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 بسم الله الرحمن الرحيم
قوَۡم  قَالَ  ٰـ ب   ی  نةَ  إ ن كُنتُ عَلىَٰ بَ  یۡتمُۡ أرََءَ  یَ ن رَّ اۚ وَمَاۤ أرُ   ی وَرَزَقَن    ی  م  

ࣰ
زۡقًا حَسَن نۡهُ ر  أنَۡ أخَُال فكَُمۡ إ لَىٰ مَاۤ أنَۡهَىٰكُمۡ   یدُ م 

 إ نۡ أرُ  
حَ إ لََّّ  یدُ عَنۡهُۚ ٰـ صۡلَ  یبُ أنُ   یۡه  توََكَّلۡتُ وَإ لَ   یۡه   عَلَ ٱللَّ ۚ إ لََّّ ب   یق یۤ وَمَا توَۡف    ٱسۡتطََعۡتُۚ مَا   ٱلۡۡ 

 صدق الله العظیم 

“He said, "O my people, have you considered: if I am upon clear evidence from 

my Lord and He has provided me with a good provision from Him...? And I do 

not intend to differ from you in that which I have forbidden you; I only intend 

reform as much as I am able. And my success is not but through Allah. Upon 

Him, I have relied, and to Him, I return”  

(The Qur'an, 1965, Surah Hūd: 88) 
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Abstract 
 

 

Weather events monitoring in modern meteorology necessitates the use of advanced techniques, with 

global navigation satellite systems (GNSS) emerging as a prominent solution. To enhance positioning 

accuracy, the propagation delay affecting GNSS signals in the troposphere is meticulously modeled and 

estimated. This delay represents the cumulative effect of signal travel in the zenith direction above the 

GNSS station and consists of two components: the stratified component, associated with gases in 

hydrostatic equilibrium, and the turbulence component, attributed to the non-equilibrium behavior of 

water vapor. Although water vapor also contributes to the stratified part, a precise pointwise estimation 

of Zenith Total Delays (ZTDs) is crucial for meteorological and forecasting applications. 

This thesis focuses on utilizing GNSS-sensed tropospheric delay data to generate high-resolution 

maps of ZTDs, with a specific emphasis on describing the spatial distribution of water vapor and its 

temporal evolution. To accomplish this, collaboration was established with the POLIMI spin-off GReD, 

and data from two case studies were acquired for map production. The first case study involved 34 

GNSS stations from the SPIN3 network in northern Italy, spanning two years. The second case study 

focused on a severe weather event in Poland, utilizing data from 278 GNSS reference stations across 

three networks. Precise Point Positioning (PPP) methodology was employed to derive the ZTD time 

series with a temporal resolution of 30 seconds. 

In the first case study, the topographic variation is significant, ranging from flat areas in the south to 

the mountainous Albs area in the north. The SPIN3 network exhibits a minimum inner station distance 

of 19.4 km and a maximum distance of 350 km. Conversely, the second case study covers mostly flat 

terrain in Poland, except for the southern mountainous region. The three networks in Poland ensure an 

observation data density of approximately one station per 1120 square kilometers. 

Our methodology commenced by disentangling the stratified component from the ZTDs, allowing us 

to isolate the turbulence component attributed to water vapor. Subsequently, a stochastic prediction 

approach was adopted, assuming homogeneity and isotropy of the turbulence field. To quantify the 

spatial correlation among turbulence observations, empirical variograms were computed. Two fitting 

models, namely the exponential and power models, were considered for variogram fitting. By 

employing ordinary kriging and utilizing the theoretical variogram model parameters, turbulence maps 

and estimation error maps were generated for each study area, encompassing specific epochs of interest. 

To evaluate the accuracy of our estimations, Leave One Out cross-validation (LOOCV) was 

performed for both case studies. Additionally, for the second case study, cross-validation was conducted 

using one of the three networks. The annual average root mean square error (RMSE) obtained for the 

SPIN3 network in Italy was determined to be 8.8 mm. In the case of Poland, LOOCV yielded an annual 

average RMSE of 1.2 cm, while cross-validation using another network resulted in an average RMSE 

of 7.6 mm.  

 

Key-words: GNSS, ZTD, Variogram, Kriging 
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Abstract in lingua italiana 
 

 

Il monitoraggio degli eventi meteorologici nella moderna meteorologia richiede l'uso di tecniche 

avanzate, con I sistemi globali di navigazione satellitare (GNSS) che stanno emergendo come una 

soluzione importante. Per migliorare la precisione del posizionamento, il ritardo di propagazione che 

interessa i segnali GNSS nella troposfera viene meticolosamente modellato e stimato. Questo ritardo 

rappresenta l'effetto cumulativo del viaggio del segnale in direzione zenitale sopra la stazione GNSS ed 

è costituito da due componenti: la componente stratificata, associata ai gas in equilibrio idrostatico, e la 

componente di turbolenza, attribuita al comportamento di non equilibrio del vapore acqueo. Sebbene 

anche il vapore acqueo contribuisca alla parte stratificata, una precisa stima puntuale degli Zenith Total 

Delays (ZTDs) è fondamentale per le applicazioni meteorologiche e di previsione. 

Questa tesi si concentra sull'utilizzo dei dati di ritardo troposferico rilevati dal GNSS per generare 

mappe ad alta risoluzione di ZTD, con un'enfasi specifica sulla descrizione della distribuzione spaziale 

del vapore acqueo e della sua evoluzione temporale. A tal fine è stata avviata la collaborazione con lo 

spin-off GReD di POLIMI e sono stati acquisiti i dati di due casi studio per la produzione cartografica. 

Il primo caso di studio ha coinvolto 34 stazioni GNSS della rete SPIN3 nel nord Italia, nell'arco di due 

anni. Il secondo caso di studio si è concentrato su un grave evento meteorologico in Polonia, utilizzando 

i dati di 278 stazioni di riferimento GNSS su tre reti. La metodologia Precise Point Positioning (PPP) è 

stata impiegata per derivare le serie temporali ZTD con una risoluzione temporale di 30 secondi. 

Nel primo caso di studio, la variazione topografica è significativa, spaziando dalle aree pianeggianti 

a sud alla zona montuosa degli Albs a nord. La rete SPIN3 presenta una distanza minima di stazione 

interna di 19,4 km e una distanza massima di 350 km. Al contrario, il secondo caso di studio copre 

prevalentemente terreni pianeggianti in Polonia, ad eccezione della regione montuosa meridionale. Le 

tre reti in Polonia garantiscono una densità di dati di osservazione di circa una stazione ogni 1120 

chilometri quadrati. 

La nostra metodologia è iniziata separando la componente stratificata dalle ZTD, permettendoci di 

isolare la componente di turbolenza attribuita al vapore acqueo. Successivamente è stato adottato un 

approccio di predizione stocastica, assumendo l'omogeneità e l'isotropia del campo di turbolenza. Per 

quantificare la correlazione spaziale tra le osservazioni di turbolenza, sono stati calcolati variogrammi 

empirici. Per l'adattamento del variogramma sono stati considerati due modelli di adattamento, vale a 

dire i modelli esponenziale e di potenza. Utilizzando il kriging ordinario e utilizzando i parametri teorici 

del modello di variogramma, sono state generate mappe di turbolenza e mappe di errore di stima per 

ciascuna area di studio, comprendendo epoche specifiche di interesse.  

Per valutare l'accuratezza delle nostre stime, è stata eseguita la validazione incrociata Leave One Out 

(LOOCV) per entrambi i casi di studio. Inoltre, per il secondo studio di caso, è stata condotta una 

convalida incrociata utilizzando una delle tre reti. L'errore quadratico medio medio annuo (RMSE) 

ottenuto per la rete SPIN3 in Italia è stato determinato in 8,8 mm. Nel caso della Polonia, LOOCV ha 

prodotto un RMSE medio annuo di 1,2 cm, mentre la convalida incrociata utilizzando un'altra rete ha 

prodotto un RMSE medio di 7,6 mm. 

 

Parole chiave : GNSS, ZTD, Variogram, Kriging 
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1. Introduction 
 

The analysis of GNSS signal delays in the neutral atmosphere extends its scope beyond enhancing 

GNSS positioning through improved tropospheric models. It unlocks a realm of opportunities to 

measure and comprehend the intricate behavior of atmospheric water vapor, exploring its dynamic 

temporal and spatial variability. In the realm of meteorology, accurate modeling of water vapor and its 

dynamics holds the utmost importance for refining numerical weather prediction (NWP) models and 

effectively forecasting rain events. However, the current limitations of weather models in predicting 

localized phenomena, such as sudden thunderstorms or torrential rainfall resulting from the rapid 

formation of clouds on a small scale, necessitate a novel approach. Thus, the establishment of a 

continuous and dependable water vapor monitoring system at a local level becomes imperative, utilizing 

a dense GNSS network. Such a system offers valuable insights into water vapor behavior preceding 

cloud formation, facilitating the integration of this data into NWP models and empowering the 

development of early warning systems for flood events. This holistic approach to disaster prevention 

and risk mitigation holds immense promise for safeguarding lives and communities. 

The delays affecting GNSS signals as they traverse the troposphere can be attributed to two distinct 

components: the stratified component and the turbulence component. The turbulence component is 

directly influenced by the presence of non-equilibrium water vapor along the line of sight between 

GNSS satellites and receivers. While the stratified component can be reliably modeled using precise 

ground-level pressure values, addressing the turbulent component poses greater challenges due to its 

high variability caused by turbulent motions of water vapor, resulting in heterogeneous fluctuations of 

the refractive index. 

This thesis aims to introduce an approach for generating high-resolution water vapor maps in a 

specific region using a regional GNSS network. Our methodology involves stochastic modeling of the 

turbulence field as a homogeneous and isotropic random field, employing ordinary kriging interpolation. 

The thesis comprises several key chapters that contribute to this endeavor. 

Chapter 2 provides a comprehensive overview of GNSS positioning concepts, focusing on GPS, along 

with a discussion on GNSS observations and the Precise Point Positioning (PPP) processing technique. 

Additionally, it delves into the Earth's atmosphere, exploring its layers and the delays induced by GNSS 

signal propagation through them. 

Chapter 3 presents our methodology for stochastically predicting the turbulence field. It begins with 

the removal of the stratified component from Zenith Total Delay (ZTD), followed by the introduction 

of our assumptions applied to the turbulence field. The chapter explores measuring the correlation 

between observations using variograms and selecting the appropriate variogram model. Furthermore, it 

introduces the mathematical model for ordinary kriging. 

Chapter 4 showcases the application of our methodology through two case studies. The first case 

study focuses on northern Italy, utilizing the SPIN3 network and spanning a significant time frame of 

two years. The second case study takes place in Poland, specifically during a severe event, and utilizes 

three GNSS networks. The results of these case studies are evaluated using Leave-One-Out Cross-

Validation (LOOCV) and cross-validation with another network. 

Finally, Chapter 5 concludes our work, summarizing the key findings and contributions. It also 

highlights potential avenues for future research based on our approach. 
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2. Background 
2.1 GNSS signal interaction with the troposphere 

The Global Navigation Satellite System (GNSS) comprises a constellation of satellites that facilitates 

positioning services for ground receivers by employing a global coordinate reference frame. Ground 

receivers utilize signals transmitted from satellites with known positions to determine their precise 

location. 

The Transit system, initially developed by the United States Navy during the 1960s, served as the 

foundational concept for the establishment of GNSS. Subsequently, the United States government 

advanced this technology by developing the Global Positioning System (GPS) in the 1970s. GPS 

significantly enhanced the accuracy and coverage capabilities of the transit system. Since achieving full 

operational capability in 1995, GPS has emerged as the preeminent GNSS system, widely adopted 

worldwide. It enables users across the globe to attain precise positioning and accurate timing 

information. 

After the United States, other countries developed their navigation satellite systems. In the 1990s, 

Russia developed the GLONASS system, which provides positioning and timing information to users 

in Russia and other parts of the world. The European Union started developing the Galileo system in 

the early 2000s, and it went live in 2016. China has also developed its own satellite navigation system, 

known as COMPASS-BeiDou, which provides users in China and other parts of the world with 

positioning and timing information. Japan has created the QZSS (Quasi-Zenith Satellite System) to 

improve the accuracy and coverage of GPS in Japan. The IRNSS (India's Regional Navigation Satellite 

System) was created by India. Some of these systems, such as GPS, GLONASS, and Galileo, provide 

global coverage. On the other hand, some of them, such as QZSS and IRNSS, provide regional coverage 

[Figure 2.1]. 

  

In the next sections, we will focus on GPS as an example of GNSS by understanding its segments, 

how it works, and its observations that guarantee the positioning. 

 

Figure 2.1 An Overview of Global and regional satellite navigation  
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2.1.1 GPS positioning fundamentals 
The GPS positioning methodology operates on the fundamental principle of calculating the distances, 

known as "pseudo ranges," between a receiver situated on Earth and three GPS satellites possessing 

precisely determined positions. The process of ascertaining the receiver's location relies on the 

trilateration concept (El-Rabbany, 2002). 

GPS signals emanate from satellites positioned in orbit at an altitude of approximately 20,200 km 

above the Earth's surface. The transmission time for the signal to traverse from a satellite to the receiver, 

after the generation of a signal replica by the receiver, amounts to approximately 0.07 seconds. By 

multiplying this temporal discrepancy, referred to as time delay, with the velocity of the signal, 

corresponding to the speed of light in a vacuum (c), the range between the user receiver and the satellite 

can be reasonably approximated (Wolf & Ghilani, 2006). 

In principle, the localization of the receiver necessitates the knowledge of only three satellite ranges. 

The receiver's position is determined at the point of intersection among three spheres, wherein each 

sphere encompasses a respective satellite and possesses a radius equal to the receiver-satellite distance. 

However, practical considerations require the inclusion of a fourth satellite to account for the receiver's 

clock offset (El-Rabbany, 2002) Figure [2.2]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 GPS Trilateration Concept 
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2.1.2 GPS Segments 
The GPS system can be categorized into three distinct segments: (a) the space segment, (b) the control 

segment, and (c) the user segment as shown in Figure [2.3]. 

2.1.2.1 Space segment 
The GPS Space segment encompasses a satellite constellation that originated with the deployment of a 

succession of space vehicles (SVs) starting from Block I and advancing to Block III Figure [2.4]. 

Presently, the constellation consists of 31 satellites orbiting in six distinct orbital planes, positioned at 

regular intervals of 60° around the equatorial region. These satellites maintain an inclination of 55° 

relative to the equator and sustain an average orbital altitude of approximately 20,200 km (Biagi, 2022).  

 

Figure 2.3 GNSS Segments 

 

 

 

Figure 2.4 GPS Satellites Generations  
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2.1.2.2 Control segment 
The Control Segment (CS) consists of four subsystems: (a) a Master Control Station (MCS), (b) an 

Alternate Master Control Station (AMCS),(c) a network of four ground antennas (GAs), together with 

(d) a network of globally-distributed monitor stations (MSs) Figure [2.5] (GPS SPS Performance 

Standard, 2020). 

The primary responsibilities carried out by the ground antennas (GAs) encompass various tasks, 

including: 

• Tracking and monitoring GPS satellites. 

• Collection of atmospheric data and navigation signals. 

• Acquiring range/ carrier measurements. 

• Transmitting observed data to the Master Control Station (MCS). 

For the ground antennas network: 

• Updating navigation data. 

• Sending commands and loading processor programs to the satellites. 

• Collecting telemetry data. 

• Providing anomaly resolution and early orbit support. 

