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Abstract

Nowadays, and more in the next future, the ageing population is determin-
ing a large impact on the public healthcare systems worldwide. To face the
growing demand for long term services, the current healthcare model needs
to shift its focus on the prevention and the early identification of chronic
diseases, whose incidence is high in people aged 65+. Timely interventions
are key to slow down decline and mitigate the symptoms in older individuals,
besides limiting the use of hospital resources. Home monitoring technologies
can allow the remote examination of the patients and the continuous track-
ing of the seniors’ health status in their living environment. Therefore, early
signs of decline could be recognised more quickly. However, some issues re-
lated to the acceptance of the daily monitoring systems by the users and to
the data reliability in uncontrolled setting could represent a barrier for their
effective application. The main objective of my PhD is to design and develop
novel eHealth solutions such as IoT sensors, explainable artificial intelligence
applications and decision support systems to enable the early detection and
remote assessment of decline in older adults. In particular two solutions are
here proposed: the exploitation of the ecological assessment of handwrit-
ing as daily life activity monitoring and a decision support system for the
posterior interpretation and the evaluation of a complex neuro-psychological
test. These technologies were successfully tested and validated using spe-
cific protocols and data which simulated the real-application scenario. The
remarkable results suggested that these may be promising solutions for de-
tecting physical and cognitive decline in the home setting.





Summary

Introduction

One of the today’s major challenges for the healthcare systems worldwide
is represented by the ageing population. Although it is a great achievement
for our society, the shift towards the older age of the population will require
a huge demand of resources and long term care [1]. From the age of 60,
the incidence of various chronic diseases, such as frailty, Parkinson’s disease
and dementia, rapidly increases and, if not timely treated, they can seriously
impact the individual’s quality of life. To date, early diagnosis represents
an effective strategy to slow down and mitigate the physical or cognitive
degradation process lead by a chronic disease [1, 2]. However, ageing is a
complex and multi-factorial process and the trajectories of decline can con-
sistently differ between individuals. In their early stages, the phenotype of
some age-associated pathological conditions can be confused with the typi-
cal signs of healthy ageing [3]. Moreover, in some conditions as frailty, there
is a lack of standard tools in medicine for an effective early diagnosis [4].
Chronic diseases in older adults generally start in mid-age with a pre-clinical
stage, in which the individual experiences a slight physical or cognitive de-
cline [5]. The symptoms which could be associated to a certain disease begin
to emerge in the mild clinical stage of decline, even after 20 years from the
pre-clinical phase onset. Then, the course of decline progresses to the more
severe clinical stage, in which the cognitive and/or physical functionality of
the patient results markedly compromised. In most cases, only interventions
in the pre-clinical stage can stop or significantly decrease the evolution of
decline in the individual.

The health care provider’s strategy should be focused to the early detec-
tion of decline in older adults, so that to identify the presence of a precursory
stage of the pathology and provide the appropriate intervention. However,
the current healthcare model is not well suited to this purpose. Historically,
healthcare systems are optimised to tackle with acute conditions, by recog-
nising the symptoms and managing the best interventions to the patient [1].
The health status of a patient is assessed through in-person spot visits, in
which the symptoms are examined. Yet, a limited number of consultations in
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time is not effective to identify the early signs of a potential abnormal decline
in the subject. In addition, the non healthy decline in seniors is typically
due to co-morbidity and symptoms might be non-communicable [6].

The increase of the life’s expectancy in the present days is calling for new
requirements for the healthcare systems, more focused on the prevention, the
early detection and the efficient management of chronic diseases. The main
effort should be dedicated to the development of more agile strategies for the
assessment of the subject’s health status. For example, the continuous mon-
itoring of the individual’s decline trajectory and remote consultations could
help the healthcare systems to provide the right interventions over time,
without the need of in-person visits. Remote health may also allows ageing
in place, or rather possibility to live in one’s own home and community safely,
independently, and comfortably, regardless of age, income, or ability. In the
home monitoring scenario, some clinical tests could be remotely adminis-
tered for an agile assessment of the subject’s particular health conditions.
To this purpose, supervised digital tests and clinical expert systems can be
useful to manage and evaluate the tests with more efficacy [7].

Technology plays the major role in the transformation of the healthcare
system in a more integrated and person centred institution. In particular,
telemedicine and internet of things (IoT) offer important instruments for
the remote monitoring of older patients in home environments. Both the
older individuals and long term-care systems benefit from the possibility to
remotely identify degeneration in the domestic environment. A remote and
continuous monitoring would be more effective than spot visits in detecting
early signs of physical or cognitive decline and it would not require the same
time and resources.

Researchers studied the use of smart home technology, mobile and wear-
able devices for the domestic monitoring of the community dwelling el-
ders. Environmental sensing, for example presence, weight and temperature
senors, can be used to rapidly locate the older individual inside the house and
intervene in the case of domestic accidents or fall. Wearable systems may be
used to track biometric quantities and mobile devices, such as smartphones
and tablet, could be used to remotely access health services, contact the clin-
icians and execute routine checks. Recent studies investigated the validity of
self-administered digital cognitive tests, implemented on mobile devices, for
an agile assessment of the mental decline in seniors living alone. The outcome
of those tests can be forwarded to the clinicians to help the early diagnosis of
mental disorders, without the need for the elderly to often reach the hospital.

In the field of remote monitoring, research is still underway. Standard
metrics need to be generally accepted and widely adopted to be used con-
sistently. Moreover, in the case of older adults, monitoring technologies
should issues related to the diffuse senior’s technological illiteracy. The goal
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is therefore to develop non-intrusive (or ecological) solutions which do not
request elderly users to adopt new behaviours or perform tasks that may
results uncomfortable. The instrumental daily-life activity (IADL) monitor-
ing is an alternative that can fit these requirements, since it may retrieve
health information about the user by carrying out a daily activity. However,
IADL is operated in a generally unconstrained setting that might influence
and deviate the measurement from the standard reference, if any. Infor-
mation about decline from the daily-activities monitoring is therefore to be
found in abnormalities in the data (for example, outliers and changes in the
measurements).

Below, the general aim and the main objectives of this work are listed.
In the following sections, the topics are treated more in the details.

This thesis addresses the problem of the detection of age-related decline.

The core of this research is dedicated to the development of the IADL
monitoring through the ecological assessment of handwriting. With a transna-
tional approach, the problem is addressed by transferring the main scientific
findings in literature into a real-world scenario application, by developing
novel ecological technologies and methodologies.

The other topic concerns the remote the remote analysis of a cognitive
test. In this research, a decision support system for for the semi-automatic
analysis of the Rey-Osterrieth complex figure test is designed and tested on
retrospective data.

Ecological Monitoring of Handwriting

Handwriting has been largely investigated in literature and it has been
proved to be a potential biomarker for decline in older adults and for various
age-related pathological conditions [8]. The useful information is retrieved
using quantitative analysis of handwriting, which consists in the calculation
of specific measurements from the written trace kinematics, gesture dynamics
and tremor that show significant variations with age and pathology [9, 10].
In most of the studies, these quantities (i.e. handwriting indicators) were
measured using special tools, typically found on the market. Devices, such
as tablets and digitizing surfaces have been used to collect handwriting data,
following precise experimental protocols.

Being a common daily-activity, handwriting is well suited to be remotely
assessed in the home environment. However, the translation of the previous
findings in research to the home monitoring is not straightforward. The first
barrier is represented by the instrumentation which can be used to acquire
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the handwriting data. Tablets and digitizers might result user-friendly for
younger adults, but they are certainly less so for the seniors which prefers
the traditional ink-and-paper writing. The second issue lies in having to
avoid, as far as possible, the data acquisition protocols to make monitoring
more ecological. This setting represents an uncontrolled environment, un-
precedented in literature, in which measurements are more likely to be noisy
and the age or pathological reference values may not be valid anymore [11].
The specific objectives for this topic are:

i) provide a novel instrument to allow the ecological assessment of hand-
writing, ii) test the validity and the reliability of the handwriting indicators
obtained from the data collected using that instrument and iii) design an
anomaly detection approach to identify age and pathological variations in
older adults’ handwriting, for monitoring purpose.

The Smart Ink pen

This research begins with the design and development of a novel device for
the ecological handwriting assessment. This activity was completed within
the European project MoveCare (H2020, GA no. 732158) [12]. My specific
contribution regarded the definition of the technical specifications (hardware
and software), the testing and the validation of the device.

Since it was mainly meant to be used by seniors, ease of use was the
first concern. The solution consisted of an instrumented ink pen, equipped
with an inertial measurement unit (IMU) and a force sensor on the tip,
which allowed the data collection during common paper-and-pen writing
tasks. Figure 1 shows a computerised representation of the pen and its com-
ponents. The sensors, the electronics, the rechargeable battery and all the

Figure 1: (a) A rendering image of the smart ink pen and its internal components.
(b) An external view of the smart ink pen.

internal components were miniaturised and hidden by the pen body, not
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very different from a common stylus. Similarly, the firmware was designed
to autonomously start the data collection when the instrument was used
to write and then send them via low-energy Bluetooth (BLE). A remote-
controlled data recording modality was also included. The signals collected
during handwriting were 3-axis linear accelerations, 3-axis angular velocities
and the normal force applied to the pen tip.

Once designed and realised the device prototypes, my role consisted in
devising and performing the testing and validation procedures. A series of
tests were conducted to test and validate the signals acquired using the smart
pen. At first, the static tip force was calibrated using and external force
sensor. The force measurements, from the pen sensor and from the external
load cell, were obtained applying testing weights (from 10 to 500g) above the
stylus. The linear regression between the two sets of measurements returned
a R2 score of 0.99 and the linear coefficient were used to for the conversion
of the non-scaled units of the pen sensor to grams. Then, the writing force
was validated in dynamic conditions, i.e. during handwriting. The pen force
and the external reference signals were synchronised and compared using the
Pearson’s correlation coefficient, with a mean value of 0.96.

The dynamic inclination of the pen was computed from the inertial mea-
sures. The tilt angle was validated using an optoelectronic inclination mea-
surement of the pen attitude as reference. The comparison of the signal
showed positive results with a correlation coefficient ranging from 0.89 to
0.78 and a root mean squared error (RMSE) between 3.8◦ and 6.3◦.

Before the calculation of the handwriting indicators was made, the seg-
mentation in strokes (i.e. the identification of the writing interval in the
signals) was evaluated. The non-zero force tracts in the pen and the exter-
nal load cell force signals were identified and compared during handwriting.
The linear regression between the strokes duration reported an R2 score of
0.99 and the agreement of the measurements was checked through the Bland-
Altman analysis. Figure 2 shows the comparison between the writing force
signal acquired with the pen and the reference signal from the external sen-
sor in the upper panel. Below the signals, the writing tracts are highlighted
by line segments. In the lower panel, the Bland-Altman plot for the writing
tracts duration is reported.

In the Movecare project, a eHealth platform for the monitoring and as-
sistance of the community dwelling elders was developed. The study was
finalised to an ecological momentary assessment in which the platform was
tested in the real-world scenario with 25 older adults (65 or more years old)
living alone. The pilot study was organised in two rounds (round 1 and 2),
each of them lasting 3 months and usability and acceptance of the various
components of the eHealth platform were investigated in two main ways:
i) through users’ feedback collected using questionnaires; ii) by measuring
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Figure 2: Pen vs external sensor’s writing force signals and strokes duration (upper panel).
Bland-Altman plot for the strokes duration (lower panel).

the amount of time the devices/modules were used. From the first set of
questionnaires, the pen resulted well accepted by the recruited users. The
usability scores obtained by the pen were very high: 90% of the participants
rated the question using the smart pen was easy positively and the 86.4%
rated the question I found it easy to charge the smart pen positively. The
pen in particular resulted indeed the most used component of the Movecare
monitoring platform.
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Handwriting Indicators Reliability and Age-Related Differ-
ences

The handwriting assessment consists in the calculation and the analysis
of some quantitative indicators which describe particular characteristics of
the writing trace kinematics, the gesture dynamics and the hand tremor
[9, 13]. In literature, the indicators have been observed to be sensible to
variations in handwriting due to a normal or pathological ageing decline
process [8, 14, 15, 10]. In these researches, handwriting have been studied
in controlled conditions, i.e. using standard writing protocols or drawings
which have been largely tested. Indeed, the home environment represents
an new uncontrolled setting to acquire handwriting data. Therefore, with
the aim of extending the ecological validity of the handwriting assessment
to the remote setting [11], a special protocol which resembled the common
daily writing activity have been designed: the subject were asked to write
a short free text and a grocery list without any constraint on the writing
modality or content. A set of 12 handwriting indicators, belonging to the
temporal, the frequency, the kinematic/dynamic and the non-linear domain,
were computed from the raw pen data. The writing signals were acquired
from 43 healthy subjects, divided in 3 age groups (young, middle-old, old),
while preforming an unconstrained free-writing task.

As first, the reliability of the indicators was checked by calculating the
intra-class coefficient (ICC) and the minimum detectable change (MDC) of
each indicator in a test-retest trial. The values of ICC, all over 0.75, demon-
strated a solid test-retest reliability of the indicators. In the case of changes
in the indicators, in longitudinal measurements, the MDC values can help
in the discrimination between a measurement error and a variation in the
subject’s condition. Then, an age-related statistical analysis was performed
to study significant differences in the handwriting indicators between differ-
ently aged groups of healthy subjects. In this experiment, 8 indicators out
of 12 showed significant changes between the 3 groups, with the 95% level
of confidence.

Results showed the sensibility of handwriting to variations due to the
ageing process. In particular, the older age groups were characterised by an
increase of temporal writing measures, a more uniform writing pressure, and
more repetitive and predictable tremor oscillation components. Although the
actual average value of some indicators could differ from those of previous
studies on the same age group, the sensibility of handwriting to age decline
was confirmed, even in the semi-uncontrolled setting represented by the free
handwriting on paper.
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Anomaly Detection in Free Handwriting

The previous investigations revealed that the smart ink pen was a suit-
able and reliable tool for the ecological collection of quantitative information
about the handwriting activity. Although reliable measurements could be
obtained using the pen, the subject’s handwriting could not be evaluated by
simply comparing the indicator with those values which, in previous studies,
have been associated to decline. The ecological data acquisition modality in-
creases the noise and the data variability, so measurement may have erratic
fluctuations and unforeseen behaviours. In this study, a method based on the
anomaly detection was investigated as a solution to identify patterns in the
indicators which could suggest an abnormal ageing process or the presence
of a pathology. The approach was based on the classification of a subject in
a particular group of individuals using his handwriting indicators as input
features. By considering groups of differently-aged healthy individuals, an
abnormal situation for a subject would be represented by the association of
its handwriting features with those of an older aged group. To extend the
validity of the study to the more uncontrolled domestic environment, the
indicators were calculated from data acquired during writing tasks which
simulated the typical handwriting activity in daily life: a short free text and
a grocery list, without further constraints.

A total of 80 healthy participants, were equally divided in four groups
aged 18-40, 41-60, 61-70 and 70+ (of 20 subjects each). A set of 14 gesture
and tremor-related indicators, calculated from the raw data, have been used
as features in 5 binary classification tasks between pairs of groups. A baseline
classifier (logistic regression) and a more advanced model (Catboost) were
used to solve the classification tasks.

Results showed that the Catboost algorithm outperformed the logistic
regression in almost all the tasks and the datasets (outcomes ranged 82.5-
97.5% for Accuracy, 81.8-100% for Precision, 75-100% for Recall and 92.2-
100% for ROC-AUC), in the classifications between groups with close age
ranges in particular, where differences in the individuals’ handwriting were
expected to be minimal. That confirmed the superior sensibility of Catboost
to the changes in the handwriting indicators with respect to the baseline
estimator.

The objective of these classification tasks was that to test the sensibility
of the models to variations in the handwriting due to decline. Especially in
the classification between groups of healthy subjects in close age ranges, for
which the age-relate differences in handwriting were expected to be limited
[16]. For monitoring purpose, Precision was the most significant metrics
since it measured how much the classifier was robust in the determination
of the true positives. In particular, the classification between the groups
aged 61 to 70 and 70+ was the most relevant to study the suitability of the
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proposed approach in the early detection of decline scenario.
In a normal ageing process, the signs of decline are expected to be more

consistent in the older group [17, 18]. Therefore, whenever an individual in
the younger group (aged in the range 61-70) is associated to the older one
(70+), it might be interpret as a sign of abnormal decline. In this task,
results showed that the trained classifier may be suitable for the decline
monitoring application because of its high Precision of 94.4%. As showed
in the confusion matrix of the classification between the groups aged 61-70
and 70+, in the upper panel of Fig. 3, only 1 subject to 20 was wrongly
classified as older, while the false negative were 3. The ROC curves for this

Figure 3: Confusion matrix for the classification between the groups aged 61-70 (labelled
as 0) and 70+ (labelled as 1) using the Text data, in the upper panel. The ROC curves for
the same classification using the datasets created with the Text, the List and the joined
Text and List data are showed in the lower panel.

classification, using the Text and List data, are showed in the lower panel of
Fig. 3.
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A model explanation technique called SHAP [19] was used to understand
the impact that each handwriting indicator had in the determination of the
subject’s class. Since Catboost was a black box model, the application of
SHAP, after the training phase, revealed the importance of each indicator
(i.e. how much they weighed in the predictions of the class) and how their
high or lower values tended to push the association of a samples towards the
younger of the older class. The outcomes showed that the sensitivity of the
handwriting features to decline was age-dependent. Moreover, the trend of
the indicators in the determination of the subject’s age range was analogous
with the previous findings in literature: the value of the temporal features
suggested that the non-writing moments were longer in the older classes [10],
the dynamic features indicated a less fluent handwriting gesture in the se-
niors and the tremor related features showed a more irregular acceleration
pattern in the younger individuals [20].

Whit the same aim of detecting particular handwriting indicators’ pat-
terns which could be related to an anomalous ageing process, a population of
20 Parkinson’s (PD) patients have been targeted as abnormal group. A sim-
ilar classification task was then performed between the PD patients (ranging
between 55 and 85 years of age) and 20 healthy individuals in the same
age range. The Catboost algorithm achieved the best performances in this
task: a score of 92% was achieved in Accuracy, 95% in Precision and 90%
in Recall. In addition, class wights were used to increase or decrease the
importance of a particular class during the training phase. This made the
classifier more versatile: for the monitoring purpose, the model was invited
to pay more attention to the healthy class, by increasing its weight. It re-
sulted in a maximal Precision (100%), with a Recall of 90%, as showed in
the upper panel of Fig 4. On the other side, increasing the weight of the
PD class, the Recall reached the maximum score and the Precision resulted
equal to 85%, as showed in the lower panel of Fig 4. This made the classifier
more suitable for screening applications.

The model explanation SHAP showed that the tremor related indicators
had the larger impact in the classification between healthy and PD individ-
uals. Handwriting in PD was characterised by more regular tremor patterns
which increased the predictability of the gesture dynamics. The writing force
was higher in PDs and the temporal parameters revealed a slower and less
fluent writing in patients than controls.

Discussion

The novelty of the proposed solution rely in the autonomous and discreet ac-
quisition modality of the handwriting gesture and tremor data during com-
mon paper-and-pen writing activities. The instrument was used to study
handwriting in an unprecedented setting where no constraint were imposed
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Figure 4: Confusion matrices for the classification between the healthy and the PD groups.
In the first case (upper panel) more weight was given to the healthy class. In the second
(lower panel) the weight of the PD class was increased.

in the writing exercise. Results showed the reliability of the handwriting
indicators in healthy subjects’ data and significant differences were found
differently aged healthy subjects. The research confirmed previous findings
in the literature which, using standard protocols, studied changes in hand-
writing related to the ageing process. At last, the information retrieved
with the handwriting analysis of free text data was used to correctly clas-
sify healthy individuals in various age-groups and to discriminate between
healthy and pathological individuals. The classification approach was pro-
posed as anomaly detection technique to identify abnormalities in uncon-
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trolled handwriting data: the classification of a subject in an older aged
group could suggest an abnormal ageing process, while its association with a
pathological group might indicate an early stage of the condition. The high
values of Precision in the classification tasks showed the low rate of false
positive of this supervised and population-specific anomaly detection tech-
nique. In addition, an explainable artificial intelligence approach was applied
to fully understand the decision of the classification models. The SHAP tool
was able to identify the importance of the handwriting indicators and to
show how they affected the prediction of the subjects’ class.

The proposed solution combined the more traditional signal processing
techniques with the novel advancement in artificial intelligence to maximise
the information obtainable from noisy and multidimensional data. Raw
handwriting data were analysed using conventional techniques to obtain reli-
able quantities with a precise physical meaning. This allowed the association
of the handwriting measurements to specific behaviours in the gesture dy-
namic and tremor domains, and it also include the possibility to clinically
interpret the indicators by healthcare professionals. Artificial intelligence
was then used to efficiently search in the highly complex space of the hand-
writing indicators the patterns which may be related to the physical or cog-
nitive decline in the subjects. The effectiveness of this approach is evidenced
by the high performances obtained by the classification algorithms, which
usually need a large amount of data to match such results. In addition,
the use of explainable AI allowed to relate the outcomes of the classification
algorithms to the physically-explicable domain of the handwriting indicators.

The robustness of the results in this research can be increased by test-
ing the handwriting assessment with a larger amount of data, using the in-
strumented pen. Moreover, different groups of non-healthy individuals (for
example MCI and dementia patients) could be included in the anomaly de-
tection study with the handwriting data, to increase the range of detectable
conditions. However, the limitation of this strategy might be related to the
use of a population-specific approach. A more sensible anomaly detection
method could be studied to monitor the subject-specific changes during time,
using longitudinal handwriting data.

