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Abstract

Is it possible to build an algorithm capable of teaching a complex rational agent, as a
human, how to play a game?
To answer this question, it is necessary to explain what we mean by both human and
teaching. As far as the latter is concerned, Game Theory proposes as solution the no-
tion of Equilibrium, that is, a playing strategy which guarantees a certain level of reward
whatever the opponent strategy is. Thus, learning how to play means reaching this equi-
librium, while teaching means carrying the opponent to it.
In order to model the human properly, it is necessary to deal with at least two aspects:
first, every person has different learning ability, second, an incentive to continue the game
is needed to avoid a premature interruption of the learning path. The different learning
abilities will be represented by the assumption that the opponent, which must be guided
by our algorithm to the equilibrium, may employ an entire family of learning algorithms
(technically, No-Regret); finally, the incentive to keep playing the game will be modeled by
the safety property, which guarantees the opponent’s reward to lie in an interval in every
round. The interval is chosen as hyperparameter of the algorithm in order to prevent the
human from getting bored, due to easy victories, or from giving up, due to tremendous
defeats.
In this thesis we will show how, with proper assumptions, it is possible to build an al-
gorithm that can guide the opponent to the equilibrium, without knowing the specific
algorithm of the adversary and ensuring at the same time, not only the safety property,
but also a sublinear learning time (namely, Dynamic Regret).
The problem will be tackled both in setting in which the "teacher" has a full feedback,
and in setting in which he has a partial one, showing the differences in terms of theoretical
results.

Keywords: Game Theory, Online Learning, Artificial Intelligence, Safety, Last Round
Convergence





Abstract in lingua italiana

E’ possibile costruire un algoritmo in grado di insegnare ad un agente razionale complesso,
quale un umano, come approcciarsi ad un gioco?
E’ innanzitutto doveroso chiarire cosa si intenda sia per umano che per insegnare. Per
quanto concerne questo secondo aspetto, la Teoria dei Giochi propone come soluzione il
concetto di Equilibrio, cioè una strategia di gioco tale da garantire un certo tipo di risul-
tato qualsiasi sia la strategia del proprio avversario. Imparare a giocare significa dunque
raggiungere questo equilibrio, mentre insegnare significa condurci il proprio avversario.
Per modellare in maniera consona un umano bisogna invece considerare almeno due
aspetti: in primis, ogni persona ha capacità di apprendimento diverse, in secundis, è
necessario che ci sia un incentivo a continuare il gioco, altrimenti il percorso di ap-
prendimento verrebbe prematuramente interrotto. Le diverse capacità verranno decli-
nate dall’assunzione che l’avversario, il quale deve essere condotto dal nostro algoritmo
all’equilibrio, possa sfruttare non uno, bensì una famiglia di algoritmi di apprendimento
(tecnicamente, algoritmi No-Regret); infine, l’incentivo a continuare il gioco verrà model-
lato dalla proprietà di safety, la quale garantisce che il risultato ottenuto dall’avversario
in ogni partita giacia all’interno di un intervallo scelto come iperparametro dell’algoritmo,
in modo da evitare che l’umano si annoi vincendo troppo facilmente o demorda perdendo
gravemente.
In questa tesi mostreremo come, con le necessarie assunzioni, sia possibile costruire un al-
goritmo che conduca il proprio avversario all’equilibrio, senza conoscere l’algoritmo esatto
dello sfidante e garantendo non solo la proprietà di safety, ma anche un tempo di apprendi-
mento (tecnicamente, Regret dinamico) sublineare.
Il problema verrà affrontanto sia in situazioni in cui il "maestro" abbia un feedback totale,
che un feedback parziale, mostrando le differenze in termini di garanzie teoriche.

Parole chiave: Teoria dei Giochi, Apprendimento Sequenziale, Intelligenza Artificiale,
Safety, Convergenza all’Ultimo Turno





v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

List of Figures 1

List of Tables 3

1 Introduction 5
1.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Original Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 11
2.1 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Normal Form Game . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Online Learning and OCO . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Follow the Leader . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Follow the Regularized Leader . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Multiplicative Weight Update . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 Online Mirror Descent . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.6 Learning in Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Related Works 27
3.1 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Last Round Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



3.2.1 Hannan Consistency and Average Convergence . . . . . . . . . . . . 29
3.2.2 Last Round Convergence in Self-Play . . . . . . . . . . . . . . . . . 30
3.2.3 Last Round Convergence in Asymmetric Setting . . . . . . . . . . . 32

4 Safe Guide with Expert Feedback 33
4.1 Assumptions and Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Regret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Safe Guide with Partial Semi-Bandit Feedback 55
5.1 Assumptions and Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Regret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Experiments 83
6.1 Expert Feedback with Fully-Mixed Equilibrium . . . . . . . . . . . . . . . 83
6.2 Partial Semi-Bandit Feedback with Fully-Mixed Equilibrium . . . . . . . . 88
6.3 Comparison between different Feedback with Fully-Mixed Equilibrium . . . 97
6.4 Expert Feedback with Partially-Mixed Equilibrium . . . . . . . . . . . . . 98
6.5 Partial Semi-Bandit Feedback with Partially-Mixed Equilibrium . . . . . . 100

7 Conclusions and Future Developments 105
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography 107

A Appendix A 111

113

Ringraziamenti 115



1

List of Figures

6.1 Dynamic Regret of the column player in Rock Paper Scissor game . . . . . 84
6.2 Utility of the column player in Rock Paper Scissor game with the safety

bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 KL of the row player in Rock Paper Scissor game . . . . . . . . . . . . . . 85
6.4 Row player’s strategy in Rock Paper Scissor game . . . . . . . . . . . . . . 86
6.5 Dynamic Regret of the column player in the skewed matching pennies game 87
6.6 Utility of the column player in the skewed matching pennies game with the

safety bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.7 KL of the row player in the skewed matching pennies game . . . . . . . . . 88
6.8 Dynamic Regret with respect to the MaxMin value of the column player in

Rock Paper Scissor game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.9 Expected Utility of the column player in Rock Paper Scissor game with the

safety bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.10 KL of the row player in Rock Paper Scissor game . . . . . . . . . . . . . . 90
6.11 Row player’s strategy in Rock Paper Scissor game . . . . . . . . . . . . . . 90
6.12 Dynamic Regret with respect to the MaxMin value of the column player in

Rock Paper Scissor game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.13 Expected Utility of the column player in Rock Paper Scissor game with the

safety bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.14 KL of the row player in Rock Paper Scissor game . . . . . . . . . . . . . . 92
6.15 Row player’s strategy in Rock Paper Scissor game . . . . . . . . . . . . . . 92
6.16 Dynamic Regret with respect to the MaxMin value of the column player in

the bigger version of Rock Paper Scissor game . . . . . . . . . . . . . . . . 93
6.17 Expected Utility of the column player in the bigger version Rock Paper

Scissor game with the safety bounds . . . . . . . . . . . . . . . . . . . . . . 93
6.18 KL of the row player in the bigger version Rock Paper Scissor game . . . . 94
6.19 Dynamic Regret with respect to the MaxMin value of the column player in

the skewed matching pennies game . . . . . . . . . . . . . . . . . . . . . . 94



2 | List of Figures

6.20 Expected Utility of the column player in the skewed matching pennies game
with the safety bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.21 KL of the row player in the skewed matching pennies game . . . . . . . . . 95
6.22 Dynamic Regret with respect to the MaxMin value of the column player in

Rock Paper Scissor game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.23 Expected Utility of the column player in Rock Paper Scissor game with the

safety bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.24 KL of the row player in Rock Paper Scissor game . . . . . . . . . . . . . . 97
6.25 Row player’s strategy in Rock Paper Scissor game . . . . . . . . . . . . . . 97
6.26 Dynamic Regret of the column player in Rock Paper Scissor game . . . . . 98
6.27 Dynamic Regret of the column player in Rock Paper Scissor game in com-

parison with Linear Regret . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.28 Dynamic Regret of the column player in game with a partially-mixed equi-

librium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.29 Utility of the column player in game with a partially-mixed equilibrium

with the safety bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.30 Euclidean distance between row player’s strategy and the Equilibrium in

game with a partially-mixed equilibrium . . . . . . . . . . . . . . . . . . . 100
6.31 Dynamic Regret with respect to the maxmin of the column player in game

with a partially-mixed equilibrium . . . . . . . . . . . . . . . . . . . . . . . 101
6.32 Expected Utility of the column player in game with a partially-mixed equi-

librium with the safety bounds . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.33 Euclidean distance between row player’s strategy and the Equilibrium in

game with a partially-mixed equilibrium . . . . . . . . . . . . . . . . . . . 102
6.34 Dynamic Regret with respect to the maxmin of the column player in game

with a partially-mixed equilibrium . . . . . . . . . . . . . . . . . . . . . . . 103
6.35 Expected Utility of the column player in game with a partially-mixed equi-

librium with the safety bounds . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.36 Euclidean distance between row player’s strategy and the Equilibrium in

game with a partially-mixed equilibrium . . . . . . . . . . . . . . . . . . . 104
6.37 Row player’s strategy in game with a partially-mixed equilibrium . . . . . 104



3

List of Tables

1.1 Table with the algorithms developed during the thesis and the final results
obtained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8





5

1| Introduction

Algorithmic game theory and Online learning have recently contributed to significant
achievements in the field of Artificial intelligence, leading to the deployment of artificial
agents capable of defeating top professionals in several games such as chess [Campbell et al.
4], Go [Silver et al. 27] and poker [Brown and Sandholm 3]. So far, the great majority
of multi-agent learning techniques developed to defeat human players does not take into
account their peculiar behavior. This approach may lead the artificial agents not to adapt
to the actual abilities of humans, generating an impressive gap in performances. Indeed,
playing against a super-computer may not be endearing for most human players. As Egri-
Nagy and Törmänen underline, it is “hopeless and frustrating to play against an AI, since
it is practically impossible to win”. In particular, humans are interested in repeatedly
playing against an opponent when they are sufficiently engaged in the competition; thus,
taking into account the actual human abilities becomes strictly necessary. The same
reasoning holds if the aim of the algorithm is not defeating a human player, but teaching
him how to reach an equilibrium. If the opponent/human is not engaged, he will not keep
playing the game, interrupting the teaching dynamic. Different forms of engagement have
been developed (for example, Abbasi et al. in computer games). In this thesis, we model
the humans’ engagement as a constraint over the utility the humans expect to receive.
If this value is under a given threshold, the humans will get bored playing, as they lose
too much and have no hope to win. Thus, they will drop out from the learning dynamic.
Similarly, if such a value is above a given threshold, the humans will get bored playing,
as they are winning too easily. Therefore, assuring engagement becomes fundamental
when designing rational agents for humans; this is particularly true when the goal is not
exploiting the opponent but educating him as in the world of serious games (see [Dörner
et al. 13], [DeFalco et al. 10] for military, [Rossetti et al. 25] for transportation and [Wang
et al. 28] for healthcare).
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1.1. Goal

This thesis aims to develop algorithms capable of teaching human-like learners how to
play games with strict competition (two-player zero-sum games) while interacting with
them in an online fashion. Properly modeling a human presents many challenges; indeed,
humans have different learning abilities, thus, we cannot make assumptions on the exact
algorithm the opponent employs. Moreover, such algorithms must incentivize humans
to keep playing the game since, in principle, they could interrupt the learning dynamic
due to easy victories or catastrophic defeats. This incentive will be modeled through a
constraint on the utility obtained by the players, namely, the per-round reward will always
be bounded over an interval (please note that in zero-sum games, a bound on the utility
of one of the player guarantees a bound on the utility of the opponent). As concerns the
meaning of teaching, we want our algorithm to carry the human to the Nash Equilibrium
(Minmax equilibrium for zero-sum games).

Our work will present the pseudo code of this type of algorithms and their theoretical
guarantees in two different settings. In the first one, we will assume that players have
expert feedback, namely, every player knows the reward he could have achieved playing
any discrete distribution over his actions. In the latter, we will consider that the teacher
can only observe the single action played by the human (the so-called partial semi-bandit
feedback).

In the literature, different notions of learning have been proposed. The most common is
the notion of self-play learning, in which an algorithm plays against copies of itself, with
the average strategy converging to some equilibrium [Celli et al. 5, 6, Farina et al. 15].
The setting studied in this Thesis is substantially different as we do not assume to have
control over the player algorithm and our objective is to achieve last round convergence
as opposed to average strategy convergence.

1.2. Original Contribution

Our work starts by the framework proposed by Dinh et al. in their LRCA algorithm
(3.4), that is, column player (in our thesis, the teacher) has full knowledge of the payoff
matrix, and has as objective to drag his opponent (in our thesis, the human) to the Nash
Equilibrium in Last Round. LRCA attains Last Round Convergence and No-Dynamic
Regret property against the entire family of FTRL algorithm (2.5) in zero-sum games
with fully-mixed equilibrium strategy for the row player.

We propose two versions of this algorithm: E-LRCA (algorithm 4.1) and PAUSE E-LRCA
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(algorithm 5.1).
The first one deals with the Expert feedback setting and guarantees Last Round Con-
vergence (see definition 3.2.2.1) and Sublinear Dynamic Regret (see definition 2.2.1.2)
against the entire OMD family (2.8) in games with any kind of equilibrium (fully-mixed,
partially-mixed, pure); in addition it guarantees safety (see definition 3.1.0.1) at each
round, with a constraint on the upper bound of the safety region when there is not a
fully-mixed equilibrium strategy for the row player.
The latter works in setting where the human/row player receives an expert feedback while
the teacher receives the index of the action played by his opponent. In this case, PAUSE
E-LRCA guarantees Last Round Convergence with high probability and Sublinear Dy-
namic Regret with respect to the value of the game (see definition 5.5.0.1) with high
probability against the entire OMD family in games with fully-mixed equilibrium strat-
egy for the row player (while, experimentally, these properties are valid even in absence
of fully-mixed equilibrium); as concerns safety, it is guaranteed with high probability in
case of fully-mixed equilibrium, otherwise, it is guaranteed with probability equal to one
adding a constraint on the upper bound of the safety region.

The results are summarized in table 1.1.
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Result Table

Fully-mixed Equilibrium Not Fully-Mixed Equilib-
rium

Expert Feedback

E-LRCA:
• Safety
• Last Round Convergence
• Sublinear Dynamic Re-

gret

E-LRCA:
• Safety when ||Uy∗||∞ <

ξ2

• Last Round Convergence
• Sublinear Dynamic Re-

gret

Partial Semi Ban-
dit Feedback

PAUSE E-LRCA:
• Safety with high proba-

bility
• Last Round Convergence

with high probability
• Sublinear Dynamic Re-

gret with respect to the
MaxMin with high prob-
ability

PAUSE E-LRCA:
• Safety when ||Uy∗||∞ <

ξ2

• Experimental Last
Round Convergence

• Experimental Sublinear
Dynamic Regret with re-
spect to the MaxMin

Table 1.1: Table with the algorithms developed during the thesis and the final results
obtained

1.3. Structure of the Thesis

The thesis is organized as follows:

• Chapter 2 : In the preliminaries the necessary background to understand the thesis
is highlighted. In addition we introduce the notation that will be employed in the
core chapters.

• Chapter 3 : Theoretical results obtained by other researchers in the area the thesis
lies on are reported. In subsection 3.2.3 the algorithm which our thesis extends is
shown.

• Chapter 4 : Algorithm which deals with the expert feedback is reported, with theo-
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rems/lemmas and related proofs. An entire section will be devoted for each property.
[Core]

• Chapter 5 : Algorithms which deal with the Partial Semi-Bandit feedback are re-
ported, with theorems/lemmas and related proofs. An entire section will be devoted
for each property. [Core]

• Chapter 6 : Experiments related to all the algorithms reported in the core chapters
of the thesis.

• Chapter 7 : We show some interesting paths that future researchers may follows in
order to improve our work.
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2| Preliminaries

In this chapter the background knowledge required to understand properly the thesis is
reported.

2.1. Game Theory

2.1.1. Normal Form Game

In this subsection we present the normal form representation, also known as strategic
form, arguably the most fundamental in game theory, as most other representations (e.g.
Extensive Form Games) can be reduced to it. In particular we will focus mainly on
two-player games.

Definition 2.1.1.1. (Normal Form Game (Shoham and Leyton-Brown, 2008)) A (finite,
two-person) normal-form game is a tuple (N,A, u), where:

• N is a set of two players;

• A = A1 ×A2, where A1 is a finite set of n actions available to player 1, while A2 is
a finite set of m actions available to player 2. Each vector (e1, e2) ∈ A is called an
action profile;

• u = (u1, u2) where u1 : A → R is a real-valued utility (or payoff) function for player
1 and u2 : A → R is a real-valued utility (or payoff) function for player 2.

A natural way to represent two-player normal form games is through a 2-dimensional
payoff matrix; each row corresponds to a possible action for player 1, each column corre-
sponds to a possible action for player 2 and each cell corresponds to one possible outcome.
Each player’s utility for an outcome is written in the cell corresponding to that outcome,
with player 1’s utility listed first.
We report here an example of Normal form game, known as the Prisoner Dilemma:
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C D

C -1,-1 -4,0
D 0,-4 -3,-3

There are some restricted classes of normal-form games that deserve special mention.
The first is the class of common-payoff games. These are games in which, for every action
profile, all players have the same payoff.
Now we present the category of games we will deal with during the thesis, that are constant
sum games.

Definition 2.1.1.2. (Constant Sum Game (Shoham and Leyton-Brown, 2008)) A two-
player normal-form game is constant-sum if there exists a constant c such that for each
strategy profile (e1, e2) ∈ A1 × A2 it is the case that u1 (e1, e2) + u2 (e1, e2) = c.

Throughout the entire thesis, we will always assume that c = 0, that is, we have a zero-
sum game, a situation of pure competition; one player’s gain comes at the expense of the
other player. A classical example of a zero-sum game is the game of Matching Pennies.
In this game, each of the two players has a penny and independently chooses to display
either heads or tails. The two players then compare their pennies. If they are the same
then player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
now shown:

Heads Tail
Heads 1,-1 -1,1
Tail -1,1 1,-1

Another famous zero-sum game, that will be used in our final experiments, is Rock Paper
Scissor, for which the payoff Matrix is:

Rock Paper Scissor
Rock 0,0 -1,1 1,-1
Paper 1,-1 0,0 -1,1
Scissor -1,1 1,-1 0,0

We have so far defined the actions available to each player in a game, but not yet his set
of strategies or his available choices. Certainly one kind of strategy is to select a single
action and play it. We call such a strategy a pure strategy. We call a choice of pure
strategy for each agent a pure-strategy profile. Players could also follow another, less
obvious type of strategy: randomizing over the set of available actions according to some
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probability distribution. Such a strategy is called a mixed strategy. We define a mixed
strategy for a normal-form game as follows.

Definition 2.1.1.3. (Mixed Strategies (Shoham and Leyton-Brown, 2008)) Let (N,A, u)

be a normal-form game, and for any set S let Π(S) be the set of all probability distributions
over S. Then the set of mixed strategies for player 1 is ∆n = Π(A1), while the set of
mixed strategies for player 2 is ∆m = Π(A2), where ∆d is the d-dimensional simplex.

Definition 2.1.1.4. (Mixed Strategy Profile (Shoham and Leyton-Brown, 2008)) The set
of mixed-strategy profiles is simply the Cartesian product of the individual mixed-strategy
sets, ∆n ×∆m .

Throughout the thesis, we will adopt the standard convention for two-player zero-sum
games, that is, we define as x (∈ ∆n) the strategy of the row player (first player): x is a
vector of n dimension. We will refer as x(i) to the probability of the action ei. Similarly
we will use y (∈ ∆m) for the strategy of the column player (second player).

Definition 2.1.1.5. (Support) The support (supp) of a mixed strategy x is the set of pure
strategies {ei|x(i) > 0}.

