
Politecnico di Milano
SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING

Master of Science – Computer Science and Engineering

Implementation of algorithm for optimal ex
ante persuasive signaling scheme in
Bayesian Network Congestion Games

Supervisor: Prof. Nicola Gatti

Co-Supervisor: Dott. Matteo Castiglioni

Co-Supervisor: Dott. Alberto Marchesi

Candidate
Edoardo Disarò – 920069

Academic Year 2019 – 2020

Ringraziamenti

Vorrei ringraziare il professor Nicola Gatti per la sua cortesia e disponi-
bilità durante tutto lo sviluppo del lavoro. Ringrazio inoltre Matteo e
Alberto, per il loro continuo sostegno e i numerosi consigli che mi hanno
aiutato a migliorare e completare la tesi.
Un ringraziamento va inoltre a tutte le persone che mi hanno accom-
pagnato in questi anni e che mi sono state vicine durante il percorso
universitario.
Un ringraziamento speciale agli amici e compagni di viaggio incontrati
durante il semestre in Norvegia presso l’ NTNU.
Infine ringrazio la mia famiglia, in particolare mia madre, che mi ha
sempre sostenuto con immensa pazienza.

iii

Sommario

I Bayesian Network Congestion Game (BNCG) sono un modello della
Teoria dei Giochi adatto a rappresentare le interazioni tra una moltitu-
dine di agenti. Applicando l’ambiente Bayesiano al ben noto modello
di Congestion Game, i BNCG descrivono situazioni del mondo reale
in cui lo stato della rete è sconosciuto e determina i costi sostenuti
dai giocatori. Consideriamo il caso in cui sia presente un giocatore
che può svelare informazioni sullo stato di natura agli altri giocatori.
Questo modello è noto come persuasione Bayesiana. Il nostro obiettivo
è studiare il problema del calcolo di uno schema di segnalazione otti-
male ex ante persuasivo in BNCG simmetrici con costi affini. Sotto
questi presupposti, è stato dimostrato che il problema è calcolabile in
un tempo polinomiale ed è stato sviluppato un algoritmo. Lo scopo
del presente lavoro è dunque analizzare in dettaglio l’algoritmo, propo-
nendo un’implementazione efficiente nel linguaggio di programmazione
Python ed analizzando dal punto di vista sperimentale le prestazioni
dell’algoritmo in varie istanze create sinteticamente.

v

Abstract

Bayesian Network Congestion Games (BNCGs) are a model used in
Game Theory to represent multi-agent interactions. Applying the
Bayesian Framework to the well-understood model of network congestion
game, BNCGs describes real-world situations in which the state of the
network is unknown and determines the costs incurred by the players.
We consider the case where there is a player who can reveal information
about the state of nature to the other players. This model is known as
Bayesian persuasion. Our goal is to study the problem of computing an
optimal ex ante persuasive signaling scheme in symmetric BNCG with
affine costs. Under these assumptions, the problem has been proved
to be computable in polynomial time and an algorithm was developed.
The aim of the present work is to study the framework and analyze
the algorithm, proposing an efficient implementation in the Python
programming language and experimentally analysing the performance
of the algorithm in various synthetically created instances.

vii

Contents

Sommario v

Abstract vii

List of Figures xii

List of Tables xiii

1 Introduction 1
1.1 General overview . 1
1.2 Contributions . 2
1.3 Structure of the thesis 3

2 State of the Art 5
2.1 Basics of Complexity Theory 5

2.1.1 Complexity of algorithms 5
2.1.2 Complexity of problems 7
2.1.3 Hard problems 8

2.2 Introduction to Game Theory 9
2.2.1 General notion of game 9
2.2.2 Congestion Games 11

2.3 Information structure design 13
2.3.1 Bayesian persuasion: single agent case 14
2.3.2 Bayesian persuasion: multiple agents 16
2.3.3 Private signaling scheme 17
2.3.4 Public signaling scheme 18

2.4 Algorithms for Linear Programming 20
2.4.1 Ellipsoid Method 20
2.4.2 Cutting-Planes 21
2.4.3 Row Generation 22

3 Research Problem 25
3.1 Bayesian Network Congestion Games 25
3.2 Assumptions on BNCGs 27

ix

Contents

3.3 Signaling in BNCGs . 28

4 Algorithm Overview 31
4.1 LP formulation . 31
4.2 Separation oracle . 34
4.3 Min-cost flow problem 36

5 Algorithm Implementation 39
5.1 Graph Instance Generation 39
5.2 Problem Instance Generation 40
5.3 Generic LP Implementation 41
5.4 Algorithm Implementation 42

5.4.1 Implementing the Dual Problem 43
5.4.2 Min-cost flow Problem 45
5.4.3 Adding the new constraint 46
5.4.4 Primal Problem 47

5.5 Solver Outputs . 48

6 Experimental Results 51
6.1 Experimental setting . 51

6.1.1 Hardware and Software 51
6.1.2 Dataset . 52

6.2 Test Results . 52
6.2.1 First Experiment 53
6.2.2 Second Experiment 55
6.2.3 Third Experiment 57
6.2.4 Fourth Experiment 58

6.3 Comparison between Experiments 60
6.4 Regression . 62

7 Conclusions and Open Questions 65
7.1 Conclusions . 65
7.2 Open Questions . 66

Bibliography 67

x

List of Figures

Figure 2.1 Possible relations between P and NP classes. . . . 9
Figure 2.2 Example of Congestion Game. 13
Figure 2.3 The flow of Row Generation algorithm. 23

Figure 3.1 Example of BNCG. 29

Figure 5.1 Basic structure in building a model with Guropi
Python API. 42

Figure 6.1 Network dataset instances. 52
Figure 6.2 Computing times for Networks with V = 30 and

varying the number of states. 53
Figure 6.3 Single box plots of games instances with 100 play-

ers in networks with |V| = 30. 54
Figure 6.4 Statistical indices for game instances with 100

players in networks with |V| = 30. 54
Figure 6.5 Computing times for Networks with |V| = 60 and

varying the number of states. 55
Figure 6.6 Single box plots of games instances with 100 play-

ers in networks with |V| = 60. 56
Figure 6.7 Statistical indices for game instances with 100

players in networks with |V| = 60. 56
Figure 6.8 Computing times for Networks with |V| = 90 and

varying the number of states. 57
Figure 6.9 Statistical indices for game instances with 100

players in networks with |V| = 90. 58
Figure 6.10 Statistical indices for game instances with 80 play-

ers and 40 states in networks with |V| = 90. 58
Figure 6.11 Computing times for Networks with |V| = 120 and

varying the number of states. 59
Figure 6.12 Statistical indices for game instances with 100

players and with 10 and 20 states, in networks with |V|
= 120. 59

Figure 6.13 Statistical indices for game instances with 80 play-
ers and 30 states in networks with |V| = 120. 60

xi

List of Figures

Figure 6.14 Statistical indices for game instances with 70 play-
ers and 40 states in networks with |V| = 120. 60

Figure 6.15 Limits of the algorithm. 60
Figure 6.16 Percentage of solved games within the time limit. 61
Figure 6.17 Computing times for game instances with N =

100 and varying the number of nodes in network. 62
Figure 6.18 Regression for game instances with |V| = 90, |θ|

= 30 and varying the number of players in the game. . . 63
Figure 6.19 Regression for game instances with |V| = 90, |N|

= 90 and varying the number of states of nature. 64

xii

List of Tables

Table 2.1 Sender-Receiver interaction. 15

Table 5.1 Permutation of an action profile. 48

xiii

Chapter 1

Introduction

In this chapter, we present a general overview of the research field and
the main contribution of this work.

1.1 General overview
Game Theory provides a theoretical framework to formulate, structure,
analyse and eventually understand different strategical scenarios. The
interaction among agents is formalized as a game, an abstract formal
description of a strategic situation in which players behave according to
certain rules. Game Theory as a discipline has its historical origin in
1944 with the publication of the book Theory of Games and Economic
Behavior by John von Neumann and Oskar Morgenstern. Since then,
the applications of Game Theory have increased, allowing us to describe
situations and problems relating to economics and mathematics as well
as in biology, political science, computer science and philosophy.

Congestion Games are a classical type of games studied in Game Theory
and proposed by the economist Robert Rosenthal in 1973, with the aim
of describing strategic behavior of players in choosing among available
resources. They can model different situations as processor scheduling,
routing, and network design. In the case in which the resources corre-
spond to simple paths in a graph, e.g. representing routing options from
a source to a target, we are talking about Network Congestion Games.
Congestion Games have good computational properties, admitting in
many cases algorithms requiring polynomial time.

Information structure design studies the effects of information on the
outcomes of strategic interactions. In this context the most important
model is the Bayesian Persuasion framework introduced by Kamenica

1

Chapter 1. Introduction

and Gentzkow [6]. This framework involves an informed sender trying
to influence the behavior of one or multiple self interested players, the
receivers. The sender is able to commit to a policy called signaling
scheme which is a mapping from network states to action recommen-
dations, i.e. route suggestions. Since their development, Congestion
Games have been a powerful tool and an active area of research but they
show limits in describing real-life situations. We introduce Bayesian
Network Congestion Games (BNCGs) that capture uncertainty in Net-
work Congestion Games. Finally, we present an algorithm developed to
compute an optimal ex ante signaling scheme in BNCGs in polynomial
time, under specific assumptions.

1.2 Contributions
In the present work, we study the Bayesian framework applied to the
game theory model of the Network Congestion Game. Specifically, we
are interested in the computation of an optimal signaling scheme in
Bayesian Network Congestion Games. We focus on the notion of ex
ante persuasiveness where the receivers are incentivized in following
the signal by only observing the signaling scheme. We also consider
symmetric BNCGs, in which all the players share the same source and
destination pair and we assume BNCGs have affine costs function, i.e.
the cost of each edge in the graph can be decomposed in a linear function
of the number of players passing through the edge.

In our work, we present and analyze the algorithm designed by Cas-
tiglioni, Celli, Marchesi and Gatti [4], which exploits the Ellipsoid
Method in order to compute an optimal ex ante persuasive signaling
scheme in polynomial time for a symmetric BNCG, with affine costs.
Therefore, in the light of recent work, we can present the implementation
of the algorithm we accomplished and discuss the results we obtained.
The implementation of the algorithm was carried out by studying and
considering the various steps involved and dealing with mathematical
tools and formulations such as the ellipsoid method, the row generation
algorithm and the integer min-cost problem. The crucial point is that
the ellipsoid algorithm is not usable in practice. Therefore, the question
is if, in practice, it is still possible to have an efficient algorithm. Finally,
we can empirically evaluate the algorithm as different parameters change
and thus verify its efficiency, in particular considering the computational
time taken in different game instances. This makes it possible to assess
the importance of different parameters and their weight on the compu-
tational time. We performed the experiments from a dataset of random

2

1.3. Structure of the thesis

Bayesian Network Congestion Games we implemented, considering net-
works with 30, 60, 90 and 120 nodes. The number of players considered
in the games varies between 10 and 100 at intervals of 10, while the
number of states of nature varies between 10 and 40 at intervals of 10.
To sum up, we generated and resolved in total 1600 Bayesian Network
Congestion Games, setting a time limit of 3600 seconds for each game
instance. The programming language used is Python and the Linear
Programming problems are solved with Gurobi [9] optimization solver,
invoked in our code through the Python module gurobipy.

1.3 Structure of the thesis
The work is organized into different chapters as follows.

Chapter 2 introduces the theoretical starting point necessary to under-
stand our work. A brief summary of Computational Complexity
Theory is presented. Most of the chapter is then dedicated to
Congestion Games and Bayesian Persuasion framework.

Chapter 3 presents the description and formalization in mathematical
terms of the research problem faced in our work. Specifically,
a formal definition of Bayesian Network Congestion Game is
presented, along with the assumptions considered.

Chapter 4 exposes in detail the algorithm developed in order to
compute an optimal ex ante persuasive signaling scheme in BNCGs
in polynomial time.

Chapter 5 illustrates the process we follow to implement the algorithm
for computing an optimal ex ante persuasive signaling scheme in
BNCGs in polynomial time.

Chapter 6 presents and discuss the experimental results we obtained.

Chapter 7 concludes the work with a summary of the results obtained
and the proposals for future discussions.

3

Chapter 2

State of the Art

This chapter analyses all the concepts and definitions necessary to en-
tirely understand the work carried out in this paper. At first, a brief
introduction to Computational Complexity Theory is presented. Then,
the general framework of Game Theory is introduced, analysing its basic
concepts and notions and focusing our attention to the class of Con-
gestion Games. Information structure design is subsequently presented,
focusing on the Bayesian Persuasion framework. The Bayesian Persua-
sion framework is the theoretical heart of our work and we analyze in
detail the various models and main solutions provided by the literature.
Finally, we describe the mathematical tools and algorithms we need to
approach the problem in this work.

2.1 Basics of Complexity Theory
Since our work is mainly focused on the implementation and descrip-
tion of a procedure to solve a problem efficiently, we need to start
by introducing some basics concerning the idea of algorithm and its
computational aspects. Computational Complexity Theory is a field
of theoretical Computer Science which has the goal to compare and
classify the difficulty of solving problems, with the practical aim to
obtain bounds and quantitative relations for complexity. In this section,
we briefly introduce the basic concepts and notions of this theory.

2.1.1 Complexity of algorithms

An algorithm is a procedure for solving a mathematical problem in a
finite number of steps that frequently involves repetition of an operation
and that, given an input, it produces an output. Complexity theory
investigates the solvability of individual problems, in terms of the

5

Chapter 2. State of the Art

quantity of computational resources an algorithm takes to solve the
problem. The most interesting and considered resources in complexity
literature to measure the efficiency of an algorithm are time and space.
We can define:

• Time complexity function for an algorithm expresses the time
requirements by giving, for each possible input size, the largest
amount of time the algorithm takes to solve the problem;

• space complexity function of an algorithm expresses the amount of
storage an algorithm takes to solve the problem in terms of input
size.

