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Abstract

In recent years, interest in artificial intelligence has grown rapidly thanks to the countless
possibilities it opens up. Although the most common direction is towards the development
of extremely complex and increasingly demanding systems from an energy and compu-
tational point of view, a new branch of this discipline has begun to move towards the
execution of such algorithms on integrated systems extremely limited both from the point
of view of energy and computing power. This new approach to artificial intelligence has
been called Tiny Machine Learning (TinyML), and it has a multitude of advantages that
are not limited to reduced power consumption; it also provides greater attention to user
privacy and a decrease in response times thanks to the processing of data directly on
devices and platforms that are needed to collect them. TinyML could also guarantee a
capillary diffusion of intelligent systems thanks to the extremely low cost of the platforms
to which they are oriented. This Master’s Thesis focuses on two fundamental Tiny Ma-
chine Learning tasks: keyword spotting, i.e. the reaction to voice commands pronounced
by human beings, and speaker verification, which consists in ability to distinguish people
from their own unique voice. The latter problem is tackled organically in the TinyML
framework for the first time in this work, framing it in a new one-class few shot classifica-
tion context. This work demonstrates the possibility of creating a system that combines
both functions with a request for resources compatible with the capabilities offered by
modern microcontrollers, proposing a comparison between different approaches: some of
them were never been used before in a TinyML context, some have been identified and
tested for the first time in this work.

Keywords: TinyML, on-device learning, keyword spotting, speaker verification, one-class
few shot





Abstract in lingua italiana

Negli ultimi anni l’interesse per l’intelligenza artificiale (IA) è cresciuto rapidamente gra-
zie alle innumerevoli possibilità che essa apre. Nonostante la direzione più comune dello
sviluppo di sistemi di intelligenza artificiale sia orientata verso algoritmi estremamente
complessi, e sempre più esigenti dal punto di vista energetico e computazionale, una
nuova branca di tale disciplina ha iniziato ad esplorare la possibilità di eseguire algoritmi
di IA su sistemi integrati caratterizzati da memoria e potenza di calcolo estremamente
ridotte. Questo nuovo approccio all’intelligenza artificiale è stato denominato Tiny Ma-
chine Learning (TinyML), e presenta una moltitudine di vantaggi. Il più rilevante è
l’irrisorio consumo energetico di tali sistemi intelligenti, ma vi sono anche una maggior
attenzione alla privacy degli utenti e una diminuzione dei tempi di risposta dei sistemi
grazie all’elaborazione dei dati direttamente sui dispositivi che si occupano della loro
raccolta. Questo approccio all’IA potrebbe anche garantire una diffusione capillare di
sistemi intelligenti grazie al costo estremamente ridotto delle piattaforme a cui sono ori-
entati. Questa Tesi di Laurea Magistrale inquadra all’interno del Tiny Machine Learning
due compiti fondamentali: keyword spotting, ovvero la reazione a comandi vocali pronun-
ciati da esseri umani, e speaker verification, che consiste nella capacità di distinguere le
persone ascoltandone la voce. Quest’ultimo problema viene affrontato in maniera organ-
ica in ambito TinyML per la prima volta in questo lavoro, inquadrandolo in un nuovo
contesto di classificazione one-class few shot. Viene dimostrata la possibilità di realiz-
zare un sistema che combini entrambe le funzionalità a fronte di una richiesta di risorse
compatibile con quelle offerte dai moderni microcontrollori, proponendo un confronto tra
approcci differenti: alcuni già presenti in letteratura, ma mai usati in questo contesto,
mentre altri identificati e testati per la prima volta in questo lavoro.

Parole chiave: TinyML, apprendimento automatico, apprendimento sul dispositivo, ri-
conoscimento vocale, verifica del parlante
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1| Introduction

In recent years, there has been an increasing demand for human-machine interfaces that
operate through voice. These interfaces are becoming necessary in a wide range of systems
and are increasingly required in resource-limited devices. Along with common tasks such
as the ability to recognize commands, the verification of a speaker’s identity through voice
has become a necessary feature for many human-machine interfaces. This Master’s Thesis
aims at investigating techniques for integrating speech processing capabilities on ultra-low
power microcontrollers, with a particular focus on the tasks of keyword spotting (KWS)
and speaker verification (SV). This research is essential as memory, computational power,
and energy consumption pose significant challenges to the complexity of algorithms that
can be executed on such systems.

Keyword spotting involves the system’s ability to continuously listen for one or more
commands, referred to as "keywords," and respond accordingly upon detection. Speaker
verification pertains to the system’s ability to recognize an individual’s voice, and respond
accordingly to the speaker’s identity. In particular, the implementation of a SV system on
a microcontroller-powered device presents significant advantages, including the provision
of personalized and privacy-focused vocal interaction solutions that do not require an in-
ternet connection or a substantial amount of power. This has a lot of potential practical
applications, including smart locks that can recognize their owners, objects that offer vary-
ing behaviors based on the user interacting with them, or in general avoiding to actively
performing authentication. A solution showing the described behavior should be able to
perform keyword spotting and speaker verification both as separate tasks, for example
by firstly asking for a voice sample to recognize the speaker and then unlocking voice
commands functionalities, and as cascaded tasks, for example by performing speaker ver-
ification on the same audio utterance that contained a recognized keyword. Investigating
techniques and possibility for implementing this last system on a microcontroller-powered
device is the goal of this Master Thesis.

Understanding speech and recognizing different voices are tasks that are performed almost
unconsciously by human beings, thanks to biological specialized structures such as the
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auditory apparatus and particular portions of the brain. This makes really hard to identify
precise rules to be applied to an audio signal to extract information like pronounced
words or speakers’ identity. This characteristic makes the problem particularly suited
to be tackled with modern Artificial Intelligence techniques, mainly the ones based on
Deep Learning, a subfield of Machine Learning, that try to mimic the functionalities
of biological brains. The complexity of such algorithms, both regarding memory and
processing power [52], poses unfortunately a serious limitation in their deployment in
portable and embedded devices, where this systems could have great impact.

Recent research however managed to port some machine learning algorithms on ultra-
low power devices, such as microcontrollers and embedded computers, giving birth to
the emerging field called Tiny Machine Learning (TinyML). One of the first applications
targeted by this research field has been indeed keyword spotting, laying the basis for
methodologies and techniques to port AI systems in resource constrained computers.
However, TinyML is still in its infancy and many tasks still require further investigation
using this approach. Speaker verification is a promising new proposal in this regard.

The TinyML approach has a lot of advantages, ranging from the reduced environmental
footprint of data processing, the increase in privacy and security given by the absence of
data transfer, and the great flexibility given by the variety of embedded systems available.
Moreover, the low cost of TinyML systems makes them affordable and suitable to be
adapted to countless number of situations.

However, TinyML by its nature presents also several challenges: apart from the complexity
given by device heterogeneity and MCU constraints, the vast majority of tiny machine
learning applications performs only inference on device, relying on external machines to
provide the underlying trained models. This makes TinyML systems harder to adapt
to new environments or situations on the field, a great obstacle in the development of
truly intelligent low-power systems. For this reason, research is rapidly progressing and
frameworks for training models directly on-device are being investigated and developed
[15]. Another great obstacle to learning on-device is the absence of labels attached to
the collected data. The majority of ML models are trained with a supervised learning
approach, which requires a great quantity of labeled data. It is difficult to obtain such data
directly on-device without relying on human intervention or already deployed external
ML models for labeling. Even if some solutions are being developed, this is still an open
challenge [61].

To overcome the problem of data scarcity and absence of labels, this thesis work addresses
the speaker verification problem by framing it on a few-shot one-class classification ap-
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proach. Few-shot means that only a limited number of voice samples must be needed
to setup the system, and one-class means that such samples must come only from the
authenticated person, i.e. the person whose voice must be recognized. This approach
makes the system interesting also from a purely industrial and commercial point of view,
because users would be required to provide just a small set of voice samples to let the
system learn their own vocal fingerprint, leading to a product with high usability. An
organic approach to the speaker verification task in a TinyML context was still missing in
literature and is proposed here for the first time, providing also a comparison of different
methodologies including a new custom SV algorithm that obtained promising results.

The keyword spotting task is instead tackled by enriching state-of-the-art procedures,
proposing an architecture developed specifically for a dedicated hardware which was never
used before for the task.

Among all the systems identified in this work for performing KWS and SV, best-performing
ones have been chosen to build a final on-device implementation of a cascaded KWS-SV
system able to continuously listen for keywords and, upon a detection, provide a person-
alized answer if the utterance has been pronounced by the authorized speaker.

1.1. Master Thesis Structure

The second chapter of the Master Thesis provides the background needed to understand
TinyML state-of-art regarding audio and speech processing techniques and methodologies.
Third chapter details the solution of the Keyword Spotting task. The fourth chapter
similarly details the approach to the Speaker Verification task. The fifth chapter reports
testing results, and the sixth chapter describes the implementation of our solution on-
device. The last chapter lays the basis for future works.
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This chapter will provide an analysis of background literature related to the thesis. After a
brief introduction to artificial intelligence and machine learning, there will be an analysis
of audio and speech processing in such contexts, followed by an introduction to Tiny
Machine Learning. Two subsections will also be dedicated to insights about common
audio preprocessing and machine learning models for TinyML oriented speech processing
systems, with a particular focus on the tasks addressed by this work: keyword spotting
and speaker verification.

2.1. Artificial intelligence and machine learning

Artificial Intelligence is a broad term that identifies different techniques, algorithms and
subfields of Computer Science with the common goal of modeling rational behaviors typ-
ical of biological beings. Machine Learning is a subfield of Artificial Intelligence that
allows developing programs that autonomously improve by learning from their own ex-
perience, thanks to collected data. Artificial intelligence algorithms based on machine
learning models have become more and more affirmed in a society that produces more
data than ever. Such algorithms leverage huge processing power usually available only on
high-end machines, and they are often distributed as a service relying on cloud comput-
ing. A specific term for this distribution of AI systems has been defined, naming it AIaaS
(Artificial Intelligence as a Service) [23]. This approach requires the collected data to be
transmitted using network connections, providing astonishing performances but also pos-
ing serious questions about energy consumption, privacy of transmitted data and network
usage.

The majority of Machine Learning algorithms is based on an inductive approach to the
problems to be solved: starting from a collection of facts, usually collected data, they try
to extract a general rule to act on such information to describe it, classify it or predict
other information. The general rule identified by a Machine Learning algorithm is indeed
a program able to solve the specific task. Such programs are referred to as “models”. It is
worth noting that a Machine Learning model learns to extract information, and does not
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produce information from scratch [40].

Machine Learning problems can be divided into three main categories: supervised learn-
ing, unsupervised learning and reinforcement learning [21]. The speech processing prob-
lems addressed in this work can be respectively classified into two of these categories.

Keyword Spotting is a supervised learning task, where the algorithm has to learn to map
speech inputs to specific known categories corresponding to the words to be recognized.

Speaker Verification is an unsupervised learning task, where the algorithm must learn an
efficient representation of the input speech signal to extract speaker-dependent informa-
tion and recognize the speaker’s identity.

Machine learning is a broad term that comprehends a variety of different models, each one
more suitable to be applied to certain tasks than others. Regarding KWS and SV, great
results have been achieved by algorithms belonging to the subfield of machine learning
called deep learning [22]. Deep learning identifies all the machine learning algorithms in
the shape of deep neural networks, models composed by layers of artificial neurons stacked
to resemble the structures of biological brains. Such algorithms are particularly prone to
learn rules to solve problems that have no clear algorithmic solution, but are intuitively
solved by biological beings. Under this category fall problems related to vision, audio
processing and, in general, pattern recognition in data.

2.2. Audio and speech processing in AI/ML contexts

Voice is the primary means of communication for human beings. Our species’ remarkable
ability of articulating complex sounds is at the basis of speech, the way we communicate
each other thoughts and ideas.

It is no surprise that designing a machine able to understand language as a human would
do is a problem that has intrigued scientists for centuries. Speech processing, the field
that aims at developing such machines, presents signs of life since early years of computer
science. [20]. The speech processing field has a vast range of applications, such as human-
computer interaction, computer linguistics, speech-based psycholinguistics and of course
language processing [7].

Although humans can intuitively recognize speech and voices, the underlying reasoning
process is not easily explainable, and therefore, defining a precise algorithm to replicate
these tasks on a machine is not trivial, mainly because it is not possible to explicitly
identify rules and operations to be applied on speech signals.
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Such characteristics make this problem well-suited to be solved by applying modern Arti-
ficial Intelligence (AI) techniques, particularly those in the subfield of Machine Learning
(ML) called Deep Learning [22]. Strictly regarding audio and speech processing, ML
techniques obtained promising results and affirmed as the state-of-the-art approach in
such tasks [7]. However, the complexity and computational requirements of deep learning
algorithms are well-known and represent one of the major issues of the current AI tech-
nology domain [52]. Providing a detailed analysis of all speech processing applications
and paradigms is outside the scope of this thesis, so this section will focus on machine
learning approaches to the speech processing tasks addressed in this work.

2.2.1. Audio preprocessing

Humans perceive sounds thanks to specialized cells sensitive to variations in air pressure.
The frequency and the amplitude of such variations influence pitch and loudness of per-
ceived sounds. Common digital audio representations encode the sound waves directly by
using continuous sequences of numbers, called samples, that can be processed by comput-
ers and eventually converted again into sounds via loudspeakers. While this encoding is
useful for human beings, because it is directly linked to our biological mechanisms, it may
not be as effective for artificial intelligence algorithms that have to extract information
from it; main issues with such encoding are related to the high number of samples needed
to represent audio, and the lack of immediately distinguishable information from their
observation.

Although the literature presents examples of speech processing systems that process raw
audio waveforms [18] [28], the state-of-the-art approach requires extracting features from
audio signals which highlight relevant information, and the most common feature ex-
tracted are in the form of Mel-Frequency Cepstral Coefficients (MFCCs) [24].

Figure 2.1: A time-domain audio file (left) and the related MFCC plot (right).

MFCCs are coefficients obtained from a raw audio signal that represent its spectrogram,
which is the distribution of energy for the various frequencies in a signal, in a way that
considers non-linearities of the human ear perception. Differently from traditional spec-
trograms, MFCCs present an emphasis in frequencies below 1000 Hz, where the human
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ear is most sensitive due to evolutionary reasons: the majority of human voices have a
fundamental frequency that ranges from 85 to 255 Hz [41].

The fundamental steps to obtain MFCCs from a waveform audio signal are the following
[43]:

Figure 2.2: Steps for extracting MFCCs from raw-waveform audio files.

The most important advantage of using Mel-Frequency Cepstral Coefficients as features
in speech processing is that they capture and highlight characteristics of speech that are
normally hidden in raw waveform signals, as it can be seen at a glance from the following
image:

Figure 2.3: We can notice that MFCCs for “yes” and “no” are different just at a glance.

Moreover, they reduce the complexity of the processed data by switching from a time-
domain signal to a frequency-domain signal with the consequence of reducing the dimen-
sionality of data needed to be stored and processed.

They however present some disadvantages: they tend to be a sub-optimal choice in noisy
environments [33], and they require some expertise in setting parameters such as the
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filters’ bandwidth or the number of filters themselves [32].

MFCCs remain anyway the most common features when developing speech processing
system, mainly because of their low dimensionality and great capability of extracting
meaningful information from audio signals containing human voices.

More details on MFCC preprocessing adopted for this thesis work can be found in section
3.4

2.3. Keyword Spotting

Keyword Spotting (KWS) can be identified as the task of detecting the presence of a pre-
defined set of words, called keywords, inside an audio stream containing human speech.
There are no limitations on the number of keywords that can be recognized by a system in
order to classify it as a KWS system: they can range from one single word, usually called
“wake-word”, to more complex sets of commands. Moreover, also locutions composed by
multiple words can be treated as keywords, such as the common “Hey Siri” or “Ok Google”.
However, recognize complex phrases and long commands is not the ultimate goal of KWS,
where the short duration of the speech being processed is the common factor to all the
applications.

2.3.1. Historical approaches

Historically, several different approaches to keyword spotting have been developed: rang-
ing from LVCSR systems [26, 63] to the Hidden Markov Model-based approaches [42, 64].

The advent of Deep Neural Networks (DNNs) in 2014 brought a sensible improvement in
performances and keyword spotting tasks, in particular for a Tiny Machine Learning per-
spective. Deep neural networks are a relatively new kind of algorithm which gave birth to
the subfield of machine learning called deep learning. Deep learning has shown promising
performances in a great variety of tasks, including speech processing problems. Major
differences with the previous approaches are that DNNs are able to provide results that
can be directly interpreted as the presence of keywords, without relying on complicated
sequence-search algorithms (i.e. Viterbi decoding) [24]; moreover, their complexity can
be adjusted to fit the computational resource constraints. This combination of simplicity
and effectiveness made Neural Networks the state-of-the-art approach KWS, given the fact
that target devices for this particular task often pose constraints in computational power
and complexity [24]. The general scheme for a neural network based keyword spotting
system is the following:
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Figure 2.4: Steps of a KWS system based on deep learning.

Neural networks require to be trained on large quantities of data related to the task to be
solved. For KWS application, such data must be in the form of audio recordings of the
desired keywords, possibly collected by a large number of different subjects for capturing
differences in pronunciation, accent and voice tone.

2.3.2. Google Speech Commands Dataset

Google Speech Commands [60] is a dataset specifically designed for building and testing
on-device keyword spotting models, collected in 2017 by asking volunteers to produce
audio samples, with the ultimate goal of providing a common ground for benchmarking
KWS systems and speeding up progress and collaboration. This dataset was deemed
particularly interesting also because it has been collected by taking into account the
needs of hardware manufacturers; the author wanted that chip vendors could use this
dataset to demonstrate accuracy and energy usage of their products in a way that is
easily comparable for potential purchasers [60]. This translated into data collected not
by relying on studio microphones and treated environments, but using phone or laptop
microphones in normal rooms and situations. However, for privacy reasons, each audio
sample was collected by asking volunteers to speak in situations where there were no
background conversations. The dataset is composed by 24 common words chosen from the
English dictionary used as core, with the intent to reflect some common useful commands
for IoT or robotics applications: the digits from “Zero” to “Nine”, plus “Yes", "No", "Up",
"Down", "Left", "Right", "On", "Off", "Stop", "Go", “Backward”, “Forward”, “Follow”,
and “Learn”. Moreover, since KWS models have to deal also with rejecting background
speech and non-keywords commands, ten more words were added with the intent of testing
this capability: "Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila",
"Tree", and "Wow". The final list of words contains 34 elements, and the number of
available samples is reported in table A.1.
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Each audio sample in the dataset has been collected with a sampling frequency of 16 kHz,
and each word is already cropped to be contained in a 1-second long audio file.