Note that a pure strategy is a special case of a mixed strategy, in which the support
is a single action. At the other end of the spectrum we have fully-mixed strategies. A
strategy is fully-mixed if it has full support (namely, if it assigns every action a nonzero
probability). We next define the payoffs of players given a particular strategy profile,
since the payoff matrix defines those directly only for the special case of pure-strategy
profiles. Formally, we define the expected utility as follows:

Definition 2.1.1.6. (Expected Utility) Given a two-player normal-form game (N,A, u),
the expected utility u1 for player 1 of the mixed-strategy profile (x,y) is defined as:

u1 (x,y) := x⊤U1y

where U1 is the payoff matrix of player 1, while the expected utility u2 is defined as:

u2 (x,y) := x⊤U2y

where U2 is the payoff matrix of player 2.

Please note that we will deal with zero-sum games, which can be formalized by a single
Payoff Matrix, with one of the two players that will try to minimize the utility of the
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opponent, called the minimizer (in our case the row player), and the other that will try
to maximize his utility (in our case the column player). From this:

Definition 2.1.1.7. (Expected Utility in two-player zero-sum games) Given a two-player
zero-sum normal-form game (N,A, u), the expected utility of the minimizer player given
a mixed-strategy profile (x,y) is defined as:

umin(x,y) := −x⊤Uy

while the expected utility of the maximizer is defined as:

umax(x,y) := x⊤Uy

where U is the payoff matrix.

2.1.2. Nash Equilibrium

Once that we have defined what games in normal form are and what strategies are available
to players in them, the question is how to reason about such games. Game theorists deal
with this problem by identifying certain subsets of outcomes, called solution concepts, that
are interesting in one sense or another. In this section we describe the most fundamental
solution concepts: the Nash equilibrium.
Our first observation is that if an agent knew how the other were going to play, his
strategic problem would become simple. Specifically, he would be left with the single-
agent problem of choosing a utility-maximizing action, that is the problem of determining
his best response.
Formally:

Definition 2.1.2.1. (Best response (Shoham and Leyton-Brown, 2008)) Player 1’s best
response to the opponent strategy y is the strategy argmaxx∈∆n x

⊤U1y (while the value of
the best response is f(y) := maxx∈∆n x

⊤U1y). Player 2’s best response to the opponent
strategy x is the strategy argmaxy∈∆m x⊤U2y (while the value of the best response is
f(x) := maxy∈∆m x⊤U2y).

Unfortunately, in general an agent will not know what strategy the other player plans to
adopt. Thus, the notion of best response is not a solution concept; it does not identify
an interesting set of outcomes in this general case. However, we can leverage the idea of
best response to define what is arguably the most central notion in non cooperative game
theory, the Nash equilibrium.
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Definition 2.1.2.2. (Nash Equilibrium (Nash, 1950)) Given a two-player normal form
game, a strategy profile (x∗,y∗) is a Nash equilibrium if x∗ is the best response for player
1 and y∗ is the best response for player 2.

Intuitively, a Nash equilibrium is a stable strategy profile: no agent would want to change
his strategy if he knew what strategy the other agent was following.
We can divide Nash equilibria into two categories, strict and weak, depending on whether
or not every agent’s strategy constitutes a unique best response to the other agent’s
strategy.

Definition 2.1.2.3. (Strict Nash (Shoham and Leyton-Brown, 2008)) Given a two-player
normal form game, a strategy profile (x∗,y∗) is a strict Nash equilibrium if, u1(x

∗,y∗) >

u1(x,y
∗) for all x ∈ ∆n and u2(x

∗,y∗) > u2(x
∗,y) for all y ∈ ∆m.

Definition 2.1.2.4. (Weak Nash (Shoham and Leyton-Brown, 2008)) Given a two-player
normal form game, a strategy profile (x∗,y∗) is a weak Nash equilibrium if, u1(x

∗,y∗) ≥
u1(x,y

∗) for all x ∈ ∆n, u2(x
∗,y∗) ≥ u2(x

∗,y) for all y ∈ ∆m and (x∗,y∗) is not a
strict Nash equilibrium.

As concerns Nash equilibria, it is important to underline that:

Theorem 2.1. (Nash, 1951) Every game with a finite number of players and action
profiles has at least one Nash equilibrium.

We need a couple of more definitions in order to introduce the specific setting in which
our algorithms will work.

Definition 2.1.2.5. (Minmax, two-player) In a two-player game, the minmax strategy
for player 1 against player 2 is argminx∈∆n

maxy∈∆m x⊤U2y, and player 1 minmax value
is minx∈∆n maxy∈∆m x⊤U2y.

Definition 2.1.2.6. (Maxmin, two-player) In a two-player game, the maxmin strategy
for player 2 against player 1 is argmaxy∈∆m

minx∈∆n x
⊤U2y, and player 2 maxmin value

is maxy∈∆m minx∈∆n x
⊤U2y.

Now we report a fundamental theorem that will be necessary for all the future reasoning:

Theorem 2.2. (Minimax theorem (Neumann, 1928)) In any finite, two-player, zero-sum
game, in any Nash equilibrium each player receives a payoff that is equal to both his
maxmin value and his minmax value.
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The minmax theorem demonstrates that maxmin strategies, minmax strategies and Nash
equilibria coincide in two-player, zero-sum games. In particular, the previous theorem
allows us to conclude that in two-player, zero-sum games:

1. Each player’s maxmin value is equal to his minmax value, called the value of the
game v

2. For both players, the set of maxmin strategies coincides with the set of minmax
strategies

3. Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a Nash
equilibrium. Furthermore, these are all the Nash equilibria. Consequently, all Nash
equilibria have the same payoff vector.

Nash equilibria in zero-sum games can be viewed graphically as a saddle point in a high-
dimensional space. At a saddle point, any deviation of the agent lowers his utility and
increases the utility of the other agent. More formally we have that:

(x∗,y∗) = arg min
x∈∆n

arg max
y∈∆m

x⊤Uy (2.1)

with :

min
x∈∆n

max
y∈∆m

x⊤Uy = v (2.2)

Finally, if the equilibrium is fully-mixed we will have:

x∗⊤U = [v, v, . . . , v] Uy∗ = [v, v, . . . , v]⊤ (2.3)

while if it is partially-mixed (assuming all the first actions in the support of the equilib-
rium):

x∗⊤U = [v, . . . , v, α1, . . . , αl] Uy∗ = [v, . . . , v, β1, . . . , βk]
⊤ (2.4)

with αi < v ∀i ∈ {1, . . . , l} and βj > v ∀j ∈ {1, . . . , k} .

2.2. Online Learning and OCO

2.2.1. Setting

In online convex optimization (OCO), an online player iteratively makes decisions. At
each round, the outcomes associated with the choices are unknown to the player, that is,
after committing to a decision, the decision maker suffers a loss: every possible decision
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incurs a possibly different loss, which is unknown beforehand. The losses can be chosen
by an adversary and depend on the action taken by the decision maker.

Please note that in order to make this approach meaningful, it is necessary to make some
assumptions. First, the losses determined by the adversary should not be allowed to be
unbounded, otherwise the adversary could keep decreasing the scale of the loss at each
step, and never allow the algorithm to recover from the loss of the first step. Moreover,
the decision set must be somehow bounded, otherwise the opponent could assign high loss
to all the strategies chosen by the player indefinitely, while setting apart some strategies
with zero loss.

The Online Convex Optimization framework models the decision set as a convex set in
Euclidean space denoted K ⊆ Rn, while the costs are modeled as bounded convex functions
over K. It is important to highlight that there exists a strong connection between Game
Theory (see section 2.1) and Online Convex Optimization; indeed, the OCO framework
can be seen as a repeated game. Formally:
At iteration t, the online player chooses xt ∈ K. After the player has committed to this
choice, a convex cost function ℓt ∈ L : K → R is revealed. L is the bounded family of
cost functions available to the adversary. The cost incurred by the online player is ℓt(xt),
namely, the value of the cost function for the choice xt.
Let T denote the total number of game iterations, we define the regret of the decision
maker to be the difference between the total cost he has incurred and that of the best
fixed decision in hindsight.
Let Al be an algorithm for OCO, which maps a certain game history to a decision in the
decision set. We formally define the regret of Al after T iterations as:

RAl
T :=

T∑
t=1

ℓt(xt)−min
x∈K

T∑
t=1

ℓt(x) (2.5)

Intuitively, an algorithm performs well if its regret is sublinear as a function of T , that is
RAl

T = o(T ), since this implies that on the average the algorithm performs as well as the
best fixed strategy in hindsight. More formally:

Definition 2.2.1.1. (No-Regret) An algorithm Al is a no-regret algorithm (or has no-
regret) if for every adversary, limT→∞

RAl
T

T
= 0.

We then introduce a stronger notion of Regret, that is the Dynamic Regret. Please note
that, in this case, for the sake of simplicity, we will introduce the Regret with respect to
a reward and not with respect to a loss (goal is to maximize ℓ(x)).
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We define the Dynamic Regret as:

DRAl
T :=

T∑
t=1

(
max
x∈K

ℓt(x)− ℓt(xt)

)
(2.6)

Definition 2.2.1.2. (No-Dynamic Regret) An algorithm Al is a no-dynamic regret algo-
rithm (or has the no-dynamic regret property) if limT→∞

DRAl
T

T
= 0.

2.2.2. Follow the Leader

In an OCO setting of regret minimization, the most natural approach for the online player
is to use at any time the optimal decision (namely, the best point in K) in hindsight.
Formally, let:

xt+1 := argmin
x∈K

t∑
k=1

ℓk(x)

This idea of strategy is known as Follow the Leader (FTL). Unfortunately, this strategy
fails in worst-case, namely, the regret can be linear in the number of iterations, as the
following example shows. Consider K = [−1, 1], let ℓ1(x) = 1

2
x, and let ℓk for k = 2, . . . , T

alternate between −x or x. In this specific setting the FTL strategy will keep shifting
between xt = −1 and xt = 1, always making the wrong choice. Follow the Leader strategy
fails simply because it is unstable. In order to solve this issue we need to stabilize the
method, that is, inserting a regularization term in the update.

2.2.3. Follow the Regularized Leader

In order to deal with the FTRL family of algorithms, which aims to stabilize follow
the leader update, we need to introduce a mathematical concept that will make the
understanding of the next sections easier.
We consider regularization functions, denoted F : K → R, which are strongly convex and
smooth. In particular:

Definition 2.2.3.1. A differentiable function F is σ-strongly convex with σ > 0 if ∀x,y
belonging to its domain:

F (y) ≥ F (x) +∇F (x)⊤(y − x) +
σ

2
||y − x||2

Now we are ready to introduce the main algorithm of this subsection; by adding a regu-
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larization term to the previously described follow the leader, we obtain the FRTL (Follow
the Regularized Leader) family of algorithms. FTRL is defined in Algorithm 2.1. The
regularization function F is, as previously highlighted, assumed to be σ-strongly convex,
smooth, and twice differentiable.

Algorithm 2.1 Follow the Regularized leader (FTRL)
1: Input: µ > 0, regularization function F , and a convex compact set K.
2: Let x1 = argminx∈K F (x).
3: for t = 1 to T do
4: Predict xt

5: Observe the function ℓt.
6: update

xt+1 := argminx∈K x⊤

(
t∑

k=1

∇ℓk(xk)

)
+

1

µ
F (x)

7: end for

We finally report the Regret result of FTRL:

Theorem 2.3. (Hazan, 2019) The FTRL Algorithm attains for every u ∈ K the following
bound on the regret:

RT ≤ 2µ
T∑
t=1

||∇ℓt(xt)||2∗t +
F (u)− F (x1)

µ

If an upper bound on the local norms is known, i.e.||∇ℓt(xt)||∗t ≤ GR for all times t, then
we can further optimize over the choice of the learning rate µ to obtain:

RT ≤ 2DRGR

√
2T

with DR diameter of set K.

2.2.4. Multiplicative Weight Update

As pointed out in the previous subsection, FTRL is a family of algorithms; based on the
regularization function that is chosen, this family generates a huge variety of No-Regret
algorithms.
In this subsection we show the derivation of Multiplicative Weight Update (and thus of
its linear version). First of all, we choose the proper regularization function: to obtain
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MWU we choose the negative entropy that is:

F (x) :=
n∑

i=1

x(i) lnx(i)

With this choice of regularizer, we have:

xt+1 := argminx∈K x⊤

(
t∑

k=1

∇ℓk(xk)

)
+

1

µ

n∑
i=1

x(i) lnx(i)

then we choose K = ∆, that is, assuming the convex set to be a simplex, from which:

xt+1 := argminx∈∆ x⊤

(
t∑

k=1

∇ℓk(xk)

)
+

1

µ

n∑
i=1

x(i) lnx(i)

To compute the minimum of the above function we will use the method of Lagrange
multipliers. We introduce a new parameter η and define the function:

gη(x) := g(x) + η
(
a⊤x− b

)
with g(x) objective of the optimization problem. Then, if x∗ is a feasible minimizer of
g(x), then there is at least a value of η such that ∇gη(x

∗) = 0. Thus, it is possible to find
all x, η such that ∇gη(x) = 0, to remove the values of x such that a⊤x ̸= b, and finally to
look at which of the remaining x minimizes g(x). The constraint x ∈ ∆ can be rewritten
as
∑n

i=1 x(i) = 1, from which we consider the function:

x⊤

(
t∑

k=1

∇ℓk(xk)

)
+

1

µ

n∑
i=1

x(i) lnx(i) + η
(
x⊤1− 1

)
we compute the partial derivative of the previous expression with respect to xi:(

t∑
k=1

∇ℓk(xk)(i)

)
+

1

µ
(1 + lnx(i)) + η

If we want the gradient to be zero we obtain:

x(i) = e−1−ηµ−µ(
∑t

k=1 ∇ℓk(xk)(i))

There is only one value of η that makes the solution a probability distribution which
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corresponds to the result:

xt+1(i) =
e−µ

∑t
k=1 ∇ℓk(xk)(i)∑n

j=1 e
−µ
∑t

k=1 ∇ℓk(xk)(j)

from which we obtain the MWU algorithm 2.2

Algorithm 2.2 Multiplicative Weight Update (MWU)
1: Input: µ > 0.
2: Let x1 = [1/n, . . . , 1/n]⊤

3: for t = 1 to T do
4: Predict xt

5: Observe the function ℓt.
6: update

xt+1(i) := xt(i)
e−µ∇ℓt(xt)(i)∑n

j=1 xt(j)e−µ∇ℓt(xt)(j)

7: end for

Please note that even if from a computational perspective, this algorithm appears much
more efficient than the general update of FTRL, MWU attains similar guarantees in terms
of Regret when a proper learning rate µ is chosen. For completeness we report the linear
version of algorithm 2.2

Algorithm 2.3 Linear Multiplicative Weight Update (LMWU)
1: Input: µ > 0.
2: Let x1 = [1/n, . . . , 1/n]⊤

3: for t = 1 to T do
4: Predict xt

5: Observe the function ℓt.
6: update

xt+1(i) := xt(i)
1− µ∇ℓt(xt)(i)∑n

j=1 xt(j) (1− µ∇ℓt(xt)(j))

7: end for

2.2.5. Online Mirror Descent

Online Mirror Descent (OMD) is an iterative family of algorithms that computes the
current decision using a simple gradient update rule and the previous decision. The



22 2| Preliminaries

generality of the method stems from the update being carried out in a dual space, where
the duality is defined by the choice of regularization: the gradient of the regularization
function defines a mapping from Rn onto itself, which is a vector field. The gradient
updates are then carried out in this vector field. In OMD, regularization transforms the
space in which gradient updates are performed.

Before diving into the details of the algorithm, we introduce a mathematical definition.

Definition 2.2.5.1. (Bregman Divergence) Denote by BF (x||y) the Bregman divergence
with respect to the function F (defined in subesction 2.2.3), defined as BF (x||y) = F (x)−
F (y)−∇F (y)⊤(x− y)

We now point out some property of the Bregman divergence:

1. Strict convexity in the first argument x.

2. Non negativity: BF (x||y) ≥ 0 ∀x,y.

3. BF (x||y) = 0 if and only if x = y.

4. Asymmetry

5. If F σ-strongly convex: BF (x||y) ≥ σ
2
||x− y||2

There exists two versions of OMD algorithm: an agile and a lazy one. We report only the
lazy version as it is the one that we will use in the thesis.

Algorithm 2.4 Online Mirror Descent (OMD)
1: Input: µ > 0, regularization function F (x), and a convex compact set K.
2: Let z1 be such that ∇(z1) = 0 and x1 = argminx∈K BF (x||z1).
3: for t = 1 to T do
4: Predict xt

5: Observe the function ℓt.
6: update zt according to the rule:

∇F (zt+1) = ∇F (zt)− µ∇ℓt(xt)

7: Project according to BF :

xt+1 = argmin
x∈K

BF (x||zt+1)

8: end for
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In order to compute the Regret of OMD is sufficient to show that for linear cost functions,
the algorithm is equivalent to FTRL (algorithm 2.1).

Lemma 2.1. (Equivalence OMD and FTRL (Hazan, 2019)) Let ℓ1, . . . , ℓt be linear cost
functions. The lazy OMD and FTRL algorithms produce identical predictions.

Proof. First, observe that the unconstrained minimum

x′ := argminx∈Rn x⊤

(
t−1∑
k=1

∇ℓk(xk)

)
+

1

µ
F (x)

satisfies:

∇F (x′) = −µ
t−1∑
k=1

∇ℓk(xk)

By definition, zt also satisfies the above equation, but since F (x) is strictly convex, there
is only one solution for the above equation and thus zt = x′

t. Hence,

BF (x||zt) = F (x)− F (zt)−∇F (zt)
⊤(x− zt)

= F (x)− F (zt) + µ
t−1∑
k=1

∇ℓk(xk)
⊤(x− zt)

Since F (zt) and
∑t−1

k=1∇ℓk(xk)
⊤zt are independent of x, it follows that the Bregman is

minimized at the point x that minimizes F (x) + µ
∑t−1

k=1∇ℓk(xk)
⊤xt over K which, in

turn, concludes the proof.

2.2.6. Learning in Games

The aim of this subsection is to translate the results obtained in previous sections in a
game theoretic setting.
During the thesis we will deal with two zero-sum players as specified in section 2.1; the
first player, also called row player, will be the minimizer with actions space K = ∆n,
where ∆n represents the simplex built on the n actions, while the second player, the
column one, will be the maximizer with actions space K = ∆m. As previously specified,
we will refer to the strategy of the minimizer at time t with the vector xt while we will use
yt for the maximizer. Thus, we report all the algorithm seen in section 2.2, adapted to a
game theoretic setting, so that during the core of the thesis the reader will be facilitated
in the comprehension.
We start by the FTRL family:
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Algorithm 2.5 Follow the Regularized leader (FTRL) on zero-sum games
1: Input: µ > 0, regularization function F , and a simplex ∆n.
2: Let x1 = argminx∈∆n F (x).
3: for t = 1 to T do
4: Predict xt

5: update

xt+1 := argminx∈∆n
x⊤

(
t∑

k=1

Uyk

)
+

1

µ
F (x)

6: end for

then we proceed with the famous multiplicative weight update:

Algorithm 2.6 Multiplicative Weight Update (MWU) on zero-sum games
1: Input: µ > 0.
2: Let x1 = [1/n, . . . , 1/n]⊤

3: for t = 1 to T do
4: Predict xt

5: update

xt+1(i) := xt(i)
e−µe⊤i Uyt∑n

j=1 xt(j)e
−µe⊤j Uyt

6: end for

and its linear version:

Algorithm 2.7 Linear Multiplicative Weight Update (LMWU) on zero-sum games
1: Input: µ > 0.
2: Let x1 = [1/n, . . . , 1/n]⊤

3: for t = 1 to T do
4: Predict xt

5: update

xt+1(i) := xt(i)
1− µe⊤

i Uyt∑n
j=1 xt(j)

(
1− µe⊤

j Uyt

)
6: end for

In order to deal with MWU convergence we introduce the notion of KL divergence:
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Definition 2.2.6.1. (KL divergence (Kullback and Leibler, 1951)) The relative entropy
or KL divergence between two vectors x1 and x2 in ∆n is defined as KL(x1||x2) =∑n

i=1 x1(i) ln
x1

x2
.