Although space complexity is usually very important in the implemen-
tation of an algorithm, in the present work we focus more on time
complexity because studying it allows us to understand whether a prob-
lem can be solved in an appropriate time.

To describe algorithm’s running time based on the size of the algorithm’s
input, the Big-O notation is introduced.

Definition 2.1. Let f, g : N+ → R+ and suppose g(n) is the running
time of an algorithm on an input size n. We denote the asymptotic
running time of an algorithm by O(f(n)). This is called the Big-O
notation, meaning there exists some positive constant c such that for all
n ∈ N, g(n) ≤ c · f(n); c · f(n) bounds g(n) from above.

The Big-O notation provides an asymptotic upper bound, since it bounds
from above the growth of the running time of the algorithm for input
sizes.
Although different algorithms have different time complexity functions,
using the given Big-O definition, computer scientists recognized two
main simple classes of algorithms.

Definition 2.2. An algorithm is polynomial-time (or efficient) if it has
a worst-case time complexity f(n) = O(nk), where k is a constant and
n is the size of the input.

Definition 2.3. An algorithm is exponential-time if it has a worst-case
time complexity f(n) = O(2n), where n is the size of the input.

As expected, a polynomial-time algorithm is more efficient and faster
than an exponential-time algorithm. In Complexity theory literature
a problem is considered "well-solved" only when a polynomial-time
algorithm to solve it is known. The notions of tractable and intractable
for a problem are so introduced.

6

2.1. Basics of Complexity Theory

Definition 2.4. A problem is tractable if, and only if, there exists
a polynomial-time algorithm that solves all instances of it. On the
other hand, a problem is intractable if, and only if, there is no known
polynomial-time algorithm for solving all instances of it.

2.1.2 Complexity of problems

Central to the development of Computational Complexity Theory is
the concept of decision problem. Intuitively, a decision problem is any
problem to which a solution can either be given as an answer Yes or No.
An example is the Traveling Salesman Problem (TSP), which gives a
list of cities and distances between each pair of cities and asks "Is this
a route that visits all cities under cost c?".
Decision problems can belong to different Complexity classes.

• P is class of decision problems that can be solved by polynomial
time algorithms;

• NP is the class of decision problems such that, for every Yes-
instance there is a concise certificate which allows to verify, in
polynomial time, that the instance really admits a Yes answer.
We say that these problems can be verified in polynomial time;

• coNP is class of decision problems whose complements are in NP.
Complement of a decision problem is obtained reversing the Yes
and No answers.

The other important category in Complexity theory is composed of the
functional problems. Functional problems are problems where a single
output, if it exists, is expected for every input value. The output in
functional problems is more complex than the one of a decision problem.

• FP is the class of functional problems that can be solved by a
polynomial time algorithm;

• FNP is the class of functional problems such that there exists an
algorithm that, given a problem instance I and a solution y, can
verify, in polynomial time, whether y is a solution of I.

The relationship between the classes P and NP is fundamental for the
Computational Complexity Theory. A famous conjecture states that
P is properly contained in NP, i.e. P ⊂ NP, and it means that every
problem belonging to P is also in NP. There is no formal proof of this
conjecture and in fact demonstrating if P = NP remains an open ques-
tion in complexity theory. However, it seems more reasonable to operate

7

Chapter 2. State of the Art

under the assumption that P 6= NP. Every decision problem solvable
by a polynomial-time deterministic algorithm is indeed solvable by a
polynomial-time nondeterministic algorithm.

The distinction between P and NP is suggested by the presence of
a subclass of problems in NP, the so called NP-complete problems.
Informally, a decision problem π is NP-Complete if π ∈ NP and for all
other decision problems π′ ∈ NP exists a polynomial time transformation
to π.

2.1.3 Hard problems

In this section, we introduce the notion of NP-hardness. Informally, the
NP-Hard is a class of problems that are at least as hard as the hardest
problems in NP. More precisely, as stated by the following definition, a
problem π is NP-hard when every problem π′ in NP can be reduced in
polynomial time.

Definition 2.5. A problem π is NP-Hard if every problem π′ ∈ NP is
such that π′ ≤P π. 1

The notion of NP-hardness is useful to investigate the complexity of
problems. The following definition presents the relationship between
NP-Complete and NP-Hard classes.

Definition 2.6. A problem π is in NP-Complete if it is in NP-Hard
and belongs to NP.

It is not difficult to see that if a problem is in NP-Hard, then it can not
be solved in polynomial time unless P = NP. It would mean that any
NP or NP-Complete problem can be solved in polynomial time. On the
other hand, proving that does not exist a polynomial algorithm for a
NP-Complete problem implies P6=NP. Despite the fact that the most
widely accepted hypothesis in the literature is that P 6=NP, the question
is still open and the Figure 2.1 shows the two possible relationships.

1notation π′ ≤P π means that problem π is at least as complex as π′.

8

2.2. Introduction to Game Theory

Figure 2.1. Possible relations between P and NP classes.

2.2 Introduction to Game Theory
In this section, we introduce the notions and definitions related to
the Game Theory field. Game Theory is a theoretical framework for
studying strategic interactions among competitive players, who have a
set of possible choices. Initially developed in economics, thanks to its
flexibility and its high level of abstraction of real-life situations, Game
Theory has now a wide range of applications, from mathematics and
political science to biology and psychology. The subject covered is the
analysis of conflict and cooperation in a context in which the result for
a player does not only depend on his own decisions, but also involves
the behavior of other players.

In this section we introduce the formal definition of game, the basic
notion in Game Theory to model highly abstract representation from
real-life situations. Then, we mainly focus on a specific class of games
called Congestion Games.

2.2.1 General notion of game

A game, as defined by Osborne and Rubinstein, is "a description of
strategic interaction that includes the constraints on the actions that
the players can take and the players’ interests, but does not specify
the actions that the players do take (Osborne, Rubinstein, 1994, p. 2).
Players therefore interact with each other and, depending on the chosen
strategy, each player obtains a final outcome which may depend on the

9

Chapter 2. State of the Art

actions of other players. As mentioned, each player has interests and
during the game he tends to act according to them.

Game Theory provides several representations of a game to describe all
the formal aspects involved. We present the normal-form representation,
which is able to capture all the features of simultaneous game, a situation
in which players make their moves simultaneously, making a player
unaware of other players’ moves.

Definition 2.7. The normal-form representation of a game is defined
by a tuple (N, A, U) where :

• N = {1, 2, ..., n} is the set of players;

• A = {A1, A2, ..., An} is the set of action spaces, where Ai =
{a1, a2, ..., ami

} is the set of player i’s actions;

• U = {U1, U2, ..., Un} is the set of utility functions, where Ui :
A1 × A2 × ...× An → R is the utility function of player i.

Players, in the model we consider, are supposed to be rational, in the
sense that they aim at maximizing their utility function, and selfish,
because each player does not care about the effects of his action on
other players.

Now we introduce the fundamental notions of action profile, as a collec-
tion of actions, and strategy in order to describe the behaviour of the
players in a game.

Definition 2.8. Action profile a is a tuple (a1, a2, ..., an) with ai ∈
Ai, containing one action per player. Action profile a−i is a tuple
(a1, a2, ..., ai−1, ai+1, ..., an) with aj ∈ Aj, containing one action per
player, except for player i. We denote by A−i = A1 × A2 × ...× Ai−1 ×
Ai+1 × ...× An the space of a−i.

Definition 2.9. A strategy σi : Ai → [0, 1] with σi ∈ ∆(Ai) is a function
returning the probability with which action ai ∈ Ai is played by player i.
We denote with ∆(·) the simplex over ·.

Similarly as we defined the notion of action profile, a tuple σ =
(σ1, σ2, ..., σn) containing one strategy per player denotes a strategy
profile. A strategy profile completely captures the behavior of all the
the players in the game. It is also important to notice that, given an
action profile, the outcome of a game and the utilities of each player
are universally identified.

10

2.2. Introduction to Game Theory

2.2.2 Congestion Games

Congestion Games is a class of noncooperative games, introduced for
the first time by Robert Rosenthal [16]. In these games, each player is
allowed to choose a subset of global set of available resources, for example
drivers have to choose among different paths to reach a destination.
As the time taken by a driver to reach a destination depends on the
traffic on the road, in a Congestion Game a player cost depends on
the number of the total players using the same resources. Congestion
Games have been an important research area, since they can model
different situations such as scheduling, routing and network design.
The definition of Congestion Game and its basic related notions are
introduced.

Definition 2.10. A Congestion Game is a tuple (N,M, (Ai)i∈N , (cj)j∈M)
where:

• N = {1, 2, ..., n} is the set of players;

• M = {1, 2, ...,m} is the set of resources;

• Aj ⊆ ℘(M) is the set of action of player i, where each action a is
a subset of the set of resources;

• cj : N → R is a function returning the cost related to resource j
when it is used by a given number of players.

We can introduce more notions in order to better define the framework
of Congestion Games: the congestion of a resource, the cost of a player
and the social cost.

Definition 2.11. Given an action profile a ∈ A, the congestion of
resource j, denoted by congj(a), is the number of players using resource
j in a. Formally, congj(a) =

∑
i∈N use(ai, j) where:

use(ai, j) =

{
1 if j ∈ ai,
0 otherwise.

Definition 2.12. The cost of a player i, given action profile a, is
returned by function Ci : A→ R where:

Ci(ai, a−i) =
∑
j∈ai

cj(congj(aj, a−i)).

Definition 2.13. The social cost is given by:∑
i∈N

Ci(a).

11

Chapter 2. State of the Art

The following example helps to understand all the notions we have
introduced.

Example 2.1. Considers the following congestion game:

• N = {1, 2, 3};

• M = {1, 2, 3, 4, 5};

• A1 = A2 = A3 = {{1, 4}, {1, 3, 5}, {2, 5}};

• c1(x) =

2 x = 1

3 x = 2

5 x = 3,

c2(x) =

4 x = 1

6 x = 2

7 x = 3,

c3(x) =

1 x = 1

2 x = 2

8 x = 3,

c4(x) =

2 x = 1

3 x = 2

6 x = 3,

c5(x) =

1 x = 1

5 x = 2.

6 x = 3

The example represents the situation in which there are 3 players moving
from the same source (node A) to the same target (node B). The
graphical interpretation is given in Figure 2.2. The actions available to
the players are all the possible paths connecting source A to target B.
Player 1 and 2 choose actions {1, 3, 5} while player 3 chooses action
{1, 4}. Accordingly to the definition reported above, we have:

• cong1(a) = 3 and cj(a) = 5,

• cong2(a) = 0 and cj(a) = 0,

• cong3(a) = 2 and cj(a) = 2,

• cong4(a) = 1 and cj(a) = 2,

• cong5(a) = 2 and cj(a) = 5.

Furthermore, we have

• C1(a) = 12,

• C2(a) = 12,

• C3(a) = 7.

12

2.3. Information structure design

A

D

C

B

re
so
ur
ce
1

resource
2

resource
4

reso
u
rce

3

re
so
ur
ce
5

Figure 2.2. Example of Congestion Game.

2.3 Information structure design
The analysis of information design problems has been a crucial point
of the recent literature. Information structure design studies how to
influence the behavior of self-interested agents by providing incentives
or by manipulating their beliefs, in order to achieve desired outcomes.
In the present paper we focus on the manipulation of beliefs, which con-
cerns in the selective arrangement of the information provided to agents.
The interaction among agents is modelled as a game of incomplete
information, in which the players have only partial information about
the status of the game and about the other players. The information
structure of a game determines "who knows what" and describes how
the knowledge is distributed among players.
The persuasion, defined as act of exploiting an informational advantage
in order to optimize a given objective, is the main topic studied in
Information structure design.

The technical and conceptual starting point of our research regarding
persuasion is the Bayesian persuasion framework. To introduce the basic
concepts and assumptions, we therefore present the most influential
model in Information structure design, the Bayesian persuasion model
introduced by Kamenica and Gentzkow [6], regarding the problem of
single agent persuasion.

13

Chapter 2. State of the Art

2.3.1 Bayesian persuasion: single agent case

The model proposed by Kamenica and Gentzkow [6] is probably one of
the simplest and most applied in Information structure design. Here
we have two players: a sender and a receiver. In Bayesian persuasion,
we adopt the perspective of the sender looking to persuade the receiver
to take an action that is desirable for the sender himself. The receiver
can choose one action a from a set of actions A and, together with the
state of nature θ, it determines the utilities of both the sender and the
receiver. The state of nature is a parameter, or a set of parameters,
which determines the payoff function of the game. In particular, the
utility of the receiver is specified by the function u : A × Θ → R. In
turn, the utility of the sender is f : A×Θ→ R, which highlights how
the receiver’s choice of the action influence the payoff of the sender. The
states of nature θ is drawn from a finite set Θ of potential realizations
of nature, according to a common prior distribution µ. As in persuasion
more generally, the sender leverage is in his informational advantage, in
his access to the realization of the state of nature, which contributes to
determine the payoff for both sender and receiver.

In the Bayesian persuasion it is assumed that the sender can commit
to a policy, known as signaling scheme, that strategically reveals the
information to the receiver before the realization of the state of nature.
Formally, a signaling scheme φ : Θ→ ∆(Σ), is a mapping from states
of nature Θ to a family of distribution over signals Σ. For θ ∈ Θ,
we denote with φ(θ, σ) the probability that the sender selects signal
σ ∈ Σ after observing the states of nature θ. Given a signaling scheme
φ with Σ set of signals, each signal σ ∈ Σ is realized with probability
Pr(σ) =

∑
θ µ(θ)φ(θ, σ). Upon receiving signal σ, receiver performs a

Bayesian update and infers posterior belief over the state of nature. The
realized state is θ with posterior probability pθ = µθφ(θ, σ)/Pr(σ). The
general interaction between sender and receiver is described by Table ??.