2.3.3. Multilingual Spoken Words Corpus Dataset

The whole Multilingual Spoken Word Corpus is a large and constantly growing audio
dataset of spoken words in 50 languages, collectively spoken by over 5 billion of people,
for academic research and commercial applications in keyword spotting and spoken term
search [25]. The dataset contains over 340000 keywords, totaling 23.4 million 1-second spo-
ken examples. Differently from the Google Speech Commands, keywords in this dataset
have been automatically harvested by applying algorithms for extracting 1-second long
single word utterances from longer speech audio segments. This makes samples in this
dataset less clean and defined with respect to ones contained in Speech Commands. Each
file is stored in .opus file format, and is encoded with a 48 kHz sample rate.

2.4. Speaker Verification

Lots of subtasks of speech processing have the ultimate goal of extracting information
about the identity of a person from samples of speech. Speaker verification refers to the
task of identifying a precise speaker, called "enrolled" or "authenticated" speaker, from
all the other possible speakers. The output of a speaker verification system is a confidence
value on the correspondence between the voice contained in the input audio sample and
the identity of the enrolled speaker. According to the confidence value provided by the
system, a decision can be taken.

2.4.1. Historical approaches

Speaker verification field had a similar evolution to the KWS field: traditional methods for
performing speaker verification included Gaussian Mixture- Model-Universal Background
Models (GMM-UBM), Gaussian Mixture-Model Support Vector Machines (GMM-SVM),
Joint Factor Analysis (JFA) and i-vectors [13, 65]. All of the aforementioned methods
required heavy statistical computations and modeling.

With the advent of deep learning and its strong representation and classification abilities,
the research took two directions: one included DNNs in the traditional frameworks, like
the DNN/i-vector approach [65], the other is completely based on DNNs to try to ex-
tract a representation of speakers’ voice characteristics in a low-dimensional space called
“embedding”, on which classification and comparison algorithms can be run [65]. Neural
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networks took the place of the statistical models that used to be built to represent voice
features. Several neural network architectures have been tested for this scope since, rang-
ing from classical Feed-Forward Neural Networks [56], Convolutional Neural Networks
[44] and Recurrent Neural Networks [29], but there are also promising techniques that
involve deep belief networks [6] and variational autoencoders [57]. Purely deep learning
based methods for performing speaker verification are d-vectors [56], x-vectors [49] and
j-vectors [50].

Independently from the chosen approach, however, speaker verification process is com-
posed by three major phases:

Figure 2.5: Phases of speaker verification.

Training phase: this step consists in building an algorithm able to extract the unique
characteristics of a speaker’s voice, called speaker model extractor. If a machine
learning approach is chosen, this step usually involves training a model for recogniz-
ing different speakers. In deep learning contexts, it is simple a classification system
against a set of N speakers, where the goal of the model is to obtain the best perfor-
mance possible. This phases must be executed only once during the design of the
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system. Only the speaker model extractor will used in the next phases.

Enrollment phase: the speaker verification system must now be calibrated to recognize
a new speaker, called "enrolled" speaker. This step will require the user to provide
some voice samples, from which the system will extract the enrolled speaker model,
i.e. a unique representation of the speaker’s voice. This model is saved for future
comparisons.

Evaluation phase: this is the inference phase, where new audio utterances from un-
known users are submitted to the system. For each utterance, a model for its
author’s voice is produced and confronted against the stored model of the enrolled
user. A decision on the identity of the speaker is taken according to the similarity
measured via a similarity algorithm.

Different speaker verification systems can use different speaker model extractors or differ-
ent recognition algorithms, but the underlying backbone is the same.

For the same reasons highlighted in Keyword Spotting tasks, some approaches purely
based on neural networks were deemed particularly prone to be explored also in resource
constrained computers. This is the case of the D-Vector approach, and the next section
will provide more details about.

2.4.2. D-Vector approach

This approach has been extensively described for the first time in [56]. It is based com-
pletely on deep neural networks for all the phases of the speaker verification task. The
core of the approach relies on using deep neural networks as speaker model extractors, to
leverage their capability of learning abstract and more compact representations of input
data.

Referring to figure 2.5, the step of building the speaker model extractor is represented by
the "training phase". In this approach, to obtain the speaker model extractor we have
to build a deep neural network to classify the speakers in the training speakers set. Such
network, in the proposed architecture, is composed by several hidden layers and one last
output layer with one neuron for each speaker in the training set.
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Figure 2.6: The speakers classifier DNN [56].

Once the neural network is trained on the set of speakers and able to recognize their
voices, the last classifier layer of the network is removed, leaving exposed the outputs of
the neurons of the last hidden layer. This vector is referred as "deep-vector" or d-vector.

The underlying assumption is that each speaker produces a unique d-vector, and the last
classifier layer simply learns to associate it to one of the speakers in the training set.
However, and here lies the strength of the method, also speakers that are not part of the
training set should be able to produce a unique d-vector.

With the removal of the last layer we have obtained the speaker model extractor, that
produces models in the shape of d-vectors.

The enrollment phase, on the yellow box of figure 2.5, happens by submitting to the neural
network a certain number of voice samples from the enrolled speaker, obtaining an equal
number of d-vectors. Such vectors are stored, and their element-wise average is taken as
the enrolled speaker model. Such model is stored for future comparison.

The evaluation phase, as described in figure 2.5, happens when an unknown voice sample
is submitted to the system. The neural network extracts the D-Vector from the utterance,
and by using a similarity measure such as cosine similarity, performs the confrontation
of the new D-Vector with the stored enrolled speaker’s average D-Vector. More in detail,
cosine similarity between two vectors x and y is defined as:

cossim(x,y) =
xy

∥x∥∥y∥
=

∑n
i=1 xiyi√∑n

i=1 (xi)2
√∑n

i=1 (yi)2
(2.1)
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If the similarity is above a certain threshold, determined by the designer in an empirical
way according to sensitivity needs, the utterance is evaluated as belonging to the enrolled
speaker. If the similarity is below the threshold, the identity of the speaker is deemed
different from the enrolled speaker.

The whole process can be summarized with the following scheme:

Figure 2.7: D-Vector speaker verification approach.

The enrolled speaker model must be obtained only once, and during the evaluation phase
is retrieved from memory and used as a confrontation.

As it can be noticed by the general mechanisms of this system, there are a lot of moving
parts that could benefit from improvement. For example, literature has proposed to take
d-vectors as activations of layers different from the last hidden one, by cutting the networks
higher in their structure [48]; other works proposed Convolutional Neural Networks or
Locally-Connected Networks instead of Feed-Forward Neural Networks to be used as
D-Vector extractors, as in [10]. The final design of a d-vector based speaker verification
system is driven by the needs of the application and the resources available to the engineer,
so it is particularly suited to be ported also in low-power computers and embedded devices.

2.4.3. Text-Dependent and Text-Independent speaker verifica-
tion

Speaker verification can be performed in two different ways, namely "text-dependent" and
"text-independent". The first one refers to the capability of the system of recognizing the
voice of the enrolled speaker when a specific word or phrase is pronounced; the second
one defines a system able to recognize the speaker independently from the pronounced
words [55].

Text-independent speaker verification is generally deemed more challenging to solve; how-
ever, both the problems present pros and cons. In a text-dependent context, the constraint
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on lexical content translates into a low degree of phonetic variability, which eases the work
of the recognition algorithm. In principle, text-dependent SV could operate on extremely
short utterances like passphrases or even single words, leading to systems with a quick
response time. This is not true for text-independent contexts, where to attenuate the
problem of phonetic variability usually engineers rely on processing longer speech utter-
ances [55]. However, it is easier to find data related to text-independent speaker verifica-
tion, while text-dependent contexts could require collecting in-domain data for training
machine learning models, which increases development costs and time.

2.4.4. Librispeech Dataset

LibriSpeech is described in [36] and is a corpus of read English speech, suitable for training
and evaluating speech processing systems, and in particular for text-independent speaker
verification systems. It contains 1000 hours of speech sampled at 16 kHz from thousands of
different readers. The dataset contains training, validation and testing partition, without
overlapping of speakers between the three sets. The dataset presents gender balance at
the speaker level and in terms of the amount of data available for each gender. Moreover,
audio from each speaker has been limited to 25 minutes, to avoid unbalance between
speakers. The training portion of the corpus is split into three subsets, with approximate
size 100, 360 and 500 hours respectively. This has been done because the sheer size of the
dataset made a single distribution impractical.

The following table describes the structure of the dataset as in [36]:

subset hours per-spk minutes female spkrs male spkrs total spkrs
dev-clean 5.4 8 20 20 40
test-clean 5.4 8 20 20 40
dev-other 5.3 10 16 17 33
test-other 5.1 10 17 16 33

train-clean-100 100.6 25 125 126 251
train-clean-360 363.6 25 439 482 921
train-other-500 496,7 30 564 602 1166

Table 2.1: LibriSpeech dataset subsets details.

2.4.5. Evaluation metrics

The most common metrics for evaluating threshold-based biometric identification systems
are the Receiving Operating Characteristic Curve (ROC curve), the Area Under The Curve
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(AUC) metric and the Equal Error Rate (EER). The ROC curve is created by plotting
the true positive rate (TPR) against the false positive rate (FPR) at various threshold
settings:

Figure 2.8: ROC curves for different classificators.

The AUC metric is a measurement of the capability of a binary classifier to distinguish
between classes, and is used as a summary of the ROC curve. The higher is the AUC
metric, the better is the model in discriminating between the two classes. AUC is equal
to 1 for a perfect classifier, and equal to 0.5 for a random classifier.

Figure 2.9: a) ROC of perfect classifier with AUC = 1. b) ROC of random classifier with
AUC = 0.5

The EER is computed by finding the location on a ROC curve, corresponding to a thresh-
old value, where the false acceptance rate and false rejection rate are equal. Such rate is
called EER. In general, the lower the equal error rate value, the higher the accuracy of
the biometric authentication system.
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Figure 2.10: Finding the EER by intersecting the EER line with the ROC curve [54].

The aforementioned evaluation metrics are useful because they remove the dependency
on the threshold when evaluating the system, giving insight on its behavior at each pos-
sible value of the threshold. However, they can not be applied to speaker verification
approaches that provide a discrete classification value such as authenticated-not authen-
ticated, because there is no threshold to compute ROC.

An evaluation metric that could be used for every speaker verification system is accuracy,
defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.2)

Where TP are true positives, TN are true negatives, FP are false positives and FN are
false negatives. Informally, the accuracy of a classifier algorithm on a dataset represents
the percentage of predictions that the model got right. While it may seem the best
evaluation metric to compare the proposed solutions, accuracy alone is not enough when
dealing with a class-imbalanced dataset, where there is a significant disparity between the
number of positive and negative labels.

To overcome this problem, two more suitable evaluation metrics are available, namely
precision and recall. They are defined as follows:

Precision =
TP

TP + FP
(2.3)

Recall =
TP

TP + FN
(2.4)
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Both the precision and the recall are focused on the positive class (the minority class)
and are unconcerned with the true negatives (majority class). They are useful metrics to
assess performance of a classifier on a minority class in an unbalanced dataset. To fully
evaluate the effectiveness of a model, there is the need of examine both precision and
recall. Unfortunately, they often are in a trade-off: improving precision typically reduces
recall and vice versa.

A useful way to evaluate at the same time precision and recall is by using a metric that
combines the two values. F1-score is defined as the harmonic mean of precision and recall,
computed as:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(2.5)

The highest possible F1-score obtainable is 1.0, meaning that precision and recall are both
1.0, and the worst possible value is 0.0, indicating that one between precision and recall
is 0.

2.5. Tiny Machine Learning

In later years, our society showed an exponential diffusion of Internet of Things and em-
bedded devices, integrating processing units in more and more battery-powered everyday
objects. It has been estimated that by 2025 more than 75 billion embedded devices will
be connected to the internet [14]. Such items have direct access to data thanks to sensors
that perceive the world around them, but do not possess the processing capabilities of
larger systems, posing limitations to what they can accomplish.

Tiny ML is the subfield that tries to merge two realms of the current technological domain:
the high performing and data-hungry artificial intelligence algorithms and the flexible and
low-power embedded devices; its ultimate goal is to move the AI closer to the data sources,
potentially directly on the devices that have the burden to collect data. With this idea in
mind, a definition of Tiny ML was proposed as follows: “machine learning architectures,
techniques, tools and approaches capable of performing on-device analytics for a variety
of sensing modalities (vision, audio, motion, chemical, etc.) at “mW” (or below) power
range targeting predominately battery-operated devices.”. [17]

TinyML approach to artificial intelligence can provide a lot of advantages. First of all, on
a society more and more concerned about power consumption and energy saving, ultra-low
power computers equipped with AI systems could operate for long periods of time relying
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only on batteries or even in-place green energy harvesting, reducing the environmental
footprint of complex computations that nowadays require much more power. TinyML
also allows for affordable and flexible devices, thanks to the low deployment costs and
the extreme heterogeneity of embedded systems. Moreover, on-device processing removes
the need of transferring data from the source (sensors) to the processing server, reducing
not only bandwidth consumption, but also risks of cyberattacks, preserving users’ privacy
[45]. On the other hand, TinyML is not free from challenges and problems. It is difficult
to define general frameworks and toolchains due to the heterogeneity of MCU existing;
this leads to inconsistency in approaches and methodologies and makes benchmarking
complex [5]. Moreover, TinyML systems could suffer from the lack of adaptability in
presence of different situations and concept drift. This happens because the vast majority
of tiny machine learning applications performs inference on-device relying on pre-trained
models, produced by external powerful machines: a change in environmental or operation
context would require an update of the device with a new model adapt to the evolved
situation.

More in detail, TinyML identifies two main approaches to the porting of machine learning
models on embedded devices with serious resource constraints:

On-Device inference only: approach based on training models on high-end machines
leveraging affirmed ML libraries, such as TensorFlow [3], and then converting them
in a format suitable for the low-power system to be used in an inference-only fash-
ion. Several open source frameworks such as TensorFlow Lite have been devel-
oped to perform the conversion and on-device execution of ML models [3], but also
closed-source internal solutions have been developed by companies, like the Infineon
ModusToolbox ML-Tools for MCUs [19].

On-Device training and inference: this second approach relies on integrating also the
training procedure on embedded devices, allowing systems not only to perform infer-
ence but also to generate new models from data retrieved directly on-device, without
the need of relying on external machines [45]. This is often referred to as “training
on-device”. Being this a more complex task both in term of required processing
power and memory needed, it is more common to find Tiny ML implementations
that rely on the on-device inference only, even though research is always improving
and trying to investigate ways to optimize the training procedure to be executed
directly on-device [2]. Moreover, this approach suffers also from other limitations of
TinyML, one of which being the lack of labeled data during training. Most common
machine learning models are trained in a supervised way, where the algorithm needs
to process a large quantity of data associated to labels in order to extract useful
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patterns and rules. There is no easy way to obtain labeled data directly on-device,
without the intervention of a human or an already trained classifier [61]. This is
why the inference-only approach is the most common.

The vast majority of Tiny ML frameworks focus on a single type of machine learning
algorithm, neural networks. However, some libraries like sklearn-porter and m2cgen also
allow the porting of algorithms like k-NN, SVMs and Random Forests [1, 30]. For the
scope of this thesis, literature research showed that neural networks are the most effective
method for solving the specific problems addressed [24], even though some other methods
were also investigated. We adopted Tensorflow and Keras [11] as frameworks for devel-
oping deep learning models, and we relied on the company developed Infineon Inference
Engine [19] for deploying the algorithms on-device. All our solutions, however, can be
ported also to open-source frameworks such as TensorFlow Lite Micro [12].

It is worth noting that the experience of the designer plays a fundamental role even in the
early stages of design of the ML model for the intended application. For example, even
though several techniques for reducing the size of the models have been developed, such
as quantization and pruning [45], there are limitations to the effectiveness of the reduction
applied. Models which are too large won’t be able to fit in the embedded system, even
after quantization and pruning. Moreover, if a model requires too much calculations,
inference times could grow in such a way that a real-time execution, if needed, might be
infeasible.

A Tiny Machine Learning designer must also keep in mind that every pre-processing step
applied to data during the training of the applications, when this step does not happen
on-device, must be exactly reproducible and feasible to be computed also at inference
time on the low-power computer. This poses serious constraints on the design of the
algorithms from early stages of the development.

2.6. Speech processing in TinyML contexts

Among the vast possibilities regarding Tiny ML applications, audio and speech processing
tasks were deemed particularly interesting. Applications and systems that perform speech
processing are already available in our homes and even in our pockets, but they often rely
on sending audio stream data to large servers to be processed by complex machine learning
models. Continuously sending audio data on the network poses serious problems, not only
regarding the power consumption, but also from a privacy perspective.

Tiny Machine Learning initially allowed the development of always-on ultra-low power
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systems with the purpose of listening for specific words (“Hey Siri” or “Okay Google” are
two well-known examples [4]) and performing the detection locally, completely on-device,
sending the audio stream to be analyzed on servers only after such detection happened.

Later, with advance in research and development, complete speech commands applications
became feasible to be run in embedded systems, removing the need of communicating with
external servers even for more complex interactions.

Lot of other interesting speech processing applications could benefit from a TinyML im-
plementation, such as emotion, health, language, accent, age, or gender recognition.

Among others, keyword spotting is an application that perfectly showcases the advantages
of Tiny ML, being privacy oriented and providing an energy efficient, fast and offline
inference. This is why it is often considered as the first application to be ported on
an embedded system targeted at speech processing [62]. Moreover, it allows designers
to acquire confidence with the state-of-the-art preprocessing required for speech-based
applications.
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This chapter will report the approach to Keyword Spotting adopted in the Master The-
sis. After a general definition of the problem, an insight about datasets used, feature
engineering and neural network architectures will be provided. The chapter ends with
a performance report and few notes regarding on-device implementation. More details
about on-device implementation can be found in chapter 6.

3.1. Problem definition

This thesis work addresses the keyword spotting task from both a high-level perspective,
due to its didactical significance, and a practical application-oriented perspective, with
the aim of creating a versatile system that could be adapted to support various real-world
use-cases. The ultimate goal is to provide the company with a KWS system capable of
supporting different demonstrations, such as simple wake-word features, vocal controls
for a mobile robot or generic voice-controlled portable devices. The primary source of
information for the implementation of the KWS system has been the work of Peter War-
den and Daniel Situnayake, as described in [62]. The proposed approach rely on training
a machine learning model in a supervised way; input data must be composed by record-
ings of the chosen keyword(s), recordings of speech corresponding to “unknown” words
and noise samples corresponding to the “silence” condition. The model must be able to
listen and provide a real-time classification of the input audio in one of the aforemen-
tioned categories. Our first attempts focused on making the system recognize between a
single keyword, silence and unknown speech, but later on we moved onto more complex
recognizers with more than one command detectable.

3.2. Application architecture

Being this work application-oriented, it is useful to provide insight on the structure of the
system from a high-level perspective by identifying the various components of the KWS
application. However, details related to the on-device implementation will be clarified
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later on, with this chapter mainly focusing on machine learning related components.
Let’s start by providing the general steps that a KWS machine learning application should
perform:

Figure 3.1: Steps of a KWS system.

Obtaining audio input: Audio data must be collected from a source like a digital mi-
crophone.

Audio preprocessing: Audio requires heavy preprocessing before it can be fed into the
model.

Inference: A machine learning model processes the input data and provides a confidence
value on the presence of keywords.