A System to Support the Cognitive Assessment

Currently, the detection of the cognitive decline is performed towards the
neuropsychological assessment. It consists of a series of various cognitive
tests administered by a specialist to evaluate the different cognitive func-
tions. The tests consists of precise clinical protocols which are performed
in controlled environments, (i.e. hospitals or clinical facilities) [21]. How-
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ever, in the actual setting the diagnosis of cognitive disorders (such as MCI)
might happen to be delayed [22]. The main reasons are linked to the facts
that i) the examinations are usually prompted by the first manifestation of
the symptoms in the individuals and to ii) the long waiting times of outpa-
tient facilities [23]. Moreover, according to a recent investigation [24], the
proportion of undetected dementia is above 60%.

Prevention and early detection are envisaged to overcome this issue and
lot of research is dedicated to this field. In the eHealth scenario, digital ver-
sions of standard cognitive tests have been developed and tested to allow the
self-administration in the home environment [25]. The idea is to use these
digital tests to send alarm to the senior’s family or the general practitioner
when the achieved scores are critical.

The Rey-Osterrieth complex figure (ROCF) is a very diffuse test for
the diagnosis of MCI and dementia [26]. The copy version of this test is
performed by asking the subject to copy the ROCF, which is made up by 18
geometrical patters. Then, the clinician evaluates the drawing by singularly
scoring each of the patterns. A low total score may suggest some cognitive
deficit in the subject.

Its application in a remote monitoring setting could give important in-
formation about the cognitive decline in the subject, more efficiently than
in the case of an in-person visit. However, the interpretation of the ROCF
though the standard procedure may have a poor inter-rater reliability [27].
Although it might not impact the diagnosis in the clinical practice (since a
number of various cognitive tests are applied), the low reliability could affect
the remote evaluation of the subject and overlook the presence the fleeing
signs of a cognitive degeneration [28]. To address this limitation an expert
system based on retrospective knowledge have been proposed to support the
clinician in the evaluation of the ROCF test.

The objective of this work is to design a decision support system (DSS)
with the dual purpose of helping practitioner in the ROCF analysis and al-
lowing the remote evaluation of the self-administered copy-test.

The Decision Support System

The DSS used computer vision and deep learning methods to evaluate the
18 patterns that constitutes the ROCF. The patterns which were composed
more by lines or simple shapes were identified in the image with line and
shape detection algorithms form CV, then they were evaluated using topo-
logical analysis by defining geometrical rules. The more complex-shaped
patters were detected and evaluated by estimating a similarity measure with
respect to the template image (using a modified version of the ResNet50V2
neural network [29]). The process required an initial action from the special-
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ist who was asked to indicate 5 reference points in the image. Then the anal-
ysis was completely automated and the algorithms were calibrated/trained
using 250 ROCF copies performed from 57 healthy subjects, 131 MCI and
62 dementia patients (from the Instituto Palazzolo, Don Carlo Gnocchi, Mi-
lano). The DSS assigned a qualitative label (that could be either correct,
misplaced, distorted and omitted) to each pattern, according to expert-based
rules. Then, it used these labels to predict the most probable diagnosis of
the subject between healthy, MCI and dementia. A state of art classification
algorithm (Catboost) was used to solve various classification tasks, aimed
at investigating the ability of the system to discriminate between healthy
and pathological individuals or between a different severity of cognitive de-
cline (MCI and dementia). Binary classification tasks were considered be-
tween healthy-MCI, healthy-dementia and MCI-dementia classes, and also
a 3-class task including all the groups. Model explanation was also used to
understand the impact of the patterns in the classification, as well as their
sensitivity to the various classes considered.

Results

The accuracy in the evaluation of the patterns (i.e. in the right assignment
of a label among correct, misplaced, distorted and omitted) were medium to
high: with a minimum value of 62% and a maximum value of 79% of total
Accuracy computed as the ration between the number of the correctly and
the wrongly labelled pattern.

The classification performance instead were high to excellent: Accuracy
scores ranging from 87% (MCI-dementia) to 92% (healthy-dementia); F1
between 79% (MCI-dementia) and 93% (healthy-MCI); Precision between
85% (MCI-dementia) and 100% (healthy-dementia); and Recall between 74%
(MCI-dementia) and 90% (healthy-MCI). The lower performance were ob-
tained in the more complex multi-classification tasks: scores from 73% to
76% were obtained for the Accuracy and scores from 73% to 74% for the other
metrics. In Fig. 5, the confusion matrices for the classification between the
healthy and the MCI groups and between the MCI and the dementia groups
are showed. The high performance in these binary classifications showed
the good sensibility of the system to different levels of cognitive impairment:
when it is in the initial stages with the MCI, and when it become more severe
as in dementia.

At last, the model explanation technique SHAP was employed to deeply
study the impact of each pattern in the classification tasks. Indeed, the
analysis revealed that the sensibility of the patterns changed according to
the level of the cognitive function decline and, as expected, the quality of the
pattern representation (indicated by the qualitative score) tended to decrease
as the severity of the cognitive impairment increased.
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Figure 5: Confusion matrices for the classification between the healthy and the MCI
groups, in the upper panel, and between the MCI and the dementia groups, in the lower
panel.

Discussion

The presented DSS used computer vision and deep learning algorithms to
detect and evaluate the 18 patterns in the ROCF. Then, the scores assigned
to each pattern were used to classify the sample with the most probable
diagnosis with high levels of performance. The results demonstrated the
feasibility of an expert system which performs a semi automated analysis of
the ROCF. Domain experts could use the system to have suggestions about
the evaluation of the single patterns of the ROCF and the most probable
diagnosis for the examined individual. The application of explainable AI can
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also supply further information on how each pattern of the ROCF copy have
effected the final decision. Furthermore, the DSS allows the remote (and
posterior) analysis of the ROCF copy test. In remote monitoring scenario,
the expert system could be used by the practitioners to evaluate the ROCF
drawings done by subjects during tele-consultations or in self-administered
tests. Poor test results may suggest a possible degradation of cognitive
function.

The DSS outcomes are based on retrospective knowledge, therefore it will
improve in accuracy and robustness as the number of data concerning past
examples increases. The limited number of samples in this study might have
affected the accuracy in the evaluation of some patterns, yet the performance
in the classification of the diagnosis were surprisingly high. Especially con-
sidering that the ROCF copy test is just a part of the cognitive assessment
procedure.

A very large collection of ROCF copies could improve the performance
of the DSS in the pattern evaluation and increase the robustness in the
classification of the pathology. Higher amount of data could also encourage
the use or more unsupervised approaches in the analysis of the figure, which
it may exclude any subjective component in the evaluation of the ROCF.

Conclusions

This PhD research proposed novel eHealth methodologies to support the
early identification of age-related decline. Remote monitoring of commu-
nity dwelling elders and the remote assessment of the physical or cognitive
functionality are possible strategies to improve the probability to early di-
agnose a chronic disease. Therefore, this work proposed a solution for the
remote monitoring of the older adults physical and cognitive decline through
the ecological assessment of handwriting and an expert system to help the
specialists in the remote examination of the Rey-Osterrieth complex figure
(ROCF) test, which is an important tool for the diagnosis of MCI and de-
mentia.

The first objective consisted in a transnational study in which the ap-
plication of the handwriting analysis, as biomarker for the age-related de-
cline, was investigated and adapted in the unprecedented context of remote
monitoring. Being a common exercise and having been observed to vary
with ageing and pathology, handwriting appeared as an optimal candidate
for the instrumental daily-life activity monitoring purpose. In literature,
the handwriting assessment consisted in the analysis of certain indicators,
computed from the signal acquired during the handwriting activity. These
quantities, related to the temporal, dynamic and tremor characteristics of
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the writing gesture, were studied to undergo variations with the presence
of age or pathological decline in the individuals. However, some limitations
were found for the application of the handwriting assessment in the remote
monitoring in the home environment. A first barrier was represented by the
data acquisition instruments (tablets or digitizers), which were not easy to
be independently operated by older users. Then, the use of standard proto-
cols for the data acquisition in literature did not allow to extend the results
of the previous studies in the uncontrolled domestic environment.

To overcome these limitations, a sensorized IoT ink pen was developed to
allow the ecological handwriting gesture data acquisition in paper-and-pen
tasks. The device was successfully tested, validated and then used to collect
data from healthy subjects. Then, data were used to study the handwrit-
ing assessment in a conditions which was similar to the uncontrolled remote
setting. As first, the reliability of the indicators was confirmed in test-retest
writing tasks. Then, their sensibility to age-related variation was studied in
3 differently aged groups of healthy subjects. In a total of 12 indicators, 8 of
them showed significant changes with age. This result confirmed the possibil-
ity to use the handwriting assessment as an instrument to detect variation
related to the ageing process in uncontrolled environments. Although the
variation trend of each indicator with age was analogous with those reported
in literature, their mean values not always corresponded with the previous
studies in controlled settings. As a consequence, a remote monitoring system
based on the handwriting assessment should not rely on standard reference
values for the indicators, but it should consider a multivariate approach in
which various different patterns of indicators may be associated to age or
pathological variations in the subject.

A supervised and population-specific anomaly detection approach was
presented as a method to exploit the handwriting assessment in the remote
monitoring of the subject’s age or pathological-related decline. The aim was
that to use the handwriting indicators to classify subjects in the correct age-
class or pathological (PD) group they belonged. In the remote monitoring
context, the unexpected classification of an individual (for example a sub-
ject aged between 60-70 classified as an over 70 years of age, or an healthy
subjects classified as a PD patient) may indicate a sign of an abnormal age-
ing process. Therefore, such event should trigger a deeper investigation on
his health status. This strategy was tested by solving various classification
tasks between group of differently aged healthy individuals and a group of
PD patients. A state-of-art classification algorithm (Catboost) was used and
the achieved performance were high in terms of Precision and Recall in all
the tasks. Since the classification algorithm was a black box model, a recent
explanation technique (SHAP) was applied to understand each model deci-
sion. This additional method increased the interpretation of the anomaly
detection strategy, as it revealed the impact and the behaviour of the hand-
writing indicators (known quantities) in the identification of the subject’s
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group.
A critical point of this proposed solution can be found in the limited

amount of data that could be collected (80 healthy subjects and 20 PD
patients). Although the modest number of samples, very good outcomes
in terms of classification performances were obtained. Yet, a more robust
performance estimation would be envisaged using a larger number of indi-
viduals. Furthermore, the addition of more pathological categories, (such as
MCI and dementia), would enlarge the spectrum of the abnormal detectable
conditions. Another limitation can be addressed to the population-specific
nature of the anomaly detection methods which was tested in this research.
A more subject-centred approach would increase the sensibility in the iden-
tification of the abnormalities in the handwriting data, overcoming the prob-
lems related to the inter-subjects variability. However, longitudinal studies
are necessary to acquire subject-specific data which may supply information
about the individual’s decline trajectory.

The second objective of this PhD work consisted in the design and de-
velopment of a decision support system (DSS) for the analysis of the Rey-
Osterrieth complex figure (ROCF) copy test. To overcome the limitation in
the efficacy of the spot visits in the early diagnosis of cognitive decline, vari-
ous eHealth strategies have been investigated in literature to allow the remote
administration or evaluation of some cognitive tests: they can be remotely
supervised during tele-consultations or self-administered by the subject and
forwarded to the specialist.

The application of the ROCF test in a remote monitoring setting could
give important information about the cognitive decline in the subject, be-
cause of its clinical relevance. However, some studies pointed out that the
interpretation of the test though the standard procedure may have a poor
inter-rater reliability. Although it might not impact the diagnosis in the
clinical practice (since a number of various cognitive tests are applied), this
issue could affect the remote evaluation of a self-administered test by the
subject and overlook the presence of fleeing signs related to the cognitive
degeneration during time. To address this limitation an expert system have
been proposed to support the clinicians in the evaluation of the ROCF copy
test.

The DSS was based on retrospective knowledge collected from past ROCF
copies examples from normal, MCI and dementia individuals. It used com-
puter vision and deep learning algorithms to detect and evaluate the 18
patterns in the ROCF, by assigning a qualitative score each. Then, it used
the scores to classify the image with the most probable diagnosis. The DSS
was able to correctly discriminate the ROCF copy tests between healthy and
MCI individuals, and between MCI and dementia patients, with good levels
of Precision. Domain specialist could use the system to have suggestions
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about the evaluation of the single patterns of the ROCF and about the most
probable diagnosis for the examined individual, especially in a remote assess-
ment framework. In addition, the information the specialists would retrieve
by using the DSS was enriched with the application of the explainable ar-
tificial itelligence (AI) model SHAP. This tool returned the impact of each
of the 18 ROCF’s patterns in the classification outcomes, so it revealed how
the sensibility of the patterns changed with the progression of the cognitive
decline in the individuals. The system could be also used in research, as it
might highlight correlations of different mental disorders or impaired func-
tionalities with particular elements in the ROCF copy test.

A grater number of samples could improve the accuracy of the DSS in the
pattern evaluation and enhance the robustness in the diagnosis formulation.
A larger dataset could also open the way to the exploitation of unsupervised
deep learning approaches which may exclude any subjective component in
the evaluation of patterns. Therefore, more reliable suggestions would be
supplied to the specialists using the DSS.
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Chapter 1

Introduction

1.1 The Scientific Context

Demographic ageing is a global trend. In the European Union (EU), the
number of people aged 65+ will almost double over the next 50 years. While
increased longevity is a great achievement, it is also a formidable challenge
for health and social care sustainability. The main reason is that ageing
is generally accompanied by a progressive decline in physical and cognitive
function that in some cases may develop into, or lay the foundation for, one
or more chronic conditions. Neurodegenerative disorders such as Alzheimer’s
and Parkinson’s diseases have a high prevalence in individuals aged 65+ (7%
and 1% respectively) and it increases with age [30, 31]. Moreover, other con-
ditions are widespread in the elderly population. Among them, frailty have
the largest incidence in older adults and it leads to a spiralling decline in
various functional domains that aggravates the risk of geriatric syndromes
[4]. The management of chronic diseases demands a huge use of resources
by both patient’s families and health systems, as well as leading to a poor
quality of life for the individual itself. The degeneration process in the vast
majority of age-related syndromes is irreversible. However, the decline can
be slowed and the negative effects can be mitigated if interventions are timely
provided. In the early stages, the conditions assume a moderate form with
limited effects on the individual’s physical and mental functionality. For ex-
ample, mental decline starts with a mild cognitive impairment and frailty is
anticipated by the pre-frail condition. In these precursory phases, symptoms
have a minor impact in the functional ability of the patient. Yet their iden-
tification is crucial for the well-timed detection of the condition.

Early detection of decline is decisive to prompt the appropriate inter-
vention. However ageing is a complex and multi-factorial process and the
course of decline is very subject-specific. When in their early stages, the
signs of some age-associated pathological conditions may be hidden by the
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typical manifestations of normal ageing. In addition the current healthcare
model, which almost rely on spot-visits, and the lack of uniformly accepted
standard tools for the effective early diagnosis make the timely detection of
decline even more arduous.

In this scenario, the new requirements for the healthcare system envis-
age a shift towards the prevention and the early diagnosis of chronic disease
in older adults. Technologies such as eHealth and internet-of-things (IoT)
can help this transformation by enabling remote home monitoring solutions.
The possibility to remotely track the health status in their home has vari-
ous benefits. The continuous monitoring can allow the timely detection of
significant variations due to decline and it may optimise the access to the
hospital resources by avoiding unnecessary visits and hospitalisations. Re-
mote monitoring also supports ageing in place, i.e. it allows seniors to safely
spend their late years within their habitations and communities.

Home monitoring research is still underway. The major issues are re-
lated to the uncontrolled setting in which the measurements are performed.
Therefore, standard metrics are hardly identifiable. Then, with older adults,
the complications increases because the adoption and the acceptance of the
monitoring devices is prevented by the widely diffuse senior’s technological
illiteracy. For the remote tracking of the physical functionality, instrumental
daily-life activity monitoring is a solution which may results non-intrusive
(or ecological) for the user, since it basically collect data by carrying out
daily activities. They usually involve the use of a sensorized common ob-
ject which does not request the users to adopt new behaviours or to perform
tasks that may results uncomfortable. The home-based cognitive monitoring
instead is more related to the use of standard protocols, which may be pre-
sented in the form of smartphone and tablet applications or serious games.
The validity of some self-administered digital cognitive tests for the older
adults have been investigated in literature [25]. The score the older adults
receive in those tests supply useful information about their mental decline
and it can be timely forwarded to the clinician. The major issues in this field
concern the implementation of automatic method for the test evaluation and
its association with cognitive decline.

The general aim of this work is expressed as follows: this research has the
objective of designing and developing leading edge eHealth technologies and
methods to support the detection of physiological changes in healthy ageing
and to detect signs of pathological decline.

This study is mainly focused on the exploitation of the ecological assess-
ment of handwriting as daily life activity monitoring. Handwriting has been
largely investigated in literature to be a potential biomarker for both physi-
cal and cognitive decline, since it is an high level skill which involves several
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cognitive and motor systems in the individual. Pathological decline, due for
example to a neurodegenerative process, affect some temporal and frequency
characteristics of the writing gesture and variations in quantitative indica-
tors of handwriting are observable. Moreover, the measurable features are
also altered by the physiological ageing course. That means that abnormal
variation in an older individual may suggest the onset of some non-healthy
decline. However, there are limitations to the application of the handwrit-
ing assessment in domestic environments. As first, almost all the scientific
findings in literature were achieved in controlled settings, where standard
experimental protocols were adopted. This made the translation of the pre-
vious results in the new uncontrolled context of the home monitoring not
straightforward. Then, the available instruments for the handwriting data
acquisition (tablets and digitizing surfaces) may not be easy to be indepen-
dently used by seniors. Therefore, a handwriting monitoring system based
of such technologies can result too intrusive to be adopted in the daily-life.

As second task, this work deals with the problem of the early detection of
mental decline through the use of digital cognitive tests. In the clinical prac-
tice, the cognitive assessment rely of the administration of several tests and
the outcome is determined by the clinician according to the score the patient
achieved in each of them. Yet the self-administration of some tests by the
subject does not replace the comprehensive clinical cognitive assessment, but
it might serve as sign of early decline in the case of a scarce outcome. The
Rey-Osterrieth complex figure is one of the most informative cognitive tests,
since it evaluates several mental functionalities. However, its interpretation
is a complex process which can not be easily automated by a computer soft-
ware. Furthermore, its evaluation does not achieve a high level of inter-rater
reliability [27]. Part of the information indeed rely on the subjective experi-
ence in evaluating also the patient’s execution strategy of the test. For this
reason, the remote posterior analysis of a self-administered Rey-Osterrieth
test is almost impractical. This study proposes a decision support system
for the interpretation and the evaluation of the Rey-Osterrieth complex fig-
ure. It is meant to help clinician in the evaluation of the test and to also to
allow the remote analysis of a self-administered test, performed in the home
environment.

1.2 Aim

This work aims at designing and developing novel technologies and methods
to support the detection of age-related decline. Two approaches are here
proposed: the ecological assessment of handwriting as instrumental daily life
activity monitoring and a decision support system to assists the clinicians
in the analysis of the Rey-Osterrieth complex figure copy test and also allow
its remote evaluation. The objectives of this research consist in solving the
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scientific and technological problems for their realisation.

In particular, for the ecological monitoring of handwriting they are:

• 1a) the lack of an instrument which allow the non-intrusive collection
of the handwriting data;

• 1b) the lack of scientific evidences which demonstrate the validity of
handwriting as biomarker for age and pathological-related variations
in uncontrolled settings;

• 1c) the lack of verified methodologies to identify these variations in
uncontrolled settings.

While, for the implementation of a decision support system for the analysis
of the Rey-Osterrieth complex figure, the issues are related to:

• 2a) the complexity of the figure to be analysed;

• 2b) the difficulties in detecting and quantify the aspects not included
in the standard evaluation protocol, but still present in the analysis of
the test.

Consequently, the following solutions have been addressed to resolve the
respective problems. For the first objective they are:

• 1a) design and validation of an instrumented ink pen, to allow hand-
writing data acquisition during common paper-and-pen tasks;

• 1b) study the validity and the reliability of the main handwriting in-
dicators as biomarker of decline in semi-uncontrolled settings;

• 1c) the investigation of anomaly detection techniques based on the
discrimination between age-groups of healthy subjects and between
age-matched groups of healthy and pathological individuals.

Then, for the second objective they are:

• 2a) the application of cutting edge computer vision and deep learning
algorithm for image elaboration;

• 2b) the use of retrospective knowledge on past Rey-Osterrieth tests to
determine the most probable outcome.

1.3 Outline

The rest of this thesis in organised in 6 chapters.
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• Chapter 2 introduces the context and the state of the art related to
this work. It regards various subjects as the phenomenon of the demo-
graphic change towards the older age, the physiological and economical
issues related to ageing, the new requirements for the healthcare sys-
tems and the home monitoring framework are treated.

• Chapter 3 presents the scientific literature about the quantitative anal-
ysis of handwriting and its limitations for its ecological application.

• Chapter 4 describes the design and the development of the smart ink
pen. The calculation and the validation of the handwriting indica-
tors and the study of their differences between age-groups of healthy
individuals. The last section of the chapter reports the results of a
ecological momentary assessment study about the usability of the pen
among seniors.

• Chapter 5 is dedicated to the topic of anomaly detection of decline
through the group-classification based on the handwriting indicators.

• Chapter 6 explains the implementation of the decision support system
for the evaluation of the Rey-Osterrieth complex figure test.