Fundamental purpose in Bayesian persuasion is to find the sender’s
optimal signaling scheme, i.e. the signaling scheme maximizing his
expected utility. A simple revelation-principle style argument built by
Kamenica and Gentzkow [6] shows that there exists an optimal signaling
scheme which is direct and persuasive. A direct signaling scheme means
that each signal σi ∈ Σ can be interpreted as a recommendation to play
action ai ∈ A. The straightforward consequence of the argument is that
|Σ| = |A|. Instead, a signaling scheme is persuasive if the receiver has
no incentive in deviating from the recommended action.

14

2.3. Information structure design

Sender-Receiver interaction

1. The sender commits to a signaling scheme φ;

2. the sender observes the realized state of nature θ ∼ µ;

3. the sender draws a signal σ ∼ Σ and communicates it to
the receiver;

4. the receiver observes the signal σ and rationally updates his
beliefs over Θ according to the Bayes rule;

5. the receiver selects an action maximizing his expected utility.

Table 2.1. Sender-Receiver interaction.

Considering direct and persuasive signaling scheme, it is possible to
write the following linear program (LP) to find the optimal signaling
scheme in Bayesian persuasion with a single receiver.

max
φ(θ,a)

∑
θ∈Θ

µθ
∑
a∈A

φ(θ, a)f(θ, a)

s.t.
∑
θ∈Θ

µθφ(θ, a)(u(θ, a)− u(θ, a′)) ≥ 0 ∀a, a′ ∈ A∑
a∈A

φ(θ, a) = 1 ∀θ ∈ Θ

φ(θ, a) ≥ 0 ∀θ ∈ Θ, a ∈ A

The only variable in this LP is φ(θ, a), for each state of nature θ ∈
Θ and action a ∈ A, that represents the conditional probability of
recommending action a in state of nature θ. Actually, it is not practical
to solve this LP, unless the prior distribution µ is of small support and
given explicitly, but it serves as a useful structural characterization.
The following example illustrates the Bayesian model described above.

Example 2.2. (Dughmi [4])
Consider an academic adviser (the sender) who is writing a recom-
mendation letter (the signal) for her graduating student to send to a
company (the receiver), which in turn must decide whether or not to
hire the student. The adviser gets utility 1 if her student is hired, and
0 otherwise. The state of nature determines the quality of the student,
and hence the company’s utility for hiring the student. Suppose that

15

Chapter 2. State of the Art

the student is excellent with probability 1
3
, and weak with probability 2

3
.

Moreover, the company gets utility 1 for hiring an excellent student,
utility −1 for hiring a weak student and utility 0 for not hiring. Consider
the following signaling schemes:

• No Information: Given no additional information, the company
maximizes his utility by not hiring. The adviser’s expected utility
is 0.

• Full information: Knowing the quality of the student, the company
hires if and only if the student is excellent. The adviser’s expected
utility is 1

3
.

• The optimal (partially informative) scheme: The adviser recom-
mends hiring when the student is excellent, and with probability
just under 0.5 when the student is weak. Otherwise, the adviser
recommends not hiring. The company maximizes his expected
utility by following the recommendation, and the adviser’s expected
utility is just under 2

3
.

2.3.2 Bayesian persuasion: multiple agents

The model proposed by Kamenica and Gentzkow [6] presents the main
principles of the Bayesian persuasion but it has some limitations. Using
the model as a building block for more complex descriptions, the most
interesting development in literature considers a setting which involves
multiple receivers. Clearly, it leads to a more complicated model descrip-
tion, as the interaction between the receivers must be taken into account.
Arieli and Babichenko [12] introduced the so called no-externality as-
sumption to simplify the model. This assumption implies that one
receiver’s action does not impose an externality, making each receiver’s
utility independent from the actions selected by the others. It means
that each receiver’s utility can be written as a function of state of nature
and his own particular action, as in the single-agent persuasion. How-
ever, it is not always possible to rely on the no-externality assumption
and in more realistic contexts the receiver’s payoff can be instead closely
dependent on the actions of other receivers. The sender’s utility, on
the other hand, always depends on the state of nature and the profile
of receiver actions. The case with no externalities is often applied to
voting problems [27].

In multi-receivers setting is possible to have different policies through
which information is distributed, to create asymmetry among the re-

16

2.3. Information structure design

ceivers. The literature has mainly dealt with the following two basic
signaling schemes.

Private signaling scheme: the sender can reveal different informa-
tion to different receivers through a private communication chan-
nel.

Public signaling scheme: all receivers in the game obtain from the
sender the same information through a public communication
channel.

The key difference between the two types of signaling schemes lies in their
different impacts on receivers’ beliefs. Signals from public persuasion
lead to common belief about the unknown state of the world for all
receivers; but signals from private persuasion do not.
We now analyze in detail the two different revelation policies.

2.3.3 Private signaling scheme

A private signaling scheme is a general policy that allows the sender
to reveal privately different information to the receivers. This policy
creates asymmetry of information and coordinate the behaviour of the
receivers, providing more flexibility to the sender.
More formally, a private signaling scheme φ : Θ→ ∆(Σ1 × Σ2...× Σn)
is a map from the set of states of nature Θ to a set of signal pro-
files Σ = Σ1 × Σ2... × Σn, where Σi identifies the signal set of re-
ceiver i. Therefore, the output of a private signaling scheme is a
signal profile σ = (σ1, ..., σn) ∈ Σ where the particular signal σi is
sent to receiver i via a private channel. Given a private signaling
scheme, φ(θ,σ) denotes the probability of selecting the signal profile
σ = (σ1, ..., σn), given the state of nature θ. For each state of nature
θ ∈ Θ and receiver i ∈ [n], each signal σi ∈ Σi is realized with marginal
probability P(σi) =

∑
θ∈Θ µθ φi(θ, σi). Upon receiving signal σi, each

receiver i performs a Bayesian update and infers a posterior belief
piθ = µθφi(θ, σi)/P(σi) over the state of nature θ.
Applying the same argument proposed by Kamenica and Gentzkow [6]
for the single-agent persuasion, it is possible to restrict our attention to
an optimal private signaling scheme which is both direct and persuasive.
As a consequence, each signal profile σ ∈ Σ can be expressed as an action
profile a ∈ A. So, for each receiver i, we denote with Ai his set of actions.

Finally, the sender optimization problem can be computed by the follow-
ing exponentially-large linear program. The notation φ(θ, a) represents
the probability of the sender selecting action profile a in state of nature θ,

17

Chapter 2. State of the Art

while φi(θ, a) denotes the marginal probability of recommending action
a ∈ Ai to receiver i.

max
∑
θ∈Θ

µθ
∑
a∈A

φ(θ, a)f(θ, a)

s.t.
∑

a∈A:ai=a

φ(θ, a) = φi(θ, a) ∀i ∈ N,∀a ∈ Ai,∀θ ∈ Θ∑
θ∈Θ

µθ φi(θ, a)(ui(θ, a)− ui(θ, a′)) ≥ 0 ∀i ∈ N, ∀a, a′ ∈ Ai

∑
a∈A

φ(θ, a) = 1 ∀θ ∈ Θ

φ(θ, a) ≥ 0 ∀θ ∈ Θ,∀a ∈ A

2.3.4 Public signaling scheme

Constraining the sender to communicate through a public communi-
cation channel simplifies considerably the model but introduces some
obvious limitations to the sender’s ability to discriminate between re-
ceivers and correlate their actions. A public signaling scheme π can be
considered as a special type of private signaling scheme in which each
receiver must receive the same signal. Hence, only one public signal is
sent.
Formally, a public signaling scheme π : Θ→ ∆(Σ1×Σ2...×Σn) is a map
from states of nature Θ to distributions over public signals Σ. Given
a public signaling scheme, π(θ, σ) denotes the probability of sending
signal σ ∈ Σ at state of nature θ. Moreover, Pr(σ) =

∑
θ∈Θ π(θ, σ)

indicates the probability with which a receiver receives the signal σ.
Each receiver then performs the same Bayesian update and infers the
same posterior belief pθ = µθπ(θ, σ)/Pr(σ) over the state of nature.
A simple revelation-principle style argument allows us to consider an
optimal public signaling scheme which is direct and persuasive. As a
consequence, each signal profile σ ∈ Σ can be expressed as an action
profile a ∈ A, recommending an action to each receiver.

Finally, the sender’s optimization problem can be expressed as the

18

2.3. Information structure design

following exponentially-large LP.

max
∑
θ∈Θ

µθ
∑
a∈A

π(θ, a)f(θ, a)

s.t.
∑
θ∈Θ

µθ π(θ, a)(ui(θ, ai)− ui(θ, a′)) ≥ 0 ∀i ∈ N,∀a ∈ A, a′ ∈ Ai

∑
a∈A

π(θ, a) = 1 ∀θ ∈ Θ

π(θ, a) ≥ 0 ∀θ ∈ Θ, ∀a ∈ A

The following example illustrates the results from both the revelation
policies.

Example 2.3. (Dughmi [4])
Consider an academic adviser (the sender) who is writing a recommen-
dation letter (the signal) for his student. The student has applied for two
fellowship programs (the receivers), each of which must decide whether
or not to award the student a fellowship funding as part of his graduate
education. Suppose that the student can accept one or both fellowship
awards. The adviser gets utility 1 if his student is awarded at least one
fellowship, and 0 otherwise. A student is excellent with probability 1

3

and weak with probability 2
3
, and a fellowship program gets utility 1 from

awarding an excellent student, −1 for awarding a weak student, and 0
from not awarding the student. Rationally, a fellowship program makes
an award if and only if it believes its expected utility for doing so is non
negative.
Consider the following signaling schemes:

• No Information: Neither program makes the award, and the ad-
viser’s utility is 0.

• Full information: Both programs make the award if the student is
excellent, and neither makes the award if the student is weak. The
adviser’s expected utility is 1

3
.

• Optimal public scheme: If the student is excellent, the adviser
publicy signals ”award”. If the student is weak, the adviser pub-
licy signals ”award” or ”don′t award” with the same probability.
Therefore, both programs are simultaneously persuaded to award
the student the fellowship with probability 2

3
, and neither makes

the award with probability 1
3
. The adviser’s expected utility is 2

3
.

• Optimal private scheme: If the student is excellent, the adviser
recommends ”award” to both fellowship programs. If the student is

19

Chapter 2. State of the Art

weak, the adviser recommends ”award” to one fellowship program
chosen uniformly at random, and recommends ”don′t award” to
the other. The result is that both fellowship programs make the
award when the student is excellent, and exactly one of the pro-
grams makes the award when the student is weak. The utility for
the adviser is then 1.

We can assert that public persuasion is usually more difficult computa-
tionally to deal with [29].

2.4 Algorithms for Linear Programming
After introducing the theoretical notions that help us to define the
problem we are dealing with, this section presents the mathematical
concepts and algorithms that constitute the toolbox for the resolution
of the problem. The literature regarding resolution methods for linear
problems is extremely vast. Specifically, we focus on the definitions
of so-called Ellipsoid Method and its role in developing a polynomial
time algorithm. Then, an overview of the Row-Generation technique to
iteratively solve a mathematical program is proposed.

2.4.1 Ellipsoid Method

The Ellipsoid algorithm for linear programming is a specific application
of the Ellipsoid method, developed for the first time by mathematicians
D. B. Yudin and A. S. Nemirovskii [14] and independently by N. Z. Shor.
Afterwards, Khachiyan [13] adapted the Ellipsoid method to derive a
polynomial-time algorithm for linear programming. In this section the
Ellipsoid algorithm and its importance in developing polynomial time
algorithms for optimization problems is presented.

We focus our attention on a linear optimization problem with a bounded
feasible region. i.e. a polytope P. The problem setting considered by
the Ellipsoid Algorithm is the following:

Given a polytope P ⊆ Rn, find a point x ∈ P, or decide that P = 0
(2.4)

We can assume that P is a full-dimensional polytope. Then, a linear
programming over some full-dimensional polytope Q

maxw>x (2.5a)
x ∈ Q (2.5b)

20

2.4. Algorithms for Linear Programming

can be reduced to finding a point x ∈ P = Q ∩ {w>x ≥ b}.
The main advantage of the Ellipsoid Method, compared to other methods
for linear programming, is that we just need to be able to solve a
definitely simpler sub problem, called the separation problem.
A Separation Problem is defined as following:

Definition 2.14. Given a polytope P ⊆ Rn and a point y ∈ Rn:

• Decide whether y ∈ P , or if it is not true,

• find a non-zero vector c ∈ Rn such that P ⊆ {x ∈ Rn | c>x ≤
c>y}.

A procedure able to solve the separation problem in polynomial time is
known as separation oracle. The formal definition of separation oracle
is given below.

Definition 2.15. A polynomial-time separation oracle for a convex
set P is a procedure which given y, either tells that y ∈ P or returns
an hyperplane that separates y and all of P. The procedure runs in
polynomial time.

Note that an hyperplane is defined as H = {x ∈ Rn | c>x = α} with
c>y ≥ α and P ⊆ {x ∈ Rn | c>x ≤ α}.

The fact that the Ellipsoid Algorithm is based on a separation oracle
allows us to solve in polynomial time many linear programs. As we
see in the next chapters, to solve the Linear Problem considered in the
present work, characterised by an exponential number of constraints, it
was necessary to exploit the Ellipsoid Method by designing a polynomial-
time separation oracle.

2.4.2 Cutting-Planes

A linear program in which the variables are restricted to take integer
values is called integer linear program (ILP). Integer linear problems
are more difficult to solve than linear problems and require specific
algorithms.
An important algorithms category for integer programming problems is
the exact algorithms. Exact algorithms guarantee to find an optimal
solution for the problem, with the disadvantage that they may need an
exponential number of steps. The Cutting-Planes algorithm belongs to
the exact algorithms class.

