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1. Introduction
In this thesis work an anthropomorphic 3D
printed robotic arm actuated by 3D printed
strain wave gears (also known as harmonic
drives) is designed. A software is generated for
providing the virtual model of the robot, tools
for motion planning are used in order to design
a pick and place task and a dynamic simula-
tion environment is prepared. This product is
addressed to non-industrial applications where
limited payload and low precision are sufficient.
We identified the need of such a product in ed-
ucational, recreative and small business fields.
Hence an affordable solution is designed. More-
over, this product can be possibly brought into
the “collaborative” robotics field, unlocking a
deeper interaction between man and machine re-
maining in the non-industrial field. In fact, real
Cobots have very high price tags, and this pre-
clude their use in didactic field. As presented
in [4], in Italy there is a misalignment between
the competencies requested by the Industry and
the ones given from University, especially con-
cerning soft skills. It is acknowledged that ac-
quired hard skills of STEM disciplines are of very
high level but there is a lack in adaptability and
creativity in Engineering and Computer Science.
Robotics can be the link connecting STEM com-

petencies to Industry4.0 in general. Hence, there
is the need of a revolution in pedagogy to give
substance to what is learned in school, start-
ing from children. It is needed to train children
minds to computational thinking. Introducing
Robotics to the young allows to develop abilities
in problem solving and in orientation in complex
problems. For older students Robotics can lead
to a deeper comprehension of mathematics and
programming, since a practical feedback is given
synchronously with the learning process.
The structure of this thesis is briefly reported in
the following.
Some characteristics for the robot have been
enumerated and a review of existing commercial
products and open source projects was done.
Pre-sizing of the robot was done considering for-
mer tentative and related work. The starting
point was the aesthetics of a previous design of
a robotic arm [5], a 3D printable harmonic drive
speed reducer [3] (and before [1]), and already
provided stepper motors from the Italian firm
R.T.A. Robot links length, maximum speed and
acceleration were set in this phase. A simplified
2D model of the arm was considered.
Afterwards the actual design of the robot was
done considering a 3D printing-oriented mind-
set. This allowed to design features that can-
not be realized with traditional manufacturing
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processes. Some considerations on the available
tools and 3D printing were done. A preliminary
theoretical assessment of the robot limits was
done to have a starting point for the actual test-
ing phase.
To actuate the robot some electronic devices
were studied. A micro-controller was required to
move the robot motors and hence some coding
was done. Arduino MEGA was used as micro-
controller and Arduino IDE coding development
environment was used to write software. An ini-
tial low level control of the robot arm was as-
sessed implementing a mock PID controller run-
ning on the Arduino MEGA itself. For the high
level control with ROS the Arduino firmware
was developed.
Then, an overview of different programming ap-
proaches was performed so the reader is able to
understand why an offline approach, using ROS
as framework to generate the software, can be
a good choice to perform the high level control.
Consequently, the focus was on the generation of
the virtual model of the robot. Two models was
realized: one which represents the real robot and
the other with the addition of a gripper. Since
an end effector was not developed in the actual
robot, an OnRobot gripper has been added to
the virtual model to program with more com-
pleteness. Motion planning was done with the
MoveIt! package and, in particular, a task of
pick and place was planned to move a box us-
ing the model with the gripper. Furthermore, it
was also described how to generate the files to
launch Gazebo (dynamic simulator) and how to
control the multibody model using ROS control.
Also an integration of Gazebo into MoveIt! was
performed which allow to plan a movement in
MoveIt! and directly make the multibody model
execute it. So, a task can be tested in the dy-
namic simulator to verify that it is feasible be-
fore making the real robot execute it.
Finally, a critical evaluation of the proposed so-
lution was done, together with the identification
of some possible future related work.

2. Already existing products
Before starting with the review of existing prod-
ucts we identified some required characteristics
for our robot that are reported hereafter.
• be affordable; the robot must be made

of cheap materials, must have easy-to-sort

components and electronics (boards, mo-
tors, drivers, sensors).

• be safe; the robot must be made of a non
hazardous material, have completely en-
closed electronics, tidy cable management,
smooth edges.

• be general purpose; the robot must be mod-
ular and allow the user to choose the tool
to mount on the end effector, and it has to
be easy to change at any moment.

• be open source; the robot control logic must
rely on open source software, thus free to
download, install and eventually modify, to
be adapted to specific needs.

• allow young students to program simple
movements of the robot exploiting a graph-
ical interface. Instead, students with some
coding experience can program more com-
plex tasks.

• have a simulation environment. Students
can program a movement and test it on the
virtual model, in this way they can under-
stand if the task is feasible for the robot and
if there are some changes that can improve
the quality of the movement. A simulation
environment is also useful because testing a
task in virtual reality before actually mak-
ing the real robot execute it improve the
safety.

• be aesthetically pleasant; since the robot
would be a mainstream product, it would
compete with other commercial solutions,
and customers also consider the look of the
product, especially for display applications
open to public.

• have a universal grounding fixture system;
the robot must be adaptable to any work-
bench.

• be reliable and long lasting; nothing it’s
more tedious than having a tool that is of-
ten unavailable due to failures.

• be cheap and easy to repair; the robot must
be made of functionally independent parts,
such that if one component fails, no per-
fectly working part has also to be changed.

These characteristics were confirmed as the re-
view of products was proceeding.
Some similar, cheap and low precision robotic
arms (3D printed and not) were analysed to
gather information to design a competitive prod-
uct. The closest 3D printed robotic arm is the
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Niryo One by NiryoRobotics1. It is a relatively
inexpensive robot (1599e2 + VAT for the kit
version) platform considering the already devel-
oped coding environment. This robot has a mag-
netic position feedback system that exploits a
magnet attached to the back end of the stepper
motors and a custom PCB with the actial sensor.
This solution quite refined but very expensive.
Anyways, the outreach and the maximum pay-
load are very limited, respectively 410mm and
300g.
Hence, to be competitive our robot must be big-
ger and/or capable of carrying a higher payload.
A position feedback system is required to catch
up with the NiryoRobotics manipulator. The
advantage of our robot is that we propose our-
selves to used harmonic drives to achieve torque
multiplication. In this way we can have higher
torques to the joints than a belt and pulley
transmission system.

3. Robot design
3.1. Preliminary sizing
A simplified mathematical model was developed
to obtain a first tentative idea of the robot out-
reach and of the lengths of each link. This model
only considered the robot behavior in a plane.
Hence, only joints J2, J3 and J5 are of inter-
est. By the way, only a 2R kinematic configu-
ration was considered for simplicity and so only
dof associated to J2 and J3 are considered in the
model, also because these are the most stressed
joints, having to lift the most of the weight of
the arm with considerable lever arm. Only links
L1 and L2 are considered, while L3 is neglected.
Link L3 anyway adds more lever arm to weight
and inertial forces, and this must be considered.
Therefore transport of moment was performed,
placing the masses on link L3 at the end of link
L2 and adding a concentrated bending moment.
Since in the very first stages of the design geome-
try of the links was not known, masses, moments
of inertia and positions of the centers of gravity
of the links needed to be estimated. Links were
simplified as cylinders and the moment of inertia
of thick cylinders was used, placing the center of
gravity in the middle of links themselves. Since
the final 3D printed pieces are hollow, the den-

1https://niryo.com/product/niryo-one/
2at the time of writing this document

sity of the material used (ABS filament) was cor-
rected with an empirical coefficient smaller than
one to not overestimate too much the masses of
the links and hence obtain a very small outreach.
Anyway, in this first stage masses of the links
were very overestimated. Usually, this is not a
good engineering practice but, given the nature
of the project and the numerous uncertainties
on previous existing work, we reckon that being
more conservative than usual is wiser.
Limit maximum dimensions were computed per-
forming a dynamic assessment of the torques re-
quired to joints J2 and J3 to lift the arm in some
very stressful movements. To do so, maximum
values of speed and acceleration of the robot arm
needed to be set first. To set them it is required
to establish the maximum allowable speed and
acceleration that the robot could have, consid-
ering the dynamic behavior of the motors. The
torque vs. speed curves on the manufacturer
data-sheets were used considering 24V supply.
Since only a qualitative representation was given
(no polynomial function provided), the curves
were approximated by straight lines.
The same simplified 2R model was used to es-
tablish theoretical limits to range of motion af-
ter completion of the mechanical design phase
(when the final dimensions were set) and after
simulating the 3D printed parts manufacturing
with the slicer software to obtain an estimation
of the actual mass of the parts.

3.2. Mechanical design
The mechanical design phase started with a re-
view of what already available. We kept the
characteristic aesthetic sign of the robot arm de-
veloped in [5] having to change slightly some di-
mensions for a feasible manufacturing. The har-
monic drive design of [3] was given as a packet of
CAD files. After studying how the characteristic
components of an harmonic drive were realized,
some modifications were done for what concerns
hardware (for the sake of a lean BOM and eas-
ier assembling), and geometries (NEMA23 mo-
tors used required new ways to assemble plastic
parts). Implementation of the position feedback
system was done from ground up. While the
prototype was assembled, some further modifi-
cations to the geometry of the flexible spline and
the circular spline were needed to mitigate a me-
chanical problem that arose. We want to state
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here that the harmonic drive design used was not
tested under load before the beginning of this
thesis activity. Indeed, we experienced a fail-
ing meshing when we actuated the joint J2 with
only the link L1 when using the original design
of the flexible spline. We noticed that the loss of
the meshing was happening when the joint was
overcoming the weight force while when in fa-
vor of gravity it did not happen. This suggests
that when the motor lifts the link the wave gen-
erator starts to turn freely on the flexible spline
causing the link to fall instead of rising. We
reckon that in this situation the resistant applied
torque to the speed reducer exceeded the max-
imum bearable meshing torque between flexible
spline and circular spline using the original rub-
ber belt as flexible spline. Therefore the aim was
to increase the meshing resistance. The easiest
possible solution was to increase the orthogonal
force on the rigid spline by increasing the wheel-
base between the bearing on the wave generator.
Anyway, we planned to use this solution only if
necessary since it introduces more stress on the
parts. Then, finding inspiration on the layout of
commercial metal harmonic drives, the flexible
spine was made taller, radially more compliant
and with the teeth only on the lip to further in-
crease compliance. Moreover, we designed a cir-
cular spline having a complementary teeth pro-
file to the flexible spline.
The position feedback system was designed us-
ing high precision 5-turn potentiometers. This
was the best compromise between the need
of the feedback system and a cheap solu-
tion. Potentiometers become position trans-
ducers thanks to a gearing system. A gear is
mounted on the potentiometer shaft and it is
actuated by a conjugate teeth profile on the link
for the axial joints (J1 and J4, and therefore
the solution is external) or a gear ring mounted
on the harmonic drive cover for the other joints
(and in this case the solution is completely in-
ternal).
Then, the links were designed considering the
harmonic drives dimensions, the aesthetic re-
quirement and the position feedback system. We
needed to exceed the maximum lengths of the
links obtained in the preliminary sizing phase
because some geometries otherwise would have
been unfeasible. That is why the assessment of
the robot range of motion was needed.

The material chosen for the construction of all
the structural parts of the robot is ABS. This
choice was taken due to ongoing agreements be-
tween the University and the Supplier. ABS
has quite good mechanical properties that can
be exploited to build strong and stiff compo-
nents. Anyway, when 3D printed it suffers layer
delamination (cracking) and limited layer adhe-
sion strength. For some other parts PETG was
used because it has superior layer adhesion. To
guarantee the highest possible mechanical resis-
tance, direction of deposition of the layers is of
paramount importance. The main load on the
robot arm is bending moment, thus printing di-
rection was set not to be the same as the axis
of the arm itself. Anyway, to have the greatest
strength one has to sacrifice printing quality.

3.3. Low level control
The micro-controller for actuation of the robot
was selected. An Arduino MEGA board was
chosen because it is the simplest, cheapest
micro-controller having enough pins to control
all motors and to read all signals coming from
the position feedback system. Strategies for ac-
tuating the stepper motors using the provided
electronics (stepper divers boards) were anal-
ysed. An already available Arduino library was
used allowing to synchronize all six stepper mo-
tors. Some tests were done to establish com-
patibility and accuracy of the library with the
R.T.A. stepper driver board. Small errors were
proven but they are not a problem thanks to the
position feedback system. Sizing of the Analog
to Digital Conversion (ADC) system to read po-
sition by means of the potentiometers was done.
The original aim was to have an ADC that al-
lowed to indirectly detect half a motor step. Mo-
tors are built with 200step/rev but the biggest
micro-stepping that can be set on the board is
2, thus the aim is to "see" 0.9deg. For this pur-
pose external 14 bit ADC are required, since the
Arduino MEGA embedded ADC has only 10bit
resolution.
A mock PID controller was developed to run di-
rectly on the Arduino board for a simple, low
level interaction with the robot. It was not pos-
sible to implement a proper discrete time PID
controller running on the Arduino (that is a dig-
ital device) because the library used to synchro-
nize all the motors uses a blocking strategy: as
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the motors are moving it’s not possible to ask
to Arduino to do anything (also reading signals
from potentiometers) and therefore the clock for
the controller can’t work properly. "Mock" PID
means that a continuous time approach was used
to compute the action for the motors but ap-
proximating the time derivative of the error with
a finite difference and the integral of the error
with the area of a trapezoid.
In the thesis work the digital model of this robot
arm was developed. Arduino code to be de-
ployed on the micro-controller itself to let it in-
terface with ROS was implemented. Arduino is
an embedded piece of hardware of a ROS Con-
trol system, receiving control inputs from and
sending Mechanism States to the ROS hardware
interface [2]. The Arduino MEGA acts as a ROS
node that receives the joints angles and the max-
imum desired speed, and sends the measured
positions of each link. Communication is done
through Serial communication protocol.

3.4. High level control
An overview of different control strategies was
performed highlighting the pros and cons of on-
line and offline programming approaches which
are the more diffuse in industries. Hybrid pro-
gramming was also briefly explained, it relies on
augmented reality and can be a promising tech-
nology for the future of robotics. Benefits of us-
ing an offline programming strategy to control
the robot and the choice of using ROS which is
an open source framework are presented.
A software was generated with ROS to provide
two virtual models: one which represents the
real robot and the other with the addition of a
gripper. A virtual model is obtained by gener-
ating the xacro file of the robot. In this file the
meshes of each link were imported from the CAD
files, each link was defined considering its rela-
tive position and the collision geometries were
also determined. The latter are much simpler
with respect to the actual shape of the links and,
in this way, there is a reduction of computational
cost in detecting collisions during the execution
of a task. In the xacro file each joint was also
defined: type, position, axis of rotation, limits
on effort and velocity. Consequently, the xacro
file is really important because it provides the
kinematic chain of the robot. Furthermore, in
the model with the gripper has been picked a

gripper of OnRobot. The choice of the gripper
is not permanent, in the future could be modi-
fied and also substituted with a custom designed
gripper. The gripper was added to address the
programming phase with more completeness.
Once the virtual models were realized the
MoveIt! motion planning package was generated
to plan some movements. In particular, it allows
to generate the motion law that the end effector
should follow to perform a desired task consider-
ing just the kinematics of the robot. To config-
ure the virtual model of our robot in MoveIt! its
setup assistant interface was used. The user can
choose algorithms for path planning given from
the OMPL (Open Motion Planning Library) and
also algorithms to solve the inverse kinematics
problem which is required to obtain the joints
configurations in executing a specific motion law
of the tool center point. Hence, there was a de-
scription of how to plan simple tasks with a GUI
and also how to program more complex task
with programming languages. In fact, a pick
a place task, programmed in Python language,
was planned to move a box using the model with
the gripper.
The virtual model of the robot was also launched
in a dynamic simulation environment which is
called Gazebo. Here, the multibody model re-
produces the real robot in a realistic way since
also its dynamic properties are considered. In
fact mass and inertia properties of each link
were added to the xacro file with also the trans-
missions related to each joint and a plugin was
added to allow the interaction between ROS and
Gazebo. There is also an explanation of how to
control the multibody model with ROS control
in which the type of controllers and the respec-
tive gains were defined and how to send joints
target positions by means of ROS topics. Fi-
nally, an integration of Gazebo in MoveIt! was
performed. In this way the user can plan a task
in MoveIt! and directly make the multibody
model execute it. Then, it is explained how to
get the torques which actuate each joint during
the execution of a planned movement and so it is
verified that these values respect the limit effort
defined in the xacro file of the robot model.

4. Conclusions
Looking to the list of requirements given in the
beginning, several points have been satisfied.
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A cost estimation considering self-sourcing com-
ponents was done to compare the designed robot
arm to the identified competitors on the market.
Our robot is cheaper than the the closest com-
petitor, still having a position feedback system,
bigger and stronger . Anyway at this stage our
robot lacks of a development environment that
would make easier and at high level the use of
the product. The end-effector and tools were not
designed so it’s not clear at this stage a specific
task for the robot.
The robot has smooth and rounded edges and
speed reducers are not exposed. Cable manage-
ment has been cured as much as possible con-
sidering that the speed reducers are not hollow
shaft. Cables are routed externally and pass
through the arm links to go to a main harness.
An enclosure for all the electronics was not ad-
dressed since the robot is at a very early pro-
totyping phase. Anyway, a 3D printed base for
electronics was designed to tidy and separated
high from low voltages.
Being fully 3D printable, speed reducers in-
cluded, potentially makes this robot accessible
to a very big community of Universities and
Makers because the BOM has very few parts and
production can be fully done locally. No propri-
etary hardware, electronic board or software was
used to control the robot.
The original design of the harmonic drive was
not capable of resisting to very high resistant
torque. We tested several combinations of parts
and for the most stressed joints J2 and J3 the
best one is using the circular spline with comple-
mentary HTD3M teeth profile and flexible spline
made of hard plastic and in particular PETG
plastic was used for its superior layer adhesion
strength compared to ABS. The circular spline
with complementary teeth profile also reduces
backlash; moreover, due to the shear stresses a
plastic having high inter-layer adhesion strength
such as PETG is needed. The wave generator
wheelbase was increased of 0.80mm to increase
the meshing resistance. The obtained modified
harmonic drive has big backlash. This caused to
abandon the idea of detecting half motor step.
Moreover, the quality of the 3D printed gearing
system was not high enough and a play between
gears mounted on the potentiometer shaft and
the gears on the links or harmonic drive cov-
ers exists, nullifying the desired resolution. For

these reasons, the embedded Arduino ADC was
used.
A low level control of the robot was achieved:
the user can directly send target joints posi-
tions on Arduino MEGA on the Arduino IDE.
The high level control was also addressed. The
Arduino firmware for interaction with ROS is
ready. The virtual model of the robot and tools
for motion planning are completed. The MoveIt!
GUI allows to plan simple motion and also more
complex tasks can be programmed by means of
coding languages. In particular, an example task
of pick and place to move a box is available.
For the moment an Hardware Interface which al-
low the interaction between ROS control and the
physical hardware is missing. Once available, it
will be possible to plan a task in MoveIt! but
also to make the real robot execute it.
The files to launch the multibody model in the
dynamic simulation environment (Gazebo) and
the packages to control it are prepared. Also the
integration of Gazebo into MoveIt! is performed
and allow to plan a task in MoveIt! and test it in
Gazebo before making the robot execute it. In
this way the user can understand if the robot is
able to perform the task and if some refinements
must be carried out.
A original look was given to the robot. Thanks
to 3D printing, customization of the robot aes-
thetic is very simple to adapt the arm to tastes
and blend its design to the one of other products.
The robot base can be mounted on any table
top. It can be possible to mount the arm on a
Automated Guided Vehicle for a mobile robot
application.
The flexible spline of the harmonic drive realized
with hard PETG plastic showed poor reliability,
being prone to fracture due to the high shear
stresses, especially when mounted in the most
stressed joint, the robot shoulder.
The modular design proven to be effective in
easing disassembling and assembling for main-
tenance and repair.
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OMPL Open Motion Planning Library

OS Operating System

PCB Printed Circuit Board

PETG PolyEthylene Terephthalate Glycol-modified

PID Proportional Integrative Derivative

PLA Polylactic Acid

RAMPS RepRap Arduino Mega Pololu Shield

ROS Robot Operating System

RRT Rapidly-Exploring Random Tree
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RViz ROS Visualization

SCARA Selective Compliance Assembly Robot Arm

SEA Series Elastic Actuator

SRDF Semantic Robot Description Format

STEM Science Technology Engineering Mathematics

STEP STandard for Exchange of Product model data

STL STereo Lithography

TPU Thermoplastic Poly Urethane

URDF Unified Robot Description Format

VAT Value Added Tax

XML Extensible Markup Language
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Abstract

In this thesis work an anthropomorphic 3D printed robotic arm is designed, a software
is generated for providing the virtual model of the robot, tools for motion planning are
used in order to design a pick and place task and a dynamic simulation environment is
prepared.

This product is addressed to non-industrial applications where limited payload and low
precision are sufficient. Some field of application can be the educational one for learning
robotics on the field, interactive display applications such as in museums and in shop
windows. Hence an affordable solution was designed. Moreover, this product can be
possibly brought into the "collaborative" robotics field, unlocking a deeper interaction
between man and machine remaining in the non-industrial field. In fact, real Cobots have
very high price tags, and this preclude their use in didactic field.

Some characteristics for the robot have been enumerated and a review of existing com-
mercial products and open source projects is done.

Pre-sizing of the robot is done considering former tentative and related work. The starting
point is the aesthetics of a previous design of a robotic arm, a strain wave gear (also known
as harmonic drive) speed reducer and already provided stepper motors from the Italian
firm R.T.A. Robot links length, maximum speed and acceleration are set in this phase.
A simplified 2D model of the arm was considered.

Afterwards the actual design of the robot is done considering a 3D printing-oriented mind-
set. This allowed to design features that cannot be realized with traditional manufacturing
processes. Some considerations on the available tools and 3D printing are done.

A preliminary theoretical assessment of the robot limits is done to have a starting point
for the actual testing phase.

To actuate the robot some electronic devices are studied. A micro-controller is required to
move the robot motors and hence programming of the micro-controller is needed. Arduino
MEGA is used as micro-controller and Arduino IDE coding development environment
is used. An initial low level control of the arm is assessed implementing a mock PID
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controller running on the Arduino MEGA itself. For the high level control with ROS the
Arduino firmware is developed.

Then, an overview of different programming approaches is performed so the reader is able
to understand why an offline approach, using ROS as framework to generate the software,
can be a good choice to perform the high level control. Consequently, the focus is on
the generation of the virtual model of the robot. Two models have been realized: one
which represents the real robot and the other with the addition of a gripper. Since an end
effector was not developed in the actual robot, an OnRobot gripper is added to the virtual
model to program with more completeness. Motion planning is done with the MoveIt!
package and, in particular, a task of pick and place is planned to move a box using the
model with the gripper. Furthermore, it is also described how to generate the files to
launch Gazebo (dynamic simulator) and how to control the multibody model using ROS
control. Also an integration of Gazebo into MoveIt! is performed which allow to plan
a movement in MoveIt! and directly make the multibody model execute it. So, a task
can be tested in the dynamic simulator to verify that it is feasible before making the real
robot execute it.

Finally, a critical evaluation of the proposed solution is done, together with the identifi-
cation of some possible future related work.

Keywords: 6 axes manipulator; harmonic drive; strain wave gear; additive manufac-
turing; ROS; MoveIt!; ROS control; Gazebo
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Sommario

In questa tesi è stato sviluppato un braccio robotico a sei assi che viene costruito mediante
stampa 3D a filamento. Inoltre, si espone come generare un software per fornire il modello
virtuale del manipolatore, come pianificare i movimenti in modo tale da progettare una
task di pick and place e come preparare un ambiente di simulazione dinamica.

Questo prodotto è destinato ad applicazioni non industrial dove sono sufficienti payload
limitati e bassa precisione. Alcuni contesti in cui questo robot può trovare utilizzo sono
l’istruzione, per poter insegnare ed apprendere la robotica sul campo, oppure in musei per
mostre interattive e nei negozi per esporre dinamicamente in vetrina dei prodotti. Perciò,
è stato necessario sviluppare una soluzione relativamente economica. Questo braccio
robotico può essere con alcuni accorgimenti convertito in un robot "collaborativo", per
una più profonda interazione tra l’operatore e la macchina, sempre rimanendo nel campo
non industriale, dove esistono i veri Cobot che però, dato l’elevato costo, precludono in
molti casi il loro utilizzo in ambiente didattico.

Le caratteristiche desiderabili per questo robot sono state delineante e una panoramica
su prodotti commerciali e progetti open source già esistenti è stata fatta per inquadrare
meglio il robot.

Il predimensionamento del robot è stato condotto tenendo in considerazione le precedenti
esperienze e progetti correlati. Il punto di partenza è l’estetica di un progetto precedente
di un robot a sei assi, un riduttore armonico e i motori passo-passo gentilmente forniti
dall’impresa italiana R.T.A. Le lunghezze dei bracci del robot, velocità e accelerazione
massime sono state definite. In questa fase è stato utilizzato un modello bidimensionale
semplificato del braccio.

Successivamente le parti del robot sono stare modellate al CAD tenendo un approccio
orientato alla stampa 3D. In questo modo sono state realizzate geometrie che le conven-
zionali tecniche di produzione non sono in grado di realizzare. Sono state fatte alcune
considerazioni sugli strumenti a disposizione e sulla stampa 3D in generale.

Una verifica teorica dei limiti del braccio robotico è stata fatta come punto di partenza
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per la fase sperimentale di test del robot.

L’azionamento del robot richiede l’utilizzo di alcuni componenti elettronici, tra cui un
microcontrollore che richiede di essere programmato; dunque, del codice è stato scritto
per permettere al microcontrollore di azionare le schede dei motori passo-passo. Il mi-
crocontrollore scelto è un Arduino MEGA che è stato programmato usando l’ambiente
di sviluppo Arduino IDE. Inizialmente, un controllo di basso livello è stato sviluppato
implementando una sorta di controllo di tipo PID. Successivamente, è stato sviluppato il
firmware per l’intereazione con ROS e da caricare su Arduino.

In seguito, è presente una panoramica dei vari approcci di programmazione. Il lettore è
così in grado di capire perchè un approccio offline, utilizzando ROS come struttura per
generare il software, può essere una buona scelta per eseguire il controllo ad alto livello.
Di conseguenza, viene generato il modello virtuale del robot. Sono stati realizzati due
modelli virtuali: uno rappresenta il robot fisico mentre l’altro ha in aggiunta un gripper.
Siccome un gripper non è stato sviluppato sul robot fisico, un gripper di OnRobot è stato
aggiunto al modello virtuale per programmare in modo più completo. La pianificazione
dei movimenti è realizzata con il pacchetto MoveIt!, in particolare una task di pick and
place viene pianificata per muovere una scatola utillizando il modello dotato di gripper.
Inoltre, viene descritto come generare i file per eseguire Gazebo (simulatore dinamo)
e come controllare il modello multibody usando ROS control. Viene effettuata anche
l’integrazione di Gazebo in MoveIt! che permette di pianificare movimenti in MoveIt! e
farli eseguire direttamente dal modello multibody. Così, una task può essere testata nel
simulatore dinamico per verificare che sia realizzabile prima di farla eseguire dal robot
fisico.

In conclusione, sono state fatte alcune considerazioni critiche sulla soluzione ottenuta.
Alcuni possibili aspetti da sviluppare in futuro sono stati individuati.

Parole chiave: braccio robotico a 6 assi; riduttore armonico; additive manufacturing;
ROS; MoveIt!; ROS control; Gazebo
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1| Introduction

Learning Robotics in school can be beneficial for innovation. Industry can develop faster if
the new generations start working with a new mindset. As presented in UniversalRobots
[20], in Italy there is a misalignment between the competencies requested by the Industry
and the ones given from University, especially concerning soft skills. It is acknowledged
that acquired hard skills of STEM disciplines are of very high level but there is a lack in
adaptability and creativity in Engineering and Computer Science. Robotics can be the
link connecting STEM competencies to Industry4.0 in general.

Hence, there is the need of a revolution in pedagogy to give substance to what is learned
in school, starting from children. It is needed to train children minds to computational
thinking. Introducing Robotics to the young allows to develop abilities in problem solv-
ing and in orientation in complex problems. For older students Robotics can lead to a
deeper comprehension of mathematics and programming, since a practical feedback is
given synchronously with the learning process.

Among all robotic platforms, 6 dof robotic arms are very versatile since they mimic a
human arm.

Industrial solutions are very application-oriented and the very high capital cost required
to buy them, the knowledge and skills one must have prevent the use of these products
in non-industrial applications. Indeed, industry-grade products are overkilled for educa-
tion and entertainment purposes. Hence, the need of a cheap, simple, and low precision
robot appears in the education field. One possible application of such a robotic arm is
introduction to robotics for high school and universities students with practical sessions
on programming movements and trajectories in both joints and work spaces. Moreover,
it can be used to practically explain the actual construction of a motor and speed reducer
apparatus. In fact, showing how the everyday things are made helps learning. Moreover,
challenging young minds to face problems that apparently are simple, but then show an
higher level of complexity then expected, helps to develop new solutions.

Another possible application is interactive display of goods in shops. The customer can
ask the robot to manipulate an item to show all sides without the risk of damaging it. The



2 1| Introduction

same concept can be applied to museums. It would be possible to interact at a distance
with items in their cases. In all these applications the payload is limited and there’s no
need of high precision and repeatability of the movements.

The aim of this work is to develop a low-cost 6 dof robotic arm that can be addressed to
teachers, researchers, students and whoever finds a spot for such a product. Such solution
must:

• be affordable; the robot must be made of cheap materials, must have easy-to-sort
components and electronics (boards, motors, drivers, sensors).

• be safe; the robot must be made of a non hazardous material, have completely
enclosed electronics, tidy cable management, smooth edges.

• be general purpose; the robot must be modular and allow the user to choose the
tool to mount on the end effector, and it has to be easy to change at any moment.

• be open source; the robot control logic must rely on open source software, thus free
to download, install and eventually modify, to be adapted to specific needs.

• allow young students to program simple movements of the robot exploiting a graph-
ical interface. Instead, students with some coding experience can program more
complex tasks.

• have a simulation environment. Students can program a movement and test it on
the virtual model, in this way they can understand if the task is feasible for the
robot and if there are some changes that can improve the quality of the movement.
A simulation environment is also useful because testing a task in virtual reality
before actually making the real robot execute it improve the safety.

• be aesthetically pleasant; since the robot would be a mainstream product, it would
compete with other commercial solutions, and customers also consider the look of
the product, especially for display applications open to public.

• have a universal grounding fixture system; the robot must be adaptable to any
workbench.

• be reliable and long lasting; nothing it’s more tedious than having a tool that is
often unavailable due to failures.

• be cheap and easy to repair; the robot must be made of functionally independent
parts, such that if one component fails, no perfectly working part has also to be
changed.
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Considered what is above, 3D printing is a feasible way to realize structural components
of a low-cost 6 dof robot. Consumer 3D printers are affordable and guarantee good level
of manufacturing quality.

Two aspects should be analyzed more in detail: safety and the open source world.

The world of “open source” requires as mentioned open access to software, but also free
access to schematics, drawings, bills of materials etc. This means that the user can source
components and build the structure on his/her own.

This option can live aside the conventional commercial strategy of manufacturing and
selling a finished product or “kits” to customers. There are many firms selling 3D printers
that have chosen the open source way. For example, PrusaPrinters1 sells 3D printers
in the form of already assembled products (Figure 1.1b) or as kits (Figure 1.1a), giving
to customers everything they will need to assemble it, while keeping the product open
source.

(a) Kit version (b) Assembled version

Figure 1.1: Prusa MK3S 3D printer

Thus, for those who own a 3D printer would be possible to print their own structural
parts and then procure by themselves electronics and motors. By the way, since the bill
of materials can be long, the manufacturer of the robotic arm can sell kits containing all
parts needed but the 3D printed ones. For those who don’t have a 3D printer at disposal
and don’t want to have one, kits containing everything can be the solution.

For what concerns safety, considering that no heavy-duty tasks would be ever performed
on such a product, collaborative tasks become very interesting. It would be possible to
interact with the robot while it is performing some task, for example during a university
practical robotics laboratory. Therefore, the robot will be design considering that humans

1https://www.prusaprinters.org/
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may interact with it, and so important aspects that need to be thought carefully are impact
detection and backdrivability.
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A brief description of the products named hereafter is done, mainly for taking inspiration
for the Robot that has been developed in this thesis work. Main characteristics are
collected to have an idea of the market requirements and to try to design a competitive
product.

Among “DIY” products there are:

• Arduino Tinkerkit Braccio Robot.

• Niryo One.

• Niryo Ned.

• BNC3D Moveo.

The closest competitor is the Niryo One, a 3D printed robotic arm with 6 dof.

2.1. Arduino Tinkerkit Braccio Robot

This product that can be purchased directly from Arduino eStore1, is very affordable for
both accademic institutions and students, costing2 only 199e+VAT for the kit without
an Arduino micro-controller board and 219e+VAT including also an original Arduino
board, which is the control unit of the device. It’s made of injection molding plastic
parts and small and cheap servomotors. It is really oriented to a didactic use to make
students approach to the robotics world, and it cannot be considered a product intended
for business purposes. Website overview description tells that some possible tasks may
be moving objects or attach a camera to the end effector.

1https://store.arduino.cc/tinkerkit-braccio-robot
2at the time of writing this document
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(a) Assembled robot arm (b) Presentation of box parts

Figure 2.1: Arduino Tinkerkit Braccio Robot

This product has a short BOM composed of structural parts, drives and electronics, and
general purpose hardware. Reporting the list on the website:

• Plastic Parts x 21

• Screws x 63

• Flat Washer x 16

• Hexagon Nut x 7

• Springs x 2

• Servo Motors: 2 x SR 311, 4 x SR 431

• Arduino compatible Shield x 1

• Power Supply 5V, 4A x 1

• Phillips Screwdriver x 1

• Spiral Cable Protection Wrap x 1

The Arduino compatible shield is open-source: schematics can be downloaded for free
in the Documentation section of the product page on the website. This board can be
stacked on an Arduino UNO board. The problem with this product is that electronics
is not contained inside the robot base and wires are neither routed inside the links nor
close to it. The power-supply (present on the shield board) is rated for 5V, so it is not
particularly hazardous, but wires are still exposed to damage.

The technical specifications are reported in the Table 2.1.
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Parameter Value

Weight 792g
Maximum Height 52cm

Maximum Extension 80cm
Load Capacity 150g at 32cm or 400g at minimum span

Table 2.1: Arduino Tinkerkit Braccio Robot specification

Speed specification are reported in a misleading notation, thus are not reported here, but
no comparison would be ever done with this very funny product!

2.2. Niryo One

This product can be purchased from the NiryoRobotics website3 and costs4 1599e+VAT
for the kit version and 1799e+VAT for an already assembled product. This price tag
becomes quite prohibitive for most students, but universities or small business enterprises
can still afford this device. This robotic arm is capable of more demanding tasks than the
Arduino Braccio. It is actuated by NEMA17 servo motors through belt and pulley speed
reducers. The control board is a Raspberry Pi3, thus a more powerful computing device
than an Arduino board, since it can host an Operating System (OS).

(a) Front view (b) Back panel and rear view

Figure 2.2: Niryo One

The structural parts are 3D printed in PLA plastic and there are also aluminum tubular
parts that compose the links. This solution is not very ideal, as said in the introduc-

3https://niryo.com/product/niryo-one/
4at the time of writing this document
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tion of this work, because makes harder for the customer to source by him/herself these
components.

Technical specifications are reported in the Table 2.2.

Parameter Value
Weight 3,2kg

Max Reach 440mm
Maximum payload 300g

Table 2.2: Niryo One specifications

No data about speed or acceleration is available on the specification sheet on the doc-
umentation section of the product page. The workspace is reported in the specification
sheet as a table with joints limits (Table 2.3).

Min Max
J1 −175deg +175deg
J2 −90deg +36.7deg
J3 −80deg +90deg
J4 −175deg +175deg
J5 −100deg +110deg
J6 −147.5deg +147.5deg

Table 2.3: Niryo One joints limits

CAD (SolidWorks), STEP and STL files of structural parts and the BOM are accessible for
free on the github repository5 of NiryoRobotics. The BOM includes also some proprietary
(not commercial) boards of which schematics are not provided.

The base is clamped to the workbench by a set of suction cups: this solution is indeed
simple, but not universal since a simple plywood tabletop won’t hold the vacuum of the
suction cups. The designers have also embedded a set of four slots for M5 screws for
intense use, providing more accuracy and repeatability since the base is more steadily
fixed on the workbench. Electronics is contained in the base and connectors are accessible
from the back or the product. Wires routing is well managed, with very short visible
sections.

Some parts of the transmission systems are exposed: in the base the pulley and the belt
controlling the second joint of the arm are exposed, and this can be dangerous for an
operator working very close to the robot.

5https://github.com/NiryoRobotics/niryo_one
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An interesting solution that is possible to find on this structure is a torsional spring placed
on the second joint of the arm that helps the motor to bear the weight of the links (Figure
2.36).

Figure 2.3: Assembling detail of the Niryo One shoulder

It’s important to notice that this spring is not placed in series with the actuator, thus
this solution doesn’t constitute a SEA joint. The NEMA17 stepper motor actuates the
shoulder link through the timing belt on a pulley providing the required reduction ratio,
therefore the rotation of the arm is directly related to the motor one. Thus, this solution
is not capable of detecting if an external action is blocking the link.

Looking to specifications and BOM, no trace of a position feedback system can be found.
Encoders or other methods for measuring position of the link are advertised. Anyway,
we reckon that the stepper motors used by NiryoRobotics are sensored using a magnetic
encoder. In Figure 2.4 it is possible to see a PCB board inserted in a 3D printed housing
and a magnet attached to the back end of the motor shaft.

6Source: Assembling video tutorial https://www.youtube.com/watch?v=3njgLE8F2XY&list=PLZ9-
LjwJrSVMAmexZBYtVxNB9Hmwtuq7H&index=4 time stamp 5:15
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Figure 2.4: Niryo One sensored stepper motor

2.3. Niryo Ned

This robotic arm from NiryoRobotics is presented as the successor of the Niryo One. As
the latter, Ned is a open-source 6 dof robotic arm that is addressed to Educational, Voca-
tional Training and Research fields. It is presented as new collaborative robot ready for
Industry 4.0 and given its open-source nature, the aim of the French firm is to democratize
robotics. Indeed, the price tag of 2999e+VAT is quite competitive with respect to other
industrial solutions. The increased cost compared with the One is due to many upgrades,
starting from the construction.

Niryo Ned structure is made of aluminum parts machined with CNC and the tubular
elements also found in the Niryo One. This time the aluminum tubes are fastened to the
the aluminum machined parts, providing indeed a more rigid structure. NiryoRobotics
states that the Ned is capable of fluid and smooth movements and repeatability of 0.5mm.

Looking carefully Figure 2.5, it is possible to find 3D printed elements realized with FDM
technology and PLA plastic. Some 3D printed parts are cover panels to hide the internal
metal structure, like the one close to the robot wrist or the one covering the pulley of the
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shoulder joint. Other plastic parts seem structural like the base flange and the housing
of the joints.

Actuation is achieved with NEMA stepper motors and reduction with belts and pulleys.

Specifications are reported in a very detailed way. In Table 2.4 are reported the most
relevant ones.

Parameter Value

Weight 6.5kg

Reach 440mm

Payload 300g

TCP max speed 1144mm/s

Repeatability 0.5mm

Supply voltage 12V

Table 2.4: Niryo Ned specifications

For the Ned speed limits for each joint are given and reported in Table 2.5.

Joint Limit

J1 150deg/s

J2 115deg/s

J3 140deg/s

J4 180deg/s

J5 180deg/s

J6 180deg/s

Table 2.5: Niryo Ned speed specifications

A graphical representation of the robot workspace is reported in Figure 2.6.

According to the product website, this robot is equipped with a magnetic collision detec-
tion sensor on motors (not specified on which axes). This feature brings this product real
close to the industrial collaborative solutions.

Programming of the robot can be done in several ways, all relying on a Raspberry Pi 4
board as computing unit. It’s supported the programming environment Niryo Studio and
PyNiryo developed by NiryoRobotics, but there is also the compatibility with ROS. For
a total control it is also possible to program it through straight C++ or Python code.
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Figure 2.5: Niryo Ned internal structure
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Figure 2.6: Niryo Ned Workspace
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2.4. BCN3D Moveo

This robotic arm has been developed by BCN3D Technologies Inc. in collaboration with
the Department d’Ensenyament from the Generalitat of Catalunya to achieve a low cost
robotic arm to be used in the educational field, to overcome the high price barrier of
industrial equipment.

This product cannot be purchased as BCN3D decided not to commercialize it, but being
fully open source it’s possible to have access to everything one may need to source com-
ponents and realize the robot structure through additive manufacture. Everything from
BOM to CAD files and even an assembly manual is available on the GitHub repository
of BCN3D7.

This robot is driven by NEMA17 or NEMA23 stepper motors and speed reduction is
achieved through belts and 3D printed pulleys, sometimes embedded in the robot struc-
ture. There is also listed one NEMA17 stepper motors including a planetary gearbox with
reduction ratio of 5:1, like the one in Figure 2.7.