The Kullback-Leibler divergence is always non-negative. Furthermore KL(x1||x2) = 0 if
and only if x1 = x2 almost everywhere.

Finally we present OMD:

Algorithm 2.8 Online Mirror Descent (OMD) on zero-sum games
1: Input: µ > 0, regularization function F (x), and the simplex ∆n.
2: Let z1 be such that ∇(z1) = 0 and x1 = argminx∈K BF (x||z1).
3: for t = 1 to T do
4: Predict xt

5: update zt according to the rule:

∇F (zt+1) = ∇F (zt)− µUyt

6: Project according to BF :

xt+1 = arg min
x∈∆n

BF (x||zt+1)

7: end for

We conclude with an important property of the algorithms presented so far:

Definition 2.2.6.2. (Stability) A no-regret algorithm is stable if ∀t : yt = y∗ =⇒ xt+1 =

xt when there exists a fully-mixed equilibrium strategy x∗.
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In this chapter we introduce the two main properties that our algorithms guarantee:
Safety and Last Round Convergence. In particular we show some of the main results
obtained by the scientific community so far: part of these results will be used to build our
final algorithms, others represent the state of the art in different settings with respect to
the one on which our algorithms work.

3.1. Safety

The aim of this section is to explain what the Safety constraint is, why it is important
and to give an example of how an online algorithm can guarantee this property.

Definition 3.1.0.1. (Safety) Given two bounds ξ1 and ξ2 with ξ1 < ξ2, an Online algo-
rithm applied to games guarantees safety if and only if u(t) ∈ [ξ1, ξ2] ∀t, with u(t) utility
of the opponent at time t.

As specified in the abstract, the safety property is fundamental in order to keep the
opponent engaged, that is, our adversary will have an incentive to keep playing the game.
In 2021 Bernasconi-de-Luca et al. developed an algorithm which guarantees the property.
This paper mainly focuses on Extensive Form Games, but some of the techniques employed
will be useful for the Normal Form setting (on which the thesis focuses).
Thus we report some theorems on which their algorithm relies:

Lemma 3.1. (Lemma 3 (Devroye, 1983)) Let x ∈ ∆n and i1, . . . , it ∈ {1, . . . , n} be
t indices of actions sampled independently according to x. Then, for any 0 < δ ≤
3 exp(−4n/5), it holds:

P

(
n∑

i=1

|x̄t(i)− x(i)| ≤ 5

√
ln(3/δ)

t

)
≥ 1− δ

where x̄t is the empiric frequency of the actions played by x player.
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Lemma 3.2. (Bernasconi-de-Luca et al. 2021) Let x ∈ ∆n and i1, . . . , it ∈ {1, . . . , n}
be t indices of actions sampled independently according to x. Then, for any 0 < δ ≤
3 exp(−4n/5), it holds:

P

(
n⋂

i=1

{
|x̄t(i)− x(i)| ≤ 5

2

√
ln(3/δ)

t

})
≥ 1− δ

The reader is probably wondering why this trick is necessary; the idea is that the algo-
rithms specified in previous sections are considering the case in which the agent receives
a full feedback at the end of each round (the complete gradient is received), but during
the thesis we will deal even with the case in which our opponent does not play a strategy,
but an action sampled by that specific strategy (we will refer to it as partial semi-Bandit
feedback).
These two theorems will be fundamental to estimate a set in which the strategy of the
opponent (when it is fixed) lies with high probability and thus, to play a strategy that
will be safe for any possible opponent strategy in that specific set.
We now report the algorithm and then we give a hint of how it works:

Algorithm 3.1 COX-UCB
1: for t = 1 to T do
2: Build confidence region Yt−1 from history of past feedback Ht−1

3: Build set of linear constraints characterizing engaging set Xt by exploiting Yt−1

4: Play the game according to strategy xt := argmaxx∈X̃t
maxy∈Yt−1 x

⊤Uy

5: update history Ht

6: end for

We underline few aspects of this algorithm that will be important for the comprehension of
the thesis: the region Yt−1, on which the opponent lies with high probability, is estimated
using the Devroye Formula (Lemma 3.1), with a little modification to take into account
the extensive form structure of the game. The safe set Xt is built by linear constraints
such that all the strategies in the set are safe (with respect to the safe bounds [ξ1, ξ2])
given any strategy of the opponent in Yt−1. The set X̃t is built starting from Xt in order
to guarantee proper exploration. Finally, the strategy xt is chosen optimistically given
the sets X̃t and Yt−1
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3.2. Last Round Convergence

This section aims to highlight some of the most important results obtained so far in terms
of convergence. We start by the well known result of average convergence of No-Regret
learners and we conclude with the algorithm which is the actual starting point of the
thesis.

3.2.1. Hannan Consistency and Average Convergence

We start by the definition of Hannan Consistent strategy:

Definition 3.2.1.1. (Hannan Consistency) A strategy is said to be Hannan consistent if:

lim sup
T→∞

1

T

(
T∑
t=1

x⊤
t Uyt − min

x∈∆n

T∑
t=1

x⊤Uyt

)
= 0

This definition is fundamental to achieve following results in zero-sum repeated normal
form games:

Theorem 3.1. (Cesa-Bianchi and Lugosi, 2006) Assume that in a two-person zero-sum
game the row player plays according to a Hannan-consistent strategy. Then:

lim sup
T→∞

1

T

T∑
t=1

x⊤
t Uyt ≤ v whp

with v minmax value of the game.

The theorem shows that, regardless of what the opponent plays, if the row player plays
according to a Hannan-consistent strategy, then his cumulative loss is guaranteed to be
asymptotically not more than the value v of the game. An important corollary follows:

Corollary 3.1. (Cesa-Bianchi and Lugosi, 2006) Assume that in a two-person zero-sum
game, both players play according to some Hannan consistent strategy. Then:

lim
T→∞

1

T

T∑
t=1

x⊤
t Uyt = v whp

Finally we can obtain the result on convergence:

Theorem 3.2. (Average Convergence to Equilibria (Cesa-Bianchi and Lugosi, 2006)) If
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both players follow some Hannan consistent strategy, then it is also easy to see that the
product distribution (x̄, ȳ), formed by the (marginal) empirical distributions of play:

x̄ =
1

T

T∑
t=1

xt and ȳ =
1

T

T∑
t=1

yt

of the two players converges, almost surely, to the set of Nash equilibria (x∗,y∗) of the
game.

The last theorem simply states that if two players (a min and a max one) play a zero-
sum game repeatedly, following Hannan consistent procedures, their average strategy will
converge to the minmax equilibrium of the game. It is easy to understand that even if it
is a strong result, in many real world applications the instability of the strategy played
round after round is a tremendous drawback. For example, considering the Market as a
game and a company as the player, changing the (mixed) strategy will increase the cost
of operation to implement the new mixed strategy (e.g., as a result of having to hire new
equipment and employees). Therefore, the company would aim to maximise the revenue
(namely, the average payoff) and reduce the cost of operation by having a stable strategy.
The property of stability is given by the Last Round Convergence, which is a far stronger
concept with respect to the average convergence.

3.2.2. Last Round Convergence in Self-Play

First, we give the definition of the property:

Definition 3.2.2.1. (Last Round Convergence) A sequence of strategies xt is convergent
in last round if and only if:

lim
t→∞

xt = x∗

with x∗ equilibrium strategy of the player.

In recent years much work has been done to build algorithms that can guarantee this
property; mainly, they focus on a self-play setting. The idea behind self-play is that an
agent plays against himself in order to learn a good policy. In two-player zero-sum games
it means reaching an equilibrium. Formally, given a payoff matrix of a zero-sum game U

we want to find the bilinear saddle point (x∗,y∗) = argminx∈∆n argmaxy∈∆m x⊤Uy; thus
we make the row player and column one employ the same algorithm and if Last Round
Convergence is satisfied both players will converge to the optimal strategy (note that the
first player will receive a loss at each round while the second player will receive a reward).
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Before reporting the most famous algorithms that solve the convergence issue, we want to
underline that these algorithms will be slight variations of those presented in section 2.2.
The general idea to guarantee convergence in self-play is to try to predict the opponent’s
next action (strategy); the adversary’s next move is generally predicted using the previous
round gradient. That is the reason why these algorithms are called ’Optimistic’ version
of the standard OCO procedures.
We start with Optimistic Mirror Descent:

Algorithm 3.2 Optimistic Online Mirror Descent (OOMD) on zero-sum games
1: Input: µ > 0.
2: for t = 1 to T do
3: Predict xt

4: update xt+1 according to the rule:

xt+1 = xt − 2µUyt + µUyt−1

5: end for

This algorithm has been shown to exhibit last round convergence in the unconstrained
case [Daskalakis et al. 9], that is, strategies are not constrained to be in the simplex.
Few years later the optimistic version of MWU has shown to guarantee the property even
in the constrained case [Daskalakis and Panageas 8]:

Algorithm 3.3 Optimistic Multiplicative Weight Update (OMWU) on zero-sum games
1: Input: µ > 0.
2: Let x1 = [1/n, . . . , 1/n]⊤

3: for t = 1 to T do
4: Predict xt

5: update

xt+1(i) := xt(i)
e−2µe⊤i Uyt+µe⊤i Uyt−1∑n

j=1 xt(j)e
−2µe⊤j Uyt+µe⊤i Uyt−1

6: end for

Finally, we underline that steps ahead in the convergence have been done even with a
bandit feedback (see for example [Lin et al. 19]) and in Extensive Form Games (e.g. see
[Lee et al. 18]).
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3.2.3. Last Round Convergence in Asymmetric Setting

Now we can finally introduce the setting in which our algorithm will work on.
Please notice that as specified in the abstract and in section 1, the aim of our thesis is
to teach a human-like learner, that is why the idea of learning an equilibrium in self-play
does not make any sense. Thus, we consider a setting in which the column player (teacher)
has full knowledge of the payoff matrix, while the opponent (human) can employ a family
of No-Regret algorithms.
The idea of this asymmetric setting has been taken into account by Dinh et al. which
proposed an algorithm capable to achieve last round convergence and sublinear dynamic
regret against the entire FTRL family when there exists a fully-mixed equilibrium strategy
for the row player (algorithm 2.5).
We report here the pseudocode of LRCA:

Algorithm 3.4 Last Round Convergence in Asymmetric algorithm (LRCA)
1: for t = 1 to T do
2: if t = 2k − 1, k ∈ N then
3: yt = y∗

4: end if
5: if t = 2k, k ∈ N then
6: et := argmaxe∈{e1,e2,...em} x

⊤
t−1Ue; f (xt−1) := max

y∈∆m

x⊤
t−1Uy

7: αt :=
f (xt−1)− v

β

8: yt := (1− αt)y
∗ + αtet

9: end if
10: end for

To conclude we show the dynamic regret obtained by this algorithm:

Theorem 3.3. (Dynamic Regret (Dinh et al., 2021)) Assume that the row player fol-
lows the above-mentioned no-regret type algorithms: MWU, LMWU, FTRL. If there ex-
ists a fully-mixed minmax strategy for the row player, then by following LRCA, the col-
umn player will achieve the no-dynamic regret property with the dynamic regret satisfying
RT ≤ DRT = O

(√
log(n)T 3/4

)
. Furthermore, in the case the row player uses a constant

learning rate µ, we have DRT = O
(

n√
µ
T 1/2

)
.
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In this chapter we present the algorithm we developed for the expert feedback case: E-
LRCA (4.1).

4.1. Assumptions and Setting

In this section we provide the general assumptions/setting and most relevant considera-
tions which will help the reader to understand the results and the proofs of the rest of
the chapter.

As specified in the introduction we are in a zero-sum repeated game (players play the
same game for each round); the entries of the payoff matrix (which is positive for the
column player) are scaled in [0, 1] without loss of generality. Both players have the so
called expert feedback, that is, the complete gradient is received by every player at the
end of the round. To be precise, row player will receive −Uyt after having played xt while
column player will receive x⊤

t U after having played yt. The payoff matrix U is known by
the column player (the teacher), that is, he perfectly knows the equilibrium (this is called
Asymmetric information), while row player (the learner/human) employs an algorithm of
the OMD family (which for linear losses, as in our setting, is equivalent to FTRL).

We present our algorithm for the column player which will guarantee:

1. Safety (see definition 3.1.0.1): this property will be guaranteed in different ways
depending on the equilibrium the game has. In case of fully-mixed equilibrium
strategy for the row player it will be possible to predict the opponent next strategy
(see sections 4.2) so that safety can be obtained in an efficient manner; in case of
not fully-mixed equilibrium, safety must be guaranteed for any possible strategy of
the opponent, decelerating the teaching/learning procedure. Moreover, in the latter
case, an assumption on the upper bound value ξ2 will be necessary.
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2. Last Round Convergence (see definition 3.2.2.1): results are equivalent for games
with any kind of equilibrium.

3. Sublinear Dynamic Regret (see definition 2.2.1.2): in the case of not fully-mixed
equilibrium strategy for the row player, the regret will be worse in terms of constants
and it will not be possible to express it without exploiting the dynamic of the
opponent’s learning rate.

4.2. Algorithm

Algorithm 4.1 Engaged - Last Round Convergence in Asymmetric algorithm (E-LRCA)
1: for t = 1 to T do
2: if t = 2k − 1, k ∈ N then
3: yt = y∗

4: end if
5: if t = 2k, k ∈ N then
6: et−1 := argmaxe∈{e1,e2,...em} x

⊤
t−1Ue; f (xt−1) := max

y∈∆m

x⊤
t−1Uy

7: if game has a fully-mixed equilibrium then

8: αnew =
ξ2 − v

x⊤
t−1Uet−1 − v

9: end if
10: if game has not a fully-mixed equilibrium then

11: αnew = min

(
ξ2 − ||Uy∗||∞
||U ||max − v

,
ξ1 − v

||U ||min − ||Uy∗||∞

)
12: end if
13: αt := min

(
αnew,

f (xt−1)− v

β

)
14: yt := (1− αt)y

∗ + αtet−1

15: end if
16: end for

We underline the main ideas behind algorithm 4.1.

In odd rounds column player plays the equilibrium so that if the row player’s equilibrium
strategy is fully-mixed and the opponent algorithm is stable, it is possible to predict his
next strategy (it will be the same as in the previous round). If row player’s equilibrium
strategy is not fully-mixed, playing the equilibrium will push the opponent to the support
of the equilibrium, not invalidating final result of Last Round Convergence.

In even rounds column player computes the best response (et−1) and the value of the best
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response f(xt−1) at the previous round (note that if the equilibrium is fully-mixed we have
et−1 = et and f(xt−1) = f(xt)). Then, column player plays a convex combination between
the equilibrium and the best response of the previous round, built using a parameter
αt, which must be dependant on the distance between the opponent strategy and the
equilibrium (αt =

f(xt−1)−v
β

); in case this parameter would lead to an utility outside the
safety bounds (checked by the min operator), we scale f(xt−1)−v

β
by a factor γt ∈ (0, 1]

obtaining αnew (the multiplication γt
f(xt−1)−v

β
is implicit in the algorithm but shown in

section 4.3).

To conclude, it is important to underline that the scaling factor γt depends on the equi-
librium the game has; in case there exists a fully-mixed equilibrium, we find a γt such
that the next round utility will be exactly the upper bound ξ2, otherwise we need a γt

that is safe for every strategy of the opponent (the smallest possible), which will lead to
a deceleration of the teaching dynamic.

4.3. Safety

In this section we provide the two theorems related to safety property of algorithm 4.1.
We start with the result in games where there exists a fully-mixed equilibrium strategy
for the row player (theorem 4.1) and we conclude with the case in which the equilibrium
is not fully-mixed (theorem 4.2). The main difference between the two statements is a
constraint on the upper bound of the safety region ξ2 in the second theorem (namely,
||Uy∗||∞ < ξ2).

Theorem 4.1. Assume that the row player is following a no-regret stable learning al-
gorithm, given two bounds ξ1, ξ2 on the Utility such that v ∈ [ξ1, ξ2), if there exists a
fully-mixed minmax equilibrium strategy (for the row player) and the column player fol-
lows E-LRCA (algorithm 4.1), the Utility of the column Player will be bounded in [ξ1, ξ2]

at each round (from which follows that the Utility of the row Player will be bounded in
[−ξ2,−ξ1] at each round).

Proof. The proof is divided in two parts: one for the odd rounds, the other for the even
ones.
In the case of odd rounds, the column player will choose to play y∗, which for assumption
of fully-mixed equilibrium means Uy∗ = [v, ..., v]. Thus, we have that for any strategy
the row player could choose, the utility would be v, that is inside the safety bounds.
As concerns the even rounds, given that the no-regret algorithm of the row player is stable,
we can predict his next strategy (it will be the same of the previous/odd round) so, if
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αt =
f(xt−1)−v

β
will lead to an utility outside the bounds we use αnew = γt

f(xt−1)−v
β

with
γt ∈ (0, 1] computed as follows:

x⊤
t−1U

((
1− γt

f (xt−1)− v

β

)
y∗ + γt

f (xt−1)− v

β
et

)
= ξ2 (4.1)

γt
f (xt−1)− v

β

(
−x⊤

t−1Uy∗ + x⊤
t−1Uet

)
= ξ2 − x⊤

t−1Uy∗

γt =

(
ξ2 − x⊤

t−1Uy∗) β(
−x⊤

t−1Uy∗ + x⊤
t−1Uet

)
(f(xt−1)− v)

γt =
(ξ2 − v)β

(f(xt−1)− v)2

Multiplying γt for the standard αt we obtain the update in algorithm 4.1, which, given
xt−1 = xt for odd t− 1, will guarantee an utility equal ξ2 as shown in equation 4.1.
Please note that the safety with respect to the lower bound ξ1 is automatically guaranteed
by the choice of playing a combination by the best response and the equilibrium.

Theorem 4.2. Given two bounds ξ1, ξ2 on the Utility such that v ∈ (ξ1, ξ2) and ||Uy∗||∞ <

ξ2, if there is not a fully-mixed minmax equilibrium strategy for the row player and the
column player follows E-LRCA (algorithm 4.1), the Utility of the column Player will be
bounded in [ξ1, ξ2] at each round (from which follows that the Utility of the row Player will
be bounded in [−ξ2,−ξ1] at each round).

Proof. The proof is divided in two parts: one for the odd rounds, the other for the even
ones.
In the odd rounds, safety is guaranteed by the assumption:

||Uy∗||∞ < ξ2

As concerns the even rounds the choice of αnew is equivalent to find a γt which guarantees
safety for every strategy of the opponent (that is the same to choose the smallest γt

possible). Formally for ξ2:

x⊤
t U

((
1− γt

f (xt)− v

β

)
y∗ + γt

f (xt)− v

β
et−1

)
= ξ2

where t is an even round. From here we find:

γt
f (xt−1)− v

β

(
−x⊤

t Uy∗ + x⊤
t Uet−1

)
= ξ2 − x⊤

t Uy∗
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γt =

(
ξ2 − x⊤

t Uy∗) β(
−x⊤

t Uy∗ + x⊤
t Uet−1

)
(f(xt−1)− v)

which leads to the lower bound:

γt ≥
(ξ2 − ||Uy∗||∞)β

(||U ||max − v)2

instead for ξ1:

x⊤
t U

((
1− γt

f (xt−1)− v

β

)
y∗ + γt

f (xt−1)− v

β
et−1

)
= ξ1

γt
f (xt−1)− v

β

(
−x⊤

t Uy∗ + x⊤
t Uet−1

)
= ξ1 − x⊤

t Uy∗

from which:

γt =

(
ξ1 − x⊤

t Uy∗) β(
−x⊤

t Uy∗ + x⊤
t Uet−1

)
(f(xt)− v)

≥ (ξ1 − v)β

(||U ||max − v)(||U ||min − ||Uy∗||∞)

from that we use γt := min
(

(ξ2−||Uy∗||∞)β
(||U ||max−v)2

, (ξ1−v)β
(||U ||max−v)(||U ||min−||Uy∗||∞)

)
which is safe both

with respect to the upper bound and with respect to the lower bound given any strategy
of the opponent.