The MCS oversees all constellation command and control functions, such as: 

• Monitoring the health and status of the constellation. 

• Resolving satellite maintenance and subsystem anomalies. 

• Managing the performance of GPS signals in space to meet performance standards. 

• Utilizing data from global monitoring stations to precisely estimate the position of the satellites. 

• Updating navigation message parameters, including ephemeris, almanac, and clock corrections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2.3 User segment 
The user segment includes GPS receivers for all military and civilian users, which receive GPS signals 

afterward solving the navigation equations to estimate their coordinates. 

 

Figure 2.5 GPS Control Segment 
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2.1.3 GPS Signal structure 
Each satellite in the GPS constellation is onboarded with oscillators that produce a signal with a 

frequency of 10.23 MHZ called the fundamental frequency (𝑓0). From the fundamental frequency, three 

sinusoidal carrier phases can be generated (L1, L2, and L5 from (Block II-F)) (Biagi, 2022).  

Multiplying 𝑓0 by 154, it will give us an L1 carrier(L1) whose frequency is equal to 1575.42 MHZ. 

and the wavelength is 19.03 cm. For L2 carrier(L2), it can be obtained by multiplying 𝑓0 by 120 is equal 

to 1227.60 MHZ with a wavelength of 24.42 cm. The frequency of the L5 carrier is 1176.45 MHz (GPS 

SPS Performance Standard, 2020). 

Accurate determination of receiver position relies on precise measurement of signal travel time from 

satellites to the receiver. This is achieved through the utilization of pseudorandom noise (PRN) codes, 

which are generated from a base frequency, denoted as 𝑓0(Wolf & Ghilani, 2006). At present, the 

generation of six distinct pseudorandom noise codes is feasible. Among these codes, the C/A code and 

P-code assume fundamental roles as they are transmitted by each satellite. The C/A code, commonly 

known as the "coarse acquisition" code, is modulated on the L1 carrier frequency, operating at a 

frequency of 0.1𝑓0 MHz, corresponding to a wavelength of 293.0 meters. It is important to note that 

each satellite possesses its unique C/A code. On the other hand, the P-code initially referred to as the 

Precise Code, was transformed in 1994, resulting in an encrypted version designated as P(Y). The 

adoption of the P(Y) code guarantees improved pseudo-range precision, comparable to that of the C/A 

code. Recent advancements in GPS satellite technology, particularly the transition from Block II-R to 

III, have introduced new PRN codes such as L2C and M-code, expanding the available options for 

satellite-based positioning systems (Biagi, 2022). 

One of the codes transmitted by the satellite is the Navigation message also known as the Data code 

(D-code). It consists of 25 frames of duration 30 seconds each containing 1500bits. Each frame is 

divided into 5 subframes as shown in  Figure [2.6] (Leick, 1995) that contain satellite ephemerides and 

clock offsets, ionospheric model, and cyclic information about the state of the other orbiting 

satellites(almanacs) (Biagi,2022). 

 

 

 

 

 

Table 2-1 GPS Binary codes 

Name 𝒇 (𝑴𝑯𝒁) λ (m) Pulse number T 

C/A 0.1𝑓0= 1.023 MHZ 293.0 1023 1 ms 

L2C 0.1𝑓0= 1.023 MHZ 293.0 1023 10 ms 

P(Y) 𝑓0= 10.23 MHZ 29.3 3.2703264×1016 37 weeks 

M 𝑓0= 10.23 MHZ 29.3   

D 50 Hz 6×106 37500 12.5 min 
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2.1.4 GPS Observables 
Two primary techniques, code or (Pseudo-range) observation and carrier phase shift measurements, 

based on either the binary codes or the carrier signals, could be used to calculate the distance between 

the satellite and the user receiver (Wolf & Ghilani, 2006). 

2.1.4.1 Pseudo Range observation 
Let's consider one epoch (t), at this epoch we have several satellites in view. Once the GPS receiver 

receives a signal which includes the navigation message and the C/A code for each satellite, the receiver 

automatically separates each of it into different channels (we call these receivers multichannel 

receivers). The C/A code identifies the satellites in the order letting the receiver know which satellites 

are on the horizon. For each channel, the C/A code stored will be an input to an electronic device called 

a correlator also known as a receiver delay lock loop (DLL) (Teunissen & Montenbruck, 2017). Once 

The DLL received the code, it generates a replica of that code. By comparing the received code with its 

replica, DLL will be able to determine the shift in time between the two codes (∆TR
S). Figure [2.7] (Biagi, 

2022). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 The Difference in time between the received and the replica code 

(∆𝑇𝑅
𝑆). 

 

 

 

Figure 2.6  Navigation message (D Code) frame Structure 
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∆𝑇𝑅
𝑆 can be modeled by equation (2-1) where 𝜏𝑅

𝑆 is the signal travel time from the satellite signal 

generator to the DLL in the receiver. 𝑑𝑡𝑅(𝑡) & 𝑑𝑡
𝑆(𝑡) are the clock offset for the receiver clock and the 

satellite clock, respectively. The pseudo-range 𝑃𝑅
𝑆(𝑡)  is derived by multiplying ∆𝑇𝑅

𝑆  by the signal 

velocity. It is important to note that the term "pseudo" is employed to signify that the measured value 

does not represent the actual distance between the satellite and the receiver. This discrepancy arises 

primarily from the inherent desynchronization between the satellite clock and the receiver clock. 

Additionally, the pseudo-range is influenced by errors induced during signal propagation through the 

atmosphere, with particular emphasis on the Ionosphere 𝐼𝑜𝑛𝑜𝑅
𝑆(𝑡) and troposphere layers 𝑇𝑟𝑜𝑝𝑜𝑅

𝑆(𝑡),  
thus the pseudo-code observation equation will be: 

where: 

where: 

 𝑃𝑅
𝑆(𝑡): is the Pseduo Range at epoch (t) from the receiver (R) to satellite (S). 

 (𝑋𝑆 , 𝑌𝑆, 𝑍𝑆): The satellite orbital coordinates. 

 (𝑋𝑅 , 𝑌𝑅 , 𝑍𝑅): The receiver ground coordinates. 

 (C): The speed of light in a vacuum. 

 𝑑𝑡𝑅(𝑡): The  receiver clock offset 

 𝑑𝑡𝑆(𝑡): The satellite clock offset. 

 𝐼ono𝑅
𝑆(𝑡): The ionospheric effect. 

 𝑇ropo𝑅
𝑆(𝑡): The tropospheric effect. 

From the above equation, we have four unknowns, the receiver coordinates, and its clock offset. To 

solve this system, we need at minimum 4 equations per epoch so that the need for at least 4 satellites. 

From this, we can understand the design of the system that guarantees the availability of at least 4 

satellites on the horizon at any position on the Earth`s surface. 

2.1.4.2 Carrier phase observation 
The concept of pseudo-range observation can be extended to carrier signals, such as L1 and L2, where 

the receiver generates a signal replica upon receiving the satellite signal. In this case, rather than 

estimating the time shift (∆𝑇𝑅
𝑆), the phase difference (𝜑𝑅

𝑆(𝑡)) will be measured: 

where: 

𝜑𝑅
𝑆(𝑡): the phase difference between the satellite received signal and its replica generated by 

the receiver at epoch t. 

𝜑𝑅(𝑡): the receiver oscillator phase at epoch t. 

𝜑𝑠(𝑡 − 𝜏𝑅
𝑆): the satellite oscillator phase at epoch 𝑡 − 𝜏𝑅

𝑆. 

𝜏𝑅
𝑆: the carrier travel time from the satellite to the receiver. 

∆𝑇𝑅
𝑆(𝑡) =  𝜏𝑅

𝑆 + 𝑑𝑡𝑅(𝑡) − 𝑑𝑡
𝑆(𝑡) + 𝐼𝑅

𝑆(𝑡) + 𝑇𝑅
𝑆(𝑡) 2-1 

𝑃𝑅
𝑆(𝑡) =  𝐶 × 𝜏𝑅

𝑆 + 𝐶 × [𝑑𝑡𝑅(𝑡) − 𝑑𝑡
𝑆(𝑡) + 𝐼𝑜𝑛𝑜𝑅

𝑆(𝑡) + 𝑇𝑟𝑜𝑝𝑜𝑅
𝑆(𝑡)] 2-2 

𝜌𝑅
𝑆(𝑡) = 𝐶 × 𝜏𝑅

𝑆 = √(𝑋𝑆 − 𝑋𝑅)
2 + (𝑌𝑆 − 𝑌𝑅)

2 + (𝑍𝑆 − 𝑍𝑅)
2 2-3 

𝜑𝑅
𝑆(𝑡) = 𝜑𝑅(𝑡) − 𝜑

𝑠(𝑡 − 𝜏𝑅
𝑆) 2-4 
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By multiplying the phase difference by the wavelength of the carrier (λ) we can obtain the carrier 

phase observation equation 𝐿𝑅
𝑆 (𝑡) given by: 

 

where:  

𝜆: the carrier wavelength. 

𝐶: the velocity of light in a vacuum. 

𝑑𝑡𝑅(𝑡): the receiver clock offset. 

𝑑𝑡𝑆(𝑡): satellite clock offset 

𝑇𝑟𝑜𝑝𝑜𝑅
𝑆(𝑡): tropospheric effect 

𝐼𝑜𝑛𝑜𝑅
𝑆(𝑡): ionospheric effect 

𝜑0𝑅: initial phase of the receiver 

𝜑0
𝑆: initial phase of the satellite 

𝑁𝑅
𝑆(𝑡) : the integer number of cycles between the satellite and the receiver “The integer 

ambiguity”. 

𝜆[𝜑0𝑅 − 𝜑0
𝑆 +𝑁𝑅

𝑆(𝑡)] is known as the ambiguous term 𝜆Ƞ𝑅
𝑆(𝑡) 

In equation (2.5), the term 𝑁𝑅
𝑆 represents the ambiguity in determining the integer number of carrier 

cycles, which the receiver is unable to directly determine and can only estimate the phase difference. 

This integer number is subject to change over time due to variations in satellite position and elevation. 

Carrier phase observations offer two significant advantages over pseudo-range observations. Firstly, 

the electronic noise associated with carrier phase measurements is lower, achieving precision levels 

below 1mm, in contrast to the pseudo-range noise, which typically operates at around 20 cm. Secondly, 

with the availability of multi-carrier signals such as L1 and L2, combining these observations enables 

the creation of a composite measurement, which allows for the mitigation of certain error sources, such 

as the ionospheric effect (Biagi, 2022). 

2.1.4.3 Precise Point Positioning Observation 
Precise Point Positioning (PPP) emerges as a compelling alternative to differential Global Positioning 

System (GPS) techniques, which depend on "differential observations" comprising carrier phase or code 

observations of two stations for processing and resulting in the positioning of one station relative to the 

other (reference station) (Kaplan & Hegarty, 2017). In contrast, PPP obviates the necessity of reference 

stations by utilizing undifferentiated observations, encompassing pseudo-range and carrier phase, 

alongside accurate satellite orbit and clock information. 

PPP offers the capability to achieve centimeter-level accuracy in both static and kinematic geodetic 

point positioning. By leveraging undifferentiated observations and precise orbit and clock products, 

PPP provides not only precise position estimates but also valuable ancillary information such as station 

clock offsets and tropospheric zenith total delay (ZTD) (Montenbruck & Teunissen, 2017).  

The observation equations for Precise Point Positioning (PPP) typically involve ionosphere-free 

combinations of dual-frequency GPS pseudo-range (𝑃r,IF
s ) and carrier phase observations (𝐿r,IF

s ), as 

represented by equation (2-6). By employing these combinations, the ionospheric delay effect is 

mitigated, allowing for more precise positioning solutions. However, in the case of single-frequency 

observations used in PPP, accurate modeling of the ionospheric delay is necessary to compensate for 

its influence on the measurements. 

𝐿𝑅
𝑆 (𝑡) = 𝜆𝜑𝑅

𝑆(𝑡)

= 𝐶𝜏𝑅
𝑆 + 𝐶[𝑑𝑡𝑅(𝑡) − 𝑑𝑡

𝑆(𝑡)] + 𝑇𝑟𝑜𝑝𝑜𝑅
𝑆(𝑡) − 𝐼𝑜𝑛𝑜𝑅

𝑆(𝑡)

+ 𝜆[𝜑0𝑅 −𝜑0
𝑆 +𝑁𝑅

𝑆(𝑡)] 

2-5 
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where: 

𝑃r,IF
s : is the ionosphere-free combination (𝑓A

2𝑃A −𝑓B
2𝑃B)/(𝑓A

2 − 𝑓B
2) of pseudoranges 𝑃A and 

𝑃Bobserved at two distinct signal frequencies 𝑓A and 𝑓B.  

𝐿r,IF
s : is the ionosphere-free combination (𝑓A

2𝐿A −𝑓B
2𝐿B)/(𝑓A

2 − 𝑓B
2) of the corresponding 

carrier-phases 𝐿A and 𝐿B. 

𝑑𝑡𝑠: is the satellite clock offset 𝐶 is the vacuum speed of light. 

𝑇𝑟𝑜𝑝𝑜𝑅
𝑆(𝑡): is the Tropospheric effect 

Ƞ𝑅
𝑆
IF

: is the IF combination of the initial phase of the receiver and satellite 𝜑0𝑅 and 𝜑0
𝑆 with 

the integer ambiguity. 

𝜆IF: is the IF combination of the carrier-phase wavelengths 𝜆A and 𝜆B of signals A and B (e.g., 

10.7 cm for GPS L1 and L2). 

𝑒IF, 𝜖IF: are the relevant measurement noise components, including multipath of the IF 

pseudo-range and carrier-phase combinations. 

 

Satellite orbit, as well as clock parameters, are derived from precise ephemerides and considered 

known. Consequently, the primary unknown parameters in PPP include the receiver position, the clock 

offset of the receiver, the zenith total delay (ZTD), and the carrier phase ambiguity Ƞ𝑅
𝑆
IF

 (Montenbruck 

& Teunissen, 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑃𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑐(𝑑𝑡𝑟 − 𝑑𝑡
𝑠) + 𝑇𝑟𝑜𝑝𝑜𝑅

𝑆(𝑡) + 𝑒𝐼𝐹 ,

𝐿𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑐(𝑑𝑡𝑟 − 𝑑𝑡
𝑠) + 𝑇𝑟𝑜𝑝𝑜𝑅

𝑆(𝑡) + 𝜆𝐼𝐹Ƞ𝑅
𝑆
𝐼𝐹
+ 𝜖𝐼𝐹 ,

 
2-6 
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2.2 Atmosphere 
The propagation of a GNSS satellite signal from the satellite to the user receiver involves traversing 

multiple layers of the Earth's atmosphere, which influences the signal characteristics. During its journey 

through the atmosphere, the signal encounters delays, damping, and refraction as a result of the 

atmospheric properties, including air density, temperature, and humidity. These effects arise from the 

interaction between electromagnetic waves and the molecules and particles present in the atmosphere. 

The aforementioned delays, damping, and refraction have the potential to introduce errors in the 

determination of the GNSS position solution (Teunissen & Montenbruck, 2017). 

 

2.2.1 Atmospheric Layers 
The Earth's atmosphere can be divided into different layers based on various characteristics, such as 

composition, temperature, and ionization. For radio wave propagation, the two main layers of interest 

are the troposphere and the ionosphere (Seeber, 2008) Figure [2.8]. 

