
FraudBench: A Benchmarking
Software for Fraud Detection
Systems

Tesi di Laurea Magistrale in
Computer Science Engineering - Ingegneria
Informatica

Author: Luca Maniscalchi

Student ID: 968628
Advisor: Prof. Michele Carminati
Co-advisors: Tommaso Paladini
Academic Year: 2022-23

i

Abstract

Banking frauds pose significant risks to customers and financial institutions, making the
development of effective Fraud Detection Systems crucial in safeguarding assets and main-
taining trust in the banking industry. The advent of Machine Learning has revolutionised
this field by providing powerful tools. By leveraging a sample of labelled transactions,
classification algorithms can be trained to process a massive amount of transactions in
real time and effectively identify fraudulent activities. Despite the extensive research in
this domain, a meaningful comparison between different studies remains challenging. This
is primarily due to the absence of benchmarking software that standardises experimental
procedures and ensures comparable results.
In this thesis, we introduce FraudBench, a flexible framework designed to streamline the
development and evaluation of Fraud Detection Systems. This open-source framework
provides a guideline for creating detection systems, supporting the development process
in all its phases, from data collection to performance evaluation. Through its modu-
lar architecture, FraudBench facilitates the incorporation of different algorithms, data
sources, preprocessing procedures and model selection strategies, thus enabling a more
systematic comparison and validation of different fraud detection techniques. We assess
our methodology by examining the effectiveness of six commonly used Machine Learning
algorithms in the field of fraud detection, as well as two ensemble methods. We simulate
three distinct attack scenarios where the attacker injects fraudulent transactions following
different policies. Our findings reveal that one of the detection systems we tested based
on the Support Vector Machine outperforms the others in two out of three scenarios over
the long term. Despite its simplicity, this Fraud Detection System yields an estimated
overall loss of 81% lower than the mean loss value on average.
Nonetheless, carefully selecting an optimised ensemble technique can achieve even better
results. Specifically, the ensemble model that employs the Multiplicative Weight Update
approach is particularly effective. Thanks to its dynamic online learning strategy that
consistently picks the most reliable algorithm, this model leads to an estimated loss that
is, on average, 83% lower than the mean loss value.

ii | Abstract

Keywords: fraud detection, machine learning, detection framework, benchmark, online
banking

iii

Abstract in lingua italiana

Le frodi bancarie comportano rischi significativi sia per i clienti che per le istituzioni
finanziarie, rendendo lo sviluppo di efficaci sistemi di rilevamento cruciale per la sal-
vaguardia dei beni e il mantenimento della fiducia nel settore bancario. L’avvento del
Machine Learning ha rivoluzionato questo campo, fornendo strumenti molto potenti.
Sfruttando un campione di transazioni etichettate, gli algoritmi di classificazione pos-
sono essere addestrati per elaborare un’enorme quantità di transazioni in tempo reale e
identificare efficacemente le attività fraudolente. Nonostante l’ampia ricerca condotta in
questo campo, il confronto significativo tra i diversi studi rimane difficile. Ciò è dovuto
principalmente all’assenza di un software di benchmarking che standardizzi le procedure
sperimentali e garantisca risultati comparabili.
In questa tesi presentiamo FraudBench, un framework flessibile progettato per semplifi-
care lo sviluppo e la valutazione dei sistemi di rilevamento delle frodi. Questo framework
open-source fornisce una linea guida per la creazione di sistemi di rilevamento, support-
ando il processo di sviluppo in tutte le sue fasi, dalla raccolta dei dati alla valutazione delle
prestazioni. Grazie alla sua architettura modulare, FraudBench facilita l’incorporazione
di diversi algoritmi, fonti di dati, procedure di pre-elaborazione e strategie di selezione
dei modelli, consentendo così un confronto e una convalida di diverse tecniche di rileva-
mento più sistematici. Valutiamo il nostro approccio esaminando l’efficacia di sei algo-
ritmi di Machine Learning comunemente utilizzati nel campo del rilevamento delle frodi,
nonché di due metodi di ensemble. Abbiamo simulato tre distinti scenari di attacco in
cui l’aggressore inietta transazioni fraudolente seguendo diverse politiche. I nostri risul-
tati rivelano che uno tra sistemi di rilevamento che abbiamo testato basato su Support
Vector Machine, nel lungo termine, supera gli altri in due scenari su tre. Nonostante la
sua semplicità, questo modello produce una perdita complessiva stimata che è, in media,
dell’81% inferiore al valore medio delle perdite. Tuttavia, è possibile ottenere risultati
ancora migliori utilizzando una tecnica di ensemble. In particolare, il modello che imp-
iega l’approccio di ensemble denominato Multiplicative Weight Update è particolarmente
efficace. Grazie alla sua strategia di apprendimento dinamico che, nel corso del tempo,
seleziona l’algoritmo più affidabile, questo modello porta ad una perdita complessiva sti-

mata che è, in media, dell’83% inferiore al valore medio delle perdite.

Parole chiave: rilevamento frodi, sistema di rilevamento, transazioni bancarie online,
machine learing, benchmark

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1

2 Background and Motivation 7
2.1 Background . 7

2.1.1 Fraud Detection Challenges . 7
2.2 Machine Learning for Fraud Detection . 9

2.2.1 Supervised Systems . 9
2.2.2 Active Learning . 12
2.2.3 Ensemble Models . 13

2.3 Related Works . 16
2.4 Motivation . 18

2.4.1 Problem Statement . 19
2.4.2 Goals . 19

3 Threat Model 21
3.1 Attacker Capabilities . 21
3.2 Fraud Schemes . 22

4 Dataset Analysis 23
4.1 Dataset Extraction . 23
4.2 Dataset Description . 24

5 Approach 29
5.1 Overview . 29

vi | Contents

5.2 Dataset Preprocessor Module . 30
5.2.1 Data Cleaning . 30
5.2.2 Dataset Augmentation . 30

5.2.2.1 Victim Selection . 31
5.2.2.2 Synthetic Frauds Generator 31

5.2.3 Transaction Aggregation . 34
5.2.4 Features Scaling . 36

5.3 Fraud Detection System Module . 37
5.3.1 Features Filtering . 37
5.3.2 Model Selection . 38

5.4 Training and Evaluation Module . 41

6 Implementation Details 43
6.1 Framework Architecture . 43

6.1.1 Configuration Module . 44
6.1.2 Dataset Manager Module . 45
6.1.3 Preprocessor Module . 45
6.1.4 Evaluation Module . 46
6.1.5 Fraud Detection System Module . 47
6.1.6 Experiment Module . 48
6.1.7 Utils Module . 49
6.1.8 Logs Module . 49

6.2 Execution Environment . 50

7 Experimental Validation 53
7.1 Evaluation Metric . 53
7.2 Goals . 53
7.3 Experimental Settings . 54
7.4 Experimental Datasets . 55
7.5 Feature Engineering . 56
7.6 Models Tuning and Performance Evaluation 57
7.7 Experiments . 59

7.7.1 Attack 1 . 59
7.7.2 Attack 2 . 64
7.7.3 Attack 3 . 68

8 Limitations and Future Works 73
8.1 Limitations . 73

8.2 Future Works . 74

9 Conclusions 75

Bibliography 77

A Appendix A: Adversarial Neural Network Performance Evaluation 85
A.1 Adversarial Machine Learning . 85
A.2 Application of Adversarial Machine Learning to Fraud Detection 86
A.3 Experimental Results . 87

B Appendix B: Support Tables 95

C Appendix C: ML Performance Metrics 117

List of Figures 121

List of Tables 123

1

1| Introduction

In today’s rapidly advancing digital age, online banking has become an integral part of
our lives. The convenience and accessibility it offers have transformed the way we manage
our finances. With a few clicks, individuals can effortlessly transfer funds and conduct
transactions from the comfort of their homes or on the go. However, as the online banking
landscape continues to evolve, there is a parallel increase in potential threats that pose
risks to users and their sensitive financial information [14]. The consequences of fraudu-
lent activities can be severe, affecting both individuals and financial institutions. Besides
the financial loss on the customers’ side, online banking frauds also impact financial in-
stitutions, which bear the burden of regulatory penalties [4], damaged reputation [3], and
the loss of customer confidence. Therefore, it is necessary to develop robust and effective
detection systems that allow financial institutions to safeguard their customers, protect
their assets, and foster a secure and trustworthy digital banking ecosystem.
Every day, millions of transactions are performed [58]. A manual inspection by human
experts may require an unreasonable amount of time and resources; therefore, to address
this challenge effectively, cybersecurity researchers and experts have developed automated
detection systems that possess the capability to process a huge number of transactions
in real time. By leveraging Machine Learning [1], these Fraud Detection Systems (FDSs)
can detect and prevent fraudulent transactions more efficiently and at a greater scale
compared to human review.
Previous works have explored the application of Machine Learning techniques to the
fraud detection domain. To mention a few, Dhankhad et al. [27] apply ten different su-
pervised Machine Learning models to detect credit card fraudulent transactions using a
publicly available dataset. Furthermore, they combine these algorithms through ensemble
learning to create a stacking classifier. The authors address the challenge of working on
an unbalanced dataset by under-sampling the majority class. Their evaluation reveals
that, according to the F1-score, the top-performing models are Random Forest (RF), the
stacking classifier, and the Extreme Gradient Boosting (XGB) classifier. Similarly, D.
Varmedja et al. [64] discuss the performance of four Machine Learning classifiers based
on Logistic Regression, Naive Bayes, Random Forest and Multilayer Perceptron. Their

2 1| Introduction

main goal is to show if simple Machine Learning algorithms with appropriate preprocess-
ing can achieve the same performances of more complex models. They evaluate models
in terms of precision, recall, and accuracy on a credit card fraud detection dataset avail-
able on the Kaggle platform. Differently from the previous work, the authors employ
an oversampling technique to address the high unbalance of the dataset. Additionally,
they reduced the feature set, selecting only the most relevant ones. Their comparison
shows that the algorithm that scored the highest values in each evaluation metric used is
Random Forest. Roy et al. [56], on the other hand, evaluate the efficacy of a subsection
of Deep Learning topologies based on Artificial Neural Networks (ANNs), on a dataset
of nearly 80 million credit card transactions. They have the opportunity to work on a
real-world dataset provided by a financial institution according to a confidential disclosure
agreement. In their work, in addition to data cleaning and other data preparation steps,
they overcome class imbalance and scalability problems by using undersampling. The
experimental evaluation shows that the size of the network is the primary driver of model
performance, as larger networks tend to perform better than smaller networks. Despite
the numerous challenges and ongoing developments in the fraud detection domain, the
results proposed by these works are hard to compare. In particular, the experiments pro-
posed by the authors achieve different goals, models are tested on different data sets, and
the experimental source code is often not shared. A common experimental ground can
be provided by benchmarking tools, which guide the construction, evaluation and com-
parison of experimental approaches. Related solutions have been proposed in the area of
Adversarial Machine Learning (AML) [49, 53], but, to the best of our knowledge, none
have been proposed in this search area.
In this thesis, we introduce FraudBench, a versatile and open-source framework tailored
for designing and benchmarking FDSs. Our tool supports the development process of
FDSs at all stages. With FraudBench, researchers can preprocess raw data to make them
suitable for Machine Learning algorithms through tasks like data extraction, data aug-
mentation, transaction aggregation, and attribute scaling. The framework also enables
feature engineering and models’ hyperparameter tuning. Within FraudBench, we already
provide the implementation six algorithms that are commonly used in the fraud detection
literature: Neural Network (NN) [15], Extreme Gradient Boosting (XGB) [22], Logistic
Regression (LR) [15], Random Forest (RF) [17], Support Vector Machine (SVM) [15], and
a variant of the Active Learning systems [28], which we refer to as Active Learning (AL).
Additionally, we also include two ensemble models based on two different approaches: Ma-
jority Voting [57] (MV) and Multiplicative Weight Update (MWU) [8]. FraudBench allows
researchers to evaluate the performance of the implemented detection systems against dif-
ferent kinds of synthetically generated fraudulent transactions. In particular, we simulate

1| Introduction 3

two distinct real-world fraud schemes [19]: Information Stealing and Transaction Hijack-
ing. Information Stealing refers to the unauthorised access and acquisition of confidential
information, such as usernames and passwords for the online banking personal area, to
perform transactions on behalf of the victims. On the other hand, with Transaction Hi-
jacking, we refer to an attacker who intercepts or alters a user’s transaction details in
real time without the user’s knowledge. These two fraud schemes define the technical
means adopted by the attacker. We also categorise the attacker’s behaviour employing
three “fraud’s profiles”: Low, Medium, and High. This way, we can identify attackers
implementing more or less aggressive strategies depending on the monetary value of the
fraudulent transaction submitted on behalf of the user.
In our experimental setup, we use a real-world dataset provided by an Italian banking
group, spanning 18 weeks from October 2014 to February 2015. We reserve the initial
six weeks of transactions for the training and the subsequent twelve weeks as a test set.
Starting from the training dataset, we create seven unique training sets, one for each
combination of fraud schemes (Information Stealing, Transaction Hijacking) and profiles
(Low, Medium, and High), plus an additional one that includes all types of fraud. These
sets are then aggregated and scaled to make them compatible with Machine Learning al-
gorithms. For each combination of base FDS (LR, NN, XGB, RF, SVM, and AL) and the
aforementioned training sets, we perform feature selection and hyperparameters tuning,
creating 42 different FDSs in total. Finally, upon these FDSs, we build two FDSs based on
MV and MWU ensemble learning techniques. In our experimental validation, we simulate
three attack scenarios where an adaptive attacker targets a financial institution employing
such FDSs, all built using FraudBench, by injecting different types of fraudulent trans-
actions (i.e., combinations of fraud schemes and profile) on a weekly basis according to
different policies. We estimate economic losses using a custom loss function that places
a different monetary value on false negatives and false positives. Specifically, each false
positive has a cost to the institution, which has to manually analyse the transaction. At
the same time, we estimate the financial impact of false negatives equivalent to the entire
transaction amount. In this second case, we assume that the institution has to refund the
victim. The first scenario models a situation in which the attacker follows a random pol-
icy, so fraudulent transactions are submitted on behalf of the victims by choosing schemes
and profiles randomly. In the second scenario, instead, we recreate a context in which
the attacker consistently targets the best-performing FDS of the financial institution and
submits frauds that compromise its performance as much as possible. In the third and
final scenario, we simulate an attacker that cyclically introduces each type of fraudulent
transaction.
Interestingly, in the second attack scenario, where systems faced a higher stress level, the

4 1| Introduction

detection model based on an SVM and trained on a dataset comprising all fraud types
outperformed its counterparts. Remarkably, this SVM-based system incurred fewer mon-
etary losses compared to systems built on more sophisticated algorithms like RF, AL,
and NN, reducing losses by 28%, 60%, and 24%, respectively. Additionally, among the
detection systems with the lowest losses, we find the one based on LR and trained on the
set comprising all the combinations of fraud schemes and profiles. These findings suggest
that developing more complex models may not yield better performance. Our results
show that their efficacy varies significantly depending on the context. As expected, the
fraudulent transactions causing the most significant increase in loss for most models are
those categorised as High-profile, given their very high amounts. Although frauds with
lower amounts are more difficult to detect because they blend better, they do not have a
significant economic impact when compared to those belonging to the High profile. Our
results also show that relying on MV to determine transaction labels is an ineffective
solution compared to a more informed strategy like the one employed by MWU and can
potentially lead to significant financial losses. In the most adverse scenario, illustrated by
the second attack, the financial loss incurred through the MV ensemble approach (about
20.5 million Euros) exceeds the average losses of the individual detection systems and is
around four times higher than the one achieved by the MWU ensemble (approximately
5.1 million Euros).
The main contribution of this thesis is the implementation of FraudBench, a modular and
highly configurable framework specifically designed for benchmarking Machine Learning
based Fraud Detection Systems.
The thesis is organised as follows: in Chapter 2, we provide the fundamental defini-
tions and concepts essential for comprehending this research. We present the problem
statement we aim to address along with the challenges encountered in our pursuit; in
Chapter 3, we focus on the formalisation of our threat model, we provide a detailed ex-
planation of the attackers’ objectives and their capabilities; in Chapter 4 we analyse the
relevant characteristics of the dataset used in this work. Furthermore, we present how
the contained information is enhanced by working on the features; in Chapter 5, we delve
into a theoretical exploration of the adopted approach, showcasing the chosen models and
the methodologies applied. This includes a range of techniques, from dataset augmenta-
tion to hyperparameter tuning; in Chapter 6 we provide an in-depth exploration of the
framework implementation details; in Chapter 7 we describe the goals and details of the
experiments that we have performed to validate our analysis, we interpret the final results
according to specific metrics and considerations; in Chapter 8 we discuss the limitations of
our work, outlining potential areas of focus for future research endeavors; in Chapter 9 we
summarize the findings of our work and present the conclusions; Appendix A is dedicated

1| Introduction 5

to the experimental evaluation of the approach against a neural network equipped with
an adversarial defense mechanism; in Appendix B we provide tables containing detailed
results of some discussed procedures to support the conclusions and findings presented in
the main body of the document; in Appendix C we provide the formal definitions of the
standard metrics we use in this work.

7

2| Background and Motivation

2.1. Background

Online banking has revolutionised the way we manage our finances. With digital technol-
ogy’s advent, carrying out transactions, accessing account information, and performing
financial activities have attained unprecedented levels of convenience and accessibility.
However, this convenience also brings forth new challenges and risks that financial insti-
tutions and users must navigate [14]. Cybercriminals continuously devise sophisticated
techniques to gain unauthorised access to sensitive data, perpetrating fraud and financial
crimes. Financial institutions have responded to these challenges by implementing robust
security measures, among which Fraud Detection Systems (FDSs). Advanced authenti-
cation protocols, encryption mechanisms, and real-time monitoring systems are deployed
to safeguard user accounts and transactions [6]. Despite these proactive measures, the
impact of fraud on the global economy remains significant. According to SEON, in 2022,
the total value of bank fraud in the United States reached approximately $1.67 billion
[31]. The consequences extend beyond financial losses, encompassing reputational dam-
age [30], legal ramifications [4], and erosion of trust in the banking sector. As a result,
continuous research and development efforts are mandatory to enhance fraud detection
and prevention strategies. By gaining insights into the dynamics of online banking fraud,
financial institutions can fortify their defences, develop effective risk mitigation strategies,
and ensure the security and trustworthiness of online banking services for users worldwide.

2.1.1. Fraud Detection Challenges

Fraud detection in the context of online banking poses several challenges that we need to
overcome. These challenges include:

1. Large volume of transactions to process. Online banking transactions occur
at a massive scale, with millions of transactions happening daily [2]. Analysing and
processing this enormous volume of data in real time becomes a daunting task for
banks. Efficient algorithms and scalable infrastructure are crucial to handle this

8 2| Background and Motivation

high transaction volume effectively.

2. Asymmetrical miss-classification cost. As in many other classification problems
where the targets to detect are rare, in fraud detection, the cost of a false negative
(misclassifying a fraudulent transaction as legitimate) can be significantly higher
than the cost of a false positive (incorrectly flagging a legitimate transaction as
fraudulent) [44]. Financial institutions need to strike a balance between minimising
false negatives to prevent financial losses and managing false positives to avoid
unnecessary disruptions to legitimate transactions.

3. Imbalanced dataset. Fraudulent transactions are rare compared to legitimate
transactions, leading to imbalanced datasets where the majority class dominates.
Typically, fraud cases represent a very small proportion of the entire dataset, rang-
ing from as low as 0.1% to 1% [19]. This imbalance can hinder the learning process
of Machine Learning models, as they may become biased towards the majority class
and struggle to detect instances of fraud accurately [39]. Techniques such as over-
sampling, undersampling, or using specialised algorithms designed for imbalanced
data are necessary to address this challenge. In short, those techniques help mitigate
the impact of imbalanced data by either artificially balancing the class distribution
or modifying the learning process to account for the imbalance.

4. Class overlapping. Cybercriminals constantly adapt their techniques to evade
detection. Frauds are harder to spot as attackers are becoming more proficient in
blending their fraudulent activities within the vast pool of legitimate user transac-
tions. The study conducted by Prati et al. [54] demonstrated that the impact of
class overlapping on model performance is even more significant compared to class
imbalance. This trend highlights the need for advanced detection techniques to
uncover subtle anomalies effectively.

5. Lack of data. Obtaining labelled fraud data for training and evaluation purposes
can be challenging. Banks are unwilling to share their dataset for privacy and confi-
dentiality reasons, limiting access to real-world fraud examples [9]. Addressing this
challenge requires creative approaches, such as synthetic data generation, collabora-
tion with industry partners, or leveraging external data sources to supplement the
limited fraud data.

Overcoming these challenges necessitates continuous research and innovation in fraud
detection methodologies.

2| Background and Motivation 9

2.2. Machine Learning for Fraud Detection

At the state of the art, Fraud Detection Systems use Machine Learning to tackle the chal-
lenges mentioned earlier effectively. Machine Learning is a branch of artificial intelligence
that focuses on creating algorithms and models that can learn from data and improve
over time without being explicitly programmed. The primary advantage of incorporat-
ing these algorithms into FDSs is the automation of the detection process. Depending
on the specific problem settings, Machine Learning algorithms are usually classified into
three macro categories: supervised, unsupervised, and reinforcement learning. Supervised
learning involves training the algorithm using labelled data, where the input and output
pairs are provided. On the other hand, unsupervised learning deals with unlabeled data
and aims to find patterns or structures within the data. Reinforcement learning focuses on
training algorithms to make decisions based on feedback from their environment, seeking
to maximise a reward signal over time. In addition to these three broad categories, we can
also find active learning, a combination of supervised and unsupervised learning where
algorithms are trained using labelled and unlabelled data. Lastly, it is important to note
that models belonging to different categories can cooperate and complement one another
through Ensemble models. The latter involve combining predictions or knowledge from
multiple models to improve overall performance, robustness, and generalisation. In this
thesis, we focus on supervised learning, active learning, and ensemble learning because
models belonging to these categories are the most frequently employed in fraud detection
research.

2.2.1. Supervised Systems

Supervised learning involves training models on a labelled dataset, where each training
example has an associated label representing the desired output. The model learns to
make predictions or classifications on new data based on what it has learned from training
examples. Popular supervised learning algorithms include Logistic Regression, Support
Vector Machines, and Neural Networks:

• Logistic Regression (LR) [24]: is a simple Machine Learning technique for binary
classification. By applying a logistic function (see Equation (2.1)) to the linear
combination of input features, it estimates the probability of an observed sample
belonging to a particular class. Logistic Regression, in essence, provides probabilities
ranging from 0 to 1 rather than assigning definite class labels. A threshold or cut-off
value (typically set to 0.5) is employed to obtain the actual class labels. Logistic
regression is easily interpretable and computationally efficient, making it suitable

10 2| Background and Motivation

for small and large datasets. However, its simplicity hinders its ability to learn
complex relationships within data.

p(c|x) = 1

1 + exp−(wx)
(2.1)

where w is the weights vector and x the observed data sample

• Support Vector Machines (SVM) [23]: SVMs are non-probabilistic models used
for binary classification. They visualise training samples as points in space and aim
to find a hyperplane that separates the space into two regions (representing the two
classes) with the largest margin (i.e. the distance between the hyperplane and the
nearest points from either group is maximised).
Mathematically, any hyperplane can be represented as wx − b = 0, where w is
a weights vector and b is an arbitrary constant. The points lying on the margin
boundaries (illustrated as dashed lines in Figure 2.1) take the name of support
vectors. They are the most informative and influential in defining the decision
boundary position.

Figure 2.1: Example of decision boundary chosen by a trained SVM model

The assumption that two classes are linearly separable in the input space does not
always hold. However, by mapping input data to high-dimensional feature spaces,
SVMs can also handle complex decision boundaries and nonlinear relationships.
Nevertheless, SVM has a few disadvantages. Firstly, SVM models lack explain-
ability, making it challenging to interpret their decision-making process. Secondly,

2| Background and Motivation 11

finding the best parameters for SVM, in terms of time and memory, can be compu-
tationally expensive.

• Neural Networks (NN) [16]: Neural networks, often referred to as artificial neural
networks, are versatile and flexible models that consist of interconnected nodes,
or “neurons”, organised in layers. Figure 2.2 illustrates a basic Neural Network
configuration together with the structure of a single neuron. Layers can have varying
numbers of neurons, and each neuron can establish connections, either complete or
partial, with neurons from the previous and subsequent layers in the network’s
topology.

(a) Example of Neural Network topology (source: [45])

(b) A Neural Network neuron (source: [45])

Figure 2.2

Neural networks learn by adjusting the weights w and biases b of connections be-
tween neurons through a process called backpropagation. At each iteration of the
learning process, the neural network compares its prediction with the expected out-
put and back-propagates the error to update its weights using specific learning rules

12 2| Background and Motivation

and optimisation techniques. Through successive adjustments, the network gradu-
ally generates predictions that closely align with the expected outputs.
NN models can learn complex patterns and relationships, making them well-suited
for various tasks, including classification, regression, and even more advanced tasks
like image and text processing. These advantages come with the drawback of a com-
plex and difficult-to-interpret model that requires a substantial amount of resources
and necessitates a considerable time investment during the training phase.

2.2.2. Active Learning

Active Learning (AL) [28, 41, 65] is an algorithm organised in an “analyst-in-the-loop”
framework. It is a special case of Machine Learning in which the learning algorithm
can interactively query an analyst to label new data points with the desired outputs.
The system exploits the unsupervised model to perform anomaly detection, assigning an
anomaly score to each unlabeled data sample and proactively selects the subset of most
significant instances to be presented to a human analyst for manual investigation. As the
analyst reviews the presented instances, their feedback labels are collected and stored,
creating a growing labelled dataset that is subsequently used to train the supervised
model. Upon reaching full operational capacity, characterised by a sufficient volume of
data to train the supervised model, the final anomaly score for each new data sample is
the combination of the scores from both the unsupervised and supervised modules.
The active learning model’s power lies in its ability to operate in scenarios where historical
labeled data is unavailable, which is a challenging and common scenario. Additionally,
it can leverage human analysis’s valuable insights, continuously refining and adapting to
new patterns over time.