Remark 4.1. The reader may notice that this second result is somehow stronger than the
first one; indeed, γt found in the last theorem guarantees safety for every strategy in the
opponent simplex, while γt of theorem 4.1 only for a specific one. Nevertheless, as it will
be shown in section 4.5, the second result will have a cost in terms of regret.

4.4. Convergence

We summarize the main steps of this section to facilitate the comprehension.

In Lemma 4.1 we prove that the γt used to generate the parameter (αt = γt
f(xt−1)−v

β
) of

the convex combination will be always greater than 0; it is necessary to avoid a premature
interruption of the teaching dynamic.
In Theorem 4.3 we show how, if there exists a fully-mixed equilibrium strategy for the
row player, potentially every stable No-Regret Learner can reach any point of the simplex
while playing against our algorithm.
In Lemma 4.2 and Lemma 4.3 we prove that when the equilibrium is played against MWU,
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LMWU or OMD, if the strategy of the opponent will change, it can only move towards the
support of the equilibrium (if the equilibrium strategy for the row player is fully-mixed,
the opponent would trivially keeps playing the same strategy).
In Lemma 4.4 we lower bound the convergence step towards the equilibrium between odd
rounds when opponent employs MWU, LMWU.
Finally, in Theorem 4.4 we lower bound the convergence step towards the equilibrium be-
tween odds rounds when opponent employs OMD and prove the Last Round Convergence
for both MWU, LMWU and OMD (which for linear losses is equivalent for FTRL).

Lemma 4.1. Given a two-player zero-sum game in normal form, described by the matrix
U and two bounds ξ1, ξ2 with v ∈ (ξ1, ξ2), it is possible to find a positive lower bound γmin

s.t. all the γt found by E-LRCA (algorithm 4.1) are greater or equal w.r.t γmin.

Proof. In the case of game in which the fully-mixed equilibrium is not present, γmin is
the one employed at each round (when the standard update αt =

f(xt−1)−v
β

is not safe) as
shown in theorem 4.2; thus we have:

γmin = min

(
(ξ2 − ||Uy∗||∞)β

(||U ||max − v)2
,

(ξ1 − v)β

(||U ||max − v)(||U ||min − ||Uy∗||∞)

)
(4.2)

which is greater than zero for v ∈ (ξ1, ξ2) and ||Uy∗||∞ < ξ2 (assumption made in theorem
4.2). Note that in games with meaningful payoffs ||U ||max ̸= ||U ||min ̸= v, nevertheless,
it is not a necessary assumption for the functioning of the algorithm.

In case of of fully-mixed equilibrium we recall the solution found in theorem 4.1 from
which:

γt =
(ξ2 − v)β

(f(xt−1)− v)2

which is always greater or equal than:

γmin =
(ξ2 − v)β

(||U ||max − v)2
(4.3)

that is greater than zero for v ∈ [ξ1, ξ2). Again, note that in game with meaningful
payoffs ||U ||max ̸= v, nevertheless, it is not a necessary assumption for the functioning of
the algorithm.

Theorem 4.3. Assume that the row player follows a stable no-regret algorithm and there
exists a fully-mixed minmax equilibrium strategy for the row player. Then, by following E-
LRCA with ξ1, ξ2 s.t. v ∈ [ξ1, ξ2), for any ϵ > 0 there exists t ∈ N such that f (xt)−v ≤ ϵ.
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Proof. We proceed in order to find a contradiction. Suppose there exists ϵ > 0 such that:

f (xt)− v > ϵ, ∀t ∈ N (4.4)

Recall that for Algorithm E-LRCA (algorithm 4.1) we have y2k−1 = y∗. Thus, following
assumption 4.4:

α2k = γ2k
f (x2k−1)− v

β
> γ2k

ϵ

β
≥ γmin

ϵ

β

By the stability property (see definition 2.2.6.2), as y2k−1 = y∗, we have that x2k−1 = x2k.
Following the update rule of the algorithm and using γmin as found in lemma 4.1:

x⊤
2kUy2k = x⊤

2k−1U ((1− α2k)y
∗ + α2ke2k)

≥ (1− α2k) v + α2kf (x2k−1)

> (1− α2k) v + α2k(v + ϵ)

≥ v + γmin
ϵ2

β

(4.5a)

(4.5b)

Where inequality 4.5a is true by definition of Nash Equilibrium and where inequality 4.5b
comes from the assumption 4.4. We then have:

1

T

T∑
t=1

x⊤
t Uyt ≥

v +
(
v + γmin

ϵ2

β

)
2

= v + γmin
ϵ2

2β

We also note that, from the definition of the value of the game, we have:

min
i

1

T

T∑
t=1

e⊤
i Uyt = min

i
e⊤
i U

∑T
t=1 yt

T
≤ v

Thus, we have:

lim
T→∞

min
i

1

T

T∑
t=1

e⊤
i Uyt −

1

T

T∑
t=1

x⊤
t Uyt ≤ v −

(
v + γmin

ϵ2

2β

)
= −γmin

ϵ2

2β

which contradicts the definition of a no-regret algorithm.

Lemma 4.2. In two-player zero-sum games where there is not a fully-mixed equilibrium
strategy for the row player, assume column player plays the equilibrium and row one
employs MWU or LMWU algorithm, if row player’s strategy will change, it will move
towards the support of the equilibrium.
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Proof. Recall the update formula of MWU (algorithm 2.6):

xt+1(i) = xt(i)
e−µte⊤i Uyt

Zt

Zt is just a normalization factor, so we study what happens to the numerator when y∗

is played by the column player. By property of the Nash, eiUy∗ = v ∀i ∈ supp while
eiUy∗ > v ∀i /∈ supp as shown in equation 2.4. From that we obtain:

e−µte⊤i Uy∗

Zt

>
e−µte⊤j Uy∗

Zt

∀i ∈ supp, ∀j /∈ supp

which means that if the strategy will change, it can only move towards the support of the
equilibrium. The same reasoning hold for LMWU (algorithm 2.7).

Lemma 4.3. In two-player zero-sum games where there is not a fully-mixed equilibrium
strategy for the row player, assume column player plays the equilibrium and the row one
employs OMD (FTRL) algorithm with distance generating function F (x) σ-strongly con-
vex and fixed learning rate µ, if row player’s strategy will change, it will move towards the
support of the equilibrium.

Proof. Let e be a strategy in the support of the equilibrium of the row player (i.e. e :=

[1, 0, . . . , 0]). Denote by BF (xt||zt) the Bregman divergence between the current row
player’s strategy and lazy update of OMD as described in algorithm 2.8; then define
Dt(e) := (BF (e||zt) − BF (xt||zt))

1
µ
, following properties of strongly convex function we

have:

Dt(e) =
(
F (e)− F (zt)−∇F (zt)

⊤(e− zt)−
(
F (xt)− F (zt)−∇F (zt)

⊤(xt − zt)
)) 1

µ

=
1

µ
F (e)− 1

µ
F (zt) + (e− zt)

⊤
t−1∑
k=1

Uyk −

(
1

µ
F (xt)−

1

µ
F (zt) + (xt − zt)

⊤
t−1∑
k=1

Uyk

)

=
1

µ
F (e)− 1

µ
F (xt) + (e− xt)

⊤
t−1∑
k=1

Uyk

≥ σ

2µ
∥e− xt∥2

We prove the Theorem showing that Dt(e) is decreasing.
Formally:

Dt (e)−Dt+1 (e) ≥ 0 ∀t odd
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From the definition of Dt we have:

Dt (e)−Dt+1 (e) = Dt(xt+1) + x⊤
t+1Uyt − e⊤Uyt

recalling then yt = y∗ we obtain:

Dt (e)−Dt+1 (e) ≥
σ

2µ
||xt+1 − xt||2 + x⊤

t+1Uy∗ − e⊤Uy∗

given that e is in the support and recalling x⊤
t+1Uy∗ ≥ v:

Dt (e)−Dt+1 (e) ≥
σ

2µ
||xt+1 − xt||2 + v − v ≥ 0

Remark 4.2. Please note that if there exists a fully-mixed equilibrium strategy for the row
player, any stable No-Regret learner (see definition 2.2.6.2) will not change his strategy
when the equilibrium is played by the opponent (in our case, the column player).

We proceed (lower) bounding the convergence step of the row player between odd rounds
both for MWU, LMWU and OMD, and finally, showing the convergence.

Lemma 4.4. Assume that the row player follows the MWU or LMWU algorithm with a
non-increasing learning rate µt such that there exists t′ ∈ N with µt′ ≤ 1

3
. If the column

player follows E-LRCA with β ≥ 2 then

KL (x∗∥x2k−1)−KL (x∗∥x2k+1) ≥
1

2
µ2kα2k (f (x2k−1)− v) ∀k ∈ N : 2k ≥ t′

where KL denotes the KL divergence (definition 2.2.6.1).
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Proof. We start by bounding the KL for MWU. Following the Definition 2.2.6.1 we have:

KL (x∗∥x2k+1)−KL (x∗∥x2k−1)

= (KL (x∗∥x2k+1)−KL (x∗∥x2k)) + (KL (x∗∥x2k)−KL (x∗∥x2k−1))

=

(
n∑

i=1

x∗(i) ln

(
x∗(i)

x2k+1(i)

)
−

n∑
i=1

x∗(i) ln

(
x∗(i)

x2k(i)

))
+(

n∑
i=1

x∗(i) ln

(
x∗(i)

x2k(i)

)
−

n∑
i=1

x∗(i) ln

(
x∗(i)

x2k−1(i)

))

=

(
n∑

i=1

x∗(i) ln

(
x2k(i)

x2k+1(i)

))
+

(
n∑

i=1

x∗(i) ln

(
x2k−1(i)

x2k(i)

))

Due to update rule of the multiplicative weights update (algorithm 2.6) we have:

KL (x∗∥x2k+1)−KL (x∗∥x2k−1)

=
(
µ2kx

∗⊤Uy2k + ln (Z2k)
)
+
(
µ2k−1x

∗⊤Uy2k−1 + ln (Z2k−1)
)

≤

(
µ2kv + ln

(
n∑

i=1

x2k(i)e
−µ2ke

⊤
i Uy2k

))
+ (µ2k−1v + ln (Z2k−1))

=

(
µ2kv + ln

(
n∑

i=1

x2k−1(i)e
−µ2k−1e

⊤
i Uy2k−1e−µ2ke

⊤
i Uy2k

)
− ln (Z2k−1)

)
+ (µ2k−1v + ln (Z2k−1))

(4.6a)

where inequality 4.6a comes from the definition of Nash Equilibrium. Thus:

KL (x∗∥x2k+1)−KL (x∗∥x2k−1)

≤

(
µ2kv + ln

(
n∑

i=1

x2k−1(i)e
−µ2k−1e

⊤
i Uy∗

e−µ2ke
⊤
i Uy2k

))
+ µ2k−1v

≤

(
µ2kv + ln

(
n∑

i=1

x2k−1(i)e
−µ2k−1ve−µ2ke

⊤
i Uy2k

))
+ µ2k−1v

= µ2kv + ln

(
n∑

i=1

x2k−1(i)e
−µ2ke

⊤
i Uy2k

)
(4.7a)

where inequality 4.7a comes still from the definition of the Nash. Then, using the update
rule of E-LRCA (y2k = (1− α2k)y

∗ + α2ke2k−1) we obtain:
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KL (x∗∥x2k+1)−KL (x∗∥x2k−1)

≤ µ2kv + ln

(
n∑

i=1

x2k−1(i)e
−µ2ke

⊤
i Uy2k

)

= µ2kv + ln

(
n∑

i=1

x2k−1(i)e
−µ2ke

⊤
i U((1−α2k)y

∗+α2ke2k−1)

)

≤ µ2kv + ln

(
n∑

i=1

x2k−1(i)e
−µ2k((1−α2k)v+e⊤i U(α2ke2k−1))

)

≤ µ2kα2kv + ln

(
n∑

i=1

x2k−1(i)e
−µ2kα2ke

⊤
i Ae2k−1

)

≤ µ2kα2kv + ln

(
n∑

i=1

x2k−1(i)
(
1−

(
1− e−µ2kα2k

)
e⊤
i Ue2k−1

))
= µ2kα2kv + ln

(
1−

(
1− e−µ2kα2k

)
x2k−1

⊤Ue2k−1

)
≤ µ2kα2kv −

(
1− e−µ2kα2k

)
x⊤
2k−1Ue2k−1

= µ2kα2kv −
(
1− e−µ2kα2k

)
f (x2k−1)

(4.8a)

(4.8b)

(4.8c)

where inequality 4.8a is due to definition of the Nash and where inequalities 4.8b, 4.8c
come from βx ≤ 1− (1− β)x ∀β ≥ 0 x ∈ [0, 1] and ln(1− x) ≤ −x ∀x < 1.

To conclude, we obtain:

KL (x∗∥x2k+1)−KL (x∗∥x2k−1)

≤ µ2kα2kv −
(
1− e−µ2kα2k

)
f (x2k−1)

≤ µ2kα2kv −
(
1−

(
1− µ2kα2k +

1

2
(µ2kα2k)

2

))
f (x2k−1)

= −µ2kα2k (f (x2k−1)− v) +
1

2
(µ2kα2k)

2 f (x2k−1)

≤ −µ2kα2k (f (x2k−1)− v) +
1

2
µ2kα2kµ2k

f (x2k−1)− v

f (x2k−1)
f (x2k−1)

≤ −µ2kα2k (f (x2k−1)− v) +
1

2
µ2kα2k (f (x2k−1)− v)

= −1

2
µ2kα2k (f (x2k−1)− v) ≤ 0

(4.9a)

(4.9b)

(4.9c)

where inequality 4.9a is due to ex ≤ 1 + x + 1
2
x2 ∀x ∈ (−∞, 0], inequality 4.9b comes

from the definition of αt:

αt = γt
f (xt−1)− v

β
≤ f (xt−1)− v

β
, β ≥ 2, f (x2k−1) ≤ 1



44 4| Safe Guide with Expert Feedback

and inequality 4.9c comes from the choice of k s.t. µ2k ≤ 1.

We now proceed bounding the KL divergence for the LMWU case. We recall the learning
rate assumption:

∃t ∈ N such that µt ≤
1

3
and

∞∑
i=t

µi = ∞

Using the update of LMWU (algorithm 2.7) we obtain:

xm+1(1)

xm(1)
: . . . :

xm+1(n)

xm(n)
=
(
1− µme

⊤
1 Uym

)
: . . . :

(
1− µme

⊤
nUym

)
∀m

Take m equal t and rearranging the equations we obtain:

xt+1(1)

xt−1(1)
:
xt+1(2)

xt−1(2)
: . . . :

xt+1(n)

xt−1(n)
=

=
(
1− µte

⊤
1 Uyt

) (
1− µt−1e

⊤
1 Uyt−1

)
: . . . :

(
1− µte

⊤
nUyt

) (
1− µt−1e

⊤
nUyt−1

)
which implies:

xt+1(i) =
xt−1(i)

(
1− µte

⊤
i Uyt

) (
1− µt−1e

⊤
i Uyt−1

)∑n
j=1 xt−1(j) (1− µtej

⊤Uyt)
(
1− µt−1e⊤

j Uyt−1

) ∀i ∈ 1, 2, . . . n

For even t, yt−1 = y∗. For any i such that e⊤
i Uy∗ = v, that is, for every action in the

support of the equilibrium, we have:

xt+1(i)

xt−1(i)
=

(
1− µt−1e

⊤
i Uy∗) (1− µte

⊤
i Uyt

)∑n
j=1 xt−1(j)

(
1− µt−1e⊤

j Uy∗
) (

1− µte⊤
j Uyt

)
=

(1− µt−1v)
(
1− µtei

⊤Uyt

)∑n
j=1 xt−1(j)

(
1− µt−1e⊤

j Uy∗
) (

1− µte⊤
j Uyt

)
=

(
1− µte

⊤
i Uyt

)∑n
j=1 xt(j)

1−µt−1ej⊤Uy∗

1−µt−1v

(
1− µte⊤

j Uyt

)
≥

(
1− µtei

⊤Uyt

)∑n
j=1 xt−1(j) (1− µtej

⊤Uyt)

where the last inequality is due to definition of Nash Equilibrium. We also have that
any j such that e⊤

j Uy∗ > v is outside the support of the equilibrium, namely x∗(j) = 0.
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Therefore, we proceed:

KL (x∗∥xt−1)−KL (x∗∥xt+1) =
n∑

i=1

x∗(i) ln

(
xt+1(i)

xt−1(i)

)

≥
n∑

i=1

x∗(i) ln

( (
1− µte

⊤
i Uyt

)∑n
j=1 xt−1(j)

(
1− µte⊤

j Uyt

))

=
n∑

i=1

x∗(i) ln

((
1− µte

⊤
i Uyt

)
1− µtx⊤

t−1Uyt

)

Recalling that ln(x) ≥ (x− 1)− (x− 1)2 ∀x ≥ 0.5 we obtain:

KL (x∗∥xt−1)−KL (x∗∥xt+1) ≥
n∑

i=1

x∗(i)

(1− µte
⊤
i Uyt

)
1− µtx⊤

t−1Uyt

− 1−

((
1− µte

⊤
i Uyt

)
1− µtx⊤

t−1Uyt

− 1

)2


=
µt

(
x⊤
t−1Uyt − x∗⊤Uyt

)
1− µtx⊤

t−1Uyt

−
n∑

i=1

x∗(i)
µ2
t

(
x⊤
t−1Uyt − e⊤

i Uyt

)2(
1− µtx⊤

t−1Uyt

)2
Now, by update rule of the algorithm (yt = (1− αt)y

∗ + αtet−1) and recalling that
x∗(j) = 0 if ej outside the support of the equilibrium, we can simplify the last equation
and use the Cauchy theorem to obtain:

KL (x∗∥xt−1)−KL (x∗∥xt+1)

≥
µt (1− αt)

(
x⊤
t−1Uy∗ − v

)
1− µtx⊤

t−1Uyt

−
n∑

i=1

x∗(i)
2µ2

t (1− αt)
2 (x⊤

t−1Uy∗ − v
)2(

1− µtx⊤
t−1Uyt

)2 +

+
µtαt

(
x⊤
t−1Uet−1 − x∗⊤Uet−1

)
1− µtx⊤

t−1Uyt

−
n∑

i=1

x∗(i)
2µ2

tα
2
t

(
x⊤
t−1Uet−1 − e⊤

i Uet−1

)2(
1− µtx⊤

t−1Uyt

)2
(4.10a)

Given µt ≤ 1
3
:

µt (1− αt)
(
x⊤
t−1Uy∗ − v

)
1− µtx⊤

t−1Uyt

−
n∑

i=1

x∗(i)
2µ2

t (1− αt)
2 (x⊤

t−1Uy∗ − v
)2(

1− µtx⊤
t−1Uyt

)2 ≥ 0

and: (
x⊤
t−1Uet−1 − e⊤

i Uet−1

)2(
1− µtx⊤

t−1Uyt

)2 ≤ 1

(1− µt)
(
1− µtx⊤

t−1Uyt

)
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From inequality 4.10a, we obtain:

KL (x∗∥xt−1)−KL (x∗∥xt+1)

≥
µtαt

(
x⊤
t−1Uet−1 − x∗⊤Uet−1

)
1− µtx⊤

t−1Uyt

− 2µ2
tα

2
t

(1− µt)
(
1− µtx⊤

t−1Uyt

) (4.11a)

We exploit the definition of αt (that is αt = γt
f(xt−1)−v

β
≤ f(xt−1)−v

β
) to have:

αt ≤
x⊤
t−1Uet−1 − v

2
≤

x⊤
t−1Uet−1 − x∗⊤Uet−1

2

from which, with µt ≤ 1
3

we have:

1

2

µtαt

(
x⊤
t−1Uet−1 − x∗⊤Uet−1

)
1− µtx⊤

t−1Uyt

≥ 2µ2
tα

2
t

(1− µt)
(
1− µtx⊤

t−1Uyt

) (4.12)

Substituting inequality 4.12 in 4.11a we obtain:

KL (x∗∥xt−1)−KL (x∗∥xt+1) ≥
1

2

µtαt

(
x⊤
t−1Uet−1 − x∗⊤Uet−1

)
1− µtx⊤

t−1Uyt

≥ 1

2

µtαt

(
x⊤
t−1Uet−1 − v

)
1− µtx⊤

t−1Uyt

≥
µtαt

(
x⊤
t−1Uet−1 − v

)
2

≥ 0 ∀t = 2k

Theorem 4.4. Assume that the row player follows OMD (FTRL) with σ-strongly convex
distance generating function F (x), with fixed learning rate such that µ ≤ 1 and σ ≥ 1

or MWU, LMWU with µt ≤ 1/3. Then if the column player follows the Algorithm E-
LRCA with β ≥ n2 and ξ1, ξ2 s.t. v ∈ (ξ1, ξ2) and ||Uy∗||∞ < ξ2, there will be last round
convergence to the minmax equilibrium.