The ionosphere constitutes the uppermost region of the Earth's atmosphere, spanning an altitude range 

of approximately 50 to 2000 km above the Earth's surface. Within this layer, solar radiation impinges 

upon the atmosphere at a power density of 1370 W/m2, known as the solar constant. During solar flares 

or similar events, the incident radiation can engage in interactions with atmospheric gas atoms or 

molecules, resulting in ionization by liberating free electrons and positively charged ions. Concurrently, 

a process of recombination can take place, where a free electron encounters a positively charged ion 

and becomes captured by it. This recombination mechanism becomes increasingly prominent at lower 

altitudes as the density of gas molecules and ions rises, causing them to become more densely packed. 

The degree of ionization in the ionosphere is governed by the equilibrium between the processes of 

ionization and recombination, which can vary temporally (Böhm & Schuh, 2013).  

 

Figure 2.8 Atmosphere layers classification based on radio waves propagation 
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The troposphere refers to the lowest layer of the Earth's atmosphere, encompassing approximately 

80% of the total atmospheric mass and containing about 99% of the water vapor and aerosols present. 

Understanding the behavior of these components is crucial for comprehending the effects on GNSS 

signal propagation, including delays, attenuation, and scintillation. Although the troposphere primarily 

contributes to signal delay, certain gases situated above it, particularly within the tropopause and 

stratosphere, also contribute to this delay. The troposphere typically extends up to 20 km in height above 

sea level, but in most regions, its reach is limited to around 10 km (Teunissen & Montenbruck, 2017).  

The influence of water vapor and other atmospheric constituents on the propagation of GNSS signals 

is subject to variability. Water vapor pressure profiles exhibit substantial disparities from dry pressure 

profiles and demonstrate a spatial and temporal distribution that is highly erratic. Consequently, the 

complex behavior of water vapor poses challenges for climatological models in effectively elucidating 

phenomena associated with this constituent (Teunissen & Montenbruck, 2017). 

2.2.2 Atmospheric Effects 
Based on the atmospheric conditions, the signal propagation experienced a fluctuation in speed. 

Ionospheric and tropospheric layers will be the primary ones that we consider The travel time of the 

signal from the satellite to the receiver (𝜏𝑅
𝑆)can be expressed as: 

where:  

dx: infinitesimal step along the path from the satellite to the user receiver. 

v(x): the actual speed along the path. 

 

By substituting in equation 2-2, the pseudo-range will therefore be: 

 

where: 

n(x): the Refraction index  

∆R
S : the atmospheric delay in unit length 

 

 

 

 

 

 

 

 

 

 

 

𝜏𝑅
𝑆 = ∫

𝑑𝑥

𝑣(𝑥)
𝜌𝑅
𝑆

 2-7 

𝜌𝑅
𝑆 = ∫

𝐶𝑑𝑥

𝑣(𝑥)
=

𝜌𝑅
𝑆

∫ 𝑛(𝑥)𝑑𝑥
𝜌𝑅
𝑆 =∫ 𝑑𝑥 + ∫ (𝑛(𝑥) − 1)𝑑𝑥

𝜌𝑅
𝑆

𝜌𝑅
𝑆

 2-8 

∫ 𝑑𝑥   
𝜌𝑅
𝑆 + ∫ (𝑛(𝑥) − 1)𝑑𝑥

𝜌𝑅
𝑆 =𝜌𝑅

𝑆 + ∆𝑅
𝑆  2-9 
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2.2.2.1 Ionospheric Effect 
The ionosphere is a dispersive medium at which the refraction index is a function of signal frequency 

(Biagi, 2022). We have two refraction indexes: one for the binary codes (∆𝑔𝑟
𝐼𝑜𝑛𝑜) and one for the carrier 

signal (∆𝑝ℎ
𝐼𝑜𝑛𝑜) (Hofmann-Wellenhof et al., 2008). 

 

where: 

∆𝑔𝑟
𝐼𝑜𝑛𝑜: the refraction index for PRN codes. 

∆𝑝ℎ
𝐼𝑜𝑛𝑜: the refraction index for carriers. 

TEC: the total electron content. 

f: the frequency of the signal. 

 

Because the ionospheric effect is frequency dependent, utilizing dual frequency receivers for range 

measurements can remove this effect by properly combining observations made on the two carriers 

(Kaplan & Hegarty, 2006).  

2.2.2.2 Tropospheric Effect 
Most of the mass of the atmosphere is located in the tropospheric effective height, which extends from 

the earth`s surface up to 40 km. Above 40 km, the density of the higher regions is too small to affect 

the measurements (Leick, 2004). The troposphere, unlike the ionosphere, is a non-dispersive medium. 

This means that both PRN codes and GPS carriers are delayed in terms of free-space propagation, not 

on their frequencies. The tropospheric effect is determined by the tropospheric refractive index (𝑁𝑡𝑟𝑜𝑝𝑜). 

This index is a function of humidity, pressure, and temperature.  

This index can be separated into a dry and a wet component (𝑁𝑑
𝑇𝑟𝑜𝑝𝑜, 𝑁𝑤

𝑇𝑟𝑜𝑝𝑜
). The dry component 

or the hydrostatic component is due to the dry gasses such as N2, O2, CO2, Ar, Ne, He, Kr, Xe, CH4, H2, 

and N2O causing a delay of up to 90% of the tropospheric effect. On the other hand, the wet component 

is due to the water vapor and it is more difficult to be predicted (Kaplan & Hegarty, 2006; Leick, 2004).  

 

 

where: 

𝐾1̅̅ ̅: is a constant equal to 77.64  𝐾 𝑚𝑏−1. 

𝐾2̅̅ ̅: is a constant equal to −12.96 𝐾 𝑚𝑏−1. 
𝐾3̅̅ ̅: is a constant equal to 3.718. 105  𝐾2 𝑚𝑏−1. 
𝑃𝑑 : is the partial pressure of dry air in mb. 

𝑃𝑤𝑣: is the partial pressure of water vapor in mb. 

T : is temprature in K. 

 

 

 

∆𝑔𝑟
𝐼𝑜𝑛𝑜=

40.3 𝑇𝐸𝐶

𝑓2
  ,      ∆𝑝ℎ

𝐼𝑜𝑛𝑜=
−40.3 𝑇𝐸𝐶

𝑓2
 

2-10 

𝑁𝑇𝑟𝑜𝑝𝑜 = 𝑁𝑑
𝑇𝑟𝑜𝑝𝑜

+𝑁𝑤
𝑇𝑟𝑜𝑝𝑜

  
2-11 

𝑁𝑑
𝑇𝑟𝑜𝑝𝑜

= 𝐾1̅̅ ̅
𝑃𝑑

𝑇
 ,     𝑁𝑤

𝑇𝑟𝑜𝑝𝑜
= 𝐾2̅̅ ̅

𝑃𝑤𝑣

𝑇
+ 𝐾3̅̅ ̅

𝑃𝑤𝑣

𝑇2
 2-12 
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From the above equations, we can derive an expression for the tropospheric effect ∆𝑇𝑟𝑜𝑝𝑜 

 

 

The integration along the zenith direction, as described by equation (2-16), yields the zenith total 

delay (ZTD), which is the combined effect of the zenith hydrostatic delay (ZHD) and the zenith wet 

delay (ZWD): 

 

 

Many models had been developed to simulate this effect. The "Saastamoninen model" is one of these. 

By providing approximations for receiver temperature (𝑇), pressure (𝑃𝑑), and humidity (Pwv) that can 

be calculated using Bery formulas. Furthermore, by providing the model with the satellite's position, 

the approximate position of the receiver, and the satellite elevation Ƞ𝑅
𝑆 , the model can estimate the 

tropospheric effect with an accuracy of about 5:10 % (Biagi, 2022). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

∆𝑇𝑟𝑜𝑝𝑜= ∆𝑑
𝑇𝑟𝑜𝑝𝑜 + ∆𝑤

𝑇𝑟𝑜𝑝𝑜 

= 10−6 ∫𝑁𝑑
𝑇𝑟𝑜𝑝𝑜

𝑑𝑥 + 10−6 ∫𝑁𝑤
𝑇𝑟𝑜𝑝𝑜

𝑑𝑥  2-13 

𝑍𝐻𝐷 = 10−6∫𝑁𝑑
𝑇𝑟𝑜𝑝𝑜

(ℎ)𝑑ℎ 2-14 

𝑍𝑊𝐷 =  10−6∫𝑁𝑤
𝑇𝑟𝑜𝑝𝑜

(ℎ)𝑑ℎ 2-15 



Background 

Page 16 of 114 

 

  



Toward Turbulence stochastic modeling 

Page 17 of 114 

 

3. Toward Turbulence stochastic 

modeling 
 

In this chapter, our objective is to outline the methodology employed to generate turbulence maps based 

on zenith total delay (ZTD) measurements. To initiate this process, we will introduce fundamental 

concepts that characterize turbulence as a random phenomenon. Central to this understanding is the 

definitions of random variables and random functions, which enable the description and analysis of the 

phenomena of interest. We will also establish key parameters such as mean, variance, and covariance, 

which provide crucial statistical measures for one and two-dimensional random variables.  

Subsequently, we will delve into important concepts and assumptions, such as stationarity and 

isotropy, which contribute to the foundation of our analysis. Furthermore, we will explore the variogram 

as a valuable tool for quantifying the variability exhibited by observation stations within our study area. 

By navigating through the variogram cloud, we will eventually arrive at the variogram function, which 

encapsulates the essential characteristics of spatial dependence. Finally, we will introduce the kriging 

interpolation method as a powerful technique employed in the production of turbulence maps. This 

method allows for the spatial prediction and estimation of turbulence based on the available data. 

Through the comprehensive examination of these concepts and methods, we aim to provide a robust 

framework for the generation of turbulence maps in our research endeavor.  

3.1 Random variable and Random function 
The data samples exhibit temporal and/or spatial dependence and are characterized by multiple 

variables (multivariate). These samples are obtained at specific points or intervals, span across various 

epochs, and capture observations of a particular property under study. If we put the time aside, we will 

have n observations at each location 𝑥𝛼 that can be noted as follows: 

 

The observation points within the domain D constitute a subset of a larger point set. However, due to 

limitations in resources and cost constraints, it is not feasible to collect an infinite number of 

observations from this larger set. Nevertheless, by considering the hypothetical scenario of unlimited 

observations at each point, we define the regional variable 𝑅𝐸V as we can see in equation(3-2). At each 

observation location within the domain, a recorded value, known as the regionalized value z(𝑥𝛼 ), 

represents the outcome of a random mechanism or phenomenon that lies beyond our control. This 

random mechanism is formally represented as a random variable Z(𝑥𝛼) (Wackernagel, 2003). 

The values observed at all points within the domain originate from an infinite collection of distinct 

random variables. Each point is associated with a specific random variable, collectively forming a 

random function known as 𝑅𝐴F. This concept acknowledges the potential variability and uniqueness of 

each point's observations within the larger set. However, due to practical constraints, we can only 

observe a limited number of values at the subset of points within the domain (Wackernagel, 2003). 

𝑧(𝑥𝛼)   , 𝑤ℎ𝑒𝑟𝑒 𝛼 = 1,… . , 𝑛  3-1 

𝑍(𝑥) ,   for all   𝑥 ∈ D 3-2 
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3.2 Distribution and Density function 
The (cumulative) distribution function (CDF), denoted by F(x), provides a measure of the probability 

P(x ≤ x) that a random variable x takes on a value less than or equal to a specific value x (Papoulis, 

1991). This function can be defined as  

 

By making the derivative of the distribution function F(x), we can get the Density function f(x). 

 

The form of the distribution function is contingent upon whether the random variable is discrete or 

continuous in nature. For discrete random variables, it is feasible to assign a probability within the range 

of 0 to 1 to each possible value as it is shown in (3-6). In this context, the probability of this discrete 

random variable is commonly referred to as the probability mass function (PMF). The PMF, denoted 

as f(x), represents a collection of positive discrete masses associated with each possible value of the 

random variable  (Papoulis, 1991). 

 

On the contrary, when dealing with continuous random variables, assigning probabilities to individual 

values is not feasible. Instead, we employ a probability density function (PDF), denoted as fx (x), which 

enables us to assign probabilities to intervals rather than specific values. The PDF represents a function 

that characterizes the distribution of the continuous random variable. To determine the probability 

associated with a particular interval, we calculate the area under the curve of the PDF within that interval. 

For instance, if the interval of interest lies between x1 and x2, the probability can be obtained by 

evaluating the integral of the PDF over that interval. This approach allows us to quantify probabilities 

in the context of continuous random variables (Venuti, 2023). 

 

When dealing with two-dimensional random variables x and y, it is essential to determine the joint 

probability between them for all possible combinations of points (xi,yj) within the domain D in the x-y 

plane. Simply relying on the individual distribution functions Fx(x) and Fy(y) of each random variable 

is insufficient to fully ascertain the joint statistics of an event (3-8) (Papoulis, 1991; Venuti, 2023).  

{𝑧(𝑥) ,  𝑥 ∈ D} 3-3 

𝐹𝑥(𝑥) = 𝑃{𝒙 ≤ 𝑥}  , ∀𝑥 ∈ ℝ 3-4 

𝑓(𝑥) =
𝑑𝐹(𝑥)

𝑑𝑥
≥ 0 3-5 

𝑓(𝑥) =∑[𝑝𝑖 ∗  𝛿(𝑥 −  𝑥𝑖)] = 1

𝑖

 3-6 

𝑃(𝑥1 < 𝒙 < 𝑥2) = ∫ 𝑓𝑥(𝑥)𝑑𝑥

𝑥2

𝑥1

= 1 3-7 
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So we can say that the joint distribution F(x,y) of the two random variables x and y is the probability 

of the event 

is 

 

As previously stated, the joint density function f(x,y) can be obtained by taking the second-order 

derivative of the distribution function (3-10) (Papoulis, 1991). 

 

Based on the aforementioned information, the probability of the event occurring within area A, 

considering all potential outcomes from random variables x and y {(𝑥, 𝑦) ∈ 𝐷}, can be expressed as 

follows: 

 

3.3 Mean, variance, and covariance for Random variable 
To adequately describe a stochastic process, a thorough knowledge of its probability density function 

(PDF) is generally required. Unfortunately, PDFs may not always be available, necessitating the 

utilization of alternative indicators for the random variable. These indicators commonly include the 

mean, variance, and covariance. 

The mean of a random process, also known as the expected value, corresponds to the first moment of 

the random variable. It can be computed by integrating the product of the realizations x and the 

probability density function f(x) (Wackernagel, 2003). For continuous random variables, the mean is 

expressed as follows: 

 

On the other hand, for discrete random variables, the mean is computed using: 

where: pi =(x=xi) denotes the probability mass function of the discrete random variable. 