Output analysis: Output of the machine learning model is analyzed.

Action: An action is taken depending on the presence or absence of keywords.

The core of the system is composed by a machine learning model that has to process
audio data and provides a confidence value on the presence of the chosen keywords. The
model adopted is a Convolutional Neural Network that does not process raw audio data,
but relies on inputs in the shape of MFCC features. One of the key features of the system
is that it must be able to run in real-time, processing audio data as soon as they are
available from an acquisition device, and providing an acknowledgment of a detection in
a reasonable amount of time. All of these characteristics will guide the development of
the machine learning model.

3.3. Datasets

For the scope of this thesis, and in agreement with the company, we chose to rely only
on publicly available datasets for keyword spotting. This limited the possible keywords
to the ones included in such datasets, but on the other hand allowed us to provide a
confrontation of our implementation performance on standard datasets. Two principal
keywords datasets were used in this work: Google Speech Commands Dataset [60] and
Multilingual Spoken Words corpus [25]. Such dataset presented a selection of keywords
already classified, and with enough samples for training deep learning models with sat-
isfying results. It is important to notice that the samples were already split in audio
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segments of 1 second, each one containing one single keyword. Moreover, for data aug-
mentation purposes, 6000 seconds of background noise samples in different environments
were collected, both by directly recording environmental noise and from publicly available
background noise videos.

3.3.1. Google Speech Commands Dataset

After an analysis of the available words, we decided that a system able to recognize the
keyword “Sheila” would have been our first goal. Even though such keyword is part of the
dataset, it is not one of the words intended to be used as a command, but as a test for the
background speech rejection. However, we believed that the number of “Sheila” samples
available was enough to train a model and obtain satisfiable results. During this master
thesis, other commands from the dataset were used to build several keyword spotting
systems, such as “Yes”, “No” and some digits. Unused commands were exploited to make
our models more robust to background speech and noise.

3.3.2. Multilingual Spoken Words Dataset

Given the size of the dataset and the variety of words proposed, we decided to extract a
subset of such dataset to be used in development of our KWS systems. Only the English
language words have been extracted, and among all of them we kept only the ones that
had more than 800 samples available. This search identified 1239 different words suitable
to be used. Due to the inconsistence in quality and number of samples of this dataset,
it has not been our primary benchmark during training and testing phases. Instead, we
relied on samples from this dataset only after having designed the KWS system, for the
purpose of adding more commands to our demos to showcase complex vocal interactions.

3.3.3. Additional Background Noise

6115 additional 1-second long samples have been collected by recording or extracting
background and environmental noises. The additional samples belong to the following
environmental recordings:
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Environment Time length
Living room (quiet) 2m:02s

Living room (rainy day) 10m:03s
Library 10m:00s
Office 20m:00s

Restaurant 10m:03s

Table 3.1: Environmental recordings for background noise.

These recordings were taken with a digital microphone at a sample rate of 16kHz. Sam-
ples have been extracted from these recordings by taking 1-second long windows with an
overlapping of 0.5 seconds. This data will be used to make the model more robust to en-
vironmental and background noise, both for identifying keywords even if the environment
presents some noise, but also for detecting the absence of speech and keywords.

3.3.4. Data conversion and augmentation

The target hardware where the keyword spotting system will be executed can provide
audio samples with a sample rate of 16 kHz via a digital microphone. For training
purposes, each audio sample must be converted in a .wav file with a sample rate of
16 kHz. This conversion has been applied to all the samples in the Multilingual Spoken
Words dataset by relying on ffmpeg library [53], while the Speech Commands samples
were already in the correct format. We decided also to perform data augmentation on the
available samples to increase their number, but also for allowing our models to distinguish
keywords also in noisy environments. Formally, let x be an input audio sample in the
shape of a vector of 16, 000 elements. Data augmentation is the function a(x) that
produces two outputs y1 and y2, also representing audio samples in the shape of vectors
with 16, 000 elements:

(
y1

y2

)
= a(x) (3.1)

By writing equation 3.1 highlighting the intermediate steps, we obtain the following equa-
tion:

a(x) =

(
no(gs(ts(x),n1),n1)

no(gs(x,n2),n2)

)
(3.2)
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Where ts(x) is a function that takes as input an array x and returns an array of the
same size but with the elements shifted forwards or backwards by a step of size s ∈
[−4800,+4800]. gs(x,n) is a function that takes as input an array x and a noise sample
array n of size 16, 000 and performs a gain augmentation or reduction on x according
to the difference in amplitude between x and n, returning an array of 16, 000 samples.
Finally, no(x,n) performs the overlapping between the noise sample n and the audio
sample x by performing element-wise sum on the two arrays.

Equation 3.2 has been implemented with the following pipeline:

Figure 3.2: Data augmentation pipeline

Noise fetching block a random noise sample is picked from the available ones.

Time shifting block Implementation of function ts(x). The audio sample fetched is
shifted by +/- 300ms at most (4800 samples), in order to have the same word
represented in different positions inside the 1-second window. This will help the
recognizer to discriminate better even on early or later windows. The shifted sample
is padded with 0s.

Gain staging block Implementation of function gs(x,n). This step performs an am-
plitude difference measurement between the audio sample and the noise sample: if
the signal to noise ratio is too low, the word audio sample is amplified to have a
clearer utterance.

Noise overlapping block Implementation of function no(x,n). Performs the overlap-
ping between the audio sample and the noise sample.
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As it can be noticed, the data augmentation has been designed to produce two different
samples consuming one. The first one is obtained by time shifting the original one and
overlapping some noise, while the second one is obtained by overlapping alone. Noise
samples are different for the two cases to increase the variety of noise. However, the code
also allows for keeping only one of the two audio samples produced by data augmentation,
if needed. A code snippet of the data augmentation pipeline implemented in Python is
the following:

def runAugmentation(input_sample , sample_path , noise_sample , destfolder ,
overwrite=True):

print("Processing " + sample_path)

augmented_sample_file = os.path.basename(sample_path)

if(not overwrite): # Performs data augmentation pipeline branch with
time shifting

augmented_sample_file = "aug_" + os.path.basename(sample_path) #Name
of new sample

augmented_sample = timeShift(input_sample) #Shift in time

augmented_sample = gainAdjust(augmented_sample , noise_sample) #Gain
correction

noiseOverlap(augmented_sample , noise_sample , os.path.join(destfolder ,
augmented_sample_file)) #
Overlapping of noise and audio +
saving

This process of data augmentation is applied statically once before each training session,
and only to training data. Testing and validation data are left without augmentation in
order to test the model performances on the clean dataset for benchmarking purposes.

3.4. Feature Extraction

Feature extraction is a fundamental step of a lot of machine learning applications; it is a
process that changes the shape of data to highlight relevant information to facilitate the
work of the machine learning model [62]. The advantages given by an intelligent feature
extraction are not only related to the overall performance of the model; even the size
of the data itself can benefit from the process, and this is of particular interest for our
application, given the TinyML context we are operating in. The feature extraction system
as described in [62] provides both of aforementioned advantages, relying on the extraction
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of MFCC coefficients (see 2.2.1) with a total of 1960 values, obtaining a reduction of
87% in data size and highlighting differences between MFCCs of different words. Let’s
take as an example four MFCC spectrograms obtained with this system, two from “yes”
utterances and two from “no” utterances:

(a) Utterance 1. (b) Utterance 2.

Figure 3.3: MFCC spectrograms of “Yes” words.

(a) Utterance 1. (b) Utterance 2.

Figure 3.4: MFCC spectrograms of “No” words.

As it can be noticed, each word is characterized by its own unique spectrogram shape,
making easy to distinguish them even at a glance. This is much harder to do by looking
only at raw audio waveforms. This is why we adopted the same preprocessing pipeline
reported in [62], which has been built by Google engineers for their production releases
but has never been described in literature, with just a few modifications. Formally, let x
be an input audio sample in the shape of a vector of 16, 000 elements. Feature extraction
can be modeled as the function fe(x) that produces the output matrix S, representing
the MFCC coefficients obtained from the input audio.

S = fe(x) (3.3)
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The output matrix S has the following shape:

S =


s11 s12 s13 . . . s1n

s21 s22 s23 . . . s2n
...

...
... . . . ...

sm1 sm2 sm3 . . . smn

 (3.4)

Where each element sij represents the i-th coefficient of the j-th time interval considered in
the computation of the MFCC spectrogram. m and n are determined by the parameters of
the MFCC extraction algorithm: n represents the number of frequency buckets identified
and m the number of time intervals considered in the computation. In our application,
the MFCC extraction function requires processing a one-second long audio file with a
30ms wide sliding window, shifted at each step of 20ms. From each 30ms window, one
row of S is produced by applying the following pipeline:

Figure 3.5: MFCC extraction pipeline

Hanning windowing block: The 30ms audio portion is processed through a Hanning
window to reduce spectral leakage at the edge of the signal, thanks to its ability of
reducing discontinuities:

w[n] = 0.5− 0.5 cos

(
2πn

N − 1

)
(3.5)

In (3.5), N is the length of the window;

Fast Fourier Transform block: This block implements the computation of the Fast
Fourier Transform of the signal (FFT). FFT is a way to obtain the Discrete Fourier
Transform, which is a mathematical operation that transforms a time-domain signal
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into its frequency-domain representation:

X[k] =
N−1∑
n=0

x[n] · e−2πj· kn
N (3.6)

where X[k] is the k-th frequency component of the signal in the frequency domain,
x[n] is the n-th sample of the signal in time domain and k is an integer from 0 to
N −1, representing the frequency bin index. This operation takes N = 480 samples
in time domain as input, which is the number of samples contained in 30ms of audio
a with a sampling rate of 16kHz. A 0-padding is added to reach 512 samples, since
the FFT algorithm requires a power of two as number of samples in input. The
result provides (N/2) = 256 different frequencies.

DFT Power Spectrum block: This block computes the power spectrum from the DFT
values. Since the DFT outputs complex numbers, with a real and imaginary part,
we can obtain their magnitude via the relation:

|z| =
√
Re(z)2 + Im(z)2 (3.7)

Where |z| is the magnitude for each frequency;

Mel-frequency downsampling block: The output of the DFT is composed by 256
frequency buckets. This number is quite high; moreover, such frequencies are evenly
spaced. To model the characteristics of the human ear, non-linear downsampling is
applied, mapping the frequencies to the Mel-scale leveraging triangular filters. The
mapping of frequencies happens following this scheme [47]:

Figure 3.6: Conversion to mel-frequencies

Triangular filters act by drawing and aggregating information from different frequen-
cies, with a higher resolution in lower frequencies and a lower resolution towards
higher ones. This is modeled by the distance and the wideness of the triangular fil-
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ters. These two parameters are precisely identified by the mel-scale, and the relation
between Hertz and mels is the following [34]:

m = 1127 ln

(
1 +

f

700

)
(3.8)

This preprocessing pipeline implements 40 mel-scale filters, that will give us 40
frequency values, a lot less than the starting 256 frequency values.

Noise reduction block: A unusual aspect of this feature extractor pipeline is the pres-
ence of a noise reduction block. A running average of the value of each frequency
bin is kept in memory during the execution, and this average value is subtracted by
the instantaneous value at each computation. The rationale behind this operation is
that background noise is deemed to be fairly constant over time, and present only in
particular frequencies. By subtracting the running average, we have better chances
to remove constant noise in certain parts of the spectrum. Moreover, this com-
putation requires different coefficients for the even and the odd frequency buckets,
explaining the comb tooth shape of the spectrograms. This has been deliberately in-
troduced because empirical evidence showed an improvement in performance. More
details on this can be found in [59].

PCAN block: This block implements the Per-Channel Amplitude Normalization auto-
gain to boost the signal based on the running average noise. This step is designed
to work in conjunction with the noise reduction block: it works by dividing the
amplitude of each frequency bucket by a normalization factor that is derived from
the average noise level in that channel. This has the effect of boosting the signal-
to-noise ratio of the speech signal in each frequency, while preserving the relative
power distribution across the spectrum;

Log-Scale normalization block: At the end of the process, this block performs a nor-
malization with a logarithmic scale of the values in the frequency buckets. This is
needed to avoid having relatively loud frequencies that drown quieter ones, facili-
tating the recognition system that will have to work on these samples.

As it can be noticed by the scheme, this pipeline has been carefully designed to extract
all the relevant information from the audio signal, including also a noise reduction part
embedded in the pipeline itself. The slice produced contains n = 40 frequency values,
and by repeating the process for the whole 1-second audio segment we can obtain m = 49

slices. At the end, each spectrogram is composed by 40 × 49 = 1960 values, and can be
interpreted as a 2D black and white image. We have also adopted a further normalization
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step at the end of this pipeline. The original transformations produced MFCC coefficients
in the range between 0.0 and 26.0. We decided to normalize each value between -1.0 and
1.0 to ease the training process. It is worth mentioning that this preprocessing pipeline
must be implemented in the same exact way both for the training, testing and validation
steps during the model development, but also in the microcontroller unit during inference
time. This is a general rule that holds in every TinyML application that relies on executing
inference on-device and training on dedicated machines: the preprocessing pipeline must
be suitable to be executed also in the MCU, and must be designed with this goal clear in
mind to avoid introducing a bottleneck in the system. Our implementation relies on the
already optimized code by [62].

3.5. Neural Network Architecture

A fundamental part of the development of a machine learning algorithm is the choice of
the model. As anticipated in section 2.2, deep learning models are particularly suited
for solving speech processing tasks. Given the preprocessing steps applied to the audio,
which turned audio signals into 2D images representing MFCC spectrograms, the problem
of identifying different keywords can be thought as a pattern recognition problem in 2D
images. The goal of our model is to learn the shape of the spectrograms of the desired
keywords, and return high confidence values when one of the desired patterns is observed
in input. Among all the possible deep learning models, Convolutional Neural Networks are
particularly suited for solving patter recognition tasks in images, making them the state-
of-the-art approach to image classification [39]. A CNN is a deep neural network where
specialized layers, called convolutional layers, have the purpose of identifying patterns
inside images by using sliding filters. Fully connected layers can be used to interpret such
similarities and provide a confidence value on the presence of certain elements in the input
image. Among all the possible CNN architectures, the choice must be guided with the
final goal of developing a model small enough to fit into microcontrollers. This means that
there is a limitation on deepness and number of parameters of the models, such as filters’
size and neurons per layer. For the purpose of developing the KWS system we tried two
different architectures, varying only in the size of the convolutional filters. While such
architectures are largely based on the one proposed by [62], we adopted two convolutional
layers instead of only one, and we relied on this structure for all the experiments. This
led to smaller networks that however scored satisfying accuracy values. To clarify the
structure of our models, here is a scheme representing the networks:
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Figure 3.7: KWS model architecture

The number of parameters in this architecture changes according to the number of classes,
i.e. the number of keywords that a single network must be able to recognize, and accord-
ing the number and size of filters of convolutional layers. While the number of classes
depends on the desired behavior of the application, size and number of filters can be
tweaked by the architect to trade-off between power and size of the model. By using this
architecture as common ground, we tested two different models varying only in the size
of the convolutional filters. The example brought by [62] involved one single convolution
with kernel size (8 × 10); we tested one model with a kernel size of (8 × 20) for the first
convolution and (4 × 10) for the second convolution, and another model with smaller
kernels of size respectively (4× 4) and (3× 3). As it can be seen from the tables below,
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the size of the filters plays a fundamental role in the total number of parameters of the
model, which in turn determines the final size of the neural network:

Model: smallconv-kws-nn
Layer type Output shape Settings Parameters

Input (49, 40, 1) None 0

2D Convolution (25, 20, 16)
Kernel size = (4, 4)

Filters = 16
Stride = (2, 2)

272

2D MaxPooling (12, 10, 16) Pool size = (2, 2) 0

2D Convolution (12, 10, 32)
Kernel size = (3, 3)

Filters = 32
Stride = (1, 1)

4640

2D MaxPooling (6, 5, 32) Pool size = (2, 2) 0
Flattening (960) None 0

Dense (#output classes)
Units = #output classes

Activation = softmax
960 * (#output classes)

+ (#output classes)

Table 3.2: Structure of small CNN for keyword spotting.

Model: conv-kws-nn
Layer type Output shape Settings Parameters

Input (49, 40, 1) None 0

2D Convolution (25, 20, 16)
Kernel size = (8, 20)

Filters = 16
Stride = (2, 2)

2576

2D MaxPooling (12, 10, 16) Pool size = (2, 2) 0

2D Convolution (12, 10, 32)
Kernel size = (4, 10)

Filters = 32
Stride = (1, 1)

20512

2D MaxPooling (6, 5, 32) Pool size = (2, 2) 0
Flattening (960) None 0

Dense (#output classes)
Units = #output classes

Activation = softmax
960 * (#output classes)

+ (#output classes)

Table 3.3: Structure of large CNN for keyword spotting.
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In the scope of our KWS application, we investigated models able to distinguish between
one, two or three different keywords at the same time, in addition to silence and unknown
speech (i.e. all the speech that is not part of the chosen keywords set). The simple case
with one keyword can be good for developing simple wake-word applications that rely on
activating more complex speech processing pipelines, both on-device or relying on cloud
computing, while networks able to distinguish between different commands can be useful
to develop complete on-device voice-controlled applications. As mentioned before, the
number of keywords has an influence on the number of parameters of the models, and
of course on their final accuracy. Without changes in the architecture, the more words a
model is required to recognize the lower its accuracy will be.

Each one of the models reported here has been trained and tested on data taken from
Google Speech Commands dataset for comparison purposes. Models that have been found
particularly interesting from an application perspective have been also trained and tested
on keywords taken from the Multilingual Spoken Words corpus. However, this dataset
has been chosen with the precise goal of developing demos and use-cases thanks to its
large number of keywords, without the intent of using it as an organic benchmark for our
models. The next section will report details on training and testing results for each model
on keywords taken from the Speech Commands dataset.

3.6. Training and testing

We identified six different neural networks, depending on the two different architectures
and the three different number of possible keywords to be recognized. Each model has
been trained on the same subset of keywords, all taken from the Google Speech Com-
mands dataset. Chosen words are the following, according to the number of terms to be
recognized:

Chosen keywords
Number of keywords Keyword(s)

1 "Sheila"
2 "Yes", "No"
3 "One", "Two", "Three"

In addition to the chosen keywords, KWS models should also be able to recognize between
silence and unknown words. Silence samples have been taken from the background noise
recorded as explained in section 3.3.3, while the set of unknown speech has been built
by drawing randomly words from the Speech Commands dataset not belonging to the
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desired keywords’ classes. More in details, this is the dataset preparation pipeline for the
training phase:

Figure 3.8: Steps to obtain training, testing and validation sets for KWS models training.

Keyword selection: Among all the possible keywords contained in the dataset, a subset
is chosen as targets for the current model. All other words are suitable to be used
for training the “unknown” samples.

“Unknown” samples collection: All words that do not belong to the desired keywords
are merged together in a “Unknown” class.

“Silence” samples collection: This step collects the “silence” samples by importing the
background noise samples recorded as explained in section 3.3.3.