• Chapter 7 at last draws the conclusions of the work.
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Chapter 2

Background Information

This chapter will treat the general aspect about ageing. Sec. 2.1 introduces
the topic of ageing from a demographic and physiological point of view.
Particular attention is given to the typical trajectories of decline in elders and
the importance of early detection of chronic diseases. Sec. 2.2 explains the
impact of ageing to the healthcare systems, highlighting the actual limitation
and discussing how the healthcare model should be changed to efficiently face
the phenomenon of the ageing population. A brief section is also dedicated
to the issues of the healthcare systems revealed by the current COVID-
19 pandemic. Sec. 2.3 shows home monitoring as a solution to improve
the elderly care efficacy and to offer the possibility to early detect sign of
decline in community dwelling elders, with a section dedicated to its design
specification guidelines and requirements.

2.1 Ageing

Nowadays, the increase of the life expectancy in high-income countries is
allowing life beyond 60s for most of the people [32]. The combined effect of
a reduced mortality among older adults and a significant decline in fertility
is determining an unprecedented modification on the composition of the
population that will drive a demographic shift towards the older age [33].
These demographic projections are widely predictable, so institutions can
plan decisive actions to face the deep impact of the next transformation of
our society [34]. From the family level to the local community, older people
can offer a valuable contribution to the society, as long as they live in good
health. However, if the extra years are lead by physical and mental decline,
the effects may be counteractive for the society and for the elder individuals
themselves.

As evidences suggest, increased longevity does not always mean good
health. Longitudinal studies in wealthy countries observed that the preva-
lence of more severe disabilities which appeared decreased, while the preva-
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Figure 2.1: Proportion of population aged 60 years or older, by country, 2015,
from https://www.who.int/ageing/publications/world-report-2015/en/.

lence of low severe disability remained almost unchanged [35, 36, 37]. The
health problems of older people are mostly determined by chronic disease.
Therefore, many of these can be prevented or slowed down with the as-
sumption of healthy behaviours and early diagnosis. Physical activity, good
nutrition and the avoidance of harmful behaviours can promote physical and
mental well being and the early detection of health problems can allow an
efficient management of health. Elder people can still conduct a dignified
life and they can contribute positively to society, if the long-term care are
able to provide the right support [1]. Hence, The phenomenon of the ageing
population needs an appropriate response by public health systems.

2.1.1 Demography of Ageing

At present, the ageing population is a worldwide fact and a key policy issue
for the governments of all countries. The portion of aged people is drasti-
cally increasing all over the world. In 2015, the proportion of population
aged 60 years or older, by country, is reported in Fig. 2.1. The map shows
that in 2015 only Japan exceeded a portion of older population of 30% [1].
Projections, nevertheless, show that similar demographic characteristics will
be shared among many other countries. Figure 2.2 shows the projections
of the proportion of people aged 60 years or older by country for 2050 [1].
Countries in Europe and North America are among them, but also countries
such as China, Iran, the Republic of Korea, the Russian Federation, Thai-
land and Vietnam. Beside the global increasing life expectancy, the ageing
population in some countries is also due to the improve survival at younger
ages that took place within the socioeconomic development during the past
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Figure 2.2: Proportion of population aged 60 years or older, by country, 2050 pro-
jections, from https://www.who.int/ageing/publications/world-report-2015/en/.

50 years.

However, the increase of life expectancy and the new social transforma-
tions may result in an incremented gap between different co-living genera-
tions. Today it is not so rare that families include members belonging to
different generations, but they live separately with more probability than
they did in the past. As an example in the European Union, the portion
of 65 and older aged women living alone is more than 40% [38]. For older
people living alone, isolation can be an issue as it increase the probability of
undesired outcomes [39]. In these cases, remote monitoring devices and as-
sistive technologies may help ensure a safer lifestyle for community dwelling
elders. Together with social inclusion policies and activities [1].

2.1.2 The Process of Ageing

Biologically, the process of ageing consists in a lifelong accumulation of
molecular and cellular damage. Over the years, these phenomena lead to
a progressive and generalised decay of physiological functions, extreme sen-
sitivity to environmental factors and a growing risk of developing a patholog-
ical condition and death [40]. The phenotype of the decline course is various
and it usually involves several body functions.

Motor functions. The neuro-motor system undergoes major changes dur-
ing the decline process. First, the muscle mass tends to progressively decrease
causing a reduction in strength and musculoskeletal functions [41]. Grip
strength, for example, is one of the indicators used to monitor the motor-
system ability to generate force, regardless the effect of any possibly present
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disease. Furthermore, strength decline has also been studied to be a strong
predictor of mortality [42]. Mobility is also impaired by important changes in
bones and articulations. The bone density tends to decrease with age up to
causing the condition of osteoporosis, in which the possibility of suffering a
fracture is greatly increased [43]. Articulations become more rigid and fragile
with age, since the tissues as joint cartilage undergo cellular and molecular
deterioration [44]. From a macroscopic level, all those changes and degra-
dation in other factors, such as coordination and proprioception, impact
higher musculoskeletal functions. The reflections can be seen in a reduced
gait velocity, a reduced speed and accuracy in performing daily-life motor
tasks and an overall reduced mobility [45]. These physiological modification
generate different mechanism which can favourite the onset of neuromotor
disorders. The potential contributions to age-related neuromotor disorders,
such as Parkinson’s disease (PD), essential tremor (ES), multiple sclerosis
(MS) and stroke, are multi-factorial and they can include a large number
of conditions, drugs and environmental hazards, very often in combination
[46].

Sensory functions. Ageing is generally accompanied in a degradation of
the sensory functions. With a large diversity at the individual level, impaired
vision and bilateral hearing is experienced in older adults. Presbyopia is the
most common condition associated to complex functional changes in the eye
which lead to a decrease of focusing ability [47]. If not treated, these phys-
iological modifications can affect fundamental aspects of daily life of elders
by compromising the normal performance of daily activities. Hearing loss
can also place barriers to communication, favouring conditions such as social
isolation, loss of autonomy, depression and cognitive decline [48]. A reduced
vision also contribute to isolation by making interpersonal interactions and
the access to information more complicated. The generalised loss of sensory
function eventually affects mobility and the execution of habitual activities,
increasing the risk of falls and accidents.

Cognitive functions. The decline of cognitive functions is another im-
portant aspect of ageing, which may occur in relatively young age. The
cognitive decline is a complex and dynamical process that evolves in differ-
ent conditions at different rates. With the increasing of individual’s age,
the range of possible impairments of cognitive functions becomes more and
more heterogeneous [49]. Cognitive decline is commonly associated to a re-
duced ability to perform complex tasks which demand divided or selective
attention [50]. Learning and complex memory tasks which require reorgan-
isation and integration of several items indeed become limited with ageing.
However, memories related to personal experiences and procedural memory
remain usually intact. This means that, from a cognitive side, high level
learned skills such as riding a bike remain almost stable in physiological age-
ing [51]. Age-related cognitive decline can be slowed and compensated, to
some extent, with mental training and physical activity [52]. Pathological
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cognitive decline instead might be harder to reduce. Early detection and
intervention are key to slow the decline process which usually starts with
moderate forms, such as in the mild cognitive impairment (MCI) condition
[53], and progresses to more severe forms of dementia, as the Alzheimer’s
disease (AD). Cognitive impairments have heterogeneous manifestations in
older adults, but normal ageing decline is still distinguishable from changes
due to pathological conditions [16].

Dementia is not an inevitable part of ageing [54], however it does have
a very large incidence. The people affected by dementia in 2015 were more
than 47 million worldwide and projection are less comfortable: more than
75 million people are estimated to have dementia by 2030 [1]. Dementia is
definitely one of the today’s and next future challenges because of its huge
personal, social and also economic consequences.

2.1.3 Co-morbidity and Frailty

The process of ageing is multidimensional and the typical effect is a gradual
drop in the capacity of the individual [40]. The course of this decline is
non-linear and not consistent among different subjects [55]. Some older
individuals can keep good physical and cognitive functionalities, while other
can live in a condition of non self-sufficiency. At the basis of this phenomenon
there is a component of variability given by the complexity of the process,
but a strong influence is also given by environmental and behavioural factors.

At any rate, with ageing the risk of developing chronic diseases increases
and often they appear in the form of noncommunicable disease. By the age
of 60, the risk of multi-morbidity is augmented, that is the presence of more
than one chronic or acute condition at the same time [56]. When an elderly
individual experiences the coexistence of multiple diseases, these can deter-
mine health conditions that might escape the standard methods of detection.
Moreover, they should not be treated separately. A comprehensive health
assessment of an older individual should consider the mutual interaction that
the various morbidity can have and how they influence the possible trajec-
tories of physical and mental functioning [57].

Sates of comorbidity can emerge in the chronic condition of frailty. A
standard definition of frailty is not yet uniformly recognised, however it
can be described as a progressive decline in physical and/or mental abilities
which leads to an accentuated vulnerability to stressors and tendency to
more adverse health outcomes [58].

The prevalence of frailty in Europe, in people aged between 50 and 64, is
massive. It is estimated to be 4.1% and it increases up to 17% in individuals
aged 65 and over [59]. Furthermore, the prevalence values of the precocious
state of frailty, the pre-frailty, are significantly higher: 37.4% for people aged
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within the range 50 - 64 and 42.3% for those aged 65 and over. Values also
resulted notably higher in southern Europe.

Frailty progresses as a complex and dynamical process in the individual
[60]. The course can vary greatly from person to person. In some cases it ap-
pears reversible, but only in rare cases the process regresses spontaneously
[61]. In most cases only a well-timed and comprehensive geriatric assess-
ment can provide indications for administering effective interventions aimed
at preventing major negative outcomes [62]. However, the identification of
frailty at its early stages might be complicated as symptoms can be analo-
gous to those typical of normal ageing [3]. Fried an colleagues described the
generic phenotype of frailty [4]. They identified five typical signs related to
a non-physiological ageing process:

1. Shrinking, detectable by an unintentional weight loss equal or higher
10 pounds in prior year.

2. Weakness, when the measured baseline of grip strength is lower than
20% of the standard value, adjusted for gender and body mass.

3. Poor endurance, as self-reported exhaustion associated with stage of
exercise reached in graded exercise testing.

4. Slowness, based of standard time to walk a distance of 15 feet, adjusted
for gender and height.

5. Low physical activity, identified by the lowest quintile of physical ac-
tivity in terms of a weighted score of kilocalories expended per week.

According to Fried, the presence of just three of those signs in an older
individual indicates frailty. The manifestation of two symptoms only instead,
may imply the pre-frailty state in the individual.

Another instrument which has been proposed to detect frailty is the
frailty index [63, 64]. It is a score, continuous between 0 and 1, which counts
the health deficits of an individual and divides that amount by the total
number, at list 30, of deficit measured. The health deficits can be either
signs, symptoms, diseases, disabilities and abnormal diagnostic test results.
Moreover, to be valid , the health deficits should involve multiple domains of
functioning or multiple organ systems, the prevalence should rise with age,
they should be not so frequent before the age 65 and the prevalence should
be over the 1%. Higher values of the frailty index indicates higher severity
of frailty, but the cut-off is questionable. In most cases a value greater than
25 is considered as threshold for frailty.

This lack of a standard tool to identify frailty makes sporadic visits and
assessments poorly efficient in the detection of the syndrome. Longitudinal
research on trends and trajectories of frailty are therefore of high priority
in research, as well as randomised controlled trials pointed on prevention or
treatment of frailty [65].
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Figure 2.3: Three hypothetical trajectories of the intrinsic capacity, adapted from
https://www.who.int/ageing/publications/world-report-2015/en/.

2.1.4 Trajectories of Decline in the Elderly

In the sociopolitical and in the research environments, healthy ageing is a
rather widespread term. It indicates the good health status of an individ-
ual in older age as opposed to the presence of single or multiple diseases.
However its exact definition as well as an adequate instrument to measure
it is still lacking [66]. According to the World Health Organisation’s World
Report on Ageing and Health, of 2015 [1], healthy ageing can be defined as
the ability of elders to develop and keep the functional ability that enables
well-being. Functional ability is a name used to express health characteris-
tics that allow individuals to perform normally expected activities and tasks.
It is composed by the intrinsic capacity, which includes all the physical and
cognitive capacities of a person, environmental factors and the interaction
of the individual with them. Well-being is often assumed in a broad sense,
comprising abstract characteristics such as happiness, satisfaction and fulfil-
ment.

During the ageing process, the way individuals interact with the envi-
ronment start to change from a certain point in midlife. The way these
interactions change can draw different trajectories in the intrinsic capacity
and in the functional ability, according to the various health conditions peo-
ple can fall in. Figure 2.3 shows three hypothetical ways the trajectory of
the physical capacity can evolve. The trajectories start from the same point
on the time and the event of death is assumed to happen nearly at the same
age. What is shown to change is the amount of life lived with an high level
of intrinsic capacity, which positively contributes to the quality of life. The
blue line, case (A), describes the trajectory of an optimal ageing course in
which the intrinsic capacity rapidly falls starting from a point close to the
end of life. The yellow line, case (B), represents the trajectory of an individ-
ual which had a rapid decrease in the intrinsic capacities caused by an event
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such as an acute condition. The rapid decrease is followed by a recovery
tract, which then turns into a progressive decline. The red line, case (C),
shows the trajectory of a hypothetical subject with a chronic condition, in
which decline constantly progresses until death. The dashed lines describes
alternative evolution for the trajectories in the cases B and C. Before decline
has deflected the trend of the intrinsic capacity of an individual, the objec-
tive for an healthy ageing is that to favourite an optimal trajectory, as in
the case A.

Evidences show trajectories of intrinsic capacity can be monitored and
used to predict the future progressions [67]. Besides health characteristics of
the subject, other information are needed to improve the predictions, such
as personal habits, measures about daily-life activities and genes factors. In
the case where subjects are living with chronic diseases, intrinsic capacity
can be improved if disease is promptly detected. For the Alzheimer’s disease
(AD) for example, as reported by Rasmussen and Langerman in 2019 [2],
early detection positively impact the individuals in terms of quality of life,
as they are more likely to control their conditions and live independently for
longer. A better quality of life can be maintained for several years. Timely
treated AD patients showed were associated to a reduced tendency of death
and a lower rate of hospitalisation, respectively the 31% and the 20% less
than non-treated patients [68]. Early diagnosis of cognitive decline also have
positive impact on the economical burden for long-term care systems. The
effect of medical treatments at early onset of a chronic disease have the
effect to slow its progression and stop, in some cases, the development of
more severe conditions.

Early intervention also results in a reduced expense or long-term care
systems. The graph in Figure 2.4 shows the projections of total medical
and long-term care costs in case of the current diagnosis status (in violet)
and in case of early diagnosis (in green), up to 2050. The projections were
made by the Alzheimer’s Association using the The Health Economic Medical
Innovation Simulation model [69]. According to the model, partial early
diagnosis refers to the situation in which people are more likely to receive
an AD diagnosis during the MCI stage rather than the dementia stage. The
prediction showed that, in the case of early diagnosed disease, savings will
be retrieved and estimated to increase about the the 13% in 25 years.

2.2 The Healthcare Model

As outlined by the World Report on Ageing and Health [1], today healthcare
systems are oriented at the diagnosis and treatment of health issues limited
in time. The common approach consists in searching the problem and act
the clinical procedures to cure it. The result is a healthcare model which is
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Figure 2.4: Projected total medical and long-term care costs and cost savings by
diagnosis scenario, from https://www.who.int/ageing/publications/world-report-
2015/en/.

optimised to tackle acute conditions and communicable diseases. Long-term
health has always been addressed with lower priority by healthcare policies,
at the expense of the older individuals’ needs.

Factors that require long-term care increase with age, as noncommuni-
cable diseases become more frequent ad comorbidity is more widespread. In
addition, to better address the needs of elderly care, a high degree of co-
ordination and cooperation between several health professionals would be
requested. Currently, while the demand of healthcare for the elderly pop-
ulation is increasing, healthcare systems are not yet sufficiently suited to
facilitate such coordination, therefore, the delicate task of communicating
relevant to their health situations is left to the same individuals and their
families.

The formation of health practitioner should be also revisited to efficiently
include the long-term care in the healthcare model. Developed to deal with
the wide spread acute infectious diseases of the 20th century, the training
of practitioners was mainly focused on identifying and treating the symp-
toms with an episodic approach [70]. Elderly care, on the other hand, would
benefit from the tendency of practitioners to anticipate and counteract the
deterioration of the patient’s functional status [71]. Such attitude would bet-
ter fit the comprehensive characteristic of a more older-suited care [72, 73].

2.2.1 Economic Impact

Today, healthcare for the elderly already has a considerable impact the pub-
lic healthcare spending. The Ageing Working Group of the Economic Pol-
icy Committee (AWG) constantly monitors the public expenditure on both
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health and long-term care (LTC) by making predictions using the European
Commission services’ models (EC and EPC, 2017).

Figure 2.5 shows the LTC spending as a percentage of GDP for the Eu-
ropean countries reported in the OECD/EU document Health at a Glance:
Europe 2018 [74]. Long term care expenditure emerges as a growing part
of GDP in many EU countries and, therefore, it had a large impact in the
long-term sustainability of public finances. Projections under the AWG set-
ting estimate a baseline scenario of The LTC spending in European countries
raised of more than one percentage point, from 1.6% of GDP in 2016 to 2.7%
of GDP in 2070. Such scenario can widely vary across the 28 EU countries,
from only 0.1 percentage point of GDP in Greece and Bulgaria up to more
than 2 percentage points of GDP in Luxembourg, Netherlands and Denmark.

As showed in Section 2.1.4, the health status of an ageing individual can
follow different trajectories. Therefore, it turns out that time to death is
a more reasonable predictor of the healthcare costs than age [75]. This is
partly due to the complexity of the care contexts that the elderly need, but
also to the structural and cultural attributes of health systems and policies.
For instance, low effort is dedicated to prevent hospitalisation, which is very
expensive and necessary when chronic diseases progress to the more severe
states [76].

Today, the worldwide rapid increase of the elderly population places at
the center of the debate an appropriate revision of the healthcare model.
A different and elderly-centred approach is envisaged to foster the so called
healthy ageing. The goal should be to maintain, as much as possible, a high
level of intrinsic capacity in older adults who experience healthy conditions
and to prevent disease and the risk of negative outcomes. Special emphasis
should be given in detecting and managing noncommunicable conditions at
early stage, without disfavouring adequate interventions in the case of acute

Figure 2.5: Public spending on long-term care as a percentage of GDP, 2016 to
2070, from http://dx.doi.org/10.1787/888933837036
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problems [77, 78].

2.2.2 The COVID-19 Impact

The ongoing COVID-19 pandemic has revealed and emphasised the vulnera-
bilities of health systems worldwide with brutal strength. Since the beginning
of the large diffusion of the SARS-CoV-2 virus in early 2020, frequent hos-
pital visits are being discouraged. The massive use of hospital resources and
structures for the intensive care and the need to limit the risk of contagion
resulted in a significant decline in common healthcare services. A recent
review of the data relating to 20 countries, including Italy, highlighted an
overall reduction of 37% in healthcare services, higher for outpatient visits
(42%) and lower for hospitalisations (28%) , diagnostics (31%) and thera-
peutic treatments (30%) [79]. Consequences on people’s health are critical.
There are increasingly multiple accounts of inconvenience, distress and ad-
verse events attributable to delays, barriers and deferrals of essential services
that affect different health sectors.

In order to limit health worker exposure to ill patients, conserve personal
protective equipment and decrease the effect of patient surges on hospitals,
improvements in the way health care is provided during this pandemic are re-
quired. The way they triage, assess and care for patients had to be changed
by healthcare systems, using procedures that do not rely on in-person re-
sources. Trends suggested a rising interest in the use of tele-health systems
prior to the pandemic. The recent quick policy changes since the COVID-19
diffusion, however, have decreased barriers to access to tele-health and facil-
itated the use of eHealth as a means of delivering acute, chronic and primary
care [80, 81, 82].

Social distancing and quarantining are now common procedures that have
been introduced worldwide to limit the people movement with the effect of
hindering the COVID-19 spreading. However, the access to services is also
reduced. Then, vulnerable individuals whose physiological condition need
a regular monitoring, such as frail seniors and chronic patients, require the
conventional healthcare model to be changed. A solution consists in adopt-
ing digital-health technologies which allow remote health, as well as improve
patient outcomes [83]. In this regard, a number of contact-based hospital
visits can no longer considered necessary thanks to the recent developments
of Internet of Things (IoT) and eHealth technologies [84]. The benefits
of employing digital-health solutions consist in facilitating the mitigation
healthcare policies during this pandemic by increasing social distancing and
by creating a safer environment for health workers and users.

In particular, the adoption of telemedicine for remote monitoring patient
during the COVID-19 pandemic has revealed the following strengths [85]:
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• it encouraged patients in the conventional healthcare system to be
tracked constantly. That also ensures that clinicians would not be
disconnected from high-risk communities;

• it avoided the need for non-essential in-person visits, thus decreasing
the subjects exposure to COVID-19;

• it reduced the healthcare expenditure, both for users and operators.

• it helped the re-organisation of the clinical staff when provider’s re-
sources are highly demanded.

• it provided a critical early warning for COVID-19 symptoms in indi-
viduals, especially for asymptomatic or pre-symptomatic individuals.

Beside the great help tele-health is given during the pandemic, the normal
management of healthcare systems may also benefits from the adoption of
these solutions. A digital-health scenario allows the continuity of care which
can avoid negative consequences of late detection and interventions in chronic
and routine care. Remote health can offer a more efficient communication
channel between providers and medically or socially vulnerable individuals,
which often may have a reduced access to health structures. In addition,
the maintained patient-clinician relationship enhances prevention of negative
conditions, especially in situations where in-person visits are not practical.

Maintaining continuity of care to the extent possible can avoid additional
negative consequences from delayed preventive, chronic, or routine care [86].