{𝒙 ≤ 𝑥} ∩ {𝒚 ≤ 𝑦} = {𝒙 ≤ 𝑥, 𝒚 ≤ 𝑦} 3-8 

𝒙 ≤ 𝑥, 𝒚 ≤ 𝑦 = (𝑥, 𝑦) ∈ 𝐷 , ∀𝑥 𝑎𝑛𝑑 𝑦 ∈ ℝ 3-9 

𝐹(𝑥, 𝑦) = 𝑃{𝒙 ≤ 𝑥, 𝒚 ≤ 𝑦}  3-10 

𝑓(𝑥, 𝑦) =
𝜕2𝐹(𝑥,𝑦)

𝜕𝑥𝜕𝑦
≥ 0  3-11 

𝑃{(𝑥, 𝑦) ∈ 𝐷} = ∬𝑓(𝑥, 𝑦) dx 𝑑𝑦

𝐴

= 1 3-12 

𝐸{𝑥} = ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

−∞

= 𝜇𝑥 3-13 

𝐸{𝑥} =∑𝑥𝑖𝑝𝑖
𝑖

= 𝑚 3-14 
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The second indicator is the variance, denoted by the symbol 𝜎2, which represents the theoretical 

variance. The variance is a measure of the dispersion or spread of a random variable's distribution. It 

quantifies the average squared deviation of the random variable x from its mean 𝜇𝑥, providing insight 

into the variability of the data (Papoulis, 1991; Venuti, 2023). It can be defined as 

 

For continuous random variables, the variance is expressed as follows: 

 

For discrete random variables, the variance is expressed as follows: 

 

By calculating the square root of the variance of the random variable x, we obtain the standard 

deviation, denoted as 𝜎𝑥. The standard deviation represents a measure of the dispersion or variability 

of the data, and it is obtained by taking the square root of the variance (Papoulis, 1991). By having the 

mean 𝜇𝑥 and the standard deviation 𝜎𝑥 we can construct a random variable interval by: 

 

also, we can say that the probability value can be  calculated by (Venuti, 2023): 

 

In addition to the mean and variance indicators, which provide insights into individual random 

variables, there is a need for a measure that characterizes the relationship between two random variables, 

x, and y. This led to the introduction of the covariance, denoted as Cxy. The covariance quantifies the 

extent to which changes in one random variable are associated with changes in another (DeGroot, 1986). 

It is defined as follows: 

where: 𝜇𝑥  𝑎𝑛𝑑 𝜇𝑦 are the mean for random variables x and y respectively. 

 

𝜎2 = 𝐸[(𝒙 − 𝜇𝑥)
2] 3-15 

𝜎2 = ∫(𝑥 − 𝜇𝑥)
2𝑓(𝑥)𝑑𝑥

∞

−∞

 3-16 

𝜎2 =∑𝑝𝑖(𝑥𝑖 −𝑚)
2 , where  𝑝𝑖 = (𝒙 = 𝑥𝑖)

𝑖

 3-17 

(𝜇𝑥 − 𝛼𝜎𝑥  < 𝒙 < 𝜇𝑥 + 𝛼𝜎𝑥) ,where 𝛼 =1,…,n  3-18 

𝑇ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 > 1 −
1

𝛼2
 3-19 

𝐶𝒙𝒚 = 𝐸[(𝒙 − 𝜇𝑥)(𝒚 − 𝜇𝑦)]  3-20 
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From Equation (3-21), it can be observed that the diagonal elements correspond to the covariance 

between a random variable and itself, which is equivalent to the variance in Equation (3-22). The 

covariance between two random variables can be denoted by 𝜎𝑥𝑦. 

 

The correlation between two random variables, denoted as 𝜌𝑥𝑦, can be expressed by dividing the 

covariance of the variables by their respective standard deviations, as indicated in Equation (3-23). This 

mathematical relationship provides a measure of the linear association between the two random 

variables. 

where:  𝜎𝑥 𝑎𝑛𝑑, 𝜎𝑦 are the stadndard devision for the two random varaibles. 

3.4 Stationarity and Isotropic Assumptions 
If we consider a domain with n distinct points (x1,…,xn), we can associate n random variables at each 

point (Z(x1),…, Z(xn)). In this case, the distribution function can be mathematically defined as follows: 

In practical applications, the acquisition of comprehensive data on the mono and multivariate 

distribution functions for all points within a domain is often limited. As a result, it becomes unfeasible 

to determine the complete set of distribution functions for any given set of points based on the available 

data from one or several realizations of the 𝑅𝐴F. Thus, simplification becomes necessary. This 

simplification is through the introduction of the concept of stationarity (Wackernagel, 2003). 

Stationarity in a random process implies that the 𝑅𝐴F properties remain unchanged regardless of 

shifting the n observed points to different locations within the region. This property, also known as 

translation invariance, signifies that the statistical characteristics of the process, such as mean, variance, 

and covariance, exhibit consistency and do not depend on the specific position of the observed points 

(Wackernagel, 2003).  

From a physical perspective, the observed phenomenon is postulated to exhibit spatial homogeneity, 

displaying consistent characteristics throughout the entire space and repetitively repeating its behavior 

across the entire spatial domain (Chiles & Delfiner, 2012). 

A random process 𝑅𝐴F, denoted as Z(x), is said to be strictly stationary if, for any n-set of points (x₁, 

x₂, ..., xₙ) and any translation vector h, the joint distribution function 𝐹𝑥1,…,𝑥𝑛(𝑧1, … , 𝑧𝑛) is equal to the 

joint distribution function 𝐹𝑥1+ℎ,…,𝑥𝑛+ℎ(𝑧1, … , 𝑧𝑛). Mathematically, this can be represented as: 

𝐶𝒙𝒚 = 𝐸𝑥𝑦 [
(𝒙 − 𝜇𝑥)

2 (𝒙 − 𝜇𝑥)(𝒚 − 𝜇𝑦)

(𝒚 − 𝜇𝑦)(𝒙 − 𝜇𝑥) (𝒚 − 𝜇𝑦)
2

]  3-21 

𝐶𝒙𝒚 = 𝐸𝑥𝑦 [
𝜎𝑥
2 𝜎𝑥𝑦

𝜎𝑦𝑥 𝜎𝑦
2
]  3-22 

𝜌𝑥𝑦 =
𝐶𝒙𝒚

𝜎𝑥𝜎𝑦
  3-23 

𝐹𝑥1,…,𝑥𝑛(𝑧1, … , 𝑧𝑛) = 𝑃{𝒁(𝑥1) ≤ 𝑧1, … , 𝒁(𝑥𝑛) ≤ 𝑧𝑛}  , ∀𝑧 ∈ ℝ 3-24 

𝐹𝑥1,…,𝑥𝑛(𝑧1, … , 𝑧𝑛) = 𝐹𝑥1+ℎ,…,𝑥𝑛+ℎ(𝑧1, … , 𝑧𝑛) , where h=(x+h)-x 3-25 
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Strict Stationarity requires specifying a multipoint distribution, which can be complex. To simplify 

the analysis, an alternative approach considers only pairs of points in the domain, focusing on 

characterizing the first two moments instead of the entire distribution. Two possibilities arise from this 

approach. The first is second-order stationarity, assuming that the first two moments of the variable 

remain stationary over the domain. The second possibility is intrinsic stationarity, assuming the 

stationarity of the two moments of the difference between pairs of values at two points. Intrinsic 

stationarity leads to the concept of a variogram (Wackernagel, 2003). 

According to (Chiles & Delfiner, 2012; Cressie, 1993), we can mathematically define second-order 

stationarity as  

 

 

From the given equations, we can conclude that a random function exhibits second-order stationarity 

when the mean 𝜇 remains constant for all points and the covariance depends solely on the separation 

distance h. 

According to the intrinsic stationarity hypothesis, the expected mean of the difference between two 

random variables Z(x) and Z(x+h) known as increments can be denoted as 

 

Furthermore, instead of utilizing the covariance, the variogram, which represents the variance of the 

difference between the two random variables, is employed (Webster & Oliver, 2007). This variogram 

is defined as 

 

The second assumption we need to consider is isotropy, which indicates that a random process 

maintains its statistical properties irrespective of the direction. In the case of covariance, isotropy 

implies that the covariance between pairs of random variables depends solely on the distance separating 

them 𝐶(∥ 𝑍(𝑥) − 𝑍(𝑥 + ℎ) ∥) , while being independent of the particular direction or orientation 

between the points (Chiles & Delfiner, 2012).  

 

 

 

 

𝐸[𝑍(𝑥)] = 𝜇 ,     ∀𝑥 ∈ 𝐷 3-26 

𝐸[(𝑍(𝑥) − 𝜇)(𝑍(𝑥 + ℎ) − 𝜇)] = 𝐶(𝑍(𝑥) − 𝑍(𝑥 + ℎ)) = 𝐶(ℎ) 3-27 

𝐸[𝑍(𝑥) − 𝑍(𝑥 + ℎ)] = 𝜇(ℎ) = 0,     ∀𝑥, 𝑥 + ℎ ∈ 𝐷 3-28 

𝑣𝑎𝑟[𝑍(𝑥) − 𝑍(𝑥 + ℎ)] = 𝐸[{𝑍(𝑥) − 𝑍(𝑥 + ℎ)}2] = 2γ(ℎ) 3-29 
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3.5 Turbulence delay as a Random process 
 In our research, we analyze a dataset consisting of observations collected at multiple epochs (denoted 

as t) from a network of n observation stations. Each station provides a single value at each epoch, as in 

Figure [3.1]. These observations pertain to the total zenith delay (ZTD), which represents the delay 

experienced by GNSS signals as they propagate through the atmosphere in the zenith direction above 

each station. The ZTD is primarily influenced by the presence and distribution of water vapor in the 

atmosphere above the station. Consequently, different stations exhibit distinct ZTD values due to the 

spatial heterogeneity of the water vapor field. Furthermore, even within the same station, the ZTD values 

can vary across different epochs, reflecting the temporal variability of water vapor content, as shown in 

Figure [3.2]. This observation suggests that the ZTD function is influenced by both spatial (position) 

and temporal (time) factors, where ZTD((E, N), t) represents a two-dimensional random variable with 

E and N denoting the station coordinates in our geographical domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 ZTD at each epoch for station BART1in Poland 

 

 

 

 

Figure 3.1 ZTD at epoch 00:00:12 on 11/08/2017 in Poland 
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In the context of our analysis, we treat the ZTD model as a random variable, where the observed 

ZTD(t) value at a given epoch represents one potential outcome of a stochastic process occurring at a 

particular station. Considering the network of stations, we encounter distinct random variables for each 

station, resulting in N-dimensional random variables due to the N observed values. However, to simplify 

the analysis, we address this challenge by assuming stationarity.  

This assumption stems from the notion that, when examining closely located stations, the water vapor 

field tends to exhibit homogeneity, with variations occurring only under specific circumstances. By 

assuming stationarity, we reduce the N-dimensional random variables to pairs of points, yielding two-

dimensional random variables. Under the stationarity assumption, pairs of points with equal distances 

possess the same joint distribution function. Additionally, we assume isotropy, implying that not only 

the relative positions but also the orientations of the pairs remain fixed. 

To estimate the spatial characteristics of the ZTD field, we utilize samples obtained from the two-

dimensional random variables, representing pairs of points. These samples serve as empirical 

observations for estimating the variogram, which captures the spatial variability of ZTD values as a 

function of distance. It is noteworthy that our estimation of the variogram incorporates not only the 

assumption of stationarity but also intrinsic stationarity, accounting for the fixed orientations of the 

pairs. 

By employing these statistical assumptions and leveraging variogram estimation, we aim to gain 

insights into the spatial dependence and variability of the ZTD field. Ultimately, this approach facilitates 

the production of turbulence maps based on the observed data, enhancing our understanding of the water 

vapor distribution and its impact on atmospheric phenomena. 

3.6 Variogram 
The variogram holds significant importance as a geostatistical tool within the realm of spatial data 

analysis. It serves as a fundamental component for constructing the groundwork necessary for 

interpolation through the Kriging method, which will be further explored in subsequent discussions. 

The fundamental principle underlying the variogram stems from the assumption of intrinsic stationarity, 

wherein the spatial relationship between pairs of samples is contingent upon their relative positions. 

This assumption holds within the spatial domain D, wherein observations manifest as realizations of 

random variables Z(xi), generated from a random function Z=Z(x), 𝑥 ∈ 𝐷. Consequently, we refer to 

this measure as the variogram function (Lichtenstern, 2013; Wackernagel, 2003). 

To derive the variogram function within the framework of the Kriging method, we will follow the 

following steps utilizing the observed data: 

1- Variogram Cloud Estimation: Initially, we estimate what is referred to as a variogram cloud, 

which captures the relationship between the spatial separation of pairs of observed points and the 

squared difference in their corresponding values. This cloud represents the empirical variogram, 

exhibiting the variability in the data as a function of distance. 

 

2- Cloud Segmentation: The variogram cloud is subsequently divided into classes based on a 

predefined spatial separation criterion. Each class represents a distinct range of spatial distances. 

Within each class, we calculate the average of the squared differences in values for the 

corresponding sample pairs. This average value is referred to as the experimental variogram for 

that class. 

 

3- Variogram Model Fitting: Finally, we aim to fit the experimental variogram with an appropriate 

variogram model function. This process is also referred to as theoretical variogram fitting. This 

entails adjusting the parameters of the model to minimize the differences between the 

experimental variogram and the model-predicted values. The fitting process typically employs a 

least squares adjustment approach, optimizing the model parameters to achieve the best possible 

fit. 
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3.6.1 Variogram Cloud 
The measurement of variability for a regionalized variable, z(x), involves the estimation of dissimilarity 

γ* between the values zi and zj at two pairs of points xi and xj, situated within our spatial domain. These 

points are connected by the vector h, also referred to as the lag, as depicted in Figure [3.3]. The 

dissimilarity is characterized by its symmetric nature with respect to the lag distance h, as it is a square 

quantity. Consequently, the order in which the points are considered does not affect the calculation of 

dissimilarity [Equation 3-30] (Wackernagel, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dissimilarity  between the two values can be measured by 

 

To express the dissimilarity function in terms of the lag distance h, the following transformation can 

be employed: 

𝛾∗(−ℎ) = 𝛾∗(+ℎ) 3-30 

𝛾𝑖𝑗
∗ =

1

2
(𝑧𝑖 − 𝑧𝑗)

2 3-31 

𝛾∗(ℎ) =
1

2
(𝑧𝑖+ℎ − 𝑧𝑖)

2 3-32 

 

Figure 3.3 The link vector between point xi and xj 
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By considering all pairs in our dataset and calculating their dissimilarities with respect to the 

corresponding lag distances, h, we can construct a graphical representation known as a variogram cloud 

Figure [3.4]. This cloud consists of (n(n-1))/2 points, each representing the dissimilarity between pairs 

of values (Kitanidis, 1997). The range of lag distances spans up to half the diameter of the region under 

study (Wackernagel, 2003). 

We can notice from the variogram cloud that the dissimilarity increases by increasing the lag distance. 

As we mentioned that a variogram cloud is a powerful tool, it allows us to detect Anomalies, and 

inhomogeneities by looking for high dissimilarity at short distances. Also in all lag distances, we can 

find many pairs with low dissimilarities (Wackernagel, 2003). 

 

 

 

 

 

 

 

 

 

Figure 3.4 Variogram cloud of the estimated turbulence on 11/08/2017 in Poland  
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3.6.2 Expermintal variogram 

 

Upon generating the variogram cloud, the separation vectors h can be categorized into distinct classes 

of vectors, denoted as β, based on their lengths falling within specific intervals. The selection of the 

interval for forming the class of vectors β is contingent upon the specific application at hand (Cressie, 

1993). Each vector h belonging to β is associated with a corresponding group of point pairs, referred to 

as 𝑛𝑐. Within each class β, the average dissimilarity,𝛾∗(𝛽𝑘) , also known as the classic estimator, or the 

method of moment estimator  (Wackernagel, 2003), can be computed as 

 

The combined implementation of the classic estimator and vector classes β successfully tackles two 

significant challenges. Firstly, the estimation of the average dissimilarity, represented by 𝛾∗(𝛽𝑘) 
effectively resolves the problem of encountering multiple values for distance lags, h. This estimator 

ensures the preservation of the symmetry property, as stated in Equation 3-30. It is worth noting that 

while the estimator remains unbiased for estimating the mean μ of Z(x), it does exhibit sensitivity to 

outliers due to the adoption of the square difference (Cressie, 1993; Webster & Oliver, 2007). 