Figure 2.7: NEMA17 stepper motor with planetary gear box

The control logic is based on a Marlin firmware (available on the GitHub repository) run
on an Arduino MEGA 2560 board. Moreover, a RAMPS V1.4 board is used to control all
the stepper motors. Thus, electronics is shared with the world of consumer 3D printers,
making those parts widely available and cheap. The control interface is the free software
Pronterface, again also used with 3D printers. An official support for ROS environment
is missing.

Some hardware components are also sourced from the 3D printers world, like for example
smooth rods, belts and pulleys. Fasteners are general purpose metric bolts and nuts.

7https://github.com/BCN3D/BCN3D-Moveo
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The gripper is very well built and BCN3D states that the design has been thought so that
it’s very easy to adapt the end effector to specific need.

Figure 2.8: BCN3D Moveo

Figure 2.9: BNC3D Moveo end effector close up
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2.5. Identified upgrades for our Robot

As it is possible to see in the before presented products, existing 3D printed robot arms
have a price tag in the range of 1500 ÷ 3000e. To be competitive and more accessible
to a wider public, our robot should fall in that price range and be more capable, or be
cheaper.

The described existing products have limited outreach of less than 500mm and very low
payload, less than 0.5kg even for the Niryo Ned with aluminum links. The ambition for
our robot is to bring the payload (to be intended as mass of gripper and carried object)
up to 1kg or above if possible. We reckon that this is an issue of actuators (motors
and speed reducer combination) rather than of structural resistance of the 3D printed
links, and thus more torque capable motors need to be selected. Brushless motors have
higher power density and so for the same output torque a more compact motor can be
used. For this reason and for control possibilities (Field Oriented Control FOC) these
drives would be very appealing but they are very expensive (more than 200e for small
and good quality motors), breaking the constraint of keeping low the cost of the robot.
NEMA17 stepper, even geared, are not powerful enough and thus bigger steppers should
be selected, like NEMA23 motors. It’s true that these motors are bigger and heavier
but are needed only for the most stressed joints and so as going up on the arm, small
NEMA17 can still be used. Since we propose ourselves to use harmonic drives for speed
reduction and torque multiplication, we can theoretically achieve higher torques at the
joint than all the described products that rely on belt and pulley transmissions. Another
hardware feature that is missing on all the reviewed products is a safety braking device
to lock the most stressed joints when the robot is not powered or when a power outage
occurs and the robot was performing a task. In this way damage to the robot itself and
to the surroundings can be avoided. Selected motors from R.T.A. for shoulder and elbow
joints are equipped with a braking device.

Arduino Thinkerkit Braccio is a very simple product that lacks of a position feedback
system to control in position the robot joints. In fact this is evident from its price tag.
We think that this feature is of paramount importance for learning control theory and
implement reliable pick and place applications, also just for displaying objects. The
closest competitor, the Niryo One has a magnetic position feedback system mounted on
the rear of each stepper motor. For the BNC3D Moveo a position feedback system was
not identified instead and therefore it can be controlled only in openloop. Therefore, a
position feedback system needs to be developed keeping in mind that the products must
be affordable, and hence a cheap but reliable solution is needed.
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To make a truly collaborative robot force sensors on the joints or only on the wrist are
needed. Anyways these sensors are very expensive and are precluded to keep the cost
limited. The Niryo Ned has collision sensors on its motors, but this product is in the
upper side of price range and it is not fully 3D printed, so it would not be correct to try
to catch with it.

We recognize that ROS has become a standard nowadays and so also our product need
an high level interaction system, that makes easier the usage by not skilled people.
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3.1. Preliminary Sizing

The usual way of sizing a mechanical device is first define the required characteristics,
namely loads acting on the structure, size the structure and then find the most appropriate
drives to actuate it.

This thesis work is part of several previous works. Hence, a route was already sketched.
The "order of magnitude" of the dimensions of the robot arm links were already known,
and motors characteristics were already clear.

Moreover, we had a collaboration with the Italian firm R.T.A. that provided some samples
of the motors on their catalog, thus we tried to use the motors already available to size
the robot arm.

The aim was to find the maximum lengths of the robot arm links that the motors could
operate. Links’ sizing was carried out statically and dynamically.

3.1.1. Schematization and Nomenclature

The robot that has been developed is a 6 dof (six rotational joints or 6R) robotic arm.
Joints have been uniquely named in J1, J2, J3, J4, J5, J6. Numeration starts at the base
of the robot and end at its wrist. Each joint is associated with a concentrated mass due
to the stepper motor and its speed reducer. Moments of inertia of the stepper motor and
speed reducer have been considered too.

Also links connecting the joints have been named. In particular, there are three links plus
one for the base column. From base to wrist links are named L0, L1, L2, L3. Each link
is associated with a mass and a moment of inertia.

For evaluation of masses and moments of inertia, the reader can refer to Section 3.1.4.
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3.1.2. Model of the robot arm

A simplified mathematical model was developed to obtain a first tentative idea of the
robot outreach and of the lengths of each link. This model only considered the robot
behavior in a plane. Hence, only joints J2, J3 and J5 are of interest. By the way, only
a 2R kinematic configuration (like a SCARA robot) was considered for simplicity and so
only dof associated to J2 and J3 are considered in the model, also because these are the
most stressed joints, having to lift the most of the weight of the arm with considerable
lever arm. The major difference with a SCARA robot is the direction of gravity. Only
links L1 and L2 are considered, while L3 is neglected. Link L3 anyway adds more lever
arm to weight and inertial forces, and this must be considered. Therefore transport of
moment was performed, placing the masses on link L3 at the end of link L2 and adding
a concentrated bending moment.

Transported bending moment has two components: bending moment of weight force and
bending moment due to inertial forces.

Weight force has direction of negative z and its lever arm changes as J2 and J3 rotates
as in Eq3.1.

Mtrans,weight =

(
mpayload +mJ6 +

1

2
mL3

)
L3 g cos (β + γ) (3.1)

Inertial forces have been decomposed in x and z directions. The points of interest are the
TCP P and the center of gravity G3 of link L3. To compute components of acceleration
of these points Eq.3.2 and Eq.3.3 are used.

[
ẍP

z̈P

]
= JP

[
β̈

γ̈

]
+ J̇P

[
β̇

γ̇

]
(3.2)

[
ẍG3

z̈G3

]
= JG3

[
β̈

γ̈

]
+ J̇G3

[
β̇

γ̇

]
(3.3)

J and J̇ are respectively the Jacobian matrix and its derivative. These matrices have the
same construction as the ones for the kinematics of the SCARA robot, the difference is
the lengths that are used. Hence, link L3 is always considered aligned with the link L2.

Transport moment of inertia forces is computed as in Eq.3.4.
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Mtrans,inertia = L3 (mpayload +mJ6)

[
ẍP

z̈P

]T [
sin (β + γ)

cos (β + γ)

]
+

+
L3

2
mL3

[
ẍG3

z̈G3

]T [
sin (β + γ)

cos (β + γ)

] (3.4)

The model was developed with MATLAB programming language.

3.1.3. Definition of links lengths

Knowing the maximum static holding torque of the motors (data available on the datasheet
of the motors), a static assessment was performed to compute the lengths L1, L2 and L3

of links, considering the most critical robot pose, clearly the one with fully extended
horizontal position. Iteratively, some (L1, L2, L3) sets were evaluated and the required
holding torque was computed. These sets are built using three discrete vectors for the
lengths L1, L2, L3. Initial and final value of the vectors were chosen considering former
works and modified with common sense if no result was found. Discretization step was
chosen to limit the computational effort. Having discrete values to be evaluated leads to
non optimal results in many computational applications, since one has no clue on what
happens between two values. By the way, as will be presented hereafter, this stage is just
pre-sizing of the links lengths and therefore we were not interested in finding an optimal
solution.

With a post processing operation on the obtained results, only combinations that had
a required torque smaller that the value provided by the manufacturer were filtered.
Moreover, the maximum possible outreach was computed using the previously described
filtered sets. All solutions presenting cumulated lengths of the links equal the maximum
outreach were extracted.

Among these possible solutions, the one with a most balanced set of lengths was chosen
in prevision of the geometry modeling phase with CAD software. Indeed, having links
with almost equal length facilitate standardization of geometries and features.

The lengths found were approximated down for the dynamic assessment, since adding
also inertial forces decreases the maximum links’ length.
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3.1.4. Estimation of Inertia

To perform a dynamical assessment is mandatory to know inertia. Since the robot was not
manufactured yet, an estimation of mass and moment of inertia was done considering the
material that will be used (ABS plastic density ρABS = 1.07 ·103kg/m3). One characteristic
of 3D printing is having hollow structures with some infill material. Thus, the volume of
the links is not fully related to their mass, but a multiplying coefficient c smaller than
one was used to correct the mass (Eq.3.5).

m = c · ρ V (3.5)

Since the actual geometry of the links was still unknown, the position of the center of
gravity was unknown too, thus it was placed in the middle of the link.

Links were simplified as simple cylinders and the moment of inertia of thick cylinders were
used.

The coefficient c was set empirically (considering as said that the final structure will be
partially hollow) but it cannot be set equal to the infill percentage that one plans to use.
c has to be higher that the infill percentage to consider that the geometry will be more
complicated than a simple cylinder. Anyway, c should not be set too high otherwise a
small arm is obtained, since inertia would be overestimated. A reasonable value is c = 0.45

so to have masses of the link in the correct range.

A similar reasoning can be done for the speed reducer. Also speed reducers were simplified
as thick cylinders and will be partially hollow. This time there will be metallic parts
(bearings, screws and nuts) that are significantly heavier than ABS plastic. Hence, for
estimation of their mass the corrective coefficient is set to c = 1.

The mathematical model requires the moment of inertia with respect to an axis passing
through the center of gravity of the object (since momentum balance is done considering
this point). Moment of inertia of links L1 and L2 is computed with Eq.3.6 since they are
rotating around an axis parallel with x-axis in Figure 3.1.

Jxx =
1

12
m

(
h2 + 3 · r2

)
(3.6)

Moment of inertia of speed reducers need to be estimated too. As said, rotation of joint
J5 is neglected for simplicity but its contribution of inertia must be considered. Joint J2
has no influence since it is placed in the center of rotation (shoulder) of the whole arm.
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Figure 3.1: Simplification of links geometry

For joints J3 and J5 the axis of rotation is parallel to z-axis in Figure 3.1, thus Eq.3.7
must be used.

Jzz =
1

2
mr2 (3.7)

Joints J4 and J6 are instead axial and thus its moment of inertia can still be computed
with Eq.3.6.

Moment of inertia of the speed reducers must be referred to the center of gravity of the
correct link. Thus, transport of moment of inertia is performed as in Eq.3.8. Motor
controlling J4 rotation was considered in the middle of link L2 and so no transport of
moment of inertia is needed.



JJ3 = Jzz +mJ3

(
L1

2

)2
J3 referred to link L1

JJ4 = Jxx J4 placed in the middle of L2

JJ5 = Jzz +mJ5

(
L2

2

)2
J5 referred to link L2

JL3 = Jxx +mL3

(
L2

2
+ L3

2

)2
L3 referred to link L2

JJ6 = Jxx +mJ6

(
L2

2
+ L3

)2
J6 referred to link L2

(3.8)

Since the actual application for the robot was not known, an indicative payload mass and
inertia were used. The payload mass represents the mass of the actual object or tool to
be carried and also the mass of the functional apparatus to perform the task (grippers,
adapter flanges etc.). A desirable payload for a robotic arm is around 1kg, therefore this
value was used for the rest of the assessment.

3.1.5. Dynamic assessment

The dynamic assessment was meant to verify the links lengths set after performing a
motion simulation as a stress test. To do so, maximum values of speed and acceleration
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of the robot arm needed to be set first. To set them it is required to establish the
maximum allowable speed and acceleration that the robot could have, considering the
dynamic behavior of the motors. The torque vs. speed curves on the manufacturer data-
sheets were used considering 24Vsupply. Since only a qualitative representation was given
(no polynomial function provided), the curves were approximated by straight lines (see
Figure 3.2 and Figure 3.3). This approximation is acceptable since in this phase of the
design we were interested only in indicative results.

(a) Datasheet curve (consider
24Vsupply)

(b) Approximation with straight lines

Figure 3.2: Torque vs. Speed characteristic of J2 motor

(a) Datasheet curve (consider
24Vsupply)

(b) Approximation with straight lines

Figure 3.3: Torque vs. Speed characteristic of J3 motor

The final set of lengths is:


L1 = 200mm

L2 = 200mm

L3 = 180mm
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The following numerical results are obtained with this set.

Indeed, these lengths are only indicative since they must comply with geometrical limi-
tation for a feasible and proper manufacturing. Therefore, was not necessary to exactly
match the constraints.

In fact, during the CAD modeling activity those dimensions were changed because of
physical constraints. In particular, the length of the link 2 suitable for housing the speed
reducer exceeded the limit computed. Therefore, since this limit length is no more satis-
fied, assessment of possible limits of the motor of joint J2 was required. This preliminary
analysis is discussed in Section 3.4.

Setting maximum angular acceleration

Firstly, the maximum acceleration admissible was iteratively computed by computing the
torques required by motors on joints J2 and J3 increasing in discrete steps the acceleration
value. The maximum allowable acceleration is the value that makes these torque values
matching the torque predicted by the torque-speed curve, imposing null speed. It is
possible to notice that the static holding torque provided on the datasheet is higher than
the torque at null speed on the torque curves. In Figure 3.4 it’s possible to see the result.

Figure 3.4: Maximum acceleration test

The meaning of this test is to establish how fast each joint can accelerate considering a
sudden departure from static condition, so with an infinitesimal speed, and thus it’s better
to use the torque with zero speed. The maximum value of acceleration found depends on
the set of the links lengths, but (L1, L2, L3) is fixed. Indeed, the true aim is to verify that
the allowable maximum acceleration for the robot arm is not bigger than the limit one for
the motor. This eventuality is indeed remote since stepper motors have extremely high
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maximum acceleration limit (practically infinite).

The robot arm is in the fully outstretched horizontal pose and accelerate upwards so that
the inertial forces are summed with the weight forces. Since the position of the arm is
constant in the time instant considered, the transport bending moment can be evaluated
with a simple formula, as the lever arm is the outreach of the robot and the direction of
acceleration is known (negative z -axis).

Once the maximum allowable value of acceleration for the arm is found, this characteristic
value must be set to be smaller for safety, but still guaranteeing a good level of perfor-
mance. The final value was set to 22.5deg/s2 This value is needed for the motion simulation
test described in the following.

Setting maximum angular speed

A limiting maximum value of angular speed was given by the control board of the motors
kindly provided by R.T.A. On the datasheet a maximum stepping frequency of 60kHzis
given but it looks unrealistic because would mean a motor speed of 54000deg/s. Moreover,
on the torque vs speed curves in Figure 3.5 and Figure 3.6 there are limit speeds for 24V
supply. The aim is to verify if the maximum allowable speed for the joints exceeded lower
between the limit of the driver board and the one of motors, in this case the NEMA23
motor limit. Considering the speed reducer transmission ratio, the limit value of the link’s
speed is 223deg/s, that is still too big. We considered as limit 90deg/s that is close to the
maximum values of some of the existing products analyzed in Chapter 2.

The test performed consists in computing the torque required by motors on joints J2 and
J3 when both links are rotating with constant speed, increasing at each iteration. Inertial
forces generated in this condition are only centrifugal, since acceleration is imposed null
for both joints. To convert a force aligned with the link’s axis into torque the arm must be
"L-shaped", so with links L1 and L2 orthogonal one with the other. Maximum allowable
speed must be computed for both J2 and J3 and thus two separate tests are required.

To establish the maximum speed of for J2 the most stressful pose for the arm is with link
L1 horizontal and link L2 vertical in downward position so that the centrifugal force sums
with the weight force (see Figure 3.5). In this pose the motor on J2 actively bears the
centrifugal load.
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(a) Robot pose (b) Test result

Figure 3.5: Maximum speed test for J2

For J3 instead the worst case is when it is rotating and it is bearing weight force. Therefore
the required torque is constant for any speed, but it’s still needed to verify if a speed value
(lower that the board limit) is limiting the torque deliverable. Since rotation introduced by
joint J5 rotation was not considered, it’s not possible to assess centrifugal force produced
when links L2 and L3 are orthogonal. In this configuration J3 has to resist the centrifugal
force of link L2 but since it is vertical for sure it can.

(a) Robot pose (b) Test result

Figure 3.6: Maximum speed test for J3

Anyway, for safety the link L3 was considered horizontal to also add the transport moment
of the weight force, in both tests for J2 and J3.

As it’s possible to see in Figure 3.5 and in Figure 3.6, the board limit speed can be
theoretically reached. For safety it is reduced to 60deg/s. This value is needed for the
motion simulation test described in the following.
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Motion simulation as stress test

Finally, a trajectory simulation was done to see the contributions of speed and acceler-
ation together. The trajectory used is a trapezoidal speed profile (piece-wise constant
acceleration) with synchronized motion between joints J2 and J3, as presented in Figure
3.7.

Figure 3.7: Motion laws

The range of the simulated motion considered was an indicative stress test representative
of the most stressful movement for the robot arm. The trajectory is a symmetric swing
from the fourth to the first quadrant because the maximum acceleration is reached with the
arm fully outstretched in horizontal position (maximum lever arm) and it is summed with
the the weight force, exactly when the speed is maximum and so the torque deliverable
by the motors is minimum, being the torque vs. speed curves monotonically decreasing.

The simulation aims to find the maximum allowable links lengths comparing the required
torque curves of motors of joints J2 and J3 with the deliverable torque curves (torque
characteristic of the motor evaluated at the speed of the trapezoidal profile and scaled
with the transmission ratio). If the required torque is lower than the deliverable torque (at
almost any speed) the test is passed. By trial-and-error procedure the maximum lengths
of the links were tweaked. It is clear that the final feasible links lengths depends on the
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maximum speed and acceleration that are set.

The trajectory simulation was the strictest test to be satisfied. Results are shown in
Figure 3.8.

Figure 3.8: Torque profiles
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3.2. Mechanical design

Modeling of parts was performed with the CAD software Autodesk Inventor Pro.

Advantages and drawbacks of the manufacturing technology used were clear, thus mod-
eling was performed consequently.

In particular, modeling for 3D printing needs to:

• consider the direction of the main load that the component has to withstand and
hence geometrical features must be realized considering the most appropriate print-
ing orientation.

• avoid too small features that can be unfeasible after slicing.

• avoid too steep overhangs in places where support material can be difficult to remove
or can cause quality issues.

• avoid supporting functional geometrical features as holes for screws and gear teeth.

• account for geometric deviations due to building direction (for example, circular
geometries printed perpendicularly to the build plate).

• account for higher tolerance than conventional subtractive manufacturing processes

The aesthetics of the robot was taken from a previous thesis work [25]. In particular, the
section where two links are joined resembling the Opera House Theater of Sidney was
kept since it constitutes the characteristic sign of the robot arm.

Eventually, some modifications to the typical geometry were needed since different con-
straints arose. Among the important we want to highlight:

• The characteristic section was tweaked because the links lengths changed. The
overall look was maintained but the angle of the side cuts was increased from 30deg

to 45deg otherwise the central section of the link 1 would have been too weak.

• The housing of the stepper motors was enlarged to contain the new and bigger drives.
In fact, the motors used for joints J2 and J3 have a braking device embedded that
makes them longer. The links were modeled with some "bulges" that were fillet to
make a seamless transition. Instead, the housing for the cover of the HD are smaller
and almost flush.
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3.2.1. Harmonic Drives

Speed reducers used in this robotic arm are a further re-design of some other HDs already
developed in previous thesis works ([18] and before [2]).

This kind of transmission is very used in robotics applications because they can achieve
high reduction ratio in compact space, allowing to use smaller and lighter motors in
the robot joints. Commercial (metal) HD have practically zero backlash and they can
transmit high torque with high reliability.

HDs are of a peculiar type because they use the deformation of a flexible element to
achieve speed reduction. This element is called flexible spline and it’s a sort of cylindrical
shallow cup (having thin walls) and with teeth on a lip on the outer surface. Deformation
is achieved with the wave generator that is an elliptical component (wave generator plug)
endowed with a thin-walled deformable ball bearing. The wave generator is placed inside
the flexible spline and the outer ring of the deformable ball bearing is everywhere in contact
with the flexible spline, so that the latter deforms elastically in an elliptical shape. The
ball bearing allows decoupling between the wave generator plug and the flexible spline,
thus no sliding motion can occur between parts, causing wear. The flexible spline teeth
mesh over the last major component that is called circular spline. The circular spline
has circular shape and it’s not deformable. The pitch diameter of the circular spline and
the major axis of the ellipse that is obtained deforming the pitch diameter of the flexible
spline are ideally equal. In this way the flexible spline meshes on the circular spline only
on two regions on opposite sides. Moreover, the circular spline has a different number of
teeth than the flexible spline. It is common to find two more teeth on the circular spline.
To achieve speed reduction, the input of the motion is the wave generator (connected to
the motor) and the output is the flexible spline. The base of the latter is usually rigid
enough to connect a shaft to extract the motion from the drive. The kinematic principle
exploits the difference in the number of teeth to achieve speed reduction. The formula
describing the transmission ratio is given in Eq.3.9 ([19], [21]).

reduction ratio =
flex spline teeth− circular spline teeth

flex spline teeth
(3.9)

As said, the number of teeth on the circular spline is bigger than the one of the flexible
spline, and hence the reduction ratio is computed with negative sign. For every full
rotation of the flexible spline (using two more teeth on the circular spline) the flexible
spline moves of only two teeth in the opposite direction (explanation of the negative sign
of the transmission in Eq.3.9).
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Straightforward implementations of HD have quite significative axial encumbrance (Figure
3.9 [21]) and in [18] the aim was to minimize this dimension.

Figure 3.9: Traditional HD layout. 1: input shaft. 2: wave generator. 3: flexible spline.
4: circular spline. 5: output shaft. 6: housing

In the cited work some changes to the typical elements of an harmonic drive were done.
The wave generator has two eccentric ball bearings that deform the flexible spline in the
elliptical shape. The flexible spline itself is not a single piece but the flexible element is
a closed synchronous rubber belt that is inserted in a rigid holder. The circular spline is
instead quite conventional. We were given the CAD files and starting from those part we
started studying new features to improve them. We changed type of hardware (screws
and nuts) used and modified how the hardware is used in the plastic parts. We modified
geometries to adapt the parts to the new type of motors used. We modified the manu-
facturing strategy to achieve the flexible spline due to an initial shortage of components.
We implemented the mechanical components for the position feedback system.

Hardware

The first thing was to change the hardware used so to make the BOM leaner, in particular
using only one type of screw but with different lengths and thread diameter. In this way
sourcing of parts is easier and assembling more straightforward.

The characteristics identified for the screws were:

• Having a small head. In particular, a cylindrical head was identified as the best
option.

• Being easily accessible. Since some components have small dimensions, the most
suitable tool for tightening the screws was identified as an Allen key. Thus screws
with an hexagonal socket head cap were chosen. In particular, ISO4762 (DIN912)
screws were chosen. Depending on the specific need, M3 and M4 screws were used.
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For the M3 screws the length ranges from 10mm to 25mm, while only M4x16 screws
were used. These screws are widely available on the mainstream commercial chan-
nels and on e-Stores. Moreover, fully compatible screws are sold without being
compliant with the before mentioned standards, thus lowering the cost for fasten-
ers.

Other hardware needed was essentially nuts. Two types of nuts were used: square nuts
and self-locking hexagonal nuts with nylon inserts (nyloc nuts). CAD models were assem-
bled using ISO7040 M3 and M4 self-locking nuts (but again on the market are available
compatible nuts with no specified standard) and DIN562 M3 square nuts. These nuts
are widely used in 3D printers and thus can be easily sorted. Two types of nuts were
required because as much fastening techniques were used, hence the most appropriate nut
was selected.

Nuts need to be inserted in the 3D printed parts to fasten parts together. To make
assembling easier we studied what type of nuts to use and how to insert them in the
parts. In Figure 3.101 it’s possible to see that there are two options to realize a captive
nut. From left to right, the first three nuts are inserted with the same orientations, while
the last is different.

The first method uses a cavity in the part and completely insert the nut in the plastic.
For this technique square nuts are more suitable since they are smaller with respect to
hexagonal ones, and therefore the bridge2 length is shorter, facilitating manufacturing
through 3D printing.

The other way uses a pocket of the same shape of the nut in the part and then press fit
the nut into it. This method can be used with both hexagonal and square nuts. With
this method, the nut is almost invisible.

Figure 3.10: Captive nut orientations

1Source: https://www.instructables.com/CAPTIVE-NUTS-AND-MORE-IN-3D-PRINTING/
2In 3D printing a bridge is an extrusion of plastic performed in mid air.
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Another way to mate 3D printed parts is to use threaded inserts similar to the ones used
for injection molding plastic parts. These inserts are quite convenient but are challenging
to be precisely place. In fact, they require a heat source as a soldering iron to let the
plastic around them melt and then by pressing the insert it’s possible to embed it in the
part. Ultrasound can be also used. Hence, this technique is not as straightforward as
pressing a nut and can be dangerous and damage the plastic part.

The selected screws and nuts were used in all other parts of the robot arm.

Base flange

The flange that is used to connect the stepper motor to the HD was changed too. The
flange was adapted to use square nuts for the holes securing the HD cover. Moreover,
since the robot developed in this thesis work uses also NEMA23 stepper motors, a flange
with the correct hole spacing was required. In Figure 3.11 are reported the flanges for
both NEMA17 and NEMA23 stepper motors.

Two possibilities were analyzed for the connection of the NEMA23 drives with the flange.
Those motors have through holes instead of threaded holes of NEMA17 ones. If for
NEMA17 motors is mandatory to assemble them as first part to the flange, NEMA23
motors can be mounted afterward. The first option was to use the same geometry of
NEMA17 flanges so inserting the screws in it, insert the motor and secure it with nuts.
The second option is to trap the nyloc nuts in the flange so that the motor can be secured
afterward when the HD is completely assembled. This second strategy was preferred since
it’s more practical because during assembly it’s not necessary to continuously moving the
heavy motors with the risk of damaging the brake.

Wave generator

A new wave generator for NEMA23 motors was needed. The differences with respect to
the NEMA17 version are:

• The diameter of the shaft. For NEMA17 it is 5mm while for NEMA23 is 6.35mm

that corresponds to 0.25inch. Therefore we had to modify the diameter of the central
through hole on the wave generator.

• The required mounting hub. The Pololu mounting hub used for NEMA23 motors
has six holes instead of four in the NEMA17 version, and the hole spacing is also
different.

To mount the small bearings on the extremities of the wave generator M3 screws were
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(a) NEMA17 base flange

(b) NEMA23 base flange

Figure 3.11: NEMA17 and NEMA23 base flanges

used. Anyway, the internal diameter of the bearings is 4mm. Thus, a sort of bushing
to bring form 4mm to 3mm the internal hole was modeled on the part. This feature is
very thin and so it will be just one layer thick once printed. Another solution can be use
countersunk M3 screws so that the conical portion of the screw head engages the inner
track of the bearing assuring axial alignment. To avoid adding another item on the BOM,
it was preferred to use a 3D printed bushing on the wave generator itself.

In Figure 3.12 the two wave generators are reported.

Flexible spline

In the original design the flexible spline was a closed synchronous rubber belt turned
inside out. In particular was chosen a belt with HTD 3M tooth profile with 70 teeth.
The circular spline has two more teeth and therefore the reduction ration is i = − 1

35
.

This strategy has several advantages, the main of which is that flexibility is together with
very high resistance due to the internal steel wires or polymer fiber reinforcements that
are oriented as the main load that is tangential stress induced by torque. Anyway, this
particular model was hard to sort on the available suppliers and expensive.
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(a) NEMA17 wave generator

(b) NEMA23 wave generator

Figure 3.12: NEMA17 and NEMA23 wave generators

Thus, we tried to purchase an open belt and turn it into a closed one by several attempts
that are reported in the following list.

• We simply cut at the correct length the belt and fitted it in the groove modeled
in the rigid part of the flexible spline. We tried to actuate the speed reducer but
it didn’t work. The main cause is that the junction point of the two extremities
of the belt made a cusp. We ascribed this to the steel wire inside the belt that
induce a spring behavior that makes it open in the weakest point, so where there is
a discontinuity in the reinforcement wire itself. This issue cannot be solved simply
using a tight fit between belt and groove because the non supported length must be
big to allow deformability, and so the cusp shows up anyway.

• We tried to close the piece of belt by melting the two extremities with a soldering
iron and fitted it in the rigid part but the cusp happened again and the reducer
didn’t work again.

• We tried to glue on the rubber a thin strip of spring steel to restore the continuity
of the steel wire behavior. Unfortunately, no glue was found to stick on the rubber.
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The only option left was to 3D print the flexible spline. One section must be rigid and
flexible in another. For what CAD modeling concerns, the required changes are:

• model the HTD tooth profile and the new flexible element in the CAD software.

• modify the interface between the output flange and rigid part of the flexible spline,
because a different printing orientation was required. The shaft on which the upper
61805 bearing is brought from the rigid part of the flexible spline to the output
flange (Figure 3.14).

In Section 3.3.4 further details are explained on the actual printing strategy. For now it’s
important to say that the model was split in two bodies as it’s possible to see in Figure
3.13.

Figure 3.13: Flexible spline

Figure 3.14: Modified output flange

Gears for rotation sensing and HD cover

Another modification to the original design was to add gear teeth on the cover of the
harmonic drive. Indeed, two version of the cover are needed.
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For non axial joints rotation sensing is performed with two gears one of which is a ring
fitted with interference on the HD cover. To avoid slip three grooves were modeled on
the gear ring engaging with three spines on the cover. To provide support to the ring a
ridge was modeled on the cover. Since it would interfere with the screws mating the cover
to the base flange, some cutouts were modeled to facilitate the tightening operation. In
Figure 3.15 the described solution is presented.

Several options for blocking axial movement were analyzed, but given the small thickness
of the HD cover no satisfying solution was found. Among the main solutions we thought
about:

• using three set screws to be screwed radially in gear ring and in the spines on the
cover. No space was available for a metal nut, thus the set screws would cut threads
in the plastic and this fact is not ideal and made us discard this solution.

• using some thin plastic part to be fitted on top the ring and in a groove on the cover,
but the thickness of the cover was too small and we discarded also this option.

For axial joints (namely J1 and J4) rotation sensing is performed with two gears one of
which is modeled as a feature on the arm’s links. Hence, the original cover of the HD can
be used.

Anyway, during the prototyping phase we noticed that the edge on the three lips to fasten
the cover on the base flange were prone to rupture. The cause is mainly not so strong
layer adhesion of ABS when 3D printed (see Section 3.3.2). Therefore a chamfer was
added to thicken the resistant section and proved a transition from the lips to the thin
section of the cover (see Figure 3.15a and Figure 3.16).

(a) HD cover for non axial joints (b) Gear ring

Figure 3.15: Gears for non axial joints
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Figure 3.16: HD cover for axial joints

Finally, a representation of the assembly of the harmonic drive for joint J1 (NEMA23
stepper motor) is reported in Figure 3.17. See Attachments for technical drawings.

Figure 3.17: Exploded view of a NEMA23 harmonic drive
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3.2.2. Selection of rotation transducers

For control of the robot assessment of the rotation sensing system was required.

Several possibility were found and discussed, among which rotary optical, magnetic en-
coders and drive encoders. The problems with this types of encoder are the high cost
(>100e each) and that is was difficult to find constructive solutions due to the available
sizes of the magnetic discs and required positioning of the parts. A total redesign of the
HD would have been necessary.

Figure 3.18: Rotary magnetic encoders

High precision potentiometers were the final choice because are the ones that most com-
ply with the low cost constraint, being relatively inexpensive. In particular, multi-turn
potentiometers were used. They are actuated by means of gearwheels. As seen, there are
two types of joint in the arm that require different approaches:

• joints J1 and J4 are axial and use an external solution. The gear on the potentiome-
ter meshes on gear teeth realized on the link.

• joints J2, J3, J5 use an internal solution. The gear on the potentiometer meshes on
gear teeth realized on the cover of the harmonic drive.

The gears were sized to have a transmission ratio τ < 5 . The reason of this limit value of
τ is that the gear on the transducer should be small for reasons of encumbrance but big
enough for feasible manufacturing through 3D printing. Gear sizing was performed with
the Spur Gear Design Accelerator tool of Autodesk Inventor.

Moreover, constraints on diameters of gearwheels are identified:

• the external diameter of the gearing embedded on the links must smaller than the
external diameter of the links, so that teeth are flush with the external surface of
the link.
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• the inner diameter of the gear ring to be mounted on the HD cover must be bigger
than the external diameter of the HD cover itself. Clearly, this is because otherwise
it would not be possible to fit the ring gear on the cover.

To satisfy these constraints we acted on the wheelbase value of the gear set. In Table 3.1
and Table 3.2 the main characteristics of the gears are reported.

Parameters Value
Gear Ratio 4.4118
Wheelbase 52mm

Module 1.125mm
Pressure angle 20deg

Pinion gear
Pitch diameter 19.125mm

Number of teeth 17
Ring gear

Pitch diameter 84.375mm
Number of teeth 75

Table 3.1: Gearing for non axial joints

Parameters Value
Gear Ratio 4.8824
Wheelbase 59mm

Module 1.125mm
Pressure angle 20deg

Pinion gear
Pitch diameter 19.125mm

Number of teeth 17
Embedded gear

Pitch diameter 93.375mm
Number of teeth 83

Table 3.2: Gearing for axial joints

The obtained gears have been modified adding features to allow mounting on the poten-
tiometer shaft. A through hole in the center of the gear and a collar were modeled. The
collar height depends on the the space available for mounting. The gear is planned to be
fastened on the potentiometer shaft with one M2 set screw, but friction fit is enough.

Consequently five-turns potentiometers where chosen because τ < 5 and each joint won’t
perform a complete rotation. Therefore there is a good safety margin to not engage the
mechanical endstop of the potetiometer. The chosen potentiometer is the model Bourns
3548.
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Figure 3.19: Bourns 3548 potentiometer

This solution requires Analog to Digital Converters (ADC) for which the number of bits
of the converter has to be sized. In Section 4.1.4 the sizing of the ADC is carried out.

3.2.3. HD modifications after testing

During the very early testing phases further minor modification but of paramount im-
portance for the proper working of the robot arm were needed. We experienced a quite
pronounced backlash and failing meshing of the flexible spline over the circular spline
inside the joint J2 with only the link L1 attached to it. In Section 7.1.2 further details
will be given.

A quite pronounced backlash in the HD showed up when testing the robot. A big contri-
bution to backlash was caused by the screws connecting the output flange to the flexible
spline that were loosening when the joints were actuated. Using some thread locker fluid
is necessary. Excluding loosen screws, we reckon that the play is caused by at least 2
factors that are hereafter reported in order of importance:

1. A non-perfect meshing between circular spline and flexible spline. If there is a
circumferential gap between the teeth on the flexible spline and the ones on the
circular spline, the output flange can rock back and forth. The rotation can be
transmitted to the 624 ball bearings on the wave generator even if the motor is locked
(with brakes or just by its holding torque). This driver is therefore responsible for
the backlash without any resistant torque applied to the HD.

2. Flexibility of the rubber material of the synchronous belt and of TPU material.
Even if the meshing between the teeth on the flexible spline and the ones on the
circular spline is ideal, rubber teeth can significantly deform when loaded. Thus,
this driver is activated when there is a resistant torque applied to the HD.

We tried to further reduce the amount of backlash by acting on the identified drivers. In
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the original design the circular spline has a teeth profile realized with a simple extruded
semicircular feature. This fact from one side is beneficial when the HD is not loaded
since guarantees enough play to allow the flexible element to deform reliably. On the
other hand, when the speed reducer is loaded the non-exact teeth profile on the circular
spline can facilitate the loss of the meshing when a critical threshold of resistant torque
is applied. And that is exactly what happened during testing.

If backlash can be neglected (at least in the very early stages of prototyping), a reliable
HD that allows for a decent range of motion to the most stressed joints is mandatory. We
tried some simple teaks to the original design to solve the issue.

The easiest possible solution is to increase the orthogonal force on the rigid spline by
increasing the wheelbase between the bearing on the wave generator. We modeled several
wave generators increasing progressively this distance. The principal concern on this
modification is that if the orthogonal force is too big the HD can completely block because
the friction force becomes too high. Moreover, by pressing too hard the teeth profile on
the flexible spline deform significantly being made of soft rubber, compromising meshing.
Therefore we used this modification only when necessary.

Another minor modification is to change the teeth profile on the circular spline. We
modeled a circular spline having a complementary HTD3M teeth profile to achieve a
more accurate meshing.

Finally, it is possible to slightly change the shape and proportions of the flexible spline.
We modified the shape of the 3D printable flexible spline and wave generator finding
inspiration on designs of commercial products. Looking to Figure 3.20 we can see that:

• Commercial flexible gears have a diameter to height ratio almost equal to 1 and the
toothed section is only where the wave generator is.

• Commercial wave generators are elliptical and touch the flexible gear all around its
perimeter.

Therefore, the 3D printable flexible spline was modified but changes were constrained
by the dimensions of the original design. The rigid section was reduced to have a taller
flexible section and teeth were modeled only in the last 6mm of it. The main motivation
for this is that we noticed that the deformation of the 3D printable flexible spline (made
as the belt was glued to it) was not covering the bearing of the wave generator. This
was caused by both a too circumferentially rigid and too short flexible section. When
the wave generator was inserted the section in TPU had the shape of a cone rather
than a cup. Clearly the deformation during meshing is more important to evaluate but
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Figure 3.20: Commercial harmonic drive parts

unless a transparent cover and circular spline are made, it’s not possible to see the actual
deformation. A FEM simulation can be done in future to assess this aspect. As presented
in [5] a mathematical model of the HD can be developed considering the actual teeth
profile of flexible spline and circular spline. Stresses and displacements can be simulated
to assess quantitatively the stress state of the flexible spline and understand the actual
resistance of the 3D printed parts.

As said previously, backlash is also due to the intrinsic characteristic of how the flexible
spline is made, that is with a rubber belt or with TPU if 3D printed. Backlash is therefore
amplified under load by the deformation of the soft polymer itself. Commercial flexible
gears are made of thin-walled metallic cylinders that are circumferentially elastic and
highly deformable but torsionally stiff. Our 3D printed flexible spline instead is also
torsionally deformable being made of TPU. Three possibilities arise considering what
discussed about the backlash.

1. Make the entire length of the thin section of the flexible spline in hard plastic to
mimic commercial products. This solution has the advantage to reduce backlash,
but the drawback is that deformability is reduced and therefore accurate tolerance
between parts must be guaranteed. Fatigue concerns arise because periodic shear
stress along the layers can cause premature failure of the part. In this regard ABS
plastic must not be used because has not the best layer adhesion among polymers
and thin parts tend to delaminate easily. Moreover, the drive will be noisier.

2. Make the entire length of the thin section of the flexible spline in TPU. This pos-
sibility is dual with the first one: tolerances can be bigger, longevity and silence of
the drive are higher but backlash under load is intrinsically bigger and therefore the
robot would be more unprecise.
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3. Make a compromise realizing the teeth in TPU and the left section of the flexible
spline in hard plastic. Again, ABS is not recommended as in point 1.

The main concern about this strategy is the layer adhesion strength. In Figure 3.21 the
proposed solution are reported.

(a) All hard plastic

(b) Half rigid plastic, half TPU

(c) All TPU

Figure 3.21: Modified flexible spline3.20
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We thought also about modifying the wave generator to better constrain the flexible
spline to assume an elliptical shape. The idea for this tweak is that if the flexible element
is less free when it’s not meshing, then the meshing will be more accurate. The wave
generator was modified adding other two 624 ball bearing perpendicularly to the original
ones that are in contact with the flexible spline but don’t causing meshing (Figure 3.22).
This solution is the simplest modification to the wave generator design that goes in the
direction of the actual designs. Anyway, due to lack of 624 ball bearing was not fully
tested and anyway it did not prove to be beneficial.

Figure 3.22: Wave generator with 4 bearings

The ultimate solution would be to design a 3D printable elliptical ball bearing like many
DIY solutions using for instance Air Soft balls as rotating elements. The principal critical
point is to realize a flexible outer ring like the one on actual elliptical bearings (Figure
3.23). Moreover, to avoid excessively fast wearing of the 3D printed bearing, plastic balls
should be used rather than metal or ceramic ones.
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Figure 3.23: 3D printable elliptical bearing
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3.2.4. Robot arm links

Base

The main requirement for the robot base is that it must be easily fastened on any work-
bench. A 3D printable structure has been modeled with a total of six through holes to be
used to mate the base, for instance, to a plywood sheet using M4 screws. For this reason a
circular base was chosen. To better distribute the pressure pockets for washers have been
modeled too. For a more reliable joint threaded inserts for wood were chosen. Another
possibility is to mount the robot on a base made of aluminum extrusions. To make the
base more rigid a set of six ribs were placed. Sizing of the base was performed with simple
static equilibrium. The base diameter was chosen to be printable on a common desktop
3D printer, and was set to 180mm. To fit the part on the build plate of the 3D printer
used the base was cut. With the robot in the fully horizontal outstretched position the
maximum bending moment was computed, using the simplified model described in Sec-
tion 3.1.2. The screw on the opposite side of the arm was verified to yielding, as if only
one screw was used to bear the load at a distance from the base axis. The resistance class
of the screw was known and so the yielding load could be derived. The core diameter was
derived knowing the thread diameter. The result of this simple assessment is that one
M4 screw is more than enough to hold the base when the maximum bending moment is
applied.