2.2.3 New Requirements

The World Health Organisation’s Active ageing: a policy framework docu-
ment [87] is an international policy tool that has driven progress on ageing
since 2002. The principle of active ageing arose in an effort to coherently
tie together strongly compartmentalised policy spheres. Active ageing was
described in this context as the process of improving well-being, engagement
and protection opportunities to increase the quality of life at older age. The
importance of a multi-sector action to ensure that older individuals remain a
link for their families, communities and economies are particularly stressed.
The action should involve six main determinants: economy, behaviour, per-
sonal and social life, health and social services, and the physical environment.
The recommended components for a health policy response are also defined
under the WHO policy framework:

• prevent and reduce the burden of excess disabilities, chronic disease
and premature mortality;

• reduce risk factors associated with major diseases and increase factors
that protect health throughout the life course;
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Figure 2.6: Opportunities for public-health action across the life course, adapted
from https://www.who.int/ageing/publications/world-report-2015/en/.

• develop a continuum of affordable, accessible, high-quality and age-
friendly health and social services that address the needs and rights of
people as they age;

• provide training and education to caregivers.

Prevention and early detection of negative conditions is critical for health
systems to deal with the upcoming huge demand for long-term care services.
To reduce the risk factors, environmental interventions, both by develop-
ing personal expertise and awareness, would be key in fostering healthier
lifestyles, for example by introducing wider environmental strategies, such
as taxing cigarettes or creating clean and friendly environments for physi-
cal exercise. The public health framework, proposed in [1], is represented
in Fig. 2.6. In this groundwork, a new focus is given to the public-health
interventions addressing the part of the population with declining capaci-
ties. At this stage, illnesses may have been identified, and health systems’
effort will normally move from prevention or cure to mitigating the effects
of these disorders on the overall ability of a person. The main objectives
therefore will be that to slow or maybe reverse the capacity degradation. In
addition, as capability decreases, the role of the environment in facilitating
functional ability will increase, with interventions that help individuals re-
solve the gradually rising problems. The task of long-term care services is
to allow the elderly to retain a degree of functional ability that is compliant
with their civil rights, opportunities and dignity.
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Conventional Care Older-person-centred
and integrated care

Focuses on a health condition/s Focuses on people and their goals
Goal is disease management
or cure

Goal is maximising
intrinsic capacity

Older person is regarded
as a passive recipient of care

Older person is an active
participant in care planning
and self-management

Care is fragmented across
conditions, health workers, settings
and life course

Care is integrated across conditions,
health workers, settings
and life course

Links with health care and
long-term care are limited or
non-existent

Links with health care and
long-term care exist and are strong

Ageing is considered to be a
pathological state

Ageing is considered to be a
normal and valued part of the
life course

Table 2.1: Differences between conventional care ver-
sus older-centred and integrated care, adapted from
https://www.who.int/ageing/publications/world-report-2015/en/.

The accomplishment of the targets outlined in the WHO’s Active ageing
[87] is not just a matter of improving what has already been achieved. It
requires structural reform because, currently, health services in high-income
countries are much more designed to treat acute diseases than to control
and mitigate the effects of chronic diseases, that are common in older people
[88]. The WHO report [1] in 2015, focuses the attention to the central issue
of approaching public care from the viewpoint of the health dynamics of
an elder individual rather than from the illness or co-morbidity they can
experience at a particular point in time. Evidence suggests that the safest
approach to apply this complex continuum of treatments across the elder’s
lives is a person-centred and integrated care [89, 90]. At a clinical level,
integrated care relates to a strict cooperation and embedding among different
domain areas and sites that are needed to provide long-term support, in
addition to administering programs according to the needs of persons during
the life cycle [91]. The WHO suggested the key point to focus the attention
in reformulating the healthcare model towards a more ageing-aligned system.
A synthetic comparison of the characteristics between the conventional care
and older-person-centred care have been proposed by the WHO in [1] and
they are reported in Tab. 2.1.
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2.2.4 Ageing in Place

The living environment usually undergoes modifications to adapt to func-
tional changes caused by the decline in capacity of the ageing individual it
hosts, but more often decline require elders to move towards a more sup-
portive accommodation [92]. Older people tend to see their current home or
neighbourhood as providing the benefits of retaining a perception of stability
and the feeling of being connected to their sense of identification and auton-
omy [93]. However, conventional institutions are perceived as an obstacle for
the social integration of elders with declined functional abilities [94]. Ageing
in place is a policy solution to ageing that seeks to strengthen the capacity
of older persons to live in their homes and neighbourhoods comfortably and
independently. It is also seen as safer for aged people and may also provide
major budgetary gains in terms of spending on health services [95].

Ageing in place is strongly supported by growing technologies which allow
communication, monitoring and remote assistance. In the next future, this
solution will be gradually more relevant and accessible for people. However,
as other delicate ageing policies, ageing in place should not be considered
as the ultimate solution. However it must be said that in some situations,
for isolated elderly persons, for those living in inadequate accommodation
or for those living in less comfortable areas, for example, it may not be the
primary objective [96].

2.3 Home Monitoring and Early Detection of De-
cline

The quality of life during ageing is closely related to the chance of receiving an
adequate intervention as soon as potentials conditions might arise. Actually,
much depends on the possibility to early detect diseases, by the subject itself,
by the health services or by the living environment [62]. However the decline
trajectories with age can show a variety of different behaviours and there are
many existing factors which may have an influence. In general, the intrinsic
capacity is likely to slightly diverge in the pre-clinical stage of a chronic
disorder, while the differences start to became more evident as conditions
progress [18]. Solutions which increases the possibility of spotting the early
signs of decline have to be encouraged. Monitoring of daily life activities, for
example, might give a closer look to the elder’s health status and, together
with remote health technologies, it promotes ageing in place. The next
sections will treat these topics and will supply guidelines for an effective
design of home monitoring systems.
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2.3.1 Monitoring of Daily-Life Activities

A large part of the information about the degree of the intrinsic capacity
comes from the study of the life-span where major declines in functioning
are encountered, often by measuring the activities of daily living (ADLs) or
instrumental activities of daily living (IADLs), when the manipulation of
common tools is involved. Activity monitoring is usually employed to asses
performance in the real world and gain quantitative knowledge about com-
mon daily activities [97]. The performance assessment through ADL and
IADL in the real world implies the assumption of some considerations which
are related to the environment it is applied. It is generally operated in a
more or less unconstrained setting that might influence and move the ob-
servable measures from the standard references [1].

Research in this field is underway [98] and, while no widely recognised
techniques for remotely assessing intrinsic capacity are available, some ap-
proaches designed to approximate broad aspects of disability offer a valuable
starting point for further study. During 2002-2004, the WHO performed
a survey, World Health Survey [99], in each country to estimate the status
of health, using a series of questions spanning eight areas that could re-
late both to the intrinsic capacity and functional ability. Impairments in
performing basic activities, such as working and doing house-holding activ-
ities, moving, keeping personal appearance, concentrating, learning, social
involvement and responding to adverse situation, were measured and used
to estimate the individual’s health status as the average of these items in
the life-span. The average health scores and their variation across high-,
middle- and low-income countries are represented in Fig. 2.7. The study of
the people daily-life activities indicates that, except in low-income countries,
the health score remains relatively good until the age of 60 years. After that,
in all the countries examined, decline starts to grow more consistently.

2.3.2 Supporting Ageing in Place

Most of the seniors prefers to spend the following late years of their life in
their own homes, or at least within their own community [100]. It is there-
fore important to guarantee protection and the required interventions, even
at distance. Information and computer technology in health care, eHealth,
is key to enable health systems both to shift towards a more integrated
and person-centred care and to remotely access patients health information
[101]. The advantages that eHealth and telemedicine provide in health-
care has been confirmed in Europe to enhance the efficiency by 20% [101].
Electronic health records and associated health information systems help to
better point the needs of elderly patients, plan their care over time, follow
different approaches to therapy and analyse patient outcomes. Collabora-
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Figure 2.7: Health state score by age in OECD (Organisation for Eco-
nomic Co-operation and Development) and non-OECD countries, from
http://www.who.int/healthinfo/survey/en/, accessed 23 June 2015.

tion between health professionals and between health care teams and their
customers, who may be based in different environments or geographical ar-
eas, may even be encouraged. Wearable devices can also be used to collect
health and physical activity data, such as bio-metric quantities, bio-signals,
sleeping activity and gait.

For a consistent and reliable use of these devices however, standard met-
rics need to be generally accepted and widely used. Some studied also inves-
tigated the validity of self-administered digital cognitive tests implemented
on mobile devices, such as smartphones an tablets [25]. Results of these
tests, performed by the elders in their home, would be sent to clinicians, via
telematic forwarding, and a post-hoc analysis could help the early diagnosis
of mental disorders without the need for the elderly to often reach the clinical
facilities for the clinical evaluations.

2.3.3 Home-Based Health Monitoring Systems Design

Information and communication technology today offer a wide range of so-
lutions that can help enabling remote health monitoring and daily activity
tracking. Internet of things (IoT) [102] play a major role in defining those so
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called pervasive technologies, which exploit the synergy between sensors and
networks to remotely monitor large number of variables in different contexts.
A remote and multifaceted monitoring system allows the immediate forward-
ing of alarms that trigger interventions where necessary or drive automatic
regulation mechanisms. In the domestic environment, smart home [103] is a
term that refers to the application of IoT in houses to track and set phys-
ical quantities such as rooms temperature, humidity, air quality and lights
or remotely command connected devices. Smart home technology has been
proposed and investigated, in several studies [104], to enable health moni-
toring and independent-assistive-living for community dwelling elders. More
recently, common instrumented devices were included in the home moni-
toring scenario to integrate the tracking information with ADL and IADL
related measurements. For example, in the European project MoveCare [12],
sensorized daily-life objects were used to acquire data from their deliberate
usage by the elder, such as an electronic ink pen to record handwriting ges-
ture data [105].

In developing eHealth systems, holism is a key concept An holistic ap-
proach considers people, technologies an all the system components as inter-
related and interconnected, as opposed to a more conventional compartmen-
tal vision of the parts [106]. A good fit between human and technological
factors optimises the effectiveness of the interventions and better achieves
the healthcare goals. To achieve this objective, practical human-centred de-
sign methodologies, such as participatory development [107], co-design [108]
and persuasive technology [109] are recommended. As claimed by Patrick et
al. [110], the drawback of the more standard sequential models in biomedical
development is that it reduces the complexity of the problem. It studies the
behaviour of the system outside from the actual context and the feasibility
is then investigated during a final evaluation stage. The mutual interaction
between users, technology and environmental factors, at different levels, can
not be captured by a rigid sequential approach [111]. It indeed call for a
more flexible and iterative process which should adapt the strategies to the
new evidences during development.

The Centre for eHealth Research (CeHRes) Roadmap [112] is a frame-
work which combines these indicated approaches and it is used to plan, co-
ordinate, execute and support the holistic research and development process
of eHealth technologies. The Roadmap is construct upon five key notions
about the eHealth development:

• it is a participatory process;

• it improves healthcare by creating new infrastructures;

• it closely linked with implementation;

• it coupled with persuasive design;
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Figure 2.8: A diagram of the Centre for eHealth Research Roadmap, adapted
from http//:www.ehealthresearchcenter.org

• it requires iterative evaluation cycles.

The eHealth development, according to the CeHRes Roadmap (Fig. 2.8), is
not a sequential process. It is more an iterative chain of development and
evaluation phases which ensure that there always be a relation between the
next and previous stakeholder perspective, context and outcome.

According to the Roadmap, the first step is indicated as contextual in-
quiry. It is dedicated in searching the relevant issues the eHealth solution
should address by exploring the context. The technological solution must be
shared and by all the stakeholders and it must be suitable for the physical
and social environment for which it is intended. This requires therefore the
knowledge of users’ lifestyle and the behavioural policies of the other stake-
holders [113]. Contextual inquiry is the phase in which the team focus on
the people and investigate the application context using different tools and
methods. First all the stakeholders have to be identified (using for example
literature review, expert recommendations or snowball sampling [114]) and
then systematic literature review, focus groups, interview and observation of
daily practice are carried in order to describe the application domain, with
is weak and strong points.

The second step, the value specification, elaborates what is needed from
the technology. In this phase, the team starts from the issues (or points of
improvement) identified before and finds out which are the goals and the
specifications the solutions should achieve, according to all the stakeholders.
In particular, the value specification focuses on which are the added values a
technology might bring to the current setting. The identified values should
be then prioritised and a business model of the eHealth solution is drawn
up. At last, the values are translated into technological requirements.

The third step is the design phase. In order to create solutions that
will be used as long as possible, the design phase should be closely linked
to the implementation. In fact, issues can remain hidden during design and
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only emerge after the technology deployment. Design and implementation
coexists through the generation of multiple prototypes, used to iteratively
test the results and improve ideas. Prototypes can be also tested with users
and other stakeholders to find whether the technology fits their needs and
preferences [115]. Another important aspect to consider in the design phase
is the technology appeal to the user: the influence of technology on users
and their habits must be such as to ensure that it will be readily accepted.
This is the goal of the Persuasive System Design model which aims at making
technology compelling, without being coercive [116]. The persuasive features
of a technology enhance its adherence to the context and increase its effects
[117]. In the case of eHealth systems, persuasive design can be intended
to influence specific behaviours in users (e.g. taking medications, having a
healthy nutrition or doing physical activity) with the insertion of behaviour
change techniques in the design [106].

Usability tests have to be performed on prototypes to identify defects
and collect feedbacks from users. According to a study by Jaspers in 2009
[118], the best outcomes are obtained by performing both expert-based and
users-based usability tests. In the first case, expert and designers evaluate
the prototypes in relation to the specific project requirements or to task-
oriented usability principles (heuristics). In the other case, members of the
target group use the prototype in real-world scenarios and the impressions
and suggestions of the users are collected.

The fourth phase is named operationalization and is the time in which
the plan for disseminating and introducing the technology in the practice
and in the market is established. A key point to consider is the definition of
the technical support strategy for the deployed technology and the possibil-
ity to adapt the technology to the changing demands or requirements from
stakeholders.

The last phase is the summative evaluation where the impact of the tech-
nology is determined and the adoption of the system by the users is analysed.
For an eHealth systems, the impact can be measured for example by looking
at improved users’ clinical values, quality of life and adherence to advice or
treatments, or at the improved availability, efficiency and interaction of the
healthcare provider. The adoption of the technology can be investigated by
studying the usability, the frequency and the patterns of use and by counting
the number of ’hardcore’ and ’dropout’ users. In addition, interviews can
be used to point out the reason of dropouts and the features that hardcore
users appreciated more.

Information on general and outcomes and usability of an eHealth system
can be collected with several survey methods: the effect on the health status
of patients before and after the use of the system can be evaluated with a
randomised control trials [119]; usability data and precious insight on the
daily use (and impact on user’s health-related behaviour) of the system can
be obtained by analysing log data and time series collected during an ecologi-
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cal momentary assessment [120]; and health technology assessment [121] can
be used to perform a broader evaluation of several issues including social,
economical and ethical impacts.

In the specific scenario in which use ADL (or IADL) is included in the
home monitoring system, important aspects should be addressed to actually
let the operate at their best. The interaction between the users (i.e. older
adults), the instruments and the environment need a special focus during the
design phase. Yet these aspect represents the major challenge in research for
their development.

The main concepts for designing monitoring IoT systems for aged indi-
viduals are listed here:

• Safety and privacy. Safety and privacy are basic aspects that involve
any application of IoT devices in human-living environments [122]. The
risks associated with using these tools must be extremely low and the
acquired information should not include sensible data as that would
represent a barrier to their deployment.

• Transparency. Non-invasiveness (or ecology) is a key feature for home-
monitoring systems and devices for elders, since the request of elderly
users to adopt new behaviours and tasks may make the system feel
uncomfortable and intrusive. Especially considering the quite spread
technological illiteracy of older adults [123]. The best solution is there-
fore to adapt the technology to the user’s habits, using intelligent meth-
ods to obtain the right information about his activity. This branch of
research belongs to the wider topic of ambient intelligence [124].

• Data consistency. The concept of non-invasiveness contrasts with the
possibility to apply standard protocols for the remote measurement of
biometric quantities or performance in certain tasks. This may implies
the absence of reference values for the subject’s tracking outcomes in
the short and long period. Moreover, the home of the individual repre-
sents an uncontrolled environment that imply the presence of a more or
less high amount of noise in the measurements over time. Therefore, to
ensure a consistent monitoring, analyse longitudinal trends and make
further reasoning, the measurements must be reliable and the nominal
behaviours, as well as the variability of the metrics should be formerly
studied in related control populations.
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Chapter 3

Handwriting Analysis in
Literature

Ageing in place is a solution to promote healthy ageing in community dwelling
elders [95]. From a technological side, eHealth and remote monitoring sys-
tems are key to allow a safe life and to ensure adequate health care for older
people. Especially for individuals in the age 60-70, for which the state of
pre-frailty has a large incidence, a continuous tracking of the health status,
by means of IADL monitoring, could be decisive to early diagnose potential
age-related diseases [97].

This chapter is divided in two parts. The first, Sec. 3.1, shows the in-
struments currently employed in the analysis of handwriting and their limi-
tations in the domestic scenario for home monitoring purpose. The second,
Sec. 3.2, explains the methods used in literature for the quantitative study
of handwriting.

3.1 Limitations in Home Monitoring

Handwriting is an daily-life activity that has been found to undergo changes
with advancing age and with the presence of some pathology. Handwriting
in fact is a continuous cognitive-motor task acquired during development
that requires high skill and cerebral activation [125]. It is a familiar and
straightforward activity for almost all literate adults, which was proven to
be a very useful biomarker. Indeed, the motor performance required for writ-
ing depends upon the coordinated function by the brain, in combination with
the neuromuscular and visual systems. This deteriorates, to some extent, in
all older adults and even more so when neurological disease is present [8].
For this reason, the analysis of this activity has been leveraged for assess-
ing different conditions. As for neurology, kinematic analysis of handwriting
has been used as a clinical tool highly sensitive to even subtle dysfunctions,
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Figure 3.1: Examples of commercial devices for writing data acquisition: a digi-
tizing surface, on the left, and a tablet with an electronic pencil, on the right.

particularly useful in Parkinson’s disease (PD) [8], Dystonia [13], and Hunt-
ington’s disease [126] evaluation. Given its fine motor nature, handwriting
analysis turned out to be a very useful tool also for the investigation of tremor
[127]. In addition, handwriting was studied to discriminate different levels
of severity in terms of age-related cognitive decline [10]. According numer-
ous scientific evidences, the characterisation of age-related changes results a
potentially useful tool to distinguishing between physiological variations to
abnormal changes, possibly related to neurological conditions or cognitive
decline.

Although it has been revealed to be a useful indicator of variations linked
to ageing or pathological decay, handwriting has not yet been investigated as
a home health monitoring tool. The first reason can be ascribed to the lack
of an handwriting assessment tool that meets all the aspects of simplicity,
non-invasiveness and privacy needed for an elderly home-based monitoring
system. Indeed, early work used ink pen and paper notebook to register the
subject’s writing outcome [8]. On one hand, this approach can be considered
worthwhile in the clinical environment, due to its simplicity, since it does not
require the support of a technician. On the other hand, the assessment of
the paper-and-pen technique requires the expertise of a clinical professional
to evaluate the writing outcome without the support of any quantitative
data: such an approach does not match the current needs of the health
systems that count on the achievements of telemedicine to solve problems
such as the limited availability of specialists, the reduced time to conduct
such tests, and the difficulty for some patients, especially the older ones,
to reach the examination site [128]. For this reason, in most of the recent
studies, the paper-and-pen approach was replaced by digitizers and tablets
(in Fig. 3.1) able to return the 2D trajectory of the writing trace [10, 129,
130]. The digitisation of data allows extracting quantitative parameters to
objectively assess handwriting and achieving remote monitoring of user’s
performance. However, such an approach is questioned since it constraints
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the user to write on a relatively small surface (typically the one of a tablet),
that is not the standard writing surface; in this way, the naturalness of
the gesture is undermined [131]. As a consequence, this approach lacks of
ecological validity, since the experimental context does not match the real-
world phenomenon [11]. Moreover, the use of such technology may not be so
straightforward, particularly when dealing with elder users, thus requiring
the technical support of an operator.

The second reason is that, in an ecological home monitoring setting, users
are free to write in different moments, situations and modalities and such
uncontrolled context may increase noise and data variability. Indeed, the
most totality of the previous research investigated the handwriting assess-
ment in controlled conditions, using standard protocols (such as predefined
sentences or patterns to draw1). However, in the home-based monitoring,
standard protocols should be avoided for the lack of supervision and for the
principle of transparency: applying protocols would mean imposing proce-
dures on elderly users that could lower the level of acceptance of the health
monitoring system. As a consequence, ecological validity should be ensured
by obtaining measurements independent from the modality and the content
of the writing activity.

The third reason, the almost absence of golden standards to compare
handwriting data collected in a domestic and uncontrolled environment sug-
gests the use of unsupervised or semi-supervised approaches to capture any
non-physiological sign of decline in elders. Anomaly detection (AD) tech-
niques [132] are used to identify irregularities from data, even when the
knowledge about them is partial or missing. Anomalies observed in the
user’s writing data could indicate a deviation from a normal ageing process.

3.2 Quantitative Analysis of Handwriting

The analysis of handwriting consists in finding quantitative descriptors of
the writing activity, in the written trace or in the writer’s hand gesture.
These quantities are treated as indicators which characterise the subjects’
personal handwriting. Since handwriting is a complex learned skill, its char-
acteristics tend to change when the writer’s motor control system undergoes
modifications, for example during the learning process, or when experiencing
age-related decline. Changes at higher or lower level in the motor control
system implicate different effects in the writing activity.