Secondly, the integration of vector classes β effectively addresses the issue of incomplete data for 

most lags. In scenarios where observations are unavailable, leading to a lack of dissimilarity values, 

𝛾∗(ℎ), this approach assigns the average dissimilarity of a specific class, 𝛽𝑘, to all lags h within that 

class (Lichtenstern, 2013). 

𝛾∗(𝛽𝑘) =
1

2𝑛𝑐
∑(𝑧𝑖+ℎ − 𝑧𝑖)

2

𝑛𝑐

𝑖=1

, ℎ ∈ 𝛽𝑘  & 𝑘 ∈ ℕ 3-33 

 

Figure 3.5 Experimental Variogram VS variogram cloud of the estimated turbulence on 

11/08/2017 in Poland  
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Figure [3.5] presents a graphical representation of the experimental variogram across the variogram 

cloud, where the class width for each category is fixed at 20 km. It is observed that the average 

dissimilarity increases as the spacing between pairs of points increases. The experimental variogram 

eventually reaches a plateau, known as the sill, which corresponds to the variance of the dataset for 

large spacings. The behavior of dissimilarity at the origin is of significant importance as it reflects the 

continuity characteristics of the regionalized variable, indicating whether it is differentiable, not 

differentiable, or discontinuous. A discontinuity in the variogram at the origin signifies the presence of 

a nugget effect, meaning that at very small scales, the variable values exhibit abrupt changes 

(Wackernagel, 2003). 

3.6.3 Variogram Model Fitting 
Our objective is to achieve a continuous representation of regional variation, ensuring that the 

variogram function possesses physical significance. Additionally, we aim to describe the spatial 

variation in a manner that allows for estimating values in unsampled locations using kriging. Upon 

examining the experimental variogram, we observed limitations in terms of continuity and the ability 

to estimate variation across all lag distances. Furthermore, using the experimental variogram values 

directly in the Kriging system would result in negative variance. Consequently, we have chosen to fit 

the experimental variogram with a function referred to as the theoretical variogram, which addresses 

these issues (Wackernagel, 2003; Webster & Oliver, 2007). 

The theoretical variogram, denoted as 𝛾(ℎ) , is determined by the intrinsic hypothesis, and its 

conditions can be applied using Equation [3-28] and Equation [3-29].  The formulation for  𝛾(ℎ) is 

given by: 

 

The theoretical variogram exhibits several key properties that are crucial for its understanding and 

interpretation in geostatistics. First and foremost, the variogram is defined such that its value at the 

origin (h = 0) is always zero Equation [3-35]. This property ensures that there is no spatial variability 

at a zero lag distance since it compares a location with itself. 

 

Another important property of the variogram is that its values are always positive for all non-zero lag 

distances [3-36]. This property reflects the fact that the variogram measures the magnitude of spatial 

variability, which is always a positive quantity. 

 

The variogram is also an even function Equation [3-37]. This property implies that the variogram 

values for positive lag distances are the same as the values for negative lag distances. In other words, 

the spatial relationship and variability between two locations are the same regardless of the direction of 

displacement between them. 

 

𝛾(ℎ) =
1

2
(𝑍(𝑥 + ℎ) − 𝑍(𝑥))2 3-34 

𝛾(ℎ = 0) = 0 3-35 

𝛾(ℎ) ≥ 0 3-36 

𝛾(−ℎ) = 𝛾(ℎ) 3-37 
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Furthermore, the variogram grows slower than the function |ℎ|2 as h increases Equation [3-38]. This 

means that the increase in the variogram with increasing lag distances is less steep than the |ℎ|2. This 

condition is essential for ensuring that the drift term 𝜇(ℎ), which represents any systematic spatial trend 

or variation in the variable, can be assumed to be zero (Wackernagel, 2003). 

 

Lastly, the variogram is a conditionally negative semidefinite function (Wackernagel, 2003). This 

property ensures that the variance of any linear combination of n+1 random variables, which forms a 

subset of an intrinsic random function, remains positive when the sum of the n+1 weights 𝜆𝛼 is equal 

to zero. This can be expressed using the following equation:   

 

The behavior of the variogram at the origin and large distances holds significant importance when 

choosing an appropriate variogram model. At the origin, as illustrated in Figure [3.6], the variogram 

can exhibit distinct characteristics: 

1. Discontinuous behavior: In this scenario, the variogram does not approach zero as h tends to 

zero. This discontinuity, known as the nugget effect, adversely affects kriging estimates, 

resulting in discontinuities in the interpolated surface. 

 

2. Continuous but not differentiable behavior: Near the origin, the variogram may demonstrate 

linear behavior. Although the variogram remains continuous, it lacks differentiability at the 

origin. As a consequence, the kriging estimator also becomes non-differentiable, and the 

resulting kriged surface appears linear within the vicinity of the data points. 

 

3. Continuous and differentiable behavior: Alternatively, the variogram may display quadratic 

behavior at the origin, indicating a smooth and continuous function. In this case, the variogram 

is twice differentiable at the origin, leading to smoother kriging estimates. The resulting kriged 

surface possesses enhanced smoothness and continuity. 

 

 

lim
ℎ↦∞

𝛾(ℎ)

|ℎ|2 
= 0 3-38 

∑∑𝜆𝛼𝜆𝛽𝛾(𝑥𝛼 − 𝑥𝛽) ≤ 0

𝑛

𝛽=1

𝑛

𝛼=1

 , 𝑖𝑓 ∑ 𝜆𝛼 = 0

𝑛

𝛼=1

  3-39 

 

Figure 3.6 Variogram behavior at the origin: (i) Discontinuous behavior, (ii) Continuous 

but not differentiable behavior, (iii) Continuous and differentiable behavior 
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The fitting of the variogram function can be accomplished either visually or numerically using a black 

box approach. The exact way the variogram function fits the average dissimilarity points is not of utmost 

importance. What holds significance is the type of continuity assumed for the regional variable and the 

stationarity hypothesis associated with the random function (Wackernagel, 2003). However, the fitting 

process poses challenges due to various reasons, as outlined in (Webster & Oliver, 2007): 

1. The accuracy of observing the semivariogram is not consistent, which can introduce uncertainties 

in the fitting process. 

 

2. Instead of assuming isotropic variation, the variation in the regional variable may exhibit 

anisotropy, posing additional complexities in selecting an appropriate variogram model. 

3. The experimental variogram may contain point-to-point fluctuations or noise, making it 

challenging to identify the underlying spatial structure accurately. 

 

4. Most of the available fitting models involve nonlinearity in one or more parameters, making the 

fitting process computationally demanding and requiring optimization techniques. 

There are two families of functions commonly used to represent spatial variation: unbounded and 

bounded. In the context of isotropic analysis, the distance between pairs of observations, denoted as |h|, 

is used as a scalar measure for lag distance, h (Webster & Oliver, 2007). 

A bounded variogram model refers to a variogram model that has a maximum value beyond which 

the dissimilarity does not increase. This implies that there is an upper limit to the spatial correlation or 

dependence. In other words, as the distance between pairs of observations increases, the dissimilarity 

reaches a plateau or saturation point. This is often the case when there are physical or natural limits to 

the spatial dependence of a variable. There are a group of bounded models such as the Spherical Model, 

Gaussian Model,  Matérn Model, and Exponential Model. In this thesis, our primary focus will be on 

the exponential variogram model as an example of a bounded model To explore alternative variogram 

models, valuable insights and detailed explanations can be found in sources such as(Kitanidis, 1997; 

Webster & Oliver, 2007). These references provide comprehensive analyses and discussions on various 

variogram models, offering a broader understanding of different modeling approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.7 Bounded Variogram parameters nugget, sill, and range 
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Bounded variogram models involve three key parameters: nugget, sill, and range Figure [3.7]. The 

nugget (𝑐0) parameter characterizes the discontinuity or variability observed at very short distances 

Equation [3-40], reflecting fine-scale variation and measurement error that lack spatial correlation. By 

capturing the randomness and noise present in the data, the nugget effect allows us to account for 

unexplained fluctuations (Lichtenstern, 2013).  

 

The sill (𝜎𝑍
2) parameter represents the maximum dissimilarity or variance exhibited by the variable of 

interest Equation [3-41]. It provides insights into the level of spatial correlation or dependence when 

the lag distance is sufficiently large. Beyond the range, the sill indicates an upper limit where the 

dissimilarity ceases to increase, reaching a saturation point in the spatial correlation (Cressie, 1993).  

 

The range (a) parameter signifies the lag distance at which the spatial correlation or dependence 

reaches its maximum value, as defined by the sill. Observations beyond this range exhibit constant or 

leveled-off dissimilarity. Furthermore, the range provides valuable information about the spatial extent 

over which observations exhibit significant correlation and offers an indication of the scale of spatial 

dependence within the dataset. 

As mentioned earlier, we will now delve into the Exponential model, which can be represented by the 

equation: 

where: 

 c: The sill. 

  a: The range. 

 

In this model, the range signifies the distance at which the semivariogram reaches approximately 95% 

of its sill value when h =3a. This specific distance is commonly referred to as the practical or effective 

range. In Figure [3.8], we observe that the Exponential model exhibits a continuous behavior but is not 

differentiable at the origin (Wackernagel, 2003). 

𝛾(ℎ) → 𝑐0 > 0, 𝑎𝑠 |ℎ| → 0 3-40 

𝛾(∞) = lim
|ℎ|→∞

𝛾(ℎ) 3-41 

𝛾𝑐,𝑎
𝑒𝑥𝑝

= 𝑐 (1 − 𝑒
(−
|ℎ|
𝑎
)
) , |ℎ| ≥ 0 3-42 
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An unbounded variogram model, on the other hand, does not have a maximum value and allows the 

dissimilarity to increase indefinitely with increasing lag distance. This suggests that there is no inherent 

upper limit to the spatial correlation or dependence. Unbounded variogram models are often used when 

the study area is large enough that the spatial correlation does not reach a plateau within the observed 

range of distances. In this thesis, our specific emphasis will be on the power model, serving as an 

exemplar of an unbounded variogram model Figure [3.8]. 

The power model can be mathematically expressed as : 

In this model, we have two parameters, 𝜂 and 𝛼. 𝜂 describes the intensity of variation and α describes 

the curvature. Figure [3.9] illustrates the effect of changing the value of αon the behavior of the curve. 

When 𝛼 < 1, the variogram curve is convex upward, and when 𝛼 = 1 then the variogram is linear and 
𝜂 is simply the gradient. When 𝛼 > 1  then the variogram is concave upwards (Webster & Oliver, 2007). 

 

 

 

 

 

 

 

𝛾(ℎ) = 𝜂ℎ𝛼 𝑓𝑜𝑟 0 < 𝛼 < 2 3-43 

 

Figure 3.8 Exponential variogram model over the Experimental variogram 
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Figure 3.9 Power variogram model over the Experimental variogram where 

𝛼 = 0.7511 

 

 

 

 

 

 

Figure 3.10 Power variogram model with 𝛼 = 0.2; 0.5; 1.0; 1.5; 𝑎𝑛𝑑 2.0 

 

 

 



Toward Turbulence stochastic modeling 

Page 34 of 114 

 

3.7 Ordinary Kriging 
Ordinary kriging (OK) is a geostatistical method employed for estimating the value of a random 

variable, Z, at a particular location, 𝑥0. The estimation is based on the utilization of a known variogram 

function, which characterizes the spatial correlation of the underlying process, as well as a set of 

neighboring sample points, 𝑥𝑖, i=1,...,n. In ordinary kriging, two fundamental assumptions are made 

(Wackernagel, 2003). 

The first assumption, known as the model assumption, posits that the expected value or mean, 𝜇, 

where 𝜇 ∈ ℝ of the second-order stationary random function, Z(x), is unknown (Cressie, 1993).  

The second assumption, referred to as the predictor assumption (Equation [3-44]), establishes that the 

estimation of Z at 𝑥0, 𝑍𝑂𝐾
∗ (𝑥0), is a linear combination of the observed values at the neighboring sample 

points. The weights, 𝜆𝑖, assigned to each observation are determined through a set of linear equations, 

ensuring an unbiased estimate and yielding the best linear unbiased prediction (BLUP) of the unknown 

value at x0 (Lichtenstern, 2013; Wackernagel, 2003). 

To ensure uniform unbiasedness in ordinary kriging, it is necessary for the sum of the weights 

assigned to the neighboring sample points to equal one Equation [3-45]. This requirement is rooted in 

the principle that when all the data values are equal to a constant, the estimated value should also be 

equal to that constant (Wackernagel, 2003). 

As a consequence of the weights summing up to one in ordinary kriging, the expected error tends to 

disappear Equation[3-46] (Wackernagel, 2003). In other words, the average difference between the 

estimated value and the true value diminishes as the number of sample points and the reliability of the 

estimation procedure increase. 

To quantify the accuracy of our estimation in ordinary kriging, our goal is to minimize the 
estimation variance. The estimation variance represents the mean square difference between the 
estimated value 𝑍⋆(𝒙0)  and the true value 𝑍(𝒙0) at the prediction point, as shown in Equation 
[3-47]. 

By imposing the unbiased condition as stated in Equation [3-45], where the sum of the weights 
from 1 to n is equal to one, we can utilize the variogram to estimate the variance of the estimation 
error (Wackernagel, 2003) as: 

 

𝑍OK
⋆ (𝐱0) =∑  

𝑛

𝑖=1

𝜆𝑖𝑍(𝐱𝑖) 3-44 

𝑍OK
⋆ (𝐱0) =∑  

𝑛

𝑖=1

𝜆𝑖𝑍(𝐱𝑖), ∑  

𝑛

𝑖=1

𝜆𝑖 = 1  3-45 

E[𝑍⋆(𝒙0) − 𝑍(𝒙0)] = 𝐸

[
 
 
 
 

∑  

𝑛

𝑖=1

𝜆𝑖𝑍(𝒙𝛼) − 𝑍(𝑥0) ⋅∑  

𝑛

𝑖=1

𝜆𝑖
⏟  
1 ]

 
 
 
 

 

=∑  

𝑛

𝑖=1

𝜆𝑖𝐸[𝑍(𝒙𝛼) − 𝑍(𝒙0)] = 0 

3-46 

𝜎E
2 ∶= var(𝑍⋆(𝐱0) − 𝑍(𝐱0)) = E [(𝑍

⋆(𝐱0) − 𝑍(𝐱0))
2
] 3-47 
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where: 

 𝛾(𝒙𝑖 − 𝒙𝑗): The dissimilarity of the random function Z between observation points 𝐱𝑖 and 𝐱𝑗. 

  𝛾(𝒙𝑖 − 𝒙0): The dissimilarity of the random function Z between observation points 𝐱𝑖 and the       

estimation point 𝐱0. 

By initiating the process of estimating the unknown weights that minimize the variances in ordinary 

kriging, we employ the Lagrange multipliers method. Our goal is to minimize the variance of the 

estimation error while adhering to the unbiasedness constraint, as defined in Equation[3-45]. To achieve 

this, we introduce the auxiliary function 𝑓(𝜆𝑖, 𝜉𝑂𝐾), which combines the variance of the estimation error 

with the term involving the Lagrange multiplier, 𝜉OK (Webster & Oliver, 2007). By optimizing the 

auxiliary function 𝑓(𝜆𝑖, 𝜉OK), while considering the weight constraint, we arrive at the formulation of 

the ordinary kriging system: 

 

The estimation variance of ordinary kriging can be expressed as: 

 

The Kriging system can be represented in matrix form: 

 

According to (Wackernagel, 2003),  it is mentioned that ordinary kriging is an exact estimator. 
Specifically, when the estimation point, 𝒙0, coincides with one of the data locations, the estimated 
value is guaranteed to be equal to the observed value at that particular point. 