Class rebalancing: Since “unknown” and “silence” classes may contain a lot of more
samples than the desired keywords classes, this steps performs a rebalancing where
the number of samples gets balanced. Parameters of this step can be manually
tuned by the designer: the choice we made was to remove randomly some samples
from “silence” and “unknown” classes until their size matched the size of the largest
keyword class. If the dataset is unbalanced even in the number of samples for
keyword classes, this step can act also on such classes to let them have the same
number of samples.

Train-Test-Val split: Available samples are divided into training set, validation set and
testing set. Chosen proportions for such sets are respectively 80%, 10%, 10%.

Data augmentation: Data are augmented according to the pipeline explained in section
3.3.4. This process gets applied only to the training set, leaving testing set and
validation set without augmentation to act as a benchmark on the raw dataset.

MFCC extraction: At the end of the process, each sample in training, testing and
validation set is processed according to the pipeline explained in section 3.4 to
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extract the related MFCC spectrum to be fed into the neural networks.

This process of data preparation is performed statically before training. The neural
networks have been trained for 200 epochs with a batch size of 8, using the Adam optimizer
and a learning rate of 0.0001. Early stopping has been used to control overfitting with
a patience of 30 epochs on the validation loss. Testing results produced the following
accuracy values:

Model: conv-kws-nn
Number of keywords Testing accuracy Testing loss Parameters

1 0.9450 0.1743 25,971
2 0.9269 0.2319 26,932
3 0.8960 0.2900 27,893

Table 3.4: Accuracy results for large CNN.

Model: smallconv-kws-nn
Number of keywords Testing accuracy Testing loss Parameters

1 0.9350 0.2045 7,795
2 0.9275 0.2301 8,756
3 0.8729 0.3644 9,717

Table 3.5: Accuracy results for small CNN.

As it can be noticed by the testing results, both the models show a discrete capability
in distinguishing keywords, with the larger network performing slightly better than the
smaller one. The large CNN provides a mean accuracy of 0.9226 and a mean loss value
of 0.2320, while the smaller one provides a mean accuracy of 0.9118 and a mean loss
value of 0.2663. Preferring the smaller network to the larger one gives a decrease in mean
accuracy of 1%, but allows reducing almost three times the size of the models, which in
a TinyML context is a fundamental feature. Thanks to optimization techniques such as
model quantization and pruning [45], models can be compressed to fit into the small space
available in microcontrollers. Both the models tested in this section are suitable for the
execution on real hardware even in the larger version. The following section will provide
estimations on memory consumption and inference time of the aforementioned models,
and more details on the on-device implementation will be provided in chapter 6.
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3.7. Memory and latency estimation

Memory and latency estimations for models have been obtained via the ModusToolbox
Machine Learning Configurator provided by Infineon Technologies. The software performs
the conversion of neural networks in a format suitable for the execution on microcon-
trollers, thanks to a custom ML inference engine for MCUs called IFX Inference Engine,
and provides measurements on memory and latency estimations. The tool is also able to
perform network quantization, which is a technique for reducing size of a neural network
that involves quantizing its weights and activations to different bit depth values, such
as 16 bits or 8 bits, reducing its memory footprint. Estimated memory consumption is
provided as flash memory estimation (i.e. the space needed for storing layers and weights
of the models) and buffer size memory estimation (i.e. the space needed for storing the
activations at runtime). Remember that during execution, the MCU RAM needs to have
enough space for storing both weights and activations. Estimated inference time is com-
puted by measuring the cycles needed by the MCU to run a single inference of the model,
which is the forward propagation from input to output.

Various quantization levels are applied to the models by the tool to provide a comparison.
In table 3.6 and 3.7 results are reported, respectively for the large version CNN with 3
keywords as target and for the small version CNN, again with 3 keywords as target.

Model: conv-kws-nn
Quantization Flash memory Buffer size Inference time
float 112.5 kB 79.3 kB 0.336 s
int16x16 56.4 kB 45.6 kB 0.268 s
int16x8 28.3 kB 45.6 kB 0.302 s
int8x8 28.3 kB 25.8 kB 0.309 s

Table 3.6: Memory and latency estimations for large KWS CNN - 3 keywords version.

Model: smallconv-kws-nn
Quantization Flash memory Buffer size Inference time
float 39.2 kB 39.6 kB 0.046 s
int16x16 19.7 kB 21.8 kB 0.037 s
int16x8 9.9 kB 21.8 kB 0.042 s
int8x8 9.9 kB 11.9 kB 0.043 s

Table 3.7: Memory and latency estimations for small KWS CNN - 3 keywords version.
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In this tables, various quantization levels are reported. The int16x8 quantization means
that the activations have been quantized to 16 bits, and the weights have been quantized
at 8 bits. This is why there is a reduction in flash memory but not in buffer size with
respect to the int16x16 quantization level.

Inference time values are computed considering as a target MCU the 150-MHz Arm®
Cortex®-M4 system-on-chip. This is a quite powerful microcontroller, but it has been
chosen because it will be the target hardware for the implementation of our system.
Refer to chapter 6 for more details. It is also worth noticing that such target is optimized
for executing 16 bits operations: this is why the lower inference time for each model is
obtained by the int16x16 quantization level.

It is useful to notice that small convolutional neural networks are much faster in inference
time and require a lot less memory to execute: this makes them suitable to be executed
even on small MCUs. The reason lies on the different kernel size, which reduces the
number of operations needed at each layer. The memory/time saving is so noticeable
that makes the loss in accuracy reported in section 3.6 acceptable also for real use-case
developments.

Remember that such estimations come from conversion and quantization algorithms ap-
plied by the chosen tool: using different frameworks to convert the models in a MCU
suitable format could lead to slightly different results, according to optimizations imple-
mented.
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This chapter will report the approach to speaker verification adopted in this work. After
a general description of the problem and the goals of the development, a note on custom
datasets used during this work will be provided. Sections related to the algorithm and
methodologies will follow, along with a description of the training and testing processes.
Testing results will be commented on the next chapter, while on-device implementation
will be explained in chapter 6.

4.1. Problem definition

The speaker verification task in its general characteristics has been described in section 2.4.
While a lot of the approaches reported have shown promising results, very few information
is available about architectures specifically designed for the execution on ultra low-power
MCUs in a TinyML context. The vast majority of architectures proposed in section 2.4
involve models too big to fit into small MCUs, or require computations which would be
too complex to be carried on by such processors. Before analyzing techniques to tackle
speaker verification in a TinyML context, a formal definition of the task is provided.

Let xu be an array of integer values of size 16, 000 representing one second of audio
recorded at 16kHz, containing speech signal from a speaker su. Let also be me the so-
called enrolled speaker model: a representation of the unique vocal characteristics of a
chosen speaker se. The speaker verification system can be modeled as the function v:

v(xu,me) 7→ [0, 1] (4.1)

This function returns 1 if su = se, i.e. if the speaker that produced the utterance xu

is the same speaker that provided the speaker model me. As it can be seen from the
following scheme, the function produces an authentication value auth that can be used
to affirm that the unknown speaker su is indeed speaker se, also called "enrolled speaker"
or "authenticated speaker".
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Figure 4.1: Modeling of a general speaker verification system.

4.2. Goal of the experiments

The goal of the experiments conducted is to test and compare carefully designed machine
learning algorithms for speaker verification, with the final target of deploying on-device a
demonstration of such a system. Apart from all the constraints given by the limitations
of the target hardware, there are other conditions that emerged from an analysis of the
context we are operating in, taking into account both the needs of a hypothetical final
user but also the work done on keyword spotting. Such conditions are one-class classi-
fication, few-shot classification, on-device adaptation to new speakers and synergy with
the keyword spotting system already developed. The following sections will provide more
details about all of the mentioned goals that the system should achieve.

4.2.1. One-Class Classification

The speaker verification task can be solved as a particular classification task, namely
one-class classification.

Classification is one of the most common problems solved by machine learning applica-
tions. The usual approach is to train a machine learning model able to distinguish between
two or more classes with a training set containing objects from all the classes. In one-class
classification (OCC) [31], instead, the ML algorithm has to learn to distinguish objects
of a specific target class amongst all objects belonging to all possible existing classes, by
primarily learning from a training set containing only the objects of the target class. This
is much more difficult than the previous case, and in one-class classification can also fall
problems related to outlier detection, anomaly detection and novelty detection [38].
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Figure 4.2: Different classification types [38].

Speaker verification can be thought as a one-class classification problem because the
ultimate goal of the system is to learn to distinguish one single class (the enrolled speaker
voice samples) to all the possible existing samples belonging to all other classes (voice
samples from all other speakers in the world).During the enrollment of the speaker, no
samples from other speakers are available to the system to perform a confrontation, and
this fits the task in the OCC category.

This feature guided us in the development of the system, by experimenting with algorithms
generally suited for one-class classification. More details on the chosen approach are given
in the next sections.

4.2.2. Few-Shot Classification

In addition to the one-class condition, the problem of speaker verification can also be
considered among Few-Shot Classification problems. Few-shot classification aims to learn
a classifier to recognize unseen classes during training with limited labeled examples [9].
In the speaker verification context we are considering, which is strongly tied to MCU-
based systems with end-user interactions, it is reasonable to believe that users that want
to enroll will be required to provide only a few samples of their voice: ultra-low power
microcontroller are often very limited regarding memory and storage space available, and
a user must be able to perform the enrollment without having the burden of collecting
large quantities of samples.

Few-Shots classification in the context of speaker verification means that the system must
be able to learn the enrolled speaker’s model by listening only to a very limited number
of voice samples from such speaker. During testing, we tried to measure performances of
our models taking into account the few-shots condition by using small sets of enrollment
samples. More details can be found in section 5.1.
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In Few-Shot classification, a common approach is to train and develop models not able
to recognize specific sets of classes, but to recognize if two objects are sufficiently similar.
Later, by using few labeled samples from the target class as support, the system should
in principle be able to associate to such class new samples which are deemed sufficiently
similar [51]. As it can be noticed, this approach reflects the general speaker verification
framework adopted in this work, and this is why our problem can also be considered a
few-shot classification one.

4.2.3. On-device adaptation to new speakers

Another fundamental characteristic of the developed system must be the ability of en-
rolling the speaker directly on-device. No interaction with an external machine, both via
a physical connection or network communication, must be needed. There are two main
reasons behind this need: one, of course, is the industrial need of developing products
that are easy to use by customers, and removing the need of additional hardware for the
set-up of the system would be extremely valuable. The other reason is that this makes the
system interesting also from a TinyML point of view, where the intelligent adaptability of
an embedded system is a feature that is highly sought in this field. The development of
truly intelligent TinyML models requires having the possibility of adapting their behavior
directly on the field.

This will constraint our choice in the algorithms: we have to make sure that the enrollment
phase can be performed by the low-power microcontrollers in all of its step, and in a
reasonable amount of time. This will also guide our choice of final models for on-device
deployment.

4.2.4. Cascading with Keyword Spotting

The keyword spotting system described in chapter 3 should still be part of the system.
This means that the microcontroller should show capabilites of recognizing keywords
and eventually of performing checks on the speaker’s identity. While developing a fully
functional keyword spotting-speaker verification cascaded system is not the ultimate goal
of this work, design choices must be taken to allow future implementations of such complex
interactions.

A SV system that works cascaded with a keyword spotting system could provide person-
alized behavior if the word spoken is deemed to come from the enrolled speaker, as the
following scheme represents:
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Figure 4.3: A possible KWS-SV cascade application.

This means that in a single-core setting the two systems must be small enough to be
executed on the same microcontroller unit. Several optimizations and design choices
must be done to achieve this result. For example, this is why we decided to share the
same feature extraction backbone for both systems. More details are given in section 4.3.

4.3. Approach to Speaker Verification

A choice on the approach to the speaker verification problem must be taken considering
all the constraints of the specific context we are operating in. Among all the methods
proposed in section 2.4, the ones completely based on neural networks seem the more
suitable to be ported on a microcontroller, thanks to the existing consolidated TinyML
methods for optimizing such models. The most promising approach seems to be also
the simple d-vector based one, extensively described in section 2.4.2. However, neural
networks involved in examples reported in literature often presents architectures with too
many layers or parameters, even in range of millions. Such complex systems are not
feasible to be executed on a microcontroller, and a careful design is needed to achieve
results in constrained systems. To support the neural network in solving the problem,
different similarity algorithms have been tested to perform the comparison between d-
vectors, but also cascading of other more powerful classification algorithms have been
tried.

Unfortunately, neural network size is not the only concern. The presence of the keyword
spotting system that already takes space and resources is also something to be consid-
ered, and the more application parts can be shared, the better it is for the memory and
computational footprint of the system.
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4.3.1. Feature extraction backbone

To maintain the compatibility with the keyword spotting system designed, and also to
save memory in the final on-device implementation, we decided to maintain the same
input data preprocessing pipeline of the keyword spotting system, extensively described
in section 3.4. This means that all the moving parts in the speaker verification system
take as input MFCC spectrograms of audio data. In addition to the efficiency gained,
all the advantages related to data complexity that MFCC preprocessing brings to the
system are still valid. However, we can’t affirm the same regarding the optimality of such
pipeline also for SV tasks. While MFCC spectrograms are also widely used in speaker
verification systems, the pipeline adopted has been built specifically for the keyword
spotting task, highlighting differences between spectrograms of different spoken words.
There are no guarantees that such way of extracting MFCCs is optimal to perform also
speaker verification.

4.3.2. Text-Dependent and Text-independent

As explained in 4.3.2, the choice of the text-independent or the text-dependent speaker
verification task determines not only the availability of data, but also the general com-
plexity of the task, with the text-independent condition being slightly more difficult to
be solved. However, choosing one of them does not pose constraints on the design that
exclude the other option from being implemented: a text-independent speaker verification
system should in principle be able to perform also in a text-dependent way.

All the proposed solutions have been tested both on text-independent and on text-
dependent datasets. An important consideration must be done: literature research showed
that text-independent systems tend to perform better when longer audio utterances are
submitted. In our case, we are limited by the length of the keyword spotting utterances
that can be recognized, fixed at 1-second long audio samples due to memory constraints
and compatibility reasons. This is an element that causes additional difficulties to the
text-independent speaker verification, and must be considered when commenting final
performances.

4.3.3. Final system structure

All the systems designed follow the general structure identified in section 2.4.2, and can
be represented by the following scheme:
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Figure 4.4: D-Vector speaker verification approach.

Enrollment samples: set of MFCC spectrograms coming from the enrolled speaker.
Several sizes of the set have been tested to measure the impact of the number of
samples on the final model accuracy.

Test sample: MFCC spectrogram of an audio sample coming from an unknown speaker.
During testing, such samples may come both from the enrolled speaker and from
another unknown speaker.

D-Vector Extractor: last hidden layer activation of a neural network trained as a clas-
sifier on a finite set of speakers. Its purpose is to obtain a unique d-vector for each
speaker, with a certain consistency across different utterances.

Enrolled speaker model: representation of the speaker identity obtained by process-
ing the d-vectors produced by the enrollment samples. It can be obtained as the
element-wise average of the enrollment d-vectors or it can simply be the full set of
d-vectors.

Similarity algorithm: algorithm that performs the confrontation between the speaker
model and the d-vector extracted from an utterance of an unknown speaker. This
confrontation can happen using various techniques and methods.

Score: output value that establish the belonging of the test sample to the enrolled
speaker.

However, even if the scheme identifies a similarity algorithm in the block responsible for
obtaining the score, also more complex classification algorithms that operates on d-vectors
can be adopted. Such block is to be intended as the algorithm responsible for verifying the
identity of the speaker, regardless of the method adopted. More details will be clarified
in section 4.5.
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4.4. Building the D-vector extractor

The first step in developing the speaker verification system, regardless of the similarity
approach adopted, is building the neural network responsible for extracting d-vectors from
input audio samples. It is the block called "D-Vector extractor" in figure 4.4. The most
common approach is to train a neural network on a sufficiently large speakers dataset to
perform classification among them. The proposed architecture is a convolutional neural
network.

4.4.1. Convolutional Neural Network

The neural network adopted is deeper than the ones used in keyword spotting task. As it
can be noticed from the scheme below, a batch notmalization layer has been introduced
right after the input layer. The network presents the classical convolution-maxpooling
blocks, ending with two convolutions followed by a dense layer. Dropout is added to
control overfitting, and the last output layer is a softmax classifier with as many nodes as
the number of speakers in the training dataset, which is 92 in the chosen implementation
(refer to section 4.4.2 for details).
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Figure 4.5: D-vector extractor CNN structure.

Details of the various NN layers are the following:
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Model: speakers-classificator-cnn
Layer type Output shape Settings Parameters
Batch Normalization (49, 40, 1) None 4

2D Convolution (49, 40, 8)
Filters = 8,
Kernel = (3, 3)
Strides = (1, 1)

80

Maxpool layer (16, 13, 8)
Pool size = (3, 3)
Padding = "valid"

0

2D Convolution (16, 13, 16)
Filters = 16,
Kernel = (3, 3)
Strides = (1, 1)

1168

Maxpool layer (8, 6, 16)
Pool size = (2, 2)
Padding = "valid"

0

2D Convolution (4, 3, 32)
Filters = 32,
Kernel = (3, 3)
Strides = (1, 1)

4640

2D Convolution (2, 2, 64)
Filters = 64,
Kernel = (3, 3)
Strides = (2, 2)

18496

Flattening (256) None 0
Dense (128) None 32896
Dropout (128) Rate = 0.3 0
Output (94) Activation = Softmax 12126
Total parameters 69,410

Table 4.1: Speakers classificator CNN details.

In the scope of this thesis, the d-vector has been taken as the activation of the flattening
layer, after all the convolutional blocks but before the first fully connected layer. In figure
4.5, the d-vector extractor is highlighted in blue.

The final d-vector extractor model is a neural network with a total of 24, 388 parameters,
which make it extremely lightweight considering the complexity of the task to be solved.
Details about memory consumption and inference time will be provided in 4.4.3. The size
of the d-vectors is 256, equal to the output size of the flattening layer. This is slightly
larger than other approaches in literature, but still small enough to fit several in the
memory of a microcontroller.
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4.4.2. Training of D-Vector extractor

The network has been trained on a subset of the LibriSpeech-train-100 dataset (refer to
2.4.4). The dataset has been downloaded and each audio sample has been divided into
1-second long segments to match the expected input size of the network. The dataset
contains 251 different speakers, but a subset of them has been selected among those who
had the greatest number of samples to speed up the training process. 92 speakers have
been identified and the related samples constitued the subset, with a total of 136, 651

samples.

All the samples have been preprocessed with the same MFCC extraction pipeline ex-
plained in 3.4; however, no data augmentation has been performed this time because of
the sufficient quantity.

Data have been split into training, validation and testing sets with proportion respectively
of 70%, 15%, 15%, producing a total of 95, 592 samples for training, 20, 485 samples for
validation and 20, 484 samples for testing.

The neural network proposed in the previous section was trained for a total of 700 epochs
with a batch size of 32, and the Adam optimizer with a learning rate of 0.0001. Details
on loss function adopted can be found in section B.1 of Appendix B.