Ageing and age-related pathology are associated with a decline in the
individual’s cognitive and motor systems [133, 134]. A large body of research
investigated how handwriting features are altered during the healthy ageing

1See Section 3.2
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process and in presence of a pathological age-decline [135, 136]. Most of the
handwriting features treated in literature can be grouped into four domains:

• time-domain,

• kinematic/dynamic-domain,

• complex-domain.

• frequency-domain ,

The time-domain features include those indicators that describe tempo-
ral aspects of the handwriting activity. It has been shown that the time
taken to write the strokes that make up words and letters (on-paper time),
the time between the execution of two consecutive strokes or between differ-
ent words (in-air time), and the relationship between these two quantities
(in-air/on-paper ratio) may reveal decline. In 2012, Rosenblum et al. [129]
studied the changes in Executive Functions and in handwriting related to
ageing. They included 80 healthy participants, aged from 31 to 76+, per-
forming a handwriting task on a digitizer that acquired the kinematics of
the writing trace. They showed that the variance of temporal characteristics
of handwriting, such as on-paper time, in-air time, and the in-air/on-paper
ratio were predicted by age. In particular, age predicted the 32% of the
variance of the in-air time. Especially for those over 60s, higher value of
in-air time and in-air/on-paper time were found. Authors assumed that
an increase in writing in-air time can suggest a decline in the fluency and
efficacy of the production of handwriting ascribed to age. In addition, in-
air time may not only be an indicator of functional deterioration, but may
more precisely be a sign of problems in the planning of spatial and temporal
activities. The in-air/on-paper ratio outcomes uphold the idea that with
increasing age, more time is needed to plan the next steps in the executions
of handwriting. Another study from the same group in 2010, showed that
in-air time in handwriting significantly increased in major depressive dis-
order patients, with respect to control subjects [10]. In the same research,
temporal and spatial measurements, together with writing pressure acquired
when participants were asked to write their name showed an accuracy score
of 82% in the classification of the participants.

As already seen in the time-domain features of handwriting, the flu-
ency of the writing activity is expected to decrease with age or, more in
general, when functional decline takes place. A decreased fluency in hand-
writing results in a reduced regularity which can be further investigated in
the kinematic- and dynamic-domain. The number of changes in velocity and
acceleration in handwriting were studied by Tucha et al. in 2012 [137]. The
decrease in handwriting fluency was investigated in individuals with lesion
of the precentral region of the Left Hemisphere by measuring the number
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of changes in velocity and accelerations during writing. The values resulted
significantly higher in patients than in healthy subjects, suggesting that im-
pairments increase irregularity. In 1997, Walton [8] studied the changes in
the writing force and in the number of changes in the writing force due to
ageing and PD patients. He showed that force tend to be weaker in presence
of functional decline and it also tends to became more uniform, by reducing
its variations within strokes.

The complex-domain indicators describe the non-linear features of the
handwriting activity. Generally, the complex-domain indicator evaluate the
presence of the tremor components in the handwriting signals. When tremor
is present, oscillatory behaviours superimpose to the writing dynamics and
it results in an increase predictability of future trajectories. Hong et al.
[15] assumed that a more complex behaviour is visible in healthy-young
writer and such complexity is expected to decrease along the decline pro-
cess. Longstaff and Heath showed that handwriting could manifest complex
dynamics [138]. They studied the non-linear features of the trace veloc-
ity of digitally recorded handwritten words, performed by healthy subjects.
They obtained relatively small fractal correlation dimensions (with average
value of 3.24 for the horizontal speed and 2.9 for the vertical speed) and
positive maximum Lyapunov exponent (0.114 and 0.118) from the written
trace velocity. Their results showed that handwriting in healthy subjects
can show the behaviour of a chaotic system of low dimensionality and they
hypothesised that complexity can decrease with functional decline. Meigal
et al. used non-linear quantities to describe the behaviour expressed by PD
patients and control subjects in hand movements [139]. Their findings rein-
forced the hypothesis of a reduced complexity associated with a reduction
in the individual capacity, as they discover that the value of the of deter-
minism and recurrence ratio, calculated from the acceleration signals, were
significantly (p<0.001 with significance defined at the 0.05 level) higher in
presence of Parkinson’s disease, and their trend was increasing with age. In
fact, determinism measures the predictability of a time series, while the re-
currence ratio quantifies the tendency of a signal to express similar patterns.

The frequency-domain indicators refers to the tremor factor in hand-
writing. Alty et al., in 2017 [127], published a comprehensive review on
the tremor features of four tremor diseases (essential tremor (ET), dystonic
tremor (DT), Parkinson’s disease (PD) and functional tremor (FT)) in pen
and paper tasks. They qualitatively analysed the written trace and the draw-
ings on paper and they characterised the tremor types for each of the four
conditions. Their findings are reported in Tab. 3.1 for the handwriting task.
The table includes tremor features, but also letter size, pen pressure and the
tendency to deteriorate within the disease course. Beside a more qualitative
description of tremor, quantitative hand tremor indicators can be found in
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Handwriting ET DT PD FT
Size Normal or large normal small variable

Tremor
Regular
amplitude
and frequency

Irregular jerky
amplitude and
frequency

Regular
frequency
amplitude

Variable

Tremor in
letter
sections

Vertical strokes;
unidirectional
axis

All sections of
letters;
multidirectional
axis

Vertical
strokes;
unidirectional
axis

Variable

Progressive
decline No Yes Sometimes Not usually

Pen
pressure Normal Hard Normal Normal

Table 3.1: Characteristics of tremor types seen in writing, adapted from Alty
et al. 2017.

the study by Hong et al., in 2007, [15]. Authors tested the hypothesis that
ageing reduces the coupling between motor system compartments, thus caus-
ing a reduction of behaviour complexity. They measured this complexity by
calculating the approximate entropy of finger acceleration during rhythmi-
cal movement and postural tasks in subjects divided into three different age
groups: 18-23, 60-65 and 70-75 years old. Entropy is related to the number
of possible behaviours that an individual, in a stable physical-cognitive con-
dition, can express during the execution of a functional task. This is also
related to its ability to adapt and react in different situations. Whit age,
the range of behaviours tend to decrease and the rising oscillatory tremor
components enhance the regularity of motion. Results confirmed that the
regularity of the acceleration dynamics increased during postural tremor and
movement in the mid-old and older subjects.

Other tremor indicators can be found in the study by Edwards and Beuter
[140]. They measured the central tendency of tremor, as the median fre-
quency, in postural tasks using using a laser system as well as a portable
commercial tremor analysis system in healthy individuals and Parkinson’s
disease patients. They showed that it is generally possible to locate tremor
components generated by particular dynamic conditions of the gesture in
specific frequency bands. In particular, the range between 3-4 Hz have been
found in individuals with cerebellar deficits and the parkinsonian tremors
are considered to be in the 4-6 Hz.

A more recent study by Garre-Olmo et al., in 2017 [141], combined the
use of temporal, kinematic/Dynamic and complex indicators to discrimi-
nate between AD and mild cognitive impaired (MCI) patients from control
subjects. They involved 52 participants (23 AD, 12 MCI, and 17 healthy
controls) with a mean age of 69.7 years who were asked to perform three
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Handwriting
task

Healthy
vs

MCI
vs
AD

Healthy
vs

impaired
(MCI+AD)

Healthy
vs

MCI

MCI
vs AD

Spontaneous age
complexity

speed
complexity

age
pressure
acceleration
complexity

age
pressure
complexity

Copied
age
pressure
complexity

complexity pressure
complexity

age
pressure
acceleration
speed
on-air time

Dictated complexity

pressure
speed
acceleration
complexity

pressure
acceleration
speed
complexity

age
pressure
acceleration
speed

Table 3.2: Discriminant handwriting indicators for healthy, MCI and AD
patients for three handwriting tasks, adapted from Garre-Olmo et al. 2017.

writing tasks (copy one sentence, write a dictated sentence and an own sen-
tence) and other drawings exercises. Data were recorded using an electronic
digitizer system. They used discriminant analysis to explore the value of
handwriting indicator, including writing pressure, acceleration, speed, com-
plexity, in-air time and tilt angle, to classify participants depending on their
degree of cognitive impairment. They showed that the degree of correct clas-
sification was task and group dependent and it ranged from 63.5% and 100%
of accuracy. Table 3.2 report the most sensible indicators in the classifica-
tion for task and groups involved, The kinematic indicators showed higher
specificity in discriminating between normal and impaired condition. The
highest sensitivity was obtained in distinguishing the level of severity (MCI
from AD patients).

A synoptic table of the most relevant indicators treated in the literature
is shown in Tab. 3.3. For each item, the domain an the tendency to in-
crease/decrease with age or pathological decline is indicated.

The quantitative analysis of handwriting has been treated in several con-
texts in literature, most of which implied the use of specific protocols in
controlled settings. Therefore, the validity of results can not be generalised
for all the situations. In uncontrolled environments, as in the case of remote
home-based handwriting assessment, three specifications should be investi-
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Indicator Domain
Trend with
age and/or
pathology

Reference

in-air time time increase Rosenblum et al. 2010/12
on-paper time time - Rosenblum et al. 2012
in-air/on-paper
time time decrease Rosenblum et al. 2012

modal frequency frequency - Edwards and Beuter, 1999
approximate
entropy

frequency/
complex decrease Honget al., 2007

writing force kinematics/
dynamics decrease Walton, 1997

# changes
in force

kinematics/
dynamics decrease Walton, 1997

# changes
in velocity

kinematics/
dynamics increase Tucha et al. in 2012

# changes
in acceleration

kinematics/
dynamics increase Tucha et al. in 2012

determinism complex increase Meigal et al. 2012
recurrence ratio complex increase Meigal et al. 2012

tilt angle kinematics/
dynamics - Garre-Olmo et al. 2017

Table 3.3: Main handwriting indicators in literature.

gated and satisfied before validating an handwriting indicator:

• the indicator must describe an invariant characteristic of handwriting
in an individual in a stable health situation 2;

• the indicator behaviour must be independent w.r.t. the handwriting
modality (i.e. right or left hand, pen grip) and the writing content;

• the indicator must be sensible to changes in the individual’s handwrit-
ing due to ageing or pathological degradation.

This work proposes a novel technological solution expressly designed for
the ecological monitoring of handwriting in community-dwelling older adults:
a novel smart ink pen that allows users to write on a common piece of paper
while acquiring motion and force data. The writing gesture dynamics record-
ing instrument is designed to be easy to use as it is able to autonomously
manage data collection and wireless data transmission. From the user’s point
of view, the device almost appears like a common pen with a replaceable ink
refill and a rechargeable integrated battery, to encourage its use during nor-
mal daily activities. The signals acquired with this tool allow the calculation

2Stable is referred to a reasonable limited amount of time
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of all the quantities considered in the literature as useful indicators for track-
ing the subject’s intrinsic capacity.

Once verified their reliability in the uncontrolled environment, the hand-
writing indicators are studied as biomarkers for age- and pathological-related
writing characteristics.The handwriting indicators of a pen user can be moni-
tored over time to identify anomalies which may suggest an abnormal decline
in capacity.
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The Smart Ink-Pen

To realise a smart writing object that resembles a common ink pen, a careful
design of the micro-architecture to sense and transmit the data has been
carried out1. The developed pen has the following dimensions: height 147
mm, maximum diameter 14.65 mm and weight 48 g. An image of the pen
and its internal components is reported in Fig. 4.1.

In this chapter the hardware and the software architecture of the pen are
described in Sections 4.1 and 4.2 respectively; Sec. 4.3 shows the procedures
performed to test and validate the instrument; Sec. 4.4 reports the hand-
writing indicators statistics and reliability study; and sec Sec. 4.5 shows the
on-filed investigation of the smart pen usability.

4.1 Hardware

The pen incorporates the internal electronic components to acquire, store,
and send the handwriting data. The electronics is integrated in three Printed
Circuit Boards (PCB) located in the upper part of the pen. PCB1 has a
dimension of 28.5 x 8 mm and is the core PCB; it includes an ultra-low
power CortexTM 32bit CPU (STM32L476) to acquire, filter, and transmit
the signal, a BlueNRG-MS single-mode network processor (compliant with
Bluetooth specification v4.1) to implement BLE connectivity, and a 1MB
flash memory for storage purposes. In terms of sensors, inertial signals
are acquired through 3D linear accelerometers and gyroscopes (LSM6DSM
iNEMO® 6DoF), while the writing force exerted on the tip is measured
through a miniaturised load cell (FC8E by Forsentek; ∅ 1.6 mm; 50 N ca-
pacity) mounted with the lower face pressing on the refill stopper. The PCB2
includes a rechargeable Li-Ion PIN-Type battery by Panasonic, with a coax-
ial power connector accessible from the pen cap, and the battery protection
circuit. PCB3, with a rounded shape, is placed in the load cell holder and

1A patent regarding the smart ink pen has been submitted [142]
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Figure 4.1: (a) A rendering image of the smart ink pen and its internal compo-
nents. (b) An external view of the smart ink pen.

Figure 4.2: Conditioning circuits of the smart pen.

includes the pre-amplification circuit for the load cell data. Pen function-
ing in self-operated through movement detection or BLE connection request,
therefore no activation button is available for the end-user. Nonetheless, a
LED is visible to indicate the operating mode and the battery state of the
pen. All the electronics is protected and securely fixed inside a 3D printed
plastic case.

Figure 4.2 shows the signal conditioning circuit for the load cell. The
circuit comprises a low noise instrumentation amplifier (AD623RMZ (IC1)
hosted by PCB3), connected to a 16bit high-quality, low noise, low power
fully differential ADC (ADS1115I, (IC3) hosted by PCB1), both powered by
a 3.3VDC single supply low dropout voltage regulator (LD3985M33R, (IC4)
hosted by PCB1). The IC4 receives energy directly from the battery (PCB2),
thus reducing the possible interference arising from digital and wireless parts
of the mainboard (PCB1).

The instrumentation amplifier (IC1) has a gain set at 101, and a low
noise, low power RRIO dual operational amplifier. The differential input
filter has been set to 1.5kHz, to allow a first stage filtering before the con-
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Figure 4.3: Block diagram of the firmware operating modes.

nection wires to the IC1. The output baseline (Virtual Ground VGND) has
been set to VCC/3 by the IC2A, to allow a fully differential analog to digital
conversion without losing the possibility to investigate possible pre-loading
effects of the load cell caused by mechanic assembly. The output of IC1
and the VGND signals coming from IC2 have been connected to the main-
board (PCB1) respectively to the positive (AIN1+) and negative (AIN1-)
channel inputs and of the ADC (IC3). The ADC samples at 50sps. The
internal PGA of the ADC has been programmed to 2, providing a total gain
of 13,3mV/N. An anti-aliasing filter has been placed near 0.1Hz to preserve
the signal information.

4.2 Firmware

The firmware was designed with the aim of maximising battery duration
and usability of the smart pen for not expert users, such as older adults. To
extend the possible applications of the pen, two modalities of data transfer
are envisaged: i) online data transmission: the micro-controller reads the
data from the sensors and transmits them in real-time through BLE; ii) on-
board storage: when the object is used, sensors data are sampled and saved
on the flash memory, and downloaded afterward.

The firmware comprises six operating modes and Fig. 4.3 shows its block
diagram representation. When in the Stand-by state, the battery is set to
saving mode and, just to advice that the pen is available, a green LED blinks
at a low frequency. Only when a slight movement of the object is detected by
the accelerometer, and the charge level is over a specific threshold (to prevent
using the object when the battery is too low), the BLE module of the object is
switched on. In this Bluetooth ON state, the pen is available for any pairing
connection within a certain time window. If a pairing request is received
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Figure 4.4: The signal acquired using the pen during handwriting. The upper
panel shows the written trace on paper, other panels report the signals collected
using on-line storage mode of the smart pen: the writing force on the pen tip (non-
scaled units), three-axis accelerations [m/s2] and three-axis angular velocities
[rad/s].

within the time window, followed by a start streaming command, the Online
Transmission state is enabled, and the object transmits the information
packages at a frequency of 50 Hz. The object returns to the Bluetooth ON
state once a disconnection request is received. Otherwise, if (in the Bluetooth
ON state) a pairing connection is not received within the time window and
the object is moved by the user, the transition to the On-board Storage state
is triggered. At this point, the object starts storing data packages on-board
at 50 Hz, and stops when left stationary for 15 seconds thus triggering a
transaction to the Bluetooth ON state. When the battery level is below a
certain threshold, the object goes in the Low Battery state in which a red
LED blinks to notify the user that charge is needed. Every time the pen
is connected to a charger, the state moves to Charging, with the red LED
blinking at a higher frequency.

The data package, sampled at 50 Hz, includes a timestamp, the 3-axis ac-
celeration [m/s2], the 3-axis angular velocity [rad/sec], and the writing force
signal exerted on the pen tip. Finally, a software was created to automate
the data download and processing procedures. An graphic example of the
signal acquired during an handwriting activity using the pen is shown in Fig.
4.4.
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4.3 Pen Testing and Validation

This section includes the apparatus, the protocols, and the analyses aimed
at validating the pen sensors and algorithms.

4.3.1 Tip Force Static Calibration

Methods

This test has the twofold aim of verifying the linearity of the writing force
measurements in the range of the force values exerted during handwriting,
and estimating the optimal calibration parameters for the conversion of the
pen tip force signal to Newton (N) units. The set-up shown in Fig. 4.5 was
devised to keep the pen in vertical position and to place the test weights at
the top; it includes two 3D printed arms to hold the device with the mini-
mum friction, and a circular flat base to accomodate the weights. From the
pen load cell, the normal component of the force signal, F, applied to the tip
was acquired while increasing the testing weight from 0g to 50g, with steps
of 10g, and from 50g to 500g, with steps of 50g. For each weight increase,
the related F measure was obtained as the mean value of the signal over
50 samples after the transient phase. The linear regression was computed
between the measurements of the pen force F and the corresponding testing
weights placed on the top of the pen; the selected loss function was the Mean
Squared Error (MSE).

Results

A strongly significant positive linear regression, showed in Fig. 4.6, was
observed between the test weights, in grams (g), and the pen measurements
(non-scaled units) with a R2 score of 0.99. The linear coefficients, m (slope)
and b (intercept), for the force signal calibration were equal to 0.62 and
-369.7g, respectively.

4.3.2 Tip Force Dynamic Calibration

Methods

The writing force signal was validated in dynamic conditions (i.e. during
the handwriting activity), comparing the pen force signal F with an external
force reference signal Fext, obtained through the M01-500N Golden Type (by
Sunrise Instruments©) load cell sensor. The protocol consisted of a 2-minute
free writing test performed by a healthy adult, who used the smart pen to
write over the load cell surface, as shown in Fig. 4.7. The two signals were
synchronised using the peak of cross-correlation. The Pearson’s correlation
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Figure 4.5: Experimental set-up for the pen static tip force calibration.

coefficient ρd was evaluated between F and Fext during the writing task.

Results

The correlation ρd between F and F ext was significant and equal to 0.96.
Figure 4.8 shows the pen force signal and the external sensor force signal su-
perimposed acquired in the first 30 seconds of the writing task. Both signals
are normalised with respect to their maximum value to better visualise the
comparison. As noticeable, the writing force signal F recorded with the pen
accurately matched the reference signal Fext from the load cell, with a weak
smoothing effect on the fastest components.
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Figure 4.6: Linear regression between the test weights (x-axis) and the pen mea-
surements (y-axis).

4.3.3 Tilt Angle Validation

Methods

The tilt angle θpen obtained from the pen’s motion sensors was compared
with a reference tilt angle θext obtained from the optoelectronic motion cap-
ture system SMART DX 400 (BTS SPA, IT). To this aim, a 3D-printed tool
with 3 retroreflective markers was built and positioned on the top of the pen
to record the orientation of the pen body, as shown in Fig. 4.9. The acqui-
sition protocol included two different trials performed by a healthy adult: in
the first one, the subject was requested to draw six straight lines on a sheet
of paper, three with the smart pen tilt kept approximately at 45◦, and three
at 70◦. In the second trial, the subject was asked to write freely for three
minutes, and no constraint on the pen tilt was imposed.

In quasi-static conditions (i.e. when the pen is moved very slowly), the
tilt angle, θpen, was computed using the approximation in Eq 4.1:

θacc = sin−1
(
az
g

)
, (4.1)

where a z was the z-axis acceleration signal and g=9.81 m/s was the gravita-
tional acceleration; for small tilt angles (θ << 1◦), the relation was linearized
as in Eq. 4.2:

θacc ≈
az
g
. (4.2)
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Figure 4.7: Experimental set-up for the pen static tip force calibration.

The estimate tilt angle pen, θpen, corresponds to the approximation, θacc,
for slow movements.

In non-stationary conditions, instead, a low-pass filtered (cut off 10 Hz)
az was considered in the computation of θacc to get rid of the z-axis acceler-
ation components not related the gravity load. Indeed, at high frequencies,
the variation of the tilt angle is coupled with non-negligible accelerations
which lead to consistent errors in the estimation of the tilt angle from the
accelerometers [143]. Furthermore, to avoid the estimate to diverge, the es-
timate from the accelerometer signal of the tilt angle was combined with its
rate estimate from the gyroscopes signals, θ̇gyr, obtained by integrating (in
time domain) the angular velocity in the x- and y-axis. The sensor fusion
filter in Eq. 4.3, [143] was used to obtain the estimate of the tilt angle rate
θ̇gyr:

θ̇pen = k1θ̇gyr + k2(θacc − θpen), (4.3)

where, k1 and k2 were two constants empirically set to 1.5 and 0.4, respec-
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Figure 4.8: Aligned and overlapped writing force signals acquired with the pen
(blue) and with the external load cell used as reference (red).

tively, to achieve the minimum discrepancy between the estimate and the
measured tilt angle.