Fext =
Mbending

rscrew

Fyield = Y S π d2core
4

→ Fext ≪ Fyield

The most critical part of this assessment is that the load to be applied on the screw is
too much for the plastic material. Only an experimental evaluation can be done to verify
the structural resistance of the holes. As said before, using wide washers for sure help to
better distribute the axial force on the material. To account for this uncertainty many
perimeters should be used for printing the part.

To connect the HD of link J1 to the base 5 square nuts and M3 screws were used. Pockets
to insert the nuts have been modeled along the internal cavity of the part. To make
insertion of the nuts easier the base of the pocket has an horizontal surface to rest the
nut on and then push it in with a flat screw driver.

The motor for joint J1 is a NEMA23 stepper so a square cutout was modeled to fit the
motor flange.
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On the base the housing of the potentiometer used to measure the rotation of the joint
J1 was placed. To make assembling easier and maintenance more straightforward, the
transducer is inserted in a flange realized on the base and then tightened in place with
the hex nut provided. To assure angular positioning a mating structure was modeled for
the corresponding feature on the potentiometer. Underneath, a cavity has been modeled
to pass outside the motor and potentiometer cables.

In Figure 3.24 the part is presented.

Figure 3.24: Robot base
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Link 0

Link 0 is the column that has the shoulder of the robot arm (joint J2).

Inside Link 0 the joint J1 is housed, allowing rotation around the vertical axis. For
measuring the rotation of J1 an external potentiometer was used, since no space was
found to put it inside the link. For this reason Link 0 has gear teeth directly realized on
the structure itself and flush with the external surface.

Joint J1 is axial and coupling with the link is performed with a 3D printed coupler (Figure
3.25) screwed axially on the output flange of the HD and radially to the link. It contains 6
pockets for square nuts. To guarantee radial alignment a spine was modeled in the cavity
for J1 joint that slides in the corresponding groove in the coupler. To set the correct
height of the coupler a 4mm hole is used to temporarily insert an Allen key allowing to
tighten the radial screws.

Figure 3.25: Axial coupler

To connect the HD of joint J2 the same as exposed for the base was done. To guide
outside the motor’s wires a channel was modeled in the part.

The part is presented in Figure 3.26.

The most appropriate building direction (layering parallel to its axis) would require sup-
port material to be generated on the teeth. This fact is not ideal since the gear quality
could be compromised. Thus, Link 0 can be split in two parts (Figure 3.27) to make
manufacturing easier. Moreover, this allows the part to be printed on smaller machines.
The part with the J2 housing can be printed with the best layering direction to assure
strength, while the part with the gear embedded can be printed with layer perpendicular
to the link axis for better quality of the gear. The two parts are assembled using six M3
screws and square nuts.
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Figure 3.26: Link 0
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Figure 3.27: Split Link 0
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Link 1

Link 1 is the arm of the robot. It extends from the shoulder (joint J2) and the elbow
(joint J3) of the robot arm.

It is the biggest part of the robot. It can be realized as one piece only with a 3D printer
having large build volume. Due to limitations on the building volume the part was split
in two that are screwed together radially using six square nuts and M3 screws, similarly
to Figure 3.27.

To make the robot more aesthetically pleasant the two bulges to house the stepper motor
where placed on the same side so that if the robot is seen in the fully vertical outstretched
position there is alternation of big and small bulges. This configuration is beneficial also
for inertia distribution.

In this part there is the first non axial joint for which it’s possible to see how the poten-
tiometer mounting was modeled (Figure 3.28). A "U"-shaped flange is used to secure the
potentiometer in the modeled slot. To block rotation of the transducer a groove is cut on
the floor of the HD cover housing. To bring outside the potentiometer’s wires there is a
channel that exits from the part. The output flange of the HD for joint J2 is fastened to
the link with four M3 screws.

Figure 3.28: J2 potentiometer mounting system

To mount joint J3 there are again five slots for square nuts. The part is presented in
Figure 3.29.
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Figure 3.29: Assembled link 1
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Link 2

Link 2 is the forearm of the robot. It is divided in two parts. The lower one is connected
to the elbow (joint J3) of the robot arm and the upper part is free to rotate axially thanks
the joint J4.

Inside this link is contained the joint J4, therefore it should be long enough to house the
HD attached to the stepper motor. Another radial-to-axial coupler is used for joint J4.
Two possibilities for the geometrical shape of link L2 were analyzed. It could be straight
or "L"-shaped.

We were interested in having a spherical wrist, so the joint J4 must lay on the axis
connecting joints J2 and J5, hence it must be straight. Using an "L"-shaped link permits
to have a shorter link and hence to obtain a less limited range of motion but the spherical
wrist is lost. Hence, the indicative maximum length of link L2 of 200mm (computed in
the preliminary sizing phase) was increased to 270mm.

On the external surfaces of the two parts constituting the Link 2 there are feature to
house the external potentiometer for rotation sensing of joint J4. The upper part has
teeth embedded and flush with the surface. The lower part has a protrusion that is used
to insert the potentiometer and fasten it in place with the provided nut. The mounting
operation requires to insert the transducer in the railing structure on the lower part,
screwing the nut to secure it but leaving it able to move radially. Then the small gear is
mounted on potentiometer shaft and both can be moved radially to achieve the meshing
of the two gears. Finally the nut can be fully tightened and a spacer can be inserted to
assure positioning of the sensor. To assure that the potentiometer can’t rotate the spacer
and the support structure have a geometric feature that is mated with the corresponding
one on the transducer.

Link 3

Link 3 was not fully designed because a specific task for the arm was not defined. Func-
tionally it is identical to the lower part of link L2 and therefore it was used.

3.2.5. Wiring management

Wires exiting the links need to be grouped and routed towards the base. This task is
accomplished externally guiding the cables from one link to the previous one with arcs.

The wire cordon must not be pinched or obstacle the arm. Hence, together with the wires
a stiff element must be used to sustain the arc. At this scope a piece of filament for 3D
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printers can be used. This piece of filament is held in place by one 3D printed piece at
each end screwed on the links.

Finally, to protect the cable a nylon sleeve is wrapped around them, giving also a more
pleasant looking to the robot.

Since the prototype realized was a very early stage one, cable management was not fully
completed.

3.2.6. Modularity and Photo Gallery

The robot arm can be divided into modules that are independent one with the respect to
the other. In total, five modules can be identified:

1. Module n°1 is composed by the robot base and the HD+motor of joint J1. See
Attachments for technical drawing.

2. Module n°2 is composed by the Link 0 and the HD+motor of joint J2. It attaches to
the HD of J1 by means of the axial-to-radial coupler. See Attachments for technical
drawing.

3. Module n°3 is composed by the Link 1 and the HD+motor of joint J3. It attaches
to the HD of J2. See Attachments for technical drawing.

4. Module n°4 is composed by the two halves of Link 2, HD+motor of joint J4 and
HD+motor of joint J5. See Attachments for technical drawing.

5. Module n°5 is composed by the Link 3 and HD+motor of joint J6. Moreover, the
tool can be considered in this module.
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Figure 3.30: Module 1
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Figure 3.31: Module 2



3| Robot design 59

Figure 3.32: Module 3
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Figure 3.33: Module 4
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Figure 3.34: Real robot assembled
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3.3. Manufacturing with 3D printing

3.3.1. Machines and Slicer Software

The machine used for the construction of the prototype was the 3ntr A4v43. Actually,
there were two available machines, and this allowed to reduce the total printing time. In
particular, one machine was used to build the links that were very time consuming, while
the other was used for the HD part and other small pieces. A summary of the printer
characteristics is given in Table 3.3.

Parameter Value
Actual build volume 295× 200× 200mm3

Number of nozzles 3
Max nozzle temperature 450◦C

Max chamber temperature 90◦C
Mechanical precision 0.011mm

Nozzle diameter 0.4mm
Layer height (min/max) 0.1/0.6mm

Filament diameter 2.85mm

Table 3.3: 3ntr A4v4 characteristics

The multiple extruders functionality was exploited to print support material with a dif-
ferent polymer than the main part (namely SSU0), so to ease its removal. Given the
presented characteristics, this machine is capable of printing in practice any polymer. In
the manufacturer website are reported the following supported materials:

• ABS

• PETG

• ASA

• Elastomers

• Nylon

• Polycarbonate blends

The slicer software used was KISS (Keep It Simple Slicer) version 1.5 4 in the PRO version
that allows to manage multiple extruders. According to the website, this version of the
slicer was deprecated in August 4, 2016. Indeed, if compared with other slicer software

3https://3ntr.net/it/a4v4-stampante-3d
4https://www.kisslicer.com/
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(also addressed to consumers) functionalities of this software are quite basic and limited,
complying with the "philosophy of simplicity" that gives the name to the software, but
still showing that was developed many years ago. Among missing modern features there
are:

• Custom supports: there is no possibility of placing support blockers neither support
enforcers. The slicer chooses automatically where to place support material and
the only free parameters left to the user are support density and distance from the
object.

• Multi-material parts. It’s not possible to manufacture a single part made of different
materials, even if the machine has multiple extruders.

Due to agreements between the University and the seller, we could not choose another
software for slicing and we could only use the materials provided by the latter. We needed
to manufacture multi material parts and therefore another 3D printer was required. We
had a Prusa MK3S+ by PrusaPrinters for personal use that was used for printing small
parts and in particular the flexible spline of HD. Some characteristics are reporte in Table
3.4.

Parameter Value
Actual build volume 250× 210× 210mm3

Number of nozzles 1
Max nozzle temperature 300◦C

Heated chamber NO
Max bed temperature 120◦C

Nozzle diameter 0.4mm
Layer height (min/max) 0.05/0.35mm

Filament diameter 1.75mm

Table 3.4: Prusa MK3S+ characteristics

The slicer software used is PrusaSlicer. This software is a custom version of Slic3r devel-
oped by the manufacturer of the printer. It is a modern slicer with the most important
function for the scope of this thesis work that is multi-material parts. Even if the ma-
chine has just one extruder (being an affordable prosumer 3D printer) it can simulate
multiple extruders (virtual multi-extruder). The Prusa MK3S+ supports the G-code
command M600 to change filament at a certain height of the model but, as it is, it per-
forms just a color change considering the same material parameters. To use materials
with different printing parameters (mainly nozzle temperature and printing speed) vir-
tual multi-extruder must be set and use the M600 command as trigger for the virtual tool
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change at a certain height.

PrusaPrinters also sell a device that allows the change filament type automatically called
MMU2S5 that stands for Multi Material Unit, but was not at disposal. Actually, it wasn’t
needed since the material change occurs from a certain layer. The MMU is actually useful
for multicolor parts that have different colors in the same layer.

3.3.2. Material selection

The material chosen for the construction of all the structural parts of the robot is ABS.
This choice was taken due to the before mentioned agreements. Some typical character-
istics of ABS material are reported in Table 3.5 [22].

Parameter Value
Density 1.04− 1.12g/cm3

Young’s modulus 2.28GPa
Tensile strength 43MPa

Glass transition temperature 105◦C
Working temperature range from −20◦C to 80◦C

Table 3.5: ABS properties

As it is possible to see, ABS has quite good mechanical properties that can be exploited
to build strong and stiff components.

Indeed, to successfully print ABS some precautions must be taken, among which:

• A heated building plate is required to ensure that the printed part adhere to printing
surface and so to limit warping. One of the main challenges when printing with ABS
is to make the first layer adhere to the build plate because at is cools it tends to
contract and edges start to peel from the the build surface. See Figure 3.356

• ABS suffers layer delamination (cracking) caused by layer contraption during cool-
ing, thus a heated chamber is required. Moreover, blowing cold air over the layer
worsen this phenomenon.

• At high temperatures ABS starts decomposing into its constituents; butadiene is a
carcinogenic substance; the others are possible carcinogenic substances. Therefore,
an enclosed chamber with filtered air vents is mandatory for safety reasons.

5https://www.prusa3d.it/original-prusa-i3-multi-material-2-0/
6http://3dp-engineering.com/why-3d-prints-warp/
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Figure 3.35: Warping and delamination mechanism

The choice of ABS is very valid for the available machine in the laboratory because it has
all the characteristics to handle this material.

The robot arm has been designed to be printable also with small consumer 3D printers
that in general lack of a sealed enclosure. So, ABS can become difficult to be used and
hence it’s useful to do a brief review of some other materials. The most used material is
PLA (Poly Lactic Acid) because it is very easy to print (adheres well even on a non-heated
build plate and doesn’t suffer of layer delamination, at least for small pieces). However,
there are drawbacks that prevent the use of PLA as a structural material. Even if it has
high tensile strength and Young’s modulus (so rigidity) it has a very brittle behavior and
it is very hygroscopic, worsening its brittleness over time.

The real alternative to ABS for consumer 3D printers is PETG. Characteristics of this
material are reported in Table 3.6(data for PET material [23] 7).

Parameter Value
Density ∼ 1.27g/cm3

Young’s modulus 2.8− 3.1GPa
Tensile strength 55− 75MPa

Elastic limit 50− 150%
Impact strength (notched) 3.6kJ/m2

Table 3.6: PET characteristics

Looking to some manufacturer of filaments for 3D printing (for example the Prusa Prusa-
ment PETG filament8) is possible to see that PETG is very ductile (in some Charpy test
the specimens printed flat on the build plate didn’t even break) and has a higher tensile

7http://www.matweb.com/search/DataSheet.aspx?MatGUID=4de1c85bb946406a86c52b688e3810d0
8https://prusament.com/media/2020/01/PETG_TechSheet_ENG.pdf
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strength than ABS and ASA9.

PETG is almost as easy to print as PLA but it is very ductile. The major drawback for
printing is that this material is very sticky and a coated nozzle is recommended over the
common bronze ones. PETG has higher density than ABS, so this means that the final
parts will be heavier if the same settings are used.

3.3.3. Printing orientation

To guarantee the highest possible mechanical resistance, direction of deposition of the
layers is of paramount importance. Any 3D printed object is the weakest where two
layers touch, because layer adhesion is not perfect since molten material is deposited over
already solidified plastic. Therefore, along the layer deposition direction (z -axis for all
planar 3D printers) it’s expected the lowest associated tensile strength. Hence the main
load acting on the piece should not cause components of stress perpendicular to the layers
(Figure 3.3610). For many materials also shear stresses along the layer are critical.

Figure 3.36: Load direction and layers

The main load on the robot arm is bending moment, thus printing direction should not be
the same as the axis of the arm itself. The words "should not" are used instead of "must
not" because sometimes it is necessary to overcome this general indication for a feasible
manufacturing: the simplest example is to fit the part in the building volume. Another
occasion for which the general indication is not followed is if there are critical features for
which quality is more important.

9https://prusament.com/media/2018/09/ASA_DataSheet_ENG.pdf
10https://www.hubs.com/knowledge-base/how-design-parts-fdm-3d-printing/
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3.3.4. 3D printing the flexible spline

As said in Section 3.2.1 the flexible spline of the HD was modified. The part is divided in
two bodies to be printed with different material. The base of the flexible spline must be
rigid to be connected with the output flange, hence a rigid material such as ABS or PETG
must be used. The toothed profile of the flexible spline must be flexible to be deformed by
the wave generator and TPU plastic with Shore hardness 95A was chosen. This level of
hardness was selected because it can be easily sorted on the main eCommerce platforms
and it is the easiest elastic filament to be printed, requiring minimum precautions.

It can be said that printing the toothed profile with ABS or PETG could be feasible, but
thickness of the part should be minimum to guarantee deformability. Indeed, in this way
structural resistance is compromised because the deposition direction causes shear stress
along the layers and a short lifespan is expected if rigid polymers are used. Moreover,
printing thin parts in ABS is critical due to delamination. PETG has better layer adhesion
but the ideal material is TPU because it has even better layer adhesion.

3.3.5. Sacrificial features

For an easier manufacturing some features can be modeled in the CAD software that are
removed once the part is completed. Some examples are:

• sacrificial layers to avoid the use of support material. These layers of plastic can be
trimmed easily with a cutter or, if used for holes, can be removed with a small drill
bit.

• brim to extend the contact surface of small features. The brim can be manually
modeled to have full control on the width and where it is placed, since slicer software
put a brim everywhere around the perimeter of the part.

• model a custom support structure to be realized as normal structure.

In fact, some sacrificial features have been used to overcome limitations imposed by the
slicer software.

3.3.6. Solutions to tools limits

Since in the software there was no possibility to block generation of support material in
some regions, to avoid support in the small slots for square nuts the support distance from
the part was increased to half the width of the slot. This caused a reduction of quality
of some outer surfaces where the overhang required support, but it was not generated
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having altered the before mentioned distance.

In the base part the only required support was under the slot for the potentiometer (Figure
3.37). Hence it was modeled in CAD and printed with the same material as the part to
avoid support generation in the square nut slots. A thin sacrificial layer was modeled
under the "U"-shaped slot to facilitate bridging.

Figure 3.37: Base with CAD modeled support
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3.4. Theoretical limits of the robot arm

Still considering the simplified 2R model, an assessment of the robot limits was done to
find out a preliminary range of motion. A multibody simulation of the complete arm
would give more accurate results but for sake of simplicity a reduced and simplified model
is used.

Now it is possible to consider the actual mass of the links since the CAD geometry is
available. Indeed, it is possible to obtain a mass value closer to the final one slicing the
geometry of links L1 and L2 preparing the G-code and thus simulating the manufacturing
result. Those masses are reported in Table 3.7. For safety mass is still increased of 5% to
account for additional components as potentiometers, gearwheels and screws.

Link Mass
L1 620g
L2 510g
L3 250g

Table 3.7: Masses estimated with Slicer software

Link L3 is still considered as cylinder but its mass is reduced to be more similar to the
one of links L1 and L2. From the CAD software it is possible to obtain the value of the
components of the inertia tensor. Anyway, manufacturing through 3D printing affects
the internal structure of the workpiece (it is no more homogeneous) and thus the values
indicated by the CAD are no more useful. A similar reasoning can be done for the center
of gravity. Moments of inertia of cylinders are still considered, and the center of gravity
is set in the middle of the links. Harmonic drives inertial characteristics can also be set
with more accurate values. Mass can be directly measured once it is manufactured or
estimated with the slicing software. It’s important to notice that for the HDs bearings
are the components that most affect the mass and therefore moment of inertia. The latter
can be obtained from the CAD model. Anyway, to keep the model as simple as possible
inertia of cylinders is still considered.

As said, for modeling constraints the limit lengths computed were exceeded. In particular
the length of link 2 was significantly increased.

Limits of interest to be investigated are:

1. whether the arm can bear the fully outstretched horizontal.

2. minimum starting angle for a swing up in the 1st quadrant to reach 90deg. An angle
as close as possible to 0deg is desired to have the biggest possible workspace.
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3. whether it’s possible to move the arm in 4th quadrant and amplitude of a symmetric
swing from 4th to 1st quadrant. The biggest range of motion is [−90, 90]deg but due
to construction limitations it will be reduced to avoid self-collision between links L0
and L1.

4. angle in the first quadrant for which the motor on J2 can bear maximum speed and
acceleration at same time. An angle as close as possible to 0deg is desired.

Limit 1

The arm is simulated in the fully outstretched horizontal position and the torques required
to J2 and J3 motors are computed. Acceleration is set to the maximum value. Deliverable
torques are computed with the simplified datasheet torque vs. speed curves, considering
the null speed torque. Hence, a sudden departure from still is simulated.

Result of this test tells that the robot can withstand the loads. The required torques
compute for motors of joints J2 and J3 are respectively 0.5648Nm and 0.2924Nm while
the torque deliverable at zero speed are respectively 0.7Nm and 0.38Nm.

Limit 2

As said many times, the most critical condition for the arm is an upward movement in
the first quadrant since inertial loads sum up with gravity. If the arm is capable of doing
a 90deg swing starting from 0deg then the range of motion is maximum.

The feasible starting angle is searched iteratively using a vector that starts from 0deg.

Links L2 and L3 are kept horizontal to maximize the lever arm for inertial loads and weight
forces. The iterative computation ends when the computed torque profile is always smaller
or equal (so tangent as limit condition) to the deliverable torque curve (Figure 3.38). The
preliminary result is that the minimum angle searched is indeed 0deg.

Limit 3

Similarly to what is done for the second limit, the starting angle is searched iteratively us-
ing a vector starting from −90deg. Again, links L2 and L3 are kept horizontal to maximize
the lever arm for inertial loads and weight forces. The iterative computation ends when
the computed torque profile is always smaller or equal (so tangent as limit condition) to
the deliverable torque curve (Figure 3.39).

The preliminary result is that the minimum angle searched is indeed −90deg.
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Figure 3.38: 90deg swing starting from 0deg torque curves

Figure 3.39: Symmetric swing up form 4th to 1st quadrant

Limit 4

The robot arm is simulated with the link L1 angled while links L2 and L3 are kept
horizontal. Maximum speed and acceleration are set at the same time.

This limit becomes useful when programming a movement in the first quadrant since it
may be that maximum speed and acceleration happen in a angle smaller than this limit.
Indeed, this situation is very unlikely to happen because very high speed are reached only
with very wide required rotations.

The required torque to motor on joint J2 is computed for values of β angle from 0deg to
90deg. The angle for which the required torque equals the deliverable one at max speed
is found (Figure 3.40). This angle is indeed 0deg.
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Figure 3.40: Limit β angle

Summing up

Summarizing, preliminary assessments of the limits of the arm suggest that:

• the arm can accelerate with maximum acceleration upwards starting from a fully
outstretched horizontal pose.

• the robot can assume a pose with vertical arm and horizontal forearm starting from
fully outstretched horizontal pose.

• the arm can do a symmetric swing up between 4th and 1st quadrant in a significantly
wide range ([−90, 90]deg), assuming fully outstretched horizontal pose with high
speed.
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4.1. Electronics

4.1.1. Stepper driver description and characteristics

To actuate the stepper motors, stepper drivers were used. The stepper driver boards
used were given free of charge from R.T.A. They are BSD 02.V boards. According to the
manufacturer specsheet, the main characteristics are reported in Table 4.1. The pinout
of the board is reported in Figure 4.1.

Parameter Value
Nominal supply voltage range 24− 48V

Min/Max phase current 0.7− 2.2A
Max stepping frequency 60kHz (50% duty cycle wave)

Microstepping 400-800-1600-3200

Table 4.1: BSD 02.V characterisitics

Number of steps per revolution (microstepping) can be adjusted with dip switches on the
board.

These boards are controlled as any other stepper driver with two wires, one for the turning
direction (DIR pin), the other for the step generation (STEP pin), that are placed on
terminals 4 and 3 respectively. Given that the robot has 6 axes, to control all of them 12
wires are required.

Terminals from 12 to 15 are for motor phases wires. Phases have been arranged so that
a positive rotation angle requested makes the link rotating in counterclockwise direction.
This choice was done to comply with the convention of a right-hand reference system.
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Figure 4.1: BSD 02.V connections

4.1.2. Other electronics

A list of other electric and electronic items is reported:

• 24V power supply. It is used as the only power source for the robot. The voltage is
set by the motors. The nominal power must be higher than the total power required
by all the motors and every else electronic subsystem of the robot.

• 2 relays for the brakes on J2 and J3 motors. Since these motors have a brake to
hold position when there’s no power, two relays are needed to disengage the brake
at start. A module with at least two relays is needed. If more relays are present
they can be exploited for the tool on the end effector.

4.1.3. Selection of the microcontroller

A microcontroller is needed to generate the signals for the stepper driver boards. Re-
quirements for the microcontroller are:

• To have enough digital output pins to control all stepper drivers. As seen, it must
have at least 12 digital outputs. Moreover, two additional digital pins are needed
for the relays. The total is therefore 14 digital outputs required.

• To have an ADC converter built in or be compatible with external ADCs (com-
munication protocols must be compatible). This is for sensing the analog signals
from the potentiometers, one for each joint, therefore at least 6 analog inputs are
necessary.

• Be fast (have high clock speed) to guarantee good performance and response time.



4| Electronics and Control 75

A list of all the discussed microcontroller is presented.

• Arduino UNO. It is the simplest and cheapest (not genuine board) available option
and the microcontroller used for the preliminary testing. Some characteristics are
reported in Table 4.2.

Parameter Value

Microcontroller ATmega328P
Clock speed 16MHz

Operating voltage 5V

DC current per I/O pins 20mA

Digital input/output (of which PWM capable) 14 (6)

Analog input pins (ADC resolution) 6 (10bit)

Programming language C++
Flash memory 32KB

SRAM 2KB

EEPROM 1KB

Cost (original board) 20e + VAT

Table 4.2: Arduino UNO characteristics

Hence, an Arduino UNO board is capable to control up to 5 motors (because two
pins must be reserved to the relays) and read all 6 potentiometers signals. Pins 0
and 1 must not be used for generation of the signals for the stepper drivers because
are used for communication (for instance with I2C protocol) with the ADC board
or other slave peripherals. Arduino UNO is programmed with the Arduino IDE.
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• Arduino MEGA. An Arduino MEGA can be used as an upgraded alternative to the
UNO since it has more digital output pins. Some characteristics are reported in
Table 4.3.

Parameter Value

Microcontroller ATmega2560
Clock speed 16MHz

Operating voltage 5V

DC current per I/O pins 20mA

Digital input/output (of which PWM capable) 54 (15)

Analog input pins (ADC resolution) 16 (10bit)

Programming language C++
Flash memory 256KB

SRAM 8KB

EEPROM 4KB

Cost (original board) 35e + VAT

Table 4.3: Arduino MEGA characteristics

As one can see it is possible to control all the 6 stepper drivers and the relays.
Arduino MEGA is programmed with the Arduino IDE.
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• Raspberry Pi Pico. It’s the smallest and simplest board developed by the Raspberry
organization. Differently from their other products this board it’s a microcontroller
and not a minicomputer since it cannot run an operating system. Some character-
istics are reported in Table 4.4.

Parameter Value

Processor ARM Cortex-M0+ dual core
Clock speed 133MHz

Operating voltage 3.3V

DC current per I/O pins < 50mA

Digital input/output 23

Analog input pins 3

Programming language C++, MicroPython
Flash memory 2MB

SRAM 264KB

Cost (original board) 4e

Table 4.4: Raspberry Pi Pico characteristics

• Teensy 3.6. It’s one of the fastest microcontroller boards available on the market. It
was taken into consideration because it is the only one that can theoretically assure
real time operation of the robot. Some characteristics are reported in Table 4.5.

Parameter Value

Processor ARM Cortex-M4 dual core
Clock speed 180MHz

Operating voltage 3.3V

DC current per I/O pins < 50mA

Digital input/output (of which PWM capable) 60 (22)

Programming language C++
Flash memory 1024KB

SRAM 256KB

EEPROM 4KB

Cost (original board) 29.25$ + VAT

Table 4.5: Teensy 3.6 characteristics

This board is programmed with Arduino IDE with the Teensyduino add-on.



78 4| Electronics and Control

An Arduino UNO was chosen as the controller for the preliminary testing of stepper driver
boards and motors attached to the HD speed reducers. Then and Arduino MEGA was
used to have all the necessary outputs.

4.1.4. Analog to digital converter (ADC) sizing

The target is to measure the rotation of a joint as a consequence of the rotation of one
step of the stepper motor. The motors available are built with 200steps/rev corresponding
to 1.8deg/step. Harmonic drives have a reduction ratio i = 35, hence one step of the motor
corresponds to 1.8

35
≈ 0.05deg/step of rotation of the output flange of the HD. Multiplication

of rotation is instead achieved for the gear on the potentiometer (see Section 3.2.2).

The transducer can be supplied with 5V (Arduino boards) or 3.3V (Raspberry Pi Nano
boards, Teensy 3.6). We used an Arduino MEGA and hence the range of voltage for the
measure is 0 ÷ 5V. The sensitivity (V/deg) is 5V

5·360deg ≈ 2.78mV/deg, meaning that 1deg of
rotation of the potentiometer shaft corresponds to 2.78mV output of the potentiometer.
The ADC is sized for the smallest τ value obtained in Section 3.2.2 since it causes a smaller
resolution. In particular the resolution required is τ · 0.05deg/step · 2.78mV/deg ≈ 0.61mV/step

Resolution required for the ADC is given by Eq.4.1 where N is the number of bits.

∆V =
5V

2N
→ ∆V < 0.61mV ⇒ N ≥ 14 ⇒ ∆V = 0.305mV (4.1)

The number of bits required for the ADC is bigger than the one of Arduino boards (10bit).
Hence, an external ADC is needed having at least 14bit resolution. More precisely, six
ADCs modules or one module with at least 6 channels is needed.

As it is possible to see in Table 4.1, in reality the minimum number of steps per revolution
is 400. Hence, to see half a step of the motor the resolution required is half the one
computed few lines above, precisely 0.305mV/step. This is the same value computed in
Eq.4.1. Therefore more than 14bit are required.

Searching on one of the most famous eCommerce, ADS1115 ADC where found (Figure
4.2). This board has 4 channels and a resolution of 16bitthat corresponds to ∆V =
5V
216

= 0.0076mV that is more than enough to measure even half a step of the motor. Two
ADS1115 boards are required to measure rotation of all six joints. The spare two channels
can be used for other sensors on the end effector.
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Figure 4.2: ADS1115

4.1.5. Potentiometer wiring

Looking to Bourns data-sheet for the potenetiometer code 3548 Single Gang, Bushing
Mount, pinout is as in Figure 4.3.

Since we set counterclockwise rotation direction positive for the links, potentiometer shaft
rotates in clockwise direction being actuated by a gear system. Therefore potentiometer
pins must be connected to Arduino as in Table 4.6.

Figure 4.3: Potentiometer pinout

Potentiometer Pins Function Arduino Pins

1 POWER GND
2 SIGNAL Analog Pin (A)
3 POWER 5V

Table 4.6: Potentiometer wiring

4.2. Control

4.2.1. Strategies for actuating the stepper motors

To actuate a stepper motor driven by a stepper driver board two pins are required. One
pin sets the direction of rotation and it is kept at high (5V) or low (0V) state. To perform
a step a square wave signal must be provided to the other pin. The step is performed
when the signal goes from high to low. Rotation speed of the motor is determined by the
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frequency (and so the period) of the square wave. It’s possible to generate a square signal
with the very simple Arduino code in Listing 4.1.

1 void loop() {

2 digitalWrite(myPin, HIGH);

3 delay(some_milliseconds);

4 digitalWrite(myPin, LOW);

5 delay(some_milliseconds);

6 }

Listings 4.1: Interrupting square wave

The delay() functions completely block the microcontroller so no operation can be
performed while the microcontroller waits. This is therefore a blocking strategy.

Another way, slightly more complex, is to use a non-blocking Arduino code as in Listing
4.2.

1 unsigned long previousMicros = 0; //[us]

2 void loop() {

3 unsigned long currentMicros = micros();

4 if((unsigned long)(currentMicros - previousMicros) >=

wave_period){

5 digitalWrite(myPin, !digitalRead(myPin));

6 previousMicros = currentMicros;

7 }

8 }

Listings 4.2: Non interrupting square wave

Summarizing, the microcontroller keeps track of time with the micros() function and
performs the action in the if() statement only when the elapsed time is greater than
the set period. By keeping track of the elapsed time in the variable previuousMicros
it is possible to generate a square wave. The state of the pin (high or low) is changed
reading its current state using !digitalRead(myPin).

4.2.2. Preliminary testings

Synchronized movement

The first thing we wanted to achieve is a synchronized movement of all the robot joints.
Preliminary actuation of the robot motors is done moving them synchronously with a
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constant acceleration motion law (triangular or trapezoidal speed profile). As said, an
Arduino UNO microcontroller was used for the preliminary testing then we switched to
an Arduino MEGA. Already implemented libraries can be exploited to make easier and
faster the task. On the library manager for Arduino a useful library was found1. This
library is called StepperDriver and was implemented by Laurentiu Badea.

A BasicStepperDriver object can be defined that is associated with the pins for
direction and step on the Arduino board. Moreover, it requires the number of steps per
revolution of the motor. The defined object must be "activated" in the setup() loop
that is run only once. The available methods (= functions) allow to easily set rotation
angle and speed. Listing 4.3 shows what just described with words.

1 // Include library

2 #include "BasicStepperDriver.h"

3 // Define pins on Arduino board

4 const int pinDir= 2;

5 const int pinStep = 3;

6 // Define step per revolution

7 const int step_per_rev = 200;

8 // Define stepper driver object

9 BasicStepperDriver myStepper(step_per_rev, pinDir, pinStep);

10 void setup(){

11 myStepper.begin();

12 }

13 void loop(){

14 // Set speed in RPM

15 myStepper.setRPM(mySpeed);

16 // Request rotation of the specified angle

17 myStepper.rotate(myAngle);

18 }

Listings 4.3: Definition of a stepper driver object

To control multiple stepper driver at a time it’s possible to define a MultiDriver

object or a SyncDriver object that collect all the BasicStepperDriver objects of
the system to actuate. The difference between a MultiDriver and a SyncDriver

object is that with the first each motor moves independently, while for the latter motors
move synchronously. Only synchronous movement of all the joints is of interest, hence

1https://www.arduino.cc/reference/en/libraries/stepperdriver/
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a SyncDriver object is defined. An example of definition of two stepper driver to be
controlled synchronously is given in Listing 4.4.

1 // Include libraries

2 #include "BasicStepperDriver.h"

3 #include "SyncDriver.h"

4 // Define pins on Arduino board

5 const int pinDir1 = 2;

6 const int pinStep1 = 3;

7 const int pinDir2 = 4;

8 const int pinStep2 = 5;

9 // Define step per revolution

10 const int step_per_rev = 200;

11 // Define stepper driver objects

12 BasicStepperDriver myStepper1(step_per_rev, pinDir1, pinStep1);

13 BasicStepperDriver myStepper2(step_per_rev, pinDir2, pinStep2);

14 // Define the synchronized controller

15 SyncDriver myController(myStepper1, myStepper2);

16 void setup(){

17 myStepper1.begin();

18 myStepper2.begin();

19 }

20 void loop()

21 {

22 // Rotate the two motors synchronously

23 myController.rotate(myAngle1, myAngle2);

24 }

Listings 4.4: Definition of two synchronized stepper drivers

This library allows to control up to 3 stepper motors, thus the library needed to be
modified to bring the number of controllable motor up to 6. This task was easy and
simply performed opening the source C++ code and respective header .h files in an editor
like Code::Blocks. With a find-and-replace operation in each defined method the number
of defined stepper driver objects, angles, speeds and other quantities was brought to 6. A
simple script was written in which some rotation angles were set together with speeds.

The main concern with this library is that is uses a blocking strategy to generate the
square wave signal for the step pin. Thus, while the motors are rotating it’s not possible
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to have the microcontroller performing other tasks. Anyway both Arduino UNO and
MEGA succeeded in moving all six motors.

Another possibility of the used library is to set the type of speed profile for the stepper
motor. It is possible to choose between constant speed profile and linear speed profile. In
Listing 4.5 is reported the method to set the speed profile.

1 // Include library

2 #include "BasicStepperDriver.h"

3 // Define pins on Arduino board

4 const int pinDir= 2;

5 const int pinStep = 3;

6 // Define step per revolution

7 const int step_per_rev = 200;

8 const int accel = 1000; // [step/s^2]

9 const int decel = 1000; // [step/s^2]

10 // Define speed profile type

11 #define mode BasicStepperDriver::LINEAR_SPEED

12 // OR

13 // #define mode BasicStepperDriver::CONSTANT_SPEED

14 // Define stepper driver object

15 BasicStepperDriver myStepper(step_per_rev, pinDir, pinStep);

16 void setup(){

17 myStepper.begin();

18 myStepper.setSpeedProfile(mode, accel, decel);

19 }

20 void loop(){

21 // Set speed in RPM

22 MyStepper.setRPM(mySpeed);

23 // Request rotation of the specified angle

24 MyStepper.rotate(myAngle);

25 }

Listings 4.5: Definition of speed profile

It’s important to say that one has to provide acceleration as steps/s2. To convert angular
acceleration into the required units of measure one has to know how many steps per
revolution are set. The minimum number of steps per revolution that can be set on the
stepper driver boards is 400set/rev. Therefore:
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step

s2
=

rad

s2
× 180deg

πrad
× 1rev

360deg
× 400step

1rev

Constant speed profile would correspond to a rectangular speed profile that translates
in infinite acceleration. In reality constant speed means that the stepper motor is ac-
celerating with its maximum acceleration. The library considers constant speed as de-
fault and it is not required to define acceleration and deceleration values. According to
RTA datasheets, NEMA17 stepper motors have a maximum acceleration of 69000rad/s2 =
3953408deg/s2 while for NEMA23 stepper motors 38500rad/s2 = 2205887deg/s2, that is prac-
tically infinite and the speed rising phase can be considered vertical. Linear speed profile
corresponds to triangular or trapezoidal speed profile. The acceleration value for the links
was set to 22.5deg/s2 that translates to:

22.5
deg

s2
× 400step

360deg
× 35 = 875

step

s2

The next step is to be sure that the requested rotation angle and speed are actually
performed.

Rotation angle assessment

A preliminary assessment of the accuracy of the rotation angle of the HD was performed.
We measured the rotation angle in open loop of an HD with no load. “Open loop”
means that one angle is requested to the HD and no feedback is produced by means of a
potentiometer. The experimental setup is very simple: on the output flange of the HD a
3D printed indicator was mounted exploiting the holes for the robot links and a sheet of
paper with a goniometer printed on it was used to read angle actually performed by the
drive. Uncertainty on the read numbers is of ±1deg since the goniometer has 1deg steps
and the indicator has an amplitude of almost 1deg.

The code used is reported in Appendix A.1. It is possible to see that the test was
automated and that the HD is required to go back to the initial position after each angle
to be tested. In this way errors of each run are accumulated. A total of 8 repetitions of
the test were done, 4 using a constant speed profile (maximum acceleration of the stepper
motor) and 4 with linear speed profile setting the maximum acceleration for the robot
links (875step/s2). Results obtained with the two types of speed profiles were averaged.

In Figure 4.4 is reported the trend of the averaged tests together with the ideal behavior.
As it possible to see the accuracy is quite good since the error bars are very close to
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the ideal trend. An indication on repeatability is given comparing the error and the
cumulated one: if the two are similar (laying on the first quadrant bisector) means that
a new measure is affected by previous errors. As it is possible to see in Figure 4.5 this is
not the case being the points really scattered. Anyway, since a position feedback system
is designed this is not a big problem.

(a) Constant speed averaged tests (b) Linear speed averaged tests

Figure 4.4: Rotation angle assessment trends

(a) Constant speed tests (b) Linear speed tests

Figure 4.5: Error vs. Cumulated error

Rotation speed assessment

We measured the rotation speed of the joint J1 for different requested speeds by measuring
the time required to perform one full revolution. We marked the initial position on the
base and on Link 0 of the robot and using a stopwatch the time was measured. Since
the operation was manual, starting and stopping of the stopwatch are affected by the
reaction time of the person. Therefore, the reaction time of the writer was estimated
using some online tools and resulted to be on average 0.3068s. The measured times were
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then corrected by subtracting two times such reaction time. In Table 4.7 results of the
test are reported. Considered the very imprecise method used, we can state that the used
library is quite reliable in terms of speed. The code used is reported in Appendix A.2.

Requested speed Measured time Corrected time Measured speed

1RPM 60, 55s 59.9364s 1.0011RPM

2RPM 30.26s 29.6464s 2.0239RPM

4RPM 15.54s 14.9264s 4.0197RPM

5RPM 12.42s 11.8064s 5.0820RPM

8RPM 7.96s 7.3464s 8.1673RPM

9RPM 7.17s 6.5564s 9.1514RPM

10RPM 6.53s 5.9164s 10.1413RPM

Table 4.7: Speed assessment results
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4.2.3. Rotation sensing

Arduino ADC

A first tentative for measuring the rotation of the joints was done using the internal ADC
of the Arduino MEGA used for actuating the motors. Analog to Digital conversion is
performed by the Analog Pins on the Arduino boards, identified with a capital A in front
of the pin number. The function to perform an analog acquisition is analogRead() that
receives as input the analog pin number on which perform the measure. The Arduino ADC
has 10bit resolution and returns a number in the range 0-1024. It’s important to define all
the constants for the conversion of the measure in the desired units of measure. The most
important are the resolution (in V/bit) of the ADC and sensitivity of the potentiometer
(in V/deg). To obtain the measure of rotation of the link rather than the potentiometer
shaft one, the transmission ratio of the gearing system must be used, contained in the
tau_gear constant. Since the target is to see 0V in the position 0deg and considered
that the range of voltage for the measure is 0÷ 5V, 2.5V should be subtracted from the
converted voltage measure to have values in range −2.5÷ 2.5V. In this way the angular
position will be as desired.