Figure 2.3: Active Learning Training Loop (source: [63])

2| Background and Motivation 13

2.2.3. Ensemble Models

Ensemble learning is an approach that aims to improve prediction accuracy by combining
multiple Machine Learning models in the prediction process, leveraging their individual
strengths. It exploits techniques such as majority voting, bagging, boosting, and stacking
to create ensembles of diverse models that collectively make more reliable predictions.
Some techniques may also include a dynamic approach where the model learns and adapts
in real time as new data becomes available (online learning).

• Majority Voting (MV) [57]: it involves aggregating the predictions of individ-
ual models, every learner makes individual predictions, and the candidate for final
prediction is the one which gets more than half of the total votes. Given a set of
binary values x1, x2, ..., xn, where each xi represents a binary vote (0 or 1), the ma-
jority voting function returns the majority value in the set. We can mathematically
represent it as:

MajorityVote(x1, x2, . . . , xn) =

 0, if
∑n

i=1 xi <
n
2
,

1, if
∑n

i=1 xi ≥ n
2
,

In statistical terms, the predicted target label of the ensemble is the mode of the
distribution of individually predicted labels. This approach can be effective in sce-
narios where each model has equal importance and contributes equally to the final
decision.

• Multiplicative Weight Update (MWU) [8]: is an online learning ensemble model
technique that dynamically adjusts the weights assigned to each underlying model
based on their performance. At the beginning of the algorithm, all models are
assigned equal weights, which can be represented as the vector w given by:

w =

[
1

n
,
1

n
, . . . ,

1

n

]
where n is the total number of models.
For each incoming data sample, the MWU outcome is determined by taking the
weighted sum of predictions from all models, denoted as [prediction1, . . . , predictionn]:

MWU_prediction =
n∑

i=1

wi · predictionsi

The key aspect of this ensemble method lies in the weights update step. After each

14 2| Background and Motivation

prediction, the MWU model adjusts the weights vector w to give more importance
to models that yield a lower loss. This is achieved through the following formula:

w
(t+1)
i = w

(t)
i · exp(−η ·m(t)

i)

where η represents the learning rate and m
(t)
i represents a cost vector computed

using the gradient of the loss.
Finally, to ensure that the weights sum up to 1 after the update, they are normalised
as follows:

w =
w∑
i wi

This adaptive approach enables the ensemble to consistently enhance its perfor-
mance by placing greater emphasis on the model that has successfully minimised
losses up to that point.

• Random Forest (RF) [17]: is an ensemble learning algorithm that combines mul-
tiple Decision Trees [55]. The latter construct models in the form of trees using
labeled data. Initially, all training samples reside in the root node of the tree. In
each iteration, the node is split into two child nodes based on a criterion, often
chosen to separate instances from different classes effectively. As the algorithm
progresses, nodes continue to be split until reaching a stopping condition.

Figure 2.4: Example of a Decision Tree model that classifies the risk of having a heart
attack (for illustrative purposes only; the shown data are not reliable)

When a node contains only one sample, it becomes a leaf node, marking the end of
further splitting. Figure 2.4 visually represents a Decision Tree. One notable benefit
of this approach is the possibility to examine and interpret each decision made by
the tree, branch by branch. This provides a more comprehensive understanding of
the reasoning behind the classification of data points into specific classes. However,

2| Background and Motivation 15

Decision Trees tend to overfit on the training data.
Random Forests addresses this overfitting by combining multiple trees through boot-
strapping, where each tree is trained on a random subset of the data with replace-
ment. This introduces variability and reduces the risk of overfitting to specific
patterns. Additionally, feature selection is randomised, with each tree considering
only a subset of features at each split, preventing over-reliance on any single fea-
ture. The final prediction in Random Forests is the result of combining predictions
from all trees, either through voting (for classification) or averaging (for regression).
This ensemble approach provides a regularisation effect, enhancing generalisation
to unseen data, but sacrifices some interpretability compared to individual Decision
Trees.

• Extreme Gradient Boosting (XGB) [22]: before explaining how an XGB model
works in detail, it is essential to introduce the concepts of boosting and gradient
boosting.
Boosting is a Machine Learning technique that combines weak learners sequentially
to create a robust predictive model. It works by training a series of models where
each new model focuses on correcting the errors of the previous ones. During each
iteration, misclassified data points are given more weight, making subsequent models
focus on them, while correctly predicted data points receive less weight.
Gradient boosting is an advancement of traditional boosting. It not only combines
weak learners but also minimises a differentiable loss function using gradient descent
as the optimisation method.
XGB is a powerful gradient boosting algorithm that employs an ensemble of decision
trees for predictive modelling. It optimises an objective function composed of two
parts: a loss term (L(θ)) and a regularisation term (Ω(θ)). The loss term quantifies
how well the model predicts the training data, often using mean squared error as
a common choice. The regularisation term controls model complexity and prevents
overfitting. Figure 2.5 visually shows how the objective function is optimised.

16 2| Background and Motivation

Figure 2.5: Visualization of a step function fitting process (toy example)

XGB offers several advantages, including effective regularisation techniques, flex-
ibility in objective functions and evaluation metrics, feature importance insights,
handling of missing values, and support for parallel processing. However, it can
be computationally intensive, particularly when dealing with large datasets. Fur-
thermore, it has several hyperparameters that need to be tuned to achieve optimal
performance, and when compared with simpler models, it may result in less inter-
pretability.

An essential difference between Majority Voting and Multiplicative Weight Update, on
the one hand, and Random Forests and XGBoost, on the other, lies in the process of
creating basic models within their respective ensembles. MV and MWU have no separate
training phase; they combine predictions from pre-existing, individually trained models
to make their final forecast or classification. On the other hand, Random Forests and
XGBoost incorporate a distinct training phase to construct and refine their basic mod-
els. These algorithms iteratively create and optimise models as an integral part of the
ensemble-building process rather than relying on pre-trained models.

In the upcoming chapters, we use the term “ensemble” exclusively for MV and MWU.
Though technically ensembles, we discuss RF and XGB as individual models for simplicity.

2.3. Related Works

In the current literature, several research papers about fraud detection offer ad hoc bench-
marks of Machine Learning algorithms. For instance, Cheng et al. [32] propose a fraud
detection framework based on Convolutional Neural Networks (CNNs) to recognise inher-

2| Background and Motivation 17

ent behavioural patterns of fraud from annotated data. Their fraud detection framework
consists of a training part and a detection part. The training part mainly includes four
modules that deal with feature engineering, sampling methods, feature transformation,
and a CNN-based training procedure. The detection part consists of a feature extraction
module, a feature transformation module, and a classification module. Their experiments
on a dataset containing over 260 million credit card transactions from a major commercial
bank show that the proposed approach outperforms some state-of-the-art methods.

N. E-Arefin [29], on the other hand, explores the performance of several types of classi-
fication algorithms in the context of credit card fraud detection. These include Bayesian
classifiers, function-based classifiers, lazy algorithms, meta-algorithms, rule-based classi-
fiers, and tree-based algorithms. Bayesian classifiers are probabilistic models that employ
Bayes’ theorem to assess the likelihood of a sample belonging to a specific class. Function-
based classifiers, e.g. Logistic Regression and Support Vector Machines, aim to establish a
mathematical decision function to map input features to a target class. Lazy algorithms,
e.g. k-nearest neighbours (KNN), store training instances and make predictions based
on the similarity between new samples and stored instances rather than building an ex-
plicit model. Meta-algorithms enhance overall performance by aggregating the predictions
of multiple base classifiers through techniques like bagging, boosting, and stacking [18].
Rule-based classifiers rely on a set of static rules, each comprising a condition on input
features, to make predictions. Lastly, tree-based algorithms, e.g. decision trees, construct
a tree-like model where each internal node represents a decision based on one or more
input features, and each leaf node represents a class label. The experimental findings
indicate that meta and tree classifiers perform better than other types of classifiers.

Similarly, G. K. Kulatilleke [38] conducts a study on credit card fraud detection and pro-
poses a data-driven approach to dynamically select an appropriate model based on eval-
uation metric scores and balancing strategies. The study focuses on two PCA-encoded
real-world credit card transaction datasets, and all 15 considered models employ super-
vised learning techniques. He provides a comprehensive explanation of various methods to
address the issue of unbalanced classification, investigating two undersampling methods
(random majority under-sampling with replacement and Instance Hardness Threshold)
and three oversampling methods (SMOTE, random minority over-sampling with replace-
ment, and ADASYN). His framework assumes an unknown, massively unbalanced dataset
as input and creates a collection of 530 classifiers by combining different models, sampling
strategies, and feature selection techniques. He then evaluates these classifiers using eight
performance metrics (accuracy, precision, recall, F1, G-mean, AUC-ROC, Cohen’s kappa,
and Matthew correlation coefficient), and the top-performing three classifiers (in terms of

18 2| Background and Motivation

F1-score) are selected to create two ensemble models.

These papers offer valuable reference points; however, their methods cannot be directly
compared due to the absence of a benchmark. This limitation makes the cross-comparison
of methods challenging and hinders the cumulative progress in fraud detection research.
In the literature, we can also find publicly available frameworks for evaluating Machine
Learning algorithms, but these frameworks pursue different objectives with respect to
what we want to achieve. Their primary aim is to test the resilience of models against
adversarial attacks. Furthermore, these frameworks mainly focus on handling image data,
which may limit or even make it impossible to directly employ them in fraud detection
scenarios without applying substantial modifications.
To mention a few works that exploit these libraries in their process of model evaluation:

Cartella et al. [21] illustrate a novel approach to modify and adapt state-of-the-art adver-
sarial algorithms to imbalanced tabular data in the context of fraud detection. This study
proposes a model-agnostic approach applicable to any architecture. The starting point for
their adversarial examples creation is the Adversarial Robustness Toolbox [49], which is
a Python library for Machine Learning Security that provides tools to enable developers
and researchers to evaluate Machine Learning models against adversarial attacks. While
certain ART algorithms can be applied to tabular data, most of these algorithms are
primarily designed for handling image data. Therefore, they had to make modifications
to generate adversarial examples effectively.

Wang et al. [67] develop a method to increase Deep Neural Network classifiers’ resistance
to adversarial perturbations by adding to the classification process a pseudo-random ma-
trix key generated by Logistic Chaos. To generate adversarial examples and test them
against their classification procedure, they exploit CleverHans [53], which is a Python
library to benchmark Machine Learning systems’ vulnerability to adversarial examples.
Differently from the previous one, this library is specifically focused on the image context,
so it cannot be directly translated into the fraud detection context.

In summary, while existing research provides valuable insights and methodologies, the
lack of standardised frameworks makes it challenging to build upon these findings in a
cohesive manner.

2.4. Motivation

In this section, we introduce the problem we tackle, and we outline our objectives.

2| Background and Motivation 19

2.4.1. Problem Statement

Machine Learning algorithms and data analytics techniques represent a significant ad-
vancement in the fraud detection field. However, the evaluation and comparison of these
algorithms vary from one research work to another, primarily due to the absence of bench-
marking frameworks. To the best of our knowledge, there is no publicly available frame-
work designed to benchmark Machine Learning models in the fraud detection field. In
light of this limitation, we introduce FraudBench, a dedicated framework explicitly tai-
lored for fraud detection tasks. This novel framework aims to provide researchers with
a valuable tool for evaluating and analysing the performance and capabilities of diverse
Machine Learning models. By offering a more thorough understanding of their effective-
ness, it enables researchers to make informed decisions regarding their applicability in
real-world fraud detection scenarios.

2.4.2. Goals

In this work, we aim to achieve a set of specific goals:

• Design a versatile, modular and easily extendible framework to facilitate the devel-
opment and testing of Fraud Detection Systems. The framework must be flexible
and highly configurable, allowing researchers to tailor the execution process to their
unique needs and preferences. Furthermore, it has to be modular so that differ-
ent framework components can be modified or replaced without affecting the entire
system, facilitating the integration of new detection techniques or updates in the
future.

• Use the framework to study the behaviour of Fraud Detection Systems when sub-
jected to different types of attacks.

21

3| Threat Model

In this chapter, we define the threat model we consider, which centers on the concept of
online banking fraud. When we use the term “online banking frauds”, we refer to all the
malicious activities and deceptive practices that criminals use to gain unauthorised access
to individuals’ online banking accounts to carry out fraudulent transactions. We examine
the attacker’s capabilities and the main fraud schemes that exist nowadays.

3.1. Attacker Capabilities

Our work is based on the fundamental assumption that attackers possess the capability to
carry out transactions on behalf of unsuspecting victims. This assumption acknowledges
the existence of various techniques that enable such unauthorised actions [7]:

• Phishing and Social Engineering: This technique involves hackers disguising them-
selves as legitimate entities, such as banks, online services, or trusted individuals.
They typically send deceptive emails or text messages that appear authentic, often
mimicking the design and language of a genuine organisation. These messages may
contain malicious links or attachments. If the victims click on such links or open the
attachment, they may download malwares onto their device, allowing the attacker
to gain unauthorised access to sensitive information or take control of the system.

• Malware: Attackers can use various methods to distribute malware. For instance,
they may employ malicious advertisements (malvertising) that appear on legitimate
websites. Clicking on these ads can trigger the download and installation of mal-
ware onto the victim’s device. Furthermore, attackers can compromise websites,
embedding malicious code into web pages. When unsuspecting users visit these
compromised websites, their devices can be infected through a technique known as
a drive-by-download, without any interaction or awareness from the user.

• Man-in-the-Middle (MITM) Attacks: In a man-in-the-middle attack, an attacker
intercepts communication between two parties who believe they are directly com-
municating with each other. In the context of executing transactions on behalf of

22 3| Threat Model

a victim, an attacker could eavesdrop on the victim’s Wi-Fi connection in a public
setting. Using specialised software or devices, the attacker can monitor the victim’s
network traffic and capture sensitive information, such as passwords or personal
details, as the victim enters them into legitimate websites or online services. This
allows the attacker to gain unauthorised access to the victim’s accounts and carry
out transactions on their behalf.

3.2. Fraud Schemes

We examine two types of fraudulent activities, already discussed in [20].

1. Information Stealing. With this term, we refer to an attacker who has already
obtained a user’s credentials. This can occur through various methods, including
phishing attacks, data breaches, or malware-infected devices. With these stolen
credentials, the attacker gains unauthorised access to the user’s bank account and,
once there, can perform transactions and redirect funds to the preferred location.
Within this context, the attacker can manipulate various aspects of the transaction.
This includes the possibility to manipulate the timing of when the transaction is
executed, the designated International Bank Account Number (IBAN) to which
funds are transferred, and the specific amount of money involved in the transaction.
In this particular scenario, the attacker executes the transaction from his or her
device, resulting in the IP address and Autonomous System Country Code (ASN
CC) being distinct from those associated with the user.

2. Transaction Hijacking. With this term, we refer to a situation where an attacker
has compromised a user’s device. The latter gains control over the user’s browser or
mobile banking application (typically through the installation of malware), allowing
them to manipulate the transaction process. When the user initiates a transaction,
the trojan intercepts and hijacks it, making the user believe his legitimate trans-
action has succeeded. The attackers can manipulate the transaction details and
redirect funds to their accounts without the user’s knowledge or consent. Within
this context, the attacker can manipulate specific elements of the transaction, such
as the destination IBAN and the transfer amount. However, he or she cannot arbi-
trarily determine the timing of the transaction; it is tied to the moment when the
user initiates the transaction that the attacker seeks to hijack. As the transaction
is executed from the user’s device, the IP address and ASN CC associated with
the transaction correspond to those of the user. This makes detection even more
challenging.

23

4| Dataset Analysis

Acquiring datasets from financial institutions presents a significant challenge due to
confidentiality considerations. However, we have the privilege of having access to an
anonymised real-world labelled dataset provided to our research group by a major Ital-
ian bank. In this chapter, we provide a comprehensive description and analysis of this
dataset, and we show the preprocessing steps.

4.1. Dataset Extraction

The dataset we have at our disposal covers 125 days, specifically from October 22, 2014,
to February 23, 2015. Transactions are divided into bank transfers and reports. The
former contains records of legitimate user transactions, while the latter consists of identi-
fied fraudulent activities during that period. The dataset resulting from the combination
of the two SQL tables is heavily unbalanced. Out of a total of 471,787 transactions, only
0.124% are classified as fraudulent. As discussed in Subsection 2.1.1, this is a common
scenario when dealing with a banking dataset.
Each transaction of the extracted dataset is characterised by 32 features. In Table 4.1,
we briefly describe the most relevant.

24 4| Dataset Analysis

Feature Name Description

TransactionID Unique identifier of the transaction

IP The IP address of the user’s connection
SessionID Value (assigned by the online banking platform) that

identifies the session

Timestamp Date and time at which the transaction is executed

Amount Transaction amount in Euros
ErrorMsg Error message (in case of a transaction that was not

correctly executed)

UserID Unique identifier assigned to the user

IBAN Beneficiary account number
Confirm_SMS Flag that indicates whether the transaction required a

confirmation code to be completed

IBAN_CC Country code of the beneficiary IBAN
CC_ASN Country code of the Autonomous System Number

associated with the connection of the device from
which the transaction is performed

Fraud Flag that indicates whether the transaction is
fraudulent

Table 4.1: Most relevant dataset features

Data contained in IP, IDSessione, UserID, and IBAN are hashed to guarantee users
privacy without losing information.

4.2. Dataset Description

The dataset includes 58,481 users and 471,199 legitimate transactions, so on average,
each user performs eight transactions. However, as Figure 4.1 shows, when we divide the
users into equal-sized bins based on the number of samples, it becomes evident that the
distribution is heavily skewed. Nearly half of the users in the dataset have conducted
fewer than four transactions.

4| Dataset Analysis 25

1 Transaction

22.1%

2 Transactions
14.8%

3 Transactions

11.5%

4 or more Transactions51.7%

User Transaction Counts

Figure 4.1: Transaction count per user

0 200 400 600 800 1000
Number of Transactions

0

10000

20000

30000

40000

50000

Av
er

ag
e

Am
ou

nt
 S

pe
nt

Original dataset 2014_15

Figure 4.2: Users habits

Upon analysing the spending patterns of users, the dataset lacks clear and distinct clusters.
Instead, the majority of users display a uniform distribution in the lower left quadrant of
the spending patterns plot (see Figure 4.2). On average, these users engage in 0 to 100
transactions with an amount spanning from 10 e to 10,000 e.

26 4| Dataset Analysis

0
- 1

00

10
0

- 3
00

30
0

- 5
00

50
0

- 1
00

0

10
00

 -
20

00

20
00

 -
30

00

30
00

 -
10

00
0

10
00

0
- 2

00
00

20
00

0
- 4

00
00

40
00

0
- 6

00
00

amount_range

0

20000

40000

60000

80000

100000

tra
ns

ac
tio

n
co

un
t

Original dataset 2014_15
legitimate

0
- 1

00

10
0

- 3
00

30
0

- 5
00

50
0

- 1
00

0

10
00

 -
20

00

20
00

 -
30

00

30
00

 -
10

00
0

10
00

0
- 2

00
00

20
00

0
- 4

00
00

40
00

0
- 6

00
00

amount_range

0

25

50

75

100

125

150

175

200

tra
ns

ac
tio

n
co

un
t

Original dataset 2014_15
fraud

Figure 4.3: Amount distribution using custom bins

We observe an interesting trend by analysing transaction amounts grouped in custom bins.
As Figure 4.3 shows, legitimate transactions predominantly fall below the 2000 e, while
frauds tend to involve larger amounts, exceeding 20000 e. The average amount of fraud-
ulent transactions is approximately 12 times higher than that of legitimate transactions,
highlighting the financial impact of fraud.

Looking at Figure 4.4, we can examine the monthly distribution of transactions and notice
that they appear almost uniformly distributed over time. Each month registers around
105 transactions, indicating a consistent flow of activity. However, it is worth clarifying
that October 2014 stands as an exception, with transactions recorded only after the 22nd

of that month. Furthermore, there is no substantial preference for specific months when
considering the occurrence of frauds over time. The percentage of frauds remains relatively
consistent across different periods.

Turning to the hourly distribution of transactions depicted in Figure 4.5, we observe
that the majority of transactions occur during typical working hours, with a notable
peak of activity between 9:00 and 12:00. As expected, there is a decline in activity
during the late-night hours, from 0:00 to 6:00. Interestingly, the hourly distribution of
fraudulent transactions follows a similar trend to that of legitimate transactions. Attackers
consciously mimic user transaction patterns to avoid suspicion, as deviating too much from
the normal distribution would raise red flags. To enhance visualisation, we display the
plot on a logarithmic scale.

4| Dataset Analysis 27

(2014, 10) (2014, 11) (2014, 12) (2015, 1) (2015, 2)
(Year, Month)

102

103

104

105
Tr

an
sa

ct
io

n
Co

un
t

Original dataset 2014_15
Legitimate
Fraud

Figure 4.4: Transaction count per month

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:0011:0012:0013:0014:0015:0016:0017:0018:0019:0020:0021:0022:0023:00
Hour of the day

100

101

102

103

104

Tr
an

sa
ct

io
n

Co
un

t

Original dataset 2014_15
Legitimate
Fraud

Figure 4.5: Transaction count per hour

In terms of the Country Code associated with the beneficiary IBAN and connection Au-
tonomous System Number (ASN), it is unsurprising to find that the most commonly
observed code is IT (Italy), aligning with the nationality of the bank itself. The dough-
nut charts in Figure 4.7 and Figure 4.6 show the distribution of IBAN country codes for
legitimate transactions and fraudulent transactions, respectively. Focusing on the ben-
eficiary IBAN Country Codes (CCs), we find that the most common CC for legitimate
transactions is IT (Italy), involving 98.1% of the total number. For what concerns foreign
countries, the most common CCs are DE (Germany), FR (France), RO (Romania), ES
(Spain), and GB (United Kingdom). On the other hand, the percentage of frauds with an

28 4| Dataset Analysis

Italian beneficiary (10.5%) is considerably lower when compared to legitimate transfers.
This observation suggests that fraudulent activities often involve international beneficia-
ries. The foreign countries that emerge as the most common nationalities associated with
fraudulent transactions are SK (Slovakia), DE (Germany), GB (United Kingdom), and
NL (Netherlands).

IT

10.5%

Others

89.5%

Original dataset 2014_15 (fraud)

SK

27.8%

DE

16.9%

GB

16.9%

NL

10.6%

FR6.8%

AT
4.8%

HU

4.6%

Others

11.6%

Original dataset 2014_15 (fraud)

Figure 4.6: Fraudulent transaction count per IBAN Country Code

IT

98.1%

Others

1.9%

Original dataset 2014_15 (legitimate)

DE

27.5%

FR

12.4%

RO

8.9%

ES

8.5% GB

7.2%

NL
5.9%

AT4.2%

PL3.1%

CH
3.0%

Others

19.2%

Original dataset 2014_15 (legitimate)

Figure 4.7: Legitimate transaction count per IBAN Country Code

In conclusion, our dataset analysis highlights some key differences between fraudulent
and legitimate transactions. Fraudulent transactions tend to involve significantly higher
amounts compared to legitimate ones. Furthermore, fraudulent activities often involve
international beneficiaries, while legitimate transactions are mainly directed to Italian
beneficiaries. These insights provide valuable information for developing effective fraud
detection mechanisms and enhancing the security of financial transactions.

29

5| Approach

In this chapter, we describe the approach we follow to build the framework, providing a
high-level view of the proposed architecture.

5.1. Overview

Fr
au
d
D
et
ec
tio
n
S
ys
te
m

F2

Fn

F1

FDSs

H1, H2, ... , Hn

Filtered FeaturesSelected
Features and
Hyperparameters

F1, F2, ... , Fn

Aggregation

Dataset Preprocessor

Features Filtering

Model Selection

Training & Evaluation

Rescaling

Synthetic Fraud Generator
Data Cleaning Split

Data
Victim Selection

Augmentation

Cleaned Data Train Data Augmented
Train Data

Aggregated Train Data

Original Data

Test Data Scaled Train Data

Figure 5.1: Framework logical components

Our framework is composed of two major modules. The first one is the Dataset Pre-
processor module, which is in charge of performing all preprocessing steps. It houses the
sub-components that handle tasks such as eliminating irrelevant features from the raw

30 5| Approach

data, splitting transactions into train and test sets, aggregating features, scaling them
and injecting synthetic fraudulent transactions to perform dataset augmentation and re-
balancing. The second main module is the Fraud Detection System module, which is
the core of our framework. It contains the sub-components that deal with the selection
of the most informative features for a given dataset, the hyperparameters optimisation
for a specific detection algorithm and the instantiation of the final Fraud Detection Sys-
tems. Completing the framework is the module dedicated to the performance evaluation
of the resulting detection systems. Figure 5.1 shows the complete architecture with all
the sub-components detailed in the following sections.

5.2. Dataset Preprocessor Module

5.2.1. Data Cleaning

As mentioned in Section 4.1, our dataset comprises 32 columns. However, some of them
do not provide any meaningful information because of the following reasons:

• Empty fields. Due to privacy constraints, some fields containing customers’ sensi-
tive information are empty. So we remove columns like NumConto (Account num-
ber), Intestatario (Account holder), Indirizzo (Address), etc.

• Incomplete data. DataValuta and DataEsecuzione are two timestamp fields rep-
resenting the currency date and the execution date. About 93% of transactions
contain a non-valid value for these two fields, so we remove them.

• Non-informational fields. We remove all columns that contain the same value
for all transactions since they do not bring any useful information.

For what concerns the transactions, we filter out duplicates and transactions that were
incorrectly processed because of an error by filtering on the feature ErrorMsg.

5.2.2. Dataset Augmentation

As explained in Subsection 2.1.1, one of the main challenges we face in this context is the
extremely low percentage of fraudulent transactions within the dataset [19]. To address
this problem, we provide an augmentation component that incorporates a synthetic fraud
generator. Using this generator, we can replicate realistic fraudulent transactions and
inject them inside the dataset, thereby enhancing it and achieving the target proportion
of fraudulent transactions in relation to legitimate ones.

5| Approach 31

5.2.2.1. Victim Selection

A preliminary step to the fraud generation process involves victim selection. Starting
from the cleaned dataset, we first discard users with insufficient data, considering only
those who have performed more than three transactions as eligible for further processing.
Second, to ensure the effectiveness of our Fraud Detection Systems in predicting frauds
across users with varying spending patterns, we categorise the users into three distinct
profiles based on the average amount and number of performed transactions:

• High Profile: This profile includes users who exhibit high average spending amounts
or perform a significant number of transactions.