Finally, two tilt angle signals were compared by calculating the Pearson’s
correlation coefficient ρt and the Root Mean Squared Error (RMSE) between
θpen and θext, during the writing tasks.

Results

The results of the tilt angle validation are shown in Fig. 4.10. The results in
the first writing task reported a significant correlation coefficient ρt of 0.89
and a RMSE value of 6.3◦ between the estimate tilt angle from the pen and
the reference angle obtained with the optoelectronic system. In the second
task, correlation was significant with ρt equal to 0.78; a RMSE of only 3.8◦

was reported.

4.3.4 Segmentation Into Strokes

Methods

The algorithm for the segmentation of the signals into strokes is the pre-
liminary step for the calculation of the handwriting indicators; a stroke was
defined as an interval in which the pen writing force was non-zero. For its
validation, the segmentation into strokes computed from the pen force signal,
F, was compared with the one extracted from the external load cell reference
signal. The signals were acquired using the experimental setup showed in
Fig. 4.8 and repeated ten times with different smart pen prototypes. Ten
different pen prototypes were used to validate the robustness of the segmen-
tation algorithm considering possible differences due to device construction
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Figure 4.9: Experimental set-up for the tilt angle validation.

and assembly variability. The data acquired with the first three pen proto-
types were employed to calibrate the algorithm, while the rest of the data
from seven pens was used to evaluate the stroke segmentation algorithm.

For the segmentation into strokes, given the pen force signals F, as a first
step, bias from the force signal was removed; this is particularly important
because the force bias may differ between diverse prototypes due to various
factors (e.g. the tolerances of the 3D printed components, the ink refill
replacement by the user, the curvature of the load cell wire during assembly).
Since signal processing is fully automated during unsupervised pen usage, an
automatic baseline removal was preferred. To do so, a value corresponding to
the mode of the median filter computed over a 50-sample time window was
first subtracted from the signal. After that, a baseline estimation and de-
noising algorithm was run using sparsity (BEADS)2. Finally, all the values

2from Laurent Duval (2020). BEADS Baseline Estimation And Denoising with Spar-
sity. https://www.mathworks.com/matlabcentral/fileexchange/49974- beads-baseline-
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Figure 4.10: Experimental set-up for the tilt angle validation.

below an experimentally fixed threshold were cropped to zero; this zero-
cropping threshold was chosen to optimise the agreement between the stroke
identification obtained from the pen (first three pen prototypes) and the
reference force signal.

As for the stroke segmentation of the reference force signal, the mean
value of a manually selected non-writing tract was considered as baseline;
after baseline removal, the strokes segments were defined as the non-zero
parts in the signals.

A total number of 452 strokeswas detected in the pen signals. Through
a Bland-Altman plot analysis [144], the agreement between the strokes du-
ration obtained from the smart pen (last seven prototypes) and from the ex-
ternal force signal was evaluated. The linear regression between the strokes
duration obtained in the two cases was also computed.

Results

A visual representation of the stroke segmentation in a 30-second long force
signals is shown through horizontal tracts placed below the overlapped time
series in Fig. 4.11. The Bland-Altman plot for the agreement between
the stroke segmentation obtained from the pen writing force signals F and
the reference signals from the external sensor Fext is reported in Fig. 4.12;
the mean stroke duration (in seconds) is presented in the x-axis, while the
difference between the stroke duration between F and Fext is in the y-axis.
A total number of 452 strokes were detected, with a mean duration of 0.11±
1.96s. As can be observed from Fig. 4.12, there is agreement between the
strokes duration obtained from the two signals: all data points except three
were located inside the confidence interval boundaries of agreement, with
no trends in the point distribution. The outlier points indicated the rare
cases in which a large discrepancy between stroke duration was detected.
These cases may correspond to the events in which the minimum values

estimation-and-denoising-with-sparsity
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Figure 4.11: Aligned and overlapped writing force signals acquired with the pen
(blue) and with the external load cell used as reference (red). Below the signals,
the coloured segments (blue for the pen and red for the external load cell) indicate
the detected strokes.

of pen measured force are just above the zero-cropping threshold, therefore
the stroke detection algorithm does not divide the non-zero force tracts into
different strokes. However, the zero-cropping threshold was set in order to
minimise the number of outliers.

The linear regression between the stroke duration obtained from F and
Fext reported an R2 score of 0.99.

4.3.5 Discussion

This part of the work presented the development, validation, and testing of
a smart ink pen instrumented with force and motion sensors, designed for
the quantitative and ecological assessment of daily-life handwriting.

The device was designed to autonomously acquire, store, and dispatch
data related to the writing gesture. The pen is instrumented with an iner-
tial measurement unit and a miniaturised load cell, so that the combined
analysis of data collected through these sensors allows the extraction of rel-
evant handwriting and tremor indicators. The smart object features both
internal storage capacity and BLE connectivity, so that the collected data
can be streamed to a remote device either in real-time, or offline after being
stored onboard. To maximise usability and transparency, the pen function-
ing is self-operated through movement detection or BLE connection request,
therefore no activation button for the end-user is needed; in addition, the
sensor data download and processing procedures are automated.

The greatest accomplishment of the devised technology is that it enriches
a traditional ink pen with the ability of achieving quantitative reliable hand-
writing assessment, thus combining the advantages of the digitizing tablet
technology with the natural ’feel’, the ease of use, and the ecological valid-
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Figure 4.12: Bland-Altman plot with the duration of the strokes detected with
the pen and the external load cell signals.

ity of the traditional pen-and-paper approach. These latter characteristics
are crucial desires for the end-user, especially when dealing with the elderly
population. Indeed, simplicity, intuitiveness, and transparency are key re-
quirements to increase the acceptance and reduce the technological anxiety
that often characterises the elderly population [145]. This is even more true
when the device is envisaged within the framework of continuous home-based
monitoring, as in the case of the proposed technology; the smart ink pen was
indeed developed within the European Movecare Project [12], which targets
independent older adults living at home with the final aim of detecting early
signs of cognitive and physical decline.

The devised smart pen was first successfully validated against gold stan-
dard references. As for the pen load cell, the static tip force measurements
calibration using testing weights reported a coefficient of determination ex-
tremely close to 1 (0.99), confirming the linearity of the sensor even when
constrained in a very tiny space that imposes a pronounced bending of the
cable. Comparison of the pen force signal with the reference measurement
obtained from an external load cell reported a very strong correlation (ρd=
0.96) also in dynamic conditions. The validated pen force signal was lever-
aged for the segmentation of the writing signals into strokes, a critical step
of the data analysis process since the computation of important handwrit-
ing indicators relied on it. The validation of the segmentation procedure
conducted by comparing the strokes duration obtained from the automatic
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stroke detection algorithm and the reference segmentation was successful.
Indeed, the Bland-Altman Plot showed a very good agreement between the
two sets of measurements, which were included, for the most part, within
the standard deviation boundaries; in addition, an almost perfectly linear
relation (R2 = 0.99) emerged from the regression analysis between the two
sets of strokes duration. As for the pen inertial measurement unit, it was
leveraged to estimate the pen tilt angle; the pen tilt was validated through
the comparison with a reference angle obtained by means of an optoelec-
tronic system, reporting strong correlation and low error.

4.4 Handwriting Indicator Reliability

This section includes the protocol and the analysis aimed at studying age-
related changes in handwriting and tremor parameters 3.

4.4.1 Participants and Protocol

After validation, the smart pen was used to collect handwriting data on a
population of healthy young and older adults, with the aim of testing the
reliability of the writing and tremor indicators, and to study possible age-
related differences in handwriting and tremor features.

The study included voluntary subjects from different age ranges: young
adults (age < 50 years old) and older adults (age ≤ 60 years old). The exclu-
sion criterion was any diagnosis of neurological, vascular, or musculoskeletal
disorder affecting the upper limbs.

To maximise the ecological validity of the protocol, a task mimicking
daily-life writing was proposed, without constraining the writing modality
or content. Participants were seated at a table and asked to use the instru-
mented pen with their dominant hand to write 7 lines of free text on a paper
sheet [127]. Participants executed the task twice, with a between-trial break
of at least 4 hours. To obtain an ecologically valid test-retest reliability, no
constraints on the writing content or modality were imposed to the user.

The Ethical Committee of the Politecnico di Milano approved the study
protocol (n. 10/2018).

4.4.2 Indicator Calculation

Data analysis was carried out with Matlab® R2020b (Mathworks®, Natick,
MA USA). Starting from the stored data package defined in Sec, 4.2, a set of
writing and tremor indicators are extracted for each subject. For the writing
indicators, as a first thing, the pen tilt was computed over the entire writing

3This study has been published in the EMBC IEEE 2020 conference [105]
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period, following the method presented in Sec. 4.3.3. The pen tilt during
the writing gesture has been included in studies investigating handwriting
in a number of conditions [146, 147, 141]. For this reason, the mean (Tilt
mean) of the pen tilt signal was retained, not including the segments longer
than 2 seconds which were considered pauses. To evaluate how pen tilt
varied during the writing gesture, the coefficient of variation Tilt CV was
computed.

After that, the signals were divided into strokes (Sec. 4.3.4). The stroke
segments were defined as on-sheet (or on-paper), and the complementary
non-writing segments as in-air, not including the segments longer than 2
seconds which were considered pauses. After that, since previous work re-
ported irregular writing rhythm with age [129], the following handwriting
temporal indicators were computed:

• In-air time, tair [s]: the average duration of the non-writing segments,
averaged over all in-air tracts during the writing task execution.

• On-sheet time, tsheet [s]: the average duration of the on-sheet segments,
averaged over all strokes during the writing task execution.

• In-air/On-sheet time ratio, ta/s: the ratio between tair and tsheet.

The force signal of each single stroke was low-pass filtered at 4 Hz (4th-
order Butterworth filter) [14] and the following force-related indicators were
computed:

• Mean writing force, F [N]: the mean normal force applied to the pen
tip in each stroke, averaged over all strokes.

• Number of changes in force, NCF: the number of local minima and
maxima in pen force signal F in a stroke, averaged over all strokes [14].

As for the acceleration signals, a 3-axial gravity compensation was carried
out for each single stroke. A compensation factor was computed, for each
axis separately, as the average of the low-pass filtered single-axis acceleration
signal (4th-order Butterworth - cutoff: 3.5Hz), and then subtracted from the
signal itself [148]. After gravity compensation, the signals were low-passed
filtered at 4Hz (4th-order Butterworth filter) and the 3D acceleration signal
was computed for all the strokes. As a measure of smoothness the following
measure was calculated:

• Number of changes in acceleration, NCA: the number of local min-
ima and maxima in the 3D acceleration in a stroke, averaged over all
strokes.

To study tremor, the acceleration signals was used without distinguishing
between on-sheet and in-air tracts. The acceleration signals were cut into
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Figure 4.13: A visual example of the EMD of the 3D acceleration signal in the
IMFs. The tremor signal is reconstructed by retaining the IMFs with a mean
instantaneous frequency grater the 3Hz only.

500-sample segments [139]. The acceleration data over the 3 axes were firstly
band-pass filtered at 0.5-24Hz (4th-order Butterworth filter) [20]. The 3D ac-
celeration signal was then computed as the module of the x-y-z components.
For each segment, tremor was estimated using the Hilbert-Huang Trans-
form (HHT), which consists in the Empirical Mode Decomposition (EMD),
followed by the Hilbert Spectral Analysis [149]. The EMD-based filters de-
composition is based on the local timescale characteristics of the data, since
EMD does not have any general analytical formulation unlike other conven-
tional fixed cutoff filtering techniques. For this reason, it was proven to be
particularly suitable to study tremor in presence of voluntary motion [150],
and it was thus preferred to the standard Fourier Transform to study tremor
frequency components during our handwriting protocol. Each 500-sample
segment of the 3D acceleration signal was decomposed in the intrinsic mode
functions (IMFs) using EMD, with the Cauchy convergence criterion. Then,
the IMFs whose mean instantaneous frequency was higher than 3Hz were
retained only (because they could be associated to the tremor features [150],
rather than voluntary motion). The remaining IMFs were summed to recon-
struct the 3D tremor signal of each segment. A visual example of the EMD
and the tremor signal reconstruction from the 3D acceleration is shown in
Fig. 4.13. The tremor indicator were computed for each segment of the
reconstructed tremor signal and then averaged. In particular, the following
tremor indicators were computed:

• Modal frequency, fmod [Hz]: the tremor characteristic frequency value
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which corresponds to the highest peak in the Hilbert power spectrum
of the tremor signal obtained from the IMFs [15], and has been shown
to change in case of pathology [151].

• Approximate entropy, ApEn: the estimate of the entropy in the recon-
structed tremor signal, a regularity statistic measure that quantifies the
unpredictability of the fluctuations in a time series signal, and returns
a value between 0 (high degree of short- and long-term predictability)
and approximately 2 (completely random signal such as pure white
Gaussian noise). For the computation of ApEn [152], m (the window
length) was set to 2, and r (the similarity criterion) was set to 0.2xSD
of the signal, as in [20]. Regularity of tremor has been shown to change
with age and pathology [153].

After that, the Recurrence Quantification Analysis (RQA) was applied
to the tremor data; it is a nonlinear data analysis method that quantifies
the number and duration of recurrences of a dynamical system presented by
its phase-space trajectory [154]. Two-dimensional binary maps - recurrence
plots (RPs) - are computed for each tremor signal to visualise the recur-
rent behaviour of the phase-space trajectory of dynamical systems. The
following settings were adopted [154]: i) the delay was estimated with the
Mutual Information method algorithm; ii) the embedding dimension was
estimated with the false nearest neighbour (FNN) chaotic algorithm [155];
iii) the critical radius was set to 20% of the maximum distance (Euclidean
distance matrix). From these maps, the following indicators were obtained
to describe the complexity in handwriting [139]:

• Recurrence ratio, RR [%]: it expresses the self-similarity of the tremor
time series during handwriting.

• Determinism, DET [%]: an index of the degree of determinism, that
expresses the predictability of the signal.

The higher these indicators, the lower the tremor complexity [139].

A schematic representation of the workflow is represented in Fig. 4.14
for the indicators calculation.

4.4.3 Statistical Analysis

Methods

Statistics was run using RStudio version 1.2.5033 (RStudio Inc., Boston,
MA). Significance level was set at 5% for all tests.
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Figure 4.14: A schematic representation of the indicators calculation. The writing
force signal is pre-processed using baseline removal and stroke segmentation. The
averaged in-air and on-sheet duration among all the strokes are considered as
the temporal indicator: in-air time, on-sheet time and the ratio between them.
The mean force value and the number of changes in force are computed within
each stroke and averaged among all the strokes. The number of changes in
acceleration is calculated from the 3D acceleration signal within all the strokes
an then averaged among all the strokes. Empirical mode decomposition (EMD)
is used to estimate the tremor signal, from which the approximate entropy is
obtained and the non linear quantities (recurrence ratio and determinism) are
calculated applying recurrent quantification analysis (RQA). At last, the modal
frequency is calculated as the highest peak in the power spectrum obtained using
the Hilbert-Huang transform (HHT).

The goals of our statistical analysis were: i) to check the reliability of
the computed indicators in a test-retest design, and ii) to study possible
significant variations of these quantities with age in healthy subjects 4.

Data acquired in the two sessions were used to evaluate the relative and
absolute reliability of the computed indicators, for young and older adults,
separately. To do so, for each continuous indicator, a Lilliefors Test was
first conducted to verify normality, and a paired t-test to assess the ab-
sence of systematic bias between the measurements in the first and in the
second session of the test. The reliability was evaluated by computing the
intra-class correlation coefficients (ICC 2-way mixed-effects model, absolute
agreement), an index ranging from 0 to 1; ICC values of 0.5, 0.75, and 0.9
indicate moderate, good and excellent reliability, respectively [157]. Abso-
lute reliability was assessed computing the standard error of measurement
(SEM), as in Eq. 4.4:

SEM = SD ×
√
1− ICC, (4.4)

4This study has been published in the GNB 2020 conference [156]
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where SD is the standard deviation of the indicator in the test-retest. Given
the SEM, the measurement error was estimated through the Minimal De-
tectable Change (MDC) calculated as in Eq. 4.5:

MDC = SEM × 1.96×
√
2, (4.5)

where 1.96 is the z-score associated with the 95% level of confidence, and
the square root of 2 reflects the additional uncertainty introduced by using
scores based on measurements made at two time points [158]. On the other
hand, for the two count indicators (NCA and NCF), test-retest concordance
between the two test repetitions was investigated by computing the Kendall’s
Tau [159].

As for the second aim, a non-parametric statistics was chosen after veri-
fying, with a Lilliefors test, that not all indicators were normally distributed.
For each indicator, possible between-group differences were studied using the
Kruskal-Wallis Test, followed by Wilcoxon pairwise comparisons with Bon-
ferroni correction in case of significance.

Results

A total of 43 subjects was recruited. The young adults group (YY) included
20 subjects [Age 28.5 (mean) ± 3.6 (standard deviation) years old; Sex: 10
Male and 10 Female; Dominant hand: 19 Right-handed]; the older adults
group included 23 subjects [Age 73.4 ± 8.9 years old; Sex: 8 Male and 15
Female; Dominant hand: 22 Right-handed]. To study how age affects hand-
writing, the subjects in the older adults group were divided into 2 additional
based on their age: the subgroup of middle-old adults (EY) included 12 sub-
jects with an age between 60 and 69 years old [Age 66.4 ± 2.1 years old;
Sex: 6 Male and 6 Female; Dominant hand: 12 Right-handed]; the second
subgroup (EE) was composed by 11 old adults with an age above 70 years
old [Age 81 ± 6.9 years old; Sex: 2 Male and 9 Female; Dominant hand: 10
Right-handed]. The choice of separating subgroups in the population over
60 enables a more accurate portrayal of significant life changes. The 70 years
old threshold was based on published studies showing that the relationship
between age and handwriting movements is likely to be non-linear with the
greatest decline in age-related motor function occurring after the age of 70
[147, 141].

For the reliability, Tab. 4.1 presents the reliability results for both young
and old adults. The test-retest reliability results on the older adult group
were computed from the data of 11 subjects who performed the protocol
twice. As shown in Tab. 4.1, excellent or good reliability emerged for all
the indicators, for both young and older adults, except for fmod for the old
adults, which showed moderate reliability (ICC = 0.68).
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Table 4.1: Results of the statistical analysis for the test-retest on 20 young adults
and 11 older adults. CI=Confidence Interval. For continuous indicators, test-
retest reliability was investigated with the ICC, while Kendall’s Tau was com-
puted for count indicators.

As for the age-related changes in handwriting, Tab. 4.2 reports the results
of the non-parametric statistical analysis carried out to test the age effect
on the handwriting indicators. Significant between-group differences were
found for in-air time (tair), in-air/on-sheet ratio (ta/s), number of changes
in force (NCF), approximate entropy (ApEN), recurrence ratio (RR) and
determinism (DET). Pairwise comparisons highlighted significant changes
for: the couples YY-EY and YY-EE for t air (increase with age); the couples
YY-EE and EY-EE for ta/s (increase with age), RR and DET (increase
with age); the couple YY-EE for the ApEn (decrease with age) and tiltCV
(decrease with age) indicators; the couple EY-EE only for NCF (decrease
with age); and the couple YY-EY only for tiltmean (decrease with age).

4.4.4 Discussion

After a successful validation of the pen sensors and algorithms, the smart
object was tested on young and older adults with the twofold aim of testing
the reliability of the handwriting and tremor indicators, and their sensitiv-
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Table 4.2: Results of the non-parametric statistical analysis between YY, EY and
EE groups. The first p-value reported (column 9) represents the p-value of the
Kruskal-Wallis Test, together with the x 2 (column 8); for those indicators that
reported a significant p-value in the Kruskal-Wallis Test, pairwise comparisons
were conducted through the Wilcoxon Test (Bonferroni adjustment), and the
related p-values are reported in columns 10, 11 and 12.

ity to distinguish between age groups 5. Concerning test-retest reliability,
results were excellent, with values largely above the 0.75 threshold of good
relative reliability [157], with the exception of the modal frequency for the
old adult group, which showed moderate reliability. These high values are
even more striking if one considers that the writing content differed between
the two trials, importantly suggesting that the reliability of the indicators is
independent from the writing content. The minimal detectable change was
also computed to estimate whether a change between the user’s repeated
tests represents random variation or a true change in performance. This
measure is extremely important to discriminate real changes in the values
of the indicators when monitoring users over time, and it is thus crucial for
the user’s longitudinal monitoring to highlight relevant deviations from the
standard performance. The reported measurement errors were very low.

Concerning the ability of the writing and tremor indicators to distinguish
between different age groups (young adults YY, middle-old adults between
60 and 69 years old EY, old adults over 70 years EE), our results are mostly
in line with previous literature.

As for the temporal handwriting measures, significant age-related changes
emerged for the in-air time and the in-air/on- sheet ratio indicators, which

5The research has been published in the IEEE Transactions on Instrumentation and
Measurement Journal [160]
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increased with age. Our findings confirm previous literature investigating
writing copying tasks using digitizers, which reported an increasing trend for
these indicators from healthy young to older adults [129], and from healthy
older adults to older adults with cognitive decline [10]; moreover, the as-
sessment of in-air time during handwriting was reported to have a major
impact on disease classification accuracy in PD [128]. On the other hand,
our data showed how the On-sheet time indicator was quite constant over
different age groups. As for the indicators related to the handwriting force
(Mean writing force), no age differences emerged. For this indicator, con-
trasting results emerged in previous work analysing writing copying tasks
using digitizers: while no significant association between writing pressure
and the frailty phenotype was found by Camicioli et al., [130], some studies
reported that the writing pressure decreases with age [161], and age-related
cognitive pathology [10]. The lack of age-related differences in writing force
emerged from our data is unlikely to depend upon the force resolution of the
pen load cell. Indeed, from the static calibration, a force measurement reso-
lution of 0.02N was obtained, which is two orders of magnitude smaller than
the MDC value found for the force signal (equal to 1.5N). On the other hand,
our data showed an effect of age for the number of changes in force within
a stroke, which was significantly decreased for the very old group (EE). Our
finding confirms previous literature examining pen-and-paper writing, which
reported a more uniform pen pressure for older writers [8].