21

Chapter 2. State of the Art

The idea behind the Cutting-Planes algorithm is to iteratively cut off
parts of the feasible region adding valid inequalities to the LP relaxation.
The optimal solution will eventually become and extreme point an found
by a polynomial-time algorithm.
Given an integer programming problem ILP = max{cTx | Ax ≤ b, x ∈
Zn}, and its continuous relaxation LP = max{cTx | Ax ≤ b, x ∈ Rn} a
generic cutting plane algorithm is defines as follows:

1. solve the linear programming relaxation LP. Let x∗ be an optimal
solution;

2. if x∗ is integer, stop. x∗ is an optimal solution to ILP; otherwise,

3. add a linear inequality constraint to LP that all integer solutions
in ILP satisfy, but x∗ does not; go to Step 1;

2.4.3 Row Generation

The LP relaxation becomes intractable as the number of constraints
grows. Then, the Cutting-Planes algorithm can be generalized to solve
LP problems with a large number of constraints (e.g. exponential).
This generalization is named dynamic constraint generation or Row
Generation.
Intuitively, Row Generation is a classical technique to solve a mathemat-
ical program by iteratively adding a limited number of constraints to
the model. The idea underelying row generation is that typically, only
a subset of the original set of constraints is needed to prove optimality.
Row generation algorithm is described by the following steps:

1. initialize reduced master problem RMP Ãx ≤ b̃ with a limited
subset of constraints Ax ≤ b;

2. solve the LP associated to the reduced master problem RMP =
max{cTx | Ãx ≤ b̃, x ∈ Rn} and obtain x*;

3. if x* satisfies all constraints in Ax ≤ b, stop; otherwise add a
violated constrain, or a set of violated constraints, to Ax ≤ b and
go to Step 2;

Figure 2.3 outlines the typical flow of a Row Generation algorithm.
Iteratively, only those constraints that are violated by the current
solution are added to the model. The Step 3 has the task of testing
the feasibility of the optimal solution x* of the reduced master problem.
Subsequently, we have to identify the violated constraints or prove that

22

2.4. Algorithms for Linear Programming

there are no more violated constraints. This step is the most important
and it is what we called separation problem.
In circumstances when, for example, the number of constraints is ex-
ponentially large, it is not possible to enumerate all the constraints
explicitly and check them one by one. So we need to formulate the
separation problem as an LP, or more likely as and ILP. The idea of
solving an ILP in an algorithm to solve a LP is common in literature
and efficient in practice. We describe in detail the procedure and its
relationship to our implementation in the next chapters.

Start Initialize
RMP Solve RMP

Does x*
satisfy
all con-
straints?

Add violated
constraints
to RMP

Stop

yes

no

Figure 2.3. The flow of Row Generation algorithm.

23

Chapter 3

Research Problem

In the previous chapter, we presented and analyzed the properties of
Bayesian Framework and Congestion Games, along with Linear Pro-
gramming mathematical tools. Here, our research problem is introduced.

Our aim is to study the signaling scheme in the Bayesian persuasion
framework applied to a specific class of Congestion Games, the Bayesian
Network Congestion Games (BNCG). In particular, we are interested
in studying the computation of optimal ex ante persuasive signaling
scheme in symmetric BNCG with affine cost functions, in polynomial
time.

First, an introduction of the formal definitions and notations of Bayesian
Network Congestion Game is proposed. Then, we present the networks
setting assumptions in which we work. Finally, the problem of signaling
scheme in BNCGs is exposed along with an example.

3.1 Bayesian Network Congestion Games
We start by introducing a special class of Congestion Games. Network
Congestion Games (NCGs) are a model to study multi-agent strategic
interactions, in which the resources correspond to simple paths in a
graph, e.g. routing options from a source to a destination.
Intuitively, each player chooses a set of transitions, forming a simple
path from a source state to a target state and the cost of a transition
increases with the number of players using it. The players selfishly seek
to minimize their costs in crossing the network.
Network Congestion Games are very popular, due to their important
practical applications, as in the transportation or communication net-
works.

25

Chapter 3. Research Problem

In real-world problems, however, the state of the network is typically
uncertain and unknown to the players (e.g. drivers may not be aware of
road works and accidents in a road network). To represent uncertainty
in the network, the Bayesian Network Congestion Games (BNCGs)
model is introduced.

The BNCGs model is based on the Bayesian persuasion framework
proposed by Kamenica and Gentzkow [6]. Here, a sender, for example a
third-party entity, is informed about the realized state of the network
and he is able to commit to a signaling scheme, which is a map from
network states to action recommendations (i.e. routes suggestions) for
the players. The distinctive feature in a BNCG is that the route costs
are affected by a random network state.

The formal definition of Bayesian Network Congestion Game is given
below.

Definition 3.1. A Bayesian Network Congestion Game is defined as a
tuple (N, G, Θ, µ, {ce,θ}e∈E,θ∈θ, {(sp, tp)}p∈N), where:

• N := {1, ..., n} denotes the set of players;

• G := (V, E) is the directed graph underlying the game. In partic-
ular, V denotes the set of nodes and e = (v, v′) ∈ E represents a
directed edge from v to v′;

• Θ is the finite set of states of nature;

• µ encodes the prior belief that the players have over the states of
nature. In particular µ ∈ int(∆Θ) is a fully-supported probability
distribution over the set Θ, with µθ denoting the prior probability
that state of nature is θ ∈ Θ;

• {ce,θ}e∈E,θ∈Θ are the edge costs, which each ce,θ : N × Θ → R+

defining the cost of edge e ∈ E as a function of the number of
players passing through e and the state of nature θ drawn from
the set Θ;

• {(sp, tp)}p∈N with sp, tp ∈ V , denote the source-destination pairs
for all the players.

Further mathematical notation is introduced to describe more accurately
Bayesian Network Congestion Games. Formally, Ap defines the set of
actions available to player p ∈ N , i.e. the set of all directed paths from

26

3.2. Assumptions on BNCGs

sp to tp in graph G. Accordingly, ap ∈ Ap indicates a player p’s path
and we write e ∈ ap if the path contains the specific edge e.

In BNCGs, an action profile a ∈ A, where A := ×p∈NAp, is a tuple of
sp-tp directed paths ap ∈ Ap, one per player p ∈ N . We define the edge
congestion fea as the number of players selecting a path passing through
the same edge e in action profile a. Formally, fea := |{p ∈ N | e ∈ ap}.
Hence, the expression ce(fea) denotes the cost of edge e in action profile
a. Finally, the costs experienced by a player p ∈ N in an action profile
a ∈ A in a state of nature θ ∈ Θ is computed as cp,θ :=

∑
e∈ap ce,θ(fe

a).
We can easily see that the cost experienced by one player also depends
on the number of other players that use the same edge in the same
action profile, so the no externality assumption, as defined in Section
2.3.2 is not longer valid in BNCGs. The action taken by a player affects
the final outcome of the other players.

3.2 Assumptions on BNCGs
Since the no externality assumption is no longer valid in BNCGs, in
this section we present crucial properties to deal with the problem
of computing optimal signaling schemes. We focus our attention to
symmetric BNCGs with affine cost functions.

Symmetric BNCGs: it implies that the source sp and the destination
tp in the graph G are the same for all the players. As a consequence,
all the players have the same set of actions (i.e. paths).

Affine costs: it means that for all e ∈ E and θ ∈ Θ, there exist
constants αe,θ, βe,θ ∈ R+ such that the edge cost function can
be expressed as ce,θ(fea) := αe,θfe

a + βe,θ. It has been proved
by Vasserman, Feldman, and Hassidim [22] that this assumption
is reasonable in many applications and the problem is trivially
NP-Hard when generic costs are allowed.

The symmetric assumption is crucial since it has been proved by Cas-
tiglioni, Celli, Marchesi and Gatti [4] that computing an optimal ex
ante persuasive signaling scheme in asymmetric BNCGs is NP-Hard.
We focus also on the notion of ex ante persuasiveness, as defined by
Celli, Gatti and Coniglio [5]. This setting requires that receivers are
encouraged to follow the sender’s recommendations by only observing
the signaling scheme.
The formal definition of ex ante persuasive signaling scheme is given in
the following page.

27

Chapter 3. Research Problem

Definition 3.2. A signaling scheme φ : Θ→ ∆A is ex ante persuasive
if, for each p ∈ N and ap ∈ Ap, it holds:∑

θ∈Θ

µθ
∑

a′=(a′p,a−p)∈A

φθ,a′
(
cp,θ(ap, a−p)− cp,θ(a′)

)
≥ 0

The notion of ex ante persuasiveness has been introduced to computa-
tionally approach problems. In fact, the classical notion of ex interim
persuasiveness, which allows the receivers to deviate after observing
the sender’s signal, leads to computationally intractable problems most
of the time. The ex-ante assumption, as argued by Kamenica and
Gentzkow [6], is not unrealistic and in our setting we suppose that each
receiver decides to either follow the signal or act based on his prior
belief about the network state.

3.3 Signaling in BNCGs
Deriving from the Bayesian Persuasion framework proposed by Kamenica
and Gentzkow [6], in BNCGs we have a informed sender, which has
access to the realized state of nature, trying to influence the behaviour
of the multiple receivers. The sender can commit to a signaling scheme
φ : Θ→ ∆A that maps the realized state of nature to a signal for each
player. By exploiting private communication channels, it is possible
for the sender to send different signals to each player, i.e. suggest
different path routes to the receivers. We are particularly interested
in the possibilities of an informer to reduce social cost by distributing
information to the receivers, who update their beliefs rationally. The
optimal signaling scheme has this role and its computation in polynomial
time is the main problem we deal in the present work.
In BNCGs, the probability of recommending an action profile a ∈ A
given the state of nature θ ∈ Θ is denoted by φθ,a. Being a probability
distribution over action profiles, it holds that

∑
a∈A φθ,a = 1 for each

θ ∈ Θ. After observing the state of nature θ ∈ Θ, the sender draws an
action profile a ∈ A according to φθ,a and recommends ap to each player
p ∈ N .
Formally, a sender’s optimal ex ante persuasive signaling scheme φ∗ is
a signaling scheme minimizing the expected social cost of the solution,
i.e.:

φ∗ ∈ arg min
φ

∑
θ∈Θ

µθ
∑
a∈A

φθ,a
∑
p∈N

cp,θ(a).

The following example illustrates the interaction flow between the sender
and the receivers in a simple Bayesian Network Congestion Game.

28

3.3. Signaling in BNCGs

Example 3.1. (Castiglioni, Celli, Marchesi, Gatti [4]).
Figure 3.1 (Up) describes a simple BNCG modeling road network between
the JFK International Airport (node s), and Manhattan (node t). It is
late at night and three lone researchers have to reach the AAAI venue.
They are following navigation instructions from the same application,
whose provider (the sender) has access to the current state of the roads
(node A and node B, respectively) Roads costs (i.e. travel times) are
depicted in Figure 3.1 (Up). In normal conditions (state θ0), road B
is extremely fast (αB = 1 and βB = 0). However, it requires frequent
road works for maintenance (state θ1), which increase the travel time.
Moreover, it holds µθ0 = µθ1 = 1/2. The interaction between the sender
and three receivers goes as follow:

(i) the sender commits to a signaling scheme φ;

(ii) the receivers observe φ and decide whether to adhere to the navi-
gation system or not;

(iii) the sender observes the realized state of nature and exploits his
knowledge to compute recommendations.

Figure 3.1 (Bottom) describes and ex ante persuasive signaling scheme.
In this case, when the state of nature is θ1, one of the receivers is
randomly selected to take road B, even if it is undergoing maintenance.
In expectation, following sender’s recommendations is strictly better than
congesting road A.

s t

αA = 30 βA = 30

αB,θ0 = 1 βB,θ0 = 0
αB,θ1 = 0 βB,θ1 = 100

Signals
(B, B, B) (A, A, B) (A, B, A) (B, A, A)

θ0 1 0 0 0
θ1 0 1/3 1/3 1/3

Figure 3.1. Example of BNCG.

Figure 3.1: Up: BNCG for Example 3.1. Bottom: An ex ante persuasive
signaling scheme for the case with n = 3. The table shows only those
a ∈ A such that φθ,a > 0 for some state of nature θ ∈ Θ = {θ0, θ1}. The

29

Chapter 3. Research Problem

table shows only action profile a ∈ A such that φθ,a ≥ 0.

In the next chapter, we analyze the algorithm developed in order to
efficiently compute an ex ante persuasive signaling scheme in symmetric
BNCGs with affine costs.

30

Chapter 4

Algorithm Overview

This section presents the mathematical and theoretical foundation of
our work. We examine in detail each aspect of the algorithm designed
by Castiglioni, Celli, Marchesi and Gatti [4] in order to efficiently com-
pute an optimal ex ante persuasive signaling schemes in BNCGs, under
the assumptions of symmetry and affine costs. This algorithm, which
represents the theoretical basis for our contribution in the present work,
is analyzed step by step.

Firstly, a formulation of the problem as a Linear Problem (LP) is consid-
ered. Then, we propose the description of how the Ellipsoid method has
been applied to the corresponding Dual Problem, to retrieve a solution
in polynomial time. The purpose-designed polynomial time separation
oracle to solve the separation problem is presented. The mathematical
formulation of the problem is the basis of its implementation, which is
the subject of the next chapter.

4.1 LP formulation
Our aim is to compute in polynomial time an optimal ex ante persuasive
signaling scheme in symmetric BNCGs with affine cost functions. The
most straightforward approach is to define a Linear Programming (LP)
formulation of the problem. For the formulation, we rely on the notation
we exposed in the previous chapter. The Problem (4.1), which we refer
to as Primal Problem in our work, is given in the next page.
For the clearness of LP formulation, notation I{e/∈ap} denotes the Indi-
cator, a function defined such that it holds I{e/∈ap} = 1 if e /∈ ap, and
I{e/∈ap} = 0 otherwise. We present each aspect of the demostration to
prove the possibility of computing a solution to the problem in polyno-
mial time.