Anyway, during the assembly task, the 0deg position can change due to misalignment of
the gears. Therefore it’s required a setup procedure every time a link is mounted. The
procedure is reported in the following list and the Arduino code in Listing 4.6. Results
are displayed on the serial monitor.

1. Rotate the potentiometer shaft till 2.5V is displayed on the serial monitor.

2. Mount the potentiometer in its housing and insert the 3D printed gear, trying not
to rotate its shaft. If necessary adjust the shaft rotation to have 2.5V displayed.

3. Mount the link on the joint aligning the reference marks. The voltage displayed will
change slightly because the gears will align themselves. For the potentiometers on
Joint 1 and 4 meshing of the gears is performed manually (since they are pushed
radially) but what said still holds.

4. Annotate the new voltage displayed and set the home_volt constant to that value.

5. Annotate the value displayed of current_position variable and set the
home_offset constant to this value.
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1 // Setting PINs

2 // A0 -> J1 potentiometer

3 // A1 -> J2 potentiometer

4 // A2 -> J3 potentiometer

5 // A3 -> J4 potentiometer

6 // A4 -> J5 potentiometer

7 const int potPin = A4;

8 // Setting constants

9 const int tau = 35; // HD reduction ratio

10 const float tau_gear_non_axial = 75/17; // Gear reduction ratio

11 double resolution = 5/pow(2,10); //[V/bit]

12 double sensitivity = 360; //[deg/V]

13 // Potentiometer setup constants

14 double home_volt = 0; //[V]

15 double home_offset = 0; //[deg]

16
17 void setup() {

18 // Setup Serial comunication

19 Serial.begin(9600);

20 }

21
22 void loop() {

23 // Perform acquisition

24 double current_reading = analogRead(potPin); // in range [0

1023]

25 // Do conversion

26 double volt = current_reading * resolution - home_volt;

27 double current_position = volt * sensitivity /

tau_gear_non_axial - home_offset; //[deg]

28 // Display results

29 Serial.print(volt); Serial.print(" V"); Serial.print(" ");

30 Serial.print(current_position); Serial.println(" deg");

31 delay(100);

32 }

Listings 4.6: Potentiometer setup procedure
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ADS1115 ADC

To read values with the external ADC board ADS1115 a different approach is needed. The
A/D conversion is performed by the board and data is sent through I2C communication
protocol. Therefore, SDA e SCL dedicated pins on the Arduino MEGA board must be
used. We referred to the online guide2 by Adafruit for wiring and knowledge. Adafruit
provides also an Arduino library that makes the whole process easier.

4.2.4. PID control

As first tentative we wanted to control the complete arm only using the Arduino MEGA
micro-controller.

We thought about implementing a PID controller running on the Arduino. The target
is to control in position all the joints, reaching a set of constant angular positions, one
for each axis. The quantity that is fed back is clearly the angular position of each link
measured by means of the potentiometers. The control action computed as Eq.4.2 is then
translated in the angle of rotation requested to each stepper motor.

u(t) = Kpe(t) +Kd
de

dt
+Ki

∫ t

0

e(τ) dτ (4.2)

A discrete time PID algorithm is needed because we are dealing with a digital device.
To implement a discrete time PID controller a loop executed with constant frequency is
required. It is relatively simple to implement a clock with the Arduino using the same
non blocking algorithm presented in Listing 4.2 for the square wave generation.

Anyway, a problem is immediately evident: the library used to control and synchronize
the stepper drivers doesn’t allow to realize the clock because it blocks the Arduino. In
fact, the instruction to perform a rotation (myStepper.rotate(myAngle)) must be
finished before the micro-controller can proceed with further instructions. In other words,
any rotation requested would take longer to complete than the clock of the PID controller,
making it unfeasible because any new control action after the first one issued cannot be
executed at the correct time.

With a non blocking strategy to actuate the stepper drivers instead it would be possible to
implement a proper discrete time PID controller placing in the loop() two independent
if() blocks. One is for the PID controller clock that every fixed time acquires the
current position and computes the error and the new control action. The other one is

2https://learn.adafruit.com/adafruit-4-channel-adc-breakouts/
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for the generation of the square waves for actuation of the motors and it uses the control
action computed by the other if(). Clearly, the controller frequency must be smaller
than the one of the square wave that corresponds to the maximum speed for the motor.
In Listing 4.7 the algorithm and a pseudo Arduino code are reported.

1 // Set PID clock

2 const int PID_clock = 1000; //[us] = 1ms for instance

3 // Initialize clocks

4 unsigned long previousMicros_PID = 0; //[us]

5 unsigned long previousMicros_wave = 0; //[us]

6
7 void setup(){

8 // ...

9 }

10 void loop() {

11 /*

12 * IF (one PID clock time is elapsed)

13 * compute new action and update square wave paramenter

14 * ELSE continue with previous square wave parameter

15 */

16 unsigned long currentMicros_PID = micros();

17 unsigned long currentMicros_wave = micros();

18 // PID clock

19 if((unsigned long)(currentMicros_PID - previousMicros_PID) >=

PID_clock){

20 // Acquire current position

21 // ...

22 // Compute error

23 error_new = reference_position - current_position;

24 // Compute new action

25 // Proportional action

26 p_new = Kp*error_new;

27 // Derivative action from real contiuous time derivative

contribution

28 d_new = (Td/(N*PID_clock+Td))*d_old + (Kp*Td*N)/(N*

PID_clock+Td)*(e_new-e_old);

29 // Integral action

30 i_new = i_old + Kp/Ti*PID_clock*error_new; // Backward
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Euler

31 u_new = p_new + d_new + i_new;

32 // Comupute wave_period from u_new in some way

33 // ...

34 previousMicros_PID = currentMicros_PID;

35 error_old = error_new;

36 d_old = d_new;

37 i_old = i_new

38 }

39 // Square wave clock

40 if((unsigned long)(currentMicros_wave - previousMicros_wave)

>= wave_period){

41 digitalWrite(myPin, !digitalRead(myPin));

42 previousMicros_wave = currentMicros_wave;

43 }

44 }

Listings 4.7: Example of PID control of a square wave period

Hence, a mock PID control logic was implemented using instead of a clock a while()

loop that corrects the position of a joint till convergence given a certain tolerance. We
reckon and strongly state that this is not a true PID controller. It is a workaround to
simply control the robot without using high level software (that was indeed developed in
a parallel thesis work).

The idea is to compute the new angle to be requested to the stepper motor as in continuous
time (Eq.4.2) but approximating the time derivative of the error with a finite difference
(Eq. 4.3) and the integral of the error with the area of a trapezoid (Eq.4.4).

de

dt
≈

e(t2)− e(t1)

t2 − t1
(4.3)

∫ t2

t1

e(t) dt ≈
1

2
(e(t2) + e(t1)) (t2 − t1) (4.4)

As said, the library used causes the stepper motor to reach the requested position without
possibility to interrupt the movement. Given this, some considerations can be done:

• The error is not computed every fixed time interval but when the arm concludes
the requested rotations. This for sure causes poor performance if long rotations
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are performed because the finite difference and the area of the trapezoid are not
representative of the true trend of the error. Therefore Kp should be smaller than
one to mitigate this problem.

• If the proportional gain Kp is bigger than one also overshoot in the first run of the
while() loop is expected. To avoid big overshoots should be Kp < 1.

• Positive derivative and integral contributions cause the requested angle to increase
possibly causing overshoot. Anyway, derivative and integral contributions are ini-
tialized to zero among global variables and at the first iteration of the while()

loop are still set to zero. This is correct because the link starts moving with null
speed and so the time derivative of error is null, and moreover only one point is
available for the computation of the integral of the error and therefore the area is
null.

• As the error decreases the derivative contribution becomes negative decreasing the
value of the new requested rotation angle for each joint. This is expected and
correct. Unit of measure of time are very important as shown later.

• The integral contribution theoretically can be positive or negative depending on the
trend of the error. Anyway, since Kp < 1 and in the first run of the while() loop
derivative and integral contributions are null, a big initial overshoot is not expected
and therefore the error should be contained. This means that the target position of
each link is expected to be reached within the tolerance with minimal oscillations
and from above, since to have a null integral contribution the error must be both
positive and negative in the same time history.

In Appendix A.3 is reported the code for whole robot arm. With this code a set of five
relative angular positions with respect to the fully vertical position is requested to the
user through the Serial Monitor of the Arduino IDE. Only when a valid input is given the
arm will start moving towards the desired positions. Acquisition of the starting position
is done starting from joint J1 to joint J5. As soon as an acquisition is done the current
time instant is saved with the Arduino function millis() to increase precision, and
conversion to the correct units of measure is done aftwerwards. It’s important to notice
that the millis() function returns a value in ms so having order of magnitude of 103and
that’s why it is needed to divide by 1000. Keeping time in ms means having a derivative
term very small because time is at the denominator of Eq.4.3 and an integral contribution
very big since time is at numerator in Eq.4.4. Hence, instead of dividing by 1000 it is
equivalent to use Kd ≈ 103 and Ki ≈ 10−3. Anyway, it is preferable to have all PID gains
of the same order of magnitude to understand relative importance at a glance.
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1 float current_reading_J1 = analogRead(potPin_J1); // in range

[0 1023]

2 // Saving the time in which the measure is done as early as

possible

3 // Needed to compute after the derivative term

4 time_old_J1 = millis()/1000; //[ms] -> [s]

5 float volt_J1 = current_reading_J1 * resolution - home_volt_J1;

6 current_position_J1 = volt_J1 * sensitivity / tau_gear_J1 -

home_offset_J1; //[deg]

7 error_J1 = desired_position_J1 - current_position_J1;

8 // Do the same for all other joints

9 // ...

Listings 4.8: Initial position measure

Afterwards the while() begins and its exiting condition is when all absolute values of
errors are smaller than the tolerance. Then the control actions are computed starting from
joint J1 to joint J5. Since the sixth joint has not a potentiometer for position feedback an
action cannot be computed. Then, the synchronizer of all stepper drivers can be called

1 // PID-controller

2 float action_J1 = Kp*error_J1 + Kd*d_dt_error_J1 + Ki*

int_error_J1_dt; //[deg] but for the link

3 // The same for J2, J3, J4, J5

4 // ...

5 // Release brakes

6 digitalWrite(pinBrake_J2, LOW);

7 digitalWrite(pinBrake_J3, LOW);

8 delay(10);

9 // The motor must rotate of action_Joint*tau

10 arm.rotate(tau*action_J1, tau*action_J2, tau*action_J3, tau*

action_J4, tau*action_J5, tau*action_J6);

11 delay(10);

12 // Engage brakes

13 digitalWrite(pinBrake_J2, HIGH);

14 digitalWrite(pinBrake_J3, HIGH);

Listings 4.9: Control action computation

After the movement of the whole arm is completed, the new positions can be acquired
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together with new time values and the new errors, time derivatives and integrals can be
computed and variables updated. Again, the millis() is divided by 1000.

1 // Acquire new position

2 // J1

3 current_reading_J1 = analogRead(potPin_J1);

4 time_new_J1 = millis()/1000; //[ms] -> [s]

5 volt_J1 = current_reading_J1 * resolution - home_volt_J1;

6 current_position_J1 = volt_J1* sensitivity / tau_gear_J1 -

home_offset_J1; //[deg]

7 error_J1 = desired_position_J1 - current_position_J1;

8 d_dt_error_J1 = (error_J1 - error_J1_old)/(time_new_J1 -

time_old_J1);

9 int_error_J1_dt = int_error_J1_dt_old + trapz(time_new_J1,

time_old_J1, error_J1, error_J1_old);

10 error_J1_old = error_J1;

11 time_old_J1 = time_new_J1;

12 int_error_J1_dt_old = int_error_J1_dt;

13 // The same for J2, J3, J4, J5

14 // ...

Listings 4.10: Updating position measure and variables

After the positions are reached within the defined tolerance, the code waits the user to
input another value. Thus, this Arduino code is for interaction with the robot to request
a pose and not to maintain it.

4.2.5. ROS interface

In this thesis the digital model of the robot arm realized is developed. A motion planner
is developed using the ROS development environment. The Arduino code to be deployed
on the micro-controller itself to let it interface with ROS is needed, and it’s reported in
Appendix A.4.

ROS is based on a network of processes exchanging messages and processing of messages
takes place in nodes that constitutes the graph structure of the ROS network [24]. One
node can act as a Publisher and a Subscriber, also simultaneously. A Publisher can
send messages in the network but only about a defined topic that are named busses over
which messages are passed. A Subscriber can receive messages belonging to a specified
topic, being subscribed to that topic. The Arduino MEGA is a Subscriber of messages
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of a topic about actuation and speed while is a Publisher of messages about feedback
positions. Messages contain data types that may be of various nature but are fixed by
the user. This means that the Arduino expects always the same data type and it cannot
be changed during running.

With reference to Figure 4.6 [6], Arduino is inside the Real Robot (thick red box) of a
ROS Control system, so it can be considered an embedded piece of hardware. Arduino
doesn’t act as an Embedded Controller since it doesn’t run a PID. Instead it is responsible
for the communication, receiving control inputs from and sending Mechanism States to
the hardware_interface::RobotHW class of the hardware_interface package.

Figure 4.6: ROS Control overview

The Arduino MEGA acts as a ROS node that receives the joints angles and the maximum
desired speed and sends the measured positions of each link. Communication is done
through Serial communication protocol and in detail rosserial_arduino client library
of rosserial protocol [17]. To let Arduino use rosserial protocol the ros.h Arduino
library was used.

A brief description of how the Arduino firmware is developed is presented hereafter.

In addition to the ros.h, another Arduino library to set the data type of the mes-
sages exchanged must be defined. Angles and speed can be float, since the smallest
angle that motors can do is 0.9deg. Moreover, since we are dealing with six motors,
messages can be arranged in arrays to make manipulation easier. Hence the std_msgs
/Float32MultiArray.h is used. The ROS node for the Arduino MEGA board must
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be declared in the firmware. A node handle variable is created with ros::NodeHandle

preceding the name of the variable itself.

To actuate the motors when a proper message is received a callback function must be
defined.

1 // Callback function to make the arm move when a message is

received

2 void move_arm_cb(const std_msgs::Float32MultiArray& cmd_msg){

3 // Release the brakes on Joints J2 and J3 before start moving

4 digitalWrite(pinBrake_J2, LOW);

5 digitalWrite(pinBrake_J3, LOW);

6 delay(10); // Wait a short time to be sure the breaks are

released

7 // Note that if the rotation of the link is requested, motors

must rotate of tau*angle_for_the_link

8 float new_position[5] = {cmd_msg.data[0], cmd_msg.data[1],

cmd_msg.data[2], cmd_msg.data[3], cmd_msg.data[4]};

9 float new_command[5]; // Command for the motors

10 for (int i = 0; i < 5; ++i) {

11 new_command[i] = tau*(new_position[i] - old_position[i]);

12 }

13 arm.rotate(new_command[0], new_command[1], new_command[2],

new_command[3], new_command[4], new_command[5]);

14 // Store last requested positions coming from cmd_msg.data in

old_position

15 for(int i = 0; i < 5; ++i){

16 old_position[i] = cmd_msg.data[i];

17 }

18 delay(10);

19 // Engage the brakes when finished moving

20 digitalWrite(pinBrake_J2, HIGH);

21 digitalWrite(pinBrake_J3, HIGH);

22 }

Listings 4.11: Definition of callback function for actuation

The command message cmd_msg is structured variable containing a data field called
data that is an array of float. Since positions are requested from a higher level, the
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firmware must be able to remember the joint positions previously requested. In this
way the inputted positions are absolute. For this purpose the arrays new_position,
old_position and new_command are used, where new_command is the difference
to reach the new position knowing the starting one. There is certainty on the starting
position thanks to the position feedback system.

After having declared the callback finction, the Subscriber for position must be declared.

1 // Subscriber for position

2 ros::Subscriber<std_msgs::Float32MultiArray> sub_pos("/pvbot/

actuate", move_arm_cb);

3 }

Listings 4.12: Definition of the Subscriber

The same procedure is needed to set maximum speed. A callback function and a Sub-
scriber is needed.

1 // Callback function to set joint speed

2 void set_speed_cb( const std_msgs::Float32MultiArray& speed_msg

){

3 // speed_msg.data is the speed for the joint so speed for the

motor is tau*speed_msg.data

4 J1.setRPM(tau * speed_msg.data[0]);

5 J2.setRPM(tau * speed_msg.data[1]);

6 J3.setRPM(tau * speed_msg.data[2]);

7 J4.setRPM(tau * speed_msg.data[3]);

8 J5.setRPM(tau * speed_msg.data[4]);

9 }

10 // Subscriber for setting speed

11 ros::Subscriber<std_msgs::Float32MultiArray> sub_speed("/pvbot/

set_speed", set_speed_cb);

Listings 4.13: Definition of callback function for setting speed

The Publisher for the joints positions requires to define the message and to create the
Publisher itself.

1 // Setting Publisher for position feedback

2 std_msgs::Float32MultiArray feedback_msg;

3 ros::Publisher pub_state("/pvbot/state", &feedback_msg);
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4 // feedback_msg.data will be an array of 5 element with the

current position of the links

Listings 4.14: Definition of Publisher for position feedback

A function to create an array containing the positions read from the potentiometers is
written and it helps in the composition of the data field in feedback_msg.data

In the setup() of the Arduino sketch initialization of BasicStepperDriver objects
and ROS node is done and subscription and advertising of Subscribers and Publisher is
done.

1 void setup() {

2 // Initialize stepper driver object

3 J1.begin();

4 J1.setSpeedProfile(mode, 875, 875);

5 J2.begin();

6 J2.setSpeedProfile(mode, 875, 875);

7 J3.begin();

8 J3.setSpeedProfile(mode, 875, 875);

9 J4.begin();

10 J4.setSpeedProfile(mode, 875, 875);

11 J5.begin();

12 J5.setSpeedProfile(mode, 875, 875);

13 // Setup brakes of joint J2 and J3

14 pinMode(pinBrake_J2, OUTPUT);

15 // Engage the brake = switch off relay -> set relay command

pin to HIGH

16 digitalWrite(pinBrake_J2, HIGH);

17 pinMode(pinBrake_J3, OUTPUT);

18 // Engage the brake = switch off relay -> set relay command

pin to HIGH

19 digitalWrite(pinBrake_J3, HIGH);

20 // Go home

21 home_axes();

22 // Initialize ROS node, subscribe and advertise topics

23 nh.initNode();

24 // Subribe node nh to defined objects

25 nh.subscribe(sub_pos);
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26 nh.subscribe(sub_speed);

27 // Dimension of the message must be declared

28 feedback_msg.data_length = 5;

29 // Make the node nh advertise the defined object

30 nh.advertise(pub_state);

31 }

Listings 4.15: Firmware setup

In the setup() the command home_axes() can be found and it is used to home the
robot at every power on. A home pose is defined by filling the home_array variable.

1 // Definition of HOME POSITION

2 const float home_position_J1 = 90.0; // CCW

3 const float home_position_J2 = 45.0; // CCW

4 const float home_position_J3 = 90.0; // CW => keep positive =>

positive angle = CW wrt J2

5 const float home_position_J4 = 0.0; // KEEP ALIGNED

6 const float home_position_J5 = -90.0; // CW

7 const float home_array[5] = {home_position_J1, home_position_J2

, home_position_J3, home_position_J4, home_position_J5};

8 // Define function for homing the robot (home position values

are set for all axes)

9 // Conceptually similar to the actuation call back function

10 void home_axes(){

11 // Read current positions and save then in positions_array

12 feedback_position();

13 float command_angle[5];

14 // Filling the command array

15 for(int i = 0; i < 5; ++i){

16 command_angle[i] = tau * (home_array[i] - positions_array[i

]);

17 }

18 // Release the brakes on Joints J2 and J3 before start moving

19 digitalWrite(pinBrake_J2, LOW);

20 digitalWrite(pinBrake_J3, LOW);

21 delay(10); // Wait a short time to be sure the breaks are

released

22 // Actuate to home
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23 arm.rotate(command_angle[0], command_angle[1], command_angle

[2], command_angle[3], command_angle[4], command_angle[5]);

24 // Engage the brakes when finished moving

25 delay(10);

26 digitalWrite(pinBrake_J2, HIGH);

27 digitalWrite(pinBrake_J3, HIGH);

28 }

Listings 4.16: Homing function

Finally, the firmware loop() can be described. Every time the loop() is run the joints
positions are sent to the ROS controller.

1 void loop() {

2 feedback_position();

3 feedback_msg.data = positions_array;

4 pub_state.publish(&feedback_msg);

5 nh.spinOnce();

6 delay(200);

7 }

Listings 4.17: Firmware loop
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Once the firmware for communication with the physical system is developed, it’s possible
to dive in the field of programming methods for robots. In this chapter an overview of
the principal programming strategies will be done and the most suitable solution will be
selected among the proposed ones.

In general, to control a robot and make it perform specific tasks the user must acknowl-
edge some basic information. Its kinematic chain is important to understand the kind of
movements that the robot is able to perform and to solve the direct kinematics problem.
Then, motion planning must be carried out to obtain the desired motion that the end ef-
fectors of the robot must follow, for instance this is possible by exploiting some algorithms
for path planning and time parametrization. Furthermore, the inverse kinematic problem
must be solved to obtain the joints configurations during the execution of a planned mo-
tion and finally, to control a robot, clearly also the control logic must be defined with the
type of controllers and the respective gains.

From the beginning of this work the idea was not just to program the tasks on the real
robot but also to implement a simulation environment in which the user could test different
tasks on the virtual model without the need of the actual robot.

Since there are different ways to approach the programming phase and since program-
ming is a time consuming and expensive process is important to show the pros and cons
of each different programming strategy and explain the choice of a ROS-based offline
programming method for the work performed in this thesis.

In general there are mainly three categories of programming approaches:

• Online programming

• Offline programming

• Hybrid programming (Augmented Reality)
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5.1. Online programming

Online programming consists in programming directly on the robot controller so, this
strategy requires direct access to the physical robot. For this reason, before starting
the programming phase, the robot must be already designed and manufactured. This is
a limitation because in many circumstances realizing the production and programming
phases in series is a big waste of time.

Furthermore, during the teaching phase the robot can’t perform its activities and must
be stopped so causing another waste of time and money.

In the field of online programming there are mainly two different strategies:

1. Teach pendant

The teach pendant is an handheld device with different buttons, Figure 5.1, that
allow the operator to move the robot and place the end-effector in precise positions
and orientations.

On the teach pendant there is always an emergency button which is the primary
safety device to stop the robot due to the small working area between human and
robot.

The operator stores in the robot controllers the coordinates for each position that
must be reached to perform the desired application, these positions are stored in a
series of movement instructions and, finally, once the whole program is learned the
robot is ready to work.

During the programming phase the technician is also allowed to change the velocity
of the robot, in fact during programming the velocity can’t be too high for safety
reason. Once the programming phase is completed, it’s possible to perform the task
at full speed.

This approach is the most popular in industries, in particular it is used a lot with
collaborative robots in which a safe close interaction between operator and robot
can be considered as safe without the need of a barrier. By the way, for certain
applications is not so easy to program in this way. In fact, as written in the article
[7], in applications like spray painting, sealant application, glue dispensing and arc
welding, where the tool must keep a constant orientation with respect to the working
surface and must follow a smooth path, programming with a teach pendant can be
tedious and a lot of time is required to define all the positions and to store them in
the controller.
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Teach pendant allows to reach positions with higher precision than lead through
method. These positions are defined with respect to specific reference frames, for
instance in ABB these are called "work object" [1]. They are frames defined with
respect to an object added in the workspace. The position of the target can also
be defined from the world frame or from the frame placed on the tool. But the
problem is that not always it’s easy to define and reach these positions with the
teach pendant as mentioned before.

Figure 5.1: Teach pendant

2. Lead through method

To program the robot following this approach the operator physically drags the
manipulator and stops it in the positions that must be reached by the robot to
perform the task. Once the robot is stopped in a certain position it’s possible to
store it in the controller and then the recorded positions are used to program the
movement.

This programming approach is very intuitive and an operator with no programming
skill can easily learn to program in this way.

Also, as written in 1, there are applications (reported in the article [7]), like arc
welding, in which teach pendant is a tedious programming strategy because the tool
must be kept orthogonal to the surface and must follow a smooth path. Instead,
lead-through method can be an efficient solution to program the robot in these
circumstances without putting too much effort.

Often the lead-through teaching handle is mounted on the robot tool as is shown in
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Figure 5.2.

Clearly there are some limitations, it’s difficult to move manually a robot if it’s too
big and also this close interaction between robot and human can be a problem for
safety reason. In fact, this approach is used mainly with collaborative robots which
are of limited dimensions and are designed to allow a safe close interaction with the
operator.

Finally, since the robot is moved directly by the operator is impossible to reach very
precise positions in performing the task.

Figure 5.2: Lead through method

5.1.1. Pros and Cons

Below, there are some pros and cons of teach pendant method, lead through method and
in general of online programming.

Pros

• Intuitive programming approach, so there is no need of a high skilled programmer.
This is related particularly to lead through method.

• Low development time: the software is provided by a manufacturer and the operator
can directly program by means of the teach pendant or with a lead through method.

• Teach pendant strategy allows to reach positions of the tool center point with higher
precision than lead through method.

Cons

• Programming must be performed after designing and manufacturing the robot caus-
ing waste of time and money.
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• During the programming phase the robot must be stopped from working, so there
is downtime problem.

• Quality in the execution of the programmed task depends a lot on the ability of the
programmer.

• Lead through method does not allow to reach positions with high precision because
the robot is directly dragged by the operator.

• Lack of flexibility and reusability of the program, also when there is a slight change
of the task reprogramming is needed.

• Teach pendant approach requires more skilled programmers with respect to lead
through method which is more intuitive.

• Teach pendant strategy with text based input requires the programmers to learn
different programming languages for each robot brand (e.g. RAPID for ABB robots,
JBI for Motoman robots, etc.).

5.2. Offline programming

5.2.1. General overview

Offline programming allows the design of programs without having access to the actual
robot. Programming takes place on an external system and then the program is down-
loaded to the real robot.

Commonly this strategy is characterized by different phases, as it’s explained in the article
[15]:

• 3D CAD model

Offline programming is an approach that starts from the 3D CAD model of the
complete working cell so, it represents the robot and the different objects with which
the robot interacts to perform a certain task. The CAD model can be generated
by common modelling software or in some situation a 3D scanner can be used to
obtain the model of the workpiece. The 3D CAD model is the base for offline
programming, it allows to verify if there are some obstruction between the robot
and the different objects and if this happens the user can change the position of
the different components to perform the task in the right way. The CAD model of
the robot is also of crucial importance to identify its kinematic chain. For instance,
Figure 5.3 shows the simulating model of a five degrees of freedom robot and this
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picture is taken from the article [11].

Offline programming needs just the 3D model, this allows to program without the
physical robot and so, during the programming phase, the robot is not stopped from
production avoiding the downtime problem. Furthermore, for the same reason, the
programming phase can be carried out in parallel with the production of the robot
saving a lot of time.

Figure 5.3: Simulating model of a 5 dof robot

• Motion planning

In general once the CAD model is provided, the second step in offline programming
is path planning. There are software that have included algorithms for generating
the trajectory that the end effectors must follow to perform the task. Usually, the
choice of algorithm is specified inside the program in which at least the initial and
final position of the task are defined.

There are some interesting applications, like the one explained in the article [13].
In which it’s possible to generate the path of a welding application without pro-
gramming but just drawing the path in the CAD model, enabling in this way a fast
and simple programming since the program is automatically generated by the CAD
file. Furthermore, for each welding path the operator can also specify the welding
parameters, like velocity, voltage, torch distance to the surface. In fact, from the
CAD file is generated a DXF file with all the information about the welding process.

Then, from the path generated is obtained the motion law exploiting the knowledge
of some kinematic parameters. These are the maximum velocity and acceleration
that the joints of the robot can reach, they depend on the properties of the motors
that actuate the joints and there can be some limitation related to the application.

To generate the motion law also the inverse kinematics problem must be solved.
This problem consists in finding a set of joints so that the robot places each end
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effector (specified points on the links of the robot) at its target position and the
way to formulate this problem is explained in the article [4].

The set of joints θ1, ..., θn describes the configuration of the robot (n is the number
of joints). The end effectors are specific points on the links and their position are
defined in the column vector: s⃗ = (s1, ..., sk)

T . k is the number of end effector
positions but each of these positions is defined by three scalars if the problem is
in three dimensions. The end effector positions are functions of the joint angles:
s⃗ = s⃗(θ⃗). The target positions are instead defined in the following vector: t⃗ =

(t1, ...tk)
T . Now, it’s possible to determine the desired change in position from the

vectors defined above: e⃗ = t⃗− s⃗.

Solving the IK problem means finding θ⃗ so that:

t⃗ = s⃗(θ⃗)

But, since not always is possible to find a solution of this problem an iterative
method is considered to approximate a good solution. The functions s⃗ are approxi-
mated with the Jacobian matrix. This matrix is defined so:

J(θ⃗) = (
∂si
∂θj

)i,j

It is a kxn matrix with the k elements which are vectors defined in 3 dimensions.
With the Jacobian matrix is possible to determine the velocity of the end effectors:

˙⃗s = J(θ⃗)θ̇

This equation is expressed in continuous but if this is considered in discrete so,
substituting the derivatives with finite increments the resultant formula will be:

∆s⃗ ≈ J∆θ⃗

One approach is to set ∆s equal to e⃗ and so to solve the IK problem the solution of
the following equation must be found:

e⃗ = J∆θ⃗

This is a possible way to formulate the IK problem but it’s not the only one.

By the way, usually, software have already included algorithms for inverse kinemat-
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ics. There are different methods to solve IK problems once the problem is formulated
like is explained above and these methods are present in the article [4]. Strategies
like the Jacobian transpose method and the pseudoinverse will oscillate in the neigh-
borhoods of singularities. Instead, for instance the damped least squares method
can perform well with unreachable target solution. So, once the user chooses the
kind of strategy to solve the IK problem, these methods bring to a set of non linear
equations that must be solved. So, also a numerical method to solve this problem
is needed and a possible option can be the Newton-Raphson method.

• Simulation

Another great advantage is the presence of a simulation environment in which is
possible to test the robot and try different applications. Hence, it’s possible to
improve and refine the program still not working on the actual robot. So, offline
programming allows to improve productivity and make a lot of test in the virtual
world before going in the real one improving also the safety of the operators.

• Calibration

Clearly, once the program is applied to the physical robot, a calibration phase is
needed. Creating a digital twin of the working cell is very powerful but there is
always a slight difference between real and virtual world.

In offline programming there are three different kind of software as explained in the article
[15]:

• Manufacturer software

Almost every robot manufacturer has its own software. This is an advantage to
make it more compatible to the hardware and since software and hardware are
packaged together the cost is not too high. Some example of manufacturer software
are RobotStudio from ABB, KUKA-Sim from KUKA etc.

Clearly the big disadvantage of this kind of software is that the user can just pick a
robot of the same brand of the software.

Furthermore, since the software is provided by a manufacturer it can be very re-
strictive so, if some features are not present usually it’s not possible to add them
modifying the software.

• Commercial software

This software is characterized by an higher flexibility than manufacturer software
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because they can be used with hardware from different manufacturers. By the way,
with some robot manufacturer, there can be compatibility issues. The more popular
generic software are Delmia from Dessault Systems, RobCAD from Technomatix and
RobotDK.

• Open source software

This kind of software are often used in academic field, even if open source does not
mean necessary that the software is cost free they are usually much less expensive
than the other kind of software explained above.

Furthermore, the fact that it is open source means not only that the user can freely
modify the software and its source code but also he can share it with any other user.

In this way a software can be developed by different users and any user can modify
the software to improve it, for instance, adding some features.

5.2.2. Pros and Cons

From what has been described so far some pros and cons of offline programming are
emerged:

Pros

• No need to stop the production during the programming phase.

• Possibility to program the robot in parallel with the production saving a lot of time.

• High flexibility, in fact if there is a slight change in the task often is easy and quick
to adapt the program to this change.

• The presence of a simulation environment is a great advantage with respect to online
programming. This environment allows to make a lot of tests without stopping the
robot, in this way it’s possible to improve productivity and safety.

• Allow to verify the position of the robot with respect to the different objects which
are present in the environment so, to verify if the robot operates and interacts with
these objects in the correct way.

• Allow to verify that the robot is able to assume the different configurations to
perform the motion planning of a certain task.

Cons

• Software for offline programming are often expensive.
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• Programming is time consuming, in particular customizing the software to a specific
application.

• Require high level programming skills.

• Offline programming is not popular in small and medium enterprises, it is too ex-
pensive for the reasons reported above.

5.3. Hybrid programming (Augmented Reality)

AR is a trending technology in Industry 4.0 and it consists in considering 3D virtual
objects in a real environment.

AR exploited in programming a robot can be classified as hybrid programming because it
mixes real elements, typical of online programming, with virtual components that char-
acterize an offline programming approach.

The article [3] explains how AR can be useful in assembly application. An head mounted
displays, such as Microsoft Hololens (Figure 5.4), is used by the operator which can
visualize the workpiece and the working environment in virtual reality. It’s possible to
generate this 3D hologram by a permanent tracking of the real environment. The real
components are recognized by means of trackers and reproduced in the virtual reality by
the Microsoft Hololens. Then, the operator with its gestures is able to interact with the
virtual components and perform the assembly task in AR. The gestures are recognized by
integrated camera and the steps to perform the assembly procedure are recorded by the
Microsoft Hololens.

So, this application highlights how this programming strategy can take some positive
aspects from online programming. In fact, the robot learns the task by reproducing the
movement performed by the operator and this is a very intuitive way to program a robot
that do not require a high skilled operator. In its simplicity and intuitiveness this kind of
programming strategy recall online programming approaches like lead through method.

Furthermore, AR allows to make a step further. In fact, using a HMD this programming
approach is not just intuitive but also much safer than lead through method.
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Figure 5.4: Microsoft Hololens

Another interesting example is the one in the article [15] in which a virtual model of an
aeroplane washing robot is inserted in the same environment of a scaled real model of
an aeroplane as is shown in Figure 5.5. So, it’s possible to simulate the washing task
performed by the virtual robot to the aeroplane model. Then, this program will be used
by the real robot on the real aeroplane.

Figure 5.5: AR: miniature airplane washing robot

This application highlights some similarities with offline programming, in fact using a
virtual model of the washing robot allow to program without actually having available
the real robot.

Furthermore, AR allows to use a scale model of the aeroplane without having to model
the aeroplane in the virtual environment saving in this way time and money.

AR is a promising technology for the future of robotics, as explained above it can be used
for programming taking some feature of online and offline programming and making some
improvements. By the way, nowadays this technology is not so diffuse in industries but
it’s limited to research and gaming fields.
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5.4. ROS-based offline programming

In this thesis a ROS-based offline programming approach is chosen to program the robot.

First of all, with an offline programming approach the user is able to program without
the need of the actual robot. So, programming and production phases can be performed
in parallel saving in this way a lot of time.

In addition to this reason a digital twin of the system allows to program new tasks without
stopping the actual robot and this is not possible with an online strategy. Furthermore,
offline programming is flexible so if there are little changes on a task it’s easy to adapt
the code already written without having to reprogram from scratch the robot. Finally, in
offline programming is also feasible to generate a simulation environment which is very
useful to test and refine the programs on the virtual model.

So, once explained the choice of offline programming for this project, must also be under-
stood why, in particular, ROS has been picked to generate a software for offline program-
ming.

ROS [16] is an open source framework and it is cost free with respect to software owned
by companies which are often really expensive. Furthermore, being open source the user
can modify the source code, adding the features that are useful for its project and also he
is free to share the generated files with any other user. During the years a vast ecosystem
of software for robotics have been developed by the community from which the user can
get useful information. So, it’s clear that the choice of ROS is a smart decision at an
academic level. ROS allows also to have free access to MoveIt! [12] which is a ROS-
package for motion planning. The user can exploit algorithms of path planning from the
OMPL (Open Motion Planning Library), this is an open source motion planning library
which doesn’t have the concept of a robot in fact, MoveIt! is needed to configure OMPL
to work with robots. In this way it’s possible to define the desired target position of the
end effectors as a function of time.

To plan the motion law the inverse kinematic problem must be solved to get the joints
value in all the different configurations that the robot must assume to perform the task.
ROS provides different algorithms of inverse kinematics and if these algorithms was not
fast enough or did not solve, for some reason, the kinematic of the robot the user would be
free to generate its own algorithm of inverse kinematics. The target joints values obtained
by solving the IK problem are of crucial importance to control the system in fact, this
information is sent to ROS control. ROS control is a list of packages in which the user
can define all the different type of controllers needed for the specific application and takes
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as input also the joint data coming in feedback from the potentiometers. These inputs
allow to compute the error between the target joints value and the actual one.

ROS is also compatible to any kind of hardware, in the case of this project since the
robot is designed and manufactured by ourselves and so, it doesn’t come from a brand
it wouldn’t be possible to use a manufacturer software for compatibility issues. ROS
control is able to communicate by means of an Hardware Interface to the virtual robot in
a dynamic simulation or to the physical robot.

Finally, ROS can be integrated with Gazebo [8] which is a cost free 3D dynamic simulator.
This environment is very useful to test and refine the different programs without the need
of the actual robot.
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programming

ROS is an open source framework which is exploited to program the robot. It allows to
design software for robotic applications and in this project the ROS distribution Melodic
is used in Ubuntu 18.04.5 LTS.

In this chapter is explained from scratch how to program the robot in a modular way,
generating different environments.

First of all, a workspace must be generated. This folder will contain all the environments
needed to program the robot. Inside the workspace there are all the packages and codes
compiled with catkin which is the build system of ROS.

• src folder (source space): contains the catkin packages.

• build folder: in this folder CMake is invoked to build the packages inside src folder.

• devel folder: here built targets are placed prior to being installed.

Then, inside the src folder different packages have been created:

• Robot model

• MoveIt! motion planning

• Gazebo modelling

These packages have been created both for a robot model with a gripper, since it can be
a future addition to the real robot, and for a robot model without an end effector and
with joint limits which represent the features of the real robot.

In general the robot model is needed to visualize the robot and specify the kinematic
chain, with MoveIt! the user is able to plan the motion law that must be followed by the
end effectors and by the joints so, in this ROS-package (MoveIt! package) is considered
just the kinematics of the robot and not its dynamics. Then, to define the controllers is
used ROS control and if the real robot is controlled there is also an hardware like Arduino
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otherwise ROS control acts on the Gazebo environment controlling the digital version of
the robot. Gazebo is a dynamic simulation environment so, it considers the robot model
with also its dynamics and in this way the user is able to replicate the behaviour of the
actual robot.

Figure 6.1: Block diagram to control a robot

6.1. Robot model with gripper

6.1.1. Visualization in RViz

In this chapter is simply reported the robot visualization, it is generated exploiting the
xacro file of the robot model that will be described in the following chapters.

During the design phase a gripper has not been designed. But, when generating the
digital twin of the robot, a gripper is added to the xacro model to obtain a complete
virtual model and so to be able to program some task like pick and place in MoveIt!.

RViz stands for ROS Visualization, in the Figure 6.2 is shown the robot with a GUI
that allows to define each joint values. Specifying the value of each joint with the GUI
means working in forward kinematics. In this way just one configuration of the robot
can be obtained and can be directly visualized in Rviz. Forward kinematics consists in
determining the end effectors positions knowing the joints position.

The robot is composed by 6 DOF related to the manipulator and 1 DOF that allows to
open and close the gripper. This tool is very useful to verify that the model has been
generated in the correct way.
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Figure 6.2: Robot model

To obtain the visualization of the robot model, it’s necessary to launch a file in which,
respectively, different nodes have been launched. So, calling in terminal the command
rqt_graph it allows to obtain a clear graph with the nodes and topics that work when the
robot is launched in Rviz. In Figure 6.3 it’s possible to see the graph, the first node is the
joint_state_publisher. It reads the robot_description parameter from the xacro
file of the robot model, find all the non fixed joint, the type of joints and the respective lim-
its. The value of each joint state can be given in input to the joint_state_publisher
by a GUI and their default value is obtained from the xacro file. Then, the joints value is
published to the topic joint_states and the node robot_state_publisher sub-
scribes to it. This node uses the xacro file specified in the parameter robot_description
to get the kinematic chain of the robot so, it is able to perform the direct kinematics and
to obtain the position and orientation of each frame of the robot. Finally, the last node
allows the visualization of the robot model in RViz.

Figure 6.3: rqt graph in Rviz

In Figure 6.4 there are represented the frames associated with each joint to have a better
understanding of the position of each revolute joint present in the manipulator. The frame
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placed at the bottom of the base is the one fixed to the ground, instead the others are
related to the revolute joints. Then, to better understand the picture it must be said that
for each frame x axis is the red one, y axis is the green one and z axis is the blue one.