At the end of the training, the neural network showed capabilities of classifying speakers
in the set: the accuracy scored was 0.5778 on the testing set. The confusion matrix
represents a concentration of values on the principal diagonal, and it is reported in figure
4.6:
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Figure 4.6: Confusion matrix of the speaker classificator model.

4.4.3. Memory and latency estimation

Memory and latency estimations for the d-vector extractor have been obtained via the
ModusToolbox Machine Learning Configurator provided by Infineon Technologies, anal-
ogously to the estimation for the KWS models explained in 3.7. All the considerations
related to flash memory estimation, RAM memory consumption and inference time are
identical and still valid.

Model: d-vector-extractor-256
Quantization Flash memory Buffer size Inference time
float 98.08 kB 70.5 kB 0.036 s
int16x16 49.2 kB 43.1 kB 0.028 s
int16x8 24.8 kB 43.1 kB 0.032 s
int8x8 24.8 kB 25.5 kB 0.033 s

Table 4.2: Memory and latency estimations the d-vector extractor NN.

4.5. Similarity algorithms

The d-vector extractor backbone is just one part of the pipeline of SV. A fundamental
role is played by the classification or similarity algorithm that has the burden of actually
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verifying the claimed identity of a speaker, via the analysis of the produced d-vectors.
This section will detail the approaches adopted in the design of such an algorithm, along
with the proposed solutions.

4.5.1. Mean Cosine Similarity

This approach is the state-of-the-art regarding speaker verification systems. A pre-
determined number of enrollment samples from the enrolled speaker is obtained, and
is processed through the d-vector extractor to produce a set of d-vectors ("enrollment
d-vectors"). The element-wise average of the d-vectors is computed to obtain a mean
d-vector to be used as speaker model.

Every time a new audio utterance is detected, the system extracts the related D-Vector
and confronts it with the mean D-Vector of the enrolled speaker via cosine similarity
(equation 2.1).

If the similarity is above a certain threshold, the new audio utterance is attributed to the
enrolled speaker. The process is represented by the scheme below:

Figure 4.7: Speaker verification based on mean d-vectors and cosine similarity.

Formally, let E be a M ×N matrix, u a vector of size N and t a real number such that:

• N is the size of the d-vector produced by the d-vector extractor;

• M is the number of enrollment samples chosen;

• E is the matrix composed by the M enrollment d-vectors;

• u is a d-vector coming from an utterance of an unknown speaker;

• t ∈ [−1.0,+1.0] is the similarity threshold.
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Matrix E has the following shape:

E =


e11 e12 e13 . . . e1N

e21 e22 e23 . . . e2N
...

...
... . . . ...

eM1 eM2 eM3 . . . eMN

 (4.2)

Where emn is the n-th element of the m-th enrollment d-vector. To perform the mean
cosine similarity method, there is the need of computing the mean vector me:

me =
[
me1 me2 me3 . . . meN

]
(4.3)

Where each element of me is computed as:

mei =

∑M
m=1 emi

M
(4.4)

Computing me ends the enrollment phase. When the d-vector u of an utterance coming
from the unknown speaker must be processed, by relying on equation 2.1 we can take a
decision, called auth, on the threshold:

auth =

{
1, if cossim(me,u) ≥ t

0, if cossim(me,u) < t
(4.5)

Where auth = 1 means that we determined the unknown utterance u to belong to the
enrolled speaker, and auth = 0 means that we determined such utterance to belong to an
unknown speaker.

This approach provides several advantages if considered in a TinyML context:

Low latency: this system can provide a confidence value on the identity only by com-
puting the cosine similarity between two vectors, which is a computation that can
be carried out fast;

Low memory footprint: to store the speaker model it is required only as much space
as the size of a single d-vector, and even for the computation of such mean vector
only space equal to the number of d-vectors times the size of the d-vector is needed.

Threshold tuning: the threshold can be manually tuned to trade-off between false
positives and false negatives.
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4.5.2. Best-Match Cosine Similarity

Similarly to the previous method, a pre-determined number of enrollment samples from
the enrolled speaker is used to produce a set of d-vectors. This set is kept in memory and is
called enrollment set. During inference, every time a new audio utterance is detected, the
system extracts the related d-vector and compares it with each d-vector in the enrollment
set via cosine similarity. The system returns the best-matching similarity, i.e. the highest
similarity scored during the one-to-one comparison. If the similarity is above a certain
threshold, the utterance is attributed to the enrolled speaker:

Figure 4.8: Speaker verification based on one-to-one confrontation on an enrollment set
of d-vectors.

Formally, as in previous case, let E be a M ×N matrix, u a vector of size N and t a real
number such that:

• N is the size of the d-vectors produced by the d-vector extractor;

• M is the number of enrollment samples chosen;

• E is the matrix composed by the M enrollment d-vectors;

• u is a d-vector coming from an utterance of an unknown speaker;

• t ∈ [−1.0,+1.0] is the similarity threshold.

Matrix E has the same shape of equation 4.2. For notation purposes, we will refer to
em as the m-th row of matrix E, representing the m-th d-vector provided by the enrolled
speaker.

Differently from the previous approach, the enrollment phase ends when matrix E is
available to the system. Each time a new d-vector u coming from an unknown speaker’s



56 4| Speaker verification

utterance is submitted to the verification system, a similarity vector sm of size M is
computed:

sm =
[
sm1 sm2 sm3 . . . smM

]
(4.6)

Where each element smm is computed as the cosine similarity between the unknown
speaker’s d-vector u and the m-th enrolled speaker d-vector stored in matrix E:

smm = cossim(em,u) (4.7)

The vector sm can be called similarity vector or similarity set. Then, the similarity value
sim to be compared with the threshold t to take a decision on the identity is extracted
from the similarity set as:

sim = max(sm1, sm2, . . . , smM) (4.8)

And as in previous approach, final decision value auth can be determined as:

auth =

{
1, if sim ≥ t

0, if sim < t
(4.9)

Where auth = 1 means that the utterance u has been associated to the enrolled speaker.

The pseudo-algorithm for the method is the following:
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Algorithm 4.1 Best-Matching Cosine Similarity
1: variables: E[M][N], u[N], sm[M], t
2: for n ∈ [0, N − 1] do
3: sm[i] = cossim(E[i], u)
4: end for
5: sim = max(sm)
6: if sim ≥ t then
7: auth = 1
8: end if
9: if sim < t then

10: auth = 0
11: end if
12: return auth

All the advantages regarding computational cost and memory footprint of the previous
method are maintained. However, this approach could bring performance improvement
if the context is the one-class few-shot classification we are operating in. The previous
approach can work really well if the d-vector extractor model has great capabilities of pro-
ducing fairly constant d-vectors from utterances coming from the same speaker; this can
be surely achieved with neural networks, but it is not trivial to do if there are constraints
on number of parameters and layers that can be used, which is the exact condition that
TinyML enforces on designers. Let’s clarify this with an example: let’s take P as the
enrollment d-vectors of a speaker sp1. For simplicity, assume that 6 d-vectors have been
used as enrollment samples:

P =
[
p1 p2 p3 p4 p5 p6

]
(4.10)

Assume that the couple (p1, p2) comes from a higher pitched speech from speaker sp1,
and that (p3, p4) comes from a lower pitched speech. It is reasonable to assume that
the similarity between the elements of the same couple is higher than similarity between
elements not belonging to the same couple, with a maximization of this difference between
elements from the two aforementioned sets. The production of an average d-vector could
attenuate the utterance-dependent characteristics embedded in each d-vector, leading to
lower similarities when a new utterance from sp1 is submitted to the system. This can
happen in particular if the new enrollment is still slightly higher or lower. Performing a
one-to-one confrontation, instead, allows per-utterance differences to be taken more into
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account, thus compensating for the d-vector extractor performance.

Another advantage of this method is the possibility of modifying at run time the en-
rollment d-vectors set, providing a fast adaptation to transitory conditions that change
features of a speaker’s voice, such as colds or hoarseness. It would be sufficient to provide
just a few new voice samples to insert in the enrollment samples set, thus adapting the
system to the new condition. With the previous method this case could not be faced
unless a complete collection of enough enrollment samples to compute the mean d-vector
is performed; moreover, once the transitory condition passes, a new enrollment must be
performed again, to re-calibrate the system on the normal voice condition.

All of the aforementioned advantages come to the cost of having slightly more computa-
tional burden: instead of computing one single cosine similarity, each inference requires
computing M cosine similarities. However, the few-shot condition implies having a rela-
tively low number of samples in the enrolled d-vector set, so this increased computational
complexity didn’t lead to a perceivable reduction in inference speed.

4.5.3. One Class Neural Network

This is a classification method that involves training a one-class Neural Network (OCNN)
to distinguish between d-vectors produced by the authenticated speaker and by other
unknown speakers. During inference, the one-class neural network must provide a classi-
fication of each new input:

Figure 4.9: Speaker verification based on one-class neural networks.

This approach has been inspired by the work done in [35]. Since the model is one-class,
no other speakers are involved in the process of training the network. A binary one-class
neural network must however be trained by using positive samples and negative samples,
like any other classification neural network. While in this case positive samples are the
enrollment d-vectors, it is more difficult to identify what can be used as negative samples.
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A solution has been proposed by [35] that relies on using randomly generated data drawn
from a Gaussian distribution as negative d-vectors. In particular, during training the
one-class neural network processes a batch of data in the following way:

Figure 4.10: Processing of a batch of data in OCNN training.

In this figure, the feature extractor is the d-vector extractor trained as explained in section
4.4.2. The batch of training data that is processed at each training step is represented in
the dotted box, and as it can be noticed it is composed by d-vectors of the authenticated
speaker (blue) and fictitious d-vectors representing other speakers (green).

In particular, the process we adopted for generating the fictitious negative d-vectors is
the following. Let g be a random vector of size N :

g =
[
g1 g2 . . . gn

]
(4.11)

Each element of g is generated by sampling from a Gaussian distribution:

gi ∼ N (µ, σ2) (4.12)
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Where µ = 0 and σ2 = 0.1. Each fictitious d-vector j of size N is generated starting from
the random vector g and a real d-vector d as:

j = sh(g ⊙ d) (4.13)

Where ⊙ indicates the element-wise product of two vectors, and the function sh(x) is a
function that performs a random shuffling of the values of the vector x.

Intuitively, the process of generating a fictitious d-vector starts from an authenticated
d-vector, which is then masked with a random vector, whose elements are taken from a
Gaussian distribution with mean 0 and variance 0.1. The result is then shuffled element-
wise, and is taken as fictitious d-vector. What is happening is that a fictitious d-vector
is obtained by randomly scaling and shuffling values of an authenticated d-vector. More
details on the motivations behind this choice can be found in section B.2 of Appendix B.

As it can be noticed from figure 4.10, each batch of training data is composed by a
certain number of real d-vectors coming from the authenticated speaker, and an equal
number of fictitious d-vectors obtained by applying the aforementioned process to the
real embeddings. In a few-shot classification context, this leads to very limited training
sets.

A possible advantage of using a one-class neural network is that such an algorithm, being
a more powerful classifier than the simple methods based on cosine similarity, could learn
to map d-vectors produced by a tiny feature extractor to the correct speaker in a more
efficient way.

However, this approach requires an increased computational burden on target hardware:
the full training process, along with the random d-vectors generation, must be executed
directly on-device. This poses serious limitations on the one-class neural network architec-
ture that can be built, both regarding size and type of the adopted layer. This approach
is feasible thanks to recent advances in research, that identified methods for performing
training on-device. Details on the structure of the one-class neural network we adopted
are the following:
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Model: sv-oneclass-classifier
Layer type Output shape Settings Parameters
Batch normalization (256) None 1,024

Dense (256)
Units = 256
Activation = relu

65,792

Dense (2)
Units = 2
Activation = sigmoid

514

Total parameters: 67,330

Table 4.3: OCNN architecture details.

4.5.4. One-Class SVM

This method involves training a one-class Support Vector Machine (OC-SVM) [46] to learn
a boundary that separates efficiently d-vectors of the enrolled speaker from d-vectors of
other speakers. The approach is similar to the One-Class Neural Network: a set of
enrollment d-vectors is used for fitting the OC-SVM, which is then used as a discriminator
on new samples.

Figure 4.11: Approach of SV with one-class SVMs.

Classical Support Vector Machines (SVM) are widely used machine learning algorithm in
classification tasks [8]. Formally, let’s consider a set of data in a multi-dimensional space:

Ω = {(x1, y1), (x2, y2), . . . , (xn, yn)} (4.14)

Where xi are data points belonging to a d-dimensional space (xi ∈ Rd) and yi are class
labels associated to each data point yi ∈ {−1, 1}. This example refers to binary classifica-
tion. SVM work by creating a non-linear decision boundary by projecting data through
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a non-linear function ϕ : I 7→ F to a higher-dimensional space. If we call I the initial
dimensional space, SVM are able to project data in a different dimensional space F where
is easier to find a hyperplane that is able to separate the data. The separating hyperplane
is computed by maximizing its distance from samples belonging to different classes by
applying optimization algorithms such as Sequential Minimal Optimization (SMO). The
optimization process involves computing Lagrange multipliers αn, one for each sample
in the training dataset. At the end, some Lagrange multipliers will be equal to zero,
and others will be different from zero. The classification on an unseen data point x is
performed by the SVM using the following relation:

f(x) = sgn(
n∑

i=1

αiyiK(x, xi) + b) (4.15)

Since only samples with the associate α ̸= 0 contribute to classify the new unseen sample,
such samples are called Support Vectors. They are the samples that lay on the margin
found by the optimization algorithm. In equation 4.15, there is also the term K(x, xi).
This is called kernel function, and is fundamental to express the feature transformation
ϕ that is applied to the samples:

K(x, xi) = ϕ(x)Tϕ(xi) (4.16)

Finding ϕ is a non-trivial process. However, there is a procedure called kernel trick that
allows computing function K(x, xi) without knowing the explicit formulation of ϕ, as long
as the result produced is the same. There are established kernel functions that corresponds
to different projections in higher-dimensional feature spaces. A notable kernel function is
the Gaussian kernel, also called RBF kernel, defined as:

K(x, xi) = exp

(
−∥x− xi∥2

2σ2

)
(4.17)

It depends on the squared euclidean distance ∥x− xi∥2 and on the parameter σ. It is
important because it corresponds to a projection ϕ on an infinite-dimensional feature
space, without having to compute the mapping explicitly.

Another widespread kernel is the linear kernel, defined as:

K(x, xi) = xTxi + c (4.18)
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The advantage of the linear kernel is that it only consists in the the inner product of x
and xi with an optional constant term c. This does not make it actually a projection in a
higher-dimensional feature space, and it is typically used on data sets with large amounts
of features: increasing the dimensionality of such data does not necessarily improve sep-
arability. Another advantage is that the computation required is easy, thus making this
kernel particularly suited for a TinyML approach, where the computation must be carried
out by a MCU.

The intuition behind a one-class SVM as explained in [46] is to perform a separation of all
available data points in the feature space F by maximizing the distance of the hyperplane
from the origin. This produces a binary classification function which captures portions of
the input space where the probability density of the data lives. Such function returns +1

in an enclosed region (capturing the training data points) and −1 elsewhere. If we take
wTx+ b = 0 as the formulation of the hyperplane, with w ∈ F and b ∈ R, its parameters
can be computed by minimizing the following objective function:

min
w,ξ,ρ

1

2
∥w∥2 + 1

νn

n∑
i=1

ξi − ρ (4.19)

subject to:

{
yi(w

Tϕ(xi) + b) ≥ ρ− ξi for all i = 1, . . . , n

ξi ≥ 0 for all i = 1, . . . , n

Where ξi are the so-called "slack variables": added to allow some samples to lie within
the margin, they express the entity and cost of such violation. They are variables to be
optimized along with w and ρ. It is important to notice the presence of parameter v in this
formulation, which represents both an upper bound to the number of outliers, i.e. training
examples belonging to the authenticated class but not inserted in the related space region,
and a lower bound of the number of training samples used as Support Vectors. It is a
parameter subject to hyperparameter search, so to be tuned by the designer.

Using Lagrange techniques, the solution to the optimization problem as in previous case
leads to identifying one Lagrange multiplier α for each element of the training set, and
the final classification function of the One-Class SVM is the following:

f(x) = sgn((w · ϕ(xi))− ρ) = sgn(
n∑

i=1

αiK(x, xi)− ρ) (4.20)

In the context of speaker verification, the OCSVM is fitted on the enrollment d-vectors
provided by the enrolled speaker to try to learn a boundary that contains such samples
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in the feature space:

Figure 4.12: Example of learned boundary of a OCSVM in a 2-dimensional feature space.

If a new d-vector is sumbitted to the system, the identity of the speaker is assumed
according to 4.20. This method does not provide a confidence value, but similarly to the
OCNN approach provides a direct classification of the new input speech sample.

Using a SVM without having to manually write optimization procedures is easy, thanks
to libraries that already implement the algorithm described by [46], such as the object
svm.OneClassSVM from the scikit-learn Python library [37].

Fitting a one-class SVM requires however heavy computation, in particular for solving
the constrained optimization problem. While this may not be a problem on powerful
computers, in a TinyML context is something that must be taken into account. Even
if libraries for performing light Sequential Minimal Optimization exist [16], they would
require a complete porting on embedded devices. Research at time of writing of this
document was not able to identify an implementation for fitting a one-class SVM directly
on a microcontroller. Moreover, if the optimization found a considerable number of sup-
port vectors, there may be problem on fitting the algorithm in the limited memory of the
MCU.

Details on fitting the OCSVM and the hyperparameter search will be given in section 5.1.
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results

This chapter will detail the approach to testing the similarity methods identified in chap-
ter 4, reporting obtained results. After a general description of the experimental setup,
providing details about datasets and evaluation metrics, two subsections will be dedi-
cated to reporting the results. A section commenting such results will close the chapter.
More information regardin approach-specific considerations can be found in section B.3
of Appendix B.

5.1. Experimental setup

All the approaches for solving the SV problem in TinyML context have been defined and
explained, and we will now describe the experiments that have been done to test the
proposed solutions. First and most important part is the choice of the dataset to perform
the tests on. Since text-dependent datasets are hard to obtain, we decided to perform a
collection of a text-dependent dataset suitable for testing our approaches. Four speakers
have been asked to collect text-dependent samples, from which 1-second long utterances
containing speech have been extracted. We also collected a custom text-independent
dataset from the same people, to have testing benchmarks on both applications of speaker
verification on the same subset of speakers. Each approach proposed has been tested
against the two different datasets. Such datasets have been collected directly leveraging
the target hardware available.