31

Chapter 4. Algorithm Overview

Lemma 1. Given a symmetric BNCG, an optimal ex ante persuasive
signaling scheme φ can be found by the following LP:

LP - Primal Problem

min
φ≥0,x

∑
θ∈Θ

µθ
∑
a∈A

φθ,a
∑
p∈N

cp,θ(a) (4.1a)

s.t.
∑
θ∈Θ

µθ
∑
a∈A

cp,θ(a)φθ,a ≤ xp,s ∀p ∈ N

(4.1b)

xp,s ≤
∑
θ∈Θ

µθ
∑
a∈A

ce,θ(fe
a + I{e/∈ap})φθ,a + xp,v′

∀p ∈ N, ∀e = (v, v′) ∈ E
(4.1c)

xp,t = 0 ∀p ∈ N
(4.1d)∑

a∈A

φθ,a = 1 ∀θ ∈ Θ

(4.1e)

Proof: Objective (4.1a) is equivalent to minimizing the social cost while
Constraints (4.1e) imply that φ is well formed. The set of Constraints
(4.1b) implements ex ante persuasiveness for every player p ∈ N . In
particular, the left-hand side expression represents player p’s expected
cost, while variable xp,s is the cost of her best deviation, a cost mini-
mizing path given µ and φ. This is ensured by Constraints (4.1c) and
(4.1d). The former guarantees that xp,v is the minimum cost of a path
from a node v ∈ V \ {t} to target t. This is shown by noticing that,
given xp,t = 0 such costs can be inductively defined as:

min
v′∈V : e=(v,v′)∈E

{∑
θ∈Θ

µθ
∑
a∈A

ce,θ(fe
a + I{e/∈ap})φθ,a + xp,v′

}
,

where fea + I{e/∈ap} stands for the fact that the congestion of edge e
must be incremented by one player if the player p does not select a path
containing e in the action profile a.

Since the set |A| of action profiles is exponential in the size of the
game, the Primal Problem admits polynomially many constraints and

32

4.1. LP formulation

an exponential number of variables. This makes the problem intractable
as it is proposed. Therefore, the next step in the description of the
process is to provide the dual of Problem (4.1). We can easily derive the
Dual Problem (4.3) using the principles of LP duality, by introducing
the variables yp (for p ∈ N), yp,e (for p ∈ N and e ∈ E), yp,t (for p ∈ N),
and yθ (for θ ∈ Θ) respectively for Constraints (4.1b), (4.1c), (4.1d) and
(4.1e).

Lemma 2. The corresponding Dual Problem of Problem (4.1) is given
by the following LP:

LP - Dual Problem

max
y

∑
θ∈Θ

yθ (4.3a)

s.t. µθ

(∑
p∈N

cp,θ(a)yp −
∑
p∈N

∑
e∈E

ce,θ(fe
a + I{e/∈ap})

)
yp,e

+ yθ ≤ µθ
∑
p∈N

cp,θ(a) ∀θ ∈ Θ,∀a ∈ A (4.3b)∑
v′∈V :e=(v,v′)∈E

yp,e −
∑

v′∈V :e=(v′,v)∈E

yp,e = 0

∀p ∈ N,∀v ∈ V \ {s, t}
(4.3c)∑

v∈V :e=(s,v)∈E

yp,e − yp = 0 ∀p ∈ N (4.3d)

yp,t −
∑

v∈V :e=(v,t)∈E

yp,e = 0 ∀p ∈ N (4.3e)

yp ≤ 0 ∀p ∈ N (4.3f)
yp,e ≤ 0 ∀p ∈ N,∀e ∈ E (4.3g)

As it follows from the LP duality, Dual Problem (4.3) admits polyno-
mially many variables and exponentially many constraints. To find an
optimal solution in polynomial time for the Problem (4.3) is necessary to
exploit the Ellipsoid algorithm. The procedure requires an appropriate
polynomial-separation oracle to solve the separation problem. Since the
exponential number of constraints of Problem (4.3), a polynomial-time
separation oracle was not available and it has been specifically designed

33

Chapter 4. Algorithm Overview

by Castiglioni, Celli, Marchesi and Gatti [4]. In particular, it has been
proved that, exploiting the symmetry and affine costs assumptions in
BNCGs, Problem (4.3) always admits an optimal player-symmetric so-
lution. A player symmetric solution is a vector y such that, for each pair
of players p, q ∈ N , it holds that yp = yq, yp,e = yq,e for all e ∈ E, and
yp,t = yq,t. We can therefore restrict our attention to player-symmetric
vectors in the definition of a separation oracle for Dual Problem.

Lemma 3. Dual Problem (4.3) always admits an optimal player sym-
metric solution.

Proof : Given any optimal solution y to Problem (4.3), we can always
recover, in polynomial time, a player-symmetric optimal solution ỹ.
Specifically, for every player p ∈ N , let ỹp =

∑
p∈N yp

n
, ỹp,e =

∑
p∈N yp,e

n
for

all e ∈ E, and ỹp,t =
∑

p∈N yp,t

n
, while ỹθ = yθ for every θ ∈ Θ. Let us

remark that ỹ is player symmetric since: (i) for every e ∈ E, it holds
that ỹp,e = ỹq,e for each pair of players p, q ∈ N ; and (ii) ỹp = ỹq and
ỹp,t = ỹq,t for each p, q ∈ N . First, we can notice that y and ỹ provide
the same objective value, as ỹθ = yθ for every θ ∈ Θ. Thus, we only
need to prove that ỹ satisfies all the constraints of Problem (4.3). For
a ∈ A and i ∈ [n], let us denote with πi(a) an action profile a′ ∈ A
such that a′p = a((p+1) mod n), i.e. a permutation of a in which each
player p ∈ N takes on the role of player (p+ 1) mod n. Moreover, let
π(a) :=

⋃
i∈[n] πi(a). Constraints (4.3b) are satisfied by ỹ, since, for

every θ ∈ Θ and a ∈ A, it holds:

µθ

(∑
p∈N

cp,θ(a)ỹp −
∑
p∈N

∑
e∈E

ce,θ(fe
a + I{e/∈ap})ỹp,e

)
+ ỹθ

=
1

n

∑
a′∈π(a)

µθ

(∑
p∈N

cp,θ(a
′)yp −

∑
p∈N

∑
e∈E

ce,θ(fe
a′ + I{e/∈a′p})yp,e

)
+ yθ

≤ 1

n

∑
a′∈π(a)

µθ
∑
p∈N

cp,θ(a
′) = µθ

∑
p∈N

cp,θ(a).

Similar arguments show that ỹ satisfies all the other constraints, con-
cluding the proof.

4.2 Separation oracle
In this section, we present and analyze the separation-oracle designed
to compute solutions for the Dual Problem (4.3) in polynomial time.

34

4.2. Separation oracle

Formally, a polynomial-time separation oracle for Dual Problem (4.3) is
a procedure that, given a vector y of dual variables, it establishes if y is
feasible or not. If variable y is not feasible, then the oracle outputs an
hyperplane separating y from the feasible region.

Considering the Dual Problem (4.3), we notice that any polynomial-time
separation oracle is able to check explicitly if the vector y of dual variable
satisfies the sets of Constraint (4.3c), (4.3d), (4.3e), (4.3f) and (4.3g).
In fact, the number of constraints of these sets is linear in the number
of the players N in the game, and, for set (4.3c), in the number of
nodes v ∈ V \ {s, t}. It permits to focus our attention to the separation
problem associated with the exponentially many Constraints set (4.3b).
Specifically, the separation oracle in which we are interested is the one
that generates constraints from set (4.3b), violated by solution y of
Dual Problem (4.3). This procedure allows us to generate only those
constraints that are actually useful to solve the problem. Exploiting the
row-generation algorithm is possible to iteratively populate this subset
of the only significant constraints to resolve the Dual Problem.
The separation problem restricted to the exponenatially many set Con-
straints (4.3b), can be formulated as stated in the following lemma.

Lemma 4. Given a player-symmetric solution y, solving the separation
problem for Constraints (4.3b) amounts to finding θ ∈ Θ and a ∈ A that
are optimal for the following problem:

min
θ∈Θ,a∈A

µθ

(
(1− ȳ)

∑
p∈N

cp,θ(a)−
∑
p∈N

∑
e∈E

ce,θ(fe
a + I{e/∈ap})ȳe

)
− yθ,

(4.5)

where we set ȳ = y1 and ȳe = y1,e for all e ∈ E.
It has been proved by Castiglioni, Celli, Marchesi and Gatti [4] that the
separation problem (4.5) can be equivalently formulated by avoiding the
minimization over the exponentially-seized set A. The underlying idea is
that, for a fixed θ ∈ Θ, it is possible to exploit the symmetry assumption
of BNCGs to represent action profiles a ∈ A as integer vectors qe ∈ [n],
which represent the edge congestion for all e ∈ E, i.e. the number of
players choosing edge e. This leads to the following lemma.

Lemma 5. Problem (4.5) can be formulated as minθ∈Θχ(θ) where χ(θ)
is the optimal value obtained solving of the following problem:

35

Chapter 4. Algorithm Overview

min
q∈Z|E|+

(1− ȳ)
∑
e∈E

αe,θq
2
e + βe,θqe −

∑
e∈E

ȳe

(
nαe,θqe + (n− qe)αe,θ + nβe,θ

)
(4.6a)

s.t.
∑

v∈V :e=(s,v)∈E

qe = n (4.6b)

∑
v∈V :e=(v,t)∈E

qe = n (4.6c)

∑
v′∈V :e=(v′,v)∈E

qe =
∑

v′∈V :e=(v,v′)∈E

qe ∀v ∈ V \ {s, t}.

(4.6d)

Proof : First, given a state θ ∈ Θ, Problem (4.5) reduces to computing
χ(θ) := mina∈A(1 − ȳ)

∑
p∈N cp,θ(a) −

∑
p∈N

∑
e∈E ce,θ(fe

a + I{e/∈ap})ȳe,
where the function to be minimized only depends on the number of
players selecting each edge e ∈ E in a, rather than the identity of
the players who are choosing e, since they are symmetric. Letting
qe ∈ [n] be the congestion level of edge e ∈ E and using the affine costs
ce,θ = αe,θqe + βe,θ, it holds

∑
p∈N cp,θ(a) =

∑
e∈E αe,θq

2
e + βe,θqe, and,

for every e ∈ E,
∑

p∈N ce,θ(fe
a + I{e/∈ap}) = nαe,θqe + (n− qe)αe,θ +nβe,θ.

This gives Objective (4.6a). Moreover, Constraints (4.6b), (4.6c) and
(4.6d) ensure that q is well defined.

4.3 Min-cost flow problem
The next step is to compute an optimal integer solution for Problem
(4.6). This is necessary in order to find a violated constraint for a given
solution y and recover an action profile a from q. Reducing Problem
(4.6) to an instance of integer min-cost flow problem allows us to find
an optimal solution in polynomial time. The intuition is that we can
consider a modified version of the original graph G = (V,E) in which
each original edge e ∈ E is replaced with n parallel edges between the
same pair of nodes, with unit capacity and increasing unit costs. This
is possible since Objective (4.6a) is a convex function of q, which is
guaranteed by the assumption of affine costs.

Lemma 6. An optimal integer solution to Problem (4.6) can be found
in polynomial time by solving a suitably defined instance of min-cost
flow problem.

36

4.3. Min-cost flow problem

Proof : First, notice that Objective (4.6a) is a sum edge costs, in which
the cost of each edge e ∈ E is a convex function of the edge congestion qe,
as the only quadratic term in the expression is (1− ȳ)αe,θq

2
e , where the

multiplying coefficient is always positive, given ȳ ≤ 0 and αe,θ ≥ 0. This
allow us to formulate Problem (4.6) as an instance of integer min-cost
flow problem. We build a new graph where each e ∈ E is replaced with
n parallel edges, denoted by ei for i ∈ [n]. We need also to introduce
some extra notation. Let’s define:

g(e, i) := (1− ȳ)(αe,θi
2 + βei)− ȳe(nαe,θi+ (n− 1)αe,θ + nβe,θ)

∀e ∈ E, i ∈ [n].

Each new edge ei introduced in the modified version of the graph has
unit capacity and a per-unit cost equal to:

δ(ei) := g(e, i)− g(e, i− 1).

Finding a solution for the integer min-cost flow problem in the modified
graph is equivalent to minimizing Objective (4.6a). Since the original
edge costs are convex, it holds δ(ei) ≥ δ(ej) for all j < i ∈ [n]. Thus,
an edge ei is used (i.e. it carries a unit of flow) only if all the edges
ej for j < i ∈ [n], are already used. Exploiting this idea, we can
recover an integer vector q from a solution to the min-cost flow problem
in polynomial time by solving its LP relaxation. This leads us to
the main result proposed by Castiglioni, Celli, Marchesi and Gatti [4]
which guarantees to find an optimal solution in polynomial time to our
problem.

Theorem 1. Given a symmetric BNCG, an optimal ex-ante persuasive
signaling scheme can be computed in polynomial time.

Proof : The algorithm applies the ellipsoid algorithm to Problem (4.3).
At each iteration, we require that the vector of dual variables y given to
the separation oracle be player-symmetric, which can be easily obtained
by applying the symmetrization technique introduced in the proof of
Lemma 3. The separation oracle needs to solve an instance of integer
min-cost flow problem for every θ ∈ Θ. An integer solution is required
in order to be able to identify a violated constraint. Finally, the polyno-
mially many violated constraints generated by the ellipsoid algorithm
can be used to compute an optimal φ.

In the next chapter, we present the implementation of the described
algorithm.

37

Chapter 5

Algorithm Implementation

In the previous chapter we analyzed from a theoretical point of view the
problem of computing an optimal ex-ante persuasive signaling scheme
in polynomial time for symmetric BNCGs, under the assumption of
affine costs.

The aim of the present chapter is to show how we implemented the
algorithm to pratically solve the problem and output a solution. The
algorithm has been implemented in the Python programming language.
The Linear Problems have been solved by Gurobi optimization solver [9],
interfaced with our code through the Python module gurobipy [10].

In the first section, we discuss how we implemented a generic instance
of a BNCG. Then, we present the method we used to write and solve
the Linear programming problems in our project. Finally, we describe
in detail each step of the algorithm and its implementation.