• Medium Profile: Users falling under this profile have more moderate spending
amounts or carry out a moderate number of transactions.

• Low Profile: This profile encompasses users who either have very low spending
amounts or execute a minimal number of transactions.

We present the numerical values we assign to the three categories in Table 5.1. By
categorising users into these profiles, we account for the diverse spending behaviours that
may impact the occurrence and characteristics of fraud.

Victim Profile Amount Mean (e) Transaction volume

High > 3,000 > 35

Medium 1,500 - 2,999 15 - 34
Low 0 - 1,499 5 - 14

Table 5.1: Victims profiles

5.2.2.2. Synthetic Frauds Generator

After the selection of potential victims, we proceed with the synthesis of fraudulent trans-
actions. According to the threat model we defined in Chapter 3, with this generator we
synthesise two fraud schemes: Information Stealing and Transaction Hijacking. During
the generation process of a synthetic fraud, we assign values to the fields that compose
the transaction according to the characteristics of the scheme we simulate.
In our dataset, IP addresses and session IDs are hashed to ensure data privacy and con-
fidentiality. When we craft an Information Stealing fraudulent transaction, we fill those
fields by randomly generating strings and then hashing them. In particular, to model at-
tackers who vary their connections, we assume that with low probability (5% in our case)

32 5| Approach

the IP address of the attacker changes between frauds targeting the same victim. On the
other hand, we generate a different SessionID for each transaction unless the attacker
executes another fraud towards the same victim within a short timeframe. This is because
many online banking platforms implement session timeouts as a security measure, so a
session expires after a short period of inactivity. Regarding the Transaction Hijacking
scheme, we fill those fields using the original IP and sessionID as the attacker performs
the fraudulent transaction from the victim’s device and in the same session.
Confirm_SMS is a binary value that indicates whether the transaction required an SMS
with a confirmation code to be completed. We assign this value replicating the original
dataset Confirm_SMS frequency distribution because the presence of the two-step authen-
tication process depends on the merchants or banks rather than on the attacker.
Similarly to IP addresses and SessionIDs, the values in the IBAN field are also subjected
to hashing for privacy reasons. Therefore, following the same approach, we assign a ran-
domly generated hashed string to that field.
The IBAN_CC represents a code with which the bank identifies the nationality of the ben-
eficiary IBAN. As stated in the Italian Ministry of Economy’s report [26], a significant
portion (between 60% and 70%) of frauds in Italy involve foreign IBAN beneficiaries. Ger-
many, France, Romania, Spain and Great Britain are the most commonly encountered
European foreign country destinations. To faithfully replicate this behaviour, we assign
values to the IBAN_CC field as follows: “IT” in 40% of the cases, one of “DE”, “FR”, “RO”,
“ES”, “GB” in another 40% of the cases, and, for the remaining 20%, we assign a random
European IBAN_CC. We apply this policy for both Information Stealing and Transaction
Hijacking schemes.
The CC_ASN represents a code the bank uses to identify the Autonomous System Num-
ber associated with the connection of the device from which the transaction is per-
formed. Since competent attackers often obfuscate their connections using VPNs and
proxy servers, there is no correlation between the nationality of the beneficiary IBAN and
the connection. So, for the Information Stealing scheme, we assign this value replicating
the original dataset CC_ASN frequency distribution. In the case of Transaction Hijacking,
this attribute takes on the same value as the one found in the victim’s original transaction,
as it is executed from the victim’s device.
For what concerns Amount and Timestamp attributes, we assume that the attacker has
full control over these fields.
Regarding the Amount of the fraudulent transactions, we provide the generator with a
range of values within which it will pick the transaction amount. We define three profiles,
namely high, medium and low. We provide the amount range for each profile in Table 5.2.
Depending on what we want to achieve, we can use the synthetic fraud generator to inject

5| Approach 33

either frauds belonging to a single profile only or different profiles. The amount generation
process is common to both Information Stealing and Transaction Hijacking schemes.
For what concerns the Timestamp instead, when we operate in the Information Stealing
context, we randomly select, for each generated fraudulent transaction, a day between
the first legitimate transaction of the user and the end of the dataset. Given that real
frauds tend to occur more frequently in certain hours [62], we adjust the Timestamp ac-
cordingly. In the context of Transaction Hijacking, instead, we aim to generate fraudulent
transactions that have the same Timestamp of the hijacked legitimate transactions or at
least are very close in time (we can defer them at most 10 minutes). So, in this case, we
cannot freely choose transactions Timestamp because it is linked to the original legitimate
transactions.

Fraud Profile Amount Range (e)

High 30,000 - 50,000

Medium 2,000 - 5,000
Low 100 - 1,000

Table 5.2: Fraud profiles

As mentioned in Section 3.2, Information Stealing and Transaction Hijacking schemes
mainly differ in the way the attacker performs a fraudulent transaction. In the first case,
the attacker steals the victim’s sensitive data and performs frauds without modifying the
user’s existing or upcoming transactions. In the second case, on the other hand, the
attacker manipulates some fields (e.g., the destination and the amount) of the transaction
while the victim executes it. In this second scenario, we assume that there is a chance that
the victim realises the original transaction was not successfull and, therefore, attempts it
a second time. To model these different situations, we simulate, with a higher probability
(75% in our case), the scenario in which the hijacking process occurs smoothly without
encountering any errors. So, we replace the original transaction with the hijacked one. In
the remaining cases (25% in our case), we assume that the victim recognises the original
transaction failure and performs it again. So, we inject both the hijacked and the original
version of the transaction into the dataset.

34 5| Approach

5.2.3. Transaction Aggregation

In banking datasets, each transaction is characterised by specific features that provide
detailed information about it. However, to build a powerful model for fraud detection, it
is necessary to train Machine Learning algorithms on a dataset that encompasses a broader
range of relevant information. Original features alone are insufficient because they do not
capture the complete picture of a user’s spending patterns and behaviour over a certain
period. Therefore, as we illustrate in Figure 6.1, we resort to transaction aggregation
[51, 66] to obtain a more holistic understanding of the user. Transaction aggregation
is a process in which we combine or summarise information from multiple individual
transactions to create a new feature or representation that captures more relevant details
from the original data. As an example, we can add a feature that indicates the average
amount spent by each user within a predetermined timeframe. This additional data
provides insights into consumers’ spending habits, supporting the detection of anomalous
behaviours that significantly diverge from their established norms. Aggregated features
comprise a set of direct features derived from the input features of each transaction and
features computed by aggregating transactions with past legitimate transactions belonging
to the same user.

The features that can be directly derived are:

• Amount: the transaction amount, without any form of transformation;

• time_x, time_y: cyclic encoding of transaction execution time. A cyclic encod-
ing of the time attribute is necessary when performing distance operations between
different timestamps because time is inherently cyclical. The standard representa-
tion of time using linear values (e.g., seconds, minutes, hours) does not capture the
cyclic nature of time, where the end of one day is followed by the start of another
day. For instance, computing the distance between 10 p.m. and 11 p.m. using linear
values gives 11 - 10 = 1 hour, but if we compute the distance between midnight
and 11 p.m., 0 - 11 = -11 hour, which makes no sense. One approach to encode
cyclical data involves transforming the data into two dimensions using a sine and
cosine transformation.

t = tsh ∗ 3600 + tsmin ∗ 60 + tssec

time_x = cos
t ∗ 2π
86400

5| Approach 35

time_x = sin
t ∗ 2π
86400

• is_national_iban: a binary value indicating whether the beneficiary IBAN has
the same nationality as the online bank.

• is_international: a binary value indicating whether a transaction is international
or not based on the country code of IBAN and Country code of ASN

• confirm_SMS: a binary value indicating whether a transaction required a confir-
mation code to be completed

Before delving into the explanation of how we aggregate transactions, we need to establish
three sets: group, function, and time.

• group: this set consists of the original attribute names, which are IBAN, IP,
IBAN_CC, CC_ASN and SessionID.

• function: this set comprises four mathematical operations:

– count: returns the total number of instances

– sum: calculates the sum of the transaction amounts

– mean: computes the average amount of the given transactions

– std: determines the standard deviation of the transaction amounts

• time: this set comprises various periods denoted as 1h, 1d, 7d, 14d, 30d, and 8760h,
representing one hour, one day, seven days, fourteen days, thirty days, and one year,
respectively

Considering values from the “group”, “function”, and “time” sets, the aggregated features
are:

• group_function_time: We obtain these features by grouping the past transactions
of a user based on the specified group attribute. Then, we apply a time window of
length “time”, and we use the designated function on the resulting set of transactions.
For instance, ip_mean_7d represents the mean amount of transactions executed
within the last 7 days.

• time_since_same_group: This feature denotes the time elapsed in hours since
the user’s last transaction with the same group attribute value. For example,
time_since_same_iban indicates the time elapsed since the user’s last trans-
action executed towards the same IBAN.

36 5| Approach

• time_from_previous_trans_global: This feature represents the time elapsed
in hours since the user’s last transaction.

• difference_from_group_mean_time: this feature calculates the difference in
amount between the current transaction and the set of transactions within a time
window of length “time” towards the same “group” attribute value.

• is_new_group: this is a Boolean value indicating whether the user is making a
transaction towards a specific attribute group value for the first time. For instance,
is_new_iban indicates if it is the user’s first transaction towards that IBAN.

Initially, we calculate the aggregated features for legitimate transactions to assess the
regular spending patterns of users. Next, we compute the aggregated features for frauds,
which necessitate considering the previous transactions of the victims. So, we merge
legitimate and fraudulent transactions and we apply the computation.

5.2.4. Features Scaling

Feature scaling is a preprocessing technique used in Machine Learning to standardise
or normalise the numerical features of a dataset. It is essential because many Machine
Learning algorithms base their calculations and derivations on the Euclidean distance,
which is sensitive to the scale of input features. When features have different scales, the
ones that are on a much larger scale with respect to the others dominate the computation
of the distance and have a greater impact on certain algorithms, leading to biased results
and suboptimal model performance [5]. The primary purpose of feature scaling is to
bring all the features to a common scale, usually within a specific range or distribution,
so they all contribute equally to the learning process. Common features scaling methods
include Min-Max scaling (also known as normalisation) and Standardization. The former
technique scales the features to a specific range, typically between 0 and 1. It transforms
the data by subtracting the minimum value and dividing it by the range (maximum value
minus minimum value). The latter, instead, rescales the features to have a mean of 0 and
a standard deviation of 1. It involves subtracting the mean and dividing by the standard
deviation of each feature.
Due to the specific characteristics of banking datasets, we choose standardisation over
Min-Max scaling as the feature scaling technique. Transaction amounts can exhibit a
wide variance, ranging from very low amounts (e.g., 0.01 e) to very high amounts (e.g.,
50000 e). Moreover, banking datasets typically comprise a larger number of transactions
with smaller amounts and only a few with exceptionally high amounts. Given that, using
Min-Max scaling could lead to a disproportionate compression of lower values towards

5| Approach 37

0. Consequently, the influence of transactions with lower amounts would be severely
diminished, making them virtually indistinguishable.

5.3. Fraud Detection System Module

In FraudBench, we include the implementation of six commonly utilised algorithms in
the literature for fraud detection: Logistic Regression [15], Support Vector Machine [15],
Neural Network [15], XGBoost [22], Random Forests [17] and a variant of Active Learn-
ing [28, 41, 65]. Moreover, we incorporate two ensemble models based on two different
approaches: Majority Voting [57] and Multiplicative Weight Update [8]. We refer to Sec-
tion 2.2 for an in-depth description of each detection model. In this section, we provide
a detailed explanation of the phases that, starting from the outputs of the Dataset Pre-
processor module, lead to the development of the final Fraud Detection Systems. Firstly,
we perform a preliminary feature skimming on the Aggregated Train Data to filter out
less relevant features. Secondly, as shown in Figure 6.1, we provide the Scaled Train Data
and the retained features as input to the component in charge of the model selection
procedure. This component delivers the features and hyperparameters we use when we
instantiate the final detection systems. The last step involves the training and testing of
the created systems.

5.3.1. Features Filtering

The aggregation process we presented in Subsection 5.2.3 produces several potential fea-
tures, but not all of them are equally valuable. Our goal is to identify the most informative
and discriminative features that contribute significantly to the model’s predictive power
while discarding irrelevant or redundant ones. By reducing the feature set, we also en-
hance computational efficiency and address the challenge of the curse of dimensionality
[36]. In a few words, the increase in the number of dimensions or features makes the data
sparse. Consequently, the amount of data we need to accurately generalise the Machine
Learning model increases exponentially.

Aggregated data Compute features correlation Filter out features
having high correlation

Retained
features

Figure 5.2: Correlation-based features filter scheme

38 5| Approach

The feature filtering component aims to perform a preliminary feature skimming. We
develop a model-independent module so that we can apply it across a range of Machine
Learning algorithms. We adopt a correlation-based filter method. The logic behind using
correlation as a goodness measure is that relevant features are correlated to the target but
uncorrelated among themselves; otherwise, they are redundant and do not provide any
necessary additional information [71]. Our procedure, as illustrated in Figure 5.2, starts
with the aggregated dataset. We compute the correlation matrix to understand how
features are related, and based on those values, we select the most important features. To
do this, we analyse one pair of features at a time, and if these two are highly correlated
among themselves (more than 95% in our case), we remove the one that is less correlated
with the target.

5.3.2. Model Selection

Sk=0= { } Sk+1= Sk ∪ f HPT Sk+1= Sk ∪ fbest
STOP criteria

met?
fbest

k = k + 1

Yes

No

END
H1, H2, H3

H1 = x1
H2 = y1
H3 = z1

H1 = x2
H2 = y2
H3 = z2

H1 = x1
H2 = y2
H3 = z1

H1 = x2
H2 = y2
H3 = z2

For each available feature f

K-Fold-Crossvalidation

Hyper-parameters
selection

Model
creation Selection of

best model

Save best feature and
hyper-parameters

Empty
feature set

Score = 0.75

Score = 0.90

Score = 0.63

Figure 5.3: Model selection scheme

In the Model Selection component of FraudBench, we develop a procedure to perform
the selection of the final feature set and hyperparameters for each detection system. Hy-
perparameters are external configuration variables data scientists employ to govern the
training of Machine Learning models. These hyperparameters are different from internal
parameters, which are automatically determined during the learning process and do not
require manual specification by data scientists (e.g., the weights assigned by a Neural
Network to each neuron) [70]. Examples of hyperparameters include the learning rate,

5| Approach 39

the maximum depth in a decision tree and the number of nodes and layers in a neural
network. The objective of hyperparameter selection is to determine the optimal com-
bination of hyperparameters values that either minimises a specific function (e.g., loss)
or maximises it (e.g., accuracy). This involves the evaluation of various candidate hy-
perparameters combinations, resulting in the creation of multiple models. These models
are then evaluated on validation data and compared based on their performance metrics.
Ultimately, the best-performing model according to a predefined metric, along with its
corresponding hyperparameters configuration, is chosen.
As Figure 5.3 illustrates, in our framework we provide a technique that combines hy-
perparameters and feature selection simultaneously. This method is based on forward
selection and aims to find the best combination of hyperparameters and features for each
detection algorithm, optimising both aspects together to enhance overall performance.
Forward selection is a stepwise regression technique that starts with an empty model and
progressively incorporates features. Each forward step adds the feature that contributes
the most significant improvement (in terms of a predefined metric) to the model under
optimisation. Based on this technique, we develop an algorithm that, starting from the
set of features resulting from the filtering technique described in Subsection 5.3.1, assesses
the contribution of each feature (when added to the final feature set) using a set of m
models and k -Fold-Crossvalidation (with m and k configurable parameter). We deter-
mine the models’ hyperparameters via a Random Search approach [12] on a predefined
grid. After each iteration, we choose the best-performing feature in terms of a selectable
metric (F1-score in our case) and its corresponding optimal hyperparameters, and we
store the results. We then integrate the selected feature into the final feature set, and the
process iterates again. We show the pseudocode of the procedure in Algorithm 5.1. We
optimise the F1-score rather than the accuracy score because of the unbalanced nature
of the dataset. When dealing with imbalanced datasets, the minority class often holds
our primary interest. In the specific case of electronic banking frauds, datasets tend to
be highly unbalanced, typically consisting of 99% legitimate transactions and only 1%
fraudulent transactions. In such scenarios, even if a model fails to predict any fraudulent
transaction, the overall accuracy can still be close to 99%. The reason is that this perfor-
mance measure focuses on the overall correctness of predictions without considering the
class distribution. Therefore, accuracy alone does not provide an accurate representation
of model performance.
This model selection process has a significant computational cost, which is why we provide
the possibility to restrict the number of attempts to add a new feature to the final feature
set. If the inclusion of a new feature repeatedly fails to enhance the model’s performance
beyond a specified threshold, we terminate the process. This limitation ensures that the

40 5| Approach

process does not run indefinitely and prevents the excessive utilisation of computational
resources.

Algorithm 5.1 Forward Model Selection
Input:

dataset_name: the name of the dataset to load
model_name: the name of the model to use
metric: the name of the metric to optimize

Procedure:

1: available_features = getFeaturesFromConfigFile(dataset_name)
2: tolerance = getParamFromConfigFile("tolerance")
3: max_attempts = getParamFromConfigFile("max_attempts")
4: random_models_num = getParamFromConfigFile("random_models_num")
5: folds_num = getParamFromConfigFile("folds_num")
6: df = loadStandardizedDataset(dataset_name)
7: X_train, y_train = splitTrainTest(df)
8: overall_best_score = 0
9: attempts = 0

10: current_feature_set = set()
11: while (attempts < max_attempts) ∧ (available_features \ current_feature_set ̸= ∅) do
12: features_to_process = available_features \ current_feature_set
13: for feature in features_to_process do
14: temp_feature_set = current_feature_set ∪ feature
15: models_params = generateModelsParams(model_name, random_models_num)
16: cross_val_results = evaluateModelsWithCrossValidation([..., folds_num, ...])
17: features_scores[feature] = getFeatureBestScore(cross_val_results, metric)
18: end for
19: best_feature, best_feature_score = getBestFeature(features_scores)
20: current_feature_set = current_feature_set ∪ best_feature
21: current_score = best_feature_score
22: saveResultsToFile()
23: if (current_score - overall_best_score) < tolerance then
24: attempts = attempts + 1
25: else
26: attempts = 0
27: end if
28: if attempts = 0 then
29: overall_best_score = current_score
30: end if
31: end while

5| Approach 41

5.4. Training and Evaluation Module

Once we select the final set of features and hyperparameters and we instantiate the fi-
nal Fraud Detection Systems, we proceed with the ultimate training and evaluation. In
the context of banking transactions, statistical properties and underlying concepts of the
target variable or feature distribution can change over time [25, 43]. This is a highly sig-
nificant phenomenon known as concept drift. It refers to the dynamic nature of fraudulent
and legitimate transaction patterns that evolve and shift over time. As historical data
becomes outdated, models trained on such data may gradually lose their effectiveness in
detecting fraudulent transactions. Therefore, we must take proactive measures to adapt
the system to these changing dynamics. To mitigate the impact of concept drift, in this
work, during the detection systems’ training process, we adopt a weighted approach that
assigns varying importance to samples based on their temporal occurrence. Specifically,
we utilise a decreasing exponential function that accords greater weightage to more recent
transactions:

weights = e−
t
k

The parameter t denotes the time interval, measured in hours, between the training times-
tamp and the timestamp of the transactions under consideration. Meanwhile, the param-
eter k governs the rate at which the weights diminish as time progresses. We determine
the value of k based on the duration the dataset we have at our disposal. Specifically, k
represents the number of hours encompassed within this dataset. By incorporating this
weighting mechanism, we prioritise the influence of recent examples, recognising their
higher relevance in capturing the latest trends and patterns.
To assess the performance of the Fraud Detection Systems, we evaluate them by process-
ing one week of transactions at a time, starting from the week following the training time.
These transactions comprise both legitimate and fraudulent instances, where we syntheti-
cally generate the fraudulent ones using the fraud generator we detailed in Section 5.2.2.2.
We evaluate detection systems both in terms of standard metrics (we refer to Appendix C
for their mathematical definitions) and a custom loss function described in Section 7.1.

43

6| Implementation Details

In this chapter, we describe the implementation details of FraudBench. We explore the
directory structure and provide the list of software tools, libraries, programming languages
and hardware configurations employed to carry out our experiments.

6.1. Framework Architecture

Figure 6.1: Framework Overview

Here, we present an overview of the high-level organisation of our framework. We organise
the latter into eight modules, visually represented in Figure 6.1. This modularity enables
the framework to be easily expandable and maintainable. In the following sections, we
provide an in-depth description of the content of each module, giving a map to navigate
through the codebase efficiently.

44 6| Implementation Details

6.1.1. Configuration Module

logger
logger_config.ini

model_selection
forward_model_selection
forward_model_selection_parameters.json

grid_search

paths_config.ini

preprocessor
preprocessor_config.json
synthetic_fraud_generation
frauds_schemes_and_profiles.json
fraud_generation_params.json
victims_profiles.json

dataset
data_config.json

feature_selection
correlation_filter
correlation_filter_selected_features.json

random_forest_filter
features_for_random_forest_filter.json
rf_filter_params.json

fraud_detection_system
all_frauds_types_2014_15
all_frauds_types_2014_15_fds_params.json
all_frauds_types_2014_15_feature_set.json
all_frauds_types_2014_15_models_params.json

high_information_stealing_2014_15
high_transaction_hijacking_2014_15
low_information_stealing_2014_15
low_transaction_hijacking_2014_15
medium_information_stealing_2014_15
medium_transaction_hijacking_2014_15

config dataset preprocessor evaluation fraud_detection_system experiments utils logs

Figure 6.2: Configuration module content

As Figure 6.2 shows, the configuration folder houses numerous configuration files that en-
able customisation of key procedures within the system. These files provide the flexibility
to tailor various aspects, including sources and results file paths, victim profiles, fraud
generator parameters, model selection parameters, feature selection parameters, final de-
tection systems features and parameters, and granularity of log messages. Researchers can
fine-tune and adapt the system to their specific requirements by accessing and modifying
these configuration files, ensuring a highly adaptable framework.

6| Implementation Details 45

6.1.2. Dataset Manager Module

Figure 6.3: Dataset manager module content

This module encapsulates the necessary code to effectively handle the extraction, loading
and saving of all databases involved in the framework procedures. It provides essential
functionalities for easy access and manipulation of the data throughout the entire sys-
tem. As depicted in Figure 6.3, there are four files. The ones having config as a suffix
contain the code to read the required parameters from the configuration files described
in Subsection 6.1.1. This is common to all modules, so we will avoid repeating it in the
following sections. On the other hand, extraction.py and dataset_manager.py contain,
respectively, the code to extract the original dataset from an SQL dump and the code to
manage the previously extracted dataset.

6.1.3. Preprocessor Module

synthetic_fraud_generation
fraud_generator.py
fraud_attributes_generation.py
victims_selection.py

aggregation.py
gen_train_datasets.py
preprocess_config.py
rescaling.py

config dataset preprocessor evaluation fraud_detection_system experiments utils logs

Figure 6.4: Preprocessor module content

46 6| Implementation Details

This is the module in charge of all the preprocessing steps needed to prepare the dataset
for the following computations. The synthetic_fraud_generation folder contains the
code to perform victim selection, the implementation of the fraud generator and the logic
responsible for generating each field of a fraudulent transaction. The generator is fully
configurable and does not rely on hardcoded parameters. This allows for greater flexibility
and adaptability over the generation of synthetic fraudulent transactions. As Figure 6.4
shows, the Preprocessor module consists of three additional files. The aggregation.py
file handles the transaction aggregation process as described in Subsection 5.2.3, while
in rescaling.py, we implement the data scaling procedure explained in Subsection 5.2.4.
Lastly, gen_train_datasets.py contains the code we use to generate the train datasets on
which we train the models we evaluate (see Section 7.4). The researchers can edit this
code to personalise the way training datasets are generated according to their needs.

6.1.4. Evaluation Module

Figure 6.5: Evaluation module content

As Figure 6.5 shows, this module contains two files. Inside loss.py, we enclose the imple-
mentation of the loss function (see Section 7.1) we employ in our experiments. In evalu-
ation_function.py instead, we implement the k-fold Cross Validation procedure together
with various performance metrics, including Precision, Recall, F1-score, False Positive
Rate, AUC-ROC, AUC-PRC, Matthew Correlation Coefficient, and a custom accuracy
consisting of a weighted miss-prediction cost that ranks FN higher with respect to FP
(see Appendix C).

6| Implementation Details 47

6.1.5. Fraud Detection System Module

feature_selection
filter_by_correlation.py
random_forest_filter.py

model_selection
forward_model_selection.py
grid_search.py
grids.py
random_params_selection.py

model_creation.py
FDS.py
active_learning.py
autoencoder.py
majority_voting_and_MWU.ipynb

config dataset preprocessor evaluation fraud_detection_system experiments utils logs

Figure 6.6: Fraud Detection System module content

This module incorporates the implementation of the fraud detection system architecture
(FDS.py) and its underlying base models. Inside model_creation.py we define the mod-
els’ instantiation procedures. The majority_voting_and_MWU.ipynb notebook contains
the implementation of the two Ensemble models we defined in Subsection 2.2.3, while
the active_learning.py file contains the implementation of the Active Learning model.
The implementation we refer to is similar to the one designed by A. Dignani [28], and
it consists of two main components: an Autoencoder (implemented in autoencoder.py)
and a Random Forest model. The first component (Autoencoder) is a type of neural
network that is trained to reconstruct its input data. It consists of an encoder network
that maps the input data to a lower-dimensional representation (latent space) and a de-
coder network that reconstructs the input data from the latent space representation. The
autoencoder objective is to learn how to reconstruct the legitimate class so that when a
transaction deviates too much from that class, the model assigns a high anomaly score
value. The second component (Random Forest) represents the supervised learning part
of the model. Differently from the Autoencoder, this model is trained using both legiti-
mate and fraudulent transactions. The final prediction of the Active Learning model is a
weighted combination of the outputs from both the Autoencoder and the Random Forest.
As depicted in Figure 6.6, within this module, we can also include two folders, each dedi-
cated to a specific selection procedure as indicated by their names. The feature_selection

48 6| Implementation Details

folder encompasses the implementation of the correlation filter (filter_by_correlation.py),
discussed in Subsection 5.3.1. Meanwhile, the model_selection folder contains
forward_model_selection.py, which collects the code for the model selection procedure
explained in Subsection 5.3.2. These folders also include supplementary files. In partic-
ular, grid_search.py implements a grid search procedure, allowing further refinement of
model parameters. On the other hand, random_forest_filter.py contains code to perform
an alternative feature selection based on the feature ranking of a random forest model.
Finally, grids.py and random_param_selection.py contains the necessary code to define
the grids for the grid search and forward model selection procedures, respectively.