 

𝜎𝐸
2 = −𝛾(𝒙0 − 𝒙0) −∑  

𝑛

𝑖=1

∑ 

𝑛

𝑗=1

𝜆𝑖𝜆𝑗𝛾(𝒙𝑖 − 𝒙𝑗) + 2∑  

𝑛

𝑖=1

𝜆𝑖𝛾(𝒙𝑖 − 𝒙0) 3-48 

{
 
 

 
 ∑ 

𝑛

𝑖=1

𝜆𝑖
𝑂𝐾𝛾(𝒙𝑖 − 𝒙𝑗) + 𝜉𝑂𝐾 = 𝛾(𝒙𝑖 − 𝒙0) ,    for 𝑗 = 1,… , 𝑛

∑  

𝑛

𝑗=1

𝜆𝑗
𝑂𝐾 = 1

 3-49 

𝜎𝐸
2 = 𝜉𝑂𝐾 +∑  

𝑛

𝑗=1

𝜆𝑖
𝑂𝐾𝛾(𝒙𝑖 − 𝒙𝑗) − 𝛾(𝒙0 − 𝒙0)  3-50 

𝐴𝜆 = 𝐿 

where: 

𝐴 = [

𝛾(𝒙1 − 𝒙1) ⋯ 𝛾(𝒙1 − 𝒙𝑛) 1
⋮ ⋱ ⋮ ⋮

𝛾(𝒙𝑛 − 𝒙1) ⋯ 𝛾(𝒙𝑛 − 𝒙𝑛) 1
1 ⋯ 1 0

]  , 

𝜆 =

[
 
 
 𝜆1

𝑂𝐾

⋮

𝜆𝑛
𝑂𝐾

𝜉𝑂𝐾 ]
 
 
 

 𝑎𝑛𝑑 𝐿 = [

𝛾(𝒙1 − 𝒙0)
⋮

𝛾(𝒙𝑛 − 𝒙0)
1

] 

3-51 

𝑍𝑂𝐾
⋆ (𝒙0) = 𝑍(𝒙𝑖) , if  𝒙0 = 𝒙𝑖  3-52 
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Upon examination of the ordinary kriging solution, it becomes evident that the weights 𝜆𝑖
𝑂𝐾 

assigned to nearby points in the vicinity of the estimated point are relatively high. Specifically, 
the first nearest group of points contributes approximately 80% of the total weight. The 
determination of these weights is influenced by both the spatial position of the neighboring points 
and the underlying variogram function. In cases where a significant nugget effect is present, the 
weights assigned to nearby points close to the estimation point tend to be smaller. Additionally, 
it is worth noting that the weights are contingent upon the specific configuration of the sampling 
points (Webster & Oliver, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results and Case Studies 

Page 37 of 114 

 

4. Results and Case Studies 
This chapter presents the findings of two case studies conducted as part of this thesis, with one study 

conducted in Italy and the other in Poland. In each study area, a network of GNSS stations is distributed. 

By processing the observations from these stations, we can determine the precise positions of each 

station and estimate the zenith total delay (ZTD) values. 

Following the management of the data sets, we apply the stochastic prediction approaches outlined in 

the previous chapter. These approaches enable us to generate turbulence maps for each study area, with 

different time resolutions considered. By utilizing these prediction methods, we aim to capture and 

visualize the spatial and temporal distribution of turbulence in the respective regions. 

To validate the effectiveness of our approach, we employ two different techniques. Firstly, we 

compare our turbulence predictions with measurements from another network's station at the same 

location, enabling us to assess the consistency and accuracy of our predictions through external 

validation. Additionally, we utilize the Leave-One-Out technique, systematically excluding individual 

data points from our analysis, to evaluate the performance of our approach based on the remaining data. 

The subsequent sections of this chapter provide a detailed analysis of the results obtained from the 

case studies conducted in Italy and Poland. Through the integration of GNSS observations, stochastic 

prediction approaches, and validation procedures, we aim to improve our capability to effectively 

observe and understand turbulence patterns in these regions. 
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4.1 Case Study1 

4.1.1  Study Area 
The first case study was carried out within the Lombardy, Piemont, and Valle d'Aosta regions of 

northern Italy, as illustrated in Figure [4.1]. Geographically, the study area spans latitudes ranging from 

44°57'N to 45°49'N and longitudes from 6°59'E to 10°13'E. Notably, this region exhibits considerable 

variability in terrain characteristics. Beginning from relatively flat areas in the southern portion, the 

topography gradually transitions into undulating hills, ultimately culminating in the prominent presence 

of the Alps in the northern reaches. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Geographic extent of the study area for Case Study 1 in Italy, showcasing the 

regions of Lombardy in a blue polygon, Piemont in a green polygon, and Valle d'Aosta in a red 

polygon  
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4.1.2 GNSS network 
In this case study, we utilized observations from the GPS, GLONASS, and GALILEO constellations 

obtained from 34 out of the 39 permanent stations within the Interregional GNSS Positioning Service 

of Lombardy, Piedmont, and Valle d'Aosta regions (SPIN3 GNSS). Figure [4.2] provides an overview 

of all 39 stations, while Figure [4.3] specifically depicts the 34 stations used in this thesis. The SPIN3 

network is equipped with geodetic receivers capable of receiving signals from multiple satellite 

constellations, with each receiver connected to a calibrated GNSS antenna. The period of interest for 

the observations spanned from December 31, 2018, at 23:59:42 to December 31, 2020, at 23:59:42. 

The data was collected at a temporal resolution of 30 seconds. The minimum inner Euclidean distance 

between stations was found to be 19.4 km, while the maximum distance reached 340 km. This network 

serves various applications, including geodetic, geophysical, geological, precision agriculture, 

cartography, GIS, engineering, and atmospheric applications (SPIN3 GNSS – Servizio Di 

Posizionamento Interregionale GNSS, n.d.). 

 

 

 

 

 

 

 

 

 

Figure 4.2 The  full SPIN3 Network permanent stations distribution in Lambordy, Piedmont, 

and Valle d'Aosta regions 
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The observation data were processed using the BERNESE software, employing the Precise Point 

Positioning (PPP) mode with the processing settings outlined in Table [4.1] as described by (Fermi, 

2018). The processing outputs included the precise positions of each network station in the Geodetic 

coordinate reference system (𝜑, 𝜆, Η) and the Earth-Centered, Earth-Fixed coordinate system (ECEF) 

(X, Y, Z). Additionally, the estimation of Zenith Total Delay (ZTD) was obtained for each station during 

the specified period of interest for example the ZTD for Alessandria, Biella, and Bormio stations in 

Figure [4.5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 The distribution of the 34 SPIN3 Stations in the study area 
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Figure 4.4 SPIN3 Station in Alessandria 

 

 

 



Results and Case Studies 

Page 41 of 114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Estimated ZTD from SPIN3 Network for Alessandria, Biella, and Bormio stations 

 

 

 

Table 4-1 SPIN3 Network -PPP processing setting 

Network design 30 dual-frequency GNSS receivers 

Received signals GPS, GLONASS 

Processing SW BERNESE v5.2 

Processing rate 30 s 

Elevation cutoff 10 degrees 

Processed signals GPS 

Processing method PPP 

Ephemeris CODE (final) 

Satellite clocks CODE 30 s (final) 

Ocean loading model FES2004 

Observables L3 (iono-free) 

Mapping functions GMF dry/wet 

Dry tropospheric model Saastamoinen + GPT 

Gradient estimation model none 

ZWD estimation rate 10 min 

A priori ZWD difference std 0.02 m 
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Table 4-2 The 34 SPIN3 stations utilized in our computations, along with the respective 

province, city, and geodetic coordinates for each station 

Station  Region  Province  City 
Latitude 

𝜑 (o)  

Longitude 

𝜆 (o)  

Elep.height 

H(m) 

ALSN PIE AL Alessandria 44.92317 8.616345 103.34 

BIEL PIE BI Biella 4556074 8.048051 429.81 

BORM LOM SO Bormio 46.46818 10.36397 1211.13 

BREU LOM BS Brescia 45.56494 10.23259 179.21 

BUSL PIE TO Bussoleno 45.1368 7.152153 442.14 

CANL PIE AT Canelli 4472226 8.292822 159.68 

CHIA LOM SO Cliavenna 46.31985 9.401271 340.86 

COMO  LOM CO Como 45.80216 9095619 244.89 

CREA LOM CR Crema 45.35433 9.685305 86.85 

CREM LOM CR Cremona 45.14665 10.00195 61.65 

CRSN PIE VC Crescentino 45.19244 8.105767 164.66 

CUOR PIE TO Cuorgné 45.38791 7.647698 430.57 

CURN LOM BG Curno 45.6923 9.612006 251.5 

DARF LOM BS Dario B. T. 45.88029 1017717 233.31 

DEMN  PIE CN Demonte 4431572 7.292628 809.74 

DOMS  PIE VB Domodossola  46.11904 8.286326 313 

GOZZ PIE NO Gozzano 45.74674 8.433397 367.24 

GRED LOM CO Lomazzo 45.69718 9.035299 311.16 

LECO LOM LC Lecco 45.84886 9.396556 226.43 

MANT  LOM MN Mantova 45.1601 10.7894 103.34 

MIL2 LOM Ml Milano 45.47837 9.229213 429.81 

MONV  PIE CN  Mondovi 4439036 7.828955 121113 

NOVR PIE NO Novara 45.44721 8.613964 179.21 

OSTA PIE CN Ostana 4469234 7.18834 442.14 

PAVI LOM PA Pavia 45.20298 9.13614 159.68 

RUMI AO AO Rumiod 45.71712 7.198678 340.86 

SAVI PIE CN Savigliano 4464764 7.660664 244.89 

SERR PIE AL Serravalle S. 4473106 8.853093 86.85 

SONP LOM SO Sondrio 46.16982 9871937 61.65 

TNUS VDA VDA Quart 45.75289 7.442627 164.66 

TORI PIE TO Torino 45.06337 7.661278 430.57 

VARZ LOM PV Varzi 4482.334 9.197405 251.5 

VERR AO AO Verres 45.66467 7_690182 233.31 

VIGE LOM PV Vigevano 45.31479 8.861951 809.74 
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4.1.3 Data Processing 
This section provides a comprehensive overview of the various stages involved in our analysis, starting 

from the initial exploration and management of the observation data. We then proceed to the stochastic 

prediction procedures, which encompass estimating the variogram cloud, constructing the experimental 

variogram, and finally determining the theoretical variogram. The theoretical variogram is subsequently 

utilized as input for the ordinary kriging method. To validate our results, we employ the Leave-One-

Out procedure. The entire workflow is depicted in Figure [4.6]. 

 

 

 

 

Figure 4.6 Flowchart depicting the data processing methodology for turbulence stochastic 

prediction using ordinary kriging in case study1 
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4.1.3.1 Data Management 
The data management section comprises three primary stages, namely exploration and examination of 

the observation data file, data filtering, and estimation of the turbulence delay. 

During the examination of each observation file for a specific station, the epochs of observation and 

their corresponding Zenith Total Delay (ZTD) estimates are observed. Analysis of the observation files 

reveals the presence of missing epochs, as depicted in Figure [4.7]. The integration of data from multiple 

stations into a consolidated matrix poses challenges due to these missing epochs. To address this issue, 

a time array is created, spanning from December 31, 2018, at 23:59:42 to December 31, 2020, at 

23:59:42, with 30-second intervals. A comparison is then made between the observation epochs of each 

station and the created time array to identify the missing epochs, which are subsequently assigned a 

"NaN" value. The flowchart presented in Figure [4.8] provides a graphical representation of these 

sequential steps. 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 The Temporal coverage for each station through the period  from December 31, 

2018, at 23:59:42 to December 31, 2020, at 23:59:42 
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After obtaining the ZTD matrix, it is possible to select a specific interval of interest within the study 

period. The user can specify the starting and ending epochs for this interval. By doing so, we can extract 

the corresponding observations from the ZTD matrix, resulting in a specific ZTD matrix for the chosen 

interval. 

Figure [4.7] shows that certain stations had missing or insufficient observations during certain 

intervals. Therefore, it is necessary to filter the stations based on the number of NaN values compared 

to the total number of observations for each station in a particular column, which represents the station. 

If the number of NaN values exceeds 50% of the total number of observations, the station will not be 

included in our computations. The filtering process algorithm is illustrated in Figure [4.9]. 

 

 

Figure 4.8 Flowchart illustrating the data aggregation process for consolidating all 

observations from multiple stations into a single matrix while handling empty epochs by assigning 

NaN values 
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Figure 4.9 Flowchart demonstrates how stations are filtered based on the number of NaN values 
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In the process of estimating the turbulence delay from the Zenit Total Delay (ZTD) observations, it is 

necessary to delve deeper into the composition of ZTD. ZTD comprises two distinct components: the 

stratified part (S(h)x
t ) and the turbulence part (T(E, N)x

t  ). The stratified part primarily originates from 

the presence of gases in the troposphere that are in a state of hydrostatic equilibrium. Conversely, the 

turbulence delay arises from the behavior of water vapor, which is not in hydrostatic equilibrium. It is 

important to note that even though water vapor also contributes to the stratified part, our focus lies on 

the portion of water vapor that deviates from hydrostatic equilibrium. 

Where: 

𝑍𝑇𝐷𝑥
𝑡: The Zenith total delay at epoch t for point x. 

S(h)x
t : The stratified component at epoch t for point x that is a function of the point elevation. 

𝑇(𝐸,𝑁)𝑥
𝑡 : The Turbulence component at epoch t for point x is a function of the point position. 

It is crucial to recognize that these two components exhibit different characteristics. The stratified 

part predominantly depends on the observation station as we can notice when the station is on a high 

elevation For instance, when a GNSS station is located in a mountainous region, the GNSS signal 

traverses multiple layers of the atmosphere compared to a station situated at lower elevations as shown 

in Figure[4.10]. We can see this effect in our ZTD observations as shown in Figure[4.11]. In contrast, 

the turbulence component is a two-dimensional field.  

 

 

  

 

𝑍𝑇𝐷𝑥
𝑡 = 𝑆(ℎ)𝑥

𝑡 + 𝑇(𝐸,𝑁)𝑥
𝑡   4-1 

 

Figure 4.10 The Elevation effect on the Zenith Total Delay 
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The estimation of the turbulence component, which characterizes the non-hydrostatic equilibrium 

portion of water vapor, necessitates the subtraction of the height-dependent contribution from the 

overall Zenith Total Delay (ZTD) observations. This subtraction process effectively isolates the residual 

turbulence component, which is of particular interest in our analysis. 

Furthermore, to effectively model the stratified component of the Zenith Total Delay (ZTD), it is 

imperative to investigate the relationship between the elevation of network stations and the 

corresponding total delay values. Through a comprehensive analysis of the ZTD observations from the 

SPIN3 network stations, a robust association becomes evident, exhibiting a significant correlation 

between station elevation and the observed total delay. This strong correlation is visually represented 

in Figure [4.12]. 