The experiments were designed to test the models on one-class few-shot conditions that
have been explained in section 4.2. The one-class condition has been created by enrolling
one speaker at a time and using only samples from that speaker to perform the enrollment.
Each speaker in the datasets has played the part of the enrolled speaker, and each time
samples from other speakers have been used to build the set of "unknown" speakers. The
few-shot conditions have been tested by posing a limitation on the number of enrollment
samples to be used. Reasonable samples number for few-shot classification were deemed
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being 8 and 16 samples, but we decided to identify also two corner cases, i.e. the case
with only 1 enrollment sample and the case with 64 enrollment samples. So, to recap the
conditions of the testing environment the following table can be referred:

Test parameter Values
Dataset Text-Independent, Text-Dependent

Classification Method
Mean Cosine Similarity,
Best-Match Cosine Similarity,
One-Class NN, One-Class SVM

Enrollment samples 1, 8, 16, 64
Enrolled speaker ID 0, 1, 2, 3

Table 5.1: Testing conditions for speaker verification.

Every possible combination of the parameters reported has been tested, bringing a total
of 128 different test cases. The following subsections will provide details on the datasets
used during the experiments, followed by an example of a test and approach-dependent
considerations. Finally, a description of the evaluation metrics adopted will be provided.

5.1.1. Text-dependent custom dataset

A collection 1-second long utterances containing the word «Hey Cypress». This locution
has been chosen because it contains distinct phonemes, and is also long enough to ac-
centuate differences among speakers while at the same time fitting in a one second long
window.

Text-dependent dataset
Speaker ID Gender Number of samples
0 M 100
1 M 100
2 M 100
3 F 100
Total samples: 400

Table 5.2: Text-dependent custom dataset details.

It is worth noting that a manual alignment of such samples has been performed to center
the «Hey Cypress» locution in the middle of the 1-second audio window. This has not been
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done by leveraging algorithms of any kind, but via visual inspection of the waveform. From
such samples, MFCC spectrograms have been obtained by applying the preprocessing
pipeline explained in section 3.4.

Training, testing and validation sets have been extracted from this dataset. However,
since we wanted to compare performances of different models, we decided to use the
same data for training, testing and validating each model. This is the following approach
adopted for building such datasets:

1. 15 samples from each speaker have been taken to produce a testing dataset composed
by 60 samples;

2. 15 samples from each speaker have been taken to produce a validation dataset
composed by 60 samples;

3. 64 samples from each speaker have been taken for a successive build of training
datasets.

Training data have been produced in the following way. Starting from the collection of
64 samples coming from a speaker:

sample 0 : taken to build the enrolled dataset composed by 1 sample;

samples [0-7 ]: taken to build the enrolled dataset composed by 8 samples;

samples [0-15 ]: taken to build the enrolled dataset composed by 16 samples;

samples [0-63 ]: taken to build the enrolled dataset composed by 64 samples.

To make the distinction more clear, if we want to test the performance of model A on
speaker 0 using 16 enrollment sample, we would use as training set the set of samples
with 16 elements from speaker 0, and as testing and validation sets the two sets with 60

samples each. The same data can be used to test model B.

This means that, once a speaker and a number of enrollment samples is chosen, each
model is trained, tested and validated on the exact same data.

5.1.2. Text-independent custom dataset

A collection of text-independent 1-second long utterances resulting from the reading of
Italian text.
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Text-independent dataset
Speaker ID Gender Number of samples
0 M 100
1 M 100
2 M 100
3 F 100
Total samples: 400

Table 5.3: Text-independent custom dataset details.

The processing applied to this dataset is the same used for the text-dependent dataset
in section 5.1.1, with the only difference that no audio centering was needed in this case.
Where possible, audio samples with too much silence were discarded, but this has not
been applied organically to the whole dataset.

The division in training, testing and validation sets is completely analogous to the one
explained in section 5.1.1.

All the datasets used in this thesis work contain English speech, but the text-independent
custom datset is in Italian. The d-vector extractor itself has been trained on English
audio data, and research in speech processing showed that language coherence plays a
fundamental role in final performance, especially regarding speaker verification tasks [27].

5.1.3. Example of a test case

To clarify the way a test is conducted, let’s take as an example the case with:

Dataset: text-independent

Enrolled speaker ID: 0

Enrollment samples: 8

To test such conditions, we need to take as training dataset the set of 8 samples taken from
speaker 0 in the text-independent dataset. Validation and testing sets do not depend on
the speaker or the number of enrollment samples, but are general and common to all the
text-independent tests. Such datasets are taken to conduct the experiments. Then, each
similarity method described in section 4.5 is tested according the following methodology:

Mean Cosine Similarity : the enrollment samples from training set are used to pro-
duce a mean d-vector. Such mean d-vector is used as speaker model. The validation
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set is used to find the best threshold for the algorithm, and the final performance
is measured on testing set.

Best-Match Cosine Similarity : the enrollment samples from training set are used to
compute the set of enrolled d-vectors. The validation set is used to find the best
threshold for the algorithm, similarly to the previous method. The final performance
is measured on the testing set with the threshold found.

One-Class Neural Network : The OCNN is trained on the training set. During train-
ing, at each sample from the training set, a fictitious d-vector is associated to model
the negative samples, representing unknown speakers. Validation set is used in
training to control overfitting and stop training. Final performance is measured on
the testing set.

One-Class SVM : Different OCSVMs are fitted on the training set, each one with
a different hyperparameters combination. The best performing OCSVM on the
validation set is chosen to be tested on the testing set. Performance on such test is
reported.

5.1.4. Evaluation metrics

Testing datasets adopted are composed by 60 samples, where 15 of them belong to the
enrolled speaker and 45 of them belong to other speakers. This means that a classifier
that always predicts the negative class (i.e. speaker different from the enrolled one) would
obtain an accuracy of Aneg = 45

60
= 0.75. This is why we decided to adopt F1 score as

the standard evaluation metric for all the models. Accuracy for all the solutions is also
reported, even if it has not been the primary metrics for performing model selection. For
example, in hyperparameter search of OC-SVM (refer to B.3 for details), we chose the
hyperparameter combinations that provided the highest F1-score, even if this translated
into lower accuracy values.

The following table reports the metrics measured for each proposed approach:

Approach Principal metrics Other metrics
Mean Cosine Similarity F1-score, accuracy ROC, AUC, EER
Best-Match Cosine Similarity F1-score, accuracy ROC, AUC, EER
One Class Neural Network F1-score, accuracy none
One Class SVM F1-score, accuracy none

Table 5.4: Metrics adopted for each proposed approach.
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5.2. Text-Independent Dataset testing results

This section will report the testing results for the Text-Independent custom dataset ex-
plained in 5.1.2. Data presented here have been aggregated by computing the per-speaker
mean of metrics reported. The full testing results, with results of per-speaker experiments,
can be consulted in Appendix A referring to table A.2.

Let’s start analyzing testing results for the proposed approaches in the text-independent
context. As already explained, this is the most difficult speaker verification task among
the ones considered in this work, not only due to the variability in phonemes that can
be submitted to the system, but also because there is a language mismatch between the
data used for training the d-vector extractor (refer to section 4.4.2 for details) and the
data used for testing.

Grouping by number of enrollment samples - TI
Enrollment Samples Classifier Method Accuracy F1-Score

1 Mean Cosine Similarity 0,5315 0,35375
1 Best-Match Cosine Similarity 0,5315 0,35375
1 OC-NN 0,6675 0,21775
1 OC-SVM 0,75 0
8 Mean Cosine Similarity 0,6325 0,4725
8 Best-Match Cosine Similarity 0,6275 0,4265
8 OC-NN 0,6025 0,3075
8 OC-SVM 0,47875 0,362
16 Mean Cosine Similarity 0,633 0,4645
16 Best-Match Cosine Similarity 0,6075 0,45425
16 OC-NN 0,5015 0,34775
16 OC-SVM 0,494 0,38425
64 Mean Cosine Similarity 0,649 0,45375
64 Best-Match Cosine Similarity 0,55 0,38875
64 OC-NN 0,26775 0,39775
64 OC-SVM 0,54975 0,3625

Table 5.5: Testing results on TI dataset (grouped by number of enrollment samples)

Table 5.5 is useful to compare the performance among classifiers with the same number
of samples. The first thing to be noticed is that by looking at F1-scores obtained by the
algorithms, the best performing method is the one based on Mean Cosine Similarity with
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8 enrollment samples, with F1-score = 0.4725. Figure 5.1 reports the results:

Figure 5.1: Testing results on TI dataset (grouped by number of enrollment samples).

We can notice that OC-SVM possess no relevant classification ability in the extreme case
with 1 enrollment sample: this is expected since it is not possible for such algorithm to
learn an effective boundary if there is only one sample in the dataset. With the increase
of the number of enrollment samples, all the methods show signs of improvement, with
the OC-SVM and One-Class Neural Networks showing the great difference. However, it is
easy to see that no method outperforms cosine-similarity based classification, regardless
of training samples size. It is important to notice that. in the corner case with only 1
enrollment sample, the behavior of the two cosine similarity methods is the same, since
there is no actual possible mean to be computed and this translates into a 1:1 comparison
among the enrollment d-vector and the unknown sample.

It is also useful to highlight the performance of each classifier method according to the
number of samples, in order to analyze the per-classifier variation in performance with
respect to the increase of number of enrollment samples, as figure 5.2 reports:
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Figure 5.2: Testing results on TI dataset (grouped by similarity method).

Different approaches behave differently according to the number of enrollment samples.
As it can be noticed by the plots, OCNN and OC-SVM see an improvement when the
number of enrollment samples is increased, but mean cosine-similarity based methods
tend to a stabilization in their accuracy the more enrollment samples are provided. Best-
Match cosine similarity seems to suffer from the increase of enrollment samples: this is
expected, because the more enrollment samples are there, the more is likely to find a pair
of highly similar d-vectors belonging to different speakers.

5.3. Text-Dependent Dataset testing results

This section will report the testing results for the Text-Dependent custom dataset ex-
plained in 5.1.1. Data presented here have been aggregated by computing the per-speaker
mean of metrics reported. The full testing results, without aggregation, can be consulted
in Appendix A referring to table A.3.

Regarding Text-Dependent speaker verification, a higher performance of the methods is
expected, due to the reduced phoneme variability of the problem, but also because the
chosen word is in English. The following table, as in previous case, will report performance
comparison among different classifiers grouping results by the number of samples:
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Grouping by number of enrollment samples - TD
Enrollment Samples Classifier Method Accuracy F1-Score

1 Mean Cosine Similarity 0,773 0,6395
1 Best-Match Cosine Similarity 0,773 0,6395
1 OC-NN 0,737 0,0575
1 OC-SVM 0,75 0
8 Mean Cosine Similarity 0,81575 0,703
8 Best-Match Cosine Similarity 0,858 0,742
8 OC-NN 0,733 0,3395
8 OC-SVM 0,60775 0,4295
16 Mean Cosine Similarity 0,82475 0,72475
16 Best-Match Cosine Similarity 0,93325 0,878
16 OC-NN 0,683 0,46825
16 OC-SVM 0,633 0,44625
64 Mean Cosine Similarity 0,77075 0,66275
64 Best-Match Cosine Similarity 0,93725 0,8775
64 OC-NN 0,38725 0,43825
64 OC-SVM 0,82475 0,508

Table 5.6: Testing results on TD dataset (grouped by number of enrollment samples)

Table 5.6 shows much better results than what was obtained in a Text-Independent con-
text. The best performing method has been the one based on Best-Match Cosine Similar-
ity, that with 16 enrollment samples obtained a mean F1-score among speakers equal to
0.878, scoring an accuracy higher than 93%. This is a great result, considering the small
footprint of algorithms involved.
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Figure 5.3: Testing results on TD dataset (grouped by number of enrollment samples).

Looking at the plots in figure 5.3, we can notice that cosine similarity based methods
again outperform OC-NN and OC-SVM classifiers. Performance of the latter models are
almost equal, with the OC-SVM starting as the worse-performing model in the corner
case with 1 enrollment sample, but outperforming OC-NNs in the opposite case with 64
enrollment samples.

It is again useful to highlight the improvement of each method according to changes in
the number of enrollment samples, as plots in figure 5.4 shows:
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Figure 5.4: Testing results on TD dataset (grouped by number of enrollment samples).

All the methods except Best-Match Cosine Similarity show sign of improvement when
the number of enrollment samples is increased. The reason of such decrease is analogous
to the one identified for the text-independent case: increasing the number of samples
increases the chance of a 1:1 confrontation that gives a high similarity value.

5.4. EER and AUC measurement

EER and AUC metrics are useful because allow comparing performance of our solutions
against other systems in literature. As already anticipated, only approaches based on
the choice of a threshold can provide EER and AUC metrics, so this section will report
such measurements only for cosine-similarity based approaches. Results will be reported
comparing the two approaches both in the text-independent and in the text-dependent
context. As before, such values are computed by taking the mean value across different
speakers.
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Text-Independent - Mean Cosine Similarity
Enrollment samples EER AUC

1 0,5205 0,5425
8 0,40425 0,62
16 0,372 0,64
64 0,35425 0,6425

Table 5.7: EER and AUC for Mean Cosine Similarity in Text-Independent context.

Text-Independent - Best Match Cosine Similarity
Enrollment samples EER AUC

1 0,5205 0,5425
8 0,39975 0,66
16 0,39925 0,655
64 0,3495 0,6475

Table 5.8: EER and AUC for Best Match Cosine Similarity in Text-Independent context.

As it can be noticed, in a Text-Independent context the two methods tend to perform al-
most equally, with a slightly better performance for Best-Match Cosine Similarity regard-
ing the AUC metric. However, the EER measurement does not show great improvements,
so in a text-independent fashion the choice between one or the other algorithm can simply
be dictated by computational needs; at inference time, Mean Cosine Similarity requires
computing only one similarity instead of one for each enrollment d-vector stored.

More interesting results have been obtained by measuring performance on the text-
dependent task, as tables 5.9 and 5.10 report:

Text-Dependent - Mean Cosine Similarity
Enrollment samples EER AUC

1 0,22175 0,83
8 0,216 0,8775
16 0,209 0,89
64 0,255 0,845

Table 5.9: EER and AUC for Mean Cosine Similarity in Text-Dependent context.
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Text-Dependent - Best Match Cosine Similarity
Enrollment samples EER AUC

1 0,22175 0,83
8 0,095 0,94
16 0,0725 0,9625
64 0,085 0,965

Table 5.10: EER and AUC for Best Match Cosine Similarity in Text-Dependent context.

In a text-dependent context, the Best-Match Cosine Similarity method outperforms the
Mean Cosine Similarity method. It is interesting to notice that 16 enrollment samples
seems to be the optimal number among the one tested in this thesis work: in a real
implementation, it is feasible to obtain 16 enrollment samples from the authenticated user,
making this value also well-suited for the development of a demo application. In general,
preferring the Best-Match cosine similarity method instead of Mean Cosine Similarity
allows to obtain a mean improvement of 14.25% in EER and 8.5% in AUC:

Enrollment samples EER improvement AUC improvement
8 0,121 0,0625
16 0,1365 0,0725
64 0,17 0,12

Table 5.11: Improvements in EER and AUC if best-match cosine similarity is used.

Plotting EER and AUC for the methods according to the number of enrollment samples
makes the difference in performance even clearer:
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Figure 5.5: Confrontation of EER and AUC metrics for cosine similarity methods.

5.5. Final comments

Speaker verification has been proven to be a tough task to be solved, especially in a
TinyML context. Simpler methods, such as ones based on cosine similarity, showed a
greater performance, even better than more powerful classification methods such as neural
networks and SVM. This can be explained by remarking that such methods require a lot
of training data to be fitted and learn to generalize well on tasks. The few-shot condition
poses a serious challenge for such models. In chapter 7.2, direction on how to improve
obtained results will be given.

Strictly considering performance obtained on the tests, the new cosine similarity classi-
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fication method proposed ( Best-Match Cosine Similarity) seemed to outperform other
classification methods in text-dependent TinyML relevant conditions (i.e. when the num-
ber of enrollment samples is 8 - 16). We can assume that the approach adopted in this
thesis work showed that in a TinyML context, a text-independent training of a tiny feature
extractor can produce efficient d-vectors to be used in a text-dependent context with a
reasonably simple similarity confrontation system. It must be taken into account that the
difference in performance may also be influenced by the preprocessing applied to data:
being the pipeline described in section 3.4 optimized specifically for keyword spotting,
it is reasonable to believe that it fails in capturing all the needed features to perform
speaker verification in a text-independent way, while stronger behavior is shown if there
is consistency in phonemes among utterances.

Figure 5.6: ROC curves for speaker 3 and 16 enrollment samples. Left: text-independent,
right: text-dependent

In figure 5.6, ROC curves related to the same speaker (ID = 3), both computed with
16 enrollment samples and the best-match cosine similarity method are compared. The
difference in performance is clear.

However, regardless of absolute performance results, all of the aforementioned methods
have shown learning capabilities, thus making them suitable for being investigated further
in TinyML oriented SV applications. It must not be excluded that future developments
in the field will leverage better the capabilities of such algorithms, thus leading to most
efficient TinyML oriented speaker verification systems.
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6| Cascading KWS and SV:

on-device implementation

During the development of this master thesis, several different keyword spotting demos
have been implemented on real hardware, ranging from simple wake-word detectors to
more complex voice interaction applications. Also speaker verification methods have been
implemented and tested, both in text-dependent and text-independent contexts with dif-
ferent parameters and algorithms. It would be impossible to organically present them all
in a single chapter. To showcase both keyword spotting and speaker verification capabil-
ity, we decided to build a custom demo combining both tasks implementing some of the
TinyML solutions explored by this work. The goal of the application is to continuously
listen for a specific keyword and provide a personalized answer if the utterance comes from
the enrolled user, otherwise the system must provide a general answer. Moreover, the en-
rollment phase must be executed completely on-device only relying on voice interaction.
This makes the system perform a text-dependent speaker verification.

After a section describing the process behind the choice of the models to be ported on real
hardware, a brief description of the target architecture will be provided. Details about
application development will follow, and a performance evaluation section will report
information about usability of the final demo. This section will also analyze memory
occupation and power consumption of the demo.

6.1. Choosing a method for on-device implementa-

tion

While keyword spotting models identified by this work seem to perform equally good, the
same can not be said regarding speaker verification methods presented in chapter 4.

We chose among them letting our choice be driven by performance of the solution, easiness
of implementation and processing power required to perform enrollment and inference.
The most promising method, that outperforms the majority of all other approaches in
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almost all aforementioned aspects, is the Best-Match Cosine Similarity described in section
4.5.2. Regarding keyword spotting, we chose to use in this demo the larger CNN model
identified in 3, to leverage the highest possible accuracy in detecting keywords. For this
specific demo, we chose the "Sheila" keyword to use as text-dependent utterance on which
keyword spotting and speaker verification are performed.

6.2. Application structure

As explained in section 4.2.4, one of the goals was to obtain a speaker verification system
that could work cascaded with the keyword spotting system, to provide a sort of per-
sonalized user interaction: if a keyword is deemed coming from the enrolled speaker, a
personalized answer is given. Otherwise, a general answer is returned by the system. The
high-level block scheme of the application is described in figure 6.1:

Figure 6.1: High-level scheme of the KWS-SV application.