6.1.6. Experiment Module

attack_1.py
attack_2.py
attack_3.py
functions.py

config dataset preprocessor evaluation fraud_detection_system experiments utils logs

Figure 6.7: Experiments module content

As Figure 6.7 shows, this module contains the snippets of code in which we implement the
necessary steps to run the attacks described in Section 7.7. In addition to that, there is a
file containing functions that support the execution (functions.py). Within this module,
researchers can place their own files containing custom code to exploit the framework’s
features, perform additional experiments, or develop new types of attacks.

6| Implementation Details 49

6.1.7. Utils Module

distribution_analyzer.py
json_file_manager.py
plots.ipynb
support_functions.py

config dataset preprocessor evaluation fraud_detection_system experiments utils logs

Figure 6.8: Utils module content

As we illustrate in Figure 6.8, this module contains utility functions that are common
to all the other framework modules. We group functions to manage JSON files in
json_file_manager.py, functions dedicated to the creation of plots in plots.ipynb note-
book and functions to analyse dataset attribute distribution in distribution_analyzer.py.
The support_functions.py file collects the most consistent part of the code for this mod-
ule. In this file, we implement functions that support operation on dataframes, generation
of reports, multiprocessing management, and scalers management.

6.1.8. Logs Module

Figure 6.9: Utils module content

As depicted in Figure 6.9, this module contains only one file, in which we provide the
possibility to set the granularity of log messages.

50 6| Implementation Details

6.2. Execution Environment

We carry out the development of the entire system using Python, specifically version
3.10. To facilitate the coding process, we utilise PyCharm 2022.2.3 as our Integrated
Development Environment (IDE).

We leverage a range of widely used libraries to implement and test our approach. The
main ones are:

• Dask 2023.3.2: is a powerful library for parallel computing that enables scalable and
efficient handling of large datasets by leveraging task scheduling and distributed
computing.

• Joblib 1.2.0: is a library that provides tools for efficient caching and parallel com-
puting, particularly useful for optimising the execution time of computationally
intensive tasks, such as Machine Learning model training and evaluation.

• Keras 2.10.0: is a popular deep learning framework that provides a user-friendly
interface for building and training neural networks.

• Matplotlib 3.7.1: is a widely-used data visualisation library in Python, offering a
comprehensive set of tools for creating high-quality plots, charts, and graphs.

• NumPy 1.23.5: is a fundamental library for numerical computing in Python. It
provides efficient data structures and functions for handling large multi-dimensional
arrays and performing various mathematical operations.

• Pandas 1.5.3: is a versatile data manipulation and analysis library.

• Scikit-learn 1.2.2: is a comprehensive Machine Learning library that provides a wide
array of tools and algorithms for various tasks, including classification, regression,
clustering, and dimensionality reduction. It offers a user-friendly interface and ro-
bust implementations of popular Machine Learning algorithms.

• TensorFlow 2.10.0: is a widely-used deep learning framework that offers a flexible
and scalable ecosystem for building and deploying Machine Learning models. It
provides a range of tools and APIs for constructing neural networks, training models,
and performing advanced computations on GPU and TPU architectures.

• XGBoost 1.7.5: is a powerful and widely-used gradient boosting library designed
for Machine Learning tasks. It provides an efficient implementation of gradient
boosting algorithms, offering high performance and scalability.

6| Implementation Details 51

We perform all operations, from the initial stages to the final outcomes, on a machine
having the following specifications:

• Model: MacBook Pro 14-inch

• OS: macOS Ventura

• Chip: Apple M1 Pro

• Memory: 16 GB

• Storage: 512 GB

53

7| Experimental Validation

7.1. Evaluation Metric

While the primary goal of a fraud detection system is to detect and prevent as many
fraudulent transactions as possible, it is essential to establish a threshold for the acceptable
number of false positives. When a non-fraudulent transaction is incorrectly classified as
fraud, there can be significant impacts for both the bank institution and the customer
[60]. For the bank institution, false positives can lead to unnecessary disruptions in
normal banking operations. The trigger of additional verification processes could increase
operational costs, as they may need to allocate resources to investigate and resolve these
cases. From the customers’ perspective, the security measures adopted in response to
a false positive (like account freezing and/or transaction blocking) can erode their trust
in the bank, as they may perceive it as unreliable or overly cautious. This can lead
to dissatisfaction and potentially drive customers to seek services from other financial
institutions.

We assess the impact of frauds on each model by employing a custom loss function that
takes into account both false negatives (frauds predicted as legitimate transactions) and
false positives (legitimate transactions predicted as frauds). This specialised loss function
assigns a specific monetary value to each type of mispredicted transaction. In partic-
ular, we estimated a cost for the bank institution of 100 e in case of a false positive
(truelabel = 0 and predictedlabel = 1), and in the case of a false negative (truelabel = 1 and
predictedlabel = 0), the loss is equal to the actual amount of the transaction.

Loss = (truelabel − predictedlabel)
2 ∗ (100 ∗ predictedlabel + Amount ∗ truelabel)

7.2. Goals

The primary objective of our experimental validation is to conduct a comprehensive per-
formance evaluation of multiple Fraud Detection Systems (FDSs) based on different algo-
rithms and under different training settings. We build all of the FDSs using FraudBench.

54 7| Experimental Validation

Our goals can be summarised as follows:

• Study the impact of different types of fraudulent activities on various FDSs.

• Study the performance of both FDSs trained on distinct fraud types and model
ensemble strategies in countering attackers that change their fraudulent behaviour.

To accomplish these goals, we design three distinct experiments, each focusing on exposing
FDSs to a different attack scenario.

7.3. Experimental Settings

To achieve our research objectives effectively, we select a set of models comprising Ran-
dom Forest (RF) [17], Logistic Regression (LR) [24], Support Vector Machine (SVM)
[23], Neural Network (NN) [16], XGBoost (XGB) [22], and a variant of Active Learning
(AL) [28, 41, 65]. The selection of these models is based on their proven effectiveness
in the literature and their ability to address various challenges faced by financial institu-
tions. To explore the impact of different fraudulent activities on these models, we adopt
a systematic approach. Starting from a common dataset, we augment it by introduc-
ing two distinct schemes of fraud: Information Stealing (IS) and Transaction Hijacking
(TH). As we explained in Section 5.2.2.2, we further subdivide each fraud scheme into
three fraud profiles: Low (L), Medium (M), and High (H). This categorisation leads to
the creation of six unique datasets, each representing a specific combination of fraud
schemes and profiles. We refer to these datasets as augmented_fraudProfile_fraudType
(for instance, the name for the dataset containing only High-profile Information Steal-
ing frauds is augmented_H_IS). To optimise the performance and efficiency of our mod-
els, we employ a two-step process for each dataset. Initially, we perform feature re-
duction by evaluating the correlation among the features, resulting in a refined set of
features specific to each dataset. Then, by applying a model selection procedure to
each model-dataset combination, we fine-tune the models to capture the unique pat-
terns and dynamics associated with different fraud schemes and profiles. This procedure
encompasses the selection of both features and hyperparameters. As a result of this ap-
proach, we develop a total of 36 distinct models, corresponding to the Cartesian product of
the six datasets (augmented_H_IS, augmented_H_TH, augmented_M_IS, augmented_M_TH,
augmented_L_IS, and augmented_L_TH) and the six model types (RF, LR, SVM, NN,
AL, and XGB). To provide a comprehensive comparison between models trained on spe-
cific types of fraud and models exposed to a broader range of frauds, we expand our
analysis by including an additional set of six models. These models undergo the same
procedure as the other 36 models, following the same methodology. However, in this case,

7| Experimental Validation 55

we train them on a comprehensive dataset that includes instances of all types of fraud
(augmented_AF). We state models performances by testing their resistance to three types
of attacks, in which we generate frauds each time following a different policy. In addition
to the range of individual models, we explore two of ensemble models based on Major-
ity Voting (MV) [57] and Multiplicative Weight Update (MWU) [8]. In their prediction
process, the latter combine the outcomes of all 42 individual models. We compare the
ensemble models against a baseline model which is the empirical mean of the losses of the
base FDS learners. In all attacks scenarios, the loss is calculated according to the metric
defined in Section 7.1.

7.4. Experimental Datasets

To recreate realistic and representative datasets for training and evaluating our fraud
detection models, we initially cleaned the original dataset (from now on, we refer to it
as original_14_15) by removing all fraudulent transactions that were already present,
retaining only legitimate transactions. One of the objectives of this research is to eval-
uate the performance of models trained on individual types of fraud. To achieve this,
it was essential to begin with a pristine dataset, free from any previous influences or
biases. Following a data generation approach, we used the configurable fraud generator
described in Section 5.2.2.2 to synthesise various types of fraudulent transactions, aiming
to achieve a target fraction of 1%. The original_14_15 dataset covers 18 weeks; we use
the first six weeks to train our detection systems and the following 12 weeks to analyse
their behaviour. According to that, starting from the cleaned original_14_15 dataset,
we generate seven new training datasets, one for each combination of fraud scheme and
profile. We also produce one more training dataset that includes all fraud schemes and
profiles. Finally, we generate three test datasets, one for each attack we present in Sec-
tion 7.7. Table 7.1 shows the characteristics of the resulting datasets. Datasets containing
frauds of the type of TH have a slightly lower fraud ratio compared to those containing
only frauds of type IS because frauds belonging to the former scheme depend on users’
original transactions.

56 7| Experimental Validation

Dataset ID Transactions
Frauds
Ratio

Time
Window

augmented_H_IS 171128 1% 6 weeks

augmented_H_TH 169804 0.93% 6 weeks

augmented_M_IS 171128 1% 6 weeks

augmented_M_TH 169829 0.97% 6 weeks

augmented_L_IS 171122 0.99% 6 weeks

augmented_L_TH 169819 0.96% 6 weeks

augmented_AF 170852 0.93% 6 weeks

attack_1 303928 0.79% 12 week

attack_2 303567 0.69% 12 week

attack_3 303543 0.70% 12 week

Table 7.1: Experimental datasets description

7.5. Feature Engineering

As discussed in Subsection 5.2.3, relying solely on raw features does not provide sufficient
information for conducting an accurate analysis. Therefore, following the augmentation
process, we provide each training dataset as input to the Aggregation module to perform
transaction aggregation and extract new potential features. After the execution of the
aggregation phase, all seven datasets contain a substantial number of features, reaching a
total of 205. However, depending on the specific dataset, not all of them are essential, as
they can potentially be redundant. We initially streamline our feature sets by exploiting
the Features Filtering module detailed in Subsection 5.3.1. To determine which feature to
remove in a correlated pair, we set the correlation threshold to 95%. This means that if
the correlation coefficient between two features exceeds 95%, we remove from the feature
set the feature between the two that is less correlated with the target variable. We show
selected feature sets for each dataset in Table B.1 (for improved layout and organisation,
we place the table in Appendix B).

7| Experimental Validation 57

7.6. Models Tuning and Performance Evaluation

To fine-tune our models and improve their predictive capabilities, we use the Forward
Model Selection approach we described in Subsection 5.3.2. With this step-by-step model
selection strategy, we aim to find the optimal combination of features and hyperparameters
that maximises predictive capabilities. In each step, we evaluate a range of 8 to 13 different
model configurations using 3-fold cross-validation on their specific training dataset. We
then save the feature set and the hyperparameters that results in the highest F1-score
value. To ensure a thorough exploration of the hyperparameters space, we randomly
select model parameters from a predefined grid. The iterative procedure continues until
we observe that adding new features no longer significantly improves the F1-score. To
determine this, we set a criterion for improvement, requiring the F1-score to increase
by at least 0.001 within five consecutive iterations. If we do not meet this condition,
we conclude the iterative process. This hyperparameter optimisation step represents the
most time-consuming part of the entire benchmarking process. Depending on the specific
model and chosen parameters, the optimisation process can span up to 4 days for a single
model on our datasets. Upon completion of the process, we identify the feature set and
corresponding model hyperparameters that achieved the highest F1-score. In Table 7.2
we show the FDSs performances in terms of standard metrics after the tuning phase. To
identify the classifiers, we adopt a naming convention where we formulate the name by
combining the acronym of base model, fraud profile, and fraud scheme associated with the
system. For instance, if we consider a detection system that uses Random Forest as its
base model and has been trained to identify High-profile Information Stealing frauds, we
name the system as RF_H_IS.

58 7| Experimental Validation

Model ID Precision Recall F1-score FPR
AUC
ROC

AUC
PR

Weighted
MCC

Cost
Accuracy

AL_AF 0.315018 0.849592 0.453519 0.018375 0.925664 0.588637 0.839013 0.915608

AL_H_IS 0.856352 0.930158 0.890566 0.001455 0.981805 0.945657 0.930929 0.964351

AL_H_TH 0.731097 0.734423 0.730754 0.002536 0.920886 0.759885 0.759545 0.865943

AL_M_IS 0.721 0.798346 0.757472 0.003031 0.922896 0.730119 0.811684 0.897658

AL_M_TH 0.311155 0.648562 0.420153 0.014693 0.826008 0.341087 0.673183 0.816935

AL_L_IS 0.533036 0.728879 0.60744 0.006214 0.875732 0.585513 0.749513 0.861333

AL_L_TH 0.26301 0.600862 0.364345 0.016073 0.793326 0.283064 0.63345 0.792394

LR_AF 0.242985 0.735252 0.362694 0.022416 0.894705 0.385875 0.734977 0.856418

LR_H_IS 0.865066 0.984618 0.91966 0.001495 0.999605 0.982592 0.983307 0.991561

LR_H_TH 0.568807 0.948595 0.710193 0.006917 0.994936 0.688127 0.942635 0.970839

LR_M_IS 0.293978 0.826351 0.424531 0.020603 0.964061 0.537287 0.815594 0.902874

LR_M_TH 0.280937 0.556615 0.360585 0.01642 0.857763 0.32617 0.598233 0.770098

LR_L_IS 0.276432 0.831425 0.405876 0.021886 0.9558 0.494474 0.818855 0.904769

LR_L_TH 0.366515 0.611133 0.450132 0.010128 0.90479 0.264415 0.64944 0.800502

NN_AF 0.539119 0.550442 0.541275 0.004789 0.969304 0.486664 0.609396 0.772826

NN_H_IS 0.861738 0.968923 0.90925 0.001513 0.997172 0.976577 0.967879 0.983705

NN_H_TH 0.791664 0.826034 0.808364 0.002001 0.998487 0.840746 0.836665 0.912017

NN_M_IS 0.754639 0.841236 0.793287 0.002636 0.994727 0.824939 0.849325 0.9193

NN_M_TH 0.681768 0.594244 0.630509 0.003054 0.982387 0.546867 0.645993 0.795595

NN_L_IS 0.429607 0.708046 0.523592 0.009142 0.965543 0.573207 0.728943 0.849452

NN_L_TH 0.431277 0.528754 0.472295 0.006599 0.91745 0.34024 0.589986 0.761078

RF_AF 0.893243 0.748192 0.810639 0.000886 0.991114 0.859549 0.772932 0.873653

RF_H_IS 0.974355 0.988425 0.981266 0.000236 0.999976 0.997378 0.988256 0.994095

RF_H_TH 0.850972 0.920908 0.884356 0.001526 0.999482 0.942113 0.922184 0.959691

RF_M_IS 0.939785 0.892944 0.915688 0.000511 0.998498 0.965747 0.897596 0.946216

RF_M_TH 0.735426 0.629847 0.678125 0.00234 0.979833 0.684832 0.674849 0.813753

RF_L_IS 0.831233 0.766699 0.79258 0.001475 0.9828 0.843984 0.787108 0.882612

RF_L_TH 0.558306 0.517505 0.52967 0.004001 0.898616 0.455515 0.584842 0.756752

SVM_AF 0.215407 0.771153 0.331975 0.028145 0.950983 0.422872 0.759164 0.871504

SVM_H_IS 0.693491 1.0 0.812694 0.004186 0.999852 0.979406 0.995824 0.997907

SVM_H_TH 0.423082 1.0 0.593886 0.01302 0.997945 0.808169 0.987067 0.99349

SVM_M_IS 0.234123 0.944962 0.371794 0.030269 0.982044 0.587418 0.915033 0.957346

SVM_M_TH 0.223877 0.61394 0.327961 0.021412 0.855594 0.211329 0.636355 0.796264

SVM_L_IS 0.23894 0.790363 0.353879 0.025811 0.929242 0.317643 0.779548 0.882276

SVM_L_TH 0.214633 0.609607 0.316942 0.021026 0.86979 0.251579 0.633535 0.794291

XGB_AF 0.830813 0.78581 0.805235 0.001556 0.983755 0.828596 0.803364 0.892127

XGB_H_IS 0.971563 0.992152 0.981706 0.000275 0.99996 0.996012 0.991906 0.995938

XGB_H_TH 0.839137 0.942169 0.887106 0.001744 0.999546 0.951437 0.941927 0.970213

XGB_M_IS 0.907331 0.938287 0.922467 0.000905 0.999127 0.971729 0.939406 0.968691

XGB_M_TH 0.646875 0.644709 0.645596 0.003529 0.984189 0.660626 0.685131 0.82059

XGB_L_IS 0.798892 0.829322 0.806398 0.001926 0.992705 0.885799 0.840852 0.913698

XGB_L_TH 0.596887 0.476124 0.52255 0.00311 0.928435 0.436094 0.5541 0.736507

Table 7.2: Models performance after hyperparameters tuning

7| Experimental Validation 59

7.7. Experiments

In this section, we present the experiments we perform to assess the behaviour of the
models. We design each experiment to evaluate the performance of the models under dif-
ferent attack scenarios. We build our test dataset by injecting fraudulent transactions on
a weekly basis, and at the end of each week, we calculate the loss using the loss function
defined in Section 7.1.

7.7.1. Attack 1

In this experiment, we simulate an attacker who commits fraudulent transactions by fol-
lowing a random policy, that is, randomly choosing fraud schemes and profiles. Figure 7.1
illustrates the loss trend of the 42 detection systems under test over the 12-week simu-
lation period. We use colours to distinguish between different base-model families. For
example, we represent detection systems built on Random Forest in green, while those
built on Support Vector Machine in yellow, and so on.
In the long run, the best-performing detection system is the one based on the random
forest model and trained on all types of fraud (RF_AF), which registered an overall loss of
1,052,771.86 e. As Table 7.3 shows, this model has the highest F1-score value (∼80%) and
even if it is not the one that manages to detect the greatest number of frauds, probably the
fact that it keeps the rate of false positives very low (0.08%), lead it to be the best overall.
The model with the highest number of detected frauds is the SVM trained on frauds be-
longing to the Information Stealing scheme and having a High-profile (SVM_H_IS), which
scores a recall of 84.3%. However, at the same time, it has a very low precision (13.9%),
resulting in a high false positive rate (2.6%) and a greater loss (2,373,895.89 e) when
compared to the previous model. All the detection systems trained on all types of fraud,
except for AL_AF, exhibits relatively low overall losses regardless of the base model used.
The high losses recorded by AL_AF could be due to the extremely high number of false
positives. Analysing the Table 7.3 we note that this behaviour is common to all sys-
tems based on this base model. Unsurprisingly, almost all systems trained exclusively
on High-profile Information Stealing fraud instances manages to keep the monetary loss
to a low level. This outcome was expected since a comprehensive overview of the graph
reveals that this specific type of fraud results in the highest increase in terms of monetary
losses. Therefore, having the ability to effectively mitigate this type of fraud presents a
significant advantage.
Regarding ensemble models, as we depict in Figure 7.2, both Majority Voting (to which

60 7| Experimental Validation

we refer as MV) and Multiplicative Weight Update (to which we refer as MWU) approaches
achieve significantly lower losses compared to the average loss of the individual models
(Mean in the figure). The MV ensemble achieves a final loss of 7,270,732.92 e, which repre-
sents a 49% reduction when compared to Mean. This ensemble demonstrates exceptional
precision, correctly identifying a transaction as fraudulent in 95% of the cases. However,
it falls short in terms of recall, only capturing 37.6% of the actual number of fraudulent
activities. On the other hand, MWU exhibits a slightly lower precision (88%) but, at the
price of an increased false positive rate (0,05% compared to 0.01% of MV), can identify
a larger number of fraudulent transactions, reaching a recall of 76.5% and a final loss of
1,135,369.99 e, 92% lower compared to Mean.

7| Experimental Validation 61

lo
w_

tra
ns

ac
tio

n_
hi

ja
ck

in
g

m
ed

iu
m

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

tra
ns

ac
tio

n_
hi

ja
ck

in
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

Fraud Type

0M

5M

10M

15M

20M

25M

M
od

el
 L

os
s (

)

RF_L_IS

LR_L_IS

SVM_L_IS

XGB_L_IS

NN_L_IS

AL_L_IS

RF_M_IS

LR_M_IS

SVM_M_IS

XGB_M_IS

NN_M_IS

AL_M_IS

RF_H_IS

LR_H_IS

SVM_H_IS

XGB_H_IS
NN_H_IS

AL_H_IS

RF_L_TH

LR_L_TH

SVM_L_TH

XGB_L_TH

NN_L_TH

AL_L_TH

RF_M_TH

LR_M_TH
SVM_M_TH

XGB_M_TH

NN_M_TH

AL_M_TH

RF_H_TH

LR_H_TH

SVM_H_TH

XGB_H_TH

NN_H_TH
AL_H_TH

RF_AF

LR_AF

SVM_AF

XGB_AF

NN_AF

AL_AF

Figure 7.1: Attack 1: models losses (in Millions of Euros) injecting fraud types following
a random policy

62 7| Experimental Validation

lo
w_

tra
ns

ac
tio

n_
hi

ja
ck

in
g

m
ed

iu
m

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

tra
ns

ac
tio

n_
hi

ja
ck

in
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

Fraud Type

0M

5M

10M

15M

20M

25M

M
od

el
 L

os
s (

)

RF_L_IS

LR_L_IS

SVM_L_IS

XGB_L_IS

NN_L_IS

AL_L_IS

RF_M_IS

LR_M_IS

SVM_M_IS

XGB_M_IS

NN_M_IS

AL_M_IS

RF_H_IS

LR_H_IS

SVM_H_IS

XGB_H_IS
NN_H_IS

AL_H_IS

RF_L_TH

LR_L_TH

SVM_L_TH

XGB_L_TH

NN_L_TH

AL_L_TH

RF_M_TH

LR_M_TH
SVM_M_TH

XGB_M_TH

NN_M_TH

AL_M_TH

RF_H_TH

LR_H_TH

SVM_H_TH

XGB_H_TH

NN_H_TH
AL_H_TH

RF_AF

LR_AF

SVM_AF

XGB_AF

NN_AF

AL_AF

MWU

MAJORITY

MEAN

MV

Mean

Figure 7.2: Attack 1: ensemble models losses (in Millions of Euros) injecting fraud types
following a random policy

7| Experimental Validation 63

Model ID Precision Recall F1-score FPR
Weighted

MCC
Cost

Accuracy

AL_AF 0.0159 0.8141 0.0311 0.2561 0.5593 0.7790

AL_H_IS 0.0084 0.3103 0.0164 0.1856 0.1443 0.5623

AL_H_TH 0.0093 0.2550 0.0179 0.1378 0.1476 0.5586

AL_L_IS 0.0099 0.6960 0.0196 0.3513 0.3451 0.6724

AL_L_TH 0.0130 0.4489 0.0252 0.1730 0.2980 0.6380

AL_M_IS 0.0205 0.5302 0.0395 0.1283 0.4275 0.7009

AL_M_TH 0.0173 0.5142 0.0334 0.1485 0.3885 0.6829

LR_AF 0.1663 0.7014 0.2689 0.0178 0.7122 0.8418

LR_H_IS 0.2303 0.2751 0.2507 0.0047 0.3899 0.6352

LR_H_TH 0.1521 0.2190 0.1795 0.0062 0.3366 0.6064

LR_L_IS 0.1704 0.4816 0.2517 0.0119 0.5447 0.7348

LR_L_TH 0.1449 0.4523 0.2195 0.0135 0.5190 0.7194

LR_M_IS 0.2700 0.7688 0.3997 0.0105 0.7775 0.8792

LR_M_TH 0.1455 0.6030 0.2345 0.0180 0.6322 0.7925

NN_AF 0.1226 0.8400 0.2140 0.0305 0.8164 0.9048

NN_H_IS 0.5751 0.2550 0.3534 0.0010 0.3803 0.6270

NN_H_TH 0.4022 0.1713 0.2402 0.0013 0.3027 0.5850

NN_L_IS 0.2371 0.3317 0.2765 0.0054 0.4358 0.6631

NN_L_TH 0.4348 0.0628 0.1098 0.0004 0.1783 0.5312

NN_M_IS 0.6416 0.1214 0.2042 0.0003 0.2532 0.5605

NN_M_TH 0.1759 0.1290 0.1488 0.0031 0.2535 0.5630

RF_AF 0.8360 0.7580 0.7951 0.0008 0.7803 0.8786

RF_H_IS 0.8838 0.2580 0.3994 0.0002 0.3844 0.6289

RF_H_TH 0.4001 0.2366 0.2974 0.0018 0.3623 0.6174

RF_L_IS 0.7523 0.3472 0.4751 0.0006 0.4572 0.6733

RF_L_TH 0.2969 0.1876 0.2299 0.0023 0.3162 0.5927

RF_M_IS 0.8060 0.1809 0.2955 0.0002 0.3148 0.5903

RF_M_TH 0.3423 0.1595 0.2177 0.0016 0.2903 0.5790

SVM_AF 0.1620 0.7182 0.2644 0.0188 0.7249 0.8497

SVM_H_IS 0.2222 0.2910 0.2520 0.0052 0.4024 0.6429

SVM_H_TH 0.0960 0.2609 0.1403 0.0125 0.3616 0.6242

SVM_L_IS 0.0133 0.6436 0.0260 0.2425 0.4037 0.7005

SVM_L_TH 0.1366 0.5729 0.2206 0.0184 0.6076 0.7773

SVM_M_IS 0.1390 0.8430 0.2387 0.0265 0.8235 0.9082

SVM_M_TH 0.1429 0.6122 0.2317 0.0186 0.6387 0.7968

XGB_AF 0.8317 0.7450 0.7860 0.0008 0.7695 0.8721

XGB_H_IS 0.7864 0.2559 0.3861 0.0004 0.3823 0.6278

XGB_H_TH 0.5416 0.2316 0.3244 0.0010 0.3596 0.6153

XGB_L_IS 0.7916 0.3865 0.5194 0.0005 0.4885 0.6930

XGB_L_TH 0.4844 0.2207 0.3032 0.0012 0.3495 0.6097

XGB_M_IS 0.5811 0.1876 0.2836 0.0007 0.3200 0.5935

XGB_M_TH 0.3762 0.1495 0.2140 0.0013 0.2808 0.5741

MV 0.9544 0.3765 0.5399 0.0001 0.4814 0.6882

MWU 0.8869 0.7655 0.8218 0.0005 0.7868 0.8825

Table 7.3: Attack 1: models performance at the end of the 12 weeks

64 7| Experimental Validation

7.7.2. Attack 2

In this experiment, we simulate attackers who commit fraudulent transactions according
to the policy that causes the greatest impact on the best-performing model of every week.
We aim to simulate a situation in which the attacker exerts maximum pressure on the
best-performing model to test its resistance. To accomplish this, we adopt a dynamic
approach. Except for the first week, during which we randomly select the type of fraud to
inject, for each subsequent week, we generate a set of fraudulent transactions for each type
of fraud. We then evaluate their impact on the model that shows the best performance
until that point. Finally, we select the set containing the fraud instances that results in
the most significant increase in the estimated loss, and we add them definitively to the
test set.
Surprisingly, in the long run, the SVM trained on all fraud types (SVM_AF) emerges as the
best-performing model despite its simplicity. Even subjecting it to the most challenging
fraud campaigns, this model manages to maintain an overall estimated loss just below 5
million Euros (4,977,643.33 e). However, as we show in Table 7.4, this detection system
has a very low precision (14.4%) and a high false positive rate (∼2%). The detection
system with the highest F1-score (84.1%) is RF_AF. When comparing its standard met-
ric values with those of the overall best system, RF_AF outperforms it in every aspect.
Nevertheless, it does not prove to be the best when we evaluate it using our specific
loss function. This discrepancy could be attributed to the monetary value we place on
false negatives. A fraudulent transaction that is incorrectly predicted as legitimate incurs
a monetary cost equal to its amount. When analysing the false negatives amounts of
SVM_AF and RF_AF, we observe that, on average, the latter’s false negatives amounts are
approximately three times higher (26,886.44 e vs 1,656.15 e). This probably explains
why, at the end of the period, the loss of RF_AF is higher.
Regarding the ensemble models, as illustrated in Figure 7.4, MWU once again demonstrates
superior performance with respect to MV, highlighting the effectiveness of an online learn-
ing approach in this context. MWU, despite having a low precision (23.8%) and a 77 times
higer FPR compared to MV, results in an estimated loss of 511,762.51 e, only 2.8% higher
with respect to the best-performing model (SVM_AF) and 75% lower than MV. This time,
the MV ensemble fails to keep the overall estimated loss below the average loss of the in-
dividual models, surpassing it between weeks 8 and 9. At the end of the 12-week period,
MV registers an estimated loss of 20,538,228.16 e, which is a 5.62% increase compared to
Mean.