Proof. Let x∗ be a minmax equilibrium of the row player. Denote by BF (xt||zt) the
Bregman divergence between the current row player’s strategy and lazy update of OMD
(algorithm 2.8); then define Dt(x

∗) := (BF (x
∗||zt) − BF (xt||zt))

1
µ
, following properties
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of strongly convex function we have:

Dt(x
∗) =

(
F (x∗)− F (zt)−∇F (zt)

⊤(x∗ − zt)−
(
F (xt)− F (zt)−∇F (zt)

⊤(xt − zt)
)) 1

µ

=
1

µ
F (x∗)− 1

µ
F (zt) + (x∗ − zt)

⊤
t−1∑
k=1

Uyk −

(
1

µ
F (xt)−

1

µ
F (zt) + (xt − zt)

⊤
t−1∑
k=1

Uyk

)

=
1

µ
F (x∗)− 1

µ
F (xt) + (x∗ − xt)

⊤
t−1∑
k=1

Uyk

≥ σ

2µ
∥x∗ − xt∥2

Thus, if Dt(x
∗) converges to 0 then we have xt converges to x∗. We will prove that

Dt−1 (x
∗)−Dt+1 (x

∗) ≥ γt
(f (xt−1)− v)2

2n2
∀t = 2k

From the definition of the Bregman we have:

Dt−1 (x
∗)−Dt+1 (x

∗)

= Dt−1(xt+1) + x⊤
t+1U (yt−1 + yt)− x∗⊤U (yt−1 + yt)

≥ σ

2µ
∥xt+1 − xt−1∥2 + x⊤

t+1U (yt−1 + yt)− x∗⊤U (yt−1 + yt) (4.13a)

From definition of minmax equilibrium in zero-sum games we have x⊤Uy∗ ≥ x∗⊤Uy∗ =

v ∀x ∈ ∆n. Thus, given yt−1 = y∗ for an even t, we obtain:

Dt−1 (x
∗)−Dt+1 (x

∗)

≥ σ

2µ
∥xt+1 − xt−1∥2 + (xt+1 − x∗)⊤Uyt

=
σ

2µ
∥xt+1 − xt−1∥2 + (xt+1 − x∗)⊤U ((1− αt)y

∗ + αtet−1)

≥ σ

2µ
∥xt+1 − xt−1∥2 + αt (xt+1 − x∗)⊤Uet−1

=
σ

2µ
∥xt+1 − xt−1∥2 + αt (xt+1 − xt−1)

⊤Uet−1 + αt (xt−1 − x∗)⊤Uet−1

≥ σ

2µ
∥xt+1 − xt−1∥2 − αt ∥xt+1 − xt−1∥ ∥Uet−1∥∗ + αt (f (xt−1)− v)

(4.14a)

(4.14b)

(4.14c)

Inequalities 4.14a and 4.14b come from the update rule of E-LRCA, while inequality 4.14c
comes from the definition of dual norm. Bounding the dual norm with the dimension of
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the vector in inequality 4.14c we obtain:

Dt−1 (x
∗)−Dt+1 (x

∗)

≥ σ

2µ
∥xt+1 − xt−1∥2 − nαt ∥xt+1 − xt−1∥+ αt (f (xt−1)− v)

=

√ σ

2µ
∥xt+1 − xt−1∥ −

nαt

2
√

σ
2µ

2

+ αt (f (xt−1)− v)− n2α2
tµ

2σ

≥ αt (f (xt−1)− v)− n2α2
tµ

2σ
≥ αt (f (xt−1)− v)− n2α2

t

2
(4.15a)

Now, from E-LRCA we have

αt = γt
f (xt−1 − v)

n2

then inequality 4.15a implies, as γ2
t ≤ γt:

Dt−1 (x
∗)−Dt+1 (x

∗) ≥ αt

2
(f (xt−1)− v) = γt

(f (xt−1)− v)2

2n2
≥ 0 ∀t = 2k (4.16)

Once that we have bounded the distance we proceed proving the convergence.

We have showed that the sequence of D2k−1 (x
∗) is non-increasing (same has been done

for the KL of MWU, LMWU in lemma 4.4). As the sequence is bounded below by 0, it
has a limit for any minmax equilibrium strategy x∗.

Then, we will prove that ∀ϵ > 0,∃h ∈ N such that following E-LRCA for the column
player and OMD algorithm for the row player, the row player will play strategy xh at
round h and f (xh) − v ≤ ϵ. In particular, we prove this by contradiction. That is,
suppose that ∃ϵ > 0 such that ∀h ∈ N, f (xh)− v > ϵ. Then ∀k ∈ N

α2k (f (x2k−1)− v) = γ2k
(f (x2k−1)− v)2

n2
> γ2k

ϵ2

n2
≥ γmin

ϵ2

n2
> 0

Let k vary from
⌈
t′

2

⌉
to T in equation 4.16. By summing over k, we obtain:

D2T+1 (x
∗) ≤ Dt′ (x

∗)− 1

2

T∑
k=⌈ t′

2 ⌉
α2k (f (x2k−1)− v)

≤ Dt′ (x
∗)− 1

2
γmin

ϵ2

n2

T∑
k=⌈ t′

2 ⌉
1
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Since limT→∞
∑T

k=⌈ t′
2 ⌉ 1 = ∞ and DT+1 (x

∗) ≥ 0, which contradicts our assumption
about ∀h ∈ N, f (xh)− v > ϵ.

Please note that the same reasoning holds for MWU and LMWU since limT→∞
∑T

k=⌈ t′
2 ⌉ µ2k =

∞.

Now, we take a sequence of ϵk > 0 such that limk→∞ ϵk = 0. Then for each k, there exists
xtk ∈ ∆n such that v ≤ f (xtk) ≤ v + ϵk. As ∆n is a compact set and xtk is bounded
then following the Bolzano-Weierstrass theorem, there is a convergence subsequence xt̄k .
The limit of that sequence, x∗, is a minmax equilibrium strategy of the row player (since
f (x∗) = f (limk→∞ xt̄k) = limk→∞ f (xt̄k) = v ). Combining with the fact thatD2k−1 (x

∗)

is non-increasing and Dt (x
∗) = 0 at convergence, we have limk→∞D2k−1 (x

∗) = 0. We
also note that from lemma 4.3, we have limk→∞D2k (x

∗) = 0 as well. Subsequently,
limt→∞ Dt (x

∗) = 0, which concludes the proof.
The same reasoning holds for MWU and LMWU.

4.5. Regret

First we report a fundamental lemma that will be useful for the Regret computation of
theorem 4.5.

Lemma 4.5. (Lemma 6.7 Orabona, 2019) Let BF the Bregman divergence w.r.t. F :

X → R and assume F to be σ-strongly convex with respect to || · || in V . Let V ⊆ X a
non-empty closed convex set, then ∀u ∈ V following inequality holds:

µ(xt − u)⊤Uyt ≤ BF (u||xt)−BF (u||xt+1) +
µ2

2σ
||Uyt||2∗

We proceed showing the result for games without fully-mixed equilibrium strategy for the
row player.

Theorem 4.5. Assume that the row player follows the above-mentioned no-regret type
algorithms: MWU, LMWU, FTRL, OMD with constant learning rate µ = 1/

√
T ; then by

following E-LRCA, the column player will achieve the no-dynamic regret property with the
dynamic regret satisfying DRT = O

(
n2

√
γmin

T 3/4
)

in games without fully-mixed minmax
equilibrium strategy for the row player.

Proof. First we recall the bound to f (x2k−1) − v in the case OMD (which for linear
losses is equivalent to FTRL). Assume that maxx∈∆n F (x) = 1 without loss of generality.
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Following the proof of Theorem 4.4 we have:

T/2∑
k=1

(f (x2k−1)− v)2 ≤ 2n2

µγmin

which implies:
T/2∑
k=1

(f (x2k−1)− v) ≤ n
√
µγmin

T 1/2 (4.17)

Then we start by the definition of dynamic Regret:

DRT :=
T∑

k=1

max
y∈∆

x⊤
k Uy − x⊤

k Uyk

and we decompose the regret in the two different kinds of round:

DRT :=

T/2∑
k=1

(
max
y∈∆

x⊤
2kUy − x⊤

2kUy2k +max
y∈∆

x⊤
2k−1Uy − x⊤

2k−1Uy2k−1

)

inserting the right update for each kind of round:

DRT =

T/2∑
k=1

(
max
y∈∆

x⊤
2kUy − x⊤

2kU ((1− α2k)y
∗ + α2ke2k−1) + max

y∈∆
x⊤
2k−1Uy − x⊤

2k−1Uy∗
)

=

T/2∑
k=1

(
max
y∈∆

x⊤
2kUy − (1− α2k)x

⊤
2kUy∗ − α2kx

⊤
2kUe2k−1 + (f(x2k−1)− v)

)

recalling that x⊤Uy∗ ≥ v:

DRT

≤
T/2∑
k=1

(
max
y∈∆

x⊤
2kUy − (1− α2k)v − α2kx

⊤
2kUe2k−1 + (f(x2k−1)− v)

)

=

T/2∑
k=1

(
(1− α2k)max

y∈∆
x⊤
2kUy − (1− α2k) v + α2k

(
max
y∈∆

x⊤
2kUy − x⊤

2kUe2k−1

)
+ (f(x2k−1)− v)

)



4| Safe Guide with Expert Feedback 51

we notice that maxy∈∆ x⊤
2kUy − x⊤

2kUe2k−1 ≤ 1:

DRT ≤
T/2∑
k=1

(
(1− α2k)max

y∈∆
x⊤
2kUy − (1− α2k)v + α2k + (f(x2k−1)− v)

)

≤
T/2∑
k=1

(
(1− α2k)

(
max
y∈∆

x⊤
2kUy − v

)
+ 2(f(x2k−1)− v)

)

≤
T/2∑
k=1

((
||x⊤

2kU ||∞ − ||x⊤
2k−1U ||∞

)
+ 3(f(x2k−1)− v)

)
By inverse triangle inequality and by previous bound of f(x2k−1)− v in inequality 4.17:

DRT ≤
T/2∑
k=1

(
||U⊤(x2k − x2k−1)||∞

)
+O

(
n

√
µγmin

T
1
2

)

≤
T/2∑
k=1

(||U ||1||x2k − x2k−1||∞) +O
(

n
√
µγmin

T
1
2

)

≤
T/2∑
k=1

(n||x2k − x2k−1||∞) +O
(

n
√
µγmin

T
1
2

)

≤
T/2∑
k=1

(n||x2k − x2k−1||2 +O
(

n
√
µγmin

T
1
2

)

=

T/2∑
k=1

(n||x2k−1 − x2k||2 +O
(

n
√
µγmin

T
1
2

)

By property of the Bregman: (BF (x2k−1||x2k) ≥ σ
2
||x2k−1 − x2k||22)

DRT ≤
T/2∑
k=1

(
n

√
2

σ
BF (x2k−1||x2k)

)
+O

(
n

√
µγmin

T
1
2

)

Following lemma 4.5 with u = xt and for σ ≥ 1:

DRT ≤
T/2∑
k=1

(
n

√
2

σ
µ2||Uy2k−1||2∗

)
+O

(
n

√
µγmin

T
1
2

)

given that maxy∈∆m ||Uy||∗ ≤ n:

DRT ≤ O
(
n2µT

)
+O

(
n

√
µγmin

T
1
2

)
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which for µ = 1/
√
T :

DRT = O
(

n2

√
γmin

T 3/4

)

The result in the case of fully-mixed equilibrium is presented as corollary of the previous
theorem.

Corollary 4.1. Assume that the row player follows the above-mentioned no-regret type al-
gorithms: MWU, LMWU, FTRL, OMD. If there exists a fully-mixed minmax equilibrium
strategy for the row player, then by following E-LRCA, the column player will achieve the

no-dynamic regret property with the dynamic regret satisfying DRT = O
(√

log(n)
√
γmin

T 3/4

)
for MWU and LMWU. Furthermore, in the case the row player uses a constant learning
rate µ, we have DRT = O

(
n√

µγmin
T 1/2

)
.

Proof. We start computing the Regret when row player employs MWU or LMWU algo-
rithm. In odd rounds 2k − 1, the dynamic regret of the column player is:

DR2k−1 = max
i∈{1,...,m}

x⊤
2k−1Uei − x⊤

2k−1Uy∗

≤ f(x2k−1)− v

In even rounds 2k, for the existence of the fully-mixed minmax equilibrium of the row
player, we have x2k = x2k−1. Combining the case of odd and even round, we derive

DRT ≤ 2

T/2∑
k=1

(f(x2k−1)− v)

Now, from Lemma 4.4 we have:

1

2
γ2kµ2k

(f (x2k−1)− v)2

2
≤ KL (x∗∥x2k−1)−KL (x∗∥x2k+1)

from which in the case n ≥ 8:

T/2∑
k=1

γ2kµ2k (f (x2k−1)− v)2 ≤ 4KL (x∗∥x1) ≤ 4 ln(n)
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Using the Cauchy-Schwarz inequality, we obtain:

T/2∑
k=1

(f (x2k−1)− v) ≤ 2
√
ln(n)

√√√√T/2∑
k=1

1

γ2kµ2k

from which:

DRT ≤ 4
√

ln(n)

√√√√T/2∑
k=1

1

γ2kµ2k

Exploiting γmin as founded in Lemma 4.1 (for the fully-mixed case), if the row player
follows a decreasing learning rate µk =

√
8 ln(n)/k (Cesa-Bianchi and Lugosi 7) we obtain:

DRT ≤ 4
√

ln(n)

√√√√T/2∑
k=1

1

γmin

√
8 ln(n)/k

≤ ln(n)1/4
√
γmin

T 3/4

= O

(√
log(n)

√
γmin

T 3/4

)

We continue the proof in the case of OMD (which is equivalent to FTRL for linear losses).
We assume assume that maxx∈∆n F (x) = 1. From Theorem 4.4 we have:

T/2∑
k=1

(f (x2k−1)− v)2 ≤ 2n2

µγmin

By simple math:
T/2∑
k=1

(f (x2k−1)− v) ≤ n
√
µγmin

T 1/2

From which:
DRT ≤ 2n

√
µγmin

T 1/2

that is:
DRT = O

(
n

√
µγmin

T 1/2

)

We point out some final remarks about the Regret computation.
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Remark 4.3. If there exists a fully-mixed strategy for the row player, it is possible to
obtain a sublinear regret without specifying the learning rate µ.

Remark 4.4. In Corollary 4.1 we have a specific computation of the regret for MWU and
LMWU; nevertheless, recall that MWU can be derived by OMD (which for linear losses is
equivalent to FTRL).

Remark 4.5. The reader should notice that the regret scales with 1/
√
γmin. Since γmin is

smaller when there is not a fully-mixed equilibrium strategy for the row player (see lemma
4.1), this leads to a deceleration of the learning/teaching procedure for this specific setting.
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Semi-Bandit Feedback

In this chapter we present the algorithm we developed for the partial semi-bandit feedback
case: PAUSE E-LRCA (5.1).

5.1. Assumptions and Setting

In this section we provide the general assumptions/setting and most relevant considera-
tions which will help the reader to understand the results and the proofs of the rest of
the chapter.

As specified in the introduction we are in a zero-sum repeated game (players play the same
game for each round); the entries of the payoff matrix (which is positive for the column
player) are scaled in [0, 1] without loss of generality. Row player has expert feedback,
that is, the complete gradient is received. Thus, row player will receive −Uyt after
having chosen xt. Column player will instead receive a semi-bandit feedback, that is, the
index of the action played by the opponent (sampled according to discrete distribution
xt). We will refer to this feedback as "Partial Semi-Bandit", or simply "Partial Bandit"
feedback. The payoff matrix U is known by the column player (the teacher), that is, he
perfectly knows the equilibrium (this is called Asymmetric information) while row player
(the learner/human) employs an algorithm of the OMD family (which for linear losses, as
in our setting, is equivalent to FTRL).

We present our algorithm for the column player which will guarantee:

1. Safety (see definition 3.1.0.1): this property will be guaranteed in different ways
depending on the equilibrium the game has. In case of fully-mixed equilibrium
strategy for the row player, it will be possible to predict the opponent next strat-
egy (see sections 5.2) with high probability so that safety can be obtained in an
efficient manner; in case of not fully-mixed equilibrium, safety must be guaranteed
for any possible strategy of the opponent, decelerating the learning procedure of
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the opponent, but at the same time obtaining safety with probability equal to one.
Moreover, in the latter case, an assumption on the upper bound value ξ2 will be
necessary.

2. Last Round Convergence (see definition 3.2.2.1) with high probability : for games
with fully-mixed equilibrium strategy for the row player; experimental convergence
in other games will be shown in chapter 6.

3. Sublinear Dynamic Regret with respect to the MaxMin (see definition 5.5.0.1) with
high probability : for games with fully-mixed equilibrium strategy for the row player;
experimental Sublinear Dynamic Regret with respect to the Maxmin in other games
will be shown in chapter 6.
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5.2. Algorithm

Algorithm 5.1 Engaged - Last Round Convergence in Asymmetric algorithm with partial
semi-Bandit feedback (PAUSE E-LRCA)
1: for t = 1 to T do
2: Play yt = y∗ for K(t) := ln

(
3
δ

)
tλ times

3: Compute x̄K(t) as the average of the K(t) samples of the row player strategy
4: Build X̃t using Devroye formula and flattening expansion
5: et := argmaxe∈{e1,e2,...em}maxx∈X̃t

x⊤Ue

6: fmax (xt) := maxe∈{e1,e2,...em}maxx∈X̃t
x⊤Ue

7: xmin := argminx∈X̃t
x⊤Uet

8: if game has a fully-mixed equilibrium then
9: if x⊤

minUet < ξ1 then
10: α := min

(
ξ2−v

fmax(xt)−v
, ξ1−v
x⊤
minUet−v

)
11: end if
12: if not then
13: α := ξ2−v

fmax(xt)−v

14: end if
15: end if
16: if game has not a fully-mixed equilibrium then

17: α = min

(
ξ2 − ||Uy∗||∞
||U ||max − v

,
ξ1 − v

||U ||min − ||Uy∗||∞

)
18: end if
19: αt := min

(
fmax(xt)−v

β
, α
)

20: yt := (1− αt)y
∗ + αtet

21: end for

We underline the main ideas behind algorithm 5.1 (a part from safety result we consider
the equilibrium to be fully-mixed, as the results for other kinds of equilibrium are mainly
experimental).