The desired behavior of the application is the following: at startup, no user is enrolled.
The system continuously listens to input audio stream from the microphone, running
the KWS model. The enrolled speaker must pronounce the keyword multiple times to
provide the enrollment samples, which are processed and stored according to the chosen
algorithms. After enough samples from the chosen keywords have been collected, the
system is ready to perform speaker verification: it still keeps listening for the chosen
keyword, and if a detection happens the check on speaker identity follows. If the speaker
is deemed to be the enrolled one, a personalized answer is given. Else, since the keyword
has been detected anyway, a general answer is given.

The application works as a state machine, with a ENROLLMENT state that corresponds
to the enrollment phase, and a VERIFICATION state which corresponds to the speaker
verification phase. As this code snippet taken from the application main loop shows,
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the keyword spotting system by using RunWWModel() and WWProcessLatestResults()

functions controls the engagement of the speaker verification system in both states:

if(application_status == ENROLLMENT){
MTB_ML_DATA_T* result = RunWWModel(input_features);
int detected = WWProcessLatestResults(result);
if(detected==kW1Index){

MTB_ML_DATA_T* d_vector = RunSVModel (( MTB_ML_DATA_T*)
input_features);

int v_acquired = SVStoreEmbedding(d_vector);
application_status = SVCheckEnrollment(v_acquired);
cyhal_system_delay_ms(500);

}
}
if(application_status == VERIFICATION){

MTB_ML_DATA_T* result = RunWWModel(input_features);
int detected = WWProcessLatestResults(result);
if(detected==kW1Index){

float ** speaker_model = getEmbeddingsAddress ();
MTB_ML_DATA_T* d_vector = RunSVModel(input_features);
int authenticated = SVBestMatch(d_vector , speaker_model);
application_status = SVCommandResponder(authenticated);
printf("************************************\n\r");
printf("Speak to unlock .\n\r");
cyhal_system_delay_ms(500);

}
}

6.2.1. Input stream processing

One of the major differences between the tests conducted and a real world implementation
is that in latter case audio comes as a continuous input stream from the microphone of the
board. This audio stream must be converted in MFCC spectrograms before being fed to
the neural networks for KWS/SV. The system implemented processes input audio stream
continuously by extracting MFCC spectrograms from 1-second long sliding windows, as
explained by figure 6.2, and by subsequently feeding them to the KWS neural network to
perform detection.
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Figure 6.2: Sliding window on input audio stream that computes MFCC spectrograms.

However, computing a full 1-second long MFCC spectrogram each time is a resource-
consuming task. Luckily, the sliding window mechanism can be leveraged by making the
system recompute spectrogram portions only related to the new samples included after
a window shift. The stride of the sliding window is related both to the preprocessing
algorithm requirements and to the inference time of the models: to compute a new slice
of the spectrogram at least 30 ms of audio data are needed. If the time that passes
between the inference of the neural networks on the current spectrogram is longer than
30ms, the window is shifted by the amount of time passed. If the inference of the model is
faster than 30ms, the system waits for having at least 30ms of audio data to perform the
preprocessing computation on. If some audio portions overlap between windows (i.e. if
the stride is less than 1 second), the related MFCC spectrogram slices are not recomputed.

The implementation of the MFCC preprocessing on the microcontroller is a C conversion
of the pipeline adopted in [62], that closely replicates all the steps described in 3.4. Cor-
rectness of the C implementation against the Python implementation has been extensively
tested to ensure coherence between training and inference phases of the models.

6.2.2. Keyword spotting system

Keyword spotting system implements the floating point version of the "Sheila" conv-

kws-nn model, as described in section 3.7. The neural network takes as input the latest
spectrogram computed as explained in previous section, and provides a confidence value
on the presence of the desired keyword. Since it is possible to have the keyword slightly
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outside the one-second window, or to have an early window on utterances containing
similar phonemes to the desired keyword, the system actually returns a detection only if
the mean confidence value of the last two detections is above a certain threshold. The
choice of analyzing only two past detections is due to the long inference time needed
by the network; if a faster model is deployed, such as the smallconv-kws-nn models,
more past confidence values can be used to take a decision. The following code shows the
implementation of such decision function:

int WWProcessLatestResults(MTB_ML_DATA_T* nn_output){
int index = inference_index % 2;;
inference_index++;
for(int i = 0; i<3; i++){

last_results[index][i] = nn_output[i];
}
int silence_confidence = (last_results[0][0] + last_results[1][0]) /

2;
int unknown_confidence = (last_results[0][1] + last_results[1][1]) /

2;
int ww_confidence = (last_results[0][2] + last_results[1][2]) / 2;
printf("Silence: %d, Unknown: %d, Sheila: %d\n\r",

silence_confidence ,
unknown_confidence ,
ww_confidence);

if(silence_confidence > WW_SENSITIVITY){
return kSilenceIndex;

}
if(unknown_confidence > WW_SENSITIVITY){

return kUnknownIndex;
}
if(ww_confidence > WW_SENSITIVITY){

return kW1Index;
}
return kUnknownIndex;

}

6.2.3. Speaker verification system

Once the keyword spotting system has detected the keyword, the speaker verification
system starts to execute. The neural network that is used as d-vector extractor is the
one described in 4.4. No quantization has been applied to this network not to reduce its
performance. The latest input spectrogram that contributed to generating a detection on
the KWS system is passed as input to the d-vector extractor of the SV system.
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Now, the speaker verification system can be called in two different states, as figure 6.1
explains. Regardless from the state, however, a d-vector gets extracted from the MFCC
spectrogram by calling d_vector = RunSVModel(input_features), as can be noticed by
the code snippet in section 6.2. If the system is in enrollment state, the d-vector extracted
contributes to forming the speaker model. Since the similarity method adopted is the
Best-Match Cosine Similarity, the speaker model is simply a matrix containing all the
enrollment d-vectors from the authenticated speaker. Once enough enrollment d-vectors
have been collected, the speaker verification system starts operating in VERIFICATION

mode. The d-vector extracted is used for a comparison with the stored speaker model via
the Best-Match Cosine Similarity, as shown by the call to authenticated =SVBestMatch

(d_vector, speaker_model) in code snippet of section 6.2. The following code snippet
reports the implementation of the Best-Match Cosine Similarity function:

int SVBestMatch(MTB_ML_DATA_T* nn_output , float ** stored_embeddings){
float scores[N_ENROLLMENT_SAMPLES];
for(int i=0; i<EMBEDDING_SIZE; i++){

d_vector[i] = nn_output[i];
}
for(int i = 0; i<N_ENROLLMENT_SAMPLES; i++){

float similarity = CosineSimilarity(d_vector , stored_embeddings+
(i*EMBEDDING_SIZE));

scores[i] = similarity;
}
float best_score = -1.0;
for(int i = 0; i<N_ENROLLMENT_SAMPLES; i++){

if(scores[i] > best_score){
best_score = scores[i];

}
}
printf("Similarity: %f\n\r", best_score);
if(best_score > SV_SENSITIVITY){

return 1;
}

return 0;
}

If the speaker verification system returns authenticated =1, the input utterance is at-
tributed to the enrolled speaker, and a personalized message is communicated to the user.
Otherwise, a general message is communicated. The decision on user identity is taken by
comparing the similarity value obtained against a user-defined threshold. Such threshold
can be manually tuned at any time during execution via a potentiometer, to allow users
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balancing false positives and false negatives.

6.3. Target architecture description

The target architecture for the implementation of our solution is the Infineon PSoC 62S2
Wi-Fi BT Pioneer Board. PSoC 6 MCU is a programmable embedded system-on-chip,
integrating a 150-MHz Arm® Cortex®-M4 as the primary application processor, a 100-
MHz Arm Cortex-M0+ that supports low-power operations, up to 2 MB Flash and 1
MB SRAM, and the compatibility with Arduino™ shields. For the purpose of this master
thesis, only the Arm® Cortex®-M4 processor has been addressed as the main target for
developing the application, disregarding dual-core implementations.

Figure 6.3: Infineon PSoC6 62s2 Wi-Fi BT Pioneer Board.

The microphone needed for collecting audio samples has been connected to the board
by relying on the Infineon CY8CKIT-028-SENSE shield, is a low-cost Arduino™ UNO
compatible shield board that can be used to easily interface a variety of sensors with the
PSoC™ 6 MCU platform, specifically targeted for audio and machine learning applications.
Of our interest is the presence of two Infineon XENSIV™ digital MEMS microphones, that
can be used to capture sound and generate digital audio data, which is then transferred
through the PDM interface.
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Figure 6.4: CY8CKIT-028-SENSE IoT sense expansion kit connected to a Infineon PSoC
62S2 Wi-Fi BT Pioneer Board.

6.4. Performance evaluation

The demo in its test on the field has shown capabilities of recognizing the enrolled speaker,
although its performance is far from perfect. With respect to testing results obtained
in chapter 5, performance on real hardware seems to be slightly worse. However, this
can be attributed to the lack of optimization of the demo. For example, there are no
guarantees that the MFCC spectrogram used for extracting the d-vector contains the
keyword utterance in its full length. Moreover, testing results in chapter 5 were obtained
with the "Hey Cypress" utterance, which is longer and therefore easier for the SV system
to process. If the environment is quite enough and speakers pronounce the keyword clearly,
however, the application shows promising signs of adaptation to the enrolled speaker voice.
There is still a lot of space for improvements: voice activity detection, noise reduction
and audio alignment could be implemented to obtain better performance in real-world
testing conditions.

A video showcasing the demo working, along with code and other useful resources, can
be found at https://github.com/lolepls/cascaded-tiny-KWS-SV.

6.5. Memory and power consumption

An evaluation of consumption of the system has been done regarding both memory con-
sumption and power consumption. However, it is worth to mention that this demo has
not been subject to processes for optimizing memory footprint and power consumption.
Application engineering could allow obtaining much better results in both fields, for ex-

https://github.com/lolepls/cascaded-tiny-KWS-SV
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ample by leveraging the smaller networks identified in chapter 3. Such measurements
have been done on the aforementioned developer kit running the Arm® Cortex®-M4 at
full power.

6.5.1. Memory consumption

The whole application requires about 354.32 kB of flash memory to be stored. This
includes the two neural network models, all the preprocessing code and all the code
needed to setup the board, manage the audio acquisition and the I/O interface via LCD
screen and LEDs.

Final demo requirements
Flash memory 354.32 kB
RAM memory 504.12 kB

Table 6.1: Final KWS-SV demo memory requirements.

At runtime, the neural networks require additional 70.5 kB for the d-vector extractor
activations, and 79.3 kB for the KWS activations, leading to a total of RAM memory
required equal to 504.12 kB. Table 6.2 will report contribution of each allocated element
to the total RAM consumption:

Memory consumption
Input audio stream buffer 32 kB
MFCC input spectrogram (float) 7.5 kB
KWS model weights 112.5 kB
KWS model activations 79.3 kB
d-vector extractor weights 98.08 kB
d-vector extractor activations 70.5 kB
Test d-vector 1 kB
Speaker model 16 kB
Other 87.24 kB
Total 504.12 kB

Table 6.2: Runtime memory consumption for KWS-SV demo.

The input MFCC spectrogram consists of 1960 floating point values. Each d-vector ex-
tracted by the neural network for speaker verification occupies 1 kB of memory, being



90 6| Cascading KWS and SV: on-device implementation

stored as 256 float32 values. Since the demo uses 16 enrollment d-vectors, 16 kB of
memory are allocated for storing the speaker model. The d-vector that is extracted
during the verification phase requires one additional kB of memory allocated. "Other"
memory is allocated for the .text section of the executable, along with other .data and
.bss sections containing variables not strictly related to machine learning models.

If the neural network used for performing KWS and SV are quantized to the lowest bit
depth possible, the size of the application can be reduced to:

Final demo requirements
Flash memory 196.38 kB
RAM memory 247.68 kB

Table 6.3: Final 8-bit quantized KWS-SV demo memory requirements.

This measurement has been obtained with the Infineon ModusToolbox software when
8-bit quantization of the chosen models has been adopted.
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7| Conclusions

This chapter will provide a summary of the results obtained in the scope of this thesis,
along with possible future investigations on the problems addressed.

7.1. Conclusion

This Master Thesis described an organic approach for combining two fundamental speech
processing tasks in TinyML, namely keyword spotting and speaker verification. Keyword
spotting is the application that raised interest in Tiny Machine Learning, making scientists
and engineers understand the benefits of deploying artificial intelligence algorithms on low-
power edge devices. Due to its relevance, research extensively focused on such application;
results obtained by the scientific community have been analyzed in this Master Thesis
and used as background to tackling the second task: speaker verification. This thesis
is the first work in the TinyML literature to carry out a complete top-down analysis
of the design process for a cascaded TinyML oriented KWS-SV system. Moreover, we
framed the TinyML speaker verification task in the novel one-class few-shot classification
context, highlighting constraints and limitations that have to be faced when developing
such a system and analyzing ways for overcoming them. This thesis work also showed
how developing complex intelligent systems targeted at ultra low-power computers is a
challenge that requires engineers to take into account TinyML limitations even from early
stages of the development: not only AI design, but all the steps from data preprocessing
to final testing need a TinyML driven design. This work described in detail such design
process, laying basis for future works on the field.

Strictly regarding testing results obtained, hardware boards equipped with the keyword
spotting system designed in this thesis work showed great performance, in some cases
even outperforming other state-of-the-art systems; this made the keyword spotting demos
commercially viable for the company that supported this work. The speaker verification
system also obtained promising results, showing signs of recognition capabilities among
different speakers. The relevant result obtained is the proof that solving such task in ultra
low-power MCUs is possible. The speaker verification demo presented in this thesis work
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has been adopted as a proof-of-concept by the company supporting this work. Regarding
application engineering, the implementation of keyword spotting and speaker verification
adopted in this master thesis allows designing pure keyword spotting systems, pure speaker
verification systems or a combined KWS/SV system that merges capabilities of both.

Moreover, a novel similarity system for performing speaker verification has been proposed,
in some cases outperforming other state-of-the-art approaches.

7.2. Future works

Still a lot has to be investigated regarding speech processing tasks in a TinyML context,
but the advantages of developing such technologies would be countless, making worth the
research. While keyword spotting systems in TinyML contexts are being addressed more
and more both in industry and academy, with very promising results, speaker verification
is still a novel research field.

To progress in the research, following features could be addressed. However, this is not
meant to be an exhaustive list; it contains general ideas developed during the thesis work
based on the acquired experience.

Power of the d-vector extractor: the capability of the d-vector extractor is funda-
mental for providing a good separation in the feature space of the utterances sub-
mitted to the system, which in turn eases the work of similarity algorithms. Being
constrained by the TinyML condition, that requires designing small models, ob-
taining such a model is a difficult task that influences the final performance. The
adoption of end-to-end loss functions, such as the Generalized End To End loss
[58], could improve the performance of the architecture without having to add more
layers or parameters.

Data preprocessing: the data preprocessing used in this work has been specifically
designed for keyword spotting. While MFCC spectrograms are the state-of-the-art
for speech processing systems, fine-tuning on the process can be implemented to
highlight desired characteristics. Keyword spotting and speaker verification require
almost opposite features: one case needs speaker information almost completely
removed to focus on similarity of phonemes pronounced, while the other need such
features highlighted to give relevance to per-speaker peculiarities.

Short duration of utterances: Speaker Verification systems can perform better if
longer utterances are submitted to the analysis, because it is easier to spot speaker-
dependent characteristics when more time-related data is available. However, given
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the needed synergy with the Keyword Spotting system and the constraints of em-
bedded devices, longer utterances were not suitable to be used in this case.

Investigating hyperparameters: OC-SVM and OC-NN could benefit from deeper
investigations of their hyperparameters to find the best combination. Regarding
OC-NN, better fictitious vectors generators can be adopted, while OC-SVM could
benefit from a more organic hyperparameter search.

Processing on similarity values: Cosine similarity methods have been proven to be
powerful, but there is still space for improvement. The production of the sim value in
the Best-Match Cosine Similarity method, for example, is performed using a simple
maximum operation on the values of sm, but other more articulated solutions could
be tested. One idea could be not to focus only on the maximum value, but also
the minimum could be considered when providing a confidence threshold on the
identity of the speaker: we want our embedding to be similar enough also to the
"less similar" stored embedding.

Application engineering: Optimizations can also be done at application level when
the SV system is implemented in real-hardware. A preliminary alignment at run-
time of audio utterances in case of text-dependent speaker verification could lead
to improvement, and the same goes for noise reduction systems or voice activity
detection algorithms to use in conjunction with the speaker verification pipeline.
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Word Number of utterances
Backward 1,664

Bed 2,014
Bird 2,064
Cat 2,031
Dog 2,128

Down 3,917
Eight 3,787
Five 4,052

Follow 1,579
Forward 1,557

Four 3,728
Go 3,880

Happy 2,054
House 2,113
Learn 1,575
Left 3,801

Marvin 2,100
Nine 3,934
No 3,941
Off 3,745
On 3,845
One 3,890
Right 3,778
Seven 3,998
Sheila 2,022
Six 3,860
Stop 3,872
Three 3,727
Tree 1,759
Two 3,880
Up 3,723

Visual 1,592
Wow 2,123
Yes 4,044
Zero 4,052

Table A.1: Speech commands dataset details.
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Testing results on Text-Independent Dataset - CNN
Speaker Enrollment Samples Classifier Method Accuracy F1-SCORE

0 1 Mean Cosine Similarity 0,51 0,35
0 1 Best-Match Cosine Similarity 0,51 0,35
0 1 OC-NN 0,8 0,5
0 1 OC-SVM 0 0
0 8 Mean Cosine Similarity 0,7 0,59
0 8 Best-Match Cosine Similarity 0,73 0,528
0 8 OC-NN 0,75 0,51
0 8 OC-SVM 0,483 0,392
0 16 Mean Cosine Similarity 0,7 0,526
0 16 Best-Match Cosine Similarity 0,66 0,523
0 16 OC-NN 0,66 0,476
0 16 OC-SVM 0,483 0,392
0 64 Mean Cosine Similarity 0,73 0,55
0 64 Best-Match Cosine Similarity 0,65 0,361
0 64 OC-NN 0,3 0,41
0 64 OC-SVM 0,6 0,478
1 1 Mean Cosine Similarity 0,516 0,325
1 1 Best-Match Cosine Similarity 0,516 0,325
1 1 OC-NN 0,66 0
1 1 OC-SVM 0 0
1 8 Mean Cosine Similarity 0,65 0,48
1 8 Best-Match Cosine Similarity 0,55 0,34
1 8 OC-NN 0,45 0
1 8 OC-SVM 0,483 0,279
1 16 Mean Cosine Similarity 0,616 0,465
1 16 Best-Match Cosine Similarity 0,55 0,366
1 16 OC-NN 0,33 0,13
1 16 OC-SVM 0,616 0,549
1 64 Mean Cosine Similarity 0,616 0,465
1 64 Best-Match Cosine Similarity 0,5 0,372
1 64 OC-NN 0,26 0,405
1 64 OC-SVM 0,533 0,3
2 1 Mean Cosine Similarity 0,55 0,37
2 1 Best-Match Cosine Similarity 0,55 0,37
2 1 OC-NN 0,55 0,371
2 1 OC-SVM 0 0
2 8 Mean Cosine Similarity 0,53 0,39
2 8 Best-Match Cosine Similarity 0,65 0,42
2 8 OC-NN 0,68 0,457
2 8 OC-SVM 0,533 0,333
2 16 Mean Cosine Similarity 0,616 0,439
2 16 Best-Match Cosine Similarity 0,56 0,43
2 16 OC-NN 0,6 0,5
2 16 OC-SVM 0.633 0,352
2 64 Mean Cosine Similarity 0,6 0,4
2 64 Best-Match Cosine Similarity 0,45 0,352
2 64 OC-NN 0,266 0,388
2 64 OC-SVM 0,633 0,352
3 1 Mean Cosine Similarity 0,55 0,37
3 1 Best-Match Cosine Similarity 0,55 0,37
3 1 OC-NN 0,66 0
3 1 OC-SVM 0 0
3 8 Mean Cosine Similarity 0,65 0,43
3 8 Best-Match Cosine Similarity 0,58 0,418
3 8 OC-NN 0,53 0,263
3 8 OC-SVM 0,416 0,444
3 16 Mean Cosine Similarity 0,6 0,428
3 16 Best-Match Cosine Similarity 0,66 0,498
3 16 OC-NN 0,416 0,285
3 16 OC-SVM 0,383 0,244
3 64 Mean Cosine Similarity 0,65 0,4
3 64 Best-Match Cosine Similarity 0,6 0,47
3 64 OC-NN 0,245 0,388
3 64 OC-SVM 0,433 0,32