7| Experimental Validation 65

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

Fraud Type

0M

5M

10M

15M

20M

25M

30M

35M

M
od

el
 L

os
s (

)

RF_L_IS

LR_L_IS

SVM_L_IS

XGB_L_IS

NN_L_IS

AL_L_IS

RF_M_IS

LR_M_IS

SVM_M_IS

XGB_M_IS

NN_M_IS

AL_M_IS

RF_H_IS

LR_H_IS

SVM_H_IS

XGB_H_IS

NN_H_IS

AL_H_IS

RF_L_TH

LR_L_TH

SVM_L_TH

XGB_L_TH

NN_L_TH

AL_L_TH

RF_M_TH

LR_M_TH
SVM_M_TH

XGB_M_TH
NN_M_TH

AL_M_TH

RF_H_TH

LR_H_TH

SVM_H_TH

XGB_H_TH

NN_H_TH

AL_H_TH

RF_AF

LR_AF

SVM_AF

XGB_AF

NN_AF

AL_AF

Figure 7.3: Attack 2: models losses (in Millions of Euros) injecting fraud types with the
highest impact on the previous week’s best model

66 7| Experimental Validation

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

Fraud Type

0M

5M

10M

15M

20M

25M

30M

35M

M
od

el
 L

os
s (

)

RF_L_IS

LR_L_IS

SVM_L_IS

XGB_L_IS

NN_L_IS

AL_L_IS

RF_M_IS

LR_M_IS

SVM_M_IS

XGB_M_IS

NN_M_IS

AL_M_IS

RF_H_IS

LR_H_IS

SVM_H_IS

XGB_H_IS

NN_H_IS

AL_H_IS

RF_L_TH

LR_L_TH

SVM_L_TH

XGB_L_TH

NN_L_TH

AL_L_TH

RF_M_TH

LR_M_TH
SVM_M_TH

XGB_M_TH
NN_M_TH

AL_M_TH

RF_H_TH

LR_H_TH

SVM_H_TH

XGB_H_TH

NN_H_TH

AL_H_TH

RF_AF

LR_AF

SVM_AF

XGB_AF

NN_AF

AL_AF

MWU

MAJORITY

MEAN

MV

Mean

Figure 7.4: Attack 2: ensemble models losses (in Million of Euros) injecting fraud types
with the highest impact on the previous week’s best model

7| Experimental Validation 67

Model ID Precision Recall F1-score FPR
Weighted

MCC
Cost

Accuracy

AL_AF 0.0161 0.9408 0.0316 0.2563 0.6982 0.8423

AL_H_IS 0.0093 0.3885 0.0181 0.1851 0.2249 0.6017

AL_H_TH 0.2244 0.3131 0.2614 0.0048 0.4216 0.6542

AL_L_IS 0.0069 0.5456 0.0136 0.3500 0.1966 0.5978

AL_L_TH 0.0110 0.4339 0.0215 0.1730 0.2837 0.6304

AL_M_IS 0.5491 0.6668 0.6023 0.0024 0.7040 0.8322

AL_M_TH 0.0115 0.6926 0.0227 0.2645 0.4285 0.7140

LR_AF 0.1442 0.6754 0.2376 0.0178 0.6909 0.8288

LR_H_IS 0.1517 0.1871 0.1676 0.0047 0.3098 0.5912

LR_H_TH 0.1851 0.3160 0.2335 0.0062 0.4214 0.6549

LR_L_IS 0.1276 0.3905 0.1923 0.0119 0.4722 0.6893

LR_L_TH 0.1158 0.3986 0.1794 0.0135 0.4760 0.6925

LR_M_IS 0.2443 0.7652 0.3704 0.0105 0.7744 0.8773

LR_M_TH 0.1263 0.5833 0.2076 0.0180 0.6165 0.7827

NN_AF 0.1552 0.8401 0.2620 0.0203 0.8279 0.9099

NN_H_IS 0.6208 0.1484 0.2396 0.0004 0.2820 0.5740

NN_H_TH 0.3276 0.2654 0.2932 0.0024 0.3861 0.6315

NN_L_IS 0.0000 0.0000 0.0000 0.0091 -0.0676 0.4955

NN_L_TH 0.0000 0.0000 0.0000 0.0479 -0.1566 0.4760

NN_M_IS 0.6696 0.5776 0.6202 0.0013 0.6354 0.7881

NN_M_TH 0.3552 0.4296 0.3889 0.0035 0.5173 0.7131

RF_AF 0.8334 0.8477 0.8405 0.0008 0.8569 0.9235

RF_H_IS 0.7902 0.1456 0.2459 0.0002 0.2797 0.5727

RF_H_TH 0.4355 0.3112 0.3630 0.0018 0.4258 0.6547

RF_L_IS 0.0000 0.0000 0.0000 0.0006 -0.0170 0.4997

RF_L_TH 0.0093 0.0048 0.0063 0.0023 0.0213 0.5013

RF_M_IS 0.9263 0.6243 0.7459 0.0002 0.6734 0.8121

RF_M_TH 0.5699 0.4611 0.5098 0.0015 0.5449 0.7298

SVM_AF 0.1447 0.7165 0.2408 0.0188 0.7234 0.8488

SVM_H_IS 0.2029 0.2955 0.2406 0.0052 0.4062 0.6452

SVM_H_TH 0.1056 0.3308 0.1601 0.0125 0.4221 0.6592

SVM_L_IS 0.0101 0.5585 0.0199 0.2425 0.3224 0.6580

SVM_L_TH 0.1187 0.5561 0.1957 0.0184 0.5942 0.7689

SVM_M_IS 0.1191 0.8043 0.2074 0.0265 0.7892 0.8889

SVM_M_TH 0.1234 0.5895 0.2041 0.0186 0.6205 0.7854

XGB_AF 0.8283 0.8315 0.8299 0.0008 0.8427 0.9154

XGB_H_IS 0.6489 0.1456 0.2378 0.0004 0.2792 0.5726

XGB_H_TH 0.5798 0.3069 0.4014 0.0010 0.4238 0.6530

XGB_L_IS 0.0359 0.0043 0.0077 0.0005 0.0386 0.5019

XGB_L_TH 0.0035 0.0010 0.0015 0.0012 -0.0036 0.4999

XGB_M_IS 0.8062 0.6415 0.7145 0.0007 0.6863 0.8204

XGB_M_TH 0.5935 0.4105 0.4853 0.0013 0.5061 0.7046

MV 0.9708 0.4129 0.5794 0.0001 0.5100 0.7064

MWU 0.2378 0.5375 0.3297 0.0077 0.5949 0.7649

Table 7.4: Attack 2: models performance at the end of the 12 weeks

68 7| Experimental Validation

7.7.3. Attack 3

In this experiment, we systematically apply all fraud types cyclically to examine the im-
pact of each type on the detection systems we analyse. We inject each different type of
fraud one after the other, in a defined order. In the first week, we introduce frauds that
belong to the Information Stealing scheme and have a Low profile. In the second week,
instead, we move to another type of fraud, i.e., Medium-profile Information Stealing, and
so on. Once we have processed all six fraud types, we start again from the first one, and
we repeat the same procedure to cover the remaining weeks.
As Figure 7.6 shows, High-profile Information Stealing frauds are the ones that con-
tribute the most to the increase in loss for most of the models, with an average increase of
5,688,022.48 e compared to the week before their introduction. Following them, we find
High-profile Transaction Hijacking frauds that cause an average increase of 1,698,591.52 e,
Medium-profile Information Stealing frauds that lead to an average increase of 672,657.10
e, Medium-profile Transaction Hijacking frauds that results in an average increase of
280,355.32 e, Low-profile Information Stealing frauds that contributes an average in-
crease of 151,758.85 e, and finally, Low-profile Transaction Hijacking frauds that leads
to an average increase of 122,322.37 e. In Figure 7.5 we illustrate, for each fraud type,
how many models on average are able to correctly identify a fraud belonging to such type.
About half of the models in our study can accurately identify frauds having a High pro-
file and belonging to the Information Stealing scheme. However, given the high amounts
associated with such transactions, it is not surprising to see that they exert the greatest
impact on the overall losses. This is due to the fact that our custom loss function esti-
mates the loss for each undetected fraud as equal to the amount of the transaction (see
Section 7.1). Consequently, when these fraudulent transactions evade detection, they have
a significant repercussion on the estimated loss. Consistently with previous findings, mod-
els trained on all fraud types exhibit lower losses, as do most models trained specifically
on High-profile frauds. The system that manages to maintain the lowest monetary loss
for almost the entire attack duration is RF_AF, which reported a final loss of 2,984,247.35
e. It is outperformed by SVM_AF only in the last week of testing, with a relatively small
margin of 105,491.97 e. When considering ensemble models, in Figure 7.7, we can observe
that, once again, MWU emerged as the best-performing approach. While both techniques
achieves lower losses when compared to Mean, the difference between them remains highly
pronounced. The loss incurred by MV (12,369,723.52 e) is approximately 4.2 times higher
than the loss incurred by MWU (2,944,925.48 e).

7| Experimental Validation 69

Figure 7.5: Average number of models able to correctly identify a fraudulent transaction
belonging to a specific type

70 7| Experimental Validation

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

tra
ns

ac
tio

n_
hi

ja
ck

in
g

m
ed

iu
m

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

tra
ns

ac
tio

n_
hi

ja
ck

in
g

m
ed

iu
m

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

Fraud Type

0M

5M

10M

15M

20M

25M

30M

M
od

el
 L

os
s (

)

RF_L_IS

LR_L_IS

SVM_L_IS

XGB_L_IS

NN_L_IS

AL_L_IS

RF_M_IS

LR_M_IS

SVM_M_IS

XGB_M_IS

NN_M_IS

AL_M_IS

RF_H_IS

LR_H_IS

SVM_H_IS

XGB_H_IS
NN_H_IS

AL_H_IS

RF_L_TH

LR_L_TH

SVM_L_TH

XGB_L_TH

NN_L_TH

AL_L_TH

RF_M_TH

LR_M_TH

SVM_M_TH

XGB_M_TH

NN_M_TH

AL_M_TH

RF_H_TH

LR_H_TH

SVM_H_TH

XGB_H_TH

NN_H_TH

AL_H_TH

RF_AF

LR_AF

SVM_AF

XGB_AF

NN_AF

AL_AF

Figure 7.6: Attack 3: models losses (in Millions of Euros) when we cyclically injects fraud
types

7| Experimental Validation 71

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

tra
ns

ac
tio

n_
hi

ja
ck

in
g

m
ed

iu
m

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

tra
ns

ac
tio

n_
hi

ja
ck

in
g

m
ed

iu
m

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

Fraud Type

0M

5M

10M

15M

20M

25M

30M

M
od

el
 L

os
s (

)

RF_L_IS

LR_L_IS

SVM_L_IS

XGB_L_IS

NN_L_IS

AL_L_IS

RF_M_IS

LR_M_IS

SVM_M_IS

XGB_M_IS

NN_M_IS

AL_M_IS

RF_H_IS

LR_H_IS

SVM_H_IS

XGB_H_IS
NN_H_IS

AL_H_IS

RF_L_TH

LR_L_TH

SVM_L_TH

XGB_L_TH

NN_L_TH

AL_L_TH

RF_M_TH

LR_M_TH

SVM_M_TH

XGB_M_TH

NN_M_TH

AL_M_TH

RF_H_TH

LR_H_TH

SVM_H_TH

XGB_H_TH

NN_H_TH

AL_H_TH

RF_AF

LR_AF

SVM_AF

XGB_AF

NN_AF

AL_AF

MWU

MAJORITY

MEAN

MV

Mean

Figure 7.7: Attack 3: ensemble models losses (in Millions of Euros) when we cyclically
injects fraud types

72 7| Experimental Validation

Model ID Precision Recall F1-score FPR
Weighted

MCC
Cost

Accuracy

AL_AF 0.0143 0.8359 0.0281 0.2562 0.5821 0.7898

AL_H_IS 0.0097 0.4094 0.0190 0.1851 0.2453 0.6121

AL_H_TH 0.2302 0.3244 0.2693 0.0048 0.4309 0.6598

AL_L_IS 0.0130 0.6689 0.0254 0.2266 0.4447 0.7212

AL_L_TH 0.0123 0.4828 0.0239 0.1730 0.3299 0.6549

AL_M_IS 0.4725 0.4914 0.4818 0.0024 0.5670 0.7445

AL_M_TH 0.0103 0.6188 0.0203 0.2642 0.3570 0.6773

LR_AF 0.1478 0.6942 0.2437 0.0178 0.7063 0.8382

LR_H_IS 0.2367 0.3244 0.2737 0.0047 0.4312 0.6599

LR_H_TH 0.1824 0.3101 0.2297 0.0062 0.4165 0.6520

LR_L_IS 0.1239 0.3779 0.1866 0.0119 0.4620 0.6830

LR_L_TH 0.1076 0.3664 0.1664 0.0135 0.4498 0.6764

LR_M_IS 0.2364 0.7323 0.3574 0.0105 0.7469 0.8609

LR_M_TH 0.1270 0.5864 0.2087 0.0179 0.6189 0.7842

NN_AF 0.1619 0.6746 0.2611 0.0155 0.6932 0.8295

NN_H_IS 0.7414 0.2968 0.4239 0.0005 0.4165 0.6481

NN_H_TH 0.2406 0.2739 0.2561 0.0038 0.3904 0.6350

NN_L_IS 0.1494 0.1579 0.1535 0.0040 0.2821 0.5770

NN_L_TH 0.1143 0.0825 0.0958 0.0028 0.1971 0.5398

NN_M_IS 0.2534 0.2700 0.2614 0.0035 0.3878 0.6332

NN_M_TH 0.2476 0.1837 0.2109 0.0025 0.3118 0.5906

RF_AF 0.8165 0.7538 0.7839 0.0008 0.7768 0.8765

RF_H_IS 0.8856 0.2991 0.4472 0.0002 0.4190 0.6495

RF_H_TH 0.4500 0.3306 0.3812 0.0018 0.4417 0.6644

RF_L_IS 0.6098 0.2028 0.3043 0.0006 0.3345 0.6011

RF_L_TH 0.1781 0.1093 0.1354 0.0022 0.2332 0.5535

RF_M_IS 0.8352 0.2514 0.3865 0.0002 0.3787 0.6256

RF_M_TH 0.3939 0.2266 0.2877 0.0016 0.3540 0.6125

SVM_AF 0.1445 0.7142 0.2403 0.0188 0.7216 0.8477

SVM_H_IS 0.2353 0.3573 0.2838 0.0052 0.4571 0.6761

SVM_H_TH 0.1143 0.3612 0.1736 0.0125 0.4473 0.6744

SVM_L_IS 0.0104 0.5711 0.0204 0.2426 0.3344 0.6643

SVM_L_TH 0.1181 0.5520 0.1946 0.0183 0.5910 0.7668

SVM_M_IS 0.1172 0.7891 0.2040 0.0265 0.7760 0.8813

SVM_M_TH 0.1240 0.5921 0.2051 0.0186 0.6226 0.7867

XGB_AF 0.8120 0.7400 0.7743 0.0008 0.7654 0.8696

XGB_H_IS 0.7888 0.2958 0.4303 0.0004 0.4159 0.6477

XGB_H_TH 0.6020 0.3378 0.4328 0.0010 0.4489 0.6684

XGB_L_IS 0.6653 0.2285 0.3402 0.0005 0.3580 0.6140

XGB_L_TH 0.3146 0.1226 0.1765 0.0012 0.2519 0.5607

XGB_M_IS 0.6313 0.2638 0.3721 0.0007 0.3884 0.6316

XGB_M_TH 0.4265 0.2104 0.2818 0.0013 0.3399 0.6046

MV 0.9819 0.4151 0.5835 0.0000 0.5117 0.7075

MWU 0.8390 0.7581 0.7965 0.0006 0.7805 0.8787

Table 7.5: Attack 3: models performance at the end of the 12 weeks

73

8| Limitations and Future Works

In this section, we examine the main limitations inherent in our work and subsequently
propose potential avenues for future research in this area.

8.1. Limitations

Our framework has the following limitations:

• We designed the aggregation procedure we employ in this study to be adaptable, yet
it relies on a minimum set of features (TransactionId, Timestamp, UserID, Amount,
IBAN_CC, CC_ASN, Fraud) to effectively operate with different types of datasets.
Specific attributes in real-world banking datasets are often not revealed. However,
they should comprise fields analogous to those we considered in our research, such
as date/time stamps, transaction amounts, IBAN, and user identifiers.

• The fraud generator, despite the possibility of generating fraud following even more
complex strategies, is currently implemented based on the features in the dataset
used. This adherence to the current dataset makes it unusable with datasets that
do not have the same features. Nevertheless, thanks to the framework’s modular
architecture, it can be easily replaced with another generator that suits the new
dataset.

• Our analysis focuses on a dataset comprising transactions from 2014-2015. Over
time, customer behaviour can change consistently, potentially affecting the obtained
results. It would be valuable to conduct a fresh analysis using a more recent dataset
and compare the outcomes to observe the nature and extent of these changes.

• During the detection systems evaluation phase, we do not take any immediate ac-
tions, such as account freezing, upon detecting a fraud. This countermeasure may
limit the attacker’s freedom of action in a real-world scenario.

74 8| Limitations and Future Works

8.2. Future Works

The field of fraud detection for online banking is constantly evolving, with ongoing re-
search efforts. In light of this, we propose potential extensions to our work:

• Currently, our framework includes six of the most commonly utilised models in this
field. As a potential avenue for future development, expanding the repertoire of
models within the framework can provide a broader perspective. We can consider
the inclusion of models such as Hidden Markov Models [13, 47, 61], Self-Organizing
Maps [50], peer group analysis [37, 68], and LSTM (Long Short-Term Memory)
[10, 11, 48], further enriching the framework’s capabilities and enhancing the overall
understanding of the subject matter.

• To enhance the completeness of the framework, we can incorporate additional fea-
ture selection and model selection procedures. By integrating new techniques and
algorithms for feature selection, the framework can be equipped to handle a broader
range of data characteristics and improve the effectiveness of model training. Simi-
larly, incorporating advanced model selection procedures allows for the exploration
of different models’ hyper-parameters, enabling a more comprehensive analysis po-
tentially leading to more accurate predictions.

• Apart from the ensemble strategies we showcase in this study, numerous other en-
semble techniques can be implemented and incorporated to expand our analysis.
These techniques include fuzzy rank-based ensemble [40], stacking generalisation
[69] and different voting mechanisms [34].

• Another potential development and extension of the framework may involve the
integration of modules that allow testing models against adversarial attacks. To
the best of our knowledge, there is no framework specifically tailored for conducting
targeted adversarial attacks in the field of fraud detection.

75

9| Conclusions

In this thesis, we developed FraudBench, a versatile and highly customisable framework
to evaluate a range of Fraud Detection Systems based on commonly employed Machine
Learning models within the banking and financial industry context. Thanks to its modular
design, various components can be easily modified, replaced, or extended to suit different
research purposes. Moreover, its customisable nature allows researchers to fine-tune pa-
rameters, adjust configurations, and incorporate domain-specific knowledge. We validated
our approach through an experimental evaluation conducted on a dataset from an Ital-
ian banking group, allowing us to obtain experimental results that demonstrate real-world
applicability. Our results showed that a higher model complexity does not always guaran-
tee higher performance. Contrary to expectations, we consistently observed that simpler
detection systems based on Support Vector Machines and Logistic Regression can achieve
comparable or, sometimes, even better performance compared to more complex models.
Secondly, since in the banking and financial context, false positives and false negatives
have distinct impacts in terms of monetary loss, commonly used evaluation metrics alone
may not provide an accurate assessment of a detection system performance. In our second
attack simulation (see Subsection 7.7.2), we demonstrated that the detection system with
the best standard performance metrics values yielded a ∼ 40% higher loss with respect to
the model that scored the lowest loss. This points out the importance of selecting a model
based on its suitability for the specific task at hand rather than relying solely on model
complexity and standard evaluation metrics as performance indicators. Our experiments
also highlighted the importance of carefully considering the choice of ensemble techniques.
Surprisingly, the MV approach did not prove to be an effective alternative in minimising
losses against an adaptive fraudulent behaviour. In contrast, a more informed strategy,
such as the Multiplicative Weight Update ensemble technique, demonstrated its ability to
dynamically adapt and learn from the data, resulting in an superior performance across
the three attacks. On average, MWU scored a monetary loss 78% lower than MV and
82% lower than the average individual models loss. The main limitation of our work is
that, although we designed our framework to be adaptable, the transaction aggregation
and fraud generation procedures rely on a minimal set of features to work properly with

76 9| Conclusions

different types of datasets. However, thanks to the modular design, the involved compo-
nents can be easily adapted or replaced. Future developments include the integration of
new Machine Learning models and ensemble strategies, additional feature selection and
model selection procedures, and the extension of the framework to allow testing models
against adversarial attacks.

77

Bibliography

[1] Machine learning for fraud detection. URL https://www.ravelin.com/insights/

machine-learning-for-fraud-detection.

[2] Payments statistics: 2021, 2022. URL https://www.ecb.europa.eu/press/pr/

stats/paysec/html/ecb.pis2021~956efe1ee6.en.html.

[3] Provvedimento banca d’italia del 28 marzo 2022: richiesta di potenzia-
mento delle misure antiriciclaggio, 2022. URL https://n26.com/it-it/

provvedimento-banca-ditalia-2022.

[4] Top aml fines in 2022, 2023. URL https://complyadvantage.com/insights/

aml-fines-2022/.

[5] M. M. Ahsan, M. A. P. Mahmud, P. K. Saha, K. D. Gupta, and Z. Siddique. Effect
of data scaling methods on machine learning algorithms and model performance.
Technologies, 9(3), 2021. ISSN 2227-7080. doi: 10.3390/technologies9030052. URL
https://www.mdpi.com/2227-7080/9/3/52.

[6] M. A. Alia, N. Hussinb, and I. A. Abedc. E-banking fraud detection: A short. 2019.

[7] A. Alsayed and A. Bilgrami. E-banking security: Internet hacking, phishing attacks,
analysis and prevention of fraudulent activities. International Journal of Emerging
Technology and advanced engineering, 7(1):109–115, 2017.

[8] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of computing, 8(1):121–164, 2012.

[9] F. M. Benati. An analysis of defence mechanisms against evasion attacks in the fraud
detection domain. Master’s thesis, Politecnico di Milano, 2020-21.

[10] I. Benchaji, S. Douzi, and B. Ouahidi. Credit card fraud detection model based on
lstm recurrent neural networks. Journal of Advances in Information Technology, 12:
113–118, 01 2021. doi: 10.12720/jait.12.2.113-118.

