

l=1

bl
î
fNS(v

(n,l), t+ cl∆t) + fS(v
(n,l), t+ cl∆t)

ó
. (A.104)

Coefficients alm, ãlm, cl and bl are determined so that the method is consistent of a
given order. In particular, in addition to the order conditions specific to each sub-
method, the coefficients should respect coupling conditions. Here, we consider a
variant of the IMEX method proposed in [Giraldo et al., 2013], whose coefficients
are presented in the Butcher tableaux reported in Tables A.1 and A.2 for the
explicit and implicit method, respectively, where χ = 2 −

√
2. The coefficients

of the explicit method were proposed in [Giraldo et al., 2013], while the implicit
method, also employed in the same paper, coincides indeed for the above choice
of χ with the TR-BDF2 method, thus providing ample guarantees the robustness
of the proposed approach in the low Mach number limit.

0 0
χ χ 0
1 1− a32 a32 0

1
2 − χ

4
1
2 − χ

4
χ
2

Table A.1: Butcher tableaux of the explicit ARK2 method

Notice that, as discussed in [Giraldo et al., 2013], the choice of the coefficients

a32 =
7− 2χ

6
1− a32 =

2χ− 1

6
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0 0
χ χ

2
χ
2

1 1
2
√
2

1
2
√
2

1− 1√
2

1
2 − χ

4
1
2 − χ

4
χ
2

Table A.2: Butcher tableaux of the implicit ARK2 method

in the third stage of the explicit part of the method is arbitrary. In [Giraldo et al.,
2013], the above value of a32 was chosen with the aim of maximizing the stability
region of the method, but this coefficient is indeed a free parameter and can also
be chosen in different ways, as long as stability is not compromised. We study now
the stability and monotonicity of the explicit part of the IMEX scheme. In order
to identify possible alternative choices, we perform an analysis using the concepts
introduced in [Kraaijevanger, 1991, Ferracina and Spijker, 2004, Higueras, 2004]
(see also the review in [Gottlieb et al., 2001]). A similar analysis for the implicit
part of the IMEX scheme was carried out in [Bonaventura and Della Rocca, 2017],
to which we refer for a summary of the related theoretical results. We then define

A =

 0 0 0
χ 0 0

1− a32 a32 0

 bT =
[
1
2
− χ

4
1
2
− χ

4
χ
2
.
]

(A.105)

We define for ξ ∈ R the quantities

A(ξ) = A (I − ξA)−1 bT (ξ) = bT (I − ξA)−1

e(ξ) = (I − ξA)−1 e φ(ξ) = 1 + ξbT (I − ξA)−1 e (A.106)

where I is the 3 × 3 identity matrix and e is a vector whose all components are
equal to 1. Therefore, for the specific scheme, we obtain

A(ξ) =

 0 0 0
χ 0 0

1 + a32 (χξ − 1) a32 0

 (A.107)

bT (ξ) =

1
4
[2 + χ (−1 + ξ (4− χ+ 2a32 (χξ − 1)))]

1
4
[2 + χ (2a32ξ − 1)]

χ
2

 (A.108)

e(ξ) =

 1
1 + χξ

1 + ξ + a32χξ
2

 (A.109)

φ(ξ) = 1 + ξ +
ξ2

2
+
Ä
3− 2

√
2
ä
a32ξ

3. (A.110)

A method with tableaux
(
A, bT

)
is absolutely monotone at ξ ∈ R if A(ξ) ≥ 0,

bT (ξ) ≥ 0, e(ξ) ≥ 0 and φ(ξ) ≥ 0 elementwise; moreover the radius of absolute
monotonicity is defined for all ξ in −r ≤ ξ ≤ 0 as

R(A, b) = sup
[
r|r ≥ 0, A(ξ) ≥ 0, bT (ξ) ≥ 0, e(ξ) ≥ 0, φ(ξ) ≥ 0

]
. (A.111)
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Figure A.1 shows the behaviour of the radius of absolute monotonicity as a32
varies, along with the behaviour of the stability region along the imaginary axis.
As already mentioned before, a32 = 7−2χ