Column player plays the equilibrium K(t) times in order to estimate the opponent strategy
with high probability. Please note that due to fully-mixed equilibrium, row player will
keep choosing the same strategy, which implies that round after round we are collecting
data from the same discrete distribution. Devroye formula (see lemma 3.1 and lemma 3.2)
and flattening expansion (see section 5.3) allows to build the confidence region where row
player’s strategy lies with high probability. Then, column player computes the optimistic
best response (et) and the optimistic value of the best response fmax(xt) with respect to
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the estimated region in order to play a convex combination between et and the equilibrium,
built using a parameter αt.
αt must be dependant on the distance between the optimistic value of the best response
and the value of the equilibrium (αt = fmax(xt)−v

β
), but, in case this parameter would

lead to an utility outside the safety bounds (checked by the min operator), we scale
fmax(xt)−v

β
by a factor γt ∈ (0, 1] obtaining α (the multiplication γt

fmax(xt)−v
β

is implicit in
the algorithm but shown in section 5.3). As for the expert feedback algorithm, the scaling
factor γt depends on the equilibrium the game has; in case there exists a fully-mixed
equilibrium strategy for the row player, a γt such that the next round utility will be safe
with respect to every strategy in the confidence interval is chosen, otherwise a γt safe for
every strategy in the opponent simplex (the smallest γ possible) is needed. In the latter
case, the choice of γt will lead to a deceleration of the teaching dynamic.

We then show a similar version of the algorithm which guarantees a monotonic convergence
with high probability (not only at the limit as in the previous case), that is, distance
measure (e.g. KL divergence) from current strategy of the row player and the equilibrium
will not increase round after round. Regret has not been computed for this version as K(t)

cannot be estimated; indeed, in algorithm 5.2 the equilibrium is played until a condition
is not met. The meaning of this condition will be clear after the proofs of section 5.4, but
the idea is that column player will keep estimating the opponent strategy until he is not
sure that his next strategy will make the opponent move towards the equilibrium. Please
refer to chapter 6 for the difference in the experimental results between algorithm 5.1 and
algorithm 5.2.
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Algorithm 5.2 Engaged - Last Round Convergence in Asymmetric algorithm with partial
semi-Bandit feedback with non-increasing KL (PAUSE E-LRCA)
1: for t = 1 to T do
2: Play yt = y∗ until 2f̃(xt)− fmax(xt) > v

3: Compute x̄K(t) as the average of the received samples of the row player strategy
4: Build X̃t using Devroye formula and flattening expansion
5: et := argmaxe∈{e1,e2,...em}maxx∈X̃t

x⊤Ue

6: fmax (xt) := maxe∈{e1,e2,...em}maxx∈X̃t
x⊤Ue

7: f̃(xt) := minx∈X̃t
x⊤Uet

8: if game has a fully-mixed equilibrium then
9: if f̃(xt) < ξ1 then

10: α := min
(

ξ2−v
fmax(xt)−v

, ξ1−v

f̃(xt)−v

)
11: end if
12: if not then
13: α := ξ2−v

fmax(xt)−v

14: end if
15: end if
16: if game has not a fully-mixed equilibrium then

17: α = min

(
ξ2 − ||Uy∗||∞
||U ||max − v

,
ξ1 − v

||U ||min − ||Uy∗||∞

)
18: end if
19: αt := min

(
fmax(xt)−v

β
, α
)

20: yt := (1− αt)y
∗ + αtet

21: end for

5.3. Safety

In this section we provide the two main theorems related to safety of our algorithms with
partial semi-bandit feedback. First, we introduce how the confidence set in which the
opponent’s strategy lies with high probability is built, then, we prove the property for
games where there exists a fully-mixed equilibrium for the row player; finally, we conclude
with the case in which equilibrium is not fully-mixed.

As underlined in the previous section we will use K(t) to refer to the number of rounds in
which equilibrium has been played consecutively, that are the rounds in which the oppo-
nent plays a fixed mixed strategy. Dealing with normal form games, row player strategy
is defined as a probability distribution x ∈ ∆n, where n denotes the number of actions
available for the row player. In this case, column player observes K(t) indices of actions
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i1, . . . , iK(t) sampled independently according to x. Then, a natural estimator for x is the
empirical frequency of actions x̄K(t) ∈ ∆n, defined so that x̄K(t)(i) :=

1
K(t)

∑K(t)
k=1 1

{
ik = i

}
for every i ∈ {1, . . . , n}. By noticing that K(t)x̄K(t) is a random variable following a multi-
nomial distribution with parameters K(t) and x, that is K(t)x̄K(t) ∼ M(K(t);x), lemma
3.1 can be used to derive the desired confidence intervals for the probabilities x(i). Then
we can exploit lemma 3.2 to refine the previous result by giving bounds that hold for each
component of x separately.
From that we build the first main component of our set:

XDevt :=

{
x ∈ ∆n :

∣∣x̄K(t) (i)− x (i)
∣∣ ≤ 5

2

√
ln (3/δ)

K(t)
∀i ∈ {1, . . . , n}

}
(5.1)

At round t = 1, this estimation is the best we can achieve; fortunately, for the next ones,
we can exploit the known dynamic of the row player in order to achieve a smaller set
with high probability. Let’s start making the assumption that the no-regret algorithm
used by the row player is known, together with its learning rate; from that there exists a
maximum step size st:

||xt − xt−1|| ≤ st

Let’s see how the maximum step size can be computed for MWU (algorithm 2.6), that is
finding an upper bound for:

|xt(i)− xt−1(i)| =

∣∣∣∣∣xt−1(i)
e−µe⊤i Uyt−1

Zt−1

− xt−1(i)

∣∣∣∣∣ (5.2)

Note that Uyt−1 is known, as it is the action played by the column player. Thus, the
only unknown parameter is the value of the current strategy of the opponent. Aiming
to find an upper bound to the step size, it is sufficient to take the row strategy in the
confidence set XDevt−1 that would maximize the column player strategy, namely x̃t−1 :=

argmaxx∈XDevt−1
x⊤Uyt−1, from which:

st = max
i∈{1,...,n}

x̃t−1(i)
e−µe⊤i Uyt−1

Zt−1

− x̃t−1(i) (5.3)

Now we built the flattening expansion of the set XDevt−1 that is defined as:

Xst :=
{
x ∈ ∆n : |x(i)−w(i)| ≤ st ∀i ∈ {1, . . . , n}, ∀w ∈ XDevt−1

}
(5.4)



5| Safe Guide with Partial Semi-Bandit Feedback 61

From that we define:

X̃t :=

{
x ∈ ∆n :

∣∣x̄K(t) (i)− x (i)
∣∣ ≤ 5

2

√
ln (3/δ)

K(t)
∀i ∈ {1, . . . , n}

}
⋂

{
x ∈ ∆n : |x(i)−w(i)| ≤ st ∀i ∈ {1, . . . , n},∀w ∈ XDevt−1

}
Please note the we encounter a loss in the probability related to the new set; in particular:

P (xt ∈ XDevt) = 1− δ (5.5)

P (xt ∈ Xst) = 1− δ

e
4
5
(K(t−1))st

(
1
5
st+

√
ln 3/δ

K(t−1)

) (5.6)

P (xt ∈ XDevt ∩ xt ∈ Xst) = 1− δ

(
1 +

1

e
4
5
(K(t−1))st

(
1
5
st+

√
ln 3/δ

K(t−1)

)
)

= P
(
xt ∈ X̃t

)
(5.7)

Procedure to build the probability of Xs is reported in appendix A.

A final remark about the flattening expansion.

Remark 5.1. Building the final intersection set is useful to estimate with greater precision
(with high probability) the strategy of the row player, which means reaching faster the
convergence (experimentally). Nevertheless, the next proofs will be still be valid using
only the Devroye estimation. Indeed, the flattening expansion can be built only by making
strong assumptions such as knowing the opponent algorithm and the opponent learning
rate. These assumptions may be not reasonable when playing against a human.

Now we focus on the safety theorems:

Theorem 5.1. Assume that the row player is following a no-regret stable learning al-
gorithm, given two bounds ξ1, ξ2 on the Utility such that v ∈ (ξ1, ξ2), if there exists a
fully-mixed minmax equilibrium strategy for the row player and the column player follows
PAUSE E-LRCA (algorithm 5.1 and algorithm 5.2), the Expected Utility of the column
Player will be bounded in [ξ1, ξ2] at each round with high probability (from which follows
that the Expected Utility of the row Player will be bounded in [−ξ2,−ξ1] at each round
with high probability).
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Proof. The proof is divided in two parts: one for the rounds in which equilibrium is
played, the other for the rounds in which update is performed.
In the first case, the column player will choose to play y∗, which for assumption of fully-
mixed equilibrium means Uy∗ = [v, ..., v]. Thus, we have that for any strategy the row
player could choose, the utility would be v, that is inside the safety bounds.
As concerns the update rounds, we want to play a strategy yt safe for every xt ∈ X̃t.
Thus, if the standard parameter αt =

fmax(xt−v)
β

is not safe with high probability, we found
a scale factor γt with the following procedure.
First we define:

(xmax, e) := argmax
x∈X̃t

arg max
e∈∆m

x⊤Ue

and
xmin := arg min

x∈X̃t

x⊤Ue

then we find the αmax value which guarantees safety in upper bound with respect to xmax

and consequently with respect to any other strategy of the opponent in X̃t (with the same
procedure followed for expert feedback in section 4.3) that is:

αmax :=
(ξ2 − v)

x⊤
maxUet − v

=
(ξ2 − v)

fmax(xt)− v

which is equivalent to:

αmax := γt
fmax(xt)− v

β

with
γt :=

(ξ2 − v)β

(fmax(xt)− v)2

Now we make the same reasoning for the lower bound we obtain:

αmin :=
(ξ1 − v)

x⊤
minUet − v

which is equivalent to:

αmin := γt
fmax(xt)− v

β

with
γt :=

(ξ1 − v)β(
x⊤
minUet − v

)
(fmax(xt)− v)

and finally play yt := (1 − αt)y
∗ + αtet using the smallest between the three way of

computing α described before.
Note if x⊤

minUet ≥ ξ1, computation of αmin must be skipped, as we would be safe in lower
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bound playing our optimistic best response.
Next we have to prove the safety with respect to the upper bound when αmin is chosen
and the safety with respect to the lower bound when αmax is used, which leads to two
situations situations (∀x ∈ X̃t):

1. αmax < αmin:
x⊤U ((1− αmax)y

∗ + αmaxe)

= v(1− αmax) + αmaxx
⊤Ue

with high probability we have:

≥ v(1− αmax) + αmaxx
⊤
minUe

given x⊤
minUe < v and αmax < αmin we have:

≥ v(1− αmin) + αminx
⊤
minUe

that by construction of αmin

≥ ξ1 whp

2. αmin < αmax:
x⊤U ((1− αmin)y

∗ + αmine)

= v(1− αmin) + αminx
⊤Ue

with high probability we have:

≤ v(1− αmin) + αminx
⊤
maxUe

given x⊤
maxUe > v and αmin < αmax we have:

≤ v(1− αmax) + αmaxx
⊤
maxUe

that by construction of αmax

≤ ξ2 whp
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Theorem 5.2. Given two bounds ξ1, ξ2 on the Utility such that v ∈ (ξ1, ξ2) and ||Uy∗||∞ <

ξ2, if there is not a fully-mixed minmax equilibrium strategy for the row player and the
column player follows PAUSE E-LRCA (algorithm 5.1 or algorithm 5.2), the Utility of
the column Player will be bounded in [ξ1, ξ2] at each round (from which follows that the
Utility of the row Player will be bounded in [−ξ2,−ξ1] at each round).

Proof. Proof is the same as the one with expert feedback (see section 4.3).

5.4. Convergence

We summarize the main steps of this section in order to facilitate the comprehension.

In Lemma 5.1 we prove that the γt used to generate the parameter (αt = γt
fmax(xt)−v

β
) of

the convex combination will be always greater than 0; it is necessary to avoid a premature
interruption of the teaching dynamic.
In Lemma 5.2 we show how K(t) must be chosen in order to guarantee Last Round Con-
vergence.
In Theorem 5.3 we show how potentially every stable No-Regret Learner can reach any
point of the simplex while playing against our algorithm, with high probability.
In Lemma 5.3 we lower bound the convergence step towards the equilibrium between up-
date rounds when opponent employs MWU or LMWU.
In Theorem 5.4 we prove the Last Round Convergence with high probability for both
MWU and LMWU.
Finally, in Theorem 5.5 we lower bound the convergence step towards the equilibrium
between update rounds when opponent employs OMD and prove the Last Round Con-
vergence with high probability.

Lemma 5.1. Given a two-player zero-sum game in normal form, described by the matrix
U , and two bounds [ξ1, ξ2] with v ∈ (ξ1, ξ2), it is possible to find a positive lower bound γmin

s.t. all the γt found by PAUSE E-LRCA (algorithm 5.1 and algorithm 5.2) are greater or
equal w.r.t γmin.

Proof. From Theorem 5.1 and following the same argument that in the expert case, in
game with fully-mixed equilibrium strategy for the row player we obtain:

γmin = min

(
(ξ2 − v)β

(||U ||max − v)2
,

(ξ1 − v)β

(||U ||min − v) (||U ||max − v)

)
(5.8)

which is greater than zero for v ∈ (ξ1, ξ2). Note that in game with meaningful payoffs
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||U ||max ̸= ||U ||min ̸= v, nevertheless, it is not a necessary assumption for the functioning
of the algorithm.

In games where there is not an fully-mixed equilibrium strategy for the row player, γmin

is equivalent to the γt used at each round. Please note that as convergence will be proved
only for games with fully-mixed equilibrium, this last result is not necessary.

Lemma 5.2. In order to guarantee Last Round Convergence following PAUSE E-LRCA
(algorithm 5.1), it is necessary to choose K(t) s.t. limt→∞K(t) = ∞

Proof. Using the same notation of the expert feedback case we call f(xt) the value of the
best response at time t. Trivially, this value is unknown at every step. However, it is
possible to estimate at each step a set X̃t in which the strategy of the opponent lies with
high probability. We use this set in order to compute the optimistic best response’s value,
defined as fmax(xt). Thus, with high probability:

fmax(xt) = f(xt) + σK(t)

in which σK(t) is a value dependant on the number of times (K(t)) equilibrium rounds
have been played consecutively before the update round. Now, unfortunately both f(xt)

and fmax(xt) are not sufficient to deeply describe the dynamic of the algorithm; therefore
we introduce the value f ′(xt), that is the expected reward column player would obtain
playing the optimistic best response. Again note that, with high probability:

f ′(xt) = f(xt)− ρK(t)

in which ρK(t) is a value dependant on the number of times (K(t)) equilibrium rounds
have been played consecutively before the update round.
From these definitions we notice that there exists an interval in which column player’s
utility will lie with high probability; in order to achieve last round convergence is im-
portant to nullify the distance ρK(t) + σK(t) at the limit, otherwise the optimistic best
response would lead to instability in row player’s dynamic. Formally, we want:

lim
t→+∞

X̃t = {xt} whp

which guarantees:
lim

t→+∞
ρK(t) + σK(t) = 0 whp

Last inequality is true if and only if limt→∞K(t) = ∞, which concludes the proof.
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Theorem 5.3. Assume that the row player follows a stable no-regret algorithm and there
exists a fully-mixed minmax equilibrium strategy for the row player. Then, by following
PAUSE E-LRCA with ξ1, ξ2 s.t. v ∈ (ξ1, ξ2), for any ϵ > 0, there exists t ∈ N such that
and f (xt)− v ≤ ϵ with high probability.

Proof. We will proceed to find a contradiction. Suppose there exists ϵ > 0 such that:

f (xt)− v > ϵ, ∀t ∈ N

from which:
fmax (xt)− v > ϵ, ∀t ∈ N whp (5.9)

Then, by definition of parameter αt and using the result on γmin found in lemma 5.1 we
have:

αt = γt
fmax (xt)− v

β
> γt

ϵ

β
≥ γmin

ϵ

β

Following the update rule of Algorithm PAUSE E-LRCA (algorithm 5.1 and algorithm
5.2) we have, with high probability:

x⊤
t Uyt = x⊤

t U ((1− αt)y
∗ + αtet)

≥ (1− αt) v + αtf
′ (xt)

> (1− αt) v + αt

(
v + ϵ− ρK(t)

)
≥ v + γmin

ϵ
(
ϵ− ρK(t)

)
β

(5.10a)

(5.10b)

Where inequality 5.10a is due to the definition of Nash Equilibrium and where inequality
5.10b comes from the assumption 5.9. We also note that, from the definition of the value
of the game, we have:

min
i

1

T

T∑
t=1

e⊤
i Uyt = min

i
e⊤
i U

∑T
t=1 yt

T
≤ v

Thus, we have (with the choice of K(t) shown in lemma 5.2):

lim
T→∞

min
i

1

T

T∑
t=1

e⊤
i Uyt −

1

T

T∑
t=1

x⊤
t Uyt ≤ v −

(
v + γmin

ϵ2

β

)
= −γmin

ϵ2

β

which contradicts the definition of a no-regret algorithm.

We then lower bound the convergence step for MWU and LMWU with a similar procedure
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with respect to the expert case.

Lemma 5.3. Assume that the row player follows the MWU or LMWU algorithm with a
non-increasing learning rate µt such that there exists t′ ∈ N with µt′ ≤ 1

3
. If there exists a

fully-mixed minmax equilibrium strategy for the row player and the column player follows
PAUSE E-LRCA with β ≥ 2 then

KL
(
x∗∥xK(t)t

)
−KL

(
x∗∥x1t+1

)
≥ 1

2
µtαt (2f

′ (xt)− fmax (xt)− v) ∀t ∈ N : t ≥ t′

where KL denotes the KL divergence, xK(t)t is the strategy of the row player at round t

after the last equilibrium have been played and x1t+1 is the strategy of the row player when
the first equilibrium has been played at round t+ 1.