Figure 6.4: Robot model - name of components and frames

The names given to each joint during the programming phase, the respective frame and
the axis of rotation are defined in the following Table. Clearly, also look at Figure 6.4 to
understand to which reference frame each joint is related.

Joint name Frame position Axis of rotation

r1 between base and link0 z
r2 between link0 and link1 x
r3 between link1 and link2_down x
r4 between link2_down and link2_up z
r5 between link2_up and link3 x
r6 between link3 and gripper z

Table 6.1: Joints name - Frame position of each joint - Axis of rotation
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6.1.2. Manipulator model

In this section a description of the different passages to obtain the virtual model of the
manipulator is performed. The CAD file of the robot is a prerequisite to generate the
URDF file of the robot model. The CAD file was already realized in Autodesk Inventor.
So, now it’s possible to describe how a URDF file is built and in particular a xacro file.
In fact, in this work has been chosen to generate a xacro file because it allows to reduce
the amount of code present in a URDF file and also to define some parameters that can
be used throughout the code.

Looking at the code A.5 on page 189, the first two lines are mandatory to define a xacro
file and also they highlight that the file is written in XML language.

1 <?xml version="1.0"?>

2 <robot name="lucabot" xmlns:xacro="http://www.ros.org/wiki/xacro">

As it has been said previously a xacro file allows to define parameters, in this project
just one kind of parameter is defined and it is a constant that multiplies each mass and
inertia component of the links. This value is related to the 3D printer and in particular
it depends on the infill. Below, the constant i1 is reported which multiplies mass and
inertia components of link1. It is obtained by dividing the actual mass of link1 by the
mass obtained from the CAD file in Autodesk Inventor.

1 <xacro:property name="i1" value="0.3477285474" />

Then, in the following part of the code is defined the link0 (shown in Figure 6.2). This is
an example to explain how each link has been introduced in the xacro file.

Visual tag is needed to define the shape of the component for visualization purposes. The
shape is defined by importing the mesh of the CAD file modelled in Autodesk Inventor
and it is imported in .dae format. The origin consists in defining the reference frame of
the visual element with respect to the reference frame of the link.

Collision tag is used to define the geometry of link0 when there is the need to consider
collisions with other components. For instance this tag is important during the planning
phase, trajectories in which collisions are detected are not feasible. Usually, like in this
project, the geometry of the collisions is much simpler than the actual geometry of the
component to reduce computational time. As is shown in Figure 6.5 just boxes and
cylinders are used as geometry for collisions and, in this case, link0 is approximated with
a box able to include the entire shape of the link. So, these simple geometries guarantee
collision avoidance with a safe margin.
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Figure 6.5: Collisions geometry

Inertial tag presents the origin of the inertial reference system with respect to the link
reference system, the inertial reference system is placed in the same position of the center
of gravity (position taken from the CAD file). Then, the mass and inertia properties are
taken from the CAD file, using Autodesk Inventor, in the tab iProperties and considering
ABS plastic material. The mass and each component of the inertia matrix are multiplied
by the constant related to the 3D printer.

The inertial tag is here present but it’s not useful to visualize the robot in RViz. These
characteristics of the links will be important when the dynamics of the system is considered
and influences the behaviour of the robot, for instance in the Gazebo environment.

1 <link name="link0">

2 <visual>

3 <origin rpy="0 0 0" xyz="0 0 0"/>

4 <geometry>

5 <mesh filename="package://lucabot_description/model/

link0_denti_incassati.dae"/>

6 </geometry>

7 </visual>

8 <collision>

9 <origin rpy="0 0 0" xyz="0 0 0.1255"/>

10 <geometry>

11 <box size="0.206 0.120 0.229"/>

12 </geometry>

13 </collision>

14 <inertial>

15 <origin xyz="-0.030697 0.000014 0.136133" rpy="0 0 0"/>

16 <mass value="${i*1.385}" />
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17 <inertia ixx="${i*0.006060034}" ixy="${i*0.000000665}" ixz="${i

*0.001682159}"

18 iyy="${i*0.006600492}" iyz="${i*-0.000001679}"

19 izz="${i*0.003229145}" />

20 </inertial>

21 </link>

Once all the links are defined also the joints must be considered. In fact, the xacro file
is really important because contains information about the kinematic chain of the robot.
All the joints related to the manipulator are revolute joints and here after there is the
definition of the joint between link0 and the base. In the robot tree the parent link is the
base and the child is link0. The origin of the joint is located in the origin of the child link.
For a revolute joint are also defined: the limit on the maximum joint effort expressed in
Nm, the upper and lower limits for the value of the joint (in this case link0 can basically
perform a complete revolution), the maximum velocity reachable by the joint expressed
in rad/s and finally the axis of rotation.

1 <joint name="r1" type="revolute">

2 <origin xyz="0 0 0.07" rpy="0 0 0" />

3 <parent link="base" />

4 <child link="link0" />

5 <limit effort="40" lower="-3.142" upper="3.142" velocity="1" />

6 <axis xyz="0 0 1" />

7 </joint>

6.1.3. OnRobot gripper model

As anticipated in the section 6.1.1 a gripper has been added to the virtual model of the
robot. In particular, an OnRobot gripper has been picked [14].

The choice of this gripper could not be permanent, it could be modified in the future by
other students who will work on this project and maybe the gripper will be substitute
by one that will be designed. By the way, adding a gripper now allow to address the
programming phase with more completeness and even if the gripper will be substituted
the main passages to add it in the xacro model, use it in MoveIt! and for programming
the pick and place task remain the same.

Looking at the Figure 6.6, the gripper used for this project is composed by different
components like the quick changer (qc link) which is fixed to the body of the gripper.
The quick changer is useful to perform an easy and quick substitution of the gripper.
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Figure 6.6: OnRobot gripper

Then, there are just two fingers and the left one is connected to the body of the gripper
with a prismatic joint defined in the following lines of code which are extracted from A.6
on page 195.

1 <joint name="${name}_body_finger_l_joint" type="prismatic">

2 <axis xyz="0 1 0"/>

3 <limit effort="1" lower="-0.001" upper="0.025" velocity="1.0"/>

4 <origin xyz="0 0.0195 0.1098"/>

5 <parent link="${name}_gripper_body_link"/>

6 <child link="${name}_left_finger_link"/>

7 </joint>

One peculiar characteristic of the gripper is that it exploits mimic joint to define the
prismatic joint between the right finger and the body of the gripper. The mimic joint
allows the right finger to move with the left one. In this way, as it’s possible to see in the
GUI, the two fingers can’t be moved independently but there is just one joint that moves
both fingers.

The xacro file A.6 on page 195 defines the gripper model and since it’s necessary to link
the gripper to the manipulator this file has been included in the file of the manipulator
model. Below, there are some lines of code taken from the file A.5 on page 189 that allows
to do this and also enable the gripper to be placed at the end of link3 of the manipulator.
In particular, the parent of the gripper is tool0 which is a dummy link placed at the end
of link3.

1 <xacro:include filename="$(find 2fgt_onrobot_description)/urdf/2

fgt_urdf_simplified_collision.xacro" />

2 <xacro:boh parent="tool0" name="test">

3 <origin xyz="0 0 0" rpy="0 0 0" />

4 </xacro:boh>
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6.2. Robot model of real robot

In this section it is explained the digital twin of the real robot. First of all there is no
gripper so, the model has 5 DOF which are all revolute joints as the real robot. The
model can be visualized in RViz as shown in Figure 6.7.

Figure 6.7: Real robot model

To obtain this model a xacro file has been created following the same procedure explained
in section 6.1.2 on page 119. In this file (A.16 on page 218) there are lower and upper
bounds of the joints limited with respect to the ones defined in the model with the
gripper in which the joints are able to perform complete rotations. The limitations on the
movement of each joint (reported here 6.2) are related to the design and manufacturing
phase and they are obtained by testing the real robot.

Joints name Lower and upper bounds [deg]

r1 -170:+170
r2 +45:+90
r3 -90:+90
r4 -170:+170
r5 -90:+90

Table 6.2: Lower and upper bounds of each joint

Furthermore, the maximum angular velocity of each joint is set in the xacro file at 1 rad/s
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and also the limits on the effort must be defined. The limit effort is the maximum value
of torque that can be applied on a joint, to find this value the torque-speed curves that
characterize each motor are considered. First of all, the velocity limit of each joint equal
to 1 rad/s is converted in RPM and multiplied by 35 (mechanical reduction) to obtain
the maximum value of motor speed which is approximated down to 330 RPM. Also by
approximating the characteristic curves of each motor with straight lines the value of the
torque deliverable by each motor at the maximum speed of 330 RPM can be graphically
obtained. This value is multiplied by the mechanical reduction to obtain the limit effort
since it represents the torque on the joints. These values of limit effort, reported here
6.3, are very conservative since the torque-speed curves of each motor are all monotonous
decreasing so, the joints will work at speed lower than the maximum one and the motor
would be able to provide torque higher than the one obtained at the maximum speed.

Joints name Limit effort [Nm]

r1 19.8
r2 19.8
r3 11.7
r4 6.9
r5 6.9

Table 6.3: Limit effort of each joint

6.3. MoveIt! motion planning

The MoveIt! motion planning package has the aim to generate the motion law that the
end effectors should follow to perform a desired task. To program the robot and making
it performing a desired task MoveIt! is able to process scripts written in Python or C++
or the robot can be programmed through a GUI as it is explained in [12].

As shown in Figure 6.8, the node move_group takes as input three parameters: the
URDF file (to be precise the xacro file in this case). The SRDF file which contains different
useful information like joint and link groups, pre-defined robot configuration, end effector
group, virtual joint, information on collision checking. This file is a product of the MoveIt!
setup assistant that will be explained later. The last input is the MoveIt! configuration
which is also generated by the MoveIt! setup assistant and contains different information
like joint limits, kinematics, motion planning etc. (these information are stored in the
config directory generated in the MoveIt! package).
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Finally, the move_group node communicate to the robot by means of topics, for instance
it listens on joint_state topic to have always information of the current robot state, it
also gets point clouds from the robot 3D sensors. Furthermore, it talks to the controllers
by means of the JointTrajectoryAction interface.

Figure 6.8: MoveIt! system architecture

6.3.1. MoveIt! Setup Assistant

MoveIt! Setup Assistant is a GUI used to configure a specific robot model for using it
with MoveIt!. It allows to generate the SRDF file and all the other configuration file
mentioned previously.

There are different steps that must be performed to configure the robot:

• Load the xacro file of the robot model.

• Generate self collision matrix.

This step exploits the collision meshes generated in the xacro file which are a sim-
plification of the shape of the different link. In fact, the number of triangles of the
meshes influences the computational time of collision checking. Checking for self
collision means investigate random robot poses and disable pair of links that are
always in collision, never in collision, adjacent, in collision already in the starting
pose. Disable some link from collision checking is useful because decreases the mo-
tion planning time. In this project has been used a sampling density of 10000 which
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is the default value and indicates the number of random robot poses to check for
self collision.

• Add virtual joint.

In this step a virtual joint is generated between the root link of the robot (the
dummy link: world) with respect to the world reference frame. This joint is fixed
because the robot in this project is attached to the world. Instead, for instance,
with a mobile robot the virtual joint should be a planar joint to allow the movement
of the robot on the plane.

• Planning groups.

Planning groups are a crucial aspect in MoveIt!, in fact MoveIt! acts on each single
group. So, it’s possible to plan the motion of one group while keeping the joints of
other groups stationary.

Considering the robot model with the gripper there are two groups: manipulator
and gripper. The manipulator group is created by considering the joints of the robot
arm. Instead, the gripper group is generated from the links of the gripper.

As shown in Figure 6.9, for the manipulator group is specified a kinematic solver
to solve the inverse kinematics: KDL kinematic plugin. This is the default inverse
kinematic solver and as explained in the article [9] the method consists in finding
the solution of the differential kinematics equation:

ṡ = J(θ)θ̇

the vector ṡ defines the velocity of the end effectors, J is the Jacobian matrix, θ̇ is
the vector with the angular velocity of the joints.

The solution of this equation is that of a linear least squares problem that minimizes:

||ṡ− J(θ)θ̇||

To minimize this value the Newton-Raphson method is used.

By the way, a user could implement its own solver, like the IKFast package, to
solve in a better and faster way the inverse kinematics. Furthermore, a planner
must be considered and in this case RRT is selected but when a precise task is
programmed it’s possible to specify the desired planner in the script. The user can
choose between different planner given by OMPL (Open Motion Planning Library).
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Just two algorithms: RRT, RRTstar are explained below, RRT is the one that
will be used for the pick and place program and it’s worth giving an explanation
of RRTstar because it derives from RRT. These planners are algorithms for path
planning, they allow to generate the geometrical path which the robot must follow to
perform a certain task. To generate the motion law MoveIt! takes in consideration
some kinematic parameter: max velocity of each joint predefined in the xacro file of
the robot model and max acceleration of each joint defined in the joint_limits.yaml
file obtained from the MoveIt! setup assistant.

Figure 6.9: manipulator group

RRT

RRT is a single query sample based algorithm, it works by generating a tree of nodes
and this is performed step by step, each step a random place in the workspace is
considered and the tree is expanded in the direction of this random place starting
from the nearest node to that position generating in this way a new node. The tree is
expanding till a node fall into the goal position and so a feasible trajectory that link
the starting position to the final one is found. This is not an optimum solution and
if the number of nodes increases the trajectory remains always the same. Looking
at Figure 6.10 it’s shown an example of RRT algorithm and is evident that the
trajectory obtained is not the optimum one.



128 6| ROS-based offline programming

Figure 6.10: RRT example

RRTstar

This algorithm has been generated from the RRT, basically it works in the same
way but it doesn’t stop at the first feasible trajectory that is found. But, increasing
the number of nodes, if another shorter trajectory is obtained this will be picked.
Clearly the trajectory found will not be the shortest since this happens with the
number of nodes tending to infinite. By the way, it’s an optimum solution. In
Figure 6.11 it’s possible to observe the trajectory obtained with RRTstar which is
much shorter than the one of Figure 6.10 obtained with RRT algorithm.

It is also possible to notice that the tree generated with RRTstar is different from
the one of RRT, in fact at each random pose considered a new node towards that
position is generated starting from the nearest node. But, the tree is expanding
to the new node not necessarily from the nearest node. In fact, each vertex has a
cost function which is its distance from the starting point. Once the new node is
generated an area with a certain radius, centered in the new node, is explored and
the node is connected to the vertex in this area with the minimum cost. In this way
the tree obtained is smoother but the problem is that it suffers from a reduction in
performance. Finding the optimum path requires more time.
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Figure 6.11: RRTstar example

• Define end effector group.

• ROS Control

In MoveIt! a position_controllers/JointPositionController type of
controller is chosen to control the joints of the manipulator.

6.3.2. MoveIt! GUI

Once the robot model has been configured in MoveIt!, it’s possible to plan some simple
movement by launching the code A.10 on page 204. In Figure 6.12 there is the robot
model with the gripper configured in MoveIt! and visualized by means of RViz. Then,
once the Motion Planning Plugin is loaded the user can start planning. By setting as
planning group the manipulator, the user can interact with the robot model by means
of the interactive marker and he can drag the robot in a feasible position. In this way,
he can define the initial and final position of a desired movement. Instead, by setting
as planning group the gripper the user can decide its configuration for instance picking
a close or open configuration which was defined in the MoveIt! setup assistant. Finally,
before planning and executing the movement the user can set in the context section which
algorithm of path planning the system must use. So, planning a movement in this way it
is very easy. Instead, a user with some coding experience can plan a more complex task
by programming in Python or C++ as will be explained in the next section.



130 6| ROS-based offline programming

Figure 6.12: MoveIt! GUI

6.3.3. Pick and place application

In this section the aim is to make a program of pick and place to move a box from one
position to another. This program is written in Python language and the result will be
the planning and execution of the pick and place motion law using MoveIt!. In this way,
the motion has been planned just considering the kinematics of the robot, the dynamics
will be considered once the planned motion is used to control a real robot or the virtual
model of the robot in Gazebo.

Below there is a general explanation of the code A.15 on page 209.

First of all, to write the program a list of modules must be imported to have access to
different useful functionality.

1 from copy import deepcopy

2 from moveit_msgs.msg import *

3 from moveit_commander import *

4 from trajectory_msgs.msg import JointTrajectoryPoint

5 import tf

6 from os import path

7 from time import strftime, localtime

8 from geometry_msgs.msg import *

9 import matplotlib.pyplot as plt

10 from matplotlib.figure import Figure, Axes, rcParams

11 from math import pi
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12 from tf.transformations import quaternion_from_euler

13 import os

Initialize the moveit_commander and a rospy node called plan_motion:

1 # Initialization of Moveit!

2 rospy.loginfo('Starting the Initialization')

3 roscpp_initialize(sys.argv)

4 # Initialization of the Node

5 rospy.init_node('plan_motion', anonymous=True, log_level=rospy.INFO)

Now, instantiate the robot object of the RobotCommander class which provides infor-
mation on the robot’s kinematic model and the robot’s current joint states. Instantiate
also the scene object of the PlanningSceneInterface class, this provides a remote interface
for getting, setting, and updating the robot’s internal understanding of the surrounding
world.

Then, instantiate two objects of the MoveGroupCommander class, these objects are in-
terfaces for the planning groups defined in the MoveIt! setup assistant which are the
manipulator and gripper groups for the robot of this project. These interfaces will be
used to plan and execute motions of the manipulator and gripper groups.

To perform path planning the user assign RRT algorithm for the manipulator and RRT-
Connect algorithm for the gripper. Furthermore, the number of time path planning is
performed from scratch before the shortest solution is returned is set to 1000 and the goal
tolerance is set to 0.01.

1 robot = RobotCommander()

2 scene = PlanningSceneInterface()

3

4 planner = "RRT"

5 group = MoveGroupCommander("manipulator")

6 group.set_pose_reference_frame("base")

7 group.set_planner_id(planner)

8 group.set_num_planning_attempts(1000)

9 group.allow_replanning(False) # Allow the replanning if there are changes

in environment

10

11 arm = "tool0"

12

13 group_gripper = 'gripper'

14 group_gripper2 = MoveGroupCommander("gripper")

15 group_gripper2.set_planner_id('RRTConnect')

16 group_gripper2.set_num_planning_attempts(1000)
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17 group_gripper2.allow_replanning(False)

18 group_gripper2.set_goal_tolerance(0.01)

To perform this task the user set an home position for the dummy link called tool0 placed
at the end of link3. The robot will go in the home position before performing the task
and once the task is completed. The position also contains information on the orientation
of the dummy link which is defined so that the gripper points downward and in this way
it has already the right orientation to pick the box. The orientation is defined with Euler
angles which are more intuitive but then a conversion in quaternions is needed.

1 # Home position

2 quaternion = tf.transformations.quaternion_from_euler(pi, 0, 0)

3 home_pos = [0.300, 0, 0.4, quaternion[0], quaternion[1], quaternion[2],

quaternion[3]]

In the program is also defined the TestBox class, different attributes are considered for
each object of this class like the name, its position in the space and its dimensions.
In particular a box with each side of 5 cm is defined. Furthermore, there are different
functions for this class like add_object to add a box in the space, remove_object to
remove it, attach_object which is associated to the gripper group and will be needed by
the robot to grasp the box and finally detach_object that will be useful to release the
box.

1 class TestBox:

2

3 def __init__(self, name, x=0.0, y=0.0):

4 self.name = name

5 self.x_dim = 0.05

6 self.y_dim = 0.05

7 self.z_dim = 0.05

8 self.pose_msg = PoseStamped()

9 self.pose_msg.header.frame_id = "base"

10 self.pose_msg.pose.position.x = x

11 self.pose_msg.pose.position.y = y

12 self.pose_msg.pose.position.z = 0

13

14 def add_object(self):

15 rospy.sleep(0.5)

16 scene.add_box(self.name, self.pose_msg, size=(self.x_dim, self.

y_dim, self.z_dim))

17 rospy.sleep(0.5)

18

19 def remove_object(self):

20 if scene.get_attached_objects(self.name):
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21 rospy.logerr('Object attached: check it please!')

22 else:

23 scene.remove_world_object(self.name)

24

25 def attach_object(self, arm):

26 touch_links = robot.get_link_names(group_gripper)

27 scene.attach_box(arm, self.name, touch_links=touch_links)

28 rospy.sleep(1.0)

29

30 def detach_object(self, arm):

31 scene.remove_attached_object(arm, self.name)

32 rospy.sleep(0.5)

Below, different functions are defined. The first one is called getting_joints_from_plan,
once a trajectory is planned this function allows to pick the value of the joints at the final
time instant so, provide the list of joints value at the end of the trajectory.

Then, there is the function: create_robotstate. This function allows to plan the motion
starting from the final state of the robot so, it allows to plan different motions in sequence.

The function evaluate_time provides simply the amount of time needed to plan a certain
motion.

1 def getting_joints_from_plan(plan):

2 # type: (RobotTrajectory) -> list

3 """

4 Provide the joints of the last point of the trajectory

5 :param plan: RobotTrajectory msg: Plan of a trajectory

6 :type plan: RobotTrajectory

7 :rtype: list

8 :return: List of joints of the end of the trajectory

9 """

10 positions = plan.joint_trajectory.points[-1] # type:

JointTrajectoryPoint

11 return positions.positions

12

13 def create_robotstate(plan):

14 """

15 Return a RobotState() msg of the end of a trajectory

16 :param plan: RobotTrajectory msg of the trajectory - planning

17 :type plan: RobotTrajectory

18 :rtype: RobotState

19 :return: robot_state: RobotState msg of the trajectory

20 """

21 if plan.joint_trajectory.points:
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22 # Creating a RobotState for evaluate the next trajectory

23 joint_state = JointState()

24 joint_state.header.stamp = rospy.Time.now()

25 joint_state.name = plan.joint_trajectory.joint_names

26

27 positions = getting_joints_from_plan(plan)

28 joint_state.position = positions

29 robot_state = RobotState()

30 robot_state.joint_state = joint_state

31 return robot_state

32 else:

33 raise RuntimeWarning("Error in creating the robotstate: points

empty")

34

35 def evaluate_time(plan, info=''):

36 """

37 It returns the time duration of the trajectory

38 :param plan: Plan msg of the trajectory

39 :type plan: RobotTrajectory

40 :param info: info about the time

41 :type info: str

42 :rtype: float

43 :return: duration time of the trajectory

44 """

45 # Check if the plan is not empty

46 if plan.joint_trajectory.points:

47 p_last = plan.joint_trajectory.points[-1] # type:

JointTrajectoryPoint

48 duration = p_last.time_from_start.to_sec()

49 rospy.loginfo('Estimated time of planning {}: {} s'.format(info,

duration))

50 return duration

51 else:

52 rospy.logwarn('The plan is empty')

53 duration = 2000.0 # penalty

54 return duration

Now, there are the functions which define the different kind of motions that the robot will
be able to perform. The home function allows to make the manipulator go in the home
position.

The function picking plans two motions: with the pick motion the robot goes above the
box in a position in which the gripper is able to grasp the box without compenetration
and then with the homing motion the robot goes back in the home position.
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The function placing also plans two motions: with the plan motion the robot goes from
the home position to where the box must be placed and then with the return home motion
it goes back in the home position.

Finally, the functions opening and closing make the fingers of the gripper open or close
to release or grasp the box.

1 def home():

2 rospy.loginfo('home')

3 group.set_pose_target(home_pos, arm)

4 plan = group.plan()

5 home_duration = evaluate_time(plan, "homing")

6 group.execute(plan)

7 group.stop()

8 return home_duration

9

10 def picking(obj, arm, info=''):

11 # type: (TestBox, str, str) -> List[float, RobotTrajectory,

RobotTrajectory]

12 """

13 Wrapper for picking

14 :param obj: Object to pick

15 :param arm: Arm used

16 :param info Info about what is doing

17 :rtype: list[float, RobotTrajectory, RobotTrajectory] or tuple[float,

RobotTrajectory, RobotTrajectory]

18 :return: Duration time for picking and RobotTrajectories for picking

19 """

20 pose_P = deepcopy(obj.pose_msg)

21 pose_P.pose.position.z += 0.15

22 pose_P.pose.orientation.x = quaternion[0]

23 pose_P.pose.orientation.y = quaternion[1]

24 pose_P.pose.orientation.z = quaternion[2]

25 pose_P.pose.orientation.w = quaternion[3]

26

27 group.set_pose_target(pose_P, arm)

28 pick = group.plan()

29 # Evaluate the time for picking

30 t1 = evaluate_time(pick, info + "_t1")

31 if pick.joint_trajectory.points:

32 # Creating a RobotState for evaluate the next trajectory

33 robot_state = create_robotstate(pick)

34 group.set_start_state(robot_state)

35 group.set_pose_target(home_pos, arm)

36 homing = group.plan()
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37 # Evaluate the duration of the planning

38 t2 = evaluate_time(homing, info + "_t2")

39 return [(t1 + t2), pick, homing]

40 else:

41 rospy.logerr('Planning failed')

42 pass

43

44 def closing():

45 rospy.loginfo('closing')

46 joint_goal = group_gripper2.get_current_joint_values()

47 joint_goal[0] = 0.0

48 group_gripper2.go(joint_goal, wait=True)

49 group_gripper2.stop()

50

51 def placing(obj, info=''):

52 # type: (TestBox, str) -> List[float, RobotTrajectory, RobotTrajectory]

53 place_pos = [0, 0.3, 0.1, quaternion[0], quaternion[1], quaternion[2],

quaternion[3]]

54 group.set_pose_target(place_pos, arm)

55 placePlan = group.plan() # type: RobotTrajectory

56 # Evaluate the time of the trajectory

57 t1 = evaluate_time(placePlan, info + "_t1_placing")

58 if placePlan.joint_trajectory.points:

59 # Creating a RobotState for evaluate the next trajectory

60 group.clear_pose_targets()

61 place_state = create_robotstate(placePlan)

62 group.set_start_state(place_state)

63 group.set_pose_target(home_pos, arm)

64 return_home = group.plan() # type: RobotTrajectory

65 t2 = evaluate_time(return_home, info + "_t2_placing") # type:

float

66 return [(t1 + t2), placePlan, return_home]

67 else:

68 raise RuntimeWarning("Error: Planning failed for placing")

69

70 def opening():

71 rospy.loginfo('opening')

72 joint_goal = group_gripper2.get_current_joint_values()

73 joint_goal[0] = 0.025

74 group_gripper2.go(joint_goal, wait=True)

75 group_gripper2.stop()

Finally, there is the function run in which the planning and execution of the pick and
place task is performed exploiting what has been defined above.
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Once all the objects in the space are removed a box is added in the space in the position:
(x=0.3m, y=0, z=0). The sequence of motion planned and executed are: the robot goes
in the home position by calling the function home, with the function pick it goes above
the box and very close to it, using the function attach_object the box is attached to the
gripper and so can be picked up. Then, with the function closing the fingers of the gripper
close and with homing the robot goes back in the home position with the box attached to
the gripper. Now, there is the place function so the robot goes in the position where the
box must be placed, with opening the fingers of the gripper open and with detach_object
the box is released. Finally, the robot goes back in the home position with the function
return home.

1 def run():

2 # Remove detached object

3 if scene.get_attached_objects():

4 scene.remove_attached_object(arm)

5

6 # Remove all the objects

7 scene.remove_world_object()

8 rospy.sleep(1.0)

9

10 # Add the test box

11 B = TestBox('box', x=0.3, y=0)

12 rospy.loginfo('Placing box')

13 rospy.sleep(0.5)

14

15 # Setting up the test box

16 B.add_object()

17 rospy.sleep(2.0)

18

19 # Going home

20 group.set_start_state_to_current_state()

21 home()

22

23 # # Evaluate the time for the arm cycle

24 (t1, pick, homing) = picking(B, arm, info="pick\t")

25 home_robotstate = create_robotstate(homing)

26 group.set_start_state(home_robotstate)

27 (t2, place, return_home) = placing(B, info="place\t")

28

29 # Create the initial state after placing the tube

30 return_home_state = create_robotstate(return_home)

31 group.set_start_state(return_home_state)

32
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33 # Execute Picking

34 group.execute(pick)

35 group.stop()

36

37 # Attach Test box

38 B.attach_object(arm)

39 closing()

40

41 group.execute(homing)

42 group.stop()

43

44 # Execute Placing

45 group.execute(place)

46 group.stop()

47 opening()

48 B.detach_object(arm)

49

50 group.execute(return_home)

51 group.stop()

In the Figure 6.13 is possible to read on the terminal the time needed to plan the different
motions. Around 3 seconds are required to plan the motion of the robot that move from
the initial position in which it is vertical to the home position. The function picking is
composed by two motions as written above and both movements require 2 seconds to be
planned. Then, also the function placing is composed by two motions and in this case
both movements take 2.6 seconds to be planned.

Figure 6.13: Pick and place
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Below, there are the plots of the motion law of different movements: the pick and homing
motions which are defined in the function picking. Then, the place and return home
motions defined in the function placing.

These plots represent how the position, velocity and acceleration of the revolute joints of
the manipulator change to perform the movements explained above.

For instance, from the plot of the pick motion is highlighted that just the joints j3 and j5
change significantly to perform this motion.

Furthermore, looking at both the pick and homing plots the behaviour of the joints
position is the same but during the pick phase the motion is performed in one direction
instead during the homing phase the motion goes in opposite direction. In fact, the initial
and final positions of the pick motion are respectively the final and initial positions of the
homing motion. This can be pointed out also looking at the velocity and acceleration of
the two plots, the behaviour of these quantities is the same but just with opposite sign.
This characteristic is present also for the place and return home motions.

Finally, looking at the velocity plots the limit of 1 rad/s defined in the xacro file is
respected. Looking at the acceleration plots also the limit of 1 rad/s2 which is set by
default is respected.

Figure 6.14: Pick
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Figure 6.15: Homing

Figure 6.16: Place
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Figure 6.17: Return home

6.4. Gazebo modelling

Gazebo is a 3D dynamic simulator and allows to test different programs on the virtual
robot [8]. Since also the dynamic of the robot is considered the behaviour of the actual
robot can be reproduced. The presence of this simulation environment is one of the
advantages of offline programming since it allows to test and refine the programs on the
virtual robot without stopping the actual one and so keeping it active without wasting
time and money. Here is explained how to launch and control the multibody model in
Gazebo both for the robot model with the gripper and for the one which represents the
real robot.

6.4.1. Robot model with gripper

Xacro file in Gazebo

First of all, there is the need of adding the following lines of code to the xacro file of the
robot model (A.5 on page 189) to allow the interaction between ROS and Gazebo giving
the chance of controlling the robot. This is the plug in that has been added:

1 <gazebo>

2 <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">



142 6| ROS-based offline programming

3 <robotNamespace>/lucabot</robotNamespace>

4 </plugin>

5 </gazebo>

Then, to consider the dynamic of the robot, mass and inertia of each link have been added
as explained in the section above: Manipulator model.

Furthermore, for each non-fixed joint of the robot a transmission is needed. This allows
to describe the relationship between actuator and joint. For instance, in the following
lines is present the transmission related to the first revolute joint (r1). The hardware
interface is an EffortJointInterface because the controller related to this joint is of type
effort_controllers/JointPositionController as it will be shown later. Fi-
nally, in the actuator tag the mechanical reduction is defined at the joint actuator trans-
mission and it is set to 35 for each joint.

1 <transmission name="tran1">

2 <type>transmission_interface/SimpleTransmission</type>

3 <joint name="r1">

4 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

5 </joint>

6 <actuator name="motor1">

7 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

8 <mechanicalReduction>35</mechanicalReduction>

9 </actuator>

10 </transmission>

Gazebo environment

In this section is explained how to build the Gazebo environment and, in particular,
lucabot.world (A.12 on page 207) is the file in which the environment is defined.

In the environment static objects can be included. For instance, a table has been added
on which the robot is placed. Furthermore, the sun is included to have a good lighting.
This kind of environment can be seen in Figure 6.19.

ROS Control + Gazebo

To control the virtual robot in the Gazebo simulation ROS control is exploited.

As is shown in Figure 6.18 the controllers take as input the joint state data coming from
the Joint State interface and typically it uses a control loop feedback mechanism like a
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simple PID control logic. The other input of ROS control is the motion law of the joints
planned in MoveIt!. These inputs allow to obtain the error between the desired joint
values and the actual one. Instead, the output of ROS control is an effort sent to actuate
the joints.

Figure 6.18: ROS Control + Gazebo

To define the controllers that are needed in the Gazebo environment two configuration
files must be created:

robot_controllers.yaml

This file (A.13 on page 207) presents the type of controllers and the respective gains for
each joint.

In the following lines of code it’s shown how to define the controller for the first revolute
joint, the other controllers for the joints of the group manipulator are not reported here
because are defined in the same way.

1 joint1_position_controller:

2 type: effort_controllers/JointPositionController

3 joint: r1

4 pid: {p: 10000.0, i: 0.5, d: 1.0}
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The type of controller: effort_controllers/JointPositionController takes
as input the position of the joint and gives in output the force/torque to the joint.

Then, for the gripper, the controller is defined just for the joint of the left finger, this is
due to the presence of mimic joint.

These are the lines of code associated to this controller:

1 gripper_controller:

2 type: position_controllers/JointTrajectoryController

3 joints:

4 # Check "test" is the name parameter

5 - test_body_finger_l_joint

6 constraints:

7 goal_time: 0.6

8 stopped_velocity_tolerance: 0.05

9 gripper_finger_joint: { trajectory: 0.2, goal: 0.2 }

10 stop_trajectory_duration: 0.5

11 state_publish_rate: 125

12 action_monitor_rate: 10

As shown above the controller is of type: position_controllers/JointTrajectoryController.
There are also some parameters that must be specified for this type of controller like:

• goal time: the gripper follows the trajectory with success if it reaches the goal in
0.6 seconds.

• stopped velocity tolerance: the maximum velocity at the end of the trajectory for
the joint to be considered stopped.

• joint goal: position tolerance to reach the goal.

• joint trajectory: position tolerance throughout the trajectory.

• stop trajectory duration: time to bring current state to a stop.

• state publish rate: frequency of publication of controller state.

• action monitor rate: frequency at which the action goal status is monitored.

gripper_gains.yaml

In this file (A.14 on page 208) there are simply specified the gains of the controllers for
the gripper. Here below just the gains of the left finger joint are present because the one
for the right finger are the same.

1 pid_gains:
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2 test_body_finger_l_joint:

3 p: 200.0

4 i: 0.1

5 d: 0.0

6 i_clamp: 0.2

7 antiwindup: false

8 publish_state: true

Gazebo simulation

In the previous sections different files have been defined, these are exploited and launched
in another file called lucabot.launch which is reported in the listing A.11 on page 206.
In this file the environment is defined by launching lucabot.world, the robot model is
considered by exploiting the xacro file which has been modified to adapt it to the Gazebo
simulation. Finally, also the controllers defined above are loaded in this file.

In the Figure 6.19 is shown the robot in the Gazebo environment.

Figure 6.19: Gazebo simulation

Then, it’s possible to change the position of the revolute joints of the manipulator group
by exploiting rqt tool (Figure 6.20). This tool can be used to publish the value of the
joint on the topic associated to the specific joint. For instance, to change the position
of the first revolute joint it’s simply required to publish the desired value on the topic
joint1_position_controller.
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Figure 6.20: rqt

Finally, to control the joint of the gripper, the tool joint trajectory controller, shown in
Figure 6.21, can be used. First of all, select the controller (gripper controller) and enable
it. Then, it’s possible to select the value. In this case, for the gripper, the controller acts
only on the left finger joint since the right finger joint moves simultaneously and in the
same way thanks to the mimic joint.

Figure 6.21: joint trajectory controller

6.4.2. Robot model of real robot

As explained here 6.4.1 on page 141 also for the model of the real robot a plugin to allow
the interaction between ROS and Gazebo is needed and also the transmissions related to
each joint must be added.
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Furthermore some additional modifications must be performed to the xacro file of the real
robot (A.16 on page 218), taking in consideration the sources [12] and [10]:

• Add damping to each joint

1 <dynamics damping="1.0"/>

• Add friction forces in order to have realistic dynamics

1 <xacro:macro name="lucabot_gazebo" params="name">

2 <gazebo reference="${name}_body">

3 <material>Gazebo/White</material>

4 <mu1>0.2</mu1>

5 <mu2>0.2</mu2>

6 </gazebo>

7 </xacro:macro>

• Overwrite the ros_controller.yaml file automatically generated by the MoveIt! setup
assistant with the following snippet (A.20 on page 227). In generating this file pay
attention to the namespace in which you work, in this case it is called lucabot. In this
file the controller is defined for each joint, in particular the type is effort_controllers/
JointTrajectoryController so, ROS control takes in input the position+velocity tra-
jectory and give in output the torque that actuate each joint. Also the gains are
defined, PID controller are used with the following values: p:100, d:1, i:0.1.

1 # MoveIt-specific simulation settings

2 moveit_sim_hw_interface:

3 joint_model_group: controllers_initial_group_

4 joint_model_group_pose: controllers_initial_pose_

5 # Settings for ros_control control loop

6 generic_hw_control_loop:

7 loop_hz: 300

8 cycle_time_error_threshold: 0.01

9 # Settings for ros_control hardware interface

10 hardware_interface:

11 joints:

12 - r1

13 - r2

14 - r3

15 - r4

16 - r5

17 sim_control_mode: 1 # 0: position, 1: velocity

18 # Publish all joint states

19 lucabot:

20 # Creates the /joint_states topic necessary in ROS
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21 joint_state_controller:

22 type: joint_state_controller/JointStateController

23 publish_rate: 50

24 lucabot_arm_controller:

25 type: effort_controllers/JointTrajectoryController

26 joints:

27 - r1

28 - r2

29 - r3

30 - r4

31 - r5

32 gains:

33 r1: { p: 100, d: 1, i: 0.1, i_clamp: 0.1 }

34 r2: { p: 100, d: 1, i: 0.1, i_clamp: 0.1 }

35 r3: { p: 100, d: 1, i: 0.1, i_clamp: 0.1 }

36 r4: { p: 100, d: 1, i: 0.1, i_clamp: 0.1 }

37 r5: { p: 100, d: 1, i: 0.1, i_clamp: 0.1 }

38

39 constraints:

40 goal_time: 2.0

41 state_publish_rate: 25

42

43 controller_list:

44 - name: lucabot/lucabot_arm_controller

45 action_ns: follow_joint_trajectory

46 type: FollowJointTrajectory

47 default: true

48 joints:

49 - r1

50 - r2

51 - r3

52 - r4

53 - r5

54

• Adjust the file ros_controller.launch by loading the controllers in this way and
paying attention to the namespace (A.23 on page 231):

1 <!-- Load the controllers -->

2 <node name="controller_spawner" pkg="controller_manager" type="

spawner" ns="/lucabot" respawn="false"

3 output="screen" args="--namespace=/lucabot

4 joint_state_controller

5 lucabot_arm_controller

6 --timeout 20"/>
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7

Now, it is possible to launch the file gazebo.launch (A.22 on page 231) to obtain the multi-
body model of the real robot in the Gazebo simulator. This file is generated automatically
by the MoveIt! setup assistant and running the rqt_joint_trajectory_controller a GUI
appears which enable the user to move each joint as shown in Figure 6.22.

Figure 6.22: Real robot model in Gazebo

6.5. Dynamic simulation integrating Gazebo into MoveIt!

In this section the aim is to launch the real robot model in MoveIt! and Gazebo at the
same time. In this way a task can be planned in MoveIt! and can be executed by the
multibody model in Gazebo. So, the user can try to plan a task and verify if the multibody
model which reproduce the dynamic behaviour of the real robot is able to perform it.

Furthermore, we will see how to get the torque that actuate each joint during the execution
of a movement.

The different adjustments made in the section 6.4.2 are needed also to integrate Gazebo
with MoveIt!. To execute these two environments at the same time the file demo_gazebo.launch
obtained automatically by the MoveIt! setup assistant must be launched (A.24 on page 232).
By the way, a little change is performed: the parameter source list of joint_state_publisher
must be prefixed by the namespace.