6
was chosen originally to maximize the

stability region, but in this case R = 2
√
2−3

2+
√
2
≈ 0.05, so that the region of absolute

monotonicity is quite small. It can be shown that the region of absolute stability
is given by

S =
{
z ∈ C :

∣∣1 + z + a32χz
2
∣∣ < 1

}
. (A.112)

The alternative value a32 = 0.5 maximizes the region of absolute monotonicity
without compromising too much the stability and yields a novel way in the choice
of the coefficients for the explicit part as proposed in [Orlando et al., 2022a]. The
impact of this alternative choice on numerical results is discussed in Sections 4.3
and 4.4.

a) b)

Figure A.1: Analysis of the explicit part of IMEX scheme: a) Radius of absolute
monotonicity as function of a32, b) Size of stability region along the imaginary axis as
a32 varies.

We briefly recall here also the second order and the third order optimal SSP
Runge-Kutta methods derived in [Gottlieb and Shu, 1998] for ordinary differential
equations which have been employed in Section 4.1 and Section 4.3. The second
order scheme reads as follows:

v(1) = vn +∆tN (vn) (A.113)

vn+1 =
1

2
vn +

1

2
v(1) +

1

2
∆tN (v(1)). (A.114)

The third order method is given instead by:

v(1) = vn +∆tN (vn) (A.115)

v(2) =
3

4
vn +

1

4
v(1) +

1

4
∆tN (v(1)) (A.116)

vn+1 =
1

3
vn +

2

3
v(2) +

2

3
∆tN (v(2)). (A.117)

A.6 Relaxation operator

In this Appendix, we describe some possible strategies to deal with the relaxation
source terms for the system (2.149). According to the standard operator split-
ting procedure, the system of ordinary differential equations associated with the
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mechanical relaxation terms is the following:

dα1

dt
= µ̃

Å
p1 − p2ρrel

M2
1

M2
2

ã
dα1ρ1
dt

= 0

dα1ρ1u1

dt
= −λ̃ (u1 − u2)

dα1ρ1E1

dt
= −µ̃pI

Å
p1 − p2ρrel

M2
1

M2
2

ã
− λ̃M2

1vI · (u1 − u2)

dα2ρ2
dt

= 0 (A.118)

dα2ρ2u2

dt
=

λ̃

ρrel
(u1 − u2)

dα2ρ2E2

dt
=

µ̃

ρrel

M2
2

M2
1

pI

Å
p1 − p2ρrel

M2
1

M2
2

ã
+

λ̃

ρrel
M2

2vI · (u1 − u2) .

We immediately notice that the partial densities remain constant. This system is
characterized by a high degree of stiffness [Re and Abgrall, 2022, Pelanti, 2022]

since the relaxation coefficients µ̃ and λ̃ assume typically large values. Hence, we
consider the implicit part of the IMEX scheme for its time integration. For the
sake of clarity, we report the second stage of the time discretization that reads as
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follows

α
(n,2)
1 = α

(n,1)
1

+ ã22∆tµ̃

Å
p
(n,2)
1 − p

(n,2)
2 ρrel

M2
1

M2
2

ã
+ ã21∆tµ̃

Å
p
(n,1)
1 − p

(n,1)
2 ρrel

M2
1

M2
2

ã
α
(n,2)
1 ρ

(n,2)
1 = α

(n,1)
1 ρ

(n,1)
1

α
(n,2)
1 ρ

(n,2)
1 u

(n,2)
1 = α

(n,1)
1 ρ

(n,1)
1 u

(n,1)
1

− ã22∆tλ̃
Ä
u
(n,2)
1 − u

(n,2)
2

ä
− ã21∆tλ̃

Ä
u
(n,1)
1 − u
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Thanks to the continuity equations, we can rewrite the momentum equations as
follows:
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from which we obtain the following relation for u
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and the corresponding relations for the velocity which are, therefore, known at this
point. The remaining equations form a system of non-linear equations, namely
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The previous system can be rewritten as follows
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with
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We rewrite now the previous system of equation in order to analyze it in terms of

the unknowns
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Denote by ∆̃p the quantity p
(n,2)
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2
. Hence, we obtain the following