Proof. We start bounding the KL divergence for MWU. By the definition of KL (definition
2.2.6.1) we have:

KL
(
x∗∥x1t+1

)
−KL

(
x∗∥xK(t)t

)
=
(
KL

(
x∗∥x1t+1

)
−KL (x∗∥xt)

)
+
(
KL (x∗∥xt)−KL

(
x∗∥xK(t)t

))
=

(
n∑

i=1

x∗(i) ln

(
x∗(i)

x1t+1(i)

)
−

n∑
i=1

x∗(i) ln

(
x∗(i)

xt(i)

))
+(

n∑
i=1

x∗(i) ln

(
x∗(i)

xt(i)

)
−

n∑
i=1

x∗(i) ln

(
x∗(i)

xK(t)t(i)

))

=

(
n∑

i=1

x∗(i) ln

(
xt(i)

x1t+1(i)

))
+

(
n∑

i=1

x∗(i) ln

(
xK(t)t(i)

xt(i)

))

Due to update rule of the multiplicative weights update (algorithm 2.6) we have:

KL
(
x∗∥x1t+1

)
−KL

(
x∗∥xK(t)t

)
=
(
µtx

∗⊤Uyt + ln (Zt)
)
+
(
µK(t)tx

∗⊤UyK(t)t + ln
(
ZK(t)t

))
≤

(
µtv + ln

(
n∑

i=1

xt(i)e
−µte⊤i Uyt

))
+
(
µK(t)tv + ln

(
ZK(t)t

))
=

(
µtv + ln

(
n∑

i=1

xK(t)t(i)e
−µK(t)t

e⊤i UyK(t)te−µte⊤i Uyt

)
− ln

(
ZK(t)t

))
+
(
µK(t)tv + ln

(
ZK(t)t

))

(5.12a)
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where Inequality 5.12a comes from the definition of Nash Equilibrium. Thus:

KL
(
x∗∥x1t+1

)
−KL

(
x∗∥xK(t)t

)
≤

(
µtv + ln

(
n∑

i=1

xK(t)t(i)e
−µK(t)t

e⊤i Uy∗
e−µte⊤i Uyt

))
+ µK(t)tv

≤

(
µtv + ln

(
n∑

i=1

xK(t)t(i)e
−µK(t)t

ve−µte⊤i Uyt

))
+ µK(t)tv

= µtv + ln

(
n∑

i=1

xK(t)t(i)e
−µte⊤i Uyt

) (5.13a)

where inequality 5.13a comes still from the definition of the Nash. Then, using the
update rule of Algorithm PAUSE E-LRCA (algorithm 5.1 and algorithm 5.2) that is,
yt = (1− αt)y

∗ + αtet we obtain:

KL
(
x∗∥x1t+1

)
−KL

(
x∗∥xK(t)t

)
≤ µtv + ln

(
n∑

i=1

xK(t)t(i)e
−µte⊤i Uyt

)

= µtv + ln

(
n∑

i=1

xK(t)t(i)e
−µte⊤i U((1−αt)y∗+αtet)

)

≤ µtv + ln

(
n∑

i=1

xK(t)t(i)e
−µt((1−αt)v+e⊤i U(αtet))

)

≤ µtαtv + ln

(
n∑

i=1

xK(t)t(i)
(
1−

(
1− e−µtαt

)
e⊤
i Uet

))
= µtαtv + ln

(
1−

(
1− e−µtαt

)
xK(t)t

⊤Uet

)
≤ µtαtv −

(
1− e−µtαt

)
x⊤
K(t)tUet

= µtαtv −
(
1− e−µtαt

)
f ′ (xt)

(5.14a)

(5.14b)

(5.14c)

where inequality 5.14a is due to definition of the Nash and where inequalities 5.14b and
5.14c come from βx ≤ 1− (1− β)x ∀β ≥ 0 x ∈ [0, 1] and ln(1− x) ≤ −x ∀x < 1.
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To conclude, we obtain:

KL
(
x∗∥x1t+1

)
−KL

(
x∗∥xK(t)t

)
≤ µtαtv −

(
1− e−µtαt

)
f ′ (xt)

≤ µtαtv −
(
1−

(
1− µtαt +

1

2
(µtαt)

2

))
f ′ (xt)

= −µ2kα2k (f
′ (xt)− v) +

1

2
(µtαt)

2 f ′ (xt)

≤ −µtαt (f
′ (xt)− v) +

1

2
µtαtµt

fmax (xt)− v

f ′ (xt)
f ′ (xt)

≤ −µtαt (f
′ (xt)− v) +

1

2
µtαt (fmax (xt)− v)

= −1

2
µtαt (2f

′ (xt)− fmax (xt)− v) ≤ 0

(5.15a)

(5.15b)

(5.15c)

where inequality 5.15a is due to ex ≤ 1 + x+ 1
2
x2 ∀x ∈ [−∞, 0], inequality 5.15b comes

from the definition of αt:

αt = γt
fmax (xt)− v

β
≤ fmax (xt)− v

β
, β ≥ 2, f ′ (xt) ≤ 1

and inequality 4.9c comes from the choice of t so that µt ≤ 1. Please note the final
inequality is true if:

2f ′ (xt)− fmax (xt) ≥ v

2
(
f (xt)− ρK(t)

)
− f (xt)− σK(t) − v ≥ 0

2f (xt)− 2ρK(t) − f (xt)− σK(t) − v ≥ 0

f (xt)− v − 2ρK(t) − σK(t) ≥ 0

f (xt)− v ≥ 2ρK(t) + σK(t) (5.16a)

We now proceed bounding the KL divergence for the LMWU (algorithm 2.7) case. We
recall the learning rate assumption:

∃t ∈ N such that µt ≤
1

3
and

∞∑
i=t

µi = ∞

Using the update rule of LMWU we obtain:

xm+1(1)

xm(1)
: . . . :

xm+1(n)

xm(n)
=
(
1− µme

⊤
1 Uym

)
: . . . :

(
1− µme

⊤
nUym

)
∀m
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Take m equal t and rearranging the equations we obtain:

x1t+1(1)

xK(t)t(1)
:
x1t+1(2)

xK(t)t(2)
: . . . :

x1t+1(n)

xK(t)t(n)
=

=
(
1− µte

⊤
1 Uyt

) (
1− µK(t)te

⊤
1 UyK(t)t

)
: . . . :

(
1− µte

⊤
nUyt

) (
1− µK(t)te

⊤
nUyK(t)t

)
which implies:

x1t+1(i) =
xK(t)t(i)

(
1− µte

⊤
i Uyt

) (
1− µK(t)te

⊤
i UyK(t)t

)∑n
j=1 xK(t)t(j) (1− µtej

⊤Uyt)
(
1− µK(t)te

⊤
j UyK(t)t

) ∀i ∈ 1, 2, . . . n

Note that yK(t)t = y∗ in PAUSE E-LRCA (algorithm 5.1 and algorithm 5.2). For any
i such that ei

⊤Uy∗ = v, that is, for every action in the support of the equilibrium, we
have:

x1t+1(i)

xK(t)t(i)
=

(
1− µK(t)te

⊤
i Uy∗) (1− µte

⊤
i Uyt

)∑n
j=1 xK(t)t(j)

(
1− µK(t)te

⊤
j Uy∗

) (
1− µte⊤

j Uyt

)
=

(
1− µK(t)tv

) (
1− µte

⊤
i Uyt

)∑n
j=1 xK(t)t(j)

(
1− µK(t)te

⊤
j Uy∗

) (
1− µte⊤

j Uyt

)
=

(
1− µte

⊤
i Uyt

)
∑n

j=1 xK(t)t(j)
1−µK(t)t

e⊤j Uy∗

1−µK(t)t
v

(
1− µte⊤

j Uyt

)
≥

(
1− µte

⊤
i Uyt

)∑n
j=1 xK(t)t(j) (1− µtej

⊤Uyt)

where the last inequality is due to definition of Nash Equilibrium. We also have any j such
that e⊤

j Uy∗ > v is outside the support of the equilibrium, namely x∗(j) = 0. Therefore,
we proceed:

KL
(
x∗∥xK(t)t

)
−KL

(
x∗∥x1t+1

)
=

n∑
i=1

x∗(i) ln

(
x1t+1(i)

xK(t)t(i)

)

≥
n∑

i=1

x∗(i) ln

( (
1− µte

⊤
i Uyt

)∑n
j=1 xK(t)t(j)

(
1− µte⊤

j Uyt

))

=
n∑

i=1

x∗(i) ln

( (
1− µte

⊤
i Uyt

)
1− µtx⊤

K(t)t
Uyt

)
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Recalling that ln(x) ≥ (x− 1)− (x− 1)2 ∀x ≥ 0.5 we obtain:

KL
(
x∗∥xK(t)t

)
−KL

(
x∗∥x1t+1

)
≥

n∑
i=1

x∗(i)

 (1− µte
⊤
i Uyt

)
1− µtx⊤

K(t)t
Uyt

− 1−

( (
1− µte

⊤
i Uyt

)
1− µtx⊤

K(t)t
Uyt

− 1

)2


=
µt

(
x⊤
K(t)t

Uyt − x∗⊤Uyt

)
1− µtx⊤

K(t)t
Uyt

−
n∑

i=1

x∗(i)
µ2
t

(
x⊤
K(t)t

Uyt − e⊤
i Uyt

)2
(
1− µtx⊤

K(t)t
Uyt

)2
Now, by update rule of the algorithm (yt = (1− αt)y

∗+αtet) and recalling that x∗(j) = 0

if ej outside the support of the equilibrium, we can simplify the last equation and use the
Cauchy theorem to obtain:

KL
(
x∗∥xK(t)t

)
−KL

(
x∗∥x1t+1

)
≥

µt (1− αt)
(
x⊤
K(t)t

Uy∗ − v
)

1− µtx⊤
K(t)t

Uyt

−
n∑

i=1

x∗(i)
2µ2

t (1− αt)
2
(
x⊤
K(t)t

Uy∗ − v
)2

(
1− µtx⊤

K(t)t
Uyt

)2
+

µtαt

(
x⊤
K(t)t

Uet − x∗⊤Uet

)
1− µtx⊤

K(t)t
Uyt

−
n∑

i=1

x∗(i)
2µ2

tα
2
t

(
x⊤
K(t)t

Uet − e⊤
i Uet

)2
(
1− µtx⊤

K(t)t
Uyt

)2

(5.17a)

Given µt ≤ 1
3
:

µt (1− αt)
(
x⊤
K(t)t

Uy∗ − v
)

1− µtx⊤
K(t)t

Uyt

−
n∑

i=1

x∗(i)
2µ2

t (1− αt)
2
(
x⊤
K(t)t

Uy∗ − v
)2

(
1− µtx⊤

K(t)t
Uyt

)2 ≥ 0

and: (
x⊤
K(t)t

Uet − e⊤
i Uet

)2
(
1− µtx⊤

K(t)t
Uyt

)2 ≤ 1

(1− µt)
(
1− µtx⊤

K(t)t
Uyt

)
From inequality 5.17a, we obtain:

KL
(
x∗∥xK(t)t

)
−KL

(
x∗∥x1t+1

)
≥

µtαt

(
x⊤
K(t)t

Uet − x∗⊤Uet

)
1− µtx⊤

K(t)t
Uyt

− 2µ2
tα

2
t

(1− µt)
(
1− µtx⊤

K(t)t
Uyt

) (5.18a)
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for β ≥ 2 and µt ≤ 1
3
:

1

2

µtαt (fmax(xt)− v)

1− µtx⊤
K(t)t

Uyt

≥ 2µ2
tα

2
t

(1− µt)
(
1− µtx⊤

K(t)t
Uyt

) (5.19)

Substituting inequality 5.19 in 5.18a we obtain:

KL
(
x∗∥xK(t)t

)
−KL

(
x∗∥x1t+1

)
≥ 1

2

µtαt

(
2
(
x⊤
K(t)t

Uet − x∗⊤Uet

)
− (fmax(xt)− v)

)
1− µtx⊤

K(t)t
Uyt

≥ 1

2

µtαt

(
2
(
x⊤
K(t)t

Uet − v
)
− (fmax(xt)− v)

)
1− µtx⊤

K(t)t
Uyt

=
µtαt

(
2x⊤

K(t)t
Uet − 2v + v − fmax(xt)

)
2

that is:

KL
(
x∗∥xK(t)t

)
−KL

(
x∗∥x1t+1

)
≥ 1

2
µtαt(2f

′(xt)− fmax(xt)− v) ≥ 0

last inequality is true at the same condition of MWU.

Now we prove the convergence to the minmax equilibrium for MWU and LMWU, with
high probability.

Theorem 5.4. Assume that the row player follows the MWU or LMWU algorithm with
a non-increasing learning rate µt such that limT→∞

∑⊤
t=1 µt = ∞ and there exists t′ ∈ N

with µt′ ≤ 1
3
. If the column player plays PAUSE E-LRCA with ξ1, ξ2 s.t. v ∈ (ξ1, ξ2) then

there will be last round convergence to the minmax equilibrium with high probability in
games where there exists a fully-mixed minmax equilibrium strategy x∗ for the row player.

Proof. Let x∗ be a fully-mixed minmax equilibrium strategy of the row player. Since µt

is a non-increasing learning rate, there exists t′ such that µt ≤ 1
3

for all t ≥ t′. Following
lemma 5.3 , for all t ∈ N such that t ≥ t′, we have:

KL
(
x∗∥xK(t)t

)
−KL

(
x∗∥x1t+1

)
≥ 1

2
µtαt (2f

′ (xt)− fmax (xt)− v) ∀t ∈ N : t ≥ t′

That is, for stability property (definition 2.2.6.2) of the row player No-Regret algorithm,
the same as stating:
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KL (x∗∥xt)−KL (x∗∥xt+1) ≥
1

2
µtαt (2f

′ (xt)− fmax (xt)− v) ∀t ∈ N : t ≥ t′

(5.20)

Thus, the sequence KL (x∗∥xt) is non-increasing with high probability, given a right
choice of K(t). As the sequence is bounded below by 0 , it has a limit for the minmax
equilibrium strategy x∗. Since t′ is a finite number and

∑∞
t=1 µt = ∞, we have

∑∞
t=t′ µt =

∞. Thus:

lim
T→∞

T∑
k=t′

µt = ∞

We will prove that ∀ϵ > 0, ∃h ∈ N such that following PAUSE E-LRCA for the column
player and MWU or LMWU algorithm for the row player, the row player will play strategy
xh at round h and f (xh)− v ≤ ϵ with high probability.

We will proceed to find a contradiction. Thus, suppose that ∃ϵ > 0 such that ∀h ∈
N, f (xh)− v > ϵ. Then ∀t ∈ N

αt (f (xt)− v) ≥ γt
(f (xt)− v)2

β
> γt

ϵ2

β
≥ γmin

ϵ2

β
> 0 whp

Let t vary from t′ to T in equation 5.20. By summing over t, we obtain:

KL (x∗∥xT ) ≤ KL (x∗∥xt′)−
1

2

T∑
t=t′

µtαt (2f
′ (xt)− fmax (xt)− v)

≤ KL (x∗∥xt′)−
1

2
γmin

ϵ

β

T∑
t=t′

µt

(
ϵ− 2ρK(t) − σK(t)

)

Since limT→∞
∑T

t=t′ µt

(
ϵ− 2ρK(t) − σK(t)

)
= ∞ (both ρK(t) and σK(t) converge to 0) and

KL (x∗∥xT ) ≥ 0, which contradicts our assumption about ∀h ∈ N, f (xh)− v > ϵ.
From this point on, the proof is different for the two versions of the algorithm.

In case of the last round convergence version with non-decreasing KL (algorithm 5.2), the
constraint 2f ′(xt)−fmax(xt) ≥ v that is equivalent to ϵ ≥ 2ρK(t)+σK(t) is satisfied at each
round with high probability. Thus we take a sequence of ϵk > 0 such that limk→∞ ϵk = 0.
Then for each k, there exists xtk ∈ ∆n such that v ≤ f (xtk) ≤ v + ϵk. As ∆n is a
compact set and xtk is bounded then following the Bolzano-Weierstrass theorem, there is
a convergence subsequence xt̄k . The limit of that sequence, x∗, is the minmax equilibrium
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strategy of the row player (since f (x∗) = f (limk→∞ xt̄k) = limk→∞ f (xt̄k) = v). Com-
bining with the fact that KL (x∗∥xt) is non-increasing for t ≥ t′ and KL (x∗∥x∗) = 0, we
have limt→∞KL (x∗∥xt) = 0, which concludes the proof.

In the case of the standard version (algorithm 5.1), we proceed in a similar way, that
is, we still take a sequence of ϵk > 0 such that limk→∞ ϵk = 0. Then for each k, there
exists xtk ∈ ∆n such that v ≤ f (xtk) ≤ v+ ϵk. Again, there is a convergence subsequence
xt̄k . The limit of that sequence, x∗, is the minmax equilibrium strategy of the row player.
In this new version of the algorithm we have no guarantee that the KL is not increasing,
but we know that as t → ∞ the monotonicity of KL (x∗∥xt) is guaranteed for xt that are
nearer to the equilibrium with high probability which implies limt→∞KL (x∗∥xt) = 0.

We conclude the section with the result of last round convergence with high probability
against OMD.

Theorem 5.5. Assume that the row player follows OMD (FTRL) with σ-strongly convex
distance generating function F (x), with fixed learning rate such that µ ≤ 1 and σ ≥ 1

and that there exists a fully-mixed minmax equilibrium strategy for the row player. Then
if the column player follows the Algorithm PAUSE E-LRCA (algorithm 5.1 and algorithm
5.2) with β ≥ n2 and ξ1, ξ2 s.t. v ∈ (ξ1, ξ2), there will be last round convergence to the
minmax equilibrium with high probability.

Proof. Let x∗ be a minmax equilibrium of the row player. Denote by BF (xt||zt) the
Bregman divergence between the current row player’s strategy and lazy update of OMD
(algorithm 2.8); then define Dt(x

∗) := (BF (x
∗||zt)−BF (xt||zt))

1
µ
, following properties

of strongly convex function we have:

Dt(x
∗) =

(
F (x∗)− F (zt)−∇F (zt)

⊤(x∗ − zt)−
(
F (xt)− F (zt)−∇F (zt)

⊤(xt − zt)
)) 1

µ

=
1

µ
F (x∗)− 1

µ
F (zt) + (x∗ − zt)

⊤
t−1∑
k=1

Uyk −

(
1

µ
F (xt)−

1

µ
F (zt) + (xt − zt)

⊤
t−1∑
k=1

Uyk

)

=
1

µ
F (x∗)− 1

µ
F (xt) + (x∗ − xt)

⊤
t−1∑
k=1

Uyk

≥ σ

2µ
∥x∗ − xt∥2

Thus, if Dt(x
∗) converges to 0 then we have xt converges to x∗. We will prove that

Dt (x
∗)−Dt+1 (x

∗) ≥ γt
(fmax (xt)− v) (2f ′ (xt)− fmax(xt)− v)

2n2
∀t
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From the definition of Dt(x) we have:

DK(t)t (x
∗)−D1t+1 (x

∗)

=
(
DK(t)t(x1t+1) + x⊤

1t+1
U
(
yK(t)t + yt

))
− x∗⊤U

(
yK(t)t + yt

)
≥ σ

2µ

∥∥x1t+1 − xK(t)t

∥∥2 + x⊤
1t+1

U
(
yK(t)t + yt

)
− x∗⊤U

(
yK(t)t + yt

)
(5.21a)

as usual we take 1t+1 as the first round in which we play the equilibrium at time t + 1

and K(t)t as the last time in which we play the equilibrium at time t. From definition of
minmax equilibrium in zero-sum games we have x⊤Uy∗ ≥ x∗⊤Uy∗ = v ∀x ∈ ∆n. Thus,
given yK(t)t = y∗, we obtain:

DK(t)t (x
∗)−D1t+1 (x

∗) ≥ σ

2µ

∥∥x1t+1 − xK(t)t

∥∥2 + (x1t+1 − x∗)⊤Uyt

=
σ

2µ

∥∥x1t+1 − xK(t)t

∥∥2 + (x1t+1 − x∗)⊤U ((1− αt)y
∗ + αtet)

≥ σ

2µ

∥∥x1t+1 − xK(t)t

∥∥2 + αt

(
x1t+1 − x∗)⊤Uet

=
σ

2µ

∥∥x1t+1 − xK(t)t

∥∥2 + αt

(
x1t+1 − xK(t)t

)⊤
Uet + αt

(
xK(t)t − x∗)⊤Uet

≥ σ

2µ

∥∥x1t+1 − xK(t)t

∥∥2 − αt

∥∥x1t+1 − xK(t)t

∥∥ ∥Uet∥∗ + αt (f
′ (xt)− v)

(5.22a)

(5.22b)

(5.22c)

Inequalities 5.22a and 5.22b come from the update rule of PAUSE E-LRCA, while in-
equality 5.22c comes from the definition of dual norm. Bounding the dual norm with the
dimension of the vector in inequality 5.22c we obtain:

DK(t)t (x
∗)−D1t+1 (x

∗)

≥ σ

2µ

∥∥x1t+1 − xK(t)t

∥∥2 − nαt

∥∥x1t+1 − xK(t)t

∥∥+ αt (f
′ (xt)− v)

=

√ σ

2µ

∥∥x1t+1 − xK(t)t

∥∥− nαt

2
√

σ
2µ

2

+ αt (f
′ (xt)− v)− n2α2

tµ

2σ

≥ αt (f
′ (xt)− v)− n2α2

tµ

2σ
≥ αt (f

′ (xt)− v)− n2α2
t

2
(5.23a)

Now, from PAUSE E-LRCA (algorithm 5.1 and algorithm 5.2) we have:

αt = γt
fmax(xt)− v

n2
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then inequality 5.23a implies, as γ2
t < γt:

DK(t)t (x
∗)−D1t+1 (x

∗) ≥ αt

2
(2f ′ (xt)− fmax(xt)− v)

= γt
(fmax (xt)− v) (2f ′ (xt)− fmax(xt − v)

2n2
∀t

That for stability property (see definition 2.2.6.2) is:

Dt (x
∗)−Dt+1 (x

∗) ≥ γt
(fmax (xt)− v) (2f ′ (xt)− fmax(xt)− v)

2n2
∀t

With the same reasoning of theorem 5.4, we obtain the last round convergence result with
high probability.

5.5. Regret

Before entering the details of this section we need to provide few definitions which have not
been discussed in the preliminaries. First, we introduce a different version of the Dynamic
Regret, the so called Dynamic Regret with respect to the Maxmin value, formally:

DReq
T :=

T∑
t=1

|x⊤
t Uyt − v| (5.24)

where v is the maxmin (minmax) value of the game. From which:

Definition 5.5.0.1. (No-Dynamic Regret with respect to the MaxMin) An algorithm is
no-dynamic regret with respect to the MaxMin if limT→∞

DReq
T

T
= 0.