1 <node name="joint_state_publisher" pkg="joint_state_publisher" type="

joint_state_publisher" unless="$(arg use_gui)">
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2 <rosparam param="source_list">[move_group/fake_controller_joint_states]

</rosparam>

3 <rosparam param="source_list">[lucabot/joint_states]</rosparam>

4 </node>

5 <node name="joint_state_publisher" pkg="joint_state_publisher_gui" type="

joint_state_publisher_gui" if="$(arg use_gui)">

6 <rosparam param="source_list">[move_group/fake_controller_joint_states]

</rosparam>

7 <rosparam param="source_list">[lucabot/joint_states]</rosparam>

8 </node>

So, launching the demo_gazebo.launch file the model pop up both in MoveIt! and Gazebo.
In particular, we make the robot go from the initial pose shown in Figure 6.23 to the final
one shown in Figure 6.24. For these two poses the information on the joints value and
effort to keep the configuration are reported in the following Tables 6.4 and 6.5. To
perform this movement in the xacro file a limit value of joint velocity is set at 1 rad/s
and in the joint_limits.yaml file obtained from the MoveIt! setup assistant the limit in
the acceleration is set at 0, 3927 rad/s2

Joints name Initial joint values [deg] Initial effort [Nm]

r1 16.73 8.71e− 05

r2 87.11 -3.37
r3 -29.90 -1,16
r4 148.95 0.08
r5 62.18 -0.02

Table 6.4: Initial pose information of a simple movement

Figure 6.23: Initial pose
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Joints name Final joint values [deg] Final effort [Nm]

r1 -87.81 0.00
r2 74.60 -2.01
r3 -74.91 0.12
r4 -29.99 0.00
r5 -48,62 0.13

Table 6.5: Final pose information of a simple movement

Figure 6.24: Final pose

Finally, we plot the torque that actuate each joint to go from the starting position to the
final one. To do this rqt is used and in particular is considered the topic joint_states.
From this topic the message related to the effort is plotted which is an array of 5 elements
since 5 are the joints of the robot.

Figure 6.25: Torque plot
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From the Figure 6.25 which represents the torque plot, it’s possible to notice that the
limits effort of each joint are respected throughout the whole movement. In particular,
it is evident that joint 4 reaches the limit value of effort equal to 6.9 to perform the
movement. The limits effort are assigned in the xacro file of the model of the real robot
and they are reported in the Table 6.3.
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7.1. Results

7.1.1. Cost estimation

The estimation of the total cost of parts and items used to built the robot are given
hereafter. The prices reported are to be considered as at the time of writing this document.

Prices are reported as someone wants to individually source the components to build its
own robot, as happens in many DIY projects that can be found on the Internet.

In Table 7.1 a summary of the cost VAT included is provided, while in the following a
more detailed overview for each main category is given.

Category Total cost
Motors and drivers 770e

3D printing overheads 85e
Material 145e
Bearings 80e

Hardware and fasteners 50e
Potentiometers and ADCs 155e

Spares 150e

TOTAL 1435e

Table 7.1: Cost per category

Stepper motors and stepper drivers

As said elsewhere in this thesis work, motors and stepper drivers were given free of charge
as samples from the frim RTA. Anyway, just doing an internet research of the codes, the
product page on RTA eStore appears also containing the cost of the item. In Table 7.2
are reported the prices for one item of each code. Prices are to be considered as at the
time of writing this document and are given without VAT.
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Joints Motor code Price
J1 103-H7123-5040 39.10e+VAT
J2 103-H7123-5010.B 118.50e+VAT
J3 103-H5210-4512.B 113.60e+VAT
J4 103-H5205-4240 22.50e+VAT
J5 103-H5205-4240 22.50e+VAT
J6 103-H5205-4240 22.50e+VAT

Total 338.70e+VAT

Table 7.2: Motor prices

BSD 02.V stepper driver board were used and a total of 6 boards are needed. The
unit price for purchasing quantity bigger than 2 pieces is 48.80e+VAT, for a total of
292.80e+VAT.

We reckon that these motors are very expensive for such an application. Anyway, these
motors and drivers are industry grade and hence of high quality. Consumer stepper motors
can be sourced elsewhere to limit the cost but feature like the brake can be lost.

3D printing overheads

To better estimate the cost of the realized prototype, overhead costs should be considered.
Among these costs there are for sure depreciation and cost for electricity.

About depreciation we can imagine that a 3D printer can have an expected lifespan of
five years. After this period it is reasonable to think that technological obsolescence will
occur nullifying the market value of the printer. We can also imagine, similarly to what
actually did, to use the 3D printer 5 days a week continuously for 24 hours (weekend is
not available due to lack of surveillance for two full days). Therefore, a total of 31200h
of lifespan is expected. The cost of the 3ntr A4v3 printer used is not known and could
not be found on the Internet but, being and Industry grade machine, we can hypothesize
that the price would have ranged around 10.000e. The Prusa MK3S+ used has a price
of around 1000e. Even if the Prusa is capable of realizing all the parts of the robot (it
has big enough build volume and high enough precision), we consider a professional 3D
printer in the range of 3000e for the calculations. Hence, the hourly cost for depreciation
is 0.096e/h. Total printing time is estimated around 400h and thus the cost is 38e.

For what concerns electricity cost, since a power meter was not available, an estimation
on the consumed power is done considering the data available on the machine. The man-
ufacturer state a peak power consumption of 1150W, and it is reasonable to consider an
average power consumption (once the heated bed and chamber are at regime temperature)
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of 50% the peak one (maintain the chamber heated required much power). Considering
0.19e/kWh the total cost for energy is 43.70e.

3D printing filament

Estimation of the price for the ABS filament used is done considering an average price of
filament spools found on the Internet and for the quantity the sum of the used material for
each part. Total weight of filament is almost 2.5kg (not including support material). The
3ntr printer used SSU0 filament to print support material. We estimate that around 1kg

of support material to be generated by the slicer. Since no information about this type of
polymer was found (available retail channel and price) we consider to use ABS filament
also for support material, therefore approximately 3.5kg of ABS filament are required.
Filament spools are sold typically in 1kg so at least 4 spools are needed. Considering an
indicative price of 20e/kg, filament would cost 80e VAT included. Estimation of material
cost depends on where the filament is sourced, the quality of the material and the chosen
color.

For other parts PETG and TPU were used, respectively around 25e/kg and 40e/kg. Con-
sidering one spool of 1kg each (even if the whole spool won’t be used), we need to add
65e VAT included.

3D printing filament would cost around 145e VAT included.

Bearings

The cost of bearings depends on where they are sourced and their quality. Considering the
application, high quality bearings are overkilled so branded ones are not strictly necessary.
Purchasing unbranded bearings on the mainstream eCommerce is fine. In Table 7.3 are
reported the prices VAT included of the bearings codes considering an average of the
products available on one of the most famous eCommerce that allows for fast shipping.
Purchasing from Asian eCommerce equivalent products allows for further savings but the
shipping time increases significantly.

For the prototype build in the University laboratory we purchased branded bearings from
seller having an agreement with the University. Consequently, the cost for bearings was
much higher. We don’t reported the actual cost because we reckon it would be misleading.
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Bearing code Unit cost Quantity Total
61810-2RS 7.25e/pc 6 43.50e
61805-2RS 2.14e/pc 12 25.70e

624ZZ 0.99e/pc 12 11.88e
Total 81.10e VAT included

Table 7.3: Cost for bearings

Hardware and Fasteners

The cost of fasteners highly depends on where parts are sorted. Again, unbranded and
low performance screws are enough for the application, since the plastic would break
before the fasteners. On the mainstream eCommerce platforms assorted sets of screws
and nuts are available. Therefore, one should select the best combination and the price
varies consequently. A rough high-ball estimate is around 50e VAT included.

Potentiometers and ADCs

The used potentiomenters are of high quality and this affects the cost. They were pur-
chased on a famous online retailer of electronics that has an agreement with the Uni-
versity. The unitary cost was at the time of purchasing 18.796e/pc+VAT for a total of
93.98e+VAT.

For potentiometers dedicated ADCs are required as said in Section . ADS1115 16bit 4
channel ADC was selected. Since the robot has 6 joints, 2 ADS1115 boards are required.
An indicative price for one ADC is 20e, therefore 2 boards for 8 channels are around
40e VAT included. Spare channels can be used for external sensors.

Other electronics and spares

Here is reported a non exhaustive list of other items that would be need to build the robot
but that can be already available or are not necessary.

• An Arduino MEGA board.

• A power supply (24V 15A to have safety margin). The type used in 3D printers is
fine.

• Relay module 24V − 5V to be commanded by Arduino to release stepper motors
brakes.

• Electrical wires to extend the motor wires (phases and brakes) and for supplying
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the stepper driver board. Gauge 22 wires are needed for NEMA23 stepper motors
phases and gauge 20 wire for J2 brake wires (22 gauge is fine too). For NEMA17
stepper motors thinner wires are needed.

• Wires to supply the potentiometers and for signal. Since 5V supply is used Arduino
cables can be used.

• Electric connectors (self-soldering and heat shrink) to extend motor wires.

• Mammoth terminal block for power distribution. Since a PCB is not used, to safely
perform a parallel circuit between all stepper drivers this kind of blocks were used.
They are also useful to share GND and 5V from the Arduino board without using
a breadboard, since Arduino has few pins dedicated to power supply.

• Male Dupont terminal connectors to connect signal wires from potentiometers to
Arduino pins.

For all this electric equipment and electronics 150e maximum are required.

7.1.2. Limits to range of motion

Limits of joint J2

As said we experienced a failing meshing when we actuated the joint J2 with only the
link L1 attached to it. We noticed that the loss of the meshing was happening when the
joint was overcoming the weight force while when in favor of gravity it did not happen.
This suggests that when the motor lifts the link the wave generator starts to turn freely
on the flexible spline causing the link to fall instead of rising. This happens as soon as
the link L1 is at a critical angle from the vertical position. We managed to have a smooth
motion up to 25deg from the vertical position considering the original design of the HD
(circular spline with semicircular teeth and 3D printable flexible spline).

We also performed some empirical and qualitative tests to see whether it was the stepper
motor that was losing steps, whether it was the set screw on the mounting hub that
was losing grip on the motor shaft or was indeed the flexible spline failing meshing. We
opened one HD keeping only the flexible spline, circular spline and the wave generator and
gripped the first component till slip of the meshing occurred. With the original circular
spline design we noticed that the required torque to induce slipping was indeed very low,
but we could not quantitatively measure it. Instead with the modified circular spline
with HTD3M complementary teeth profile the torque to induce slip feels higher (again no
quantitative data could be acquired). We excluded that the set screw on the mounting
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hub was failing because after slipping of the flexible spline it was always resting on the
flat side of the NEMA stepper. To exclude the step loss of the motor itself we set a very
low acceleration for the movement and when it was required to lift the first link the issue
still occurred. We want to remark that the sound the drive produced while failing was
giving a clear clue on what was happening but for the sake of completeness we performed
these test to exclude other causes.

We want to state clearly that the harmonic drive was not tested under load before the
beginning of this thesis work. A parallel activity was run to create a test bench for the
characterization of the drive, but no results were given before we faced the issue before
described.

Tests on J2 harmonic drive

We tried first different combinations between circular spline and modified flexible spline to
understand if meshing would be improved without increasing stress on the flexible spline
with a wider wave generator. Results are reported in Table 7.4.

Circular spline
Original

semi-circular
teeth

HTD3M
complementary

teeth

Flexible
spline

Original S3M
belt

J2 fails at 20deg
with only Link

1

J2 fails at 20deg
with Link 1 and

Joint 3

HTD3M belt as
single piece

J2 fails at 25deg
with only Link

1

J2 fails at 30deg
with Link 1 and

Joint 3

HTD3M TPU
-modified

J2 fails at 20deg
with only Link

1

J2 fails at 30deg
with Link 1 and

Joint 3
HTD3M half
PETG half

TPU - modified

J2 fails at 25deg
with only Link

1

J2 fails at 30deg
with Link 1 and

Joint 3

HTD3M PETG
- modified

J2 fails at 45deg
with Link 1 and

Joint 3

J2 fails at 65deg
with Link 1 and

Joint 3

Commercial
HTD3M belt

NOT TESTED
NOT

RELEVANT

NOT TESTED
NOT

RELEVANT

Table 7.4: Results of tests on Joint 2 using original wave generator wheelbase.
Comparison between different combinations of flexible spline and circular spline.
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As it is possible to see, the most promising combination is with the HTD3M circular
spline and PETG modified flexible spline. Moreover, it’s clear that the complementary
HTD3M teeth profile introduces a big improvement because the weight lifted and the
maximum angle of Joint 2 are always bigger than the results obtained with the original
circular spline.

Since no solution was definitive we tried with wave generators having progressively in-
creasing wheelbase. The most interesting results were obtained with increased distance
of +0.50mm, +0.80mm and +1.00mm.

Now, it is necessary to distinguish between the improvements introduced by the two best
components separately.

We first fixed the PETG modified flexible spline and compared original and modified
circular splines increasing the generator wheelbase. If the flexible spline made of PETG
has much more importance that the modified circular spline, then original and modified
circular splines would have very similar performance when increasing the wave generator
wheelbase. Results are reported in Table 7.5.

Circular spline

Original
semi-circular teeth

HTD3M
complementary

teeth

Increase
in wave
genera-
tor
wheel
base

+0.50mm
J2 fails at 80deg
with Link 1 +

Joint 3

J2 fails at 70deg
with Link 1 +

Joint 3 + half Link
2 + Joint 4

+0.80mm

J2 fails at 80deg
with Link 1 +

Joint 3 + half Link
2 + Joint 4

J2 achieves 90deg
with Link 1 +

Joint 3 + half Link
2 + Joint 4

+1.00mm
Flexible spline

broke
Flexible spline

broke

Table 7.5: Results of tests on Joint 2 using the PETG modified flexible spline with
HTD3M teeth. Comparison between original and modified circular splines increasing
wave generator wheelbase.

We increased this distance up to 1.00mm and this value was the limit one because it caused
the rupture of the flexible spline. The failure was in practices static (very few cycles of
periodic shear stress were performed). The broken flexible spline showed a fracture along
the layers and several splits perpendicular to the layers (Figure 7.1).
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Figure 7.1: Broken flexible spline

Hence, it’s not possible to affirm the cause of the failure. There are two possibilities:

1. the applied torque on the output flange was too high for the layer adhesion and so
the part sheared before fracturing also perpendicularly to the layers.

2. the pressing force was too high and this caused the toothed section to split open
and then the layers sheared when hit by the wave generator.

Anyway, looking the results in Table 7.5, we see that when using +0.80mm wheelbase the
two circular splines perform quite similarly, thus the flexible spline has more importance.

As a check, we fixed the modified circular spline and compared all the other designs of the
flexible spline available, increasing the wave generator wheelbase. Results are reported
in Table 7.6. Since with the previous set of test +1.00mm cause the fracture of the 3D
printed flexible spline, we tested with this increase of wheelbase only the commercial
flexible spline. If the modified circular spline has more importance than the modified
flexible spline, then all the typologies of flexible spline (hard plastic and soft rubber)
would perform quite similarly when increasing the wave generator wheelbase.
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Increase in wave generator wheel base
+0.50mm +0.80mm +1.00mm

Flexible
spline

Original S3M
belt

NOT
RELEVANT

NOT
RELEVANT

J2 fails at
40deg with
Link 1 and

Joint 3

HTD3M belt
as single

piece

J2 fails at
20deg with
Link 1 and

Joint 3

NOT
RELEVANT

NOT APPLI-
CABLE

HTD3M
TPU -

modified

NOT
RELEVANT

J2 fails at
45deg with
Link 1 and

Joint 3

NOT APPLI-
CABLE

HTD3M half
PETG half

TPU -
modified

NOT
RELEVANT

J2 fails at
55deg with
Link 1 and

Joint 3

NOT APPLI-
CABLE

HTD3M
PETG -
modified

J2 fails at
70deg with
Link 1 +
Joint 3 +

half Link 2 +
Joint 4

J2 achieves
90deg with
Link 1 +

Joint 3 + half
Link 2 +
Joint 4

Flexible
spline broke

Commercial
HTD3M belt

NOT
RELEVANT

J2 achieves
90deg with
Link 1 +

Joint 3 + half
Link 2 +
Joint 4

Harmonic
drive

completely
blocks when

loaded

Table 7.6: Results of tests on Joint 2 using the circular spline with HTD3M complementary
teeth. Comparison between different combinations of flexible splines and increased wave
generator wheelbase.
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The solutions with hard plastic flexible spline and commercial HTD3M belt, using for
both the circular spline with complementary HTD3M teeth profile and wave generator
with +0.80mm wheelbase were further tested to establish the best flexible element for this
robot. We loaded the joint J2 with the full weight of the arm (from joint J3 on, no J6 and
payload) mounting the link L3 to be always vertical so that there is no lever arm. The
commercial HTD3M belt can only withstand around 35 ÷ 40deg from vertical position,
then the wave generator starts spinning freely on the belt. The 3D printed hard plastic
flexible spline can instead reach 90deg and go back up.

Given the results above, we can state that having a flexible spline made of hard plastic is
more important than having a circular spline with complementary teeth profile. Anyway,
the combination of both is the only one that promise a decent range of motion of the full
robot arm.

We also reckon that teeth made of TPU are too soft to withstand the compression of the
wave generator with increased wheelbase. The flexible splines made of TPU fail meshing
because the shape of the teeth cannot be maintained and therefore they slip on the circular
spline.

Commercial HTD3M rubber belt are radially more rigid than TPU ones and this avoid
slipping, but friction comes too high and the HD can block if a too high interference is
introduced with the wave generator.

7.1.3. Arduino library concerns

Rotation speed of the stepper motor resulted not to be so straightforward. We consider
that there may be some incompatibility between the stepper driver board from RTA and
the Arduino library used. In fact, during simple tests we were not able to approach the
maximum speed reported on the manufacturer datasheet. Anyway, the maximum speed
set for the robot arm was achieved and accurate.

Moreover, if two commands to move a joint are sent one after the other without a sufficient
pause in between, the two movements are not blended but the motor tries to brake and
then suddenly it accelerates again causing noise and vibration of the arm.

The library can be modified to make it leaner and to have full control on what the code
does. In this way it would take up less memory on the microcontroller. Moreover, it
would be of advantage to write code ad hoc for the RTA stepper driver since the Arduino
library only consider consumer stepper driver (A4988, DRV88xx). In fact, RTA drivers
have some functionality activable by the pinout that cannot be currently used. Lastly,
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it would be useful to develop a custom library to implement features like embedded
rotation sensing, automatic homing procedure and guided calibration routine without
need of further computation devices or many Arduino sketches. This task was out of the
competencies of the writer and is not compulsory, thus is left for future work.

7.1.4. Structural concerns

During testing of the robot, as the weight of the arm increased adding more and more
links, we notice a significant bending of the link L0 column on J1 joint, mainly caused by
loosening screws. The design of the HD uses a big 61810 ball bearing to support bending
moment. Anyhow, for safety another bearing should be added in the base column using
the HD cover as shaft. Unfortunately, the HD cover has an external diameter of 78mm

while existing ball bearings have internal diameter of 75mm or 80mm, thus a resizing of
the HD cover is needed. Moreover, the smallest external diameter available is 100mm

that is exactly the actual outer dimension of the links. Therefore, a redesign of the base
column and the HD would be required to implement this structural upgrade.

7.2. Conclusions

Looking to the list of requirements in Chapter 1, several points have been satisfied.

The designed robot turned out to be competitive in terms of cost with respect the prod-
ucts described in Chapter 2. In particular, the price it’s close and lower to the one of
the Niryo One by NiryoRobotics, the closest identified competitor. The actual cost of
our robot is still high because components have been sourced in small batches and high
quality motors and drivers have been used. Moreover, it has a longer outreach and the
payload is higher. We reckon that our product is in a primitive state and more effort
is required to implement an application at this stage compared with the already imple-
mented development environment by NiryoRobotics. In this regard, a user interface can
be developed to make interaction with the robot easier. Moreover, some tools for the end
effector can be developed to identify a precise task for the robot.

The robot has smooth and rounded edges and speed reducers are not exposed. Cable
management has been cured as much as possible considering that the speed reducers are
not hollow shaft. Cables are routed externally and pass through the arm links to go to a
main harness. An enclosure for all the electronics was not addressed since the robot is at
a very early prototyping phase. Anyway, a 3D printed base for electronics was designed
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to tidy and separated high from low voltages.

Being fully 3D printable, speed reducers included, potentially makes this robot accessible
to a very big community of Universities and Makers because the BOM has very few parts
and production can be fully done locally. No proprietary hardware, electronic board or
software was used control the robot.

Indeed, the 3D printed harmonic drives used as speed reducers showed some limitations
regarding performance under load that have been partially mitigated during this thesis
work but that are still open. Future investigations can be done to solve the loss of meshing
issue to its roots, following the path traced in this work. Moreover, the pronounced
backlash, increasing after some load cycles, reduces accuracy and repeatability of the
robot. This problem also caused to switch from a high resolution ADC system to the
Arduino built-in ADC since resolution would have been wasted by HD backlash and
gearing system backlash. Reliability is compromised by the 3D printed flexible splines
with hard plastic.

A low level control of the robot was achieved: the user can directly send target joints posi-
tions on Arduino MEGA on the Arduino IDE. The high level control was also addressed.
The Arduino firmware for interaction with ROS is ready. The virtual model of the robot
and tools for motion planning are completed. The MoveIt! GUI allows to plan simple
motion and also more complex tasks can be programmed by means of coding languages.
In particular, an example task of pick and place to move a box is available.

For the moment an Hardware Interface which allow the interaction between ROS control
and the physical hardware is missing. Once available, it will be possible to plan a task in
MoveIt! but also to make the real robot execute it.

The files to launch the multibody model in the dynamic simulation environment (Gazebo)
and the packages to control it are prepared. Also the integration of Gazebo into MoveIt!
is performed and allow to plan a task in MoveIt! and test it in Gazebo before making the
robot execute it. In this way the user can understand if the robot is able to perform the
task and if some refinements must be carried out.

A original look was given to the robot. Thanks to 3D printing, customization of the robot
aesthetic is very simple to adapt the arm to tastes and blend its design to the one of other
products.

The robot base can be mounted on any table top. It can be possible to mount the arm
on a Automated Guided Vehicle for a mobile robot application.

The flexible spline of the harmonic drive realized with hard PETG plastic showed poor
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reliability, being prone to fracture due to the high shear stresses, especially when mounted
in the most stressed joint, the robot shoulder.

The modular design proven to be effective in easing disassembling and assembling for
maintenance and repair.

The modular design proven to be effective in easing disassembling and assembling for
maintenance and repair.
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A.1. Rotation assessment

1 #include "BasicStepperDriver.h"

2 // Setting PINs

3 const int pinStep_HD = 2;

4 const int pinDir_HD = 3;

5 // Setting motor and board parameters

6 const int MOTOR_STEP = 200;

7 const int MICROSTEPS = 2;

8 // Setting constants

9 const int tau = 35; // reduction ratio

10 const int step_per_rev = MICROSTEPS*MOTOR_STEP; // Number of

steps per revolution of the motor [step/rev]

11 // Set type of motion law

12 //#define mode BasicStepperDriver::CONSTANT_SPEED

13 #define mode BasicStepperDriver::LINEAR_SPEED

14 // Define stepper driver object

15 BasicStepperDriver HD(step_per_rev, pinDir_HD, pinStep_HD);

16 // Global variables declaration

17 bool START = 0; // start trigger

18 bool CONTINUE = 0; // continue trigger

19 int i = 0; // counter

20 int incomingByte = 0; // for incoming serial data

21 // Test parameters

22 double angle[] = {1, 5, 10, 25, 45, 60, 75, 90, 180}; // [deg]

23 double velocity = 2; // [rpm]

24
25 void setup() {

26 // Initialize stepper driver object
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27 HD.begin();

28 HD.setSpeedProfile(mode, 875, 875);

29 HD.setRPM(velocity*tau);

30 // Initialize serial comunication

31 Serial.begin(9600);

32 // Wait untill start trigger is given

33 while ( !START ) {

34 if ( Serial.available() ) {

35 incomingByte = Serial.read();

36 // 's' = start test

37 if (incomingByte == 's'){

38 START = 1;

39 }

40 }

41 }

42 }

43
44 void loop() {

45 // Perform current test -> i counter

46 Serial.println(angle[i]);

47 HD.rotate(angle[i]*tau);

48 delay(100);

49 // Wait untill contiue trigger is given

50 while ( !CONTINUE ) {

51 if ( Serial.available() ) {

52 incomingByte = Serial.read();

53 // 'c' = continue with next angle

54 if (incomingByte == 'c'){

55 HD.rotate(-angle[i]*tau);

56 delay(100);

57 i++;

58 CONTINUE = 1;

59 }

60 }

61 }

62 delay(10);

63 // Disable continue trigger
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64 CONTINUE = 0;

65 }

Listings A.1: Rotation assessment

A.2. Rotation speed assessment

1 #include "BasicStepperDriver.h"

2 // Setting PINs

3 const int pinStep_HD = 2;

4 const int pinDir_HD = 3;

5 // Setting motor and board parameters

6 const int MOTOR_STEP = 200;

7 const int MICROSTEPS = 2;

8 // Setting constants

9 const int tau = 35;

10 const int step_per_rev = MICROSTEPS*MOTOR_STEP; // Number of

steps per revolution of the motor [step/rev]

11 // Set type of motion law

12 #define mode BasicStepperDriver::CONSTANT_SPEED

13 // Define stepper driver object

14 BasicStepperDriver HD(step_per_rev, pinDir_HD, pinStep_HD);

15
16 void setup() {

17 // Initialize stepper driver object

18 HD.begin();

19 HD.setSpeedProfile(mode, 875, 875);

20 }

21
22 void loop() {

23 double angle = 360; //[deg]

24 double velocity = 10; // [rpm] {1 2 4 5 8 9 10}

25 HD.setRPM(velocity*tau);

26 HD.rotate(angle*tau);

27 delay(4000);

28 }

Listings A.2: Speed assessment
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A.3. Mock Arduino PID controller

1 #include "BasicStepperDriver.h"

2 #include "SyncDriver.h"

3 // Setting PINs ...

4 // ... for Stepper Drivers

5 const int pinStep_J1 = 2;

6 const int pinDir_J1 = 3;

7 const int pinStep_J2 = 4;

8 const int pinDir_J2 = 5;

9 const int pinStep_J3 = 6;

10 const int pinDir_J3 = 7;

11 const int pinStep_J4 = 8;

12 const int pinDir_J4 = 9;

13 const int pinStep_J5 = 10;

14 const int pinDir_J5 = 11;

15 const int pinStep_J6 = 12;

16 const int pinDir_J6 = 13;

17 // ... for Potentiometers

18 const int potPin_J1 = A0;

19 const int potPin_J2 = A1;

20 const int potPin_J3 = A2;

21 const int potPin_J4 = A3;

22 const int potPin_J5 = A4;

23 //const int potPin_J6 = A5; // NO potentiometer was bought

for J6

24 // ... for Brakes

25 const int pinBrake_J2 = 22;

26 const int pinBrake_J3 = 23;

27 // Setting motor and board parameters

28 const int MOTOR_STEP = 200;

29 const int MICROSTEPS = 2;

30 const int step_per_rev = MICROSTEPS*MOTOR_STEP; // Number

of steps per revolution of the motor [step/rev]

31 // Setting constants

32 const int tau = 35; // HD reduction ratio

33 const float tau_gear_J1 = 83.0/17;
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34 const float tau_gear_J2 = 75.0/17;

35 const float tau_gear_J3 = 75.0/17;

36 const float tau_gear_J4 = 83.0/17;

37 const float tau_gear_J5 = 75.0/17;

38 //const float tau_gear_J6 = 83.0/17;

39 // Setting ADC parameters

40 const float resolution = 5/pow(2,10); //[V/bit]

41 const float sensitivity = 360; //[deg/V]

42 /*

43 * ATTENTION: EVERY TIME ONE LINK IS DISASSEMBLED YOU NEED

44 * CALIBRATE AGAIN ITS POTENTIOMETER AND UPDATE VALUES

HEREAFTER

45 */

46 const float home_volt_J1 = 2.52; //[V]

47 const float home_offset_J1 = -0.04; //[deg]

48 const float home_volt_J2 = 2.50; //[V]

49 const float home_offset_J2 = 0; //[deg]

50 const float home_volt_J3 = 2.53; //[V]

51 const float home_offset_J3 = -0.06;

52 const float home_volt_J4 = 2.52;

53 const float home_offset_J4 = -0.04;

54 const float home_volt_J5 = 2.47;

55 const float home_offset_J5 = 0.04;

56 //const float home_volt_J6 =

57 //const float home_offset_J6 =

58 // Set type of motion law

59 #define mode BasicStepperDriver::LINEAR_SPEED

60 // Define stepper driver objects

61 BasicStepperDriver J1(step_per_rev, pinDir_J1, pinStep_J1);

62 BasicStepperDriver J2(step_per_rev, pinDir_J2, pinStep_J2);

63 BasicStepperDriver J3(step_per_rev, pinDir_J3, pinStep_J3);

64 BasicStepperDriver J4(step_per_rev, pinDir_J4, pinStep_J4);

65 BasicStepperDriver J5(step_per_rev, pinDir_J5, pinStep_J5);

66 BasicStepperDriver J6(step_per_rev, pinDir_J6, pinStep_J6);

67 // Define object to synchronize all stepper motors

68 SyncDriver arm(J1, J2, J3, J4, J5, J6);

69 // Global variables declaration
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70 float toll = 0.9; //[deg] tollerance on rotation (half

motor step)

71 float current_position_J1, current_position_J2,

current_position_J3, current_position_J4,

current_position_J5;

72 float desired_joint_position[5];

73 float desired_position_J1, desired_position_J2,

desired_position_J3;

74 float desired_position_J4, desired_position_J5; //

desired_position_J6;

75 float error_J1=0, error_J2=0, error_J3=0, error_J4=0,

error_J5=0;

76 float error_J1_old=0, error_J2_old=0, error_J3_old=0,

error_J4_old=0, error_J5_old=0;

77 uint8_t count = 0;

78 float d_dt_error_J1=0, d_dt_error_J2=0, d_dt_error_J3=0,

d_dt_error_J4=0, d_dt_error_J5=0;

79 //float int_error_J1_dt[256], int_error_J2_dt[256],

int_error_J3_dt[256], int_error_J4_dt[256], int_error_J5_dt

[256];

80 float int_error_J1_dt=0, int_error_J2_dt=0, int_error_J3_dt

=0, int_error_J4_dt=0, int_error_J5_dt=0;

81 float int_error_J1_dt_old=0, int_error_J2_dt_old=0,

int_error_J3_dt_old=0, int_error_J4_dt_old=0,

int_error_J5_dt_old=0;

82 float time_old_J1, time_new_J1, time_old_J2, time_new_J2,

time_old_J3, time_new_J3;

83 float time_old_J4, time_new_J4, time_old_J5, time_new_J5;

84 float Kp = 0.95; // Proportional gain

85 float Kd = 0.1; // Derivative gain

86 float Ki = 0; // Integral gain

87 // Function to compute area of trapezoid

88 float trapz(float t2, float t1, float e2, float e1){

89 float integral = 0.5*(e2+e1)*(t2-t1);

90 return integral;

91 }

92
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93 void setup() {

94 // Initialize stepper driver object

95 J1.begin();

96 J1.setSpeedProfile(mode, 875, 875);

97 J2.begin();

98 J2.setSpeedProfile(mode, 875, 875);

99 J3.begin();

100 J3.setSpeedProfile(mode, 875, 875);

101 J4.begin();

102 J4.setSpeedProfile(mode, 875, 875);

103 J5.begin();

104 J5.setSpeedProfile(mode, 875, 875);

105 /*

106 * J6.begin();

107 * J6.setSpeedProfile(mode, 875, 875);

108 */

109 pinMode(pinBrake_J2, OUTPUT);

110 // Engage the brake = switch off relay

111 digitalWrite(pinBrake_J2, HIGH);

112 pinMode(pinBrake_J3, OUTPUT);

113 // Engage the brake = switch off relay

114 digitalWrite(pinBrake_J3, HIGH);

115 // Initialize serial comunication

116 Serial.begin(9600);

117 Serial.println("To control the positions of the robot

joints, please type the desired positions (also floats) as:

");

118 Serial.println("number(space)number(space)... from J1 to

J5 and finally (return)");

119 }

120
121 void loop() {

122 // Wait to reveive a set of 5 floats

123 if( Serial.available() ){

124 for(byte i = 0; i < 5; i++){

125 desired_joint_position[i] = Serial.parseFloat();

126 }



178 A| Codes

127 // Assign the parsed floats to the variables

128 desired_position_J1 = desired_joint_position[0];

129 desired_position_J2 = desired_joint_position[1];

130 desired_position_J3 = desired_joint_position[2];

131 desired_position_J4 = desired_joint_position[3];

132 desired_position_J5 = desired_joint_position[4];

133 /* DEBUG

134 Serial.print("You typed: ");

135 for(byte i = 0; i < 5; i++){

136 Serial.print(desired_joint_position[i]); Serial.print

(" ");

137 }

138 Serial.println("");

139 */

140 float current_reading_J1 = analogRead(potPin_J1); // in

range [0 1023]

141 // Saving the time in which the measure is done as

early as possible

142 // Needed to compute after the derivative term

143 time_old_J1 = millis()/1000; //[s]

144 float volt_J1 = current_reading_J1 * resolution -

home_volt_J1;

145 current_position_J1 = volt_J1 * sensitivity /

tau_gear_J1 - home_offset_J1; //[deg]

146 error_J1 = desired_position_J1 - current_position_J1;

147 // Do the same for all other joints

148 // J2

149 float current_reading_J2 = analogRead(potPin_J2); // in

range [0 1023]

150 time_old_J2 = millis()/1000;

151 float volt_J2 = current_reading_J2 * resolution -

home_volt_J2;

152 current_position_J2 = volt_J2 * sensitivity /

tau_gear_J2 - home_offset_J2; //[deg]

153 error_J2 = desired_position_J2 - current_position_J2;

154 // J3

155 float current_reading_J3 = analogRead(potPin_J3); // in
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range [0 1023]

156 time_old_J3 = millis()/1000;

157 float volt_J3 = current_reading_J3 * resolution -

home_volt_J3;

158 current_position_J3 = volt_J3 * sensitivity /

tau_gear_J3 - home_offset_J3; //[deg]

159 error_J3 = desired_position_J3 - current_position_J3;

160 // J4

161 float current_reading_J4 = analogRead(potPin_J4); // in

range [0 1023]

162 time_old_J4 = millis()/1000;

163 float volt_J4 = current_reading_J4 * resolution -

home_volt_J4;

164 current_position_J4 = volt_J4 * sensitivity /

tau_gear_J4 - home_offset_J4; //[deg]

165 error_J4 = desired_position_J4 - current_position_J4;

166 // J5

167 float current_reading_J5 = analogRead(potPin_J5); // in

range [0 1023]

168 time_old_J5 = millis()/1000;

169 float volt_J5 = current_reading_J5 * resolution -

home_volt_J5;

170 current_position_J5 = volt_J5 * sensitivity /

tau_gear_J5 - home_offset_J5; //[deg]

171 error_J5 = desired_position_J5 - current_position_J5;

172 while(abs(error_J1) > toll || abs(error_J2) > toll ||

abs(error_J3) > toll || abs(error_J4) > toll || abs(error_J5

) > toll){

173 // PID-controller

174 float action_J1 = Kp*error_J1 + Kd*d_dt_error_J1 + Ki

*int_error_J1_dt; //[deg] but for the link

175 float action_J2 = Kp*error_J2 + Kd*d_dt_error_J2 + Ki

*int_error_J2_dt; //[deg] but for the link

176 float action_J3 = Kp*error_J3 + Kd*d_dt_error_J3 + Ki

*int_error_J3_dt; //[deg] but for the link

177 float action_J4 = Kp*error_J4 + Kd*d_dt_error_J4 + Ki

*int_error_J4_dt;
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178 float action_J5 = Kp*error_J5 + Kd*d_dt_error_J5 + Ki

*int_error_J5_dt;

179 float action_J6 = 0;

180 // Release brakes

181 digitalWrite(pinBrake_J2, LOW);

182 digitalWrite(pinBrake_J3, LOW);

183 delay(10);

184 // The motor must rotate of action_Joint*tau

185 arm.rotate(tau*action_J1, tau*action_J2, tau*

action_J3, tau*action_J4, tau*action_J5, tau*action_J6);

186 delay(10);

187 // Engage brakes

188 digitalWrite(pinBrake_J2, HIGH);

189 digitalWrite(pinBrake_J3, HIGH);

190 // Acquire new position

191 //J1

192 current_reading_J1 = analogRead(potPin_J1);

193 time_new_J1 = millis()/1000;

194 volt_J1 = current_reading_J1 * resolution -

home_volt_J1;

195 current_position_J1 = volt_J1* sensitivity /

tau_gear_J1 - home_offset_J1; //[deg]

196 error_J1 = desired_position_J1 - current_position_J1;

197 d_dt_error_J1 = (error_J1 - error_J1_old)/(

time_new_J1 - time_old_J1);

198 //int_error_J1_dt[count++] = int_error_J1_dt[count] +

trapz(time_new_J1, time_old_J1, error_J1, error_J1_old);

199 int_error_J1_dt = int_error_J1_dt_old + trapz(

time_new_J1, time_old_J1, error_J1, error_J1_old);

200 error_J1_old = error_J1;

201 time_old_J1 = time_new_J1;

202 int_error_J1_dt_old = int_error_J1_dt;

203 //J2

204 current_reading_J2 = analogRead(potPin_J2);

205 time_new_J2 = millis()/1000;

206 volt_J2 = current_reading_J2 * resolution -

home_volt_J2;
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207 current_position_J2 = volt_J2* sensitivity /

tau_gear_J2 - home_offset_J2; //[deg]

208 error_J2 = desired_position_J2 - current_position_J2;

209 d_dt_error_J2 = (error_J2 - error_J2_old)/(

time_new_J2 - time_old_J2);

210 //int_error_J2_dt[count++] = int_error_J2_dt[count] +

trapz(time_new_J2, time_old_J2, error_J2, error_J2_old);

211 int_error_J2_dt = int_error_J2_dt_old + trapz(

time_new_J2, time_old_J2, error_J2, error_J2_old);

212 error_J2_old = error_J2;

213 time_old_J2 = time_new_J2;

214 int_error_J2_dt_old = int_error_J2_dt;

215 // J3

216 current_reading_J3 = analogRead(potPin_J3);

217 time_new_J3 = millis()/1000;

218 volt_J3 = current_reading_J3 * resolution -

home_volt_J3;

219 current_position_J3 = volt_J3* sensitivity /

tau_gear_J3 - home_offset_J3; //[deg]

220 error_J3 = desired_position_J3 - current_position_J3;

221 d_dt_error_J3 = (error_J3 - error_J3_old)/(

time_new_J3 - time_old_J3);

222 //int_error_J3_dt[count++] = int_error_J3_dt[count] +

trapz(time_new_J3, time_old_J3, error_J3, error_J3_old);

223 int_error_J3_dt = int_error_J3_dt_old + trapz(

time_new_J3, time_old_J3, error_J3, error_J3_old);

224 error_J3_old = error_J3;

225 time_old_J3 = time_new_J3;

226 int_error_J3_dt_old = int_error_J3_dt;

227 // J4

228 current_reading_J4 = analogRead(potPin_J4);

229 time_new_J4 = millis()/1000;

230 volt_J4 = current_reading_J4 * resolution -

home_volt_J4;

231 current_position_J4 = volt_J4* sensitivity /

tau_gear_J4 - home_offset_J4; //[deg]

232 error_J4 = desired_position_J4 - current_position_J4;
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233 d_dt_error_J4 = (error_J4 - error_J4_old)/(

time_new_J4 - time_old_J4);

234 //int_error_J4_dt[count++] = int_error_J4_dt[count] +

trapz(time_new_J4, time_old_J4, error_J4, error_J4_old);

235 int_error_J4_dt = int_error_J4_dt_old + trapz(

time_new_J4, time_old_J4, error_J4, error_J4_old);

236 error_J4_old = error_J4;

237 time_old_J4 = time_new_J4;

238 int_error_J4_dt_old = int_error_J4_dt;

239 // J5

240 current_reading_J5 = analogRead(potPin_J5);

241 time_new_J5 = millis()/1000;

242 volt_J5 = current_reading_J5 * resolution -

home_volt_J5;

243 current_position_J5 = volt_J5* sensitivity /

tau_gear_J5 - home_offset_J5; //[deg]

244 error_J5 = desired_position_J5 - current_position_J5;

245 d_dt_error_J5 = (error_J5 - error_J5_old)/(

time_new_J5 - time_old_J5);

246 //int_error_J5_dt[count++] = int_error_J5_dt[count] +

trapz(time_new_J5, time_old_J5, error_J5, error_J5_old);

247 int_error_J5_dt = int_error_J5_dt_old + trapz(

time_new_J5, time_old_J5, error_J5, error_J5_old);

248 error_J5_old = error_J5;

249 time_old_J5 = time_new_J5;

250 int_error_J5_dt_old = int_error_J5_dt;

251 }

252 // Request new desired postions through Serial Monitor

253 Serial.println("Type the desired positions: ");

254 }

255 }

Listings A.3: Mock Arduino PID controller

A.4. Arduino Firmware for ROS

1 #include "BasicStepperDriver.h"
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2 #include "SyncDriver.h"

3 #include <ros.h>

4 #include <std_msgs/Float32MultiArray.h>

5 // Setting PINs of motors

6 const int pinStep_J1 = 2;

7 const int pinDir_J1 = 3;

8 const int pinStep_J2 = 4;

9 const int pinDir_J2 = 5;

10 const int pinStep_J3 = 6;

11 const int pinDir_J3 = 7;

12 const int pinStep_J4 = 8;