 Notably, we observe a decrease in ZTD with increasing station elevation, aligning with our 

expectations. For instance, the ZTD at the MANT station, located in a high-elevation mountainous area, 

is higher compared to the RUMI station. This observation aligns with the notion that higher station 

elevations correspond to a greater wet air column above, contributing to increased total delay. 

 

 

 

Figure 4.11 The impact of elevation on the observed Zenit Total Delay (ZTD)by examining three 

distinct GNSS stations: RUMI with a maximum elevation of 1275.01 m, MANT representing the 

lowest elevation station of 36.04 m, and MONV station characterized  

by an average elevation of 587.82 m 
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The relationship between the height and the stratified component can be modeled as   

where: 

S(h)x
t : The stratified component at epoch t for station x. 

hx: The elevation of point x. 

αt, βt: The model coefficients that have to be estimated. 

As the model (4.2) is nonlinear, a linearization approach is necessary to obtain a least squares solution. 

The flowchart presented in Figure [4.13] outlines the steps involved in the solution process. This 

includes the construction of the Design matrix A, the residual vector L, and subsequent computation of 

the normal matrix N and the absolute term of the system. By employing the least squares method 

described in Equation [4-3], the values of the model parameters αt and βt can be determined for each 

epoch and observation station. Subsequently, the turbulence T(E, N)x
t   can be obtained by subtracting 

the modeled stratified component S(h)x
t  from the ZTDx

t . 

 

 

 

 

 

𝑆(ℎ)𝑥
𝑡 = 𝛽𝑡𝑒

−𝛼𝑡ℎ𝑥    4-2 

 

Figure 4.12 ZTD vs Elevation 
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𝑍𝑇𝐷𝑥
𝑡 = 𝛽𝑡𝑒

−𝛼𝑡ℎ𝑥 

Let : 

𝐴 = [𝑒−𝛼̃𝑡ℎ𝑥 −ℎ𝑥𝛽̃𝑡𝑒
−𝛼̃𝑡ℎ𝑥], 

 𝐿 = [𝑍𝑇𝐷𝑥
𝑡 − 𝛽̃𝑡𝑒

−𝛼̃𝑡ℎ𝑥], 

𝑋 = [
𝛿𝛽 = 𝛽 − 𝛽̃𝑡
𝛿𝛼 = 𝛼 − 𝛼̃𝑡

], 

 

Then the solution will be: 

∴ [
𝛿𝛽
𝛿𝛼
] = (𝐴𝑇𝐴)−1⏟    

𝑁

𝐴𝑇𝐿  

∴ [
𝛽̃𝑡
𝛼̃𝑡
] = [

𝛽
𝛼
] + [

𝛿𝛽
𝛿𝛼
] 

Thus 

𝑇(𝐸,𝑁)𝑥
𝑡̂ =𝑍𝑇𝐷𝑥

𝑡 − 𝛽̃𝑡𝑒
−𝛼̃𝑡ℎ𝑥 

 

4-3 
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Figure 4.13 Flowchart illustrating the steps to how to estimate the turbulence delay starting 

from ZTD using non-linear least square adjustment 
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Figure 4.14 The ZTD, The estimated stratified component, and the turbulence 

component for station ALSN (on top) and BORM (on bottom) through the period   

from December 31, 2018, at 23:59:42 to December 31, 2020, at 23:59:42 
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4.1.3.2 Variogram Calculation 
This section aims to investigate the spatiotemporal variability of turbulence within the geographical 

coverage of the SPIN3 network. Building upon the comprehensive explanations and concepts outlined 

in Chapter 3, our objective is to analyze the fluctuations of the turbulence component at both spatial 

and temporal scales. 

To initiate stochastic prediction, the determination of the required temporal resolution for generating 

turbulence maps is paramount. Considering that the SPIN3 stations observe at a rate of 30 seconds, the 

chosen temporal resolution can be specified as daily, hourly, or any other suitable interval. Subsequently, 

the turbulence matrix is segmented at the designated period, resulting in a three-dimensional matrix. 

Each dimension of this matrix represents the turbulence delay observed for all stations during that 

particular epoch. By applying intrinsic homogeneity and isotropic assumptions, as elaborated in Section 

3.4, we endeavor to estimate epoch-experimental variogram functions. These functions provide insights 

into the dissimilarity, denoted as 𝛾𝑖𝑗
∗ , of turbulence values between station pairs at each epoch, as per 

equation (3-32). 

The first step is to compute the variogram cloud. We start by computing the Euclidean distances 

between stations within the SPIN3 network using the geographical coordinates of each station. Thus,  

we need to transform the geodetic coordinates (𝜑, 𝜆, Η) or the ECEF coordinates (X, Y, Z) to a 

projection coordinate system in this case study we used (the universal transverse Mercator UTM, zone 

32N).  

 

Figure 4.15 Variogram cloud depicting dissimilarities during a half-hour period at 

00:29:42 on April 1st, 2019 
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Figure 4.17 Variogram cloud depicting dissimilarities during an hour at 00:59:42 on 

April 1st, 2019 

 

 

 

 

 

Figure 4.16 Variogram cloud depicting dissimilarities during one day period  

on April 1st, 2019 
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After generating the variogram cloud for each epoch, the subsequent step involves establishing the 

experimental variogram following Section 3.6.2. The lag distance is initially defined, which serves as 

the basis for dividing the total distances between stations into intervals. Within each interval, the classic 

estimator Equation [3-33] is applied to the midpoint. Consequently, it becomes necessary to determine 

a suitable lag distance that aligns with the distances between stations during a specific epoch. 

For instance, let's consider April 1st, 2019, where a total of 29 stations are involved in the 

computations following the filtering process. Among these stations, the minimum distance between any 

pair is found to be 23.9 km. Choosing a lag distance smaller than this minimum value would result in 

an absence of data points. Thus, the lag distance must exceed the minimum distance between stations. 

Additionally, considering the interest in the behavior near the origin, the lag distance should allow us 

to capture the variability exhibited by nearby stations. In the given example, a lag distance of 30 km is 

selected based on the available data to effectively represent the behavior of variability between closely 

situated stations as shown in Figure [4.18]. 

In the final step of this section, we proceed with constructing the theoretical variogram, as discussed 

in Section 3.6.3. Two fitting models, namely the exponential model and the power model, are 

considered. The power model offers the advantage of preserving the physical interpretation associated 

with atmospheric turbulence, following the principles of Kolmogorov's theory. 

By examining Equation [3-43], which represents the power model, we apply a nonlinear least square 

adjustment to estimate the two parameters (𝜂, 𝛼) . This adjustment allows us to obtain parameter 

estimations for each epoch (𝜂𝑡̂ , 𝛼𝑡 ̂). These estimated parameters serve as key inputs for modeling the 

theoretical variogram corresponding to each epoch. 

To estimate the parameters of the exponential model, as expressed in Equation [3-42], we employ a 

nonlinear least square approach. Two parameters need to be estimated: the sill "C" and the range "a". 

To initiate the estimation process, we require initial approximations for these parameters. 

For the sill, we can set its initial value to the maximum value of dissimilarities observed at the epoch 

under consideration. This provides an initial approximation that captures the upper limit of variability 

in the dataset. 

Regarding the range parameter, as mentioned in Section 3.6.3, it can be determined using the formula 

a = h/3 where "h" represents the distance at which we observe 95% of the sill. This value of "h" 

corresponds to the distance within which the spatial dependence is strong. By incorporating this value 

into the range parameter estimation, we establish an initial approximation that aligns with the extent of 

spatial dependence in the dataset. 

It is important to note that the theoretical variogram representation is limited to the half diameter of 

the study area, as depicted in Figure [4.20]. In our specific case, this means the variogram will be 

modeled up to a distance of 165 km. 
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Figure 4.18 Experimental Variogram for April 1st, 2019 at three epochs (00:59:42, 08:59:42, 

and 18:59:42). The numbers above each point indicate the count of dissimilarities contributing to 

the average computation within each interval 
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Figure 4.19 Theoretical variogram using the Power model for  April 1st, 2019 at three epochs 

(00:59:42, 08:59:42, and 18:59:42).  
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Figure 4.20 Theoretical variogram using the Exponential model for  April 1st, 2019 at three 

epochs (00:59:42, 08:59:42, and 18:59:42) 
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4.1.3.3 Kriging Interpolation 
In the pursuit of generating high-resolution turbulence maps, we propose utilizing SPIN3 stations and 

theoretical variogram functions to employ epoch-wise ordinary kriging. This approach allows us to 

estimate turbulence values for a grid covering the study area. The grid itself has been derived from a 

Digital Elevation Model (DEM), with a uniform grid point spacing of 5km, as depicted in Figure [4.21]. 

 

 

Solving the kriging system represents in Equation [3.51], we can estimate not only the turbulence value 

at each grid point but also the estimation error at that point. The flow chart in Figure[4.25] illustrates 

the ordinary kriging system we have implemented. 

 

 

 

 

 

 

 

 

 

Figure 4.21 The Study area grid with a separation distance of 5 km. This grid was projected in 

(UTM Zone32N)projection coordinate reference system  
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Figure 4.22 Trbulence prediction map and the estimation error contour map  

for April 1st, 2019 at 00:59:42 
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Figure 4.23 Trbulence prediction map and the estimation error contour map  

for April 1st, 2019 at 08:59:42 

 

 

 

 

Figure 4.24 Trbulence prediction map and the estimation error contour map  

for April 1st, 2019 at 18:59:42 
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Figure 4.25 Flowchart illustrating the steps for ordinary kriging for turbulence delay estimation 

and the estimation error for each grid point at each epoch 
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4.1.3.4 Data Validation  
After obtaining turbulence predictions, it is essential to validate the estimation approach employed. In 

this study, we utilize the Leave-One-Out Cross-Validation technique (LOOCV), a well-established 

method known for its nearly unbiased estimation (Efron, 1983). The fundamental concept behind 

LOOCV involves excluding one measuring point from the dataset and reestimating it using the 

observations from the remaining points (Longman et al., 2019). 

Within the context of this case study, LOOCV was conducted from 01/01/2019 at 23:59:12 to 

30/12/2020 at  23:59:12. During this period, a total of 28 SPIN3 Stations was available, and the temporal 

resolution was 1 day. For each epoch within this period, one station will be temporarily removed, and 

stochastic prediction procedures and ordinary kriging will be employed to estimate the turbulence at the 

removed station. The estimated turbulence value will then be compared to the observed turbulence value 

at the same epoch for validation. This procedure will be repeated for all stations at each epoch and all 

epochs. 

In order to evaluate the performance of our procedure, we compute the discrepancy between the 

predicted turbulence delay and the observed turbulence values at each station. Subsequently, we apply 

Equation [4-4] to determine the bias,  Equation [4-5] to calculate the Root Mean Square Error (RMSE) 

of this difference also Equation [4-6] to determine the standard deviation (STD) of the difference. These 

evaluations are conducted individually for each station as well as for each epoch. 

where: 

𝑇𝐿𝑂𝑂𝐶𝑉𝑖: is the turbulence delay estimation from LOOCV. 

𝑇𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖: is the turbulence delay estimation after removing the stratified part from ZTD. 

N: When estimating the bias, RMSE, and STD for each epoch, the value of N corresponds to the 

number of epochs. On the other hand, when estimating the bias, RMSE, and STD for each station, N 

represents the number of stations. In the case of estimating the bias, RMSE, and STD for each epoch, 

N denotes the total number of epochs 

𝜇(𝑇𝐿𝑂𝑂𝐶𝑉−𝑇𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑): In the case of estimating the standard deviation (STD) for each epoch, this mean 

is computed by averaging the differences at a particular epoch across all stations. On the other hand, 

when estimating the STD for each station, the mean is obtained by averaging the differences for all 

epochs at that specific station.  
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Upon evaluating the mean, standard deviation (STD), and root-mean-square error (RMSE) for the 

difference between estimated and observed turbulence for each epoch Figure [4.26], distinct variations 

in the standard deviation (STD) and root-mean-square error (RMSE) during the spring and summer 

seasons. As anticipated, these observations align with our expectations, as these two seasons are 

characterized by elevated levels of atmospheric water vapor, which subsequently intensify turbulence. 

The pronounced infatuation of STD and RMSE in the depicted seasons attests to the heightened 

turbulence levels caused by the increased water vapor content. 

 

 

 

 

 

 

 

 

Figure 4.26 The comparison between the mean, standard deviation (STD), and root-mean-

square error (RMSE) of the difference between the estimated turbulence obtained from LOOCV 

and the observed turbulence for each epoch. Additionally, it displays the mean, STD, and RMSE 

of the observed turbulence for each epoch. The data presented in the figure spans from 

January,1st 2019 at 23:59:12 to December,30th 2020 at 23:15:12 
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Figure 4.28 Annual mean RMSE  for SPIN3 Stations 

 

 

 

 

Figure 4.27 Annual mean bias for SPIN3 Stations 
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From the analysis presented in Figure [4.27] and Figure [4.28], as well as Table [4-3], it is evident 

that certain stations, such as BORM and CHIA, exhibit high RMSE values. This can be attributed to two 

main factors. Firstly, these stations are situated in the Albes area, which is known for its challenging 

atmospheric conditions and increased turbulence. Secondly, the lack of nearby stations limits the 

effectiveness of interpolation methods in accurately estimating turbulence at these locations. 

Additionally, stations like BUSL and OSTA, located in mountainous regions, also demonstrate higher 

RMSE values due to the complex terrain and associated turbulence patterns. 

 

Table 4-3 The Bias and the RMSE in cm for 28 SPIN3 station 

Station Bias(cm) RMSE(cm) 

ALSN 0.1412 0.6333 

BIEL 0.1412 0.6786 

BORM 0.1017 1.6480 

BREU 0.0124 0.9567 

BUSL 0.3935 1.4317 

CANL -0.0521 0.7359 

CHIA 0.3817 1.3909 

COMO 0.1084 0.7262 

CREA -0.1569 0.6220 

CREM 0.0292 0.7249 

CRSN -0.0773 0.6662 

CUOR -0.1700 0.7829 

CURN -0.0466 0.7934 

DARF -0.0849 1.1608 

DEMN -0.0442 1.0081 

DOMS -0.2321 1.1771 

GOZZ 0.0299 0.6462 

LECO -0.0929 0.7973 

MANT 0.1920 1.1960 

MONV -0.0699 0.7991 

NOVR -0.1883 0.7530 

OSTA -0.1743 1.3710 

PAVI 0.0448 0.6943 

SAVI 0.0423 0.8219 

SERR 0.0224 0.7354 

SONP -0.2136 1.0510 

TORI 0.0217 0.7859 

VARZ 0.1475 0.9406 
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Figure 4.29 The predicted turbulence delay vs the observed turbulence delay and the difference 

between them for station BORM 

 

 

 

 

 

 

Figure 4.30 The predicted turbulence delay vs the observed turbulence delay and the difference 

between them for station BUSL 
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The comprehensive statistical evaluation of the SPIN3 network, covering the period from January 1, 

2019, at 23:59:12 to December 30, 2020, at 23:15:12, is summarized as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-4 The statistics for SPIN3 GNSS network for the period from January,1st  2019 at 

23:59:12 to December,30th  2020 at 23:15:12 

 Annual mean (cm) Minimum value (cm) Maximum value (cm) 

STD 0.9011  3.1055 

RMSE 0.885 0.1898 3.0428 
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4.2 Case Study2 

4.2.1  Study Area and GNSS networks 
The second case study of our thesis was conducted in Poland, which exhibits distinctive topography 

characterized by lowlands in the central and northern regions, predominantly occupied by the expansive 

Polish Plain. The southern part of Poland displays a more diverse topography, with the presence of the 

Sudeten and Carpathian Mountains. The study was conducted on August 11th, 2017, in collaboration 

with (GReD - Geomatics Research & Development s.r.l., n.d.), who provided us with GNSS data from 

three networks distributed in the area with 278 GNSS stations. These networks include the ASG-EUPOS, 

a state network, as well as the commercial networks TPI NET pro and VRSNet.pl. The distribution of 

these networks can be observed in Figure [4-31]. 