Jacobian matrix for the system (A.125):
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M2

1

M2
2

ρ
(n,2)
1 α

(n,2)
1 0 0 0

0
∂e

(n,2)
1

∂ρ
(n,2)
1

∂e
(n,2)
1

∂ρ
(n,2)
1
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alternatives have been proposed in literature in order to mitigate the issue of the
non-linearity. We describe here some of them and, for the sake of clarity in the
notation, we report the dimensional counterpart. First of all, we mention the
approach proposed in [De Lorenzo et al., 2019], that assumes an exponential
decrease in time for the pressure disequilibrium:

d (p1 − p2)

dt
= −p1 − p2

T p
, (A.130)

with T p denoting the characteristic time of the pressure relaxation. The previous
equation admits the following analytical solution

(p1 − p2) (t) = (p1 − p2)|t=0e
− t

T p , (A.131)

which is always positive and guarantees that the pressure perturbation never
changes its sign. The characteristic time has to be set to a very small value
so as to model an infinitely fast process and, therefore, it is adequate only when a
very fast relaxation towards the equilibrium is considered. A more recent alterna-
tive has been presented in [Pelanti, 2022], starting, basically, from the following
system
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Hence, we obtain the following system of ordinary differential equations to be
solved
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dt
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= 0
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1
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It is assumed that ξm is constant over time, namely ξm = ξ0m. Taking the difference
of the two pressure equations, we get
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dt
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Å
1
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1

ξ02

ã
(p2 − p1) , (A.135)

which admits an exact solution

(p2 − p1) (t) = (p2 − p1)|t=0e
−Kpt, (A.136)

with Kp = µ̂
Ä

1
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+ 1
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ä
. From here, we obtain
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1
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+ 1
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ä (
1− e−Kpt

)
. (A.137)

This procedure is for arbitrary rate and not only in the case of very fast relaxation
towards the equilibrium [Pelanti, 2022].

A.7 HPC framework and implementation issues

The numerical discretization methods presented in Chapter 3 have been imple-
mented using the numerical library deal.II [Bangerth et al., 2007, Arndt et al.,
2022], which is based on a matrix-free approach. As a consequence, no global
sparse matrix is built and only the action of the linear operators on a vector is
actually implemented. Matrix-free methods avoid the storage of big global sparse
matrices and compute the underlying weak forms on the fly. Since the memory
transfer, i.e. the speed at which the data can be read from RAM memory, is nowa-
days the most relevant bottleneck in HPC environment both in terms of time and
energy [Mehonic and Kenyon, 2022], it is important to reduce the amount and
the exchange of data involved in the computations. A matrix-free evaluation that
reads less data can be therefore advantageous even if it does more computations.
Another feature of the library employed during the numerical simulations is the
mesh adaptation capability, as shown in the presentation of the results. We report
here a call to the routine that performs mesh refinement

GridRefinement::refine_and_coarsen_fixed_number(triangulation,

estimated_error_per_cell, 0.1, 0.3);
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for(const auto& cell: triangulation.active_cell_iterators()) {

if(cell->refine_flag_set() && cell->level() == max_loc_refinements)

cell->clear_refine_flag();

if(cell->coarsen_flag_set() && cell->level() == min_loc_refinements)

cell->clear_coarsen_flag();