Concerning tremor, no differences due to age emerged for the Modal Fre-
quency. While this indicator was shown to be affected by the presence of neu-
rological conditions (e.g.: PD) [151], a clear effect of age was not consistently
shown in previous literature, which mainly investigated resting or postural
tasks [139, 20, 15, 153]. On the other hand, our data revealed a neat age
effect on nonlinear tremor acceleration characteristics. Our results showed a
decrease with age of approximate entropy during handwriting, meaning that
more repetitive and predictable tremor oscillation components characterised
the older age groups. As for this indicator, previous literature showed a
clear decrease in PD patients [153], and a slightly less evident decreasing
trend for older individuals, compared to younger adults, in postural rather
than in resting tasks [20, 15, 153]. In line with the approximate entropy
results, the indicators related to the recurrence quantification analysis, re-
currence ratio and determinism, presented a significant increase for the very
old group (EE), confirming once again the augmented predictability of the
tremor characteristics in older writers. Also for these indicators, previous
work revealed a marked increasing trend following neurological conditions
(PD) [139], while no important changes simply due to older age were consis-
tently demonstrated, at least during postural tasks [139].

To sum up, the results of the writing indicators obtained during free text
writing with our pen, especially those related to temporal measures, are in
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line with previous literature investigating writing copying tasks with digi-
tizing tablet technology. This result supports our choice of not constraining
the writing content or execution in order to increase the ecological validity of
the protocol. As for tremor, the nonlinear acceleration characteristics exam-
ined in our study while writing with the smart pen present a more marked
effect of age, compared to previous work investigating mostly postural tasks
[139]. This finding suggests that the study of tremor during more complex
activities entailing a blend of cognitive and fine motor skills, such as hand-
writing, is more effective in bringing out important differences due to ageing,
compared to more simple postural or resting tasks typically investigated in
previous work. To this end, the proposed technology, with its combination
of force and motion sensors, is key since it allows the simultaneous study
of writing and tremor characteristics during handwriting tasks. This impor-
tant advantage of the smart pen paves the way toward fruitful applications
of the current technology in the field of Parkinson’s disease. Indeed, signs of
the disease include not only tremor, but also a series of handwriting abnor-
malities grouped under the term of ’PD dysgraphia’ [162], which supports
the study of handwriting as a pre-symptomatic neurobehavioural biomarker
of PD [163]. In this framework, it is clear that a technology that allows
the combined study of handwriting and tremor features perfectly suits the
current needs of the neurological research field. Indeed, the importance of
studying handwriting is not restricted to Parkinson’s Disease, but can be
extended to a variety of other neurological disorders, including dyskinesia
[164], Huntington’s Disease [126], and Multiple Sclerosis [165], not only to
support the diagnosis process, but also to quantify the severity of clinical
signs over time and to monitor and manage the risks associated with med-
ications [164]. In addition, a technology that allows quantitative, simple,
and ecologically valid evaluation of handwriting finds potential and interest-
ing applications also in the youngest population, since handwriting and text
production skills assume a central role in the children’s development pro-
cess. In this framework, handwriting difficulties are common in a number
of childhood disorders, including, dysgraphia [166, 167], dystonia [168], and
attention deficient hyperactive disorder [169].

4.5 Usability and User Experience

Methods

The smart pen was included in the eHealth platform for home monitoring
and assistance of the European project MoveCare (H2020, GA no. 732158)
[12], targeting independent older adults. Against this background, the ink
pen was considered as an IADL monitoring device. The pen was designed
to autonomously collect and upload handwriting data when used, with the
minimum action required by the user beyond simply write with the pen
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and put it in charge. The project was finalised to an ecological momentary
assessment in which the platform was tested in the real-world scenario with
25 community-dwelling older adults (65 or more years old) living alone. In
particular, participants will have to satisfy the following inclusion criteria:
i) age ≥ 65; ii) living alone (with assistance in activities of daily living ≥
1 hour/day); iii) Mini-Mental State Examination (MMSE) ≥ 26; iv) pre-
frail (Fried Scale = 1-2) people or robust (Fried Scale = 0) individuals who
experience loneliness (Revised UCLA Loneliness Scale > 35) and depression
(Geriatric Depression Scale (GDS) > 9).

The pilot study was organised in two rounds (round 1 and 2), each of them
lasting 3 months. Some of the participants (14 ’RMHS’ subjects) were re-
cruited in Spain (Badajoz), the others in Italy (Milan). People of the Italian
group people were recruited among the local association of older volunteers
A.N.T.E.A.S (Associazione Nazionale Terza Eta’ Attiva per la Solidarieta’)
and the patients afferent to the Day Hospital and the Ambulatory of the
Geriatric Unit of Fondazione IRCCS Ca’ Granda Ospedale Maggiore Poli-
clinico (PCL). In addition, 4 residents of the Heliopolis Centre of the Korian
group were included. In the final pilot test, usability and acceptance of the
various components of the eHealth platform were investigated in two main
ways: i) through users’ feedback collected using questionnaires; ii) by mea-
suring the amount of time the devices/modules were used.

Results

The usability measurement of the smart pen for each subject in the first and
second round are showed in Fig. 4.15. The upper panel shows a bar-plot
that counts the number of data entries for each subject, e.g. the number of
time the subject has used the pen during the pilot study. The lower panel,
instead, shows the bar-plot counting the amount of time (in minute) each
subject has used the pen, for each round separately. Different colours in-
dicate pilot users recruited in Italy by PCL (in green) in Italy by Korian
(in red) and in Spain by RMHS (in blue). For all users, dark colours indi-
cate users recruited in round 1, and light colours users recruited in round
2. Among the monitoring systems included in the MoveCare platform, the
smart pen resulted used by the most of the recruited subjects.

Questionnaires about the smart pen included 4 5-point Likert scale ques-
tions (using 1 for ’totally disagree’ and 5 for ’totally agree’). The questions
and the relative mean and median score obtained are reported in Tab. 4.3
The scores obtained by the Smart objects (ball and pen) were very high,
especially the Smart pen. 90% of the participants rated question one using
the smart pen was easy positively and the 86.4% rated question two I found
it easy to charge the smart pen’ positively. The bar chart with the frequency
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Figure 4.15: The number of valid entries (upper panel) and the minutes of usage
(lower panel) of the whole users involved in the final pilot testing.

Question Mean Median
Using the pen was easy 4.68 5
I found it easy to charge the pen 4.68 5
I think monitoring handwriting
through the use of an instrumented ink pen
is useful

4.50 5

If I have the possibility, I would frequently
use the smart pen in the future 4.23 5

Table 4.3: Usability questions with the relative mean and median score value.

distribution of the given answer for questions one and two are showed in
Fig. 4.16 . Statistically significant differences have been identified for ques-
tion one ’Using the smart pen was easy’ in the comparison by country (p =
0.009): the proportion of Spanish participants who valued this question as
fully agree is significantly higher than that of Italian participants (100.0%
vs. 44.4%).
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Figure 4.16: Frequency distribution of given answer for the questions one (left
panel) and two (right panel).
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Chapter 5

Anomaly Detection in
Uncontrolled Handwriting

As described in the previous chapter, experiments revealed that the smart
ink pen was a suitable and reliable tool for the ecological collection of quanti-
tative information about the handwriting activity. In the home-based mon-
itoring scenario, any evaluation of the health status through the assessment
of the handwriting performance cannot rely on standard protocols. Indeed,
the analysis of the handwriting indicators, in this research, has been con-
ducted using data collected by asking subjects to perform common daily-like
writing tasks (e.g. short free text), without any bind on the writing content
or modality 1.

Although reliable measurements could be obtained using the pen, the
subject’s handwriting could not be evaluated by simply comparing the in-
dicator with those values which, in previous studies, have been associated
to certain conditions of decline. The ecological data acquisition modality,
required in the home monitoring context, increases the noise and the data
variability. So measurement may have erratic fluctuations and unforeseen
behaviours. This inevitably implies that the signs of a possible decline are
not easily attributable to already known values or trends of the measures.
Consequently, the sign to look for is the presence of anomalies in the data.

Anomalies can be defined as outliers or significant trend changes in the
data and, in the case of multidimensional data, they can be also represented
by particular patterns of indicators. Anomaly detection (AD) techniques
basically consists in finding those outliers, trends, or patterns in the data
that are usually related to some problems or malfunctioning events [170].
In free handwriting, AD could be employed to identify some variations in
the writing data which might suggest an alteration of the physical or mental
status of the subject. In the case of older adults and frail individuals, it

1See IEEE-EMBC paper [105]
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might be related to a pathological decline in capacity.

Given the uncontrolled condition in which handwriting data will be ac-
quired in the home monitoring scenarios, the quantities to observe should be
accurately chosen. In addition, some consideration needs to be done.

• The monitored subject should be in a known initial health status and
such status is expected to undergo variations in the middle-long period.
For example, a target subject can be a healthy older adult, since the
old age is known to be a risk factor for conditions such as frailty, or a
pathological individual, in the early stage of the disease, who has the
risk of getting worse.

• A time interval in which the health status of the subject is not expected
to undergo significant variations should be identified. More precisely,
changes in handwriting should not be visible within that period. For
an healthy subjects, this period has been observed to be about 5 years
[8]. It is expected to decrease in non-healthy individuals. Within
this interval, the characteristic of the subject’s handwriting can be
assumed as time-invariant. Therefore, time-invariant measurements
can be found and monitored.

At this point, anomalies can be interpreted as significant changes of those
variables that were expected to be stationary 2.

The quantitative analysis of handwriting offers a set of indicators which
can be treated as the time-invariant variables to be monitored. The mon-
itoring of a subject’s handwriting parameters can follow two different ap-
proaches: i) the subject-, or ii) the population-specific methods. In the
subject-specific monitoring, anomalies are searched in the time series gen-
erated by sampling the subject’s handwriting indicators over time. This
method has the advantage to be more precise in the detection of decline for
the subjects, being the inter-subject variability very high. On the other hand,
it requires a long data collection on the same subject in order to test and
evaluate the methodology. The population-based approach instead, finds the
common patterns for the handwriting indicators in homogeneous population
groups. For example, in healthy groups of individuals within the same age
range. Here, anomalies can be searched in the subject’s handwriting indi-
cators which result associated a group different from the one of the subject
(for example an older or a pathological group). This second approach might
not be as accurate as the first one, but it can be implemented and tested
more easily, since the variables to be monitored are not time-dependent.

The rest of this chapter will show the implementation of a population-
based anomaly detection technique using the handwriting indicators ob-

2In the weak sense.
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tained with the use of the smart pen. It is organised as follows: Section
5.1 presents the experimental protocols, the data processing and the clas-
sification algorithms used in the age-groups classification with the relative
results. Section 5.2 shows the methods and the results of the application of
the classification methods in the discrimination between healthy and Parkin-
son’s patients. At last, Section 5.3 discusses the results.

5.1 Age-Group Classification

Here, the ability of the handwriting indicators in the classification of four
age groups of healthy subjects was investigated performing two types of
unconstrained writing tasks.

5.1.1 Participants and protocol

A total number of 80 healthy participants ranging from 20 to 90 years of age
were involved. Any diagnosis of neurological, vascular, or musculoskeletal
disorder on upper limbs was the exclusion criterion. Subjects over 65 years
were admitted after verifying a Mini-Mental State Examination (MMSE)
[171] score higher than 25. All participants were divided into four groups
defined by age: group YY between 20 and 39 (12 males, 8 females, mean
age 27.4±2.4), group EY between 40 and 59 (12 males, 8 females, mean
age 57.7±6.28), group EF between 60 and 69 (10 males, 10 females, mean
age 65.45±2.2), and subjects older than 70 (6 males, 14 females, mean age
80.2±7) were included in group EE. Each group included 20 subjects.

All subjects wrote a free text (Text, up to 10 lines) and a grocery list
(List, up to 8 words). The tasks had no specific constraint to to make the
task very similar to a daily life-like writing activity. The Ethical Committee
of the Politecnico di Milano approved the study protocol (n. 10/2018).

5.1.2 Calculation of the handwriting indicators

A set of 14 parameters, related to the handwriting kinematics and dynamics,
and to tremor, were extracted from raw data collected during each of the
two writing tasks. The calculation was implemented in Matlab® R2020b
(Mathworks®, Natick, MA USA) 3. The following handwriting indicators
were computed:

• In-air time, On-sheet time and Air-Sheet time ratio. The temporal
parameters were obtained by analysing the writing force signal. The
time during writing was divided into strokes, defined as the "writing

3See Lunardini et al. [160] for a detailed description
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segments" in which the pen tip was in contact with the paper sur-
face (non-zero force tracts). Then the averaged stroke length within
a writing task was considered as mean OnSheet time (Tsheet). Unlike
for the non-writing segments, the averaged zero-force tracts length was
treated as the mean InAir time (Tair). InAir time intervals longer than
2 seconds were excluded as they were treated as pauses. The ratio be-
tween the latter and the former quantity was defined as the AirSheetR
(Ta/s). The temporal parameters has been shown to describe a more
irregular rhythm with age [129].

• Mean value and variation coefficient of the tilt angle. The pen incli-
nation angle was computed within the writing task, excluding pauses,
applying the sensor fusion algorithm (reported in [160]) to the inertial
measurements. Previous studies included the pen inclination along
the writing gesture to characterise handwriting in different conditions
[146, 141]. The mean value (Tiltmean) and the coefficient of variation
(Tiltcv) of the tilt angle signal were considered during writing. An
angle equal to 90◦ indicated the straight vertical positioning of the
pen and 0◦ represented the complete inclination, with the pen placed
horizontally.

• Mean value and number of changes in force. The mean writing force
(F ) was calculated by averaging the force signal over all the strokes
detected in the writing task. The information about the force varia-
tion was obtained by computing the mean number of changes in force
(NCF ) by counting the local maxima and minima within a stroke,
averaged over all the strokes. Force and force variations have been
noticed to change with age in handwriting [14].

• Number of changes in acceleration. The number of local minima and
maxima in the 3D acceleration in a stroke was averaged over all strokes
and was considered as the mean number of changes in acceleration
(NCA). This quantity was associated to the smoothness of the writing
movement and was observed to decrease with age [8].

• Modal frequency and root mean square (RMS). To extract information
about tremor, the linear acceleration recorder was cut over a writing
task signals in segments of 500 samples each [139]. The power spec-
trum was computed for each segment using the Hilbert-Huang trans-
form (HHT) [149], which has been preferred in literature for the study
of voluntary tremor to the standard Fourier transform [150]. Then, the
mean modal frequency (fmodal) was obtained by averaging the frequen-
cies of the highest peak in the power spectrum over all the segments
[15], and the mean RMS by averaging the root mean square of the
power spectrum over all the segments.
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• Approximate entropy. The linear acceleration signals of the writing
task, band-pass filtered at 0.5-24Hz (4th order Butterworth filter), were
used to estimate the approximate entropy (ApEn) as in [20]. The
entropy value (ranging from 0 and 2) measured the unpredictability of
the acceleration signals, which can be influenced by the higher or lower
regularity of the tremor components. Entropy has been measured to
decrease with age and pathology [153].

• Recurrence ratio and percentage of determinism. The nonlinear charac-
teristics of tremor were quantified by performing the recurrence quan-
tification analysis (RQA) to the acceleration signals. As in [139], the
recurrence ratio (RR) was retained to measure the tendency of the
tremor dynamics to express repeated pattern in time and the percent-
age of determinism (DET ) to estimate the predictability of the the
gestures during handwriting.

5.1.3 Dataset description

According to the protocol described in section 5.1.1, DT was defined as the
free text dataset composed of 80 samples and 15 attributes, i.e. the 14
indicators and the group label. In the same way, DL was defined as the
grocery list dataset. Finally, DTL was the dataset composed of 80 samples
29 attributes, i.e. the indicators of both the tasks plus the group label. Given
the set of the four ordered age intervals A = {Y Y,EY,EF,EE} and the set
of writing tasks W = {T, L, TL}, Da

w was defined with a ∈ A, w ∈W as the
dataset composed by 20 samples and computed from the group a over task
w.

5.1.4 Classification tasks

The ability of handwriting to discriminate subjects belonging to different
age groups was investigated. The handwriting indicators measured high-
level phenomenons that emerged from the underlying complex processes of
ageing. Therefore, machine learning (ML) classification techniques were used
to account for the multivariate and non-linear nature of the problem. Two
different ML algorithms were chosen to compare different classification logic.
Logistic regression was used to set a baseline performance measure, since it
is one of the simplest and most used linear classifiers. The second one was
a more recent boosting algorithm named Catboost [172]. This algorithm is
known to achieve remarkable performance while avoiding data overfitting,
even with small datasets.

Since one of the most fruitful monitoring applications of our analysis is
the detection of age-related abnormalities in the handwriting data, the atten-
tion was more focused over binary classification tasks to discriminate between
age groups. In details, two pools of classification tasks were computed: the
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first one is between adjacent groups (by age ranges), i.e. Y Y vsEY , EY vsEF
and EFvsEE. The second one is between Y Y , EY and the EE group. In
all the tasks, the younger class was indicated with ’0’ and the older one
with ’1’. The first pool of tasks was aimed at evaluating the performance
of the classifiers in discriminating between groups within close age ranges.
Models which achieve high performance in those tasks are expected to be
more sensitive to minimal changes in handwriting due to the age-decline
process. For monitoring purpose, Precision is the most significant metrics
since it measures how much the classifier is robust in the determination of
the true positives. The second pool of tasks was rather aimed at assessing
the stronger ability of the models to detect more relevant changes in more
distant age-groups. As resumed in Fig. 5.1, for each experiment, data nor-
malisation in the range [0,1] was applied. Then, samples were labelled with

Figure 5.1: The data processing, classification and model explanation work-
flow.

1 for the older group, and 0 for the younger. In this way, the ML algorithms
learned to predict the sample probability to belong to the right class. For
each experiment the models were evaluated according to a wide set of clas-
sification metrics, i.e. Accuracy, Precision, Recall, F1 and Area Under the
ROC Curve (ROC-AUC). To have less unbiased estimation of performance,
both Logistic Regression and Catboost were evaluated with default param-
eters by the Leave-One-Out (LOO) Crossvalidation with early stopping set
to 20 epochs.

5.1.5 Model explanation techniques

A model explanation technique was used to overcome the limitations of the
black-box nature of the classification algorithms and to gain precise infor-
mation about the models’ decisions, i.e. the importance and the role of the
handwriting indicators in the prediction of the subject’s age group. The
SHAP tool was used [173, 174], which is a model explanation library based
on game theory which computes the Shapley values [175] of the features
according to their impact on its predictions. For each trained model, it com-
putes the Shapley Values [175] of the features according to their impact on
its predictions. In a binary classification tasks, SHAP first computes the
baseline prediction value, i.e. the mean value predicted by the model given
the observed samples, then assigns a real number to weight each feature ac-
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Table 5.1: Catboost scores evaluated through LOO Crossvalidation for age-
groups Binary Classification.

Accuracy Precision Recall F1 ROC-AUC
Text List Text+List Text List Text+List Text List Text+List Text List Text+List Text List Text+List

YY vs EY 82.5 85.0 80.0 84.2 81.8 83.3 80.0 90.0 75.0 82.1 85.7 78.9 93.0 96.8 95.5
EY vs EF 90.0 82.5 85.0 83.3 84.2 81.8 100. 80.0 90.0 90.9 82.1 85.7 98.0 92.2 96.2
EF vs EE 90.0 90.0 85.0 94.4 94.4 85.0 85.0 85.0 85.0 89.5 89.5 85.0 98.1 97.0 95.5
YY vs EE 97.5 90.0 97.5 95.2 94.4 100. 100. 85.0 95.0 97.6 89.5 97.4 99.5 98.8 100.
EY vs EE 92.5 92.5 87.5 94.7 94.7 89.5 90.0 90.0 85.0 92.3 92.3 87.2 99.5 98.4 98.2

Table 5.2: Logistic Regression scores evaluated through LOO Crossvalidation
for age-groups Binary Classification.

Accuracy Precision Recall F1 ROC-AUC
Text List Text+List Text List Text+List Text List Text+List Text List Text+List Text List Text+List

YY vs EY 57.5 65.0 65.0 58.8 68.8 68.8 50.0 55.0 55.0 54.1 61.1 61.1 56.5 68.2 68.0
EY vs EF 67.5 65.0 62.5 68.4 62.5 61.9 65.0 75.0 65.0 66.7 68.2 63.4 72.5 65.8 73.5
EF vs EE 72.5 77.5 72.5 69.6 78.9 71.4 80.0 75.0 75.0 74.4 76.9 73.2 80.5 81.2 83.8
YY vs EE 90.0 92.5 92.5 94.4 94.7 100. 85.0 90.0 85.0 89.5 92.3 91.9 93.0 94.2 98.2
EY vs EE 85.0 87.5 85.0 88.9 89.5 85.0 80.0 85.0 85.0 84.2 87.2 85.0 88.8 95.8 95.0

cording to the average contribution in features coalitions, i.e. its Shapley
value. It is then possible to explore the role of each feature in the classifi-
cation of single samples, independently from the fact that they have been
learned by the model during the training step. The sample prediction rep-
resents the sum of the feature contribution starting from the baseline: if a
feature has a positive impact, it influences the prediction in favour of class
1 and vice versa. This step was useful to understand, for each sample and
each age-group, how much every indicator leads the model to predict class 0
or 1.