5.1 Graph Instance Generation
We start by focusing on the main elements of the problem. A Jupyter
Notebook script named TestGenerator was developed in Python lan-
guage in order to generate a random directed graph G = (V, E) as
a collections of nodes along with the identified pairs of edges. The
generated graph is then used as an network instance in a BNCG.

To generate a random graph, we relied as a starting point on the
Python package called NetworkX [15]. NetworkX is a powerful tool for
the creation, manipulation and study of complex networks in Python
language, that provides network structures and methods which we can
work on. Using this package, a graph G in our code is implemented as

39

Chapter 5. Algorithm Implementation

an instance of the NetworkX class DiGraph, a base class representing
directed networks, which stores nodes and edges with optional data.
On the other hand, NetworkX has some limits when we want to generate
a graph for a Bayesian Network Congestion Game, in particular a graph
in which there are a source and a target nodes, and there are only
paths connecting these nodes. The way to proceed is therefore to com-
bine the tools NetworkX offers us with functions designed on purpose.
Specifically, NetworkX provides the function random_k_out_graph(),
a directed graph generator which takes as input the number n of nodes
of the returned graph, the out-degree k of each node and a parameter
alpha representing the initial weight of each node. Then, the function
outputs a random directed network, generated accordingly to the al-
gorithm specified in the documentation [15] and by the input parameters.

The resulting graph does not yet meet the criteria for use in a BNCG,
since it is just a random directed graph, without any specific source and
destination pair nodes. The graph is then passed to a function called
build_graph(), which takes as input also an integer number indicating
the length of the minimum path desired in the final graph. In this way
all the paths from the source and destination have a number of edges
greater or equal than the length indicated. The function build_graph()
has the task of identifying a pair of two nodes in the input graph, such
that the minimum path linking them has a length greater or equal than
the one specified as input. If no such path exists between any pair
of nodes in the input graph, a new graph with new parameters must
be generated. If two such nodes exist, then the subgraph consisting
of all nodes and edges on a path between them is returned. This two
nodes are label as the source s and the destination t in the network
that is used as a base to implement an instance of Bayesian Network
Congestion Game. Finally, we provide the possibility to save the graph
instance in a .pickle file.

5.2 Problem Instance Generation
This section analyses the implementation of a generic instance of
Bayesian Network Congestion Game. We have implemented in Python
some functions that take care of creating all the aspects of a BNCG.
We start by creating or loading a graph. For the first option we can use
the Jupyter Notebook script TestGenerator, described in the previous
section, that generates a random directed graph with paths from a
source s to a target t. For the second option, we use files .pickle, a
binary serialization format used to store data in our project.

40

5.3. Generic LP Implementation

We present here how we defined in Python the elements of a BNCG,
that are used by the algorithm to compute an optimal signaling scheme.

• State of nature Θ: it is simply an integer value denoting the
number of states of nature in the game;

• probability distribution µ: it is a list of float values, one for each θ ∈
Θ, which represent probability values provided by the implemented
method called gen_probability_distribution() from the Dirichlet
distribution;

• players N : it is simply an integer value denoting the number of
players participating in the game;

• affine values α, β: they are random integer values generated
between 1 and 5, including external values, for each edge e ∈ E
and for each θ ∈ Θ. They are stored in Python dictionaries, keyed
by edge e and state θ.

We remind that the costs of an edge e ∈ E in a BNCG with affine cost
functions, is given by the result of ce,θ(fea) := αe,θfe

a + βe,θ. As we see
in the next section, the value fea, which indicates the congestion of edge
e in action profile a, is dynamically provided during the execution of the
algorithm by the resolution of the Dual Problem. The same reasoning
applies to cost experienced by a player p ∈ N in an action profile a ∈ A
in a state of nature θ, which is computed as cp,θ :=

∑
e∈ap ce,θ(fe

a). This
happens because, of course, at the time of generation of a BNCG, the
edges are no populated by the players. We simply initialise in our code
an empty dictionary edge_cong() keyed by the edge e and state of
nature θ for the edges congestion. Same for the dictionary edge_costs(),
related to the costs. We describe in the next section how these values
are retrieved.

All the data produced will be used by the solver and are saved in a
.pickle file, so that it is possible to create a benchmark to evaluate the
efficiency of the implemented algorithm.

5.3 Generic LP Implementation
This section describes how to implement a generic LP that will be
solved by the Gurobi optimization solver. The Gurobi Python interface
gurobipy provides us all the tools to create and solve one or more linear
programming problems in our work using Python.

41

Chapter 5. Algorithm Implementation

The Figure 5.1 shows the typical structure to follow and the provided
methods to build a model instance in gurobipy environment.

Model Generator Best Practices

• For performance reasons we recommend the following structure when building a model instance
with the Gurobi Python API:

• The Python API supports (linear and quadratic) expressions similar to the mathematical notation:

Copyright 2017, Gurobi Optimization, Inc. 17

Create all
variable
objects

Set
objective
function(s)

Create
constraints

Run
optimization

addVar()

addVars()
setObjective()

addConstr()

addConstrs()
optimize()

2*x + (1/2)*y <= 10

Figure 5.1. Basic structure in building a model with Guropi Python API.

As we see from Figure 5.1, gurobipy module allows us to consider and
implement the separated elements in a model, making it easy to write
and read the Linear Problem. The implementation of a model in Gurobi
is quite clear straightforward, and all the aspect of the implementation
are here analyzed.
The following elements are the main parts in creating a model:

• variables : these are the decision variables of the model. Methods
addVar() and addVars() are used to add one or multiple variables
to our model;

• objective function: the mathematical function of the model that
the solver will try to optimize. The function setObjective() is used
to express the objective function of the model and specify the op-
timization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE
for maximization);

• constraints: the set of functional equalities or inequalities that
the solver must consider in its optimisation procedure. To add
one or multiple constraints to our model, we use addConstr() and
addConstrs();

• optimization: the function optimize() runs the optimization of the
model.

By following this scheme, we are able to write and resolve a LP in
gurobipy setting.

5.4 Algorithm Implementation
Let us focusing on the specific implementation of the algorithm, the
main part of our work. We based the resolution of the linear problems on
Gurobi [9], a powerful and well-known commercial optimization solver

42

5.4. Algorithm Implementation

for, among others, linear programming. To adapt the Gurobi interface
to our Python code, we relied on Python module gurobipy.

We start by introducing the specific structure of the Dual Problem
as a LP in gurobipy. Then, it is presented the implementation of
the separation oracle with the row-generation algorithm applied to our
project. Finally, we show how to retrieve, using the data previously
computed, an optimal ex ante signaling scheme in polynomial time by
resolving the Primal Problem.

5.4.1 Implementing the Dual Problem

Let us now describe how the algorithm for computing an optimal ex-
ante persuasive signaling scheme in polynomial time for a BNCG was
implemented.
The solver was entirely implemented using Jupyter Notebook, a web
application that allows us to create and share documents that contain
equation, data, visualizations and more. The Jupyter Notebook envi-
ronment supports different programming languages, including Python
and it can produce a single file for the solver with the extension .py.
For the initialization, the solver reads the data of the Bayesian Network
Congestion Game instance, generated as described in previous section.
The implementation and the resolution of the Dual Problem is described
by the following steps:

1. the solver reads the data from the Bayesian Network Congestion
Game file;

2. a partial LP model of the Dual Problem is generated. In particular
set of Constraints (4.3b) is empty;

3. purpose generated constraints are added to set (4.3b) by consider-
ing a generic action profile a. Edge costs ce,θ and paths costs cp,θ
are computed;

4. the optimization of Dual Problem is run. A symmetric solution ȳ
is retrieved;

5. a modified version of the graph G = (V,E) is built to compute
new edge congestions, using the symmetric solution ȳ by solving
an instance of min-cost flow problem for every θ ∈ Θ. This is the
task of the separation oracle;

6. the separation problem is solved. If solution is ≥ 0 go to Step 7.
Otherwise add to set (4.3b) the Constraints associated with θ and

43

Chapter 5. Algorithm Implementation

a that are solution for the separation problem. Then, go to Step
4.

7. The row-generation algorithm is finished and we provided a set of
Constraints (4.3b) to solve Dual Problem.

All the steps are analyzed in details in the present chapter.
The first notable step was to write the Linear Program (4.3), concerning
the Dual Problem. Since it has been shown that the Dual Problem
always admits an optimal player-symmetric solution, as described in
Section 4, it was possible to reduce the number of decision variables
of the LP. In fact, we don’t need to define for the Dual Problem all
the variables yp for p ∈ N , yp,e for p ∈ N and e ∈ E, variables yp,t for
p ∈ N , but we can respectively define variables y, ye for e ∈ E and yt.
This significantly reduces the number of variables of the Dual Problem
to work with.

Writing the LP for the Dual Program using gurobipy is then straight-
forward, using the steps defined in the section above and considering
only the useful variables. The crucial aspect in the implementation
is related to the set of Constraints (4.3b), reported by the following
expression:

µθ

(∑
p∈N

cp,θ(a)yp −
∑
p∈N

∑
e∈E

ce,θ(fe
a + I{e/∈ap})yp,e

)
+ yθ ≤ µθ

∑
p∈N

cp,θ(a) ∀θ ∈ Θ,∀a ∈ A

which produces an exponential number of constraints. Since it is in-
efficient to explicitly check if all the constraints from set (4.3b) are
satisfied for a given solution y of Dual Problem, we therefore apply the
row-generation algorithm. So, the set of Constraints (4.3b) is initialised
as empty and it is populated during the algorithm running process,
with only the constraints we actually need to solve the LP. However,
initialising the set (4.3b) as completely empty has a negative effect
since a first execution of the so determined reduced master problem
associated to the Dual Problem would declare the model unbounded,
given the Gurobi status code UNBOUNDED. It happens since there is no
constraint that limits the values that variables yθ can assume, whose
sum we need to maximise in the objective function.

44

5.4. Algorithm Implementation

To solve the complication of the empty set, we designed for each θ ∈ Θ
one simple action profile a on which all the players choose the same
path from the source s to the target t. In order to do that, we randomly
select a path from s to t from those available. We specify that in
our project a path is implemented as a list of nodes in which no node
appears more than once (i.e there are no loops), and each adjacent pair
of nodes in the list is adjacent in the graph. An example of path in
our code is given by the following list: [s, 1, 7, 10, t]. Then, a designed
method build_action_profile(), given as input a state of nature θ,
computes an action profile a as a list of paths used by players in that
state of nature, one path per player. Having now an action profile and
so a congestion fe

a for every edge e ∈ E for this action profile a, is
possible to compute the edge costs ce,θ(fea) and hence the path costs
cp,θ. This is also the task of build_action_profile() method. With this
fixed generated action profile, we can add a constraint to the empty
set (4.3b), one for each θ ∈ Θ. Now that all the elements are loaded in
memory, a timer to record the amount of time of execution of algorithm
is started. The first Gurobi optimization of the Dual Problem is run.

The values returned by the optimization of the Dual Problem by the
Gurobi solver are variables ye for e ∈ E which is implemented as a
Python dictionary keyed by edge e, a single variable ȳ and variables yθ
for θ ∈ Θ. In the next sections we describe how the separation problem
4.5 is implemented using the previous solution of Dual Problem. The
separation oracle to resolve the problem is presented.

5.4.2 Min-cost flow Problem

In the present section we explain how the separation problem, restricted
to the exponential set of Constraints (4.3b), for the Dual Problem has
been implemented and resolved by the separation oracle. We remember
that mathematical formulation of the separation problem is the following:

min
θ∈Θ,a∈A

µθ

(
(1− ȳ)

∑
p∈N

cp,θ(a)−
∑
p∈N

∑
e∈E

ce,θ(fe
a + I{e/∈ap})ȳe

)
− yθ

(5.2)

In order to solve the separation Problem (5.2) in polynomial time, we
solve instead a suitably defined instance ofmin-cost flow problem for each

45

Chapter 5. Algorithm Implementation

θ ∈ Θ. To achieve this purpose, we build a modified version of our origi-
nal graph G, in which each edge e ∈ E is replaced with n parallel edges,
with n number of players in the BNCG, with unit capacity and increas-
ing unit costs. The unit cost implies that each edge ei can carry a unit of
flow in the min-cost flow problem. To accomplish this task, we designed
a function called build_parallel_graph() which simply takes as param-
eters the original graph and the number of players n and output a new
graph, named newGraph, as an instance of the NetworkX class MultiDi-
Graph, which allows in a graph the presence of multiple edges between
the same pair of nodes, built accordingly to the previous description.
For each θ ∈ Θ and new edge e in newGraph, a simple function called
calculate_g() takes as input an edge e and a player i and calculates
g(e, i) := (1− ȳ)(αe,θi

2 +βei)− ȳe(nαe,θi+(n−1)αe,θ+nβe,θ). This func-
tion is used to compute also the per unit cost δ(ei) := g(e, i)− g(e, i− 1)
for each new edge ei in newGraph.

We have now to solve an instance of integer min-cost flow problem on the
network newGraph for every θ ∈ θ, considering as edge costs the quan-
tities δ(ei). This is the task of the separation oracle. To implement the
separation oracle, we rely on the function min_cost_flow() provided
by the Python module NetworkX, which takes as input our instance
of newGraph and outputs a dictionary keyed by the edge to identify
the minimum cost flow satisfying all the demands in newGraph. These
values represent the edges congestions in newGraph and we can easily
recover the congestions in our original graph, since the edge congestion
of an edge e in graph can be computed as the sum of flow of the edges
between the same pair of nodes in newGraph, i.e. qe =

∑
i∈N flow(ei)

for e ∈ E. The separation oracle is used to compute edge congestion in
original graph for each θ ∈ Θ.