 

 

The ASG-EUPOS network, initiated under the auspices of the Head Office of Geodesy and 

Cartography in 2008, encompasses a total of 104 stations within the borders of Poland and an additional 

24 stations located across international borders. The TPI NETpro network, a privately operated system, 

has been in operation since 2012 and comprises 121 stations within Poland, with an additional 15 

stations positioned outside the country. Similarly, the VRSNet.pl network, established in 2012, consists 

of 81 stations situated along the border and 6 stations positioned beyond the national borders. These 

networks collectively provide an average spatial density of approximately 1120 square meters per 

station (Nykiel et al., 2019). 

 

Figure 4.31 The geographic extent of the study area for Case Study 2 conducted in Poland, 

along with the positions of the GNSS stations utilized. The ASG-EUPOS network stations are 

represented by red rectangle markers, the TPI NETpro network stations by green rectangles, and 

the VRSNet.pl network stations by blue rectangles 

 

 

 

 



Results and Case Studies 

Page 70 of 114 

 

The processing of the three networks (ASG-EUPOS, TPI NETpro, and VRSNet.pl) was performed 

using the Precise Point Positioning (PPP) method in the Bernese GNSS software version 5.2. The 

processing strategy involved utilizing the Code final products and considering only GPS and 

GLONASS observations. A total of 278 stations with a 30-second observation rate were included in the 

analysis. Table [4-5] provides a summary of the processing strategy employed for these networks 

(Nykiel et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

Table 4-5 the processing strategy employed for the three networks  

(ASG-EUPOS, TPI NETpro, and VRSNet.pl) 

Data  
30-second daily RINEX from 278 GNSS 

stations 

Satellite systems  GPS + GLONASS 

Method  PPP 

Software  Bernese GNSS Software ver. 5.2 

Position estimation interval  30-second 

A priori ZHD  VMF1 

Wet tropospheric delays  
Estimated with 5-minute interval using 

VMF1 wet 

mapping function Relative constraint: 2 mm 

Tropospheric gradients 

Estimated with 15-minute interval using 

Chen & Herring 

mapping function. Relative constraint: 0.2 

mm 

Cut-off angle  5◦ 

Ionospheric delay  

1st order delay eliminated using ionospheric 

free linear combination; High order (2nd and 

3rd) effects also included. 

Orbits and clocks  
CODE Final 5-min. ephemerides and 30-sec. 

clocks 

Reference frame  GS14 

Antenna models  Type mean (IGS14) 
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4.2.2 Data Processing 
In this section, we will apply a similar procedure to that used in case study 1, but with necessary 

adjustments to accommodate the specific characteristics of the available data. These adjustments 

primarily concern data management, where we will ensure the compatibility of the data with our 

system's input requirements. Additionally, we will modify the parameters for stochastic prediction. 

Furthermore, in the data validation stage, we will not solely rely on Leave-One-Out Cross-Validation 

(LOOCV) but also incorporate the use of another network for cross-validation. This approach allows 

us to compare and validate the results obtained from our system by leveraging data from a separate 

network. The steps involved in this section are illustrated in Figure [4.32]. 

 

Figure 4.32 Flowchart depicting the data processing methodology for turbulence stochastic 

prediction using ordinary kriging in case study2 
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4.2.2.1 Data Management 
For each network, we have ZTD (Zenith Total Delay) observations for each station during the specified 

period. Additionally, we possess the positional information for each station in terms of Earth-Centered, 

Earth-Fixed (ECEF) coordinates (X, Y, Z). In order to align these coordinates with the local projected 

coordinate system applicable to Poland, namely ETRF2000-PL / CS92, a series of transformations are 

required. 

Note: The computations in this case study are exclusively based on data from the ASG-EUPOS network. 

To achieve this transformation, we initially convert the ECEF coordinates into geodetic coordinates 

(φ, λ, Η).  ubsequently, to obtain the desired Orthometric height (h) from the ellipsoidal height (H), we 

employ the official Earth Gravitational Model (EGM2008). The conversion is facilitated by employing 

Equation [4-7].  

 

 

where: 

h: is the orthometric height.  

H: is the ellipsoidal height. 

N: the Geoid undulation.  

 

 

 

 

 

 

 

 

ℎ = 𝐻 − 𝑁  4-7 

 

Figure 4.33 The difference between the orthometric height and the ellipsoidal height. 
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Once we have obtained the coordinates in the local projected coordinate system (E, N, h), our 

procedure commences by examining the missing epochs on August 11th, 2017, spanning from 00:00:12 

to 23:59:12 and assigning “ a ” to them following the methodology depicted in Figure [4.8]. 

Subsequently, we assess the temporal coverage for all stations, as depicted in Figure [4.34]. 

The next step involves examining the relationship between the elevation of each station and the mean 

Zenith Total Delay (ZTD) at that station, as depicted in Figure [4.35]. This analysis helps us understand 

the influence of elevation on ZTD values. Subsequently, we construct the least square system and 

estimate the turbulence delay at each epoch for all stations in the ASG-EUPOS network. 

 

 

 

 

 

 

 

 

 

 

Figure 4.34 The Temporal coverage for each station at ASG-EUPOS network through the 

period on August 11th, 2017, spanning from 00:00:12 to 23:59:12 
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Figure 4.35 ZTD vs Elevation 

 

 

 

 

 

 

Figure 4.36 The impact of elevation on the observed Zenit Total Delay (ZTD) by examining 

three distinct GNSS stations: NWT11 with a maximum elevation of  613.96 m, WLAD1 

representing the lowest elevation station of 5.58 m, and ZYWI1  station characterized by an 

average elevation of 370.91 m 
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4.2.2.2 Variogram Calculation 
In this section, we initiate the stochastic prediction process by constructing variogram clouds with a 

temporal resolution of 1 hour, following Equation [3-32] as illustrated in Figure [4.37]. The next step 

involves calculating the experimental variogram, where we determine the lag distance for applying the 

classic estimator defined in Equation [3-33]. Based on the minimum distance of 12 km between any 

pair, we specify the lag distance to be 20 km, as depicted in Figure [4.38]. 

 

Figure 4.37 Variogram cloud depicting dissimilarities during a half-hour period at 00:29:42 

and a one-hour period at 00:59:42 on August 11th, 2017 
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Figure 4.38 Experimental Variogram for August 11th, 2019 at three epochs (00:59:42, 

08:59:42, and 18:59:42). The numbers above each point indicate the count of dissimilarities 

contributing to the average computation within each interval 
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The final step in the stochastic prediction procedure entails fitting either the exponential model or the 

power model to introduce the theoretical variogram. This is demonstrated in Figure [3.39]. and [3.40]. 

 

Figure 4.39 Theoretical variogram using Power model for  August 11th, 2019 at three epochs 

(00:59:42, 08:59:42, and 18:59:42) 
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Figure 4.40 Theoretical variogram using Exponential model for  August 11th, 2019 at three 

epochs (00:59:42, 08:59:42, and 18:59:42) 
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4.2.2.3 Kriging Interpolation 
By adhering to the procedures outlined in section (4.1.3.3), the first step is to extract a uniform grid 

of the study area. This was achieved by extracting the grid from the Digital Elevation Model (DEM), 

as depicted in Figure [4.41]. 

Subsequently, by following the flowchart presented in Figure [4.25] and implementing the ordinary 

kriging system described in Equation [3.51], a series of turbulence prediction maps and their 

corresponding estimation error maps can be generated for any desired epoch. These maps are illustrated 

in Figures [4.42], [4.43], and [4.44]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.41 The Study area grid that was projected in ETRF2000-PL / CS92 projection 

coordinate reference system  
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Figure 4.42 Trbulence prediction map and the estimation error contour map  

for August 11th , 2019 at 00:59:42 
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Figure 4.43 Trbulence prediction map and the estimation error contour map  

for August 11th, 2019 at 08:59:42 
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Figure 4.44 Trbulence prediction map and the estimation error contour map  

for August 11th, 2019 at 16:59:42 
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4.2.2.4 Data Validation  
In this case study, we employed two approaches for cross-validation. The first approach, similar to case 

study 1, involved leaving one station out of the analysis and applying the Leave-One-Out Cross-

Validation (LOOCV) technique using the network stations themselves. In the second approach, we 

utilized one network for the primary prediction and one of the other two networks for cross-validation 

purposes. 

A. Leave-One-Out Cross Validation 
In this study, LOOCV was employed to assess the prediction performance for all epochs on August 

11th, 2017, ranging from 00:00:12 to 23:59:12, with a temporal resolution of 1 hour. The analysis 

utilized a total of 100 stations associated with the ASG-EUPOS network. 

Subsequently, the discrepancy was calculated between the turbulence predicted using LOOCV and 

the turbulence delay obtained by removing the stratified component from the Zenith Total Delay (ZTD) 

observations. To evaluate the accuracy of the predictions, statistical analysis was conducted, 

encompassing the estimation of bias, standard deviation (STD), and root mean square error (RMSE) for 

this discrepancy. These statistical measures were computed for all epochs and at the individual station 

level, providing a comprehensive understanding of spatial and temporal prediction accuracy. 

 

Figure 4.45 The comparison between the mean, standard deviation (STD), and root-mean-

square error (RMSE) of the difference between the estimated turbulence obtained from LOOCV 

and the observed turbulence for each epoch. Additionally, it displays the mean, STD, and RMSE 

of the observed turbulence for each epoch.  
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Figure 4.46 Annual mean bias for ASG-EUPOS network 

 

 

 

 

 

 

 

Figure 4.47 Annual mean RMSE  for ASG-EUPOS network 
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B. Cross-validation using another network 
The validation of the ASG-EUPOS network was conducted using the VRSNet.pl network. The 

validation process involved removing the stratified component from the Zenith Total Delay (ZTD) 

observations at each epoch for all stations in both networks. Subsequently, the stochastic prediction 

steps described in section (4.2.2.2) were performed, with the difference being the use of the ordinary 

kriging system to predict at each station in the VRSNet.pl network instead of a uniform grid. 

After obtaining the predicted turbulence values at each station in the VRSNet.pl network, a statistical 

analysis was conducted to assess the prediction accuracy. This analysis involved estimating the bias, 

standard deviation (STD), and root mean square error (RMSE) of the difference between the predicted 

turbulence values and the turbulence generated from removing the stratified component from the ZTD 

observations. 

 

 

 

 

 

  

 

Figure 4.48 The comparison between the mean, standard deviation (STD), and root-mean-

square error (RMSE) of the difference between the estimated turbulence obtained from LOOCV 

and the observed turbulence for each epoch. Additionally, it displays the mean, STD, and RMSE 

of the observed turbulence for each epoch for VRSNet.pl network 
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Figure 4.50 The mean daily Bias for VRSNet.pl network 

 

 

 

 

 

 

Figure 4.49 The mean daily RMSE for VRSNet.pl network 
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The comprehensive statistical evaluation of the ASG-EUPOS network after performing LOOCV and 

cross-validation using VRSNet.pl network, covering the period on August 11th, 2017 from 00:00:12 to 

23:59:12, is summarized as follows: 

 

From the validation results obtained through LOOCV and cross-validation using VRSNet.pl, a 

notable increase in RMSE and STD values can be observed starting from 14:00 UTC, particularly 

evident in Figure [4.45] and [4.48]. This significant change can be attributed to a severe storm event 

that occurred on August 11th, 2017. Subsequent to 14:00 UTC, convective cells re-emerged, with 

additional cells developing and merging overtime under the findings of (Nykiel et al., 2019). These 

results demonstrate the capability of our estimation method to detect and track the evolution of such 

events. 

Analyzing the mean bias and RMSE for each station, as depicted in Figures [4.46], [4.47], [4.49], and 

[4.50], reveals that the southeast station exhibited higher RMSE and bias values. This can be attributed 

to the mountainous terrain in the southern region of Poland where the station is located, which 

introduces atmospheric instability affecting both the observed zenith total delay (ZTD) and our 

prediction accuracy. 

Moreover, a spatial trend is observed as values progressively increase towards the north. This trend 

is a consequence of the storm's movement, initially heading northeast and subsequently shifting 

northward around 18:00 UTC (Nykiel et al., 2019). 

These findings highlight the ability of our estimation method to effectively capture and track the 

development of severe weather events while accounting for regional atmospheric variations. 

 

 

 

 

 

 

 

 

 

 

 

Table 4-6 The statistics for ASG-EUPOS GNSS network on August 11th, 2017 from 00:00:12 to 

23:59:12 using LOOCV and cross-validation using VRSNet.pl network 

 LOOCRV 
Cross-validation 

VRSNet.pl  

Annual mean of Bias(cm) 0.0116 -0.1233 

Annual mean of STD(cm) 1.2102 0.7447 

Annual mean of RMSE(cm) 1.2043 0.7659 
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Chapter 5 

5. Conclusion 
 

In this thesis, we have presented a novel approach for generating high-resolution water vapor maps 

using GNSS ZTDs. By applying the Stochastic prediction approach to the residuals obtained after 

removing the stratified component from ZTD observations, we were able to capture the correlation 

among our observations through variograms, assuming homogeneity and isotropy of the water vapor 

field. However, the turbulent nature of water vapor posed significant challenges in determining the 

appropriate lag distance for variograms and selecting the fitting model, highlighting the limitations of 

automatic implementation. 

To generate our maps, we employed ordinary kriging interpolation and validated our predictions using 

LOOCV and cross-validation with the assistance of another network. Two case studies were conducted 

under different climatic conditions: one in northern Italy using the SPIN3 network for long-period 

observations, and the other in Poland during a severe storm. The estimation quality, as measured by 

LOOCV, was approximately 1 cm in both cases, demonstrating the effectiveness of our approach. 

From our analyses, we observed that the accuracy of our predictions is influenced by the density and 

placement of GNSS stations. In mountainous regions, the accuracy tends to be lower compared to flat 

areas, likely due to fewer stations in proximity. Similarly, stations located near the study area boundaries 

exhibit reduced accuracy due to a limited number of nearby stations. Additionally, we identified the 

increased instability of water vapor during the summer season and the capability of our model to 

accurately capture severe weather events. These findings underscore the relevance of GNSS in 

meteorology, as it is the only technique capable of providing tropospheric data irrespective of weather 

conditions. 

For future work, we propose the exploration of anisotropic variogram estimation, incorporating not 

only the separation distance between station pairs but also their orientation. Additionally, given that the 

effective weights in ordinary kriging are concentrated in the closest 10 stations to the estimation point, 

local kriging using only nearby stations could be considered. Furthermore, it would be valuable to 

conduct further validation by comparing our maps with Interferometric Synthetic Aperture Radar 

(InSAR) and exploring other techniques. 

In conclusion, our thesis has introduced a robust methodology for generating high-resolution water 

vapor maps from GNSS ZTDs. The results obtained from the case studies have demonstrated the 

effectiveness of our approach, while also revealing the influence of station density and placement, 

seasonal variations, and severe weather conditions on the accuracy of predictions. The proposed future 

directions aim to enhance our methodology and expand the validation process, paving the way for 

advancements in water vapor mapping and its applications in various fields. 
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