Table A.2: Full text-independent dataset testing results for speaker verification task.
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Testing results on Text-Dependent Dataset - CNN
Speaker Enrollment Samples Classifier Method Accuracy F1-SCORE

0 1 Mean Cosine Similarity 0,716 0,564
0 1 Best-Match Cosine Similarity 0,716 0,564
0 1 OC-NN 0,716 0,105
0 1 OC-SVM 0,75 0
0 8 Mean Cosine Similarity 0,783 0,682
0 8 Best-Match Cosine Similarity 0,816 0,717
0 8 OC-NN 0,75 0,347
0 8 OC-SVM 0,766 0,461
0 16 Mean Cosine Similarity 0,8 0,7
0 16 Best-Match Cosine Similarity 0,95 0,909
0 16 OC-NN 0,683 0,486
0 16 OC-SVM 0,4 0,181
0 64 Mean Cosine Similarity 0,9 0,812
0 64 Best-Match Cosine Similarity 0,95 0,903
0 64 OC-NN 0,3 0,399
0 64 OC-SVM 0,933 0,866
1 1 Mean Cosine Similarity 0,96 0,93
1 1 Best-Match Cosine Similarity 0,96 0,93
1 1 OC-NN 0,733 0
1 1 OC-SVM 0,75 0
1 8 Mean Cosine Similarity 0,93 0,87
1 8 Best-Match Cosine Similarity 0,933 0,857
1 8 OC-NN 0,65 0
1 8 OC-SVM 0,166 0,264
1 16 Mean Cosine Similarity 0,916 0,848
1 16 Best-Match Cosine Similarity 0,95 0,896
1 16 OC-NN 0,566 0,35
1 16 OC-SVM 0,516 0,355
1 64 Mean Cosine Similarity 0,85 0,769
1 64 Best-Match Cosine Similarity 0,966 0,933
1 64 OC-NN 0,516 0,508
1 64 OC-SVM 0,75 0
2 1 Mean Cosine Similarity 0,8 0,625
2 1 Best-Match Cosine Similarity 0,8 0,625
2 1 OC-NN 0,766 0,125
2 1 OC-SVM 0,75 0
2 8 Mean Cosine Similarity 0,8 0,666
2 8 Best-Match Cosine Similarity 0,833 0,705
2 8 OC-NN 0,816 0,56
2 8 OC-SVM 0,716 0,413
2 16 Mean Cosine Similarity 0,75 0,615
2 16 Best-Match Cosine Similarity 0,85 0,742
2 16 OC-NN 0,733 0,555
2 16 OC-SVM 0,883 0,72
2 64 Mean Cosine Similarity 0,733 0,6
2 64 Best-Match Cosine Similarity 0,85 0,709
2 64 OC-NN 0,383 0,412
2 64 OC-SVM 0,833 0,615
3 1 Mean Cosine Similarity 0,616 0,439
3 1 Best-Match Cosine Similarity 0,616 0,439
3 1 OC-NN 0,733 0
3 1 OC-SVM 0,75 0
3 8 Mean Cosine Similarity 0,75 0,594
3 8 Best-Match Cosine Similarity 0,85 0,689
3 8 OC-NN 0,716 0,451
3 8 OC-SVM 0,783 0,58
3 16 Mean Cosine Similarity 0,833 0,736
3 16 Best-Match Cosine Similarity 0,983 0,965
3 16 OC-NN 0,75 0,482
3 16 OC-SVM 0,733 0,529
3 64 Mean Cosine Similarity 0,6 0,47
3 64 Best-Match Cosine Similarity 0,983 0,965
3 64 OC-NN 0,35 0,434
3 64 OC-SVM 0,783 0,551

Table A.3: Full text-dependent dataset testing results for speaker verification task.
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B.1. Notes on loss functions for d-vector extractors

The d-vector extractor neural network has been trained on a dataset with N samples
belonging to K different classes by using a softmax classifier as the last layer, where the
activation function is the softmax function [8]. The softmax activation function takes in
a vector z of raw outputs of the neural network and returns a vector of probability scores,
where each element is computed as:

σ(zi) =
ezi∑K
j=1 e

zj
for i = 1, 2, . . . , K (B.1)

Where K is the size of the input vector. Then, the loss function chosen for training is the
categorical cross-entropy, defined as [8]:

L(Y ,T ) = −
N∑

n=1

K∑
k=1

tnk ln ynk (2)

Where:

• T is the ground truth matrix of size N ×K;

• Y is the output matrix of the model of size N ×K;

• tnk = {0, 1} is the target of input n for class K;

• ynk is the probability that sample n belongs to class k as produced by the softmax
layer on the model.

However, it could be argued that training a neural network in an end-to-end manner,
already to produce distinct d-vectors for different speakers, would be a better approach
to the problem. This is why literature produced loss functions suitable for an end-to-
end training of a d-vector extractor model, such as the Generalized End-To-End Loss
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[58]. The purpose of an end-to-end loss function for speaker verification is to enforce
producing similar d-vectors for utterances of the same speaker, maximizing the difference
between d-vectors of different speakers. While this approach could in principle bring some
advantages, it has been observed that in TinyML contexts the approach based on training
with the softmax loss and extracting the embedding from the hidden layer works with
comparable results [61]. This is why we adopted the loss described in this sappendix, in
addition to the advantages of being it an established and widely adopted approach.

B.2. Computing fictitious d-vectors in OC-NNs

The operation for computing fictitious d-vectors to be fed into the OC-NN described in
this thesis work has been done to maintain the sparsity of generated real d-vectors to
have plausible negative samples. The following code snippet will clarify the generation
process:

# Generate denied gaussian sample:
gaussian_vector = generate_gaussian(mean , variance)
gaussian_vector_masked = mask_function(auth_embedding.reshape(256),

gaussian_vector)

Where auth_embedding is a real d-vector produced from an authenticated speech sample,
and the functions generate_gaussian and mask_function are defined as:

def generate_gaussian(mean , variance):
return np.random.normal(mean , variance , embedding_size)

def mask_function(mask , data):
for i in range(0, len(data)):

data[i] = data[i] * mask[i]
random.shuffle(data)
return data

As it can be noticed from the following image, fictitious and real d-vectors present simi-
larities in magnitude and sparsity of the elements:
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Figure B.1: Visual representation of real vs fictitious d-vectors.

It could be argued that the process of masking and shuffling the d-vectors is not needed,
since drawing from a Gaussian distribution seems enough to produce a plausible sample.
While this may be true if the d-vector produced does not show signs of sparsity, in case
of having sparse d-vectors (for example, if the d-vector is obtained as the activation of a
layer that uses the Rectified Linear Unit activation function) this may not be true. As an
example, here there is a confrontation of a real d-vector, a fictitious d-vector without our
proposed approach and a fictitious d-vector obtained with our approach, where the real
d-vector is extracted as the activation of the dense layer of 4.4.1:

Figure B.2: (a): Real d-vector (b): Purely random fictitious d-vector (c): Masked-shuffled
fictitious d-vector

Since in development of SV systems different d-vectors extracted from different part of
the network could be tested, using the proposed approach can help producing plausible
negative samples for the one-class training process, regardless of the origin of the d-vector.

B.3. SV approach-specific considerations

It may seem strange to think about validation set for some of the methods for speaker
verification proposed in this work. For example, cosine similarity based methods do not
have a proper training or fitting phase, so in principle they would not require validation
sets. However, a useful way of leveraging validation set is to find a threshold for the
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similarity produced by the classifiers. In general, validation sets have been used in the
following way:

1. To find the best threshold for Cosine-Similarity based methods;

2. To monitor the training of the One-Class Classification Neural Networks;

3. To perform hyperparameter search on the One-Class SVMs

Thresholds and parameters found with this method have been maintained during the
evaluation on the testing set.

Case 1) refers to the fact that a similarity threshold must be determined to establish if an
utterance belongs to the enrolled speaker or not. The validation set is used to find the best
threshold on that set, and the same value is used for testing the model on the testing set.
On a real hardware implementation, the threshold should be selected manually according
to the required sensitivity, but tests can be conducted to find at least an average value to
use as default starting point.

Regarding case 2), the One-Class Classification NN could in principle be trained without
a validation set. We used the validation set to control overfitting and stop the training
when no improvement were longer made, even if given the small size of training datasets
this condition happened right after few epochs. In case of a real hardware execution and a
truly one-class condition, the number of training epochs has to be determined in advance.

Regarding case 3), with OC-SVM the validation set has been used to perform hyperpa-
rameter search. Various SVMs were fitted on enrollment data, and performance according
to hyperparameters was measured on the validation set. The combination of hyperpa-
rameters is the following:

kernel = [’rbf’, ’linear ’]
gamma = [’auto’, ’scale’]
nu = [0.0001 , 0.001 , 0.01, 0.1,

0.0002 , 0.002 , 0.02 , 0.2,
0.0003 , 0.003 , 0.03 , 0.3,
0.0004 , 0.004 , 0.04 , 0.4,
0.0005 , 0.005 , 0.05 , 0.5,
0.0006 , 0.006 , 0.06 , 0.6,
0.0007 , 0.007 , 0.07 , 0.7,
0.0008 , 0.008 , 0.08 , 0.8,
0.0009 , 0.009 , 0.09 , 0.9]

PCA_Enabled = [True , False]
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pca_var = [0.05 , 0.1, 0.15, 0.20 , 0.25, 0.30 , 0.35 , 0.40, 0.45 , 0.50, 0.
55 , 0.60 ,

0.65 , 0.70, 0.75, 0.80 , 0.85, 0.90, 0.95 , 0.99]

# PCA can not be performed on a single sample.
if(len(x_train_svm)==1):

PCA_Enabled = [False]

Where nu is the value of v as expressed in 4.5.4, kernel refers to the kernel function, and
gamma is the coefficient in the kernel formula. As it can be noticed, PCA has also been
tried with different values of explained variance. An optimal value has not been found, but
the dimensional reduction can in principle help the SVM to distinguish between d-vectors.





111

List of Figures

2.1 A time-domain audio file (left) and the related MFCC plot (right). . . . . . 7
2.2 Steps for extracting MFCCs from raw-waveform audio files. . . . . . . . . . 8
2.3 We can notice that MFCCs for “yes” and “no” are different just at a glance. 8
2.4 Steps of a KWS system based on deep learning. . . . . . . . . . . . . . . . 10
2.5 Phases of speaker verification. . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 The speakers classifier DNN [56]. . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 D-Vector speaker verification approach. . . . . . . . . . . . . . . . . . . . . 15
2.8 ROC curves for different classificators. . . . . . . . . . . . . . . . . . . . . 17
2.9 a) ROC of perfect classifier with AUC = 1. b) ROC of random classifier

with AUC = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 Finding the EER by intersecting the EER line with the ROC curve [54]. . 18

3.1 Steps of a KWS system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Data augmentation pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 MFCC spectrograms of “Yes” words. . . . . . . . . . . . . . . . . . . . . . 29
3.4 MFCC spectrograms of “No” words. . . . . . . . . . . . . . . . . . . . . . . 29
3.5 MFCC extraction pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Conversion to mel-frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 KWS model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Steps to obtain training, testing and validation sets for KWS models training. 37

4.1 Modeling of a general speaker verification system. . . . . . . . . . . . . . . 42
4.2 Different classification types [38]. . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 A possible KWS-SV cascade application. . . . . . . . . . . . . . . . . . . . 45
4.4 D-Vector speaker verification approach. . . . . . . . . . . . . . . . . . . . . 47
4.5 D-vector extractor CNN structure. . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Confusion matrix of the speaker classificator model. . . . . . . . . . . . . . 52
4.7 Speaker verification based on mean d-vectors and cosine similarity. . . . . . 53
4.8 Speaker verification based on one-to-one confrontation on an enrollment

set of d-vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



112 | List of Figures

4.9 Speaker verification based on one-class neural networks. . . . . . . . . . . . 58
4.10 Processing of a batch of data in OCNN training. . . . . . . . . . . . . . . . 59
4.11 Approach of SV with one-class SVMs. . . . . . . . . . . . . . . . . . . . . . 61
4.12 Example of learned boundary of a OCSVM in a 2-dimensional feature space. 64

5.1 Testing results on TI dataset (grouped by number of enrollment samples). 71
5.2 Testing results on TI dataset (grouped by similarity method). . . . . . . . 72
5.3 Testing results on TD dataset (grouped by number of enrollment samples). 74
5.4 Testing results on TD dataset (grouped by number of enrollment samples). 75
5.5 Confrontation of EER and AUC metrics for cosine similarity methods. . . 78
5.6 ROC curves for speaker 3 and 16 enrollment samples. Left: text-independent,

right: text-dependent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 High-level scheme of the KWS-SV application. . . . . . . . . . . . . . . . . 82
6.2 Sliding window on input audio stream that computes MFCC spectrograms. 84
6.3 Infineon PSoC6 62s2 Wi-Fi BT Pioneer Board. . . . . . . . . . . . . . . . . 87
6.4 CY8CKIT-028-SENSE IoT sense expansion kit connected to a Infineon

PSoC 62S2 Wi-Fi BT Pioneer Board. . . . . . . . . . . . . . . . . . . . . . 88

B.1 Visual representation of real vs fictitious d-vectors. . . . . . . . . . . . . . 107
B.2 (a): Real d-vector (b): Purely random fictitious d-vector (c): Masked-

shuffled fictitious d-vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



113

List of Tables

2.1 LibriSpeech dataset subsets details. . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Environmental recordings for background noise. . . . . . . . . . . . . . . . 26
3.2 Structure of small CNN for keyword spotting. . . . . . . . . . . . . . . . . 35
3.3 Structure of large CNN for keyword spotting. . . . . . . . . . . . . . . . . 35
3.4 Accuracy results for large CNN. . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Accuracy results for small CNN. . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Memory and latency estimations for large KWS CNN - 3 keywords version. 39
3.7 Memory and latency estimations for small KWS CNN - 3 keywords version. 39

4.1 Speakers classificator CNN details. . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Memory and latency estimations the d-vector extractor NN. . . . . . . . . 52
4.3 OCNN architecture details. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Testing conditions for speaker verification. . . . . . . . . . . . . . . . . . . 66
5.2 Text-dependent custom dataset details. . . . . . . . . . . . . . . . . . . . . 66
5.3 Text-independent custom dataset details. . . . . . . . . . . . . . . . . . . . 68
5.4 Metrics adopted for each proposed approach. . . . . . . . . . . . . . . . . . 69
5.5 Testing results on TI dataset (grouped by number of enrollment samples) . 70
5.6 Testing results on TD dataset (grouped by number of enrollment samples) 73
5.7 EER and AUC for Mean Cosine Similarity in Text-Independent context. . 76
5.8 EER and AUC for Best Match Cosine Similarity in Text-Independent context. 76
5.9 EER and AUC for Mean Cosine Similarity in Text-Dependent context. . . 76
5.10 EER and AUC for Best Match Cosine Similarity in Text-Dependent context. 77
5.11 Improvements in EER and AUC if best-match cosine similarity is used. . . 77

6.1 Final KWS-SV demo memory requirements. . . . . . . . . . . . . . . . . . 89
6.2 Runtime memory consumption for KWS-SV demo. . . . . . . . . . . . . . 89
6.3 Final 8-bit quantized KWS-SV demo memory requirements. . . . . . . . . 90

A.1 Speech commands dataset details. . . . . . . . . . . . . . . . . . . . . . . . 102



114 | List of Tables

A.2 Full text-independent dataset testing results for speaker verification task. . 103
A.3 Full text-dependent dataset testing results for speaker verification task. . . 104


	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Master Thesis Structure

	Background Research
	Artificial intelligence and machine learning
	Audio and speech processing in AI/ML contexts
	Audio preprocessing

	Keyword Spotting
	Historical approaches
	Google Speech Commands Dataset
	Multilingual Spoken Words Corpus Dataset

	Speaker Verification
	Historical approaches
	D-Vector approach
	Text-Dependent and Text-Independent speaker verification
	Librispeech Dataset
	Evaluation metrics

	Tiny Machine Learning
	Speech processing in TinyML contexts

	Keyword Spotting
	Problem definition
	Application architecture
	Datasets
	Google Speech Commands Dataset
	Multilingual Spoken Words Dataset
	Additional Background Noise
	Data conversion and augmentation

	Feature Extraction
	Neural Network Architecture
	Training and testing
	Memory and latency estimation

	Speaker verification
	Problem definition
	Goal of the experiments
	One-Class Classification
	Few-Shot Classification
	On-device adaptation to new speakers
	Cascading with Keyword Spotting

	Approach to Speaker Verification
	Feature extraction backbone
	Text-Dependent and Text-independent
	Final system structure

	Building the D-vector extractor
	Convolutional Neural Network
	Training of D-Vector extractor
	Memory and latency estimation

	Similarity algorithms
	Mean Cosine Similarity
	Best-Match Cosine Similarity
	One Class Neural Network
	One-Class SVM


	Speaker verification testing results
	Experimental setup
	Text-dependent custom dataset
	Text-independent custom dataset
	Example of a test case
	Evaluation metrics

	Text-Independent Dataset testing results
	Text-Dependent Dataset testing results
	EER and AUC measurement
	Final comments

	Cascading KWS and SV: on-device implementation
	Choosing a method for on-device implementation
	Application structure
	Input stream processing
	Keyword spotting system
	Speaker verification system

	Target architecture description
	Performance evaluation
	Memory and power consumption
	Memory consumption


	Conclusions
	Conclusion
	Future works

	Bibliography
	Appendix A - Tables
	Appendix B - Additional notes
	Notes on loss functions for d-vector extractors
	Computing fictitious d-vectors in OC-NNs
	SV approach-specific considerations

	List of Figures
	List of Tables