5.4.3 Adding the new constraint

At the end of the previous step, using the separation oracle we have
recovered as a solution of the min-cost flow problem a dictionary of edge
congestion q for every state of nature θ. By using again the method
build_action_profile(), we are able to retrieve from a dictionary of
edge congestion q, the corresponding action profile a and compute path
costs cp for every θ ∈ Θ. We can implement the next step, the mini-
mization over the state of nature θ and its associated action profile a to
provide a solution for the separation Problem (5.2).

The minimization step simply consists in computing all the values of

46

5.4. Algorithm Implementation

expression (5.2) for each pair of the considered values of θ and a and
then select the minimum. These are the values of θ ∈ Θ and a ∈ A
which are optimal for (5.2) and depending on the value assumed by the
minimum, two scenarios are possible:

• minimum ≥ 0: we don’t need to add new constraints to the LP
model of the Dual Problem. We found a subset of Constraints
(4.3b) to be able to find an optimal solution.

• minimum < 0: the constraint, associated with the pair θ and a
which have given the minimum value, is violated. We have to
add this new constraint to the LP model of the Dual Problem
and continue with the algorithm. We can simply use the function
addConstr() provided by gurobipy to add a new constraint in
set (4.3b).

The violated constraint is added to set (4.3b) of Dual Problem:

µθ

(∑
p∈N

cp,θ(a)yp −
∑
p∈N

∑
e∈E

ce,θ(fe
a + I{e/∈ap})yp,e

)
+ yθ ≤ µθ

∑
p∈N

cp,θ(a)

(5.3)

in which the action profile a and state of nature θ specified in expression
(5.3) are the values associated to the minimum. We save in two lists
the action profile a and the paths costs cp, which are used in the next
step of the algorithm. A new optimization of the Dual Problem with
gurobipy is run, in order to repeat the process of computing a new
violated constraint or verify that we reached the required number of
constraints. As we said, if the minimization over θ and a returns a
values greater than zero, the row-generation algorithm stops, since we
have a satisfactory number of constraints to solve Dual Problem.

5.4.4 Primal Problem

We reach this step when the row-generation algorithm is finished and
therefore it has provided a subset of Constraints (4.3b) sufficient to
optimally solve the Dual Problem. We built during the row-generation
algorithm an action set A as a list containing every action profile a
which is optimal for each θ for the separation Problem (5.2). Exploiting
the symmetric assumption of BNCGs, we can recover from each action
profile a ∈ A and i ∈ [n] a new action set A_new in which every
action profile a′ ∈ A_new such that a′p = a((p+1) mod n) is a permutation
of the original a in which each player p ∈ N takes the role of player
(p+ 1) mod n.

47

Chapter 5. Algorithm Implementation

To visualize more clearly the permutation, we provide an example in
Table 5.1. Considering an initial action profile a = {a1, a2, a3, a4, a5}
which represents a list the actions, i.e. path from source s to target
t, used by a set of 5 players. Specifically, each a in position pk of the
array denotes a path used by the player k. The index i in ai denotes
the particular path, so if i 6= j then ai 6= aj.

Table 5.1. Permutation of an action profile.

p1 p2 p3 p4 p5

a a1 a2 a3 a4 a5

p1 p2 p3 p4 p5

a1 a5 a1 a2 a3 a4

p1 p2 p3 p4 p5

a2 a4 a5 a1 a2 a3

p1 p2 p3 p4 p5

a3 a3 a4 a5 a1 a2

p1 p2 p3 p4 p5

a4 a2 a3 a4 a5 a1

Table 5.1: Left : the original action profile. Right : the action profiles
obtained through permutation.

We can now write the LP related to the Primal Problem, to retrieve
the optimal signaling schemes as a solution of our problem. The Linear
Program is simply implemented using the tools provided by Python
module gurobipy, as we explained in Section 5.3. We have of course to
consider, for each θ ∈ Θ as set A of action profiles, the set generated by
the permutation of each action profile a obtained from the running of
the row generation algorithm. Running the LP just written, provides us
a distribution over the optimal signaling scheme for each θ ∈ Θ. As we
clearly see, as the number of possible action profile has been drastically
reduced, the LP can calculate an optimal ex-ante persuasive signaling
scheme in polynomial time.

5.5 Solver Outputs
The output of the algorithm is composed of a list of values, saved in a
.pickle file. More precisely, in addition to the computational time used
to find a solution, we save for each θ ∈ Θ a list of the action profiles a
which have a probability in the distribution greater than zero, and the
associated probability value.

48

5.5. Solver Outputs

In our experiments proposed in the next chapter, we consider for our
analyses only the computational time taken by the algorithm to compute
a solution for the problem.

49

Chapter 6

Experimental Results

In this chapter, we present the experimental results of the project. We
generated and tested different problem instances, with the intention of
analysing the performances of our algorithm as individual parameters
change.

We implemented a random Bayesian Network Congestion Game gen-
erator in Jupyter Notebook to provide us instances to work on. The
algorithm has been implemented in Python programming language.
Each LP has been solved by Gurobi [9] optimization solver, invoked
using Python library gurobipy [10].

Specifically, we solve 1600 instances of Bayesian Network Congestion
Games, by varying parameters such as number of nodes in the graph,
the states of nature and the number of players.

6.1 Experimental setting
In this section, we present the experimental problem setting. We indicate
the hardware and software tools specifications used for the experiments.
The dataset specifications on which we run the algorithm are presented.

6.1.1 Hardware and Software

We have performed all the experiments using a UNIX machine with
32 cores working at 2.3 GHz and equipped with a RAM of 125 GB.
Each LP is solved using Gurobi [9] optimization solver, invoked by the
Python library gurobipy which provide an interface to our code. The
algorithm has been implemented in Python programming language.

51

Chapter 6. Experimental Results

6.1.2 Dataset

We have implemented a random Bayesian Network Congestion Game
generator in Python that allow us to create and save instances to test.

To evaluate the implemented algorithm, we run experiments on graphs
from 4 groups of node numbers, specifically graphs with 30, 60, 90 and
120 nodes. For each number of nodes we generated 10 random graph
instances with the same number of nodes. The number of players varies
between 10 and 100 at intervals of 10, N = {10, 20, ..., 90, 100}, while
the number of states of nature varies between 10 and 40 at intervals
of 10, so Θ = {10, 20, 30, 40}. We generated and resolved in total
1600 Bayesian Network Congestion Games. We set a time limit of
3600 seconds for each game instance. If the limit is reached during the
execution, the algorithm returns the value TIME LIMIT, that indicates
that no solution has been found within the given time.

Figure 6.1 shows the quantities related to the network instances con-
sidered in the experiments, specifically the number of nodes |V|, the
average number of edges |E| and the minimum path length from a source
and target.

Network instances
Experiment |V| avg |E| min l

First 30 76 3
Second 60 165 5
Third 90 257 7
Fourth 120 348 9

Figure 6.1. Network dataset instances.

6.2 Test Results
The aim of this section is to report the performances of the implemented
algorithm, through the results obtained in the tests. Each experiment
corresponds to a groups of graph instances with a fixed number of nodes,
on which we build and run BNCGs. Each result reported is the average
of the values obtained by running 10 different instances. It is clear
that, fixing the number of nodes in the graphs, the execution time for
resolving a BNCG instance strictly depends on the number of players
and the number of states of nature involved.

52

6.2. Test Results

6.2.1 First Experiment

In the first experiment we begin our discussion by considering small
network instances with 30 nodes and a minimum path length of 3 edges
between the source and the target nodes. Figure 6.2 documents the
computational times taken by the algorithm, reporting the number of
players involved in the game as values of x-axis.
Since the number of nodes and the average of edges in the considered
graphs are quite small, we can expect in this experiment a slight impact
on the computing time.

10 20 30 40 50 60 70 80 90 100
Number of Players

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
35003600

Av
er

ag
e

tim
e

(s
ec

)

Networks with |V| = 30

N. of states
10
20
30
40

Figure 6.2. Computing times for Networks with V = 30 and varying the
number of states.

The graphical limit in Figure 6.2 is that each point represented in the
graph is the average of 10 different experiments on graphs and therefore
it is not possible to understand the dispersion of the resulting values
for a single game instance. To analyze in the detail this issue, we report
in Figure 6.3 the box plots related to the computing time of all game
instances in which 100 players are involved in a network with 30 nodes.

53

Chapter 6. Experimental Results

100

105

110

115

120

125

130

135

Co
m

pu
tin

g
Ti

m
e

(s
ec

)

10 states

280

300

320

340

360

380

400

420
20 states

550

600

650

700

750

30 states

900

1000

1100

1200

1300
40 states

Single Boxplot of games with 100 players and

Figure 6.3. Single box plots of games instances with 100 players in networks
with |V| = 30.

We can easily note from Figure 6.3 that when we have a small number
of states of nature as 10, the computing times of different instances are
very similar. This is quite clear since we are considering a graph with a
small number of nodes. Nevertheless, even with a small network with
30 nodes, in the game instances with 40 states of nature, the difference
of the computing time can be of 47,6% between different tests. The
specific statistical indices in terms of seconds, are shown in Figure 6.4.

Number of states
10 20 30 40

Min 101.54 274.91 541.72 869.44
Max 138.12 417.37 774.35 1283.13
Range 36.56 142.46 232.63 413.69
Mean 121.13 349.33 677.32 1108.97

Variance 140.37 2064.09 6539.34 16621.35

Figure 6.4. Statistical indices for game instances with 100 players in networks
with |V| = 30.

54

6.2. Test Results

6.2.2 Second Experiment

In the second experiment, we consider network instances with 60 nodes
and a minimum path length of 5 edge between the source and target
nodes. Figure 6.5 presents the results of the experiments, reported by
fixing for each curve the state of nature and by varying on the x-axis
the number of players involved in each game.

10 20 30 40 50 60 70 80 90 100
Number of Players

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
35003600

Av
er

ag
e

tim
e

(s
ec

)

Networks with |V| = 60

N. of states
10
20
30
40

Figure 6.5. Computing times for Networks with |V| = 60 and varying the
number of states.

We can see from Figure 6.5 that, by increasing the number of states
of nature, the execution time increases more massively. Nevertheless,
even in the case with the highest number of players and states of nature,
respectively 100 and 40, in this experiments we never reached in any
instance our time limit of 3600 seconds. As in the previous experiment,
we report in Figure 6.6 the box plots related to the computing time of
all game instances in which 100 players are involved in a network with
60 nodes.

55

Chapter 6. Experimental Results

260

270

280

290

300

Co
m

pu
tin

g
Ti

m
e

(s
ec

)

10 states

740

760

780

800

820

840

860

20 states

1500

1550

1600

1650

1700

1750

1800

30 states

2500

2600

2700

2800

2900

3000

40 states

Single Boxplot of games with 100 players and

Figure 6.6. Single box plots of games instances with 100 players in networks
with |V| = 60.

In Figure 6.6, even if the number of nodes in the networks is still quite
small, we now observe outliers along with small range of values. It
indicates that in particular game instances the computational time was
distant from the rest of the data. This is clearly observable in boxplots
related to 30 and 40 states of nature. Figure 6.7 shows the statistical
indices for the second experiment, in terms of seconds of computing
time.

Number of states
10 20 30 40

Min 258.58 729.03 1508.61 2437.51
Max 299.64 869.37 1827.35 3028.39
Range 41.06 140.34 318.74 590.88
Mean 281.22 807.75 1610.80 2667.71

Variance 160.76 2009.82 6822.06 27479.09

Figure 6.7. Statistical indices for game instances with 100 players in networks
with |V| = 60.

As it was to be expected, the variance and the range of computing time
increases with the number of states of nature.

56

6.2. Test Results

6.2.3 Third Experiment

As a third experiment, we consider network instances with 90 nodes and
a minimum path length of 7 edges between the source and target nodes.
Figure 6.8 reports the computational times for this experiment, fixing
for each line the number of states of nature involved in the games.

10 20 30 40 50 60 70 80 90 100

Number of Players

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500
3600

Av
er

ag
e

tim
e

(s
ec

)

Networks with |V| = 90

N. of states
10
20
30
40

Figure 6.8. Computing times for Networks with |V| = 90 and varying the
number of states.

We can notice that in this experiment the time limit of 3600 seconds
has been reached in BNCGs instances with 100 players and 40 states of
nature, specifically in the 100% of the cases. This is quite clear since
in game instances with 40 states of nature and 90 players, the game
instance immediately preceding, the time limit has been reached in 20%
of the cases and the average computational time of the remaining solved
games in that parameters setting was 3314 seconds.
Since in these game instances the computation has been stopped once
reached the time limit, we report in Figure 6.9 the statistical indices of
the last available tests for game instances with 100 players, involving
respectively 10, 20 and 30 states of nature.

57

Chapter 6. Experimental Results

Number of states
10 20 30

Min 451.99 1139.13 2251.11
Max 543.61 1472.27 2862.60
Range 91.62 333.14 611.49
Mean 484.60 1286.87 2480.32

Variance 754.24 7938.32 36148.05

Figure 6.9. Statistical indices for game instances with 100 players in networks
with |V| = 90.

Additionally, we report in Figure 6.10 the tests for 40 states and 80
players, the last parameters setting before reaching the time limit.

Number of states
40

Min 2520.84
Max 3151.25
Range 630.41
Mean 2766.93

Variance 40370.57

Figure 6.10. Statistical indices for game instances with 80 players and 40
states in networks with |V| = 90.

Comparing the statistical indices, we observe that with 30 and 40 states
of nature the computational time explodes with respect to the previous
cases, and variance is 36148.05 seconds and 40370.57 seconds, with
respectively 100 and 80 players involved.

6.2.4 Fourth Experiment

In the fourth experiment we start by graphs instances with 120 nodes
and a minimum path length of 9 edges. In this test, we reached the
time limit of 3600 seconds for different BNCG instances. Specifically,
we reached the time limit in games instances with 30 players and 100
states of nature in every test. On the other hand, the time limit has
been reached in the 10% of the tests with 30 states of nature and 90
players. For games with 40 states of nature, the time limit has been
reached with 80, 90 and 100 players in all the cases.