13 const int pinDir_J4 = 9;

14 const int pinStep_J5 = 10;

15 const int pinDir_J5 = 11;

16 const int pinStep_J6 = 12;

17 const int pinDir_J6 = 13;

18 // ... for Potentiometers

19 const int potPin_J1 = A0;

20 const int potPin_J2 = A1;

21 const int potPin_J3 = A2;

22 const int potPin_J4 = A3;

23 const int potPin_J5 = A4;

24 // Brakes

25 const int pinBrake_J2 = 22;

26 const int pinBrake_J3 = 23;

27 // Setting motor and board parameters

28 const int MOTOR_STEP = 200;

29 const int MICROSTEPS = 2;

30 const int step_per_rev = MICROSTEPS*MOTOR_STEP; // Number

of steps per revolution of the motor [step/rev]

31 // Setting constants:

32 const int tau = 35; // HD reduction ratio

33 // Gear ratio for Potentiometers

34 const float tau_gear_J1 = 83.0 / 17;

35 const float tau_gear_J2 = 75.0 / 17;

36 const float tau_gear_J3 = 75.0 / 17;

37 const float tau_gear_J4 = 83.0 / 17;
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38 const float tau_gear_J5 = 75.0 / 17;

39 // Setting ADC parameters

40 const float resolution = 5 / pow(2, 10); // [V/bit]

41 const float sensitivity = 360; // [deg/V]

42 const float home_volt_J1 = 2.52; // [V]

43 const float home_offset_J1 = -0.04; // [deg]

44 const float home_volt_J2 = 2.50; // [V]

45 const float home_offset_J2 = 0; // [deg]

46 const float home_volt_J3 = 2.53; // [V]

47 const float home_offset_J3 = -0.06;

48 const float home_volt_J4 = 2.52;

49 const float home_offset_J4 = -0.04;

50 const float home_volt_J5 = 2.47;

51 const float home_offset_J5 = -0.38;

52 // Definition of HOME POSITION

53 const float home_position_J1 = 90.0; // CCW

54 const float home_position_J2 = 45.0; // CCW

55 const float home_position_J3 = 90.0; // CW => keep positive

=> positive angle = CW wrt J2

56 const float home_position_J4 = 0.0; // KEEP ALIGNED

57 const float home_position_J5 = -90.0; // CW

58 const float home_array[5] = {home_position_J1,

home_position_J2, home_position_J3, home_position_J4,

home_position_J5};

59 // Service variables

60 const float tau_gear[] = {tau_gear_J1, tau_gear_J2,

tau_gear_J3, tau_gear_J4, tau_gear_J5};

61 const float home_volt[] = {home_volt_J1, home_volt_J2,

home_volt_J3, home_volt_J4, home_volt_J5};

62 const float home_offset[] = {home_offset_J1, home_offset_J2

, home_offset_J3, home_offset_J4, home_offset_J5};

63 float old_position[5] = {home_position_J1, home_position_J2

, home_position_J3, home_position_J4, home_position_J5};

64 float positions_array[5];

65 // Set type of motion law

66 #define mode BasicStepperDriver::LINEAR_SPEED

67 // Define stepper driver object



A| Codes 185

68 BasicStepperDriver J1(step_per_rev, pinDir_J1, pinStep_J1);

69 BasicStepperDriver J2(step_per_rev, pinDir_J2, pinStep_J2);

70 BasicStepperDriver J3(step_per_rev, pinDir_J3, pinStep_J3);

71 BasicStepperDriver J4(step_per_rev, pinDir_J4, pinStep_J4);

72 BasicStepperDriver J5(step_per_rev, pinDir_J5, pinStep_J5);

73 BasicStepperDriver J6(step_per_rev, pinDir_J6, pinStep_J6);

74 // Define object to synchronize all stepper motors

75 SyncDriver arm(J1, J2, J3, J4, J5, J6);

76 // Create ROS nodehandler

77 ros::NodeHandle nh;

78 // Callback function to make the arm move when a message is

received

79 void move_arm_cb(const std_msgs::Float32MultiArray& cmd_msg

){

80 // Release the brakes on Joints J2 and J3 before start

moving

81 digitalWrite(pinBrake_J2, LOW);

82 digitalWrite(pinBrake_J3, LOW);

83 delay(10); // Wait a short time to be sure the breaks are

released

84 // Note that if the rotation of the link is requested,

motors must rotate of tau*angle_for_the_link

85 float new_position[5] = {cmd_msg.data[0], cmd_msg.data

[1], cmd_msg.data[2], cmd_msg.data[3], cmd_msg.data[4]};

86 float new_command[5]; // Command for the motors

87 for (int i = 0; i < 5; ++i) {

88 new_command[i] = tau*(new_position[i] - old_position[i

]);

89 }

90 arm.rotate(new_command[0], new_command[1], new_command

[2], new_command[3], new_command[4], new_command[5]);

91 // Store last requested positions coming from cmd_msg.

data in old_position

92 for(int i = 0; i < 5; ++i){

93 old_position[i] = cmd_msg.data[i];

94 }

95 delay(10);
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96 // Engage the brakes when finished moving

97 digitalWrite(pinBrake_J2, HIGH);

98 digitalWrite(pinBrake_J3, HIGH);

99 }

100 // Subscriber for position

101 ros::Subscriber<std_msgs::Float32MultiArray> sub_pos("/

pvbot/actuate", move_arm_cb);

102 // Callback function to set joint speed

103 void set_speed_cb( const std_msgs::Float32MultiArray&

speed_msg){

104 // speed_msg.data is the speed for the joint so speed for

the motor is tau*speed_msg.data

105 J1.setRPM(tau * speed_msg.data[0]);

106 J2.setRPM(tau * speed_msg.data[1]);

107 J3.setRPM(tau * speed_msg.data[2]);

108 J4.setRPM(tau * speed_msg.data[3]);

109 J5.setRPM(tau * speed_msg.data[4]);

110 }

111 // Subscriber for setting speed

112 ros::Subscriber<std_msgs::Float32MultiArray> sub_speed("/

pvbot/set_speed", set_speed_cb);

113 // Setting Publisher for position feedback

114 std_msgs::Float32MultiArray feedback_msg;

115 ros::Publisher pub_state("/pvbot/state", &feedback_msg);

116 // feedback_msg.data will be an array of 5 element with the

current posiotion of the links

117 // Define function for reading 5 potentiometers

118 void feedback_position(){

119 for(int i = 0; i<5; i++){

120 float current_reading = analogRead(i); // in range [0

1023]

121 float volt = current_reading * resolution - home_volt[i

];

122 float current_position = volt * sensitivity / tau_gear[

i] - home_offset[i]; //[deg]

123 positions_array[i] = current_position;

124 }
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125 }

126 // Define function for homing the robot (home_position_

values are set for all axes)

127 // Conceptually similar to the actuation call back function

128 void home_axes(){

129 // Read current positions and save then in

positions_array

130 feedback_position();

131 float command_angle[5];

132 // Filling the command array

133 for(int i = 0; i < 5; ++i){

134 command_angle[i] = tau * (home_array[i] -

positions_array[i]);

135 }

136 // Release the brakes on Joints J2 and J3 before start

moving

137 digitalWrite(pinBrake_J2, LOW);

138 digitalWrite(pinBrake_J3, LOW);

139 delay(10); // Wait a short time to be sure the breaks are

released

140 // Actuate to home

141 arm.rotate(command_angle[0], command_angle[1],

command_angle[2], command_angle[3], command_angle[4],

command_angle[5]);

142 // Engage the brakes when finished moving

143 delay(10);

144 digitalWrite(pinBrake_J2, HIGH);

145 digitalWrite(pinBrake_J3, HIGH);

146 }

147
148 void setup() {

149 // Initialize stepper driver object

150 J1.begin();

151 J1.setSpeedProfile(mode, 875, 875);

152 J2.begin();

153 J2.setSpeedProfile(mode, 875, 875);

154 J3.begin();
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155 J3.setSpeedProfile(mode, 875, 875);

156 J4.begin();

157 J4.setSpeedProfile(mode, 875, 875);

158 J5.begin();

159 J5.setSpeedProfile(mode, 875, 875);

160 // Setup brakes of joint J2 and J3

161 pinMode(pinBrake_J2, OUTPUT);

162 // Engage the brake = switch off relay -> set relay

command pin to HIGH

163 digitalWrite(pinBrake_J2, HIGH);

164 pinMode(pinBrake_J3, OUTPUT);

165 // Engage the brake = switch off relay -> set relay

command pin to HIGH

166 digitalWrite(pinBrake_J3, HIGH);

167 // Go home

168 home_axes();

169 // Initialize ROS node, subscribe and advertise topics

170 nh.initNode();

171 nh.subscribe(sub_pos);

172 nh.subscribe(sub_speed);

173 // Dimension of the message must be declared

174 feedback_msg.data_length = 5;

175 nh.advertise(pub_state);

176 }

177
178 void loop() {

179 feedback_position();

180 feedback_msg.data = positions_array;

181 pub_state.publish(&feedback_msg);

182 nh.spinOnce();

183 delay(200);

184 }

Listings A.4: Arduino Firmware for ROS
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A.5. Codes for the digital model of the robot with

gripper

Below, there is the xacro model of the robot which is called lucabot. In this file is included
also the model of the OnRobot gripper which is reported here A.6 on page 195.

1 <?xml version="1.0"?>

2 <robot name="lucabot" xmlns:xacro="http://www.ros.org/wiki/xacro">

3

4 <xacro:property name="i" value="0.3" />

5 <xacro:property name="i1" value="0.3477285474" />

6 <xacro:property name="i2" value="0.3072289157" />

7 <xacro:property name="i3" value="0.212585034" />

8

9 <link name="world"/>

10

11 <link name="base">

12 <visual>

13 <origin rpy="0 0 0" xyz="0 0 0"/>

14 <geometry>

15 <mesh filename="package://lucabot_description/model/base.dae"/>

16 </geometry>

17 </visual>

18 <collision>

19 <origin rpy="0 0 0" xyz="0 0 0.0415"/>

20 <geometry>

21 <cylinder length="0.083" radius="0.100"/>

22 </geometry>

23 </collision>

24 <inertial>

25 <origin xyz="-0.000313 0 0.029159" rpy="0 0 0"/>

26 <mass value="${i*0.848}" />

27 <inertia ixx="${i*0.001992393}" ixy="${i*0.0}" ixz="${i*0.000007016}"

28 iyy="${i*0.002050412}" iyz="${i*0.0}"

29 izz="${i*0.003102151}" />

30 </inertial>

31 </link>

32

33 <joint name="fixed" type="fixed">

34 <origin xyz="0 0 0" rpy="0 0 0" />

35 <parent link="world" />

36 <child link="base" />

37 </joint>

38
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39 <link name="link0">

40 <visual>

41 <origin rpy="0 0 0" xyz="0 0 0"/>

42 <geometry>

43 <mesh filename="package://lucabot_description/model/

link0_denti_incassati.dae"/>

44 </geometry>

45 </visual>

46 <collision>

47 <origin rpy="0 0 0" xyz="0 0 0.1255"/>

48 <geometry>

49 <box size="0.206 0.120 0.229"/>

50 </geometry>

51 </collision>

52 <inertial>

53 <origin xyz="-0.030697 0.000014 0.136133" rpy="0 0 0"/>

54 <mass value="${i*1.385}" />

55 <inertia ixx="${i*0.006060034}" ixy="${i*0.000000665}" ixz="${i

*0.001682159}"

56 iyy="${i*0.006600492}" iyz="${i*-0.000001679}"

57 izz="${i*0.003229145}" />

58 </inertial>

59 </link>

60

61 <joint name="r1" type="revolute">

62 <origin xyz="0 0 0.07" rpy="0 0 0" />

63 <parent link="base" />

64 <child link="link0" />

65 <limit effort="40" lower="-3.142" upper="3.142" velocity="1" />

66 <axis xyz="0 0 1" />

67 </joint>

68

69 <link name="link1">

70 <visual>

71 <origin rpy="${pi/2} ${pi} 0" xyz="0 0 0"/>

72 <geometry>

73 <mesh filename="package://lucabot_description/model/link1_v2_intero

.dae"/>

74 </geometry>

75 </visual>

76 <collision>

77 <origin rpy="0 0 0" xyz="0 0 0.1"/>

78 <geometry>

79 <box size="0.190 0.120 0.320"/>
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80 </geometry>

81 </collision>

82 <inertial>

83 <origin xyz="0.028857 -0.000241 0.12016" rpy="0 0 0"/>

84 <mass value="${i1*1.783}" />

85 <inertia ixx="${i1*0.014019562}" ixy="${i1*-0.000003339}" ixz="${i1

*0.001190259}"

86 iyy="${i1*0.013996178}" iyz="${i1*0.000032161}"

87 izz="${i1*0.003295798}" />

88 </inertial>

89 </link>

90

91 <joint name="r2" type="revolute">

92 <origin xyz="0 0 0.180" rpy="0 0 0" />

93 <parent link="link0" />

94 <child link="link1" />

95 <limit effort="40" lower="-3.142" upper="3.142" velocity="1" />

96 <axis xyz="1 0 0" />

97 </joint>

98

99 <link name="link2_down">

100 <visual>

101 <origin rpy="${pi/2} ${pi} 0" xyz="0 0 0"/>

102 <geometry>

103 <mesh filename="package://lucabot_description/model/link2_down.dae"

/>

104 </geometry>

105 </visual>

106 <collision>

107 <origin rpy="0 0 0" xyz="0 0 0.03725"/>

108 <geometry>

109 <box size="0.158 0.120 0.1945"/>

110 </geometry>

111 </collision>

112 <inertial>

113 <origin xyz="-0.016579 0.000539 0.045038" rpy="0 0 0"/>

114 <mass value="${i2*0.803}" />

115 <inertia ixx="${i2*0.002857544}" ixy="${i2*0.000001774}" ixz="${i2

*0.000629942}"

116 iyy="${i2*0.002802888}" iyz="${i2*0.000000346}"

117 izz="${i2*0.001398029}" />

118 </inertial>

119 </link>

120
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121 <joint name="r3" type="revolute">

122 <origin xyz="0 0 0.2" rpy="0 0 0" />

123 <parent link="link1" />

124 <child link="link2_down" />

125 <limit effort="40" lower="-3.142" upper="3.142" velocity="1" />

126 <axis xyz="1 0 0" />

127 </joint>

128

129 <link name="link2_up">

130 <visual>

131 <origin rpy="-${pi/2} 0 0" xyz="0 0 -0.1355"/>

132 <geometry>

133 <mesh filename="package://lucabot_description/model/

link2_up_denti_incassati.dae"/>

134 </geometry>

135 </visual>

136 <collision>

137 <origin rpy="0 0 0" xyz="0 0 0.09725"/>

138 <geometry>

139 <box size="0.120 0.120 0.1945"/>

140 </geometry>

141 </collision>

142 <inertial>

143 <origin xyz="-0.020402 0.000025 0.097778" rpy="0 0 0"/>

144 <mass value="${i2*0.857}" />

145 <inertia ixx="${i2*0.003054318}" ixy="${i2*-0.000000437}" ixz="${i2

*0.000510103}"

146 iyy="${i2*0.002847609}" iyz="${i2*0.000001337}"

147 izz="${i2*0.001356364}" />

148 </inertial>

149 </link>

150

151 <joint name="r4" type="revolute">

152 <origin xyz="0 0 0.1355" rpy="0 0 0" />

153 <parent link="link2_down" />

154 <child link="link2_up" />

155 <limit effort="40" lower="-3.142" upper="3.142" velocity="1" />

156 <axis xyz="0 0 1" />

157 </joint>

158

159 <link name="link3">

160 <visual>

161 <origin rpy="-${pi/2} 0 0" xyz="0 0 0"/>

162 <geometry>
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163 <mesh filename="package://lucabot_description/model/link3_v2.dae"/>

164 </geometry>

165 </visual>

166 <collision>

167 <origin rpy="0 0 0" xyz="0 0 0.045"/>

168 <geometry>

169 <box size="0.120 0.120 0.210"/>

170 </geometry>

171 </collision>

172 <inertial>

173 <origin xyz="0.013097 0 0.066543" rpy="0 0 0"/>

174 <mass value="${i3*1.176}" />

175 <inertia ixx="${i3*0.004822326}" ixy="${i3*0.0}" ixz="${i3

*0.000933744}"

176 iyy="${i3*0.004764996}" iyz="${i3*0.0}"

177 izz="${i3*0.001777042}" />

178 </inertial>

179 </link>

180

181 <joint name="r5" type="revolute">

182 <origin xyz="0 0 0.1345" rpy="0 0 0" />

183 <parent link="link2_up" />

184 <child link="link3" />

185 <limit effort="20" lower="-3.142" upper="3.142" velocity="1" />

186 <axis xyz="1 0 0" />

187 </joint>

188

189 <link name="tool0"/>

190

191 <joint name="r6" type="revolute">

192 <origin xyz="0 0 0.150" rpy="0 0 0" />

193 <parent link="link3" />

194 <child link="tool0" />

195 <limit effort="25" lower="-3.142" upper="3.142" velocity="1" />

196 <axis xyz="0 0 1" />

197 </joint>

198

199 <xacro:include filename="$(find 2fgt_onrobot_description)/urdf/2

fgt_urdf_simplified_collision.xacro" />

200 <xacro:boh parent="tool0" name="test">

201 <origin xyz="0 0 0" rpy="0 0 0" />

202 </xacro:boh>

203

204
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205 <transmission name="tran1">

206 <type>transmission_interface/SimpleTransmission</type>

207 <joint name="r1">

208 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

209 </joint>

210 <actuator name="motor1">

211 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

212 <mechanicalReduction>35</mechanicalReduction>

213 </actuator>

214 </transmission>

215

216 <transmission name="tran2">

217 <type>transmission_interface/SimpleTransmission</type>

218 <joint name="r2">

219 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

220 </joint>

221 <actuator name="motor2">

222 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

223 <mechanicalReduction>35</mechanicalReduction>

224 </actuator>

225 </transmission>

226

227 <transmission name="tran3">

228 <type>transmission_interface/SimpleTransmission</type>

229 <joint name="r3">

230 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

231 </joint>

232 <actuator name="motor3">

233 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

234 <mechanicalReduction>35</mechanicalReduction>

235 </actuator>

236 </transmission>

237

238 <transmission name="tran4">

239 <type>transmission_interface/SimpleTransmission</type>

240 <joint name="r4">

241 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>
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242 </joint>

243 <actuator name="motor4">

244 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

245 <mechanicalReduction>35</mechanicalReduction>

246 </actuator>

247 </transmission>

248

249 <transmission name="tran5">

250 <type>transmission_interface/SimpleTransmission</type>

251 <joint name="r5">

252 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

253 </joint>

254 <actuator name="motor5">

255 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

256 <mechanicalReduction>35</mechanicalReduction>

257 </actuator>

258 </transmission>

259

260 <transmission name="tran6">

261 <type>transmission_interface/SimpleTransmission</type>

262 <joint name="r6">

263 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

264 </joint>

265 <actuator name="motor6">

266 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

267 <mechanicalReduction>35</mechanicalReduction>

268 </actuator>

269 </transmission>

270

271 <gazebo>

272 <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">

273 <robotNamespace>/lucabot</robotNamespace>

274 </plugin>

275 </gazebo>

276

277 </robot>

Listings A.5: lucabot.xacro

1 <?xml version="1.0"?>
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2 <robot name="robot"

3 xmlns:xacro="http://www.ros.org/wiki/xacro">

4 <!--Creo il gripper come macro in modo da poterla importare semplicemente

-->

5 <!--parametro *origin significa che passo il blocco origin-->

6 <xacro:macro name="boh" params="parent name *origin robot_namespace:=''">

7

8 <link name="${name}_qc_link">

9 <inertial>

10 <origin xyz="0 0 0" rpy="0 0 0"/>

11 <mass value="0.1"/>

12 <inertia ixx="0.01" ixy="0" ixz="0" iyy="0.01" iyz="0" izz="0"/>

13 </inertial>

14

15 <visual>

16 <origin xyz="0 0 0" rpy="-${pi / 2} 0 0"/>

17 <geometry>

18 <mesh filename="package://2fgt_onrobot_description/model/quick-

changer.dae"/>

19 </geometry>

20 </visual>

21

22 <collision>

23 <origin xyz="0 0 0.0055" rpy="0 0 0"/>

24 <geometry>

25 <cylinder length="0.0155" radius="0.036"/>

26 </geometry>

27 </collision>

28 </link>

29

30 <link name="${name}_gripper_body_link">

31 <inertial>

32 <origin xyz="0 0 0" rpy="0 0 0"/>

33 <mass value="0.1"/>

34 <inertia ixx="0.01" ixy="0" ixz="0" iyy="0.01" iyz="0" izz="0"/>

35 </inertial>

36

37 <visual>

38 <origin xyz="0 0 0" rpy="${pi / 2} 0 ${pi / 2}"/>

39 <geometry>

40 <mesh filename="package://2fgt_onrobot_description/model/grip-

block-origin.dae"/>

41 </geometry>

42 </visual>
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43

44 <collision>

45 <origin xyz="0 0 0.06" rpy="0 0 0"/>

46 <geometry>

47 <box size="0.07 0.093 0.098"/>

48 </geometry>

49 </collision>

50 </link>

51

52 <!--Joint tra parent e quick changer-->

53 <joint name="${name}_qc_tool0_joint" type="fixed">

54 <xacro:insert_block name="origin"/>

55 <parent link="${parent}"/>

56 <child link="${name}_qc_link"/>

57 </joint>

58

59 <!--Joint tra quick changer e body pinza-->

60 <joint name="${name}_qc_body_joint" type="fixed">

61 <origin xyz="0 0 0.0025"/>

62 <parent link="${name}_qc_link"/>

63 <child link="${name}_gripper_body_link"/>

64 </joint>

65

66 <link name="${name}_left_finger_link">

67 <inertial>

68 <origin xyz="0 0 0" rpy="0 0 0"/>

69 <mass value="0.1"/>

70 <inertia ixx="0.01" ixy="0" ixz="0" iyy="0.01" iyz="0" izz="0"/>

71 </inertial>

72

73 <visual>

74 <origin xyz="0 0 0" rpy="${pi / 2} 0 ${pi / 2}"/>

75 <geometry>

76 <mesh filename="package://2fgt_onrobot_description/model/left-

finger-origin.dae"/>

77 </geometry>

78 </visual>

79

80 <collision>

81 <origin xyz="0 0 0" rpy="${pi / 2} 0 ${pi / 2}"/>

82 <geometry>

83 <mesh filename="package://2fgt_onrobot_description/model/left-

finger-origin.dae"/>

84 </geometry>
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85 </collision>

86 </link>

87

88 <!--Joint tra body gripper e dito sinistro-->

89 <joint name="${name}_body_finger_l_joint" type="prismatic">

90 <axis xyz="0 1 0"/>

91 <limit effort="1" lower="-0.001" upper="0.025" velocity="1.0"/>

92 <origin xyz="0 0.0195 0.1098"/>

93 <parent link="${name}_gripper_body_link"/>

94 <child link="${name}_left_finger_link"/>

95 </joint>

96

97 <link name="${name}_right_finger_link">

98 <inertial>

99 <origin xyz="0 0 0" rpy="0 0 0"/>

100 <mass value="0.1"/>

101 <inertia ixx="0.01" ixy="0" ixz="0" iyy="0.01" iyz="0" izz="0"/>

102 </inertial>

103

104 <visual>

105 <origin xyz="0 0 0" rpy="${pi / 2} 0 ${pi / 2}"/>

106 <geometry>

107 <mesh filename="package://2fgt_onrobot_description/model/right-

finger-origin.dae"/>

108 </geometry>

109 </visual>

110

111 <collision>

112 <origin xyz="0 0 0" rpy="${pi / 2} 0 ${pi / 2}"/>

113 <geometry>

114 <mesh filename="package://2fgt_onrobot_description/model/right-

finger-origin.dae"/>

115 </geometry>

116 </collision>

117 </link>

118

119 <joint name="${name}_body_finger_r_joint" type="prismatic">

120 <axis xyz="0 -1 0"/>

121 <limit effort="1" lower="-0.001" upper="0.025" velocity="1"/>

122 <!--Mimic the joint: moving together-->

123 <mimic joint="${name}_body_finger_l_joint" multiplier="1" offset="0"

/>

124 <origin xyz="0 -0.0195 0.1098"/>

125 <parent link="${name}_gripper_body_link"/>



A| Codes 199

126 <child link="${name}_right_finger_link"/>

127 </joint>

128

129 <!-- Adding the transmission only on the left finger because the right

is already mimic that-->

130 <transmission name="${name}_left_finger_transmission">

131 <type>transmission_interface/SimpleTransmission</type>

132 <joint name="${name}_body_finger_l_joint">

133 <hardwareInterface>hardware_interface/PositionJointInterface</

hardwareInterface>

134 </joint>

135 <actuator name="${name}_left_joint_motor">

136 <mechanicalReduction>1</mechanicalReduction>

137 </actuator>

138 </transmission>

139

140 <!--Adding the Gazebo plug-in for ROS_control-->

141 <gazebo>

142 <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">

143 <xacro:unless value="${robot_namespace == ''}">

144 <robotNamespace>${robot_namespace}</robotNamespace>

145 </xacro:unless>

146 <controlPeriod>0.001</controlPeriod>

147 </plugin>

148

149 <!--Adding a Plugin for joint mimic in gazebo-->

150 <plugin name="${name}_body_finger_l_joint_mimic_joint_plugin"

filename="libroboticsgroup_gazebo_mimic_joint_plugin.so">

151 <joint>${name}_body_finger_l_joint</joint>

152 <mimicJoint>${name}_body_finger_r_joint</mimicJoint>

153 <!--In teoria andrebbe il true qui: ma bisogna fixare i parametri

del PID e della dinamica del gripper...-->

154 <xacro:if value="false"> <!-- if set to true, PID

parameters from "/gazebo_ros_control/pid_gains/${mimic_joint}" are

loaded -->

155 <hasPID />

156 </xacro:if>

157 <multiplier>1</multiplier>

158 <offset>0</offset>

159 <sensitiveness>0</sensitiveness> <!-- if absolute difference

between setpoint and process value is below this threshold, do nothing;

0.0 = disable [rad] -->

160 <maxEffort>1</maxEffort> <!-- only taken into account if

has_pid:=true [Nm] -->
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161 <xacro:unless value="${robot_namespace == ''}">

162 <robotNamespace>${robot_namespace}</robotNamespace>

163 </xacro:unless>

164 </plugin>

165 </gazebo>

166

167 </xacro:macro>

168

169 </robot>

Listings A.6: 2fgt_urdf_simplified_collision.xacro

A.6. MoveIt! configuration files for robot model with

gripper

The following configuration files are a part of the whole list of files generated by the
Moveit! setup assistant in the config directory. The ones reported below are considered
more relevant for the project developed in this thesis.

1 # joint_limits.yaml allows the dynamics properties specified in the URDF to

be overwritten or augmented as needed

2 # Specific joint properties can be changed with the keys [max_position,

min_position, max_velocity, max_acceleration]

3 # Joint limits can be turned off with [has_velocity_limits,

has_acceleration_limits]

4 joint_limits:

5 r1:

6 has_velocity_limits: true

7 max_velocity: 1

8 has_acceleration_limits: false

9 max_acceleration: 0

10 r2:

11 has_velocity_limits: true

12 max_velocity: 1

13 has_acceleration_limits: false

14 max_acceleration: 0

15 r3:

16 has_velocity_limits: true

17 max_velocity: 1

18 has_acceleration_limits: false

19 max_acceleration: 0

20 r4:

21 has_velocity_limits: true
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22 max_velocity: 1

23 has_acceleration_limits: false

24 max_acceleration: 0

25 r5:

26 has_velocity_limits: true

27 max_velocity: 1

28 has_acceleration_limits: false

29 max_acceleration: 0

30 r6:

31 has_velocity_limits: true

32 max_velocity: 1

33 has_acceleration_limits: false

34 max_acceleration: 0

35 test_body_finger_l_joint:

36 has_velocity_limits: true

37 max_velocity: 1

38 has_acceleration_limits: false

39 max_acceleration: 0

40 test_body_finger_r_joint:

41 has_velocity_limits: true

42 max_velocity: 1

43 has_acceleration_limits: false

44 max_acceleration: 0

Listings A.7: joint_limits.yaml

1 manipulator:

2 kinematics_solver: kdl_kinematics_plugin/KDLKinematicsPlugin

3 kinematics_solver_search_resolution: 0.005

4 kinematics_solver_timeout: 0.005

Listings A.8: kinematics.yaml

1 <?xml version="1.0" ?>

2 <!--This does not replace URDF, and is not an extension of URDF.

3 This is a format for representing semantic information about the robot

structure.

4 A URDF file must exist for this robot as well, where the joints and the

links that are referenced are defined

5 -->

6 <robot name="lucabot">

7 <!--GROUPS: Representation of a set of joints and links. This can be

useful for specifying DOF to plan for, defining arms, end effectors, etc

-->

8 <!--LINKS: When a link is specified, the parent joint of that link (if

it exists) is automatically included-->
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9 <!--JOINTS: When a joint is specified, the child link of that joint (

which will always exist) is automatically included-->

10 <!--CHAINS: When a chain is specified, all the links along the chain (

including endpoints) are included in the group. Additionally, all the

joints that are parents to included links are also included. This means

that joints along the chain and the parent joint of the base link are

included in the group-->

11 <!--SUBGROUPS: Groups can also be formed by referencing to already

defined group names-->

12 <group name="manipulator">

13 <joint name="fixed" />

14 <joint name="r1" />

15 <joint name="r2" />

16 <joint name="r3" />

17 <joint name="r4" />

18 <joint name="r5" />

19 <joint name="r6" />

20 </group>

21 <group name="gripper">

22 <link name="test_qc_link" />

23 <link name="test_right_finger_link" />

24 <link name="test_gripper_body_link" />

25 <link name="test_left_finger_link" />

26 </group>

27 <!--GROUP STATES: Purpose: Define a named state for a particular group,

in terms of joint values. This is useful to define states like 'folded

arms'-->

28 <group_state name="open" group="gripper">

29 <joint name="test_body_finger_l_joint" value="0.025" />

30 <joint name="test_body_finger_r_joint" value="0" />

31 </group_state>

32 <group_state name="close" group="gripper">

33 <joint name="test_body_finger_l_joint" value="-0.001" />

34 <joint name="test_body_finger_r_joint" value="0" />

35 </group_state>

36 <!--END EFFECTOR: Purpose: Represent information about an end effector.

-->

37 <end_effector name="gripper" parent_link="tool0" group="gripper" />

38 <!--VIRTUAL JOINT: Purpose: this element defines a virtual joint

between a robot link and an external frame of reference (considered

fixed with respect to the robot)-->

39 <virtual_joint name="W1" type="fixed" parent_frame="world" child_link="

world" />

40 <!--DISABLE COLLISIONS: By default it is assumed that any link of the
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robot could potentially come into collision with any other link in the

robot. This tag disables collision checking between a specified pair of

links. -->

41 <disable_collisions link1="base" link2="link0" reason="Adjacent" />

42 <disable_collisions link1="link0" link2="link1" reason="Adjacent" />

43 <disable_collisions link1="link1" link2="link2_down" reason="Adjacent"

/>

44 <disable_collisions link1="link2_down" link2="link2_up" reason="

Adjacent" />

45 <disable_collisions link1="link2_up" link2="link3" reason="Adjacent" />

46 <disable_collisions link1="link2_up" link2="test_gripper_body_link"

reason="Never" />

47 <disable_collisions link1="link2_up" link2="test_left_finger_link"

reason="Never" />

48 <disable_collisions link1="link2_up" link2="test_qc_link" reason="Never

" />

49 <disable_collisions link1="link2_up" link2="test_right_finger_link"

reason="Never" />

50 <disable_collisions link1="link3" link2="test_gripper_body_link" reason

="Never" />

51 <disable_collisions link1="link3" link2="test_left_finger_link" reason=

"Never" />

52 <disable_collisions link1="link3" link2="test_qc_link" reason="Adjacent

" />

53 <disable_collisions link1="link3" link2="test_right_finger_link" reason

="Never" />

54 <disable_collisions link1="test_gripper_body_link" link2="

test_left_finger_link" reason="Adjacent" />

55 <disable_collisions link1="test_gripper_body_link" link2="test_qc_link"

reason="Adjacent" />

56 <disable_collisions link1="test_gripper_body_link" link2="

test_right_finger_link" reason="Adjacent" />

57 <disable_collisions link1="test_left_finger_link" link2="test_qc_link"

reason="Never" />

58 <disable_collisions link1="test_left_finger_link" link2="

test_right_finger_link" reason="Never" />

59 <disable_collisions link1="test_qc_link" link2="test_right_finger_link"

reason="Never" />

60 </robot>

Listings A.9: lucabot.srdf
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A.7. Code to launch the virtual model with gripper

in MoveIt!

1 <launch>

2 <!-- specify the planning pipeline -->

3 <arg name="pipeline" default="ompl" />

4

5 <!-- By default, we do not start a database (it can be large) -->

6 <arg name="db" default="false" />

7 <!-- Allow user to specify database location -->

8 <arg name="db_path" default="$(find move_it_lucabot)/

default_warehouse_mongo_db" />

9

10 <!-- By default, we are not in debug mode -->

11 <arg name="debug" default="false" />

12

13 <!-- By default, we will load or override the robot_description -->

14 <arg name="load_robot_description" default="true"/>

15

16 <!-- Set execution mode for fake execution controllers -->

17 <arg name="execution_type" default="interpolate" />

18

19 <!--

20 By default, hide joint_state_publisher's GUI

21

22 MoveIt!'s "demo" mode replaces the real robot driver with the

joint_state_publisher.

23 The latter one maintains and publishes the current joint configuration of

the simulated robot.

24 It also provides a GUI to move the simulated robot around "manually".

25 This corresponds to moving around the real robot without the use of

MoveIt!.

26 -->

27 <arg name="use_gui" default="false" />

28 <arg name="use_rviz" default="true" />

29

30 <!-- If needed, broadcast static tf for robot root -->

31

32

33 <!-- We do not have a robot connected, so publish fake joint states -->

34 <node name="joint_state_publisher" pkg="joint_state_publisher" type="

joint_state_publisher" unless="$(arg use_gui)">

35 <rosparam param="source_list">[move_group/fake_controller_joint_states]
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</rosparam>

36 </node>

37 <node name="joint_state_publisher" pkg="joint_state_publisher_gui" type="

joint_state_publisher_gui" if="$(arg use_gui)">

38 <rosparam param="source_list">[move_group/fake_controller_joint_states]

</rosparam>

39 </node>

40

41 <!-- Given the published joint states, publish tf for the robot links -->

42 <node name="robot_state_publisher" pkg="robot_state_publisher" type="

robot_state_publisher" respawn="true" output="screen" />

43

44 <!-- Run the main MoveIt! executable without trajectory execution (we do

not have controllers configured by default) -->

45 <include file="$(find move_it_lucabot)/launch/move_group.launch">

46 <arg name="allow_trajectory_execution" value="true"/>

47 <arg name="fake_execution" value="true"/>

48 <arg name="execution_type" value="$(arg execution_type)"/>

49 <arg name="info" value="true"/>

50 <arg name="debug" value="$(arg debug)"/>

51 <arg name="pipeline" value="$(arg pipeline)"/>

52 <arg name="load_robot_description" value="$(arg load_robot_description)

"/>

53 </include>

54

55 <!-- Run Rviz and load the default config to see the state of the

move_group node -->

56 <include file="$(find move_it_lucabot)/launch/moveit_rviz.launch" if="$(

arg use_rviz)">

57 <arg name="rviz_config" value="$(find move_it_lucabot)/launch/moveit.

rviz"/>

58 <arg name="debug" value="$(arg debug)"/>

59 </include>

60

61 <!-- If database loading was enabled, start mongodb as well -->

62 <include file="$(find move_it_lucabot)/launch/default_warehouse_db.launch

" if="$(arg db)">

63 <arg name="moveit_warehouse_database_path" value="$(arg db_path)"/>

64 </include>

65

66 </launch>

Listings A.10: demo.launch
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A.8. Codes to launch the virtual model with gripper

in Gazebo

1 <?xml version="1.0"?>

2 <launch>

3 <!--Loading the parameter of the robot-->

4 <param name="robot_description" command="$(find xacro)/xacro --inorder $(

find lucabot_description)/urdf/lucabot.xacro"/>

5 <!-- Load gazebo controller configurations -->

6 <!-- Note: You MUST load these PID parameters for all joints that are

using

7 the PositionJointInterface, otherwise the arm + gripper will act

like a

8 giant parachute, counteracting gravity-->

9 <rosparam file="$(find 2fgt_onrobot_description)/config/gripper_gains.

yaml" command="load"/>

10

11 <!--Launch Gazebo with empty world-->

12 <include file="$(find gazebo_ros)/launch/empty_world.launch">

13 <arg name="paused" value="true"/>

14 <arg name="world_name" value="$(find lucabot_gazebo)/world/lucabot.world"

/>

15 <arg name="use_sim_time" value="true"/>

16 <!-- more default parameters can be changed here -->

17 </include>

18

19 <!--load ros_control config: joints state and controller for joints-->

20

21 <rosparam file="$(find lucabot_control)/config/robot_controllers.yaml"

command="load"/>

22 <!--Spawn robot into gazebo-->

23 <node name="spawn_urdf" pkg="gazebo_ros" type="spawn_model" args="-param

robot_description -urdf -model lucabot"/>

24

25

26

27 <!--Robot state publisher-->

28 <node name="robot_state_publisher" pkg="robot_state_publisher" type="

robot_state_publisher" output="screen">

29 <remap from="/joint_states" to="/lucabot/joint_states"/>

30 </node>

31 <!--Start controllers-->

32 <node name="controller_spawner" pkg="controller_manager" type="spawner"
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output="screen" ns="/lucabot" respawn="false" args="

joint_state_controller joint1_position_controller

joint2_position_controller joint3_position_controller

joint4_position_controller joint5_position_controller

joint6_position_controller gripper_controller"/>

33

34 <!--Load joint trajectory controller-->

35 <node name="rqt_joint_trajectory_controller" pkg="

rqt_joint_trajectory_controller" type="rqt_joint_trajectory_controller"/

>

36 </launch>

Listings A.11: lucabot.launch

1 <?xml version="1.0" ?>

2 <sdf version="1.4">

3 <world name="default">

4 <include>

5 <uri>model://ground_plane</uri>

6 </include>

7 <include>

8 <uri>model://sun</uri>

9 </include>

10 <include>

11 <uri>model://table</uri>

12 <pose>0 0 -1.03 0 0 0</pose>

13 </include>

14 </world>

15 </sdf>

Listings A.12: lucabot.world

A.9. Codes to control the virtual model with gripper

in Gazebo

The files below: robot_controllers.yaml and gripper_gains.yaml are needed to define the
type of controllers and the gains which are exploited to control the dynamic model of the
robot in Gazebo. These yaml files are loaded in the launch file A.11 on the preceding
page.

1 lucabot:

2 joint_state_controller:

3 type: joint_state_controller/JointStateController

4 publish_rate: 500
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5 joint1_position_controller:

6 type: effort_controllers/JointPositionController

7 joint: r1

8 pid: {p: 10000.0, i: 0.5, d: 1.0}

9 joint2_position_controller:

10 type: effort_controllers/JointPositionController

11 joint: r2

12 pid: {p: 10000.0, i: 0.5, d: 1.0}

13 joint3_position_controller:

14 type: effort_controllers/JointPositionController

15 joint: r3

16 pid: {p: 10000.0, i: 0.5, d: 1.0}

17 joint4_position_controller:

18 type: effort_controllers/JointPositionController

19 joint: r4

20 pid: {p: 10000.0, i: 0.5, d: 1.0}

21 joint5_position_controller:

22 type: effort_controllers/JointPositionController

23 joint: r5

24 pid: {p: 10000.0, i: 0.5, d: 1000.0}

25 joint6_position_controller:

26 type: effort_controllers/JointPositionController

27 joint: r6

28 pid: { p: 10000.0, i: 0.5, d: 1.0 }

29 gripper_controller:

30 type: position_controllers/JointTrajectoryController

31 joints:

32 # Check "test" is the name parameter

33 - test_body_finger_l_joint

34 constraints:

35 goal_time: 0.6

36 stopped_velocity_tolerance: 0.05

37 gripper_finger_joint: { trajectory: 0.2, goal: 0.2 }

38 stop_trajectory_duration: 0.5

39 state_publish_rate: 125

40 action_monitor_rate: 10

Listings A.13: robot_controllers.yaml

1 # Note: You MUST load these PID parameters for all joints that are using

the

2 # PositionJointInterface, otherwise the arm + gripper will act like a giant

3 # parachute, counteracting gravity, and causing some of the wheels to lose

4 # contact with the ground, so the robot won't be able to properly navigate.