}

triangulation.prepare_coarsening_and_refinement();

triangulation.execute_coarsening_and_refinement(); /*--- Effectively

perform the remeshing ---*/

The preconditioned conjugate gradient method implemented in the function
SolverCG of the deal II library is employed to solve the symmetric linear systems,
like the one obtained in (3.66), while the GMRES solver for non symmetric linear
systems, like the one in (3.63), is implemented in the function SolverGMRES of the
same library. A Jacobi preconditioner is used for non symmetric linear systems,
whereas a Geometric Multigrid preconditioner is employed for the symmetric lin-
ear systems using the procedure described in [Janssen and Kanschat, 2011], which
allows us to express all the stages of the Geometric MultiGrid (GMG) in terms
of matrix-vector multiplications, thus reformulating it as a matrix-free method.
All one needs to do in order to employ the GMG in a matrix free framework is
to find a smoother that is based on matrix-vector products rather than all the
matrix entries. One such candidate would be a damped Jacobi iteration that re-
quires access only to the matrix diagonal, but this is often not sufficiently good in
damping all high-frequency errors. This issue can be overcome by iterating with
the so-called Chebyshev iteration, see e.g. [Adams et al., 2003].
A way to enhance the computational efficiency is to reduce the amount of data
involved in the computation, the number of operations performed and to limit
the use of double precision only to the algorithmic steps for which it is absolutely
essential, see e.g. [Ackmann et al., 2022]. For this reason, the preconditioners are
computed using single precision data instead of double precision data, as evident
for instance below for the GMG preconditioner.

PreconditionMG<dim,

LinearAlgebra::distributed::Vector<float>,

MGTransferMatrixFree<dim, float>> preconditioner(dof_handler_pressure, mg,

mg_transfer);

A complete version of the code for the incompressible Navier-Stokes equations
is publicly available at [Orlando, 2022].
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horizontal. PhD thesis.

[Kapila et al., 2001] Kapila, A., Menikoff, R., Bdzil, J., Son, S., and Stewart, D.
(2001). Two-phase modeling of deflagration-to-detonation transition in granular
materials: Reduced equations. Physics of fluids, 13:3002–3024.

[Karniadakis and Sherwin, 2005] Karniadakis, G. and Sherwin, S. (2005). Spectral
hp−Element Methods for Computational Fluid Dynamics. Oxford University
Press.

[Kennedy and Carpenter, 2003] Kennedy, C. and Carpenter, M. (2003). Addi-
tive Runge-Kutta schemes for convection-diffusion-reaction equations. Applied
Numerical Mathematics, 44:139–181.

198



i
i

“Tesi˙Multiphase˙Orlando˙Giuseppe” — 2023/4/3 — 9:12 — page 199 — #223 i
i

i
i

i
i

Bibliography

[Klein et al., 2001] Klein, R., Botta, N., Schneider, T., Munz, C.-D., Roller, S.,
Meister, A., Hoffmann, L., and Sonar, T. (2001). Asymptotic adaptive methods
for multi-scale problems in fluid mechanics. Journal of Engineering Mathemat-
ics, 39:261–343.

[Klemp and Durran, 1983] Klemp, J. and Durran, D. (1983). An upper boundary
condition permitting internal gravity wave radiation in numerical mesoscale
models. Monthly Weather Review, 111:430–444.

[Klemp and Lilly, 1978] Klemp, J. and Lilly, D. (1978). Numerical simulation of
hydrostatic mountain waves. Journal of the Atmospheric Sciences, 35:78–107.

[Kolev, 2002] Kolev, N. (2002). Multiphase flow dynamics 1- Fundamentals.
Berlin, Germany: Springer-Verlag GmbH, 2002.

[Kraaijevanger, 1991] Kraaijevanger, J. (1991). Contractivity of Runge-Kutta
methods. BIT, 31:482–528.

[Kuhn and Desjardins, 2021] Kuhn, M. and Desjardins, O. (2021). An all-Mach,
low-dissipation strategy for simulating multiphase flows. Journal of Computa-
tional Physics, 445:110602.

[Kurganov and Tadmor, 2002] Kurganov, A. and Tadmor, E. (2002). Solution of
two-dimensional Riemann problems for gas dynamics without Riemann problem
solvers. Numerical Methods for Partial Differential Equations, 18.
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