[11] I. Benchaji, S. Douzi, B. Ouahidi, and J. Jaafari. Enhanced credit card fraud detec-

https://www.ravelin.com/insights/machine-learning-for-fraud-detection
https://www.ravelin.com/insights/machine-learning-for-fraud-detection
https://www.ecb.europa.eu/press/pr/stats/paysec/html/ecb.pis2021~956efe1ee6.en.html
https://www.ecb.europa.eu/press/pr/stats/paysec/html/ecb.pis2021~956efe1ee6.en.html
https://n26.com/it-it/provvedimento-banca-ditalia-2022
https://n26.com/it-it/provvedimento-banca-ditalia-2022
https://complyadvantage.com/insights/aml-fines-2022/
https://complyadvantage.com/insights/aml-fines-2022/
https://www.mdpi.com/2227-7080/9/3/52

78 | Bibliography

tion based on attention mechanism and lstm deep model. Journal of Big Data, 8, 12
2021. doi: 10.1186/s40537-021-00541-8.

[12] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. J.
Mach. Learn. Res., 13(null):281–305, feb 2012. ISSN 1532-4435.

[13] V. Bhusari and S. Patil. Application of hidden markov model in credit card fraud
detection. International Journal of Distributed and Parallel systems, 2, 11 2011. doi:
10.5121/ijdps.2011.2618.

[14] A. Bicknell. Cyber security threats to digital banking, 2022. URL https://www.

globalsign.com/en/blog/cyber-security-threats-digital-banking.

[15] C. M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer, 1 edition, 2007. ISBN 0387310738. URL http:

//www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/

dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%

26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%

3D0387310738.

[16] J. Bishop. HISTORY AND PHILOSOPHY OF NEURAL NETWORKS, pages 22–
96. 01 2015. ISBN 978-1780215204.

[17] L. Breiman. Random forests. Machine Learning, 45:5–32, 10 2001. doi: 10.1023/A:
1010950718922.

[18] J. Brownlee. Ensemble learning algorithms with Python: Make better predictions with
bagging, boosting, and stacking. Machine Learning Mastery, 2021.

[19] M. Carminati, R. Caron, F. Maggi, I. Epifani, and S. Zanero. Banksealer: A deci-
sion support system for online banking fraud analysis and investigation. Comput-
ers & Security, 53:175–186, 2015. ISSN 0167-4048. doi: https://doi.org/10.1016/j.
cose.2015.04.002. URL https://www.sciencedirect.com/science/article/pii/

S0167404815000437.

[20] M. Carminati, M. Polino, A. Continella, A. Lanzi, F. Maggi, and S. Zanero. Security
evaluation of a banking fraud analysis system. ACM Trans. Priv. Secur., 21(3), apr
2018. ISSN 2471-2566. doi: 10.1145/3178370. URL https://doi.org/10.1145/

3178370.

[21] F. Cartella, O. Anunciacao, Y. Funabiki, D. Yamaguchi, T. Akishita, and
O. Elshocht. Adversarial attacks for tabular data: Application to fraud detection
and imbalanced data, 2021.

https://www.globalsign.com/en/blog/cyber-security-threats-digital-banking
https://www.globalsign.com/en/blog/cyber-security-threats-digital-banking
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
https://www.sciencedirect.com/science/article/pii/S0167404815000437
https://www.sciencedirect.com/science/article/pii/S0167404815000437
https://doi.org/10.1145/3178370
https://doi.org/10.1145/3178370

| Bibliography 79

[22] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. pages 785–794,
08 2016. doi: 10.1145/2939672.2939785.

[23] C. Cortes and V. Vapnik. Support-vector networks. Chem. Biol. Drug Des., 297:
273–297, 01 2009. doi: 10.1007/%2FBF00994018.

[24] J. Cramer. The origins of logistic regression. Tinbergen Institute, Tinbergen Institute
Discussion Papers, 01 2002. doi: 10.2139/ssrn.360300.

[25] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi. Credit card
fraud detection and concept-drift adaptation with delayed supervised information. In
2015 International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2015.
doi: 10.1109/IJCNN.2015.7280527.

[26] M. dell’Economia e delle finanze. Rapporto statistico sulle frodi con le carte di paga-
mento, 2021. URL https://www.dt.mef.gov.it/export/sites/sitodt/modules/

documenti_it/antifrode_mezzi_pagamento/antifrode_mezzi_pagamento/

Rapporto-statistico-sulle-frodi-con-le-carte-di-pagamento-edizione-2021.

pdf.

[27] S. Dhankhad, E. Mohammed, and B. Far. Supervised machine learning algorithms
for credit card fraudulent transaction detection: A comparative study. In 2018 IEEE
International Conference on Information Reuse and Integration (IRI), pages 122–
125, July 2018. doi: 10.1109/IRI.2018.00025.

[28] A. Dignani. Fraudsdigger: an active learning tool for online banking fraud detection.
Master’s thesis, Politecnico di Milano, 2017-18.

[29] M. N. E-Arefin. A comparative study of machine learning classifiers for credit card
fraud detection. International Journal of Innovative Technology and Interdisciplinary
Sciences, 3(1):395–406, Mar. 2020. URL https://www.ijitis.org/index.php/

ijitis/article/view/46.

[30] F. Fiordelisi, M.-G. Soana, and P. Schwizer. Reputational losses and operational risk
in banking. The European Journal of Finance, 20(2):105–124, 2014. doi: 10.1080/
1351847X.2012.684218. URL https://doi.org/10.1080/1351847X.2012.684218.

[31] J. Fong. Global banking fraud index 2023, 2023. URL https://seon.io/resources/

global-banking-fraud-index/#h-costs-of-fraud.

[32] K. Fu, D. Cheng, Y. Tu, and L. Zhang. Credit card fraud detection using convo-
lutional neural networks. In A. Hirose, S. Ozawa, K. Doya, K. Ikeda, M. Lee, and

https://www.dt.mef.gov.it/export/sites/sitodt/modules/documenti_it/antifrode_mezzi_pagamento/antifrode_mezzi_pagamento/Rapporto-statistico-sulle-frodi-con-le-carte-di-pagamento-edizione-2021.pdf
https://www.dt.mef.gov.it/export/sites/sitodt/modules/documenti_it/antifrode_mezzi_pagamento/antifrode_mezzi_pagamento/Rapporto-statistico-sulle-frodi-con-le-carte-di-pagamento-edizione-2021.pdf
https://www.dt.mef.gov.it/export/sites/sitodt/modules/documenti_it/antifrode_mezzi_pagamento/antifrode_mezzi_pagamento/Rapporto-statistico-sulle-frodi-con-le-carte-di-pagamento-edizione-2021.pdf
https://www.dt.mef.gov.it/export/sites/sitodt/modules/documenti_it/antifrode_mezzi_pagamento/antifrode_mezzi_pagamento/Rapporto-statistico-sulle-frodi-con-le-carte-di-pagamento-edizione-2021.pdf
https://www.ijitis.org/index.php/ijitis/article/view/46
https://www.ijitis.org/index.php/ijitis/article/view/46
https://doi.org/10.1080/1351847X.2012.684218
https://seon.io/resources/global-banking-fraud-index/#h-costs-of-fraud
https://seon.io/resources/global-banking-fraud-index/#h-costs-of-fraud

80 | Bibliography

D. Liu, editors, Neural Information Processing, pages 483–490, Cham, 2016. Springer
International Publishing. ISBN 978-3-319-46675-0.

[33] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples, 2015.

[34] P. Grotti. Novel evasion attacks against banking fraud detection systems. Master’s
thesis, Politecnico di Milano, 2019-20.

[35] C. Guo, M. Rana, M. Cisse, and L. van der Maaten. Countering adversarial images
using input transformations. In International Conference on Learning Representa-
tions, 2018. URL https://openreview.net/forum?id=SyJ7ClWCb.

[36] S. Karanam. Curse of dimensionality — a “curse” to ma-
chine learning, 2021. URL https://towardsdatascience.com/

curse-of-dimensionality-a-curse-to-machine-learning-c122ee33bfeb.

[37] Y. Kim and S. Y. Sohn. Stock fraud detection using peer group analysis. Ex-
pert Systems with Applications, 39(10):8986–8992, 2012. ISSN 0957-4174. doi:
https://doi.org/10.1016/j.eswa.2012.02.025. URL https://www.sciencedirect.

com/science/article/pii/S0957417412002692.

[38] G. K. Kulatilleke. Credit card fraud detection - classifier selection strategy, 2022.

[39] P. Kumar, R. Bhatnagar, K. Gaur, and A. Bhatnagar. Classification of imbalanced
data:review of methods and applications. IOP Conference Series: Materials Sci-
ence and Engineering, 1099(1):012077, mar 2021. doi: 10.1088/1757-899X/1099/1/
012077. URL https://dx.doi.org/10.1088/1757-899X/1099/1/012077.

[40] R. Kundu, H. Basak, P. K. Singh, A. Ahmadian, M. Ferrara, and R. Sarkar. Fuzzy
rank-based fusion of cnn models using gompertz function for screening covid-19 ct-
scans. Scientific reports, 11(1):14133, 2021.

[41] D. Labanca, L. Primerano, M. Markland-Montgomery, M. Polino, M. Carminati, and
S. Zanero. Amaretto: An active learning framework for money laundering detection.
IEEE Access, 10:41720–41739, 2022. doi: 10.1109/ACCESS.2022.3167699.

[42] D. Liu, L. Wu, H. Zhao, F. Boussaid, M. Bennamoun, and X. Xie. Jacobian norm
with selective input gradient regularization for improved and interpretable adversarial
defense, 2022.

[43] D. Malekian and M. R. Hashemi. An adaptive profile based fraud detection
framework for handling concept drift. In 2013 10th International ISC Confer-

https://openreview.net/forum?id=SyJ7ClWCb
https://towardsdatascience.com/curse-of-dimensionality-a-curse-to-machine-learning-c122ee33bfeb
https://towardsdatascience.com/curse-of-dimensionality-a-curse-to-machine-learning-c122ee33bfeb
https://www.sciencedirect.com/science/article/pii/S0957417412002692
https://www.sciencedirect.com/science/article/pii/S0957417412002692
https://dx.doi.org/10.1088/1757-899X/1099/1/012077

| Bibliography 81

ence on Information Security and Cryptology (ISCISC), pages 1–6, 2013. doi:
10.1109/ISCISC.2013.6767338.

[44] H. Masnadi-Shirazi and N. Vasconcelos. Asymmetric boosting. In Proceedings of the
24th international conference on Machine learning, pages 609–619, 2007.

[45] K. Melcher. A friendly introduction to [deep] neural networks, 2021. URL https:

//www.knime.com/blog/a-friendly-introduction-to-deep-neural-networks.

[46] F. Monti. Poisoning attacks against banking fraud detection systems. Master’s thesis,
Politecnico di Milano, 12 2019-20.

[47] M. N. Mr. Abjijeet More, Dnyaneshwari Khane and T. Bhoir. Online trans-
action fraud detection and prevention using hmm and behavior analysis. Com-
puter Integrated Manufacturing Systems, 29(5):266–272, May 2023. URL http:

//cims-journal.com/index.php/CN/article/view/897.

[48] H. Najadat, O. Altiti, A. A. Aqouleh, and M. Younes. Credit card fraud detection
based on machine and deep learning. In 2020 11th International Conference on
Information and Communication Systems (ICICS), pages 204–208, 2020. doi: 10.
1109/ICICS49469.2020.239524.

[49] M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba, V. Zant-
edeschi, N. Baracaldo, B. Chen, H. Ludwig, I. M. Molloy, and B. Edwards. Adver-
sarial robustness toolbox v1.0.0, 2019.

[50] D. Olszewski. Fraud detection using self-organizing map visualizing the user pro-
files. Knowledge-Based Systems, 70:324–334, 2014. ISSN 0950-7051. doi: https:
//doi.org/10.1016/j.knosys.2014.07.008. URL https://www.sciencedirect.com/

science/article/pii/S0950705114002652.

[51] T. Paladini. Rad-x: An adversarial training approach for fraud detection systems.
Master’s thesis, Politecnico di Milano, 2020-21.

[52] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a defense
to adversarial perturbations against deep neural networks, 2016.

[53] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Kurakin, C. Xie,
Y. Sharma, T. Brown, A. Roy, A. Matyasko, V. Behzadan, K. Hambardzumyan,
Z. Zhang, Y.-L. Juang, Z. Li, R. Sheatsley, A. Garg, J. Uesato, W. Gierke, Y. Dong,
D. Berthelot, P. Hendricks, J. Rauber, R. Long, and P. McDaniel. Technical report
on the cleverhans v2.1.0 adversarial examples library, 2018.

https://www.knime.com/blog/a-friendly-introduction-to-deep-neural-networks
https://www.knime.com/blog/a-friendly-introduction-to-deep-neural-networks
http://cims-journal.com/index.php/CN/article/view/897
http://cims-journal.com/index.php/CN/article/view/897
https://www.sciencedirect.com/science/article/pii/S0950705114002652
https://www.sciencedirect.com/science/article/pii/S0950705114002652

82 | Bibliography

[54] R. Prati, G. Batista, and M.-C. Monard. Class imbalances versus class overlapping:
An analysis of a learning system behavior. pages 312–321, 01 2004. ISBN 978-3-540-
21459-5. doi: 10.1007/978-3-540-24694-7_32.

[55] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[56] A. Roy, J. Sun, R. Mahoney, L. Alonzi, S. Adams, and P. Beling. Deep learning
detecting fraud in credit card transactions. In 2018 Systems and Information En-
gineering Design Symposium (SIEDS), pages 129–134, 2018. doi: 10.1109/SIEDS.
2018.8374722.

[57] D. Ruta and B. Gabrys. Classifier selection for majority voting. Information Fusion,
6:63–81, 03 2005. doi: 10.1016/j.inffus.2004.04.008.

[58] E. Sandberg. The average number of credit card transactions per
day and year, 2020. URL https://www.cardrates.com/advice/

number-of-credit-card-transactions-per-day-year/.

[59] L. Santini. Evasion attacks against banking fraud detection systems. Master’s thesis,
Politecnico di Milano, 2018-19.

[60] SEON. False positives. URL https://seon.io/resources/dictionary/

false-positives/#h-why-are-false-positives-a-problem.

[61] A. Srivastava, A. Kundu, S. Sural, and A. Majumdar. Credit card fraud detection us-
ing hidden markov model. IEEE Transactions on Dependable and Secure Computing,
5(1):37–48, 2008. doi: 10.1109/TDSC.2007.70228.

[62] Stripe. Stripe snapshot - online fraud trends and behavior,
2017. URL https://b.stripecdn.com/site-srv/assets/files/blog/

stripe-snapshot-fraud-5e46ef06938227a9e14d1632e7817b93e849ffc5.pdf.

[63] SuperAnnotate. Webinar 1 | supercharge your cv pipeline with ac-
tive learning, 2021. URL https://www.superannotate.com/blog/

supercharge-computer-vision-pipeline-with-active-learning.

[64] D. Varmedja, M. Karanovic, S. Sladojevic, M. Arsenovic, and A. Anderla. Credit card
fraud detection - machine learning methods. In 2019 18th International Symposium
INFOTEH-JAHORINA (INFOTEH), pages 1–5, 2019. doi: 10.1109/INFOTEH.
2019.8717766.

[65] K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, and K. Li. Ai2: Train-
ing a big data machine to defend. In 2016 IEEE 2nd International Conference

https://www.cardrates.com/advice/number-of-credit-card-transactions-per-day-year/
https://www.cardrates.com/advice/number-of-credit-card-transactions-per-day-year/
https://seon.io/resources/dictionary/false-positives/#h-why-are-false-positives-a-problem
https://seon.io/resources/dictionary/false-positives/#h-why-are-false-positives-a-problem
https://b.stripecdn.com/site-srv/assets/files/blog/stripe-snapshot-fraud-5e46ef06938227a9e14d1632e7817b93e849ffc5.pdf
https://b.stripecdn.com/site-srv/assets/files/blog/stripe-snapshot-fraud-5e46ef06938227a9e14d1632e7817b93e849ffc5.pdf
https://www.superannotate.com/blog/supercharge-computer-vision-pipeline-with-active-learning
https://www.superannotate.com/blog/supercharge-computer-vision-pipeline-with-active-learning

9| BIBLIOGRAPHY 83

on Big Data Security on Cloud (BigDataSecurity), IEEE International Confer-
ence on High Performance and Smart Computing (HPSC), and IEEE Interna-
tional Conference on Intelligent Data and Security (IDS), pages 49–54, 2016. doi:
10.1109/BigDataSecurity-HPSC-IDS.2016.79.

[66] A. Ventura. Improving poisoning attacks against banking fraud detection systems.
Master’s thesis, Politecnico di Milano, 2021-22.

[67] P. Wang, Q. Wang, Y. Zhang, and Y. Wu. Defense mechanism against adversarial
attacks based on chaotic map encryption. Journal of Physics: Conference Series,
2037(1):012025, sep 2021. doi: 10.1088/1742-6596/2037/1/012025. URL https:

//dx.doi.org/10.1088/1742-6596/2037/1/012025.

[68] D. Weston, D. Hand, N. Adams, C. Whitrow, and P. Juszczak. Plastic card fraud
detection using peer group analysis. Adv. Data Analysis and Classification, 2:45–62,
04 2008. doi: 10.1007/s11634-008-0021-8.

[69] D. H. Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

[70] L. Yang and A. Shami. On hyperparameter optimization of machine learning al-
gorithms: Theory and practice. Neurocomputing, 415:295–316, 2020. ISSN 0925-
2312. doi: https://doi.org/10.1016/j.neucom.2020.07.061. URL https://www.

sciencedirect.com/science/article/pii/S0925231220311693.

[71] L. Yu and H. Liu. Feature selection for high-dimensional data: A fast correlation-
based filter solution. In Proceedings of the 20th international conference on machine
learning (ICML-03), pages 856–863, 2003.

https://dx.doi.org/10.1088/1742-6596/2037/1/012025
https://dx.doi.org/10.1088/1742-6596/2037/1/012025
https://www.sciencedirect.com/science/article/pii/S0925231220311693
https://www.sciencedirect.com/science/article/pii/S0925231220311693

85

A| Appendix A: Adversarial
Neural Network Performance
Evaluation

A.1. Adversarial Machine Learning

Figure A.1: A demonstration of an adversarial sample generated by applying FGSM to
GoogleNet [33]

Adversarial Machine Learning is a field of study that focuses on understanding and defend-
ing against adversarial attacks on Machine Learning models. It explores the vulnerabilities
of Machine Learning algorithms to intentional manipulation and develops techniques to
enhance their robustness. In traditional Machine Learning, we train and test models on
the assumption that the data they encounter during deployment comes from the same
distribution as the training data. However, adversaries can exploit vulnerabilities in the
models by intentionally modifying the input data to deceive or manipulate their behaviour.
These modifications are known as adversarial examples. Adversarial examples are care-
fully crafted inputs that are slightly perturbed from the original data but can cause the
Machine Learning model to make incorrect predictions or output misleading results. As
Figure A.1 shows, the perturbations are often imperceptible to human observers but can
have a significant impact on the model’s decision-making process. Adversarial Machine

86 A| Appendix A: Adversarial Neural Network Performance Evaluation

Learning aims to understand how and why adversarial attacks work, develop techniques to
detect and mitigate them and design more robust and resilient Machine Learning models.
Researchers in this field explore various defence strategies such as adversarial training,
where they train models using both clean and adversarial examples to enhance their abil-
ity to handle such attacks. Other techniques include defensive distillation [52], input
transformation [35], and regularization [42]. The study of Adversarial Machine Learn-
ing is crucial as Machine Learning models are increasingly used in critical applications
such as autonomous driving, medical diagnosis, and cybersecurity. By understanding and
mitigating adversarial attacks, researchers and practitioners can improve the reliability
and security of these models, ensuring they perform as intended even in the presence of
malicious actors.

A.2. Application of Adversarial Machine Learning to

Fraud Detection

Adversarial examples originally emerged in the context of image recognition, where slight
perturbations to input images can deceive Machine Learning models into misclassifying
them. However, the concepts and techniques behind adversarial attacks can be extended
and applied to other domains, including fraud detection. In contrast to the image classifi-
cation domain, the banking fraud detection domain primarily deals with data samples that
have a limited number of features. This unique characteristic poses challenges for apply-
ing conventional approaches. However, in recent years, researchers have introduced novel
methodologies to carry out impactful adversarial attacks [34, 46, 59, 66], emphasizing the
significance of addressing this problem. Alongside the exploration of novel methods to
evade detection systems, an extensive research has been conducted to develop effective
defence mechanisms against adversarial attacks [9, 28, 51]. To provide readers with an
understanding of how a model equipped with a defence mechanism performs in a context
similar to the one we tested our standard models on, we conducted the same experiments
described in Section 7.7 employing a Neural Network that incorporates adversarial regu-
larization. Adversarial training was initially introduced as adversarial regularization by
Goodfellow et al. [33]. It is a technique aimed at fortifying a model against adversarial
examples. The core idea of adversarial training is to embed the same procedure used to
generate such examples into the training algorithm to train the model to identify adver-
sarial examples. This is accomplished by incorporating a regularization term into the loss
function of the Machine Learning model, as proposed by the authors.

A| Appendix A: Adversarial Neural Network Performance Evaluation 87

A.3. Experimental Results

It is essential to recall that the experiments we conduct do not primarily focus on Adver-
sarial Machine Learning. Consequently, the purpose of this comparison is not to evaluate
the effectiveness of the implemented defence mechanism, as we are not specifically sim-
ulating an adversarial attack scenario. Rather, the primary objective is to assess the
behaviour of a model equipped with a defence mechanism within each experimental con-
text.
Figures A.2, A.3, and A.4 present the performance of the neural network with adversar-
ial regularization in experiments 1, 2, and 3, respectively. Across all three experiments,
the most effective FDS based on the Adversarial Neural Network is the one trained on
all types of fraud, followed by FDSs trained on High-profile fraud cases. Conversely, the
detection systems trained on Medium and Low-profile frauds, unsurprisingly, are the least
successful ones.
In experiment 1, the adversarial neural network leading detection system (ADV_NN_AF)
performs slightly worse (+0.38 %) than the corresponding version of standard Neural Net-
work (NN_AF), reaching a loss of 2,174,298.89 e. Regarding the systems trained on specific
types of frauds, apart from ADV_NN_L_TH and ADV_NN_M_TH, the performances are better
compared to the version that does not incorporate the defence mechanism. The highest
margin is reached by ADV_NN_H_TH that has been able to reduce the losses by 7,742,209.23
e (-71.23 %). It is also worth noting that, in the worst-case scenario, the increase in loss
does not exceed 0.76 %.
In experiment 2, not only the ADV_NN_AF significantly outperforms its standard version
by a wide margin (-67.68 %), but it also emerges as the overall best-performing model
in the long run. With a final loss of 3,611,186.67 e ADV_NN_AF surpasses the previous
top-performing model (SVM_H_TH) by a margin of 256,901.8 e. However, this comes at
a cost. Although the percentage of detected fraud is the highest among all detection
systems (94.8 %), the precision of ADV_NN_AF is very low (10 %) and, consequently, the
value of false positives higher (∼ 3x) compared to the best SVM and the standard NN
corresponding version.
Experiment 3 yields a similar result, as ADV_NN_AF showcases significantly better perfor-
mance than NN_AF (achieving a remarkable reduction in loss of 63.12 %) and also performs
marginally better (by approximately 5 %) than the previous top-performing model which
is the SVM_AF.
As Table A.1, A.1 and A.1 show, the detection system based on Adversarial Neural Net-
work, in most of the cases demonstrates superior performance. However, there are a few
instances where this is not true and these exceptions emphasize the fact that the integra-

88 A| Appendix A: Adversarial Neural Network Performance Evaluation

tion of a defense mechanism does not always guarantee an improvement in the model’s
performance.

A| Appendix A: Adversarial Neural Network Performance Evaluation 89

lo
w_

tra
ns

ac
tio

n_
hi

ja
ck

in
g

m
ed

iu
m

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

tra
ns

ac
tio

n_
hi

ja
ck

in
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

Fraud Type

0M

5M

10M

15M

20M

25M

M
od

el
 L

os
s (

)

RF_L_IS

LR_L_IS

SVM_L_IS

XGB_L_IS

NN_L_IS

ADV_NN_L_IS

AL_L_IS

RF_M_IS

LR_M_IS

SVM_M_IS

XGB_M_IS

NN_M_IS

ADV_NN_M_IS

AL_M_IS

RF_H_IS

LR_H_IS

SVM_H_IS

XGB_H_IS

NN_H_IS

ADV_NN_H_IS

AL_H_IS

RF_L_TH

LR_L_TH

SVM_L_TH

XGB_L_TH

NN_L_TH
ADV_NN_L_TH

AL_L_TH

RF_M_TH

LR_M_TH
SVM_M_TH

XGB_M_TH

NN_M_TH

ADV_NN_M_TH

AL_M_TH

RF_H_TH

LR_H_TH

SVM_H_TH

XGB_H_TH

NN_H_TH

ADV_NN_H_TH

AL_H_TH

RF_AF

LR_AF

SVM_AF

XGB_AF

NN_AF
ADV_NN_AF

AL_AF

Figure A.2: Attack 1-bis: adversarial neural network models losses (in Millions of Euros)
injecting fraud types following a random policy

90 A| Appendix A: Adversarial Neural Network Performance Evaluation

m
ed

iu
m

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

Fraud Type

0M

10M

20M

30M

40M

M
od

el
 L

os
s (

)

RF_L_IS

LR_L_IS

SVM_L_IS

XGB_L_IS

NN_L_IS

ADV_NN_L_IS

AL_L_IS

RF_M_IS

LR_M_IS

SVM_M_IS

XGB_M_IS

NN_M_IS
ADV_NN_M_IS

AL_M_IS

RF_H_IS

LR_H_IS

SVM_H_IS

XGB_H_IS

NN_H_IS

ADV_NN_H_IS

AL_H_IS

RF_L_TH

LR_L_TH

SVM_L_TH

XGB_L_TH

NN_L_TH

ADV_NN_L_TH

AL_L_TH

RF_M_TH

LR_M_TH
SVM_M_TH

XGB_M_TH
NN_M_TH

ADV_NN_M_TH

AL_M_TH

RF_H_TH

LR_H_TH

SVM_H_TH

XGB_H_TH

NN_H_TH

ADV_NN_H_TH

AL_H_TH

RF_AF

LR_AF

SVM_AF

XGB_AF

NN_AF

ADV_NN_AF

AL_AF

Figure A.3: Attack 2-bis: adversarial neural network models losses (in Million of Euros)
injecting fraud types with highest impact on previous week’s best model

A| Appendix A: Adversarial Neural Network Performance Evaluation 91

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

tra
ns

ac
tio

n_
hi

ja
ck

in
g

m
ed

iu
m

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

lo
w_

in
fo

rm
at

io
n_

st
ea

lin
g

m
ed

iu
m

_in
fo

rm
at

io
n_

st
ea

lin
g

hi
gh

_in
fo

rm
at

io
n_

st
ea

lin
g

lo
w_

tra
ns

ac
tio

n_
hi

ja
ck

in
g

m
ed

iu
m

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

hi
gh

_t
ra

ns
ac

tio
n_

hi
ja

ck
in

g

Fraud Type

0M

5M

10M

15M

20M

25M

30M

35M

M
od

el
 L

os
s (

)

RF_L_IS

LR_L_IS

SVM_L_IS

XGB_L_IS

NN_L_IS

ADV_NN_L_IS

AL_L_IS

RF_M_IS

LR_M_IS

SVM_M_IS

XGB_M_IS

NN_M_IS
ADV_NN_M_IS

AL_M_IS

RF_H_IS

LR_H_IS

SVM_H_IS

XGB_H_IS
NN_H_IS

ADV_NN_H_IS

AL_H_IS

RF_L_TH

LR_L_TH

SVM_L_TH

XGB_L_TH

NN_L_TH

ADV_NN_L_TH

AL_L_TH

RF_M_TH

LR_M_TH

SVM_M_TH

XGB_M_TH

NN_M_TH

ADV_NN_M_TH

AL_M_TH

RF_H_TH

LR_H_TH

SVM_H_TH

XGB_H_TH

NN_H_TH

ADV_NN_H_TH

AL_H_TH

RF_AF

LR_AF

SVM_AF

XGB_AF

NN_AF

ADV_NN_AF

AL_AF

Figure A.4: Attack 3-bis: adversarial neural network models losses (in Millions of Euros)
when we cyclically injects fraud types

92 A| Appendix A: Adversarial Neural Network Performance Evaluation

Fraud type ID Adversarial NN Neural Network Loss Gap

AF 2,174,298.97 e 2,166,160.84 e +0.38 %

H_IS 2,919,045.4 e 3,137,902.43 e -6.97 %

H_TH 3,126,027.06 e 10,868,236.29 e -71.23 %

M_IS 26,125,037.99 e 26,664,110.93 e -2.02 %

M_TH 26,897,671.83 e 26,695,408.53 e +0.76 %

L_IS 27,399,166.75 e 27,440,748.01 e -0.15 %

L_TH 27,670,569.68 e 27,566,497.84 e +0.38 %

Table A.1: Loss difference, in experiment 1, between adversarial neural network and
standard neural network-based detection systems.