See
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5 # https://github.com/ros-simulation/gazebo_ros_pkgs/issues/612

6 gazebo_ros_control:

7 pid_gains:

8 # these gains are used by the gazebo_ros_control plugin

9 test_body_finger_l_joint:

10 p: 200.0

11 i: 0.1

12 d: 0.0

13 i_clamp: 0.2

14 antiwindup: false

15 publish_state: true

16 # the following gains are used by the gazebo_mimic_joint plugin

17 test_body_finger_r_joint:

18 p: 200.0

19 i: 0.1

20 d: 0.0

21 i_clamp: 0.2

22 antiwindup: false

23 publish_state: true

Listings A.14: gripper_gains.yaml

A.10. Code to plan the pick and place task in MoveIt!

1 #!/usr/bin/env python

2

3

4 from copy import deepcopy

5 from moveit_msgs.msg import *

6 from moveit_commander import *

7 from trajectory_msgs.msg import JointTrajectoryPoint

8 import tf

9 from os import path

10 from time import strftime, localtime

11 from geometry_msgs.msg import *

12 import matplotlib.pyplot as plt

13 from matplotlib.figure import Figure, Axes, rcParams

14 from math import pi

15 from tf.transformations import quaternion_from_euler

16 import os

17

18 os.environ["PATH"] += os.pathsep + '/usr/bin'

19

20 # Set Latex font
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21 rcParams['text.usetex'] = True

22 rcParams['text.latex.unicode'] = True

23

24 # Initialization of Moveit!

25 rospy.loginfo('Starting the Initialization')

26 roscpp_initialize(sys.argv)

27 # Initialization of the Node

28 rospy.init_node('plan_motion', anonymous=True, log_level=rospy.INFO)

29

30 robot = RobotCommander()

31 scene = PlanningSceneInterface()

32 rospy.sleep(1.0)

33

34 planner = "RRT"

35 group = MoveGroupCommander("manipulator")

36 group.set_pose_reference_frame("base")

37 group.set_planner_id(planner)

38 group.set_num_planning_attempts(1000)

39 group.allow_replanning(False) # Allow the replanning if there are changes

in environment

40

41 arm = "tool0"

42

43 group_gripper = 'gripper'

44 group_gripper2 = MoveGroupCommander("gripper")

45 group_gripper2.set_planner_id('RRTConnect')

46 group_gripper2.set_num_planning_attempts(1000)

47 group_gripper2.allow_replanning(False)

48 group_gripper2.set_goal_tolerance(0.01)

49

50 # Home position

51 quaternion = tf.transformations.quaternion_from_euler(pi, 0, 0)

52 home_pos = [0.300, 0, 0.4, quaternion[0], quaternion[1], quaternion[2],

quaternion[3]]

53

54 images_path = path.join(path.expanduser("~"), "tesi_seria/images/{}/".

format(planner))

55

56 class TestBox:

57

58 def __init__(self, name, x=0.0, y=0.0):

59 self.name = name

60 self.x_dim = 0.05

61 self.y_dim = 0.05
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62 self.z_dim = 0.05

63 self.pose_msg = PoseStamped()

64 self.pose_msg.header.frame_id = "base"

65 self.pose_msg.pose.position.x = x

66 self.pose_msg.pose.position.y = y

67 self.pose_msg.pose.position.z = 0

68

69 def add_object(self):

70 rospy.sleep(0.5)

71 scene.add_box(self.name, self.pose_msg, size=(self.x_dim, self.

y_dim, self.z_dim))

72 rospy.sleep(0.5)

73

74 def remove_object(self):

75 if scene.get_attached_objects(self.name):

76 rospy.logerr('Object attached: check it please!')

77 else:

78 scene.remove_world_object(self.name)

79

80 def attach_object(self, arm):

81 touch_links = robot.get_link_names(group_gripper)

82 scene.attach_box(arm, self.name, touch_links=touch_links)

83 rospy.sleep(1.0)

84

85 def detach_object(self, arm):

86 scene.remove_attached_object(arm, self.name)

87 rospy.sleep(0.5)

88

89 def getting_joints_from_plan(plan):

90 # type: (RobotTrajectory) -> list

91 """

92 Provide the joints of the last point of the trajectory

93 :param plan: RobotTrajectory msg: Plan of a trajectory

94 :type plan: RobotTrajectory

95 :rtype: list

96 :return: List of joints of the end of the trajectory

97 """

98 positions = plan.joint_trajectory.points[-1] # type:

JointTrajectoryPoint

99 return positions.positions

100

101 def create_robotstate(plan):

102 """

103 Return a RobotState() msg of the end of a trajectory
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104 :param plan: RobotTrajectory msg of the trajectory - planning

105 :type plan: RobotTrajectory

106 :rtype: RobotState

107 :return: robot_state: RobotState msg of the trajectory

108 """

109 if plan.joint_trajectory.points:

110 # Creating a RobotState for evaluate the next trajectory

111 joint_state = JointState()

112 joint_state.header.stamp = rospy.Time.now()

113 joint_state.name = plan.joint_trajectory.joint_names

114

115 positions = getting_joints_from_plan(plan)

116 joint_state.position = positions

117 robot_state = RobotState()

118 robot_state.joint_state = joint_state

119 return robot_state

120 else:

121 raise RuntimeWarning("Error in creating the robotstate: points

empty")

122

123 def evaluate_time(plan, info=''):

124 """

125 It returns the time duration of the trajectory

126 :param plan: Plan msg of the trajectory

127 :type plan: RobotTrajectory

128 :param info: info about the time

129 :type info: str

130 :rtype: float

131 :return: duration time of the trajectory

132 """

133 # Check if the plan is not empty

134 if plan.joint_trajectory.points:

135 p_last = plan.joint_trajectory.points[-1] # type:

JointTrajectoryPoint

136 duration = p_last.time_from_start.to_sec()

137 rospy.loginfo('Estimated time of planning {}: {} s'.format(info,

duration))

138 return duration

139 else:

140 rospy.logwarn('The plan is empty')

141 duration = 2000.0 # penalty

142 return duration

143

144 def home():
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145 rospy.loginfo('home')

146 group.set_pose_target(home_pos, arm)

147 plan = group.plan()

148 home_duration = evaluate_time(plan, "homing")

149 group.execute(plan)

150 group.stop()

151 return home_duration

152

153 def picking(obj, arm, info=''):

154 # type: (TestBox, str, str) -> List[float, RobotTrajectory,

RobotTrajectory]

155 """

156 Wrapper for picking

157 :param obj: Object to pick

158 :param arm: Arm used

159 :param info Info about what is doing

160 :rtype: list[float, RobotTrajectory, RobotTrajectory] or tuple[float,

RobotTrajectory, RobotTrajectory]

161 :return: Duration time for picking and RobotTrajectories for picking

162 """

163 pose_P = deepcopy(obj.pose_msg)

164 pose_P.pose.position.z += 0.15

165 pose_P.pose.orientation.x = quaternion[0]

166 pose_P.pose.orientation.y = quaternion[1]

167 pose_P.pose.orientation.z = quaternion[2]

168 pose_P.pose.orientation.w = quaternion[3]

169

170 group.set_pose_target(pose_P, arm)

171 pick = group.plan()

172 # Evaluate the time for picking

173 t1 = evaluate_time(pick, info + "_t1")

174 if pick.joint_trajectory.points:

175 # Creating a RobotState for evaluate the next trajectory

176 robot_state = create_robotstate(pick)

177 group.set_start_state(robot_state)

178 group.set_pose_target(home_pos, arm)

179 homing = group.plan()

180 # Evaluate the duration of the planning

181 t2 = evaluate_time(homing, info + "_t2")

182 return [(t1 + t2), pick, homing]

183 else:

184 rospy.logerr('Planning failed')

185 pass

186
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187 def closing():

188 rospy.loginfo('closing')

189 joint_goal = group_gripper2.get_current_joint_values()

190 joint_goal[0] = 0.0

191 group_gripper2.go(joint_goal, wait=True)

192 group_gripper2.stop()

193

194 def placing(obj, info=''):

195 # type: (TestBox, str) -> List[float, RobotTrajectory, RobotTrajectory]

196 place_pos = [0, 0.3, 0.1, quaternion[0], quaternion[1], quaternion[2],

quaternion[3]]

197 group.set_pose_target(place_pos, arm)

198 placePlan = group.plan() # type: RobotTrajectory

199 # Evaluate the time of the trajectory

200 t1 = evaluate_time(placePlan, info + "_t1_placing")

201 if placePlan.joint_trajectory.points:

202 # Creating a RobotState for evaluate the next trajectory

203 group.clear_pose_targets()

204 place_state = create_robotstate(placePlan)

205 group.set_start_state(place_state)

206 group.set_pose_target(home_pos, arm)

207 return_home = group.plan() # type: RobotTrajectory

208 t2 = evaluate_time(return_home, info + "_t2_placing") # type:

float

209 return [(t1 + t2), placePlan, return_home]

210 else:

211 raise RuntimeWarning("Error: Planning failed for placing")

212

213 def opening():

214 rospy.loginfo('opening')

215 joint_goal = group_gripper2.get_current_joint_values()

216 joint_goal[0] = 0.025

217 group_gripper2.go(joint_goal, wait=True)

218 group_gripper2.stop()

219

220 def joint_diagram(plan, info=''):

221 # type: (RobotTrajectory, str) -> None

222 points = [p for p in plan.joint_trajectory.points] # type: List[

JointTrajectoryPoint]

223 # Create an object figure subplot

224 fig, axes = plt.subplots(3, sharex=True) # type: Figure, List[Axes]

225 # Get width and height

226 (width_fig, height_fig) = rcParams["figure.figsize"]

227 # Get hspace between subplots + 20%
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228 hspace = rcParams["figure.subplot.hspace"] + 0.20

229 # Add half inch to the figure's size

230 fig.set_size_inches(width_fig + 1, height_fig + 1.1)

231 fig.subplots_adjust(hspace=hspace)

232 # For each point, I separate each joint position

233 t = [tt.time_from_start.to_sec() for tt in points]

234 j1 = [jj.positions[0] for jj in points]

235 j2 = [jj.positions[1] for jj in points]

236 j3 = [jj.positions[2] for jj in points]

237 j4 = [jj.positions[3] for jj in points]

238 j5 = [jj.positions[4] for jj in points]

239 j6 = [jj.positions[5] for jj in points]

240 axes[0].plot(

241 t, j1, 'bo-',

242 t, j2, 'go-',

243 t, j3, 'ro-',

244 t, j4, 'co-',

245 t, j5, 'mo-',

246 t, j6, 'yo-',

247 )

248 axes[0].grid()

249 # axes[0].set_title(r"\text{Joint positions - arm - plan: {0}}".format(

info))

250 axes[0].set_title(r"$\textbf{Joint positions - arm - plan: %s}$" % info

)

251 axes[0].set_xlabel(r"$\textit{time (s)}$")

252 axes[0].set_ylabel(r"$q$")

253 axes[0].legend(['j1', 'j2', 'j3', 'j4', 'j5', 'j6'], loc='best',

bbox_to_anchor=(1.001, 1))

254 v1 = [jj.velocities[0] for jj in points]

255 v2 = [jj.velocities[1] for jj in points]

256 v3 = [jj.velocities[2] for jj in points]

257 v4 = [jj.velocities[3] for jj in points]

258 v5 = [jj.velocities[4] for jj in points]

259 v6 = [jj.velocities[5] for jj in points]

260 axes[1].plot(

261 t, v1, 'bo-',

262 t, v2, 'go-',

263 t, v3, 'ro-',

264 t, v4, 'co-',

265 t, v5, 'mo-',

266 t, v6, 'yo-',

267 )

268 axes[1].grid()
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269 axes[1].set_xlabel(r"$\textit{time (s)}$")

270 axes[1].set_ylabel(r"$\dot{q}$")

271 # axes[1].set_title(r"\text{Joint speed - arm - plan: {0}}".format(info

))

272 axes[1].set_title(r"$\textbf{Joint speed - arm - plan: %s}$" % info)

273 a1 = [jj.accelerations[0] for jj in points]

274 a2 = [jj.accelerations[1] for jj in points]

275 a3 = [jj.accelerations[2] for jj in points]

276 a4 = [jj.accelerations[3] for jj in points]

277 a5 = [jj.accelerations[4] for jj in points]

278 a6 = [jj.accelerations[5] for jj in points]

279 axes[2].plot(

280 t, a1, 'bo-',

281 t, a2, 'go-',

282 t, a3, 'ro-',

283 t, a4, 'co-',

284 t, a5, 'mo-',

285 t, a6, 'yo-',

286 )

287 axes[2].grid()

288 axes[2].set_xlabel(r"$\textit{time (s)}$")

289 axes[2].set_ylabel(r"$\ddot{q}$")

290 # axes[2].set_title(r"\text{Joint acceleration - arm - plan: {0}}".

format(info))

291 axes[2].set_title(r"$\textbf{Joint acceleration - arm - plan: %s}$" %

info)

292 # print("end time: {}".format(t[-1]))

293 fig.savefig(images_path + "J_arm_{}_{}".format(info, strftime("%d_%b-%

H_%M", localtime())),

294 format='svg',

295 transparent=False

296 )

297 # plt.show()

298 # Save the timings on a file:

299 with open(path.join(path.expanduser("~"), "tesi_seria/timings"), "a+")

as f:

300 f.write(

301 strftime("%d_%b-%H_%M", localtime()) +

302 "\tPLANNER: {} J_arm_{} Time: {}\n".format(planner, info, t

[-1])

303 )

304

305 def run():

306 # Remove detached object
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307 if scene.get_attached_objects():

308 scene.remove_attached_object(arm)

309

310 # Remove all the objects

311 scene.remove_world_object()

312 rospy.sleep(1.0)

313

314 # Add the test box

315 B = TestBox('box', x=0.3, y=0)

316 rospy.loginfo('Placing box')

317 rospy.sleep(0.5)

318

319 # Setting up the test box

320 B.add_object()

321 rospy.sleep(2.0)

322

323 # Going home

324 group.set_start_state_to_current_state()

325 home()

326

327 # # Evaluate the time for the arm cycle

328 (t1, pick, homing) = picking(B, arm, info="pick\t")

329 home_robotstate = create_robotstate(homing)

330 group.set_start_state(home_robotstate)

331 (t2, place, return_home) = placing(B, info="place\t")

332

333 # Create the initial state after placing the tube

334 return_home_state = create_robotstate(return_home)

335 group.set_start_state(return_home_state)

336

337 # Execute Picking

338 group.execute(pick)

339 group.stop()

340

341 # Attach Test box

342 B.attach_object(arm)

343 closing()

344

345 group.execute(homing)

346 group.stop()

347

348 # Execute Placing

349 group.execute(place)

350 group.stop()
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351 opening()

352 B.detach_object(arm)

353

354 group.execute(return_home)

355 group.stop()

356

357 # Representing data and saving data

358 joint_diagram(pick, "pick")

359 joint_diagram(homing, "homing")

360 joint_diagram(place, "place ")

361 joint_diagram(return_home, "return home")

362

363 if __name__ == '__main__':

364 run()

365 roscpp_shutdown()

Listings A.15: pick_and_place.py

A.11. Codes for the digital model of the real robot

1

2 <?xml version="1.0"?>

3 <robot name="lucabot" xmlns:xacro="http://www.ros.org/wiki/xacro">

4

5 <!-- Import all Gazebo-customization elements, including Gazebo colors -->

6 <xacro:include filename="$(find lucabot_description)/urdf/lucabot.gazebo.

xacro" />

7

8 <xacro:property name="i" value="0.3" />

9 <xacro:property name="i1" value="0.3477285474" />

10 <xacro:property name="i2" value="0.3072289157" />

11 <xacro:property name="i3" value="0.212585034" />

12

13 <link name="world"/>

14

15 <link name="base">

16 <visual>

17 <origin rpy="0 0 0" xyz="0 0 0"/>

18 <geometry>

19 <mesh filename="package://lucabot_description/model/base.dae"/>

20 </geometry>

21 </visual>

22 <collision>

23 <origin rpy="0 0 0" xyz="0 0 0.0415"/>
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24 <geometry>

25 <cylinder length="0.083" radius="0.100"/>

26 </geometry>

27 </collision>

28 <inertial>

29 <origin xyz="-0.000313 0 0.029159" rpy="0 0 0"/>

30 <mass value="${i*0.848}" />

31 <inertia ixx="${i*0.001992393}" ixy="${i*0.0}" ixz="${i*0.000007016}"

32 iyy="${i*0.002050412}" iyz="${i*0.0}"

33 izz="${i*0.003102151}" />

34 </inertial>

35 </link>

36

37 <joint name="fixed" type="fixed">

38 <origin xyz="0 0 0" rpy="0 0 0" />

39 <parent link="world" />

40 <child link="base" />

41 </joint>

42

43 <link name="link0">

44 <visual>

45 <origin rpy="0 0 0" xyz="0 0 0"/>

46 <geometry>

47 <mesh filename="package://lucabot_description/model/

link0_denti_incassati.dae"/>

48 </geometry>

49 </visual>

50 <collision>

51 <origin rpy="0 0 0" xyz="0 0 0.1255"/>

52 <geometry>

53 <box size="0.206 0.120 0.229"/>

54 </geometry>

55 </collision>

56 <inertial>

57 <origin xyz="-0.030697 0.000014 0.136133" rpy="0 0 0"/>

58 <mass value="${i*1.385}" />

59 <inertia ixx="${i*0.006060034}" ixy="${i*0.000000665}" ixz="${i

*0.001682159}"

60 iyy="${i*0.006600492}" iyz="${i*-0.000001679}"

61 izz="${i*0.003229145}" />

62 </inertial>

63 </link>

64

65 <joint name="r1" type="revolute">
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66 <origin xyz="0 0 0.07" rpy="0 0 0" />

67 <parent link="base" />

68 <child link="link0" />

69 <limit effort="19.8" lower="-2.96706" upper="2.96706" velocity="1" />

70 <axis xyz="0 0 1" />

71 <dynamics damping="1.0"/>

72 </joint>

73

74 <link name="link1">

75 <visual>

76 <origin rpy="${pi/2} ${pi} 0" xyz="0 0 0"/>

77 <geometry>

78 <mesh filename="package://lucabot_description/model/link1_v2_intero

.dae"/>

79 </geometry>

80 </visual>

81 <collision>

82 <origin rpy="0 0 0" xyz="0 0 0.1"/>

83 <geometry>

84 <box size="0.190 0.120 0.320"/>

85 </geometry>

86 </collision>

87 <inertial>

88 <origin xyz="0.028857 -0.000241 0.12016" rpy="0 0 0"/>

89 <mass value="${i1*1.783}" />

90 <inertia ixx="${i1*0.014019562}" ixy="${i1*-0.000003339}" ixz="${i1

*0.001190259}"

91 iyy="${i1*0.013996178}" iyz="${i1*0.000032161}"

92 izz="${i1*0.003295798}" />

93 </inertial>

94 </link>

95

96 <joint name="r2" type="revolute">

97 <origin xyz="0 0 0.180" rpy="0 0 0" />

98 <parent link="link0" />

99 <child link="link1" />

100 <limit effort="19.8" lower="${pi/4}" upper="${pi/2}" velocity="1" />

101 <axis xyz="1 0 0" />

102 <dynamics damping="1.0"/>

103 </joint>

104

105 <link name="link2_down">

106 <visual>

107 <origin rpy="${pi/2} ${pi} 0" xyz="0 0 0"/>
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108 <geometry>

109 <mesh filename="package://lucabot_description/model/link2_down.dae"

/>

110 </geometry>

111 </visual>

112 <collision>

113 <origin rpy="0 0 0" xyz="0 0 0.03725"/>

114 <geometry>

115 <box size="0.158 0.120 0.1945"/>

116 </geometry>

117 </collision>

118 <inertial>

119 <origin xyz="-0.016579 0.000539 0.045038" rpy="0 0 0"/>

120 <mass value="${i2*0.803}" />

121 <inertia ixx="${i2*0.002857544}" ixy="${i2*0.000001774}" ixz="${i2

*0.000629942}"

122 iyy="${i2*0.002802888}" iyz="${i2*0.000000346}"

123 izz="${i2*0.001398029}" />

124 </inertial>

125 </link>

126

127 <joint name="r3" type="revolute">

128 <origin xyz="0 0 0.2" rpy="0 0 0" />

129 <parent link="link1" />

130 <child link="link2_down" />

131 <limit effort="11.7" lower="-${pi/2}" upper="${pi/2}" velocity="1" />

132 <axis xyz="1 0 0" />

133 <dynamics damping="1.0"/>

134 </joint>

135

136 <link name="link2_up">

137 <visual>

138 <origin rpy="-${pi/2} 0 0" xyz="0 0 -0.1355"/>

139 <geometry>

140 <mesh filename="package://lucabot_description/model/

link2_up_denti_incassati.dae"/>

141 </geometry>

142 </visual>

143 <collision>

144 <origin rpy="0 0 0" xyz="0 0 0.09725"/>

145 <geometry>

146 <box size="0.120 0.120 0.1945"/>

147 </geometry>

148 </collision>
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149 <inertial>

150 <origin xyz="-0.020402 0.000025 0.097778" rpy="0 0 0"/>

151 <mass value="${i2*0.857}" />

152 <inertia ixx="${i2*0.003054318}" ixy="${i2*-0.000000437}" ixz="${i2

*0.000510103}"

153 iyy="${i2*0.002847609}" iyz="${i2*0.000001337}"

154 izz="${i2*0.001356364}" />

155 </inertial>

156 </link>

157

158 <joint name="r4" type="revolute">

159 <origin xyz="0 0 0.1355" rpy="0 0 0" />

160 <parent link="link2_down" />

161 <child link="link2_up" />

162 <limit effort="6.9" lower="-2.96706" upper="2.96706" velocity="1" />

163 <axis xyz="0 0 1" />

164 <dynamics damping="1.0"/>

165 </joint>

166

167 <link name="link3">

168 <visual>

169 <origin rpy="-${pi/2} 0 0" xyz="0 0 0"/>

170 <geometry>

171 <mesh filename="package://lucabot_description/model/link3_v2.dae"/>

172 </geometry>

173 </visual>

174 <collision>

175 <origin rpy="0 0 0" xyz="0 0 0.045"/>

176 <geometry>

177 <box size="0.120 0.120 0.210"/>

178 </geometry>

179 </collision>

180 <inertial>

181 <origin xyz="0.013097 0 0.066543" rpy="0 0 0"/>

182 <mass value="${i3*1.176}" />

183 <inertia ixx="${i3*0.004822326}" ixy="${i3*0.0}" ixz="${i3

*0.000933744}"

184 iyy="${i3*0.004764996}" iyz="${i3*0.0}"

185 izz="${i3*0.001777042}" />

186 </inertial>

187 </link>

188

189 <joint name="r5" type="revolute">

190 <origin xyz="0 0 0.1345" rpy="0 0 0" />
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191 <parent link="link2_up" />

192 <child link="link3" />

193 <limit effort="6.9" lower="-${pi/2}" upper="${pi/2}" velocity="1" />

194 <axis xyz="1 0 0" />

195 <dynamics damping="1.0"/>

196 </joint>

197

198 <transmission name="tran1">

199 <type>transmission_interface/SimpleTransmission</type>

200 <joint name="r1">

201 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

202 </joint>

203 <actuator name="motor1">

204 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

205 <mechanicalReduction>35</mechanicalReduction>

206 </actuator>

207 </transmission>

208

209 <transmission name="tran2">

210 <type>transmission_interface/SimpleTransmission</type>

211 <joint name="r2">

212 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

213 </joint>

214 <actuator name="motor2">

215 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

216 <mechanicalReduction>35</mechanicalReduction>

217 </actuator>

218 </transmission>

219

220 <transmission name="tran3">

221 <type>transmission_interface/SimpleTransmission</type>

222 <joint name="r3">

223 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

224 </joint>

225 <actuator name="motor3">

226 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

227 <mechanicalReduction>35</mechanicalReduction>

228 </actuator>
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229 </transmission>

230

231 <transmission name="tran4">

232 <type>transmission_interface/SimpleTransmission</type>

233 <joint name="r4">

234 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

235 </joint>

236 <actuator name="motor4">

237 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

238 <mechanicalReduction>35</mechanicalReduction>

239 </actuator>

240 </transmission>

241

242 <transmission name="tran5">

243 <type>transmission_interface/SimpleTransmission</type>

244 <joint name="r5">

245 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

246 </joint>

247 <actuator name="motor5">

248 <hardwareInterface>hardware_interface/EffortJointInterface</

hardwareInterface>

249 <mechanicalReduction>35</mechanicalReduction>

250 </actuator>

251 </transmission>

252

253 <gazebo>

254 <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">

255 <robotNamespace>/lucabot</robotNamespace>

256 </plugin>

257 </gazebo>

258

259 </robot>

Listings A.16: lucabot_moveit_gazebo.xacro

1 <?xml version='1.0' encoding='utf-8'?>

2

3 <robot name = "lucabot" xmlns:xacro="http://www.ros.org/wiki/xacro">

4

5 <xacro:macro name="lucabot_gazebo" params="name">

6 <gazebo reference="${name}_body">

7 <material>Gazebo/White</material>
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8 <mu1>0.2</mu1>

9 <mu2>0.2</mu2>

10 </gazebo>

11 </xacro:macro>

12

13 </robot>

Listings A.17: lucabot.gazebo.xacro

A.12. MoveIt! configuration files for robot model of

the real robot

1 # joint_limits.yaml allows the dynamics properties specified in the URDF to

be overwritten or augmented as needed

2 # Specific joint properties can be changed with the keys [max_position,

min_position, max_velocity, max_acceleration]

3 # Joint limits can be turned off with [has_velocity_limits,

has_acceleration_limits]

4 joint_limits:

5 r1:

6 has_velocity_limits: true

7 max_velocity: 1

8 has_acceleration_limits: true

9 max_acceleration: 0.3927

10 r2:

11 has_velocity_limits: true

12 max_velocity: 1

13 has_acceleration_limits: true

14 max_acceleration: 0.3927

15 r3:

16 has_velocity_limits: true

17 max_velocity: 1

18 has_acceleration_limits: true

19 max_acceleration: 0.3927

20 r4:

21 has_velocity_limits: true

22 max_velocity: 1

23 has_acceleration_limits: true

24 max_acceleration: 0.3927

25 r5:

26 has_velocity_limits: true

27 max_velocity: 1

28 has_acceleration_limits: true
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29 max_acceleration: 0.3927

Listings A.18: joint_limits_real_robot.yaml

1 <?xml version="1.0" ?>

2 <!--This does not replace URDF, and is not an extension of URDF.

3 This is a format for representing semantic information about the robot

structure.

4 A URDF file must exist for this robot as well, where the joints and the

links that are referenced are defined

5 -->

6 <robot name="lucabot">

7 <!--GROUPS: Representation of a set of joints and links. This can be

useful for specifying DOF to plan for, defining arms, end effectors, etc

-->

8 <!--LINKS: When a link is specified, the parent joint of that link (if

it exists) is automatically included-->

9 <!--JOINTS: When a joint is specified, the child link of that joint (

which will always exist) is automatically included-->

10 <!--CHAINS: When a chain is specified, all the links along the chain (

including endpoints) are included in the group. Additionally, all the

joints that are parents to included links are also included. This means

that joints along the chain and the parent joint of the base link are

included in the group-->

11 <!--SUBGROUPS: Groups can also be formed by referencing to already

defined group names-->

12 <group name="manipulator">

13 <joint name="r1" />

14 <joint name="r2" />

15 <joint name="r3" />

16 <joint name="r4" />

17 <joint name="r5" />

18 </group>

19 <!--GROUP STATES: Purpose: Define a named state for a particular group,

in terms of joint values. This is useful to define states like 'folded

arms'-->

20 <group_state name="home" group="manipulator">

21 <joint name="r1" value="0" />

22 <joint name="r2" value="1.1802" />

23 <joint name="r3" value="0" />

24 <joint name="r4" value="0" />

25 <joint name="r5" value="0" />

26 </group_state>

27 <!--VIRTUAL JOINT: Purpose: this element defines a virtual joint

between a robot link and an external frame of reference (considered
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fixed with respect to the robot)-->

28 <virtual_joint name="W1" type="fixed" parent_frame="world" child_link="

world" />

29 <!--DISABLE COLLISIONS: By default it is assumed that any link of the

robot could potentially come into collision with any other link in the

robot. This tag disables collision checking between a specified pair of

links. -->

30 <disable_collisions link1="base" link2="link0" reason="Adjacent" />

31 <disable_collisions link1="base" link2="link1" reason="Never" />

32 <disable_collisions link1="base" link2="link2_down" reason="Never" />

33 <disable_collisions link1="base" link2="link2_up" reason="Never" />

34 <disable_collisions link1="link0" link2="link1" reason="Adjacent" />

35 <disable_collisions link1="link0" link2="link2_down" reason="Never" />

36 <disable_collisions link1="link0" link2="link2_up" reason="Never" />

37 <disable_collisions link1="link0" link2="link3" reason="Never" />

38 <disable_collisions link1="link1" link2="link2_down" reason="Adjacent"

/>

39 <disable_collisions link1="link1" link2="link2_up" reason="Never" />

40 <disable_collisions link1="link1" link2="link3" reason="Never" />

41 <disable_collisions link1="link2_down" link2="link2_up" reason="

Adjacent" />

42 <disable_collisions link1="link2_down" link2="link3" reason="Never" />

43 <disable_collisions link1="link2_up" link2="link3" reason="Adjacent" />

44 </robot>

Listings A.19: lucabot_real_robot.srdf

1 # MoveIt-specific simulation settings

2

3 moveit_sim_hw_interface:

4 joint_model_group: controllers_initial_group_

5 joint_model_group_pose: controllers_initial_pose_

6 # Settings for ros_control control loop

7 generic_hw_control_loop:

8 loop_hz: 300

9 cycle_time_error_threshold: 0.01

10 # Settings for ros_control hardware interface

11 hardware_interface:

12 joints:

13 - r1

14 - r2

15 - r3

16 - r4

17 - r5

18 sim_control_mode: 1 # 0: position, 1: velocity
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19 # Publish all joint states

20 lucabot:

21 # Creates the /joint_states topic necessary in ROS

22 joint_state_controller:

23 type: joint_state_controller/JointStateController

24 publish_rate: 50

25 lucabot_arm_controller:

26 type: effort_controllers/JointTrajectoryController

27 joints:

28 - r1

29 - r2

30 - r3

31 - r4

32 - r5

33 gains:

34 r1: { p: 100, d: 1, i: 0.1, i_clamp: 0.1 }

35 r2: { p: 100, d: 1, i: 0.1, i_clamp: 0.1 }

36 r3: { p: 100, d: 1, i: 0.1, i_clamp: 0.1 }

37 r4: { p: 100, d: 1, i: 0.1, i_clamp: 0.1 }

38 r5: { p: 100, d: 1, i: 0.1, i_clamp: 0.1 }

39

40 constraints:

41 goal_time: 2.0

42 state_publish_rate: 25

43

44 controller_list:

45 - name: lucabot/lucabot_arm_controller

46 action_ns: follow_joint_trajectory

47 type: FollowJointTrajectory

48 default: true

49 joints:

50 - r1

51 - r2

52 - r3

53 - r4

54 - r5

Listings A.20: ros_controllers.yaml

A.13. Code to launch the virtual model of the real

robot in MoveIt!

1 <launch>
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2

3 <!-- specify the planning pipeline -->

4 <arg name="pipeline" default="ompl" />

5

6 <!-- By default, we do not start a database (it can be large) -->

7 <arg name="db" default="false" />

8 <!-- Allow user to specify database location -->

9 <arg name="db_path" default="$(find move_it_gazebo)/

default_warehouse_mongo_db" />

10

11 <!-- By default, we are not in debug mode -->

12 <arg name="debug" default="false" />

13

14 <!-- By default, we will load or override the robot_description -->

15 <arg name="load_robot_description" default="true"/>

16

17 <!-- Set execution mode for fake execution controllers -->

18 <arg name="execution_type" default="interpolate" />

19

20 <!--

21 By default, hide joint_state_publisher's GUI

22

23 MoveIt!'s "demo" mode replaces the real robot driver with the

joint_state_publisher.

24 The latter one maintains and publishes the current joint configuration of

the simulated robot.

25 It also provides a GUI to move the simulated robot around "manually".

26 This corresponds to moving around the real robot without the use of

MoveIt.

27 -->

28 <arg name="use_gui" default="false" />

29 <arg name="use_rviz" default="true" />

30

31 <!-- If needed, broadcast static tf for robot root -->

32

33

34 <!-- We do not have a robot connected, so publish fake joint states -->

35 <node name="joint_state_publisher" pkg="joint_state_publisher" type="

joint_state_publisher" unless="$(arg use_gui)">

36 <rosparam param="source_list">[move_group/fake_controller_joint_states]

</rosparam>

37 </node>

38 <node name="joint_state_publisher" pkg="joint_state_publisher_gui" type="

joint_state_publisher_gui" if="$(arg use_gui)">
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39 <rosparam param="source_list">[move_group/fake_controller_joint_states]

</rosparam>

40 </node>

41

42 <!-- Given the published joint states, publish tf for the robot links -->

43 <node name="robot_state_publisher" pkg="robot_state_publisher" type="

robot_state_publisher" respawn="true" output="screen" />

44

45 <!-- Run the main MoveIt! executable without trajectory execution (we do

not have controllers configured by default) -->

46 <include file="$(find move_it_gazebo)/launch/move_group.launch">

47 <arg name="allow_trajectory_execution" value="true"/>

48 <arg name="fake_execution" value="true"/>

49 <arg name="execution_type" value="$(arg execution_type)"/>

50 <arg name="info" value="true"/>

51 <arg name="debug" value="$(arg debug)"/>

52 <arg name="pipeline" value="$(arg pipeline)"/>

53 <arg name="load_robot_description" value="$(arg load_robot_description)

"/>

54 </include>

55

56 <!-- Run Rviz and load the default config to see the state of the

move_group node -->

57 <include file="$(find move_it_gazebo)/launch/moveit_rviz.launch" if="$(

arg use_rviz)">

58 <arg name="rviz_config" value="$(find move_it_gazebo)/launch/moveit.

rviz"/>

59 <arg name="debug" value="$(arg debug)"/>

60 </include>

61

62 <!-- If database loading was enabled, start mongodb as well -->

63 <include file="$(find move_it_gazebo)/launch/default_warehouse_db.launch"

if="$(arg db)">

64 <arg name="moveit_warehouse_database_path" value="$(arg db_path)"/>

65 </include>

66

67 </launch>

Listings A.21: demo_real_robot.launch

A.14. Codes to launch the virtual model of the real

robot in Gazebo
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1 <?xml version="1.0"?>

2 <launch>

3 <arg name="paused" default="false"/>

4 <arg name="gazebo_gui" default="true"/>

5 <arg name="urdf_path" default="$(find lucabot_description)/urdf/

lucabot_moveit_gazebo.xacro"/>

6

7 <!-- startup simulated world -->

8 <include file="$(find gazebo_ros)/launch/empty_world.launch">

9 <arg name="world_name" default="worlds/empty.world"/>

10 <arg name="paused" value="$(arg paused)"/>

11 <arg name="gui" value="$(arg gazebo_gui)"/>

12 </include>

13

14 <!-- send robot urdf to param server -->

15 <param name="robot_description" command="$(find xacro)/xacro '$(find

lucabot_description)/urdf/lucabot_moveit_gazebo.xacro'"/>

16

17 <!-- push robot_description to factory and spawn robot in gazebo at the

origin, change x,y,z arguments to spawn in a different position -->

18 <node name="spawn_gazebo_model" pkg="gazebo_ros" type="spawn_model" args=

"-urdf -param robot_description -model robot -x 0 -y 0 -z 0"

19 respawn="false" output="screen" />

20

21 <include file="$(find move_it_gazebo)/launch/ros_controllers.launch"/>

22

23 </launch>

Listings A.22: gazebo.launch

1 <?xml version="1.0"?>

2 <launch>

3

4 <!-- Load joint controller configurations from YAML file to parameter

server -->

5 <rosparam file="$(find move_it_gazebo)/config/ros_controllers.yaml"

command="load"/>

6

7 <!-- Load the controllers -->

8 <node name="controller_spawner" pkg="controller_manager" type="spawner"

ns="/lucabot" respawn="false"

9 output="screen" args="--namespace=/lucabot

10 joint_state_controller

11 lucabot_arm_controller

12 --timeout 20"/>
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13

14 </launch>

Listings A.23: ros_controllers.launch

A.15. Codes to launch the virtual model of the real

robot in both MoveIt! and Gazebo

1 <launch>

2 <!-- By default, we do not start a database (it can be large) -->

3 <arg name="db" default="false" />

4 <!-- Allow user to specify database location -->

5 <arg name="db_path" default="$(find move_it_gazebo)/

default_warehouse_mongo_db" />

6

7 <!-- By default, we are not in debug mode -->

8 <arg name="debug" default="false" />

9

10 <!-- By default, we will not load or override the robot_description -->

11 <arg name="load_robot_description" default="false" />

12

13 <!-- By default, hide GUI of joint_state_publisher

14

15 "demo" mode of MoveIt! replaces the real robot driver with the

joint_state_publisher.

16 The latter one maintains and publishes the current joint configuration of

the simulated robot.

17 It also provides a GUI to move the simulated robot around "manually".

18 This corresponds to moving around the real robot without the use of

MoveIt.

19 -->

20 <arg name="use_gui" default="false" />

21

22 <!-- Gazebo specific options -->

23 <arg name="gazebo_gui" default="true"/>

24 <arg name="paused" default="false"/>

25 <!-- By default, use the urdf location provided from the package -->

26 <arg name="urdf_path" default="$(find lucabot_description)/urdf/

lucabot_moveit_gazebo.xacro"/>

27

28 <!-- launch the gazebo simulator and spawn the robot -->

29 <include file="$(find move_it_gazebo)/launch/gazebo.launch" >

30 <arg name="paused" value="$(arg paused)"/>
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31 <arg name="gazebo_gui" value="$(arg gazebo_gui)"/>

32 <arg name="urdf_path" value="$(arg urdf_path)"/>

33 </include>

34

35 <!-- If needed, broadcast static tf for robot root -->

36

37

38 <!-- We do not have a robot connected, so publish fake joint states -->

39 <node name="joint_state_publisher" pkg="joint_state_publisher" type="

joint_state_publisher" unless="$(arg use_gui)">

40 <rosparam param="source_list">[move_group/fake_controller_joint_states]

</rosparam>

41 <rosparam param="source_list">[lucabot/joint_states]</rosparam>

42 </node>

43 <node name="joint_state_publisher" pkg="joint_state_publisher_gui" type="

joint_state_publisher_gui" if="$(arg use_gui)">

44 <rosparam param="source_list">[move_group/fake_controller_joint_states]

</rosparam>

45 <rosparam param="source_list">[lucabot/joint_states]</rosparam>

46 </node>

47

48 <!-- Given the published joint states, publish tf for the robot links -->

49 <node name="robot_state_publisher" pkg="robot_state_publisher" type="

robot_state_publisher" respawn="true" output="screen" />

50

51 <!-- Run the main MoveIt! executable without trajectory execution (we do

not have controllers configured by default) -->

52 <include file="$(find move_it_gazebo)/launch/move_group.launch">

53 <arg name="allow_trajectory_execution" value="true"/>

54 <arg name="fake_execution" value="false"/>

55 <arg name="info" value="true"/>

56 <arg name="debug" value="$(arg debug)"/>

57 <arg name="load_robot_description" value="$(arg load_robot_description)

"/>

58 </include>

59

60 <!-- Run Rviz and load the default config to see the state of the

move_group node -->

61 <include file="$(find move_it_gazebo)/launch/moveit_rviz.launch">

62 <arg name="rviz_config" value="$(find move_it_gazebo)/launch/moveit.

rviz"/>

63 <arg name="debug" value="$(arg debug)"/>

64 </include>

65
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66 <!-- If database loading was enabled, start mongodb as well -->

67 <include file="$(find move_it_gazebo)/launch/default_warehouse_db.launch"

if="$(arg db)">

68 <arg name="moveit_warehouse_database_path" value="$(arg db_path)"/>

69 </include>

70

71 </launch>

Listings A.24: demo_gazebo.launch
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B| Drawings

Technical drawings of the robot parts, assemblies and exploded views are attached to
this document. The list of all attachments is reported hereafter, divided by parts of the
harmonic drive and robot parts.

B.1. Harmonic Drive Parts

• NEMA17 base flange.

• NEMA23 base flange.

• HD cover (J1, J4, J6).

• HD cover (J2, J3, J5).

• HD circular spline v0.

• HD circular spline v1.

• Flexible spline v0.

• Flexible spline v1.

• Flexible spline v2.

• Flexible spline v3.

• NEMA17 wave generator.

• NEMA23 wave generator.

• Output flange v0.

• Output flange v1.

• Axial coupler.

• Gear ring.

• Assembled HD.
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• Exploded view of HD for NEMA17 motors.

• Exploded view of HD NEMA23 motors.

B.2. Robot Parts

• Robot base.

• Link 0.

• Link 1.

• Link 2 bottom.

• Link 2 up.

• Module 1.

• Module 2.

• Module 3.

• Module 4.

• J4 potentiometer assembly.
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