58

6.2. Test Results

10 20 30 40 50 60 70 80 90 100
Number of Players

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
35003600

Av
er

ag
e

tim
e

(s
ec

)

Networks with |V| = 120

N. of states
10
20
30
40

Figure 6.11. Computing times for Networks with |V| = 120 and varying the
number of states.

As done in previous experiments, we provide in Figure 6.12 the statistical
indices for games instances with 100 players. Because of the time limit,
the attention is restricted to game with 10 and 20 states of nature.

Number of states
10 20

Min 645.24 1799.57
Max 774.31 2331.98
Range 129.07 532.41
Mean 700.64 1966.99

Variance 1284.24 20822.56

Figure 6.12. Statistical indices for game instances with 100 players and with
10 and 20 states, in networks with |V| = 120.

Additionally, Figure 6.13 and Figure 6.14 respectively document the
statistical indices for the last game instances solved with 30 and 40
states of nature in networks with 120 nodes.

59

Chapter 6. Experimental Results

Number of states
30

Min 2380.92
Max 2960.08
Range 579.16
Mean 2553.467

Variance 21253.21

Figure 6.13. Statistical indices for game instances with 80 players and 30
states in networks with |V| = 120.

Number of states
40

Min 2983.27
Max 3313.31
Range 330.03
Mean 3164.17

Variance 11582.74

Figure 6.14. Statistical indices for game instances with 70 players and 40
states in networks with |V| = 120.

6.3 Comparison between Experiments
The algorithm has performed well in networks with 30 and 60 nodes,
and this is clear since they are very small graphs and the time limit
has never been exceeded. For networks with 90 and 120 nodes, even if
they consist in a small increase in the amount of nodes, the time limit
was reached several times as described in previous sections. In Figure
6.15 we report the limits of the algorithm in the sense of the last game
that the algorithm is able to solve within the time limit, along with the
associated maximum computing time.

N. of nodes N. of states N. of players Computing time (sec)
90 40 80 3151
120 30 80 2960
120 40 70 3313

Figure 6.15. Limits of the algorithm.

60

6.3. Comparison between Experiments

To show in detail the performance of the algorithm in the border cases,
Figure 6.16 reports the percentage of the solved games in the setting in
which the time limit of 3600 seconds has been reached in at least one
instance of that game.

N. of nodes N. of states N. of players % of solved games
90 40 90 80 %
90 40 100 0 %
120 30 90 90 %
120 30 100 0 %
120 40 80 0 %
120 40 90 0 %
120 40 100 0 %

Figure 6.16. Percentage of solved games within the time limit.

Finally, to sum up the performance of the algorithm in the games involv-
ing 100 players, Figure 6.17 shows the computational times reporting
the number of nodes in the networks as values of x-axis. With a small
number of states of nature, the average computational time remains at
low values, even in networks with 120 nodes. Instead, immediately from
20 states of nature, we notice a sudden increase of the computational
time from networks with 90 nodes.

61

Chapter 6. Experimental Results

30 60 90 120
Number of nodes

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
35003600

Av
er

ag
e

tim
e

(s
ec

)

Game instances with N = 100

N. of states
10
20
30
40

Figure 6.17. Computing times for game instances with N = 100 and varying
the number of nodes in network.

6.4 Regression
In this section, we analyse some of the experiments in order to establish
a mathematical dependence between the running time to provide a so-
lution and the number of states of nature and players involved in a game.

We consider graph instances with 90 nodes and BNCGs with 90 players.
Executing regression with Python, we conclude that the curve for
that BNGCs, considered by varying the number of players, can be
approximated with a polynomial function with coefficients equal to
0.196, 5.112 and 20.413, considered to highest power to lower.
Figure 6.18 shows the polynomial function obtained.

62

6.4. Regression

10 20 30 40 50 60 70 80 90 100

Number of Players

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500
3600

R
un

ni
ng

 ti
m

e
(s

ec
)

Networks with |V| = 90 and 30 states of nature

Figure 6.18. Regression for game instances with |V| = 90, |θ| = 30 and varying
the number of players in the game.

On the other hand, Figure 6.19 depicts the function which optimally
approximates the curve obtained fixing the number of players. As
expected, the function is polynomial with coefficients equal 1.568, 21.163
and 17.435, considered to highest power to lower.

63

Chapter 6. Experimental Results

0 10 20 30 40 50

Number of states of nature

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500
3600

R
un

ni
ng

 ti
m

e
(s

ec
)

Networks with |V| = 90 and |N| = 90

Figure 6.19. Regression for game instances with |V| = 90, |N| = 90 and
varying the number of states of nature.

64

Chapter 7

Conclusions and Open
Questions

7.1 Conclusions
In the present work, we study the problem of computing an optimal
signaling scheme in a Bayesian Network Congestion Game (BNCG).
We develop our analyses under the crucial assumption of symmetric
BNCG, which assumes that all the players involved in the game shared
the same source and target pair in the network. We consider also
the affine property in the expression of the edge costs in the network.
Moreover, we focused on the notion of ex ante persuasive signaling
scheme, which requires that receivers are encouraged to follow the
sender’s recommendations by only observing the signaling scheme. In
this setting, the problem of computing an optimal signaling scheme
has been proved by Castiglioni, Celli, Marchesi and Gatti [4] to be
computable in polynomial time, by exploiting the Ellipsoid method
and designing a suitable separation oracle. Our aim is to investigate
each aspect of the algorithm designed in order to solve the problem,
proposing an implementation for each step. The crucial point is that
the ellipsoid algorithm is not usable in practice. Therefore, the question
is if, in practice, it is still possible to have an efficient algorithm. We
implemented a solver by using Python, a programming language that
allowed us to interact with the many API available to solve the problem
considered. Specifically, we decide to solve the Linear Problems with
Gurobi optimization solver, interfaced with our code through the Python
module gurobipy. Computational experiments have been executed on
networks of various sizes, considering different values for the parameters
of number of nodes, number of players and state of nature in the game
instances.

65

Chapter 7. Conclusions and Open Questions

7.2 Open Questions
In the present work, we discussed and study the problem of computing
an optimal ex ante persuasive signaling scheme in Bayesian Network
Congestion Games, relying on the properties of symmetry and affine
costs. This has led us to obtain and discuss in this work computational
results by applying the algorithm proposed to solve the problem.

Our contributions could be extended relaxing or modifying some as-
sumptions, in particular it would be interesting to study the possible
uncertainty of the sender about receivers’ payoff. In the future another
interesting direction would be the design of practical algorithms for
real-world network signaling problems, by considering a real setting and
all related problems. Interesting new directions also include the study
of settings in which the sender is uncertain on the type of the receivers
resorting to online learning tools, such as [30] and [31].

66

Bibliography

[1] Walter, D. 2016. Computational Complexity Theory. In The Stan-
ford Encyclopedia of Philosophy. https://plato.stanford.edu/
archives/win2016/entries/computational-complexity/.

[2] Gatti, N. 2017. Theory Lecture 16: Potential games. In Lecture
notes. Economics and Computation.

[3] Bertrand, N.; Markey, N.; Sadhukhan, S.; and Sankur, O. 2009.
Dynamic network congestion games. arXiv preprint arXiv:2009.13632.

[4] Castiglioni, M.; Celli, A.; Marchesi, A.; and Gatti, N. 2020. Signal-
ing in Bayesian Network Congestion Games: the Subtle Power of
Symmetry. arXiv preprint arXiv:abs/2002.05190.

[5] Celli, A.; Coniglio, S.; and Gatti, N. 2020. Private Bayesian Persua-
sion with Sequential Games. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, pages 1886-1893.

[6] Kamenica, E.; and Gentzkow, M. 2011. Bayesian persuasion. Ameri-
can Economic Review, 101(6):2590-2615.

[7] Galli, L. 2014. Algorithms for Integer Programming. Computers
Operations Research, 1:1-13.

[8] Garey, M.; and Johnson, D. 1979. Computers and Intractability: A
Guide to the Theory of NP-completeness. WH Freeman and Company.

[9] Gurobi optimization. 2021. http://www.gurobi.com.

[10] gurobipy, the Gurobi Python Interface. 2021 https:
//www.gurobi.com/documentation/9.1/quickstart_mac/cs_
grbpy_the_gurobi_python.html.

[11] Hogan, S. 2020. A gentle introduction to computational complex-
ity theory, and a little bit more. Available at https://www.math.
uchicago.edu/~may/VIGRE/VIGRE2011/REUPapers/Hogan.pdf.

67

https://plato.stanford.edu/archives/win2016/entries/computational-complexity/
https://plato.stanford.edu/archives/win2016/entries/computational-complexity/
http://www.gurobi.com
https://www.gurobi.com/documentation/9.1/quickstart_mac/cs_grbpy_the_gurobi_python.html
https://www.gurobi.com/documentation/9.1/quickstart_mac/cs_grbpy_the_gurobi_python.html
https://www.gurobi.com/documentation/9.1/quickstart_mac/cs_grbpy_the_gurobi_python.html
https://www.math.uchicago.edu/~may/VIGRE/VIGRE2011/ REUPapers/Hogan.pdf
https://www.math.uchicago.edu/~may/VIGRE/VIGRE2011/ REUPapers/Hogan.pdf

Bibliography

[12] Arieli, I.; and Babichenko, Y. 2016. Private Bayesian persuasion.
Available at SSRN 2721307.

[13] Khachiyan, L. G. 1979. A Polynomial Algorithm in Linear Pro-
gramming. In Soviet Math. Dokl, pages 191-194.

[14] Nemirovskii, A. S.; Yudin, D. B. 1977. Optimization methods adap-
tive t «significant» dimension of the problem. Avtomat. i Telemekh.
no 4, 75–87; Autom. Remote Control, 38:4 (1977), 513–524.

[15] NetworkX: Network Analysis in Python. 2020. https://networkx.
org/.

[16] Rosenthal, R.W. 1973. A class of games possessing pure-strategy
Nash equilibria. In International Journal of Game Theory, pages
65-67.

[17] Osborne, M.; and Rubinstein, A. 1994. A Course in Game Theory.
The MIT Press.

[18] Rebennack S. 2008. Ellipsoid Method. In Floudas C., Pardalos P.
(eds) Encyclopedia of Optimization. Springer, pages 890–899.

[19] Dughmi S.; and Haifeng Xu. 2016. Algorithmic Bayesian Persuasion.
In Proceedings of the Fortyeighth Annual ACM Symposium on Theory
of Computing, STOC’16, pages 412-425.

[20] Dughmi, S.; 2017. Algorithmic information structure design: a
survey. ACM SIGecom Exchanges, 15:2-24.

[21] Dughmi, S.; and Haifeng Xu. 2017. Algorithmic persuasion with
no externalities. In Proceedings of the 2017 ACM Conference on
Economics and Computation, pages 351-368.

[22] Vasserman, S.; Feldman, M; and Hassidim, A. 2015. Implementing
the wisdom of waze. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, pages 660-666.

[23] Wang, Y. 2015. Bayesian persuasion with multiple receivers. Avail-
able at SSRN 2625399.

[24] Lübbecke, M. 2011. Column Generation. In Cochran JJ, Cox LA,
Keskinocak P, Kharoufeh JP, Smith JC (eds) Wiley encyclopedia of op-
erations research and management science. American Cancer Society,
Atlanta. https://doi.org/10.1002/9780470400531.eorms01580.

68

https://networkx.org/
https://networkx.org/
https://doi.org/10.1002/9780470400531.eorms01580

Bibliography

[25] Bhuiyan, B. 2018. An Overview of Game Theory and Some Appli-
cations. In Philosophy and Progress. 59(1-2), 111-128.

[26] Kakade, S.; Kalai, A. T.; and Ligett, L. 2007. Playing games with
approximation algorithms. In Proceedings of the 39th annual ACM
symposium on Theory of Computing (STOC’07), pages 546–555.

[27] Castiglioni, M.; Celli, A.; Gatti, N. Persuading Voters: It’s Easy
to Whisper, It’s Hard to Speak Loud. AAAI 2020: 1870-1877.

[28] Castiglioni, M.; Gatti, N. Persuading Voters in District-Based
Elections. AAAI 2021.

[29] Castiglioni, M.; Celli, A.; Gatti, N. Public Bayesian Persuasion:
Being Almost Optimal and Almost Persuasive. CoRR abs/2002.05156
(2020)

[30] Castiglioni, M.; Celli, A.; Marchesi, A.; Gatti, N. Online Bayesian
Persuasion. NeurIPS 2020

[31] You Zu, Krishnamurthy Iyer, Haifeng Xu: Learning to Persuade
on the Fly: Robustness Against Ignorance. CoRR abs/2102.10156
(2021)

69

	Sommario
	Abstract
	List of Figures
	List of Tables
	Introduction
	General overview
	Contributions
	Structure of the thesis

	State of the Art
	Basics of Complexity Theory
	Complexity of algorithms
	Complexity of problems
	Hard problems

	Introduction to Game Theory
	General notion of game
	Congestion Games

	Information structure design
	Bayesian persuasion: single agent case
	Bayesian persuasion: multiple agents
	Private signaling scheme
	Public signaling scheme

	Algorithms for Linear Programming
	Ellipsoid Method
	Cutting-Planes
	Row Generation

	Research Problem
	Bayesian Network Congestion Games
	Assumptions on BNCGs
	Signaling in BNCGs

	Algorithm Overview
	LP formulation
	Separation oracle
	Min-cost flow problem

	Algorithm Implementation
	Graph Instance Generation
	Problem Instance Generation
	Generic LP Implementation
	Algorithm Implementation
	Implementing the Dual Problem
	Min-cost flow Problem
	Adding the new constraint
	Primal Problem

	Solver Outputs

	Experimental Results
	Experimental setting
	Hardware and Software
	Dataset

	Test Results
	First Experiment
	Second Experiment
	Third Experiment
	Fourth Experiment

	Comparison between Experiments
	Regression

	Conclusions and Open Questions
	Conclusions
	Open Questions

	Bibliography