Then we define the so called Pompeiu-Hausdorff distance:

Definition 5.5.0.2. (Pompeiu-Hausdorff Distance (Rockafellar and Wets, 1998)) Let
(Rn, d) be a metric space, for C,D ⊂ Rn closed and nonempty, the Pompeiu-Hausdorff
distance between C and D is the quantity:

dH(C,D) := sup
x∈Rn

|dC(x)− dD(x)|

where dA(x) := infy∈A d(x,y).

To conclude we report a Lemma that will be useful in the computation of the final regret.

Lemma 5.4. (Hausdorff distance convergence) If Devroye set (see lemma 3.1 and lemma
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3.2) is used to estimate opponent strategy with high probability and thus dH

(
X̃t, {xt}

)
=

O
(
1/
√
K(t)

)
, we will have that

ρK(t) + σK(t) = fmax(xt)− f ′(xt) ≤ 3dH

(
X̃t, {xt}

)
from which :

2ρK(t) + σK(t) ≤ 2
(
ρK(t) + σK(t)

)
≤ 6dH

(
X̃t, {xt}

)
≤ 30

√
ln(3/δ)

K(t)

Finally, we report the computation of the Dynamic Regret with respect to the value of
the game.

Theorem 5.6. Assume that the row player follows the above-mentioned no-regret type al-
gorithms: MWU, LMWU, FTRL, OMD with constant learning rate µ; then by following
PAUSE E-LRCA (algorithm 5.1) with K(t) = ln (3/δ) tλ and 0 ≤ λ < 2, the column player
will achieve the no-dynamic regret (with respect to the MaxMin) property with the dynamic
regret (with respect to the MaxMin) satisfying DReq

T = O
(

n√
µγmin

Tmax(−λ/2+1, 1
2
+

−λ/2+1
2 )

)
for OMD (FTRL) and DReq

T = O
(√

log(n)
√
µγmin

Tmax(−λ/2+1, 1
2
+

−λ/2+1
2 )

)
for MWU and LMWU,

in games with fully-mixed minmax equilibrium strategy for the row player, with high prob-
ability.

From the definition of Dynamic Regret with respect to the equilibrium we have:

DReq
T =

T∑
t=1

|x⊤
t Uyt − v|

≤
T∑
t=1

max{(f(xt)− f ′(xt)), (f(xt)− v)}

≤
T∑
t=1

max{(fmax(xt)− f ′(xt)), (fmax(xt)− v)} whp

≤
T∑
t=1

(fmax(xt)− f ′(xt)) +
T∑
t=1

(fmax(xt)− v)

we start with the computation of the regret of the first term in last inequality bounding
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(using result of lemma 5.4):

T∑
t=1

(fmax(xt)− f ′(xt)) =
T∑
t=1

(
σK(t) + ρK(t)

)
≤

T∑
t=1

3dH

(
X̃t, {xt}

)

The Hausdorff distance of our estimation of the row player is upper bounded by 25
2

√
ln 3/δ
K(t)

with 0 < δ ≤ 3 exp−4n/5, from that:

T∑
t=1

(fmax(xt)− f ′(xt)) ≤
T∑
t=1

15
√
ln (3/δ)√
K(t)

=
T∑
t=1

15√
tλ

where the last inequalities are due to K(t) = ln (3/δ)tλ. Bounding the summation with
the integral:

T∑
t=1

(fmax(xt)− f ′(xt)) ≤ 1 +
15

−λ
2
+ 1

T−λ/2+1 = O
(
T−λ/2+1

)
(5.25)

where last equality is true for 0 ≤ λ < 2.
To reason about fmax(xt) − v (for MWU and LMWU) we follow lemma 5.3 result, from
which we have (for β ≥ 2):

KL (x∗∥xt)−KL (x∗∥xt+1) ≥
1

2
µtαt (2f

′ (xt)− fmax (xt)− v)

=
1

2
µtαt

(
2f (xt)− 2ρK(t) − fmax (xt)− v

)
=

1

2
µtαt

(
2fmax (xt)− 2σK(t) − 2ρK(t) − fmax (xt)− v

)
=

1

4
µtγt (fmax (xt)− v)

(
fmax (xt)− v − 2σK(t) − 2ρK(t)

)
=

1

4
µtγt

(
(fmax (xt)− v)2 −

(
2ρK(t) + 2σK(t)

)
(fmax(xt)− v)

)
≥ 1

4
µtγt

(
(fmax (xt)− v)2 −

(
2ρK(t) + 2σK(t)

))
Let’s now bound:

T∑
t=1

(fmax(xt)− v)

thus:
T∑
t=1

1

4
µtγt

(
(fmax (xt)− v)2 −

(
2ρK(t) + 2σK(t)

))
≤ KL (x∗∥x1)
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T∑
t=1

µtγt
(
(fmax (xt)− v)2 −

(
2ρK(t) + 2σK(t)

))
≤ 4KL (x∗∥x1)

for n ≥ 8:

T∑
t=1

µtγt(fmax (xt)− v)2 ≤ 4 ln(n) +
T∑
t=1

µtγt
(
2ρK(t) + 2σK(t)

)
with Cauchy–Schwarz inequality:

T∑
t=1

(fmax (xt)− v) ≤

√√√√4 ln(n) +
T∑
t=1

µtγt (2ρK(t) + 2σK(t))

√√√√ T∑
t=1

1

µtγt

with fixed learning rate, using γmin as found in lemma 5.1 and given γt ≤ 1:

T∑
t=1

(fmax (xt)− v) ≤

√√√√4 ln(n) +
T∑
t=1

µ(2ρK(t) + 2σK(t))

√√√√ T∑
t=1

1

µγmin

≤

√√√√4 ln(n) +
T∑
t=1

µ(2ρK(t) + 2σK(t))
1

√
µγmin

T
1
2

Due to result on Hausdorff distance dH

(
X̃t, {xt}

)
in lemma 5.4:

T∑
t=1

(fmax (xt)− v) ≤

√√√√4 ln(n) +
T∑
t=1

µ
30
√
ln (3/δ)√
K(t)

1
√
µγmin

T
1
2

For the choice of K(t) = ln (3/δ)tλ:

T∑
t=1

(fmax (xt)− v) ≤

√√√√4 ln(n) +
T∑
t=1

µ
30√
tλ

1
√
µγmin

T
1
2

≤

√√√√4 ln(n) +
T∑
t=1

µ
30

tλ/2
1

√
µγmin

T
1
2

≤
√
4 ln(n) + 1 +

30

−λ
2
+ 1

µT−λ
2
+1 1

√
µγmin

T
1
2
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given µ < 1/3 as assumption of lemma 5.3:

T∑
t=1

(fmax (xt)− v) = O

(√
log(n)

√
µγmin

T
1
2
+

−λ/2+1
2

)
(5.26)

Finally summing result 5.25 with result 5.26:

DReq
T ≤ O

(
T−λ/2+1

)
+O

(√
log(n)

√
µγmin

T
1
2
+

−λ/2+1
2

)
= O

(√
log(n)

√
µγmin

Tmax(−λ/2+1, 1
2
+

−λ/2+1
2 )

)

This means that for K(t) = ln (3/δ)t:

DReq
T = O

(√
log(n)

√
µγmin

T 3/4

)

while for K(t) = ln (3/δ)t2/3:

DReq
T = O

(√
log(n)

√
µγmin

T 5/6

)

For the OMD (FTRL) case, we exploit the result of theorem 5.5 from which can be
derived:

Dt (x
∗)−Dt+1 (x

∗) ≥ γt
(fmax (xt)− v) (2f ′ (xt)− fmax(xt)− v)

2n2

≥ γt

(
(fmax (xt)− v)2 −

(
2ρK(t) + 2σK(t)

))
2n2

using γmin as found in lemma 5.1:

T∑
t=1

(
(fmax (xt)− v)2 −

(
2ρK(t) + 2σK(t)

))
≤ 2n2

µγmin

from which:
T∑
t=1

(fmax (xt)− v)2 ≤ 2n2

µγmin

+
T∑
t=1

(
2ρK(t) + 2σK(t)

)
using Cauchy-Schwarz:

T∑
t=1

(fmax (xt)− v) ≤

√√√√ 2n2

µγmin

+
T∑
t=1

(2ρK(t) + 2σK(t))T
1
2
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with the same reasoning of MWU:

DReq
T ≤ O

(
T−λ/2+1

)
+O

(
n

√
µγmin

T
1
2
+

−λ/2+1
2

)
= O

(
n

√
µγmin

Tmax(−λ/2+1, 1
2
+

−λ/2+1
2 )

)

which concludes the proof.
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6| Experiments

In this chapter we report experiments which show the theoretical guarantees presented
previously. General remarks:

1. Experiments are run against MWU (2.6) with a fixed learning rate of µ = 1.

2. As benchmark we coded the standard version of LRCA (algorithm 3.4); this will be
useful to show the difference in terms of safety and regret.

3. As concerns the experiments with partial semi-bandit feedback, we implemented
a not-safe version of the algorithm (namely, PAUSE LRCA) which will substitute
standard LRCA as a benchmark.

4. Standard python libraries have been used; to solve the linear programs we chose
Pulp, a good trade-off between user-friendliness and efficiency.

5. For every experiment, we will report a plot for the Regret of the column player,
one for the KL (convergence measure) of the row player, and one for the Utility
obtained by the column player (with the safety bounds). When experiments are
based on small games we will report the simplex with the convergence of the row
player strategy.

6.1. Expert Feedback with Fully-Mixed Equilibrium

In this section we report experiments on games with fully-mixed equilibrium and where
both players have the expert feedback.

We start by Rock Paper Scissor scaled in [0, 1]; formally the payoff matrix (of the column
player) is:

Rock Paper Scissor
Rock 0.5 1 0
Paper 0 0.5 1
Scissor 1 0 0.5
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where the value v is 0.5.

In figure 6.1 we note that safety property leads to a deceleration of the convergence, as
it was clear from the Dynamic Regret result in section 4.5; indeed the regret of LRCA is
smaller than the E-LRCA one.
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Regret
LRCA versus MWU
E_LRCA versus MWU

Figure 6.1: Dynamic Regret of the column player in Rock Paper Scissor game

In figure 6.2 it is shown how the safety constraints are never violated by E-LRCA, differ-
ently from the not-safe version of the algorithm.
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Figure 6.2: Utility of the column player in Rock Paper Scissor game with the safety
bounds

Again, in figure 6.3 we see how the convergence is slower due to safety.
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Figure 6.3: KL of the row player in Rock Paper Scissor game

Finally, in figure 6.4 we report the dynamic of the row player’s strategy in the simplex;
indeed, it converges to the equilibrium xt = [1/3, 1/3, 1/3]
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Figure 6.4: Row player’s strategy in Rock Paper Scissor game

To conclude this section, we report results obtained in a skewed matching pennies game,
namely, a version of the game where the equilibrium is not x∗ = [1/2, 1/2]. Formally:

A B
A 0 2/5
B 3/5 0

where the value v is 6/25.

Since the safety bounds are tighter with respect to the previous examples, the result in
terms of regret will seem worse.
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Figure 6.5: Dynamic Regret of the column player in the skewed matching pennies game
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Figure 6.6: Utility of the column player in the skewed matching pennies game with the
safety bounds
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Figure 6.7: KL of the row player in the skewed matching pennies game

6.2. Partial Semi-Bandit Feedback with Fully-Mixed

Equilibrium

In this section we report the experiments related to the partial semi-bandit feedback in
games with fully-mixed equilibrium. We start by the result for PAUSE E-LRCA with
linear K(t).
In figure 6.8 we observe that the Dynamic Regret with respect to the equilibrium is better
in the safe version of the algorithm; it is reasonable as we perform actions that are nearer
to the equilibrium, which means that the utility (in the first rounds) is close to the value
of the game v.
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Figure 6.8: Dynamic Regret with respect to the MaxMin value of the column player in
Rock Paper Scissor game

In figure 6.9 we notice that the utility obtained by the column player (it is clearer for the
non safe version of the algorithm) can be smaller than the value of the game; this never
happens when both players have expert feedback as the opponent strategy is always well
estimated.
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Figure 6.9: Expected Utility of the column player in Rock Paper Scissor game with the
safety bounds
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Figure 6.10: KL of the row player in Rock Paper Scissor game

Finally, in figure 6.11, it is shown that algorithm 5.1 does not guarantee a round by round
improvement in terms of convergence, which was clear by the final inequality in lemma
5.3.
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Figure 6.11: Row player’s strategy in Rock Paper Scissor game

We show the results for PAUSE E-LRCA with K(t) = ln 3
δ
t2/3. We observe that the regret

of the safe version is smaller than in linear K(t) case (for the first rounds); it is again
reasonable as the algorithm has a worse estimation of the opponent strategy, which will
lead PAUSE E-LRCA to play near the equilibrium.
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Figure 6.12: Dynamic Regret with respect to the MaxMin value of the column player in
Rock Paper Scissor game
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Figure 6.13: Expected Utility of the column player in Rock Paper Scissor game with the
safety bounds
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Figure 6.14: KL of the row player in Rock Paper Scissor game
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Figure 6.15: Row player’s strategy in Rock Paper Scissor game

We proceed with the results in different games (for linear K(t)):
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Figure 6.16: Dynamic Regret with respect to the MaxMin value of the column player in
the bigger version of Rock Paper Scissor game
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Figure 6.17: Expected Utility of the column player in the bigger version Rock Paper
Scissor game with the safety bounds
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Figure 6.18: KL of the row player in the bigger version Rock Paper Scissor game
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Figure 6.19: Dynamic Regret with respect to the MaxMin value of the column player in
the skewed matching pennies game
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Figure 6.20: Expected Utility of the column player in the skewed matching pennies game
with the safety bounds
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Figure 6.21: KL of the row player in the skewed matching pennies game

To conclude we show the results for algorithm 5.2, namely, the PAUSE E-LRCA version
in which the KL decreases round after round. The reader will see that, in terms of
convergence, the plots are similar to the ones where both players have Expert Feedback.
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Figure 6.22: Dynamic Regret with respect to the MaxMin value of the column player in
Rock Paper Scissor game
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Figure 6.23: Expected Utility of the column player in Rock Paper Scissor game with the
safety bounds
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Figure 6.24: KL of the row player in Rock Paper Scissor game
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Figure 6.25: Row player’s strategy in Rock Paper Scissor game

6.3. Comparison between different Feedback with Fully-

Mixed Equilibrium

In this section we highlight the difference in terms of Dynamic Regret between the algo-
rithms with expert feedback and the ones with partial semi-bandit feedback. In figure
6.27 the pink regret is linear since PAUSE LRCA uses a fixed K(t) = 1 (kind of a greedy
approach).
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Figure 6.26: Dynamic Regret of the column player in Rock Paper Scissor game
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Figure 6.27: Dynamic Regret of the column player in Rock Paper Scissor game in com-
parison with Linear Regret

6.4. Expert Feedback with Partially-Mixed Equilib-

rium

In this section we show experiments with expert feedback in a game with partially-mixed
equilibrium, specifically:
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A B C D
A 0.25 0.75 0.3 0.32
B 0.75 0.25 0.3 0.32
C 0.501 0.501 0.94 0.05
D 0.502 0.502 0.044 0.94

where the value v is 0.5.

The convergence is decelerated not only by the choice of γmin but also by the absence of
fully-mixed equilibrium which forces the algorithm to play γt = γmin at each round.
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Figure 6.28: Dynamic Regret of the column player in game with a partially-mixed equi-
librium
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Figure 6.29: Utility of the column player in game with a partially-mixed equilibrium with
the safety bounds
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Figure 6.30: Euclidean distance between row player’s strategy and the Equilibrium in
game with a partially-mixed equilibrium

6.5. Partial Semi-Bandit Feedback with Partially-Mixed

Equilibrium

In this last section we report the experimental results of PAUSE E-LRCA in games with
partially-mixed equilibrium. We start by a game with four actions, that is:
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A B C D
A 0.25 0.75 0.3 0.32
B 0.75 0.25 0.3 0.32
C 0.501 0.501 0.94 0.05
D 0.502 0.502 0.044 0.94

where the value v is 0.5.
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Figure 6.31: Dynamic Regret with respect to the maxmin of the column player in game
with a partially-mixed equilibrium
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Figure 6.32: Expected Utility of the column player in game with a partially-mixed equi-
librium with the safety bounds
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Figure 6.33: Euclidean distance between row player’s strategy and the Equilibrium in
game with a partially-mixed equilibrium

We conclude with the results in a three actions game with payoff matrix (for the column
player):
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A B C
A 0.25 0.75 0.3
B 0.75 0.25 0.3
C 0.501 0.501 0.5

where the value v is 0.5.
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Figure 6.34: Dynamic Regret with respect to the maxmin of the column player in game
with a partially-mixed equilibrium
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Figure 6.35: Expected Utility of the column player in game with a partially-mixed equi-
librium with the safety bounds
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Figure 6.36: Euclidean distance between row player’s strategy and the Equilibrium in
game with a partially-mixed equilibrium
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Figure 6.37: Row player’s strategy in game with a partially-mixed equilibrium
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7| Conclusions and Future

Developments

7.1. Conclusions

Convergence to Equilibria has often been studied in a self-play setting, that is, an agent
aims to compute the equilibrium by playing repeatedly against himself. We switched this
perspective by developing algorithms capable of making the opponent converge to the
Nash of the game, without making assumptions on the exact algorithm the adversary
employs. This framework is particularly useful when the opponents are human-like learn-
ers, which, by definition, may have different learning abilities. In addition, we introduced
safety property in order to guarantee engagement of the human.

To summarize, we developed two algorithms capable of teaching a human-like learner
with different feedback (expert and partial semi-bandit) which guarantee, with proper
assumptions and in different manners, Safety, Last Round Convergence and Sublinear
Dynamic Regret against one of the most famous family of No-Regret learning algorithms,
the Online Mirror Descent.

In conclusion, we ran experiments on different type of games in order to show the empiric
validity of our algorithm; in the case of bandit feedback, we showed that PAUSE E-LRCA
(algorithm 5.1) achieves good performances even in setting (not fully-mixed equilibrium)
where the results are not theoretically supported.

7.2. Future Works

There are mainly two paths that future researchers may follow in order to extend our
work.

It would be interesting to understand how the framework introduced by this thesis could
be adapted for general sum games, that is, games in which a good strategy for one player
is not necessarily a bad one for his opponent. In this case, both players may converge
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to a Nash that is not a trade-off between their possible rewards, but a solution which is
optimal on both sides. From some perspectives, this setting could shift the learner/teacher
paradigm, as the learning dynamic of the human would be convenient even for the teacher;
indeed, in zero-sum games the teaching dynamic leads to a decreasing of the teacher utility,
while in general sum, it could be not strictly necessary.

Moreover, future works may deal with relaxing the normal form game assumption, and
extend our framework to extensive form games, which encompass more information such
as sequentiality of actions or randomness elements in the game, which are essential in
card games as Poker, Bridge etc.

To conclude, it could be interesting to extend our framework in case where even the
human has a semi-bandit feedback, even if, differently from the previous proposals, it
would involve a complete change of our algorithm.
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We report here the procedure to build the probability found in section 5.3 (that is, solving
equation A.1 with respect to the variable x):
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Let’s decompose the problem and work on the exponent of the denominator:

K(t)

(
4

25
s2t+1 +

ln 3/δ

K(t)
+

4

5
st+1

√
ln 3/δ

K(t)

)
=

=
4

25
K(t)s2t+1 + ln 3/δ +

4

5
K(t)st+1

√
ln 3/δ

K(t)



112 A| Appendix A

Now going upwards:
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Finally, substituting the result in equation A.2 we obtain:
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πoθϵι̃ µϵν , ϵχθαιρϵι δϵ
′ , βoυλϵται δ′ ϵχϵιν

«Lo brama, lo detesta, desidera averlo»
[La città di Atene su Alcibiade, "le Rane" (Aristofane)]
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