Fraud type ID Adversarial NN Neural Network Loss Gap

AF 3,611,186.67 e 11,172,286.58 e -67.68 %

H_IS 15,842,722.55 e 14,773,603.26 e +7.23 %

H_TH 3,825,588.47 e 13,041,777.59 e -70.67 %

M_IS 38,064,166.21 e 38,149,863.82 e -0.22 %

M_TH 38,966,132.2 e 38,765,759.94 e +0.52 %

L_IS 40,615,757.58 e 41,085,242.9 e -1.14 %

L_TH 43,330,437.1 e 41,079,875.87 e +5.47 %

Table A.2: Loss difference, in experiment 2, between adversarial neural network and
standard neural network-based detection systems.

A| Appendix A: Adversarial Neural Network Performance Evaluation 93

Model ID Adversarial NN Neural Network Loss Gap

all_frauds_type 2,733,768.13 e 7,412,079.79 e -63.12 %

H_IS 7,504,621.31 e 8,142,174.76 e -7.83 %

H_TH 3,407,964.02 e 10,080,809.46 e -66.19 %

M_IS 31,237,680.54 e 31,303,369.59 e -0.21 %

M_TH 31,650,103.4 e 31,895,974.3 e -0.77 %

L_IS 32,989,662.43 e 33,092,066.47 e -0.31 %

L_TH 35,850,067.24 e 33,132,209.12 e +8.2 %

Table A.3: Loss difference, in experiment 3, between adversarial neural network and
standard neural network-based detection systems.

95

B| Appendix B: Support Tables

In this chapter, we provide some tables containing the outcomes of the feature filtering
process detailed in Section 7.5 and the model selection outlined in Section 7.6.

Table B.1: Features filtering results

Dataset ID Selected Features

augmented_HIS

Amount, Fraud, Time_x, Time_y, amount_mean14d, amount_mean7d, amount_std14d, amount_std1d,
amount_std1h, amount_std30d, amount_std7d, amount_sum14d, amount_sum1d, amount_sum30d,

amount_sum7d, cc_asn_count14d, cc_asn_count1d, cc_asn_count1h, cc_asn_count30d,
cc_asn_count7d, cc_asn_mean1d, cc_asn_mean30d, difference_from_amount_mean1d,

difference_from_amount_mean1h, difference_from_amount_mean30d,
difference_from_amount_mean7d, difference_from_cc_asn_mean14d,
difference_from_cc_asn_mean30d, difference_from_cc_asn_mean7d,

difference_from_iban_cc_mean14d, difference_from_iban_cc_mean1d,
difference_from_iban_cc_mean30d, difference_from_iban_cc_mean7d,

difference_from_iban_mean14d, difference_from_iban_mean1d, difference_from_iban_mean1h,
difference_from_iban_mean30d, difference_from_iban_mean7d, difference_from_ip_mean14d,
difference_from_ip_mean1d, difference_from_ip_mean7d, difference_from_session_mean1d,

iban_cc_mean30d, iban_count14d, iban_count1d, iban_count1h, iban_count30d, iban_count7d,
iban_mean30d, iban_std1d, iban_sum14d, iban_sum1d, iban_sum1h, iban_sum30d, iban_sum7d,
ip_count14d, ip_count30d, ip_mean7d, ip_std14d, ip_std1d, ip_std30d, ip_std7d, ip_sum14d,

ip_sum30d, is_international, is_national_iban, is_new_cc_asn, is_new_iban, is_new_iban_cc,
is_new_ip, session_count14d, session_sum1h, time_since_same_iban, time_since_same_iban_cc,

time_since_same_session

augmented_HTH

Amount, Fraud, Time_x, Time_y, amount_count7d, amount_mean14d, amount_std30d,
amount_sum30d, cc_asn_mean30d, difference_from_amount_mean30d,
difference_from_amount_mean7d, difference_from_cc_asn_mean14d,

difference_from_iban_cc_mean14d, difference_from_iban_cc_mean1d,
difference_from_iban_cc_mean1h, difference_from_iban_cc_mean30d,

difference_from_iban_cc_mean7d, difference_from_iban_mean14d, difference_from_iban_mean1h,
difference_from_iban_mean30d, difference_from_iban_mean7d, difference_from_ip_mean14d,

difference_from_ip_mean1d, difference_from_ip_mean1h, difference_from_ip_mean7d,
difference_from_session_mean1h, iban_cc_count14d, iban_cc_count30d, iban_cc_mean1d,

iban_cc_mean30d, iban_cc_sum14d, iban_count14d, iban_count1d, iban_count1h, iban_count30d,
iban_count7d, iban_mean30d, iban_std1d, iban_std7d, iban_sum14d, iban_sum1d, iban_sum30d,

iban_sum7d, ip_count14d, ip_count1d, ip_count30d, ip_count7d, ip_mean30d, ip_mean7d, ip_std14d,
ip_std1d, ip_std30d, ip_std7d, ip_sum14d, ip_sum1d, ip_sum30d, ip_sum7d, is_international,
is_national_iban, is_new_cc_asn, is_new_iban, is_new_iban_cc, is_new_ip, session_count1h,

session_mean14d, session_std1h, session_sum1h, time_from_previous_trans_global,
time_since_same_iban

Continued on next page

96 B| Appendix B: Support Tables

Table B.1 – Continued from previous page

Dataset ID Selected Features

augmented_MIS

Amount, Fraud, Time_x, Time_y, amount_sum1d, cc_asn_count14d, cc_asn_count1d,
cc_asn_count1h, cc_asn_count30d, cc_asn_count7d, cc_asn_mean1d, cc_asn_mean30d,

cc_asn_mean7d, cc_asn_sum14d, cc_asn_sum1h, cc_asn_sum30d, cc_asn_sum7d,
difference_from_amount_mean14d, difference_from_amount_mean1d,
difference_from_amount_mean1h, difference_from_amount_mean30d,

difference_from_amount_mean7d, difference_from_iban_mean14d, difference_from_iban_mean1d,
difference_from_iban_mean1h, difference_from_iban_mean30d, difference_from_iban_mean7d,
difference_from_ip_mean14d, difference_from_ip_mean7d, difference_from_session_mean1d,

iban_cc_mean14d, iban_cc_std30d, iban_count14d, iban_count1d, iban_count1h, iban_count30d,
iban_count7d, iban_mean30d, iban_std1d, iban_std7d, iban_sum14d, iban_sum1d, iban_sum30d,
iban_sum7d, ip_count14d, ip_count30d, ip_mean30d, ip_std14d, ip_std1d, ip_std1h, ip_std30d,

ip_std7d, ip_sum30d, is_international, is_national_iban, is_new_cc_asn, is_new_iban,
is_new_iban_cc, is_new_ip, session_count14d, session_sum7d, time_since_same_cc_asn,

time_since_same_iban, time_since_same_session

augmented_MTH

Amount, Fraud, Time_x, Time_y, amount_count7d, cc_asn_std14d, cc_asn_std30d, cc_asn_std7d,
cc_asn_sum14d, cc_asn_sum30d, difference_from_amount_mean14d,
difference_from_amount_mean30d, difference_from_amount_mean7d,

difference_from_iban_mean14d, difference_from_iban_mean1d, difference_from_iban_mean1h,
difference_from_iban_mean30d, difference_from_iban_mean7d, difference_from_ip_mean14d,

difference_from_ip_mean1d, difference_from_ip_mean1h, difference_from_ip_mean7d,
difference_from_session_mean1h, iban_cc_count14d, iban_cc_count30d, iban_cc_mean1d,

iban_cc_mean30d, iban_cc_mean7d, iban_count14d, iban_count1d, iban_count1h, iban_count30d,
iban_count7d, iban_mean30d, iban_std1d, iban_std7d, iban_sum14d, iban_sum1d, iban_sum30d,

iban_sum7d, ip_count14d, ip_count1d, ip_count30d, ip_count7d, ip_mean30d, ip_std1d, ip_sum1d,
ip_sum1h, ip_sum30d, ip_sum7d, is_international, is_national_iban, is_new_cc_asn, is_new_iban,

is_new_iban_cc, is_new_ip, session_count1h, session_std1h, session_sum1h,
time_from_previous_trans_global, time_since_same_iban

augmented_LIS

Amount, Fraud, Time_x, Time_y, amount_std1h, cc_asn_count14d, cc_asn_count1d,
cc_asn_count1h, cc_asn_count30d, cc_asn_count7d, cc_asn_mean1d, cc_asn_mean30d,

cc_asn_mean7d, cc_asn_sum14d, cc_asn_sum1d, cc_asn_sum1h, cc_asn_sum30d, cc_asn_sum7d,
difference_from_amount_mean14d, difference_from_amount_mean1d,
difference_from_amount_mean30d, difference_from_amount_mean7d,

difference_from_cc_asn_mean1h, difference_from_iban_mean14d, difference_from_iban_mean1d,
difference_from_iban_mean1h, difference_from_iban_mean30d, difference_from_iban_mean7d,
difference_from_ip_mean14d, difference_from_ip_mean7d, difference_from_session_mean30d,

iban_cc_mean14d, iban_cc_std30d, iban_count14d, iban_count1d, iban_count1h, iban_count30d,
iban_count7d, iban_mean30d, iban_std1d, iban_std7d, iban_sum14d, iban_sum1h, iban_sum30d,
iban_sum7d, ip_count14d, ip_count30d, ip_mean30d, ip_std14d, ip_std1d, ip_std30d, ip_std7d,
ip_sum30d, is_international, is_national_iban, is_new_cc_asn, is_new_iban, is_new_iban_cc,
is_new_ip, session_count14d, session_sum1d, time_since_same_cc_asn, time_since_same_iban,

time_since_same_session

augmented_LTH

Amount, Fraud, Time_x, Time_y, difference_from_cc_asn_mean14d,
difference_from_cc_asn_mean1d, difference_from_cc_asn_mean30d,

difference_from_cc_asn_mean7d, difference_from_iban_mean14d, difference_from_iban_mean1d,
difference_from_iban_mean1h, difference_from_iban_mean30d, difference_from_iban_mean7d,

difference_from_ip_mean14d, difference_from_ip_mean1h, difference_from_ip_mean7d,
difference_from_session_mean1h, iban_cc_count14d, iban_cc_count30d, iban_cc_count7d,
iban_cc_mean1d, iban_cc_mean30d, iban_cc_mean7d, iban_cc_std14d, iban_cc_std1d,

iban_cc_std30d, iban_cc_std7d, iban_cc_sum14d, iban_cc_sum1d, iban_cc_sum1h,
iban_cc_sum30d, iban_cc_sum7d, iban_count14d, iban_count1d, iban_count1h, iban_count30d,
iban_count7d, iban_mean30d, iban_std1d, iban_std7d, iban_sum14d, iban_sum1h, iban_sum30d,

iban_sum7d, ip_count14d, ip_count1d, ip_count30d, ip_count7d, ip_mean30d, ip_std14d, ip_std30d,
ip_sum14d, ip_sum30d, is_international, is_national_iban, is_new_cc_asn, is_new_iban,

is_new_iban_cc, is_new_ip, session_count1h, session_std1h, session_sum1h,
time_from_previous_trans_global, time_since_same_iban

Continued on next page

B| Appendix B: Support Tables 97

Table B.1 – Continued from previous page

Dataset ID Selected Features

augmented_AF

Amount, Fraud, Time_x, Time_y, amount_mean30d, amount_std14d, amount_std1d, amount_std1h,
amount_std30d, amount_std7d, amount_sum14d, amount_sum1d, amount_sum30d, amount_sum7d,

cc_asn_count14d, cc_asn_count1d, cc_asn_count30d, cc_asn_count7d, cc_asn_mean1d,
cc_asn_mean30d, cc_asn_mean7d, difference_from_amount_mean14d,
difference_from_amount_mean1d, difference_from_amount_mean1h,
difference_from_amount_mean30d, difference_from_amount_mean7d,
difference_from_cc_asn_mean14d, difference_from_cc_asn_mean30d,
difference_from_cc_asn_mean7d, difference_from_iban_cc_mean14d,
difference_from_iban_cc_mean1d, difference_from_iban_cc_mean30d,

difference_from_iban_cc_mean7d, difference_from_iban_mean14d, difference_from_iban_mean1d,
difference_from_iban_mean1h, difference_from_iban_mean30d, difference_from_iban_mean7d,

difference_from_ip_mean14d, difference_from_ip_mean1d, difference_from_ip_mean7d,
difference_from_session_mean30d, iban_cc_count1h, iban_cc_mean14d, iban_count14d,

iban_count1d, iban_count1h, iban_count30d, iban_count7d, iban_mean30d, iban_std1d, iban_std30d,
iban_sum14d, iban_sum1d, iban_sum1h, iban_sum30d, iban_sum7d, ip_count14d, ip_count30d,

ip_mean14d, ip_std14d, ip_std30d, ip_std7d, ip_sum14d, ip_sum30d, is_international,
is_national_iban, is_new_cc_asn, is_new_iban, is_new_iban_cc, is_new_ip, session_count30d,

session_sum1h, time_since_same_cc_asn, time_since_same_iban, time_since_same_session

98 B| Appendix B: Support Tables

Table B.2: Hyperparameters for models trained on all types of fraudulent transactions

Model Hyperparameters Value

Active Learning

ae_epochs
ae_batch_size
ae_encoding_size
ae_bottleneck_size
ae_dropout_rate
ae_output_activation
ae_lambda_reg
ae_activation
ae_weight
rf_random_state
rf_n_estimators
rf_max_depth
rf_criterion
rf_class_weight
rf_min_samples_split
rf_weight

60
32
296
37
0.6489810128741015
sigmoid
0.00010074478798116343
relu
0.2
721077
148
178
gini
balanced
2
0.8

Logistic Regression

random_state
penalty
C
class_weight
tol
solver
l1_ratio
max_iter

721077
l2
102.98823881396297
balanced
0.9396885694252239
newton-cholesky
None
8000

Neural Network

epochs
batch_size
fl_neurons
sl_neurons
activation_funct
dropout_rate

20
2048
73
157
relu
0.5253662735613859

Random Forest

random_state
n_estimators
max_depth
max_features
class_weight
criterion
min_samples_split
min_samples_leaf

721077
361
57
sqrt
balanced
entropy
3
3

Continued on next page

B| Appendix B: Support Tables 99

Table B.2 – Continued from previous page
Model Hyperparameters Value

Support Vector
Machine

random_state
penalty
loss
dual
tol
class_weight
C
max_iter

721077
l1
squared_hinge
False
0.35167343607943163
balanced
146.007103517384
10000

XGBoost

random_state
max_depth
learning_rate
booster
gamma
n_estimators
scale_pos_weight

721077
37
0.4602119738318374
gbtree
0.02625618289109055
139
102.75506072874494

Table B.3: Hyperparameters for models trained on fraudulent transactions characterized
by High profile and Information Stealing scheme

Model Hyperparameters Value

Active Learning

ae_epochs
ae_batch_size
ae_encoding_size
ae_bottleneck_size
ae_dropout_rate
ae_output_activation
ae_lambda_reg
ae_activation
ae_weight
rf_random_state
rf_n_estimators
rf_max_depth
rf_criterion
rf_class_weight
rf_min_samples_split
rf_weight

20
1024
32
15
0.2566292114877229
sigmoid
0.00025
relu
0.2
721077
153
27
gini
balanced
2
0.8

Continued on next page

100 B| Appendix B: Support Tables

Table B.3 – Continued from previous page
Model Hyperparameters Value

Logistic Regression

random_state
penalty
C
class_weight
tol
solver
max_iter

721077
l1
13.991915778357995
balanced
0.003558411769099488
saga
2000

Neural Network

epochs
batch_size
fl_neurons
sl_neurons
activation_funct
dropout_rate

100
1024
53
112
relu
0.5646034511403906

Random Forest

random_state
n_estimators
max_depth
class_weight
criterion
min_samples_split
min_samples_leaf

721077
167
16
balanced
entropy
3
2

Support Vector
Machine

random_state
penalty
loss
dual
class_weight
C
max_iter

721077
l2
squared_hinge
False
balanced
15.153576957788962
10000

XGBoost

random_state
max_depth
learning_rate
booster
gamma
n_estimators
scale_pos_weight

721077
14
0.1670259859121837
gbtree
0.872235009618874
65
101.676

B| Appendix B: Support Tables 101

Table B.4: Hyperparameters for models trained on fraudulent transactions characterized
by High profile and Transaction Hijacking scheme

Model Hyperparameters Value

Active Learning

ae_epochs
ae_batch_size
ae_encoding_size
ae_bottleneck_size
ae_dropout_rate
ae_output_activation
ae_lambda_reg
ae_activation
ae_weight
rf_random_state
rf_n_estimators
rf_max_depth
rf_criterion
rf_class_weight
rf_min_samples_split
rf_weight

20
64
188
163
0.5980383087152149
sigmoid
0.0002494876101233998
relu
0.2
721077
746
20
entropy
balanced
3
0.8

Logistic Regression

random_state
penalty
C
class_weight
tol
solver
max_iter

721077
l2
51.43355647433214
balanced
0.875199888324913
newton-cholesky
10000

Neural Network

epochs
batch_size
fl_neurons
sl_neurons
activation_funct
dropout_rate

100
16
137
97
tanh
0.28739790199418624

Random Forest

random_state
n_estimators
max_depth
max_features
class_weight
criterion
min_samples_split
min_samples_leaf

721077
535
22
sqrt
balanced
gini
5
1

Continued on next page

102 B| Appendix B: Support Tables

Table B.4 – Continued from previous page
Model Hyperparameters Value

Support Vector
Machine

random_state
penalty
loss
dual
tol
class_weight
C
max_iter

721077
l1
squared_hinge
False
0.7400423006314985
balanced
105.2165127713016
2000

XGBoost

random_state
max_depth
learning_rate
booster
gamma
n_estimators
scale_pos_weight

721077
18
0.1399184624440806
gbtree
0.521099695780107
147
106.92584745762711

Table B.5: Hyperparameters for models trained on fraudulent transactions characterized
by Medium profile and Information Stealing scheme

Model Hyperparameters Value

Active Learning

ae_epochs
ae_batch_size
ae_encoding_size
ae_bottleneck_size
ae_dropout_rate
ae_output_activation
ae_lambda_reg
ae_activation
ae_weight
rf_random_state
rf_n_estimators
rf_max_depth
rf_criterion
rf_class_weight
rf_min_samples_split
rf_weight

20
512
32
15
0.07988442863966094
sigmoid
0.00025
relu
0.2
721077
188
29
gini
balanced
2
0.8

Continued on next page

B| Appendix B: Support Tables 103

Table B.5 – Continued from previous page
Model Hyperparameters Value

Logistic Regression

random_state
penalty
C
class_weight
tol
solver
max_iter

721077
l1
72.7326645818656
balanced
6.394901244509599e-05
saga
2000

Neural Network

epochs
batch_size
fl_neurons
sl_neurons
activation_funct
dropout_rate

40
2048
105
138
relu
0.06070387763473942

Random Forest

random_state
n_estimators
max_depth
class_weight
criterion
min_samples_split
min_samples_leaf

721077
419
30
balanced
entropy
5
1

Support Vector
Machine

random_state
penalty
loss
dual
class_weight
C
max_iter

721077
l2
squared_hinge
False
balanced
17.509600061409767
2000

XGBoost

random_state
max_depth
learning_rate
booster
gamma
n_estimators
scale_pos_weight

721077
3
0.4133885597326414
gbtree
0.11324944314460808
208
101.47105788423154

104 B| Appendix B: Support Tables

Table B.6: Hyperparameters for models trained on fraudulent transactions characterized
by Medium profile and Transaction Hijacking scheme

Model Hyperparameters Value

Active Learning

ae_epochs
ae_batch_size
ae_encoding_size
ae_bottleneck_size
ae_dropout_rate
ae_output_activation
ae_lambda_reg
ae_activation
ae_weight
rf_random_state
rf_n_estimators
rf_max_depth
rf_criterion
rf_class_weight
rf_min_samples_split
rf_weight

40
2048
84
62
0.04381970146136949
sigmoid
0.0002819049114776747
relu
0.2
721077
658
96
gini
balanced
2
0.8

Logistic Regression

random_state
penalty
C
class_weight
tol
solver
max_iter

721077
l1
85.00950251543314
balanced
0.8736750777153988
saga
2000

Neural Network

epochs
batch_size
fl_neurons
sl_neurons
activation_funct
dropout_rate

40
1024
63
62
relu
0.6842075366156709

Random Forest

random_state
n_estimators
max_depth
max_features
class_weight
criterion
min_samples_split
min_samples_leaf

721077
299
96
None
balanced
entropy
7
4

Continued on next page

B| Appendix B: Support Tables 105

Table B.6 – Continued from previous page
Model Hyperparameters Value

Support Vector
Machine

random_state
penalty
loss
dual
tol
class_weight
C
max_iter

721077
l2
squared_hinge
False
0.7238909625636086
balanced
87.53495774656727
4000

XGBoost

random_state
max_depth
learning_rate
booster
gamma
n_estimators
scale_pos_weight

721077
38
0.49593870881234225
gbtree
0.24650779542991613
307
99.29133858267717

Table B.7: Hyperparameters for models trained on fraudulent transactions characterized
by Low profile and Information Stealing scheme

Model Hyperparameters Value

Active Learning

ae_epochs
ae_batch_size
ae_encoding_size
ae_bottleneck_size
ae_dropout_rate
ae_output_activation
ae_lambda_reg
ae_activation
ae_weight
rf_random_state
rf_n_estimators
rf_max_depth
rf_criterion
rf_class_weight
rf_min_samples_split
rf_weight

20
1024
66
171
0.48650864873603566
sigmoid
0.0002609748709776789
relu
0.2
721077
661
32
gini
balanced
2
0.8

Continued on next page

106 B| Appendix B: Support Tables

Table B.7 – Continued from previous page
Model Hyperparameters Value

Logistic Regression

random_state
penalty
C
class_weight
tol
solver
max_iter

721077
l2
61.96308798143124
balanced
0.00019286809105870724
saga
2000

Neural Network

epochs
batch_size
fl_neurons
sl_neurons
activation_funct
dropout_rate

40
256
83
107
relu
0.001663151923775885

Random Forest

random_state
n_estimators
max_depth
max_features
class_weight
criterion
min_samples_split
min_samples_leaf

721077
259
55
sqrt
balanced
entropy
9
1

Support Vector
Machine

random_state
penalty
loss
dual
tol
class_weight
C
max_iter

721077
l1
squared_hinge
False
0.5823182681658402
balanced
25.404624354640724
8000

XGBoost

random_state
max_depth
learning_rate
booster
gamma
n_estimators
scale_pos_weight

721077
7
0.23536024437644162
gbtree
0.41776215860889465
308
101.0596421471173

B| Appendix B: Support Tables 107

Table B.8: Hyperparameters for models trained on fraudulent transactions characterized
by Low profile and Transaction Hijacking scheme

Model Hyperparameters Value

Active Learning

ae_epochs
ae_batch_size
ae_encoding_size
ae_bottleneck_size
ae_dropout_rate
ae_output_activation
ae_lambda_reg
ae_activation
ae_weight
rf_random_state
rf_n_estimators
rf_max_depth
rf_criterion
rf_class_weight
rf_min_samples_split
rf_weight

60
4096
143
79
0.48544289436896004
sigmoid
0.000352019707688131
relu
0.2
721077
370
42
entropy
balanced
2
0.8

Logistic Regression

random_state
penalty
C
class_weight
tol
solver
l1_ratio
max_iter

721077
elasticnet
77.31916559691692
balanced
0.22511130670513804
saga
0.43341508347790103
4000

Neural Network

epochs
batch_size
fl_neurons
sl_neurons
activation_funct
dropout_rate

80
4096
145
117
relu
0.16425027421033847

Random Forest

random_state
n_estimators
max_depth
max_features
class_weight
criterion
min_samples_split
min_samples_leaf

721077
304
42
None
balanced
entropy
8
4

Continued on next page

108 B| Appendix B: Support Tables

Table B.8 – Continued from previous page
Model Hyperparameters Value

Support Vector
Machine

random_state
penalty
loss
dual
tol
class_weight
C
max_iter

721077
l1
squared_hinge
False
0.5434789046958924
balanced
141.02468595833872
2000

XGBoost

random_state
max_depth
learning_rate
booster
gamma
n_estimators
scale_pos_weight

721077
31
0.2770533045246825
gbtree
0.020860882761651944
227
105.57949790794979

B| Appendix B: Support Tables 109

Model Features

Active Learning

difference_from_iban_cc_mean1d, is_national_iban,
time_since_same_iban, difference_from_iban_cc_mean14d,

cc_asn_count7d, difference_from_iban_mean7d,
amount_std7d, difference_from_cc_asn_mean7d,

cc_asn_count30d, difference_from_amount_mean14d,
difference_from_cc_asn_mean30d, time_since_same_cc_asn

Logistic Regression

iban_sum30d, difference_from_amount_mean7d,
cc_asn_count1d, iban_sum7d,

difference_from_cc_asn_mean14d, Time_y,
iban_cc_mean14d, is_new_cc_asn, is_national_iban,

iban_sum1d, ip_std14d, ip_std30d,
difference_from_cc_asn_mean7d, ip_sum30d, ip_std7d,

ip_sum14d, is_new_ip, time_since_same_cc_asn,
iban_sum14d, difference_from_cc_asn_mean30d,

time_since_same_iban

Neural Network
iban_mean30d, is_international, is_national_iban,

iban_count1d, ip_count14d, iban_count30d,
difference_from_iban_mean1h, cc_asn_mean1d

Random Forest

time_since_same_session, amount_std7d, Time_y,
amount_std1h, iban_std30d, Time_x, is_national_iban,

cc_asn_mean1d, time_since_same_iban, is_international,
difference_from_cc_asn_mean14d,

difference_from_iban_cc_mean14d, amount_sum7d, Amount,
iban_std1d, difference_from_ip_mean1d,

difference_from_amount_mean14d, iban_count14d,
cc_asn_count30d, iban_count1h

Support Vector Machine

iban_sum14d, is_national_iban, ip_sum14d,
difference_from_cc_asn_mean7d,

difference_from_cc_asn_mean14d, ip_std30d,
difference_from_iban_mean1h, ip_std14d,

time_since_same_cc_asn, is_new_iban_cc,
time_since_same_iban, difference_from_amount_mean14d

XGBoost

difference_from_cc_asn_mean30d, amount_std7d,
cc_asn_count1d, iban_cc_count1h, amount_sum30d,

time_since_same_iban, session_sum1h,
difference_from_amount_mean7d, Time_y, ip_mean14d,

is_international, amount_mean30d, ip_std7d,
is_national_iban

Table B.9: Features for models trained on all types of fraudulent transactions

110 B| Appendix B: Support Tables

Model Features

Active Learning

is_new_iban_cc, cc_asn_count30d, iban_std1d, ip_std7d,
ip_count30d, difference_from_cc_asn_mean14d,

difference_from_cc_asn_mean7d,
difference_from_amount_mean30d, is_new_iban,

amount_std14d

Logistic Regression

cc_asn_count1h, is_international, is_new_iban, Time_x,
session_count14d, cc_asn_mean30d, ip_std30d,

cc_asn_count1d, amount_mean14d, amount_std14d,
difference_from_ip_mean14d, is_new_iban_cc

Neural Network

amount_mean7d, cc_asn_count1h, ip_count14d,
difference_from_iban_cc_mean7d, is_national_iban,

iban_cc_mean30d, cc_asn_mean30d, amount_mean14d,
ip_mean7d

Random Forest
iban_sum7d, time_since_same_iban_cc, cc_asn_mean30d,

iban_count7d, iban_count1d, amount_mean14d,
is_new_cc_asn, Amount, is_international, Time_y

Support Vector Machine

iban_sum1h, iban_sum1d, amount_mean14d,
cc_asn_mean30d, is_international, ip_std14d,

difference_from_ip_mean14d, amount_std1h, Time_x,
difference_from_ip_mean1d, iban_sum7d, amount_mean7d

XGBoost
amount_mean14d, is_international, ip_std7d,

difference_from_amount_mean1h,
difference_from_session_mean1d, cc_asn_mean30d

Table B.10: Features for models trained on fraudulent transactions characterized by High
profile and Information Stealing scheme

B| Appendix B: Support Tables 111

Model Features

Active Learning

amount_std30d, ip_count7d,
difference_from_iban_cc_mean1d,

difference_from_amount_mean30d, is_new_cc_asn,
difference_from_ip_mean1h, iban_std1d, session_count1h,

ip_count1d, iban_cc_count14d, iban_count1h,
difference_from_cc_asn_mean14d, ip_std1d,

difference_from_session_mean1h, ip_count30d,
difference_from_iban_mean1h, iban_count1d,

difference_from_iban_mean30d, difference_from_ip_mean1d,
difference_from_ip_mean7d, session_std1h

Logistic Regression
is_new_iban_cc, iban_sum1d, difference_from_iban_mean7d,

ip_sum1d, iban_std7d, is_national_iban,
difference_from_ip_mean1h, session_std1h, Time_x

Neural Network Amount, iban_cc_sum14d, difference_from_ip_mean1h,
is_new_ip, iban_std1d, is_national_iban

Random Forest
difference_from_iban_mean7d, Amount, iban_count1d,

iban_sum30d, is_national_iban, difference_from_ip_mean1h,
ip_sum7d, iban_count1h, is_new_iban_cc

Support Vector Machine ip_count7d, iban_std7d, is_new_iban_cc,
difference_from_session_mean1h, Amount, is_national_iban

XGBoost

difference_from_amount_mean7d, session_sum1h,
iban_sum14d, is_international, Amount, iban_std7d,

is_new_iban_cc, session_std1h,
difference_from_iban_mean1h, ip_sum7d, iban_count14d,

iban_count30d, iban_mean30d

Table B.11: Features for models trained on fraudulent transactions characterized by High
profile and Transaction Hijacking scheme

112 B| Appendix B: Support Tables

Model Features

Active Learning

iban_count30d, difference_from_iban_mean14d,
is_new_iban_cc, difference_from_ip_mean14d,

cc_asn_count7d, difference_from_amount_mean7d,
cc_asn_count14d, time_since_same_iban, ip_std30d,
difference_from_amount_mean14d, iban_cc_std30d,

cc_asn_count1h

Logistic Regression

ip_std7d, time_since_same_iban, cc_asn_count1h,
time_since_same_cc_asn, difference_from_amount_mean14d,

cc_asn_count14d, iban_count1d,
difference_from_iban_mean14d, time_since_same_session,

iban_std7d, difference_from_iban_mean7d, is_national_iban,
ip_std1h, difference_from_amount_mean30d,

difference_from_amount_mean1h,
difference_from_ip_mean7d, session_count14d, ip_std30d,

difference_from_amount_mean1d, ip_std1d,
difference_from_ip_mean14d, iban_std1d,

difference_from_iban_mean30d, iban_count1h, ip_std14d

Neural Network

is_national_iban, time_since_same_cc_asn, iban_std1d,
cc_asn_mean7d, ip_std14d,

difference_from_amount_mean30d,
difference_from_amount_mean7d,

difference_from_iban_mean7d

Random Forest

Time_x, is_new_iban_cc, cc_asn_mean7d, iban_sum14d,
Time_y, time_since_same_cc_asn, iban_count1d,

time_since_same_iban, difference_from_iban_mean14d,
is_new_cc_asn, ip_std7d, difference_from_amount_mean7d,

iban_std1d, is_international, ip_count30d

Support Vector Machine

session_sum7d, iban_sum1d, iban_std1d,
difference_from_session_mean1d, iban_sum7d, iban_std7d,

is_new_iban_cc, time_since_same_cc_asn,
time_since_same_iban, is_new_ip, cc_asn_sum7d,
difference_from_iban_mean14d, is_national_iban,

cc_asn_sum1h, is_new_cc_asn

XGBoost

cc_asn_mean30d, difference_from_iban_mean14d,
iban_std1d, difference_from_amount_mean14d, is_new_ip,

time_since_same_iban, Time_x, cc_asn_sum1h,
iban_mean30d, iban_count1d, iban_sum14d, cc_asn_sum30d,

cc_asn_count30d, iban_std7d, time_since_same_session,
is_international, cc_asn_count1d, Time_y

Table B.12: Features for models trained on fraudulent transactions characterized by
Medium profile and Information Stealing scheme

B| Appendix B: Support Tables 113

Model Features

Active Learning

is_new_ip, is_international, cc_asn_std30d,
time_from_previous_trans_global, iban_cc_count30d,
difference_from_ip_mean1d, ip_count30d, iban_std1d,

is_new_iban, is_new_iban_cc,
difference_from_iban_mean1h, iban_count30d,

difference_from_amount_mean30d, is_national_iban,
ip_count14d

Logistic Regression is_new_ip, is_national_iban,
time_from_previous_trans_global

Neural Network iban_cc_mean7d, is_national_iban, iban_std1d, Amount

Random Forest

time_since_same_iban, ip_sum1h,
difference_from_iban_mean30d, amount_count7d,
iban_cc_count30d, difference_from_ip_mean1d,

is_national_iban, difference_from_iban_mean14d, Amount,
difference_from_amount_mean30d, ip_sum1d, Time_y,

cc_asn_sum14d, is_new_iban,
difference_from_amount_mean14d, ip_std1d, ip_sum7d,

ip_count30d, iban_cc_count14d, cc_asn_sum30d,
difference_from_iban_mean1h, iban_count1h,

difference_from_iban_mean7d, Time_x, iban_mean30d,
iban_sum1d, ip_sum30d, iban_count7d

Support Vector Machine amount_count7d, ip_count14d, is_international, is_new_ip,
iban_cc_count30d, is_national_iban

XGBoost

ip_std1d, ip_sum1d, difference_from_iban_mean1d,
difference_from_ip_mean1h, iban_cc_mean30d,
time_since_same_iban, Amount, iban_count14d,
iban_cc_mean7d, is_national_iban, ip_sum30d,

iban_count7d, iban_count1d, ip_sum1h,
difference_from_amount_mean14d,

difference_from_iban_mean7d, Time_x,
difference_from_ip_mean14d,

time_from_previous_trans_global, is_international, ip_sum7d

Table B.13: Features for models trained on fraudulent transactions characterized by
Medium profile and Transaction Hijacking scheme

114 B| Appendix B: Support Tables

Model Features

Active Learning
is_new_iban_cc, iban_count7d, difference_from_amount_mean7d, cc_asn_count7d,

ip_std7d, difference_from_amount_mean30d, difference_from_ip_mean14d,
ip_count14d, time_since_same_cc_asn, iban_count14d, iban_std7d,

time_since_same_iban, difference_from_iban_mean1d, iban_count30d

Logistic Regression

ip_std7d, cc_asn_mean1d, time_since_same_iban, ip_count14d, cc_asn_count1h,
time_since_same_cc_asn, difference_from_amount_mean14d, iban_count1d,

iban_std7d, is_national_iban, iban_count30d, difference_from_amount_mean30d,
cc_asn_count1d, iban_count7d, cc_asn_sum30d, session_count14d,
difference_from_amount_mean1d, cc_asn_sum7d, iban_sum30d,

difference_from_ip_mean14d, difference_from_iban_mean1d, cc_asn_sum14d,
Amount, iban_count1h, ip_std14d, cc_asn_sum1h

Neural Network cc_asn_count14d, cc_asn_count1d, ip_std1d, is_national_iban, iban_sum14d,
time_since_same_iban, cc_asn_count1h, difference_from_ip_mean7d, ip_mean30d

Random Forest

difference_from_amount_mean7d, iban_count30d, Time_y, cc_asn_count14d,
is_new_iban_cc, iban_cc_std30d, ip_std14d, difference_from_cc_asn_mean1h,
is_international, difference_from_amount_mean14d, session_count14d, ip_std7d,
cc_asn_count1h, ip_count30d, ip_std30d, Amount, time_since_same_cc_asn,

iban_std7d, difference_from_ip_mean7d, cc_asn_count7d,
difference_from_iban_mean1h, iban_count1h, iban_std1d,

difference_from_iban_mean1d, ip_count14d, ip_std1d,
difference_from_iban_mean30d, session_sum1d, is_new_iban, is_new_ip,

ip_mean30d, difference_from_amount_mean1d, cc_asn_count1d, cc_asn_sum1h,
cc_asn_sum14d, difference_from_ip_mean14d, iban_count7d, cc_asn_count30d,

iban_count14d, iban_count1d, difference_from_iban_mean7d,
time_since_same_iban, amount_std1h, difference_from_session_mean30d,
time_since_same_session, is_new_cc_asn, difference_from_iban_mean14d

Support Vector Machine

ip_std14d, ip_std30d, iban_sum7d, is_national_iban, iban_cc_mean14d, ip_std7d,
cc_asn_sum1d, difference_from_iban_mean1h, difference_from_session_mean30d,

difference_from_iban_mean7d, difference_from_iban_mean1d,
difference_from_amount_mean7d, iban_sum14d, iban_sum1h, ip_std1d,

cc_asn_sum14d, difference_from_iban_mean14d, cc_asn_sum30d,
difference_from_iban_mean30d, ip_sum30d, difference_from_cc_asn_mean1h

XGBoost

cc_asn_count30d, difference_from_iban_mean1d, ip_std1d,
difference_from_amount_mean14d, Amount, ip_std14d,

difference_from_session_mean30d, cc_asn_sum1d, ip_count30d, iban_std1d,
difference_from_cc_asn_mean1h, time_since_same_iban, iban_cc_std30d,

iban_count14d, iban_cc_mean14d, difference_from_amount_mean7d, session_sum1d,
amount_std1h, iban_sum30d, cc_asn_mean30d, iban_mean30d, iban_count30d,

ip_std30d, iban_sum14d, cc_asn_count14d, is_new_ip, ip_std7d,
difference_from_iban_mean14d, session_count14d, is_new_iban,

difference_from_amount_mean30d, cc_asn_sum1h, is_international,
difference_from_iban_mean1h, difference_from_ip_mean14d, ip_count14d,

difference_from_iban_mean30d, difference_from_ip_mean7d, cc_asn_sum7d,
cc_asn_sum14d, difference_from_iban_mean7d, cc_asn_count1d, is_new_cc_asn,

iban_count1d, cc_asn_count1h, iban_count7d, iban_count1h,
time_since_same_session, time_since_same_cc_asn, cc_asn_count7d,

is_national_iban, Time_x, ip_sum30d, iban_sum7d, iban_std7d, Time_y,
difference_from_amount_mean1d

Table B.14: Features for models trained on fraudulent transactions characterized by Low
profile and Information Stealing scheme

B| Appendix B: Support Tables 115

Model Features

Active Learning

is_new_iban_cc, iban_std1d, iban_cc_count30d,
is_international, iban_cc_std30d, ip_count14d,

is_new_cc_asn, session_std1h, is_new_ip, is_national_iban,
difference_from_iban_mean1h, ip_count7d,

difference_from_cc_asn_mean7d,
difference_from_cc_asn_mean1d,
time_from_previous_trans_global,

difference_from_iban_mean7d

Logistic Regression
is_national_iban, is_new_ip, iban_sum14d,

difference_from_iban_mean14d, time_since_same_iban,
iban_std1d, difference_from_iban_mean1h, is_new_cc_asn

Neural Network

ip_count30d, iban_cc_mean1d, iban_cc_std1d,
iban_mean30d, is_new_cc_asn, is_national_iban, Amount,

is_international, iban_sum30d, iban_std1d, is_new_ip,
iban_cc_std30d, iban_sum7d

Random Forest

iban_cc_sum1d, iban_count1h, is_new_cc_asn, Time_y,
iban_cc_std14d, session_sum1h, iban_cc_mean7d,

is_national_iban, iban_cc_sum7d, is_new_iban, ip_mean30d,
ip_count1d, time_from_previous_trans_global

Support Vector Machine
iban_std7d, difference_from_iban_mean1d, is_new_ip,

iban_std1d, iban_cc_mean7d, is_national_iban,
time_from_previous_trans_global, ip_count1d

XGBoost

iban_cc_mean7d, difference_from_ip_mean1h,
iban_cc_mean30d, ip_sum30d, iban_cc_std1d,

session_sum1h, time_since_same_iban,
difference_from_iban_mean7d, difference_from_iban_mean1d,
is_national_iban, ip_count30d, iban_std1d, iban_cc_sum1h,

Time_x, iban_count1h, is_international, iban_cc_sum1d,
ip_std14d, difference_from_cc_asn_mean7d,

time_from_previous_trans_global, iban_cc_std14d

Table B.15: Features for models trained on fraudulent transactions characterized by Low
profile and Transaction Hijacking scheme

117

C| Appendix C: ML Performance

Metrics

We define the Machine Learning performance metrics that we employ in our research to
rate the effectiveness of ML models. We categorize fraudulent transactions as class 1
(positive class) and legitimate transactions as class 0 (negative class). Thus, True Posi-
tives (TP) represent correctly classified frauds, True Negatives (TN) represent correctly
classified legitimate transactions, False Positives (FP) represent legitimate transactions
classified as frauds, and False Negatives (FN) represent frauds classified as legitimate
transactions. Based on that, we define the following metrics:

• Precision: quantifies the proportion of true positive predictions out of all positive
predictions.

precision =
TP

TP + FP

• Recall: also known as sensitivity or true positive rate, measures the proportion of
true positive predictions out of all actual positive instances.

recall =
TP

TP + FN

• F1-score: combines precision and recall into a single metric, providing a balanced
measure of a model’s performance. It is the harmonic mean of precision and recall.

F1− score = 2 ∗ 2TP

2TP + FN + FP

• The False Positive Rate (FPR): calculates the proportion of positive predictions
out of all negative instances. It represents the rate of incorrectly classifying negative
instances as positive.

FPR =
FP

FP + TN

118 C| Appendix C: ML Performance Metrics

• Area Under the Receiver Operating Characteristics Curve (AUC-ROC):
is a performance measurement for the classification problems at various threshold
settings. ROC is a probability curve and AUC represents the degree or measure of
separability. The Higher the AUC, the better the model is at distinguishing between
classes.

ROC =

∫ 1

x=0

Recall ∗ (FPR−1(x))dx

• Area Under the Precision-Recall Curve (AUC-PRC): computes precision-
recall pairs for different probability thresholds.

PRC =

∫ 1

x=0

Precision ∗ (Recall−1(x))dx

• Matthew Correlation Coefficient (MCC): is a measure of the quality of bi-
nary classifications, taking into account true positive, true negative, false positive,
and false negative predictions. It ranges from -1 to 1, where 1 indicates perfect
prediction, 0 indicates random prediction, and -1 indicates complete disagreement
between predictions and actual values.

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

In this study, we also employ a Weighted MCC that assigns samples of the two
classes a weight inversely proportional to their presence in the dataset:

w0 =
TP + FN

TP + FN + FP + TN
,w1 =

TN + FP

TP + FN + FP + TN

WMCC =
w1TP ∗ w0TN − w0FP ∗ w1FN√

(w1TP + w0FP)w1(TP + FN)w0(TN + FP)(w0TN + w1FN)

When dealing with imbalanced data the value of the accuracy score does not provide a
meaningful result. For instance, if we consider a dataset where the positive class is present
only in 10% of the total instances, a dumb classifier that simply predicts the negative class
all the time, could get 90% accuracy. This occurs because accuracy, as a performance
metric, emphasizes the overall correctness of predictions without taking into account the
distribution of classes. In place of the standard accuracy metric we use a custom accuracy,
called Cost Accuracy [46], which gives more weight to the correct classification of frauds
(False Negative, True Positives) with respect to legitimate transactions. We define the

C| Appendix C: ML Performance Metrics 119

Cost Accuracy as:

CostAccuracy = 1− FP + k ∗ FN

FP + TN + k ∗ (TP + FN)

where k is:
k =

TN + FP

TP + FN

121

List of Figures

2.1 Example of decision boundary chosen by a trained SVM model 10
2.2 Shorter caption . 11
2.3 Active Learning Training Loop (source: [63]) 12
2.4 Example of a Decision Tree model that classifies the risk of having a heart

attack (for illustrative purposes only; the shown data are not reliable) . . . 14
2.5 Visualization of a step function fitting process (toy example) 16

4.1 Transaction count per user . 25
4.2 Users habits . 25
4.3 Amount distribution using custom bins . 26
4.4 Transaction count per month . 27
4.5 Transaction count per hour . 27
4.6 Fraudulent transaction count per IBAN Country Code 28
4.7 Legitimate transaction count per IBAN Country Code 28

5.1 Framework logical components . 29
5.2 Correlation-based features filter scheme . 37
5.3 Model selection scheme . 38

6.1 Framework Overview . 43
6.2 Configuration module content . 44
6.3 Dataset manager module content . 45
6.4 Preprocessor module content . 45
6.5 Evaluation module content . 46
6.6 Fraud Detection System module content 47
6.7 Experiments module content . 48
6.8 Utils module content . 49
6.9 Utils module content . 49

7.1 Attack 1: models losses (in Millions of Euros) injecting fraud types follow-
ing a random policy . 61

122 | List of Figures

7.2 Attack 1: ensemble models losses (in Millions of Euros) injecting fraud
types following a random policy . 62

7.3 Attack 2: models losses (in Millions of Euros) injecting fraud types with
the highest impact on the previous week’s best model 65

7.4 Attack 2: ensemble models losses (in Million of Euros) injecting fraud types
with the highest impact on the previous week’s best model 66

7.5 Average number of models able to correctly identify a fraudulent transac-
tion belonging to a specific type . 69

7.6 Attack 3: models losses (in Millions of Euros) when we cyclically injects
fraud types . 70

7.7 Attack 3: ensemble models losses (in Millions of Euros) when we cyclically
injects fraud types . 71

A.1 A demonstration of an adversarial sample generated by applying FGSM to
GoogleNet [33] . 85

A.2 Attack 1-bis: adversarial neural network models losses (in Millions of Eu-
ros) injecting fraud types following a random policy 89

A.3 Attack 2-bis: adversarial neural network models losses (in Million of Euros)
injecting fraud types with highest impact on previous week’s best model . 90

A.4 Attack 3-bis: adversarial neural network models losses (in Millions of Eu-
ros) when we cyclically injects fraud types 91

123

List of Tables

4.1 Most relevant dataset features . 24

5.1 Victims profiles . 31
5.2 Fraud profiles . 33

7.1 Experimental datasets description . 56
7.2 Models performance after hyperparameters tuning 58
7.3 Attack 1: models performance at the end of the 12 weeks 63
7.4 Attack 2: models performance at the end of the 12 weeks 67
7.5 Attack 3: models performance at the end of the 12 weeks 72

A.1 Loss difference, in experiment 1, between adversarial neural network and
standard neural network-based detection systems. 92

A.2 Loss difference, in experiment 2, between adversarial neural network and
standard neural network-based detection systems. 92

A.3 Loss difference, in experiment 3, between adversarial neural network and
standard neural network-based detection systems. 93

B.1 Features filtering results . 95
B.2 Hyperparameters for models trained on all types of fraudulent transactions 98
B.3 Hyperparameters for models trained on fraudulent transactions character-

ized by High profile and Information Stealing scheme 99
B.4 Hyperparameters for models trained on fraudulent transactions character-

ized by High profile and Transaction Hijacking scheme 101
B.5 Hyperparameters for models trained on fraudulent transactions character-

ized by Medium profile and Information Stealing scheme 102
B.6 Hyperparameters for models trained on fraudulent transactions character-

ized by Medium profile and Transaction Hijacking scheme 104
B.7 Hyperparameters for models trained on fraudulent transactions character-

ized by Low profile and Information Stealing scheme 105

124 | List of Tables

B.8 Hyperparameters for models trained on fraudulent transactions character-
ized by Low profile and Transaction Hijacking scheme 107

B.9 Features for models trained on all types of fraudulent transactions 109
B.10 Features for models trained on fraudulent transactions characterized by

High profile and Information Stealing scheme 110
B.11 Features for models trained on fraudulent transactions characterized by

High profile and Transaction Hijacking scheme 111
B.12 Features for models trained on fraudulent transactions characterized by

Medium profile and Information Stealing scheme 112
B.13 Features for models trained on fraudulent transactions characterized by

Medium profile and Transaction Hijacking scheme 113
B.14 Features for models trained on fraudulent transactions characterized by

Low profile and Information Stealing scheme 114
B.15 Features for models trained on fraudulent transactions characterized by

Low profile and Transaction Hijacking scheme 115

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Background and Motivation
	Background
	Fraud Detection Challenges

	Machine Learning for Fraud Detection
	Supervised Systems
	Active Learning
	Ensemble Models

	Related Works
	Motivation
	Problem Statement
	Goals

	Threat Model
	Attacker Capabilities
	Fraud Schemes

	Dataset Analysis
	Dataset Extraction
	Dataset Description

	Approach
	Overview
	Dataset Preprocessor Module
	Data Cleaning
	Dataset Augmentation
	Victim Selection
	Synthetic Frauds Generator

	Transaction Aggregation
	Features Scaling

	Fraud Detection System Module
	Features Filtering
	Model Selection

	Training and Evaluation Module

	Implementation Details
	Framework Architecture
	Configuration Module
	Dataset Manager Module
	Preprocessor Module
	Evaluation Module
	Fraud Detection System Module
	Experiment Module
	Utils Module
	Logs Module

	Execution Environment

	Experimental Validation
	Evaluation Metric
	Goals
	Experimental Settings
	Experimental Datasets
	Feature Engineering
	Models Tuning and Performance Evaluation
	Experiments
	Attack 1
	Attack 2
	Attack 3

	Limitations and Future Works
	Limitations
	Future Works

	Conclusions
	Bibliography
	Appendix A: Adversarial Neural Network Performance Evaluation
	Adversarial Machine Learning
	Application of Adversarial Machine Learning to Fraud Detection
	Experimental Results

	Appendix B: Support Tables
	Appendix C: ML Performance Metrics
	List of Figures
	List of Tables