5.1.6 Results

The performance metrics for each classification task and dataset are reported
in Tab. 6.4, with the Catboost classifier, and in Tab. 5.2, with the Logistic
Regression. As expected, the Catboost algorithm achieved the higher per-
formance. In the tables, for each metric, the higher scores among datasets
are written in bold numbers.

The detailed outcomes of 3 classification tasks are reported in Fig. 6.6:
EY vsEF in the first column of the figure, EFvsEE in the second column
and EY vsEE in the third. The first and the second tasks involved the
most interesting class for monitoring purpose (the EF, with individuals in
the range 60-69 years of age) and its closest two classes in terms of age
ranges (40-59 and 70+ respectively). The third task was instead aimed at
evaluating how much the age gap 60-to-69 years of age improved the binary
classification between the younger and the older groups of individuals. The
row (a) shows the ROC-AUC performance obtained with Catboost trained
and evaluated over Text, List and Text+List datasets with the LOO strategy.
In all the cases, the results from Text datasets achieved the higher ROC-
AUC. For these reasons, the plots in rows (b, c, d) showed the results from
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EY vs EF EF vs EE EY vs EE

a)

b)

c)

d)

Figure 5.2: Classification performances and model explanation plots for the
tasks EY vs EF, EF vs EE and EY vs EE: the ROC-AUC metrics achieved
by Text, List and Text+List indicators are in row a); the confusion matrices
are row b); rows c) and d) reports the absolute average shapely values and
the shapely value of the features for each sample respectively.
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Text datasets only. The row (b) shows the confusion matrices and the rows
(c, d) show the final models SHAP feature rankings trained on the whole task
datasets and tuned via LOO. While row (c) displays the absolute impact of
the features, row(d) shows the same ranking and explains how the samples
were predicted according to their features values. Each dot in the figures
in d) represent the shapely value of the indicator for a particular sample.
The blue-red colour scale indicates the indicator value (low to high) and the
negative shapely values pushed the prediction towards class 0 (the younger
group), while the positive values favoured the classification of the subject in
class 1 (the older group). The outcomes of this three tasks are detailed in
the following subsections.

EY vs EF

In EY vs EF task, the ROC curves revealed that the Catboost models
trained using the Text data achieved the best results with an AUC of 98.0%.
In the associated confusion matrix referred to Text data, the absence of
False Negatives is translated in 100% Recall, while overall, there are 4 False
Positive miss-classifications. According to the Shapley values of the final
model, this task was strongly affected by the mean tilt angle, the approximate
entropy and the writing force indicators. Indeed, higher mean tilt values were
related to younger subjects belonging to age-class EY like for approximate
entropy and writing force.

EF vs EE

Finally, in EE vs EF task, the ROC curves revealed that the Catboost
models trained using the Text data achieved the best results with an AUC of
98.12%, which means it is possible to discriminate also between the two oldest
classes. In the associated confusion matrix referred to text data, there is
almost the same behaviour of the previous task, having only 1 False Positive
and 3 False Negative predictions translated into 90% of Accuracy and 94.4%
of Precision. According to the Shapley values of the final model, the tair
indicator turned out to be the core feature for this binary classification. The
model strongly related high values of tair indicator to the older class EE.

EY vs EE

In EY vs EE task, the ROC curves revealed that the Catboost models
trained using the Text data achieved the best results with an AUC of 99.5%,
i.e. the predictions of unseen data are almost perfect. In the associated
confusion matrix referred to text data, there are only 1 False Positive and 2
False Negatives, which lead to a balanced F1 score equal to 92.3%. According
to the Shapley values of the final model, this task was strongly affected by
tair and ApEn indicators and more softly by Fmodal and DET ones. The
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Resting
tremor

Hand
tremor Rigidity Digit

dexterity
Hand

movements

Rapid
alternate
hand

movements

Bradikinesia

Mean score
(0-4) 0.85±0.9 0.19±0.4 1.62±0.8 1.73±0.82 1.7±0.8 1.6±0.7 1.73±0.78

Table 5.3: Average scores for the tremor measurements of the PD patients

tair and DET higher values pushed predictions favouring the older class EE,
while high ApEn and Fmodal values were more linked to younger subjects
belonging to class EY .

5.2 Test on PD subjects

The ability of the handwriting indicators in discriminating healthy or patho-
logical writing gesture has been investigated by performing a classification
task between control age-matched older adults and PD patients.

5.2.1 Methods

Free text handwriting data were collected from 20 PD patients (10 males,
73.6±6.6 y.o.a.; 10 females, 73.4±8.14 y.o.a.) in the IRCCS Fondazione
Maugeri (Milan), using the acquisition protocol described in Sec. 5.1.1. In-
clusion criteria were a maximum hand tremor score (0-4) of 1, a maximum
digit dexterity score (0-4) of 3 and a maximum hand movement score (0-4)
of 3. The average values (from 0 to 4) of tremor measurement for the PD
patients are listed in Tab. 5.3 For the healthy control, 10 subject were consid-
ered from the grop EF and 10 from grop EE (see Sec. 5.1.1), all aged over 65.

The set of indicators described in Sec. 5.1.2 were calculated for each
subject and included in the classification dataset. In total, 40 samples with
14 features were obtained. The binary classification problem with the two
classes (healthy and PD) was set. The task was performed using the Catboost
classifier with a weighted logloss cost function, implemented in the Python
library Scikit-Learn [176]. Accuracy, Precision and Recall were considered
as performance metrics, estimated using the leave-one-out crossvalidation
(LooCV). At last, the model explanation method SHAP, described in Sec.
5.1.5, was applied to have a better insights on the contribution of each indi-
cator in the classification.

This classification setting could be interpreted in two different ways. The
more conventional one, the screening task, was intended to spot all the PD
patients using the classifier as a test to evaluate the presence of the condition.

Page 95



Anomaly Detection in Uncontrolled Handwriting

In this case, having a false negative would have been a more serious error
than having a false positive, as further tests may confirm the illness.

The other interpretation instead is referred to the handwriting monitor-
ing, with the objective of detecting signs of non-physiological decline. Here,
one assumes that the individual to be monitored is in a known particular
health status, which can be healthy or at the early stages of the PD. Now,
the classifier could be used to check, at certain points in time, whether the
subject’s status has turned in a particular stage that might be associated
with some condition of PD. In this second case, one is interested in avoiding,
as much as possible, the false positive. As a possible alarm bell would result
oversight.

The balance between Sensitivity and Recall can be adjusted by tuning
the threshold as indicated by the ROC analysis. However, weights could also
been set to increase (or decrease) the importance of the two classes during
the training phase of the classifier. In this way, the model is pushed to favour
one class over the other in the learning phase. Class weights were chose to
achieve different performance while training the classifier.

5.2.2 Results

Balanced weights classes

The results of the binary classification using the same weights are reported.
The confusion matrix is shown in Fig. 5.3 panel (a). and the outcomes were
an Accuracy score of 92%, a score of 95% for Precision and 90% for Recall.
Figure 5.3 panel (b) shows the ROC curve for the healthy-PD classification
task, with balanced weights.

Higher weight to the PD class

In the training process, the PD class was weighted the 2.0% more4. The
confusion matrix is shown in Fig. 5.4 (a) and the outcomes were an Accuracy
score of 95%, a score of 100% for Recall and a Precision score of 90%. Note
that, in this case, the Recall has become maximal.

Higher weight to the healthy class

In the training process, the Healthy class was weighted the 0.5% more. The
confusion matrix is shown in Fig. 5.4 (b) and the outcomes were an Accuracy
score of 92%, a Recall score 85% of and a Precision score of 100%. In this
case instead, the Precision resulted maximal.

4The weight increments was set empirically by choosing the best results
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(a) (b)

(c) (d)

Figure 5.3: Classification performance for healthy-PD with balanced class
weights and model explanation. Confusion matrix in panel (a), ROC in panel
(b), average Shapely value in panel (c) and samples Shapely value in panel
(d).

(a) (b)

Figure 5.4: Confusion matrices for the classification healthy-PD with unbal-
anced weights, + 2.0% of weight for the PD class (panel a) and + 0.4% of
weight for the healthy class (panel b).
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Model explanation

The plots in Fig. 5.3 panel (c) and (d) represent the outputs of the appli-
cation of the model explanation technique SHAP to the classification model
trained for the healthy-PD classification with balanced weights class. The
shapely values were computed for each features and they indicated their sin-
gular impact to the classification outcome of the samples. The bar plot in
panel (c) shows the average absolute shapely value among all the samples.
It could be interpreted as the average impact the feature had in the classi-
fication task, therefore it indicated the feature relevance rank. The plot on
the left, in panel (d), shows a scatter representation of the shapely values
of all the samples. The dots are displaced in rows, one for feature, and the
x-axis reports the shapely value. The impact of a feature was in favour of
the healthy class if its shapely value was negative, while it pushed the out-
come towards the PD class if its shapely value was positive. The colour-map
(blue for the lower values, red for the higher values) indicated the feature
magnitude (in relation to its measurement unit).

5.3 Discussion

Age-Groups Classification

In this work, the utility of the quantitative analysis of handwriting and
tremor was studied in the discrimination between healthy subjects belonging
to different age groups. A novel ink pen for the handwriting data acquisition
was used in paper-pen tasks, mimicking daily writing. Indeed, participants
were asked to write a short free text and a grocery list without constraints on
the content or writing modality. This particular setting was chosen to max-
imise the study ecological validity, with the ultimate goal of leveraging these
findings for home-based solutions dedicated at the early detection of decline
in seniors. Therefore, particular attention is paid to the correct classification
of the individual’s age, since the association of its handwriting features with
an older age group could be interpreted as a clinically relevant anomaly [177].

One of the last and most performing ML classification algorithm, Cat-
boost, and a more traditional one, Logistic Regression, were used to classify
the subjects in one of the four age-groups, starting from the set of hand-
writing indicators computed from the raw free-text and grocery list data.
Results showed that the Catboost algorithm outperformed the logistic re-
gression in almost all the tasks and the datasets considered in this study.
The improvements were sensibly higher in the classifications between groups
with close age ranges (the first pool of tasks), where the differences in the
individuals’ handwriting were expected to be minimal. That confirmed the
superior sensibility of Catboost to the changes in the handwriting indicators

Page 98



Anomaly Detection in Uncontrolled Handwriting

with respect to a baseline estimator.
In the first pool of tasks, the classifications between the groups with

individuals in close age ranges (i.e. Y Y -EY , EY -EF and EF -EE) were
considered. The objective of these tasks was that to test the sensibility of the
models to small variations in the handwriting decline, which were expected
to find between healthy individuals with limited age differences [16]. Very
good to excellent performance (Accuracy between 82.5% and 90%, Precision
from 81.8% to 94.4%, Recall from 75% to 100% and ROC-AUC 92.2% to
99.5%) were obtained in the classification of the first pool, considering all the
three datasets composed by the indicators computed form the Text, List and
joined Text-List data. These scores revealed the good ability of the models
in detecting slight handwriting variations in healthy subjects. Therefore, an
high sensibility to the changes in the handwriting data due to an abnormal
or pathological ageing decline may be expected [16]. In the second pool
of tasks instead, the classifications between more distant age groups was
considered. As expected, outcomes were commonly higher in these tasks
because more evident differences should have been visible in handwriting.
In the classification between Y Y -EE, i.e. the more distanced classes, the
best Accuracy (97.5%) was achieved using the only text indicators, and the
joined set of the Text and List indicators. Perfect Precision and ROC-AUC
(100%) were obtained using the Text+Tist data and, a perfect Recall using
the sole Text data. The last setting, EY vsEE, showed higher evaluation
metrics with both Text and List data, all over 92.3%.

For the classification between the younger groups, Y Y and EY , i.e. 18-
40 and 41-60 years of age, the List turned out to be the data with which the
model achieved better outcomes of Accuracy, Recall, F1 and ROC-AUC. In
the other adjacent groups tasks, EY -EF and EF -EE (i.e. 41-60 vs 61-70
years of age and 61-70 vs 71+ years of age) the best performance were ob-
tained with the Text, in almost all the cases. This minor task-dependency of
the classification outcomes might be related to some differences between the
Text and the List tests. At first, Text samples were longer, as they contained
many words. Then, the writing dynamics might result partly affected by the
type of task since every element of the List was written in a new line and
short words, as articles and propositions, were less frequent. Besides, writ-
ing a free text generally required a more significant cognitive effort by the
subjects. However, the differences in the results were little and, given the
relatively small amount of samples, random factors could not be excluded.
Further investigations are envisaged. Results suggest that both the data
acquisition modalities are still valid and contain intrinsic age-related infor-
mation.

In this work, the experiments were deeper analysed using the model ex-
planation technique SHAP. It was useful to understand the impact of each
handwriting indicator in the different tasks and to see their behaviour. In
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this study, the outcomes and the analysis of three particular classifications
are detailed: the first two belonged to the first pool and included the class
of the individuals in the range 61-70 years (EF ), which is the more critical
for the early detection of decline purpose; the third consisted of the classifi-
cation between the individuals in the age ranges 41-60 and 70+, and it was
aimed at showing the more strongly marked difference in the handwriting
characteristic of the two classes.

The first classification, the groups aged 41 to 60 and 61 to 70 (EY and
EF ) were considered. The two groups represented respectively a population
of healthy subject in which the effects of the age-decline is absent and a
population in which a degradation in the physical or cognitive functionality
might be at an initial stage [17, 18]. As shown in Fig. 6.6 row b, the hand-
writing indicators were able to correctly classify all the individuals in the
range 61-70 years of age (with a recall score of 100%), while four subjects
in the range 41-60 were miss-classified (precision score equal to 84.2%). The
outcomes confirmed previous findings in literature in which handwriting has
been observed to undergo perceptible variations in middle younger and older
adults [178]. According to Walton [8], handwriting characteristics may be
stable at least within 5 years in healthy subjects. Indeed, the four false pos-
itive subject were all older than 52 years. Two of them were aged 65+. For
this reason, it was likely that their writing characteristics resulted closer to
the older group. The model explanation (Fig. 6.6, rows c and d) revealed
both handwriting dynamics and tremor features among the more influential
ones. The inclination of the pen (Tiltmean) resulted the most important
feature in the EY vs EF classification. In accordance with Marzinotto et
al. [178], an higher inclination of pen (on the right) was typical in the mid-
older adults (EF ). The approximate entropy (ApEn) also played a major
role, indicating a lower predictability of the younger class handwriting time
series. This result corresponded with the findings of previous works [160]
where, using similar experimental settings, significant differences were found
between age groups. The trend which saw entropy decreasing with age was
in line with previous literature in the study of resting and postural tremor in
younger and older adults [20, 15, 153]. Even if its variations did not resulted
statistically significant among differently aged groups [160], the writing force
(F ) emerged as the third most meaningful feature in the EY -EF classifica-
tion. The predictions were moved towards the older group (EF ) when the
force values were lower. That was in accordance the study by Engel Yeger
et al. [9] in 2012, Caligiuri [164] in 2014 and Marzinotto et al. [178] in
2016. In the following four features, sorted by decreasing importance, two
frequency-domain and two temporal parameters were found. The modal fre-
quency had no significance in the statistical group differences in the previous
study (see Section 4.4.3) [160], however it impacted the classification EY vs
EF , as higher values were associated to the older class. The same behaviour
resulted for RMS. Preceding studies showed that some neurological con-
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ditions, such as PD, could affect the modal frequency [151], while no clear
age effect on this parameter have been showed. The impact of temporal
indicators (tair and ta/s) was considerable and confirmed the tendency of
the older class to have longer non-writing moments, found in the previous
work (in Section 4.4.3) [160] and others [129, 179]. The rest of the indicators
exhibited a lower impact in the classification between EY and EF .

The second classification, between the groups aged 61 to 70 and 70+
(EF and EE), was the most relevant to study the suitability of the our
approach in the early detection of decline scenario. In a normal ageing
process, a physical or cognitive decline is expected to be more consistent in
the older group, of the people aged 70+ [17, 18]. Therefore, whenever an
individual in the younger group (aged in the range 61-70) is associated to
the older one, it might be interpret as a sign of abnormal decline. In this
task, the handwriting indicators were used to discriminate individuals aged
61 to 70 from those aged 71+ with high scores of performance. Our results
showed that the EF -EE classifier may be suitable for the decline monitoring
application because of its high Precision of 94.4%. Only 1 subject to 20 was
wrongly classified as older, while the false negative were 3 (Fig. 6.6, row b).
The model explanation (Fig. 6.6, rows c and d) revealed that the in-air time
parameter (tair) was way more influential in the classification than all the
others. As for the other tasks, higher tair were associate with individuals of
the older class. Modal frequency was the second indicator for importance,
whit an impact lower that the 31.4% w.r.t the first feature. Quite similar
impact had the other indicators, with the frequency and non-linear features
in higher ranking positions. The pen inclination (Tiltmean) ended among
the last important indicators, although its variation (Tiltcv) resulted having
a more considerable impact. Nonetheless, all the indicators maintained the
same behaviour of the previous tasks, so this corroborated the consistency
of the handwriting measurement variations with age.

The third classification was between the EY and the EE groups, with
individuals in the ranges 41-60 and 70+ years of age. The level of decline
was expected to be very different among the healthy subjects’ populations
included in this tasks. As a consequence, the ability of the model in discrim-
inating between these classes of individuals using the handwriting indicators
resulted increased. The Accuracy score was equal to 92.5% and the Pre-
cision was notably higher, with 94.7%, at the expense of a minor Recall,
equal to 90%, w.r.t the previous task. In fact only one subject in EF and
two in EE were wrongly classified. The model explanation (Fig. 6.6, rows
c and d) showed almost the same indicators among the more meaningful,
however some important differences appeared. The Tiltmean dropped from
the first to the sixth position in the impact ranking. Still keeping the same
behaviour. In this task, tair emerged to have the higher impact, with the
same trend of showing higher values in the older groups. The writing force
dropped from the third to the penultimate position, while determinism DET
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raised up to the fourth place, with the same impact of fmodal. Determinism
was likely to increase with age as the influence of the predictable tremor
components became more persistent. All the handwriting indicators showed
the same behaviour in the classifications of EY with EF and EE. Major
changes were found in the impact level of the features associated to tremor,
which resulted more determinant in the discrimination between the two more
distant groups, EY and EE.

The model explanation revealed that the impact of the handwriting in-
dicators was task dependent, i.e. it changes according to the age ranges
considered in the classifications. These differences in the feature impor-
tance highlighted the complexity of the age-driven decline in handwriting
as the sensitivity of some indicators showed age-dependency. However, the
behaviour of the indicators in the different age intervals was analogous to the
previous findings in literature in populations of healthy subjects. This result
reinforced the interpretation of the models, giving the possibility to under-
stand their decisions as they relied to known handwriting-related quantities.

Healthy-Pathological Classification

The classification between healthy subject and PD patients showed very
good results, with an accuracy score equal or higher than 92% in all the
cases here considered. For the screening purpose, the model was invited to
pay more attention to the healthy class, by increasing its weight. It resulted
in a maximum Precision of 100%. On the other side, increasing the weight
of the PD class, the Recall reached the 100%. This made the classifier more
suitable for screening purpose.

As predictable, the model explanation revealed that the tremor related
indicators had the larger impact in the classification between healthy subjects
and PD patients. As reported in the study by O’Suilleabhain et al. [151],
the frequency domain indicators (RMS and modal frequency) appeared to
be affected by neurological conditions such as PD. In the presented clas-
sification, higher values of RMS and modal frequency were associated to
the PD group. The second and the third features, ranked by importance,
were the approximate entropy and the determinism respectively. The en-
tropy measure showed a decrease in the PD group, suggesting the tendency
of developing more regular tremor patterns in individuals affected by the
Parkinson’s. Contrariwise, the determinism has been shown to increase as
the entropy decreases. Thus confirming an increase of predictability in the
handwriting dynamics in the PD individuals. With the same behaviour,
also the recurrence ratio resulted to increase in the PD group. More regular
tremor patterns has been found indeed in previous studies in PD patients
[153].

The writing force, in the sixth position in the importance ranking, re-
sulted higher for the PD patients. This finding was in accordance with the
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study by Walton, in 1997, [8], which observed and on/off-like pressure acti-
vation in PD. In that study, the writing force applied by the PD participants
was uniformly moderate, but suddenly, for many word, it become very heavy.

At last, the temporal features had a minor impact in the classification.
However their behaviour suggested that the PDs spent longer time intervals
with the pen lifted from the paper sheet. The same study by Walton [8]
reported that the PDs raised their pens within words at least twice as often
as controls did. This confirm a lower fluency in handwriting for PDs, also
attributable to the slower hand movements.
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Chapter 6

Detection of Cognitive Decline

This chapter focuses on the cognitive decline in elders. In medicine, any
degradation in the mental functionality that is sufficient to compromise in-
dependent life and the execution of common activities in the individual is
referred as dementia. It is indeed a neurodegenerative syndrome that may be
caused by a great variety of conditions, including primary neurologic, neu-
ropsychiatric and medical conditions [180]. It is also very common that the
cause of a dementia syndrome in patients consists of multiple diseases [30].
The global prevalence of dementia reaches the 7% of people aged 65+. How-
ever in developed countries, values are up to 8%-10% due to the increased life
spans [181]. Neurodegenerative syndromes of dementia, such as Alzheimer’s
disease (AD) and dementia with Lewy bodies, are the most common in older
adults. In fact, the advancing age is among the major risks of cognitive
degradation [180].

Alzheimer’s disease has higher prevalence (up to 30%) in elderly aged
over 85. Nevertheless a prevalence between 5% and 6% is estimated in all
individuals aged 65+. In the 5% of the AD patients, the disease occur
before the age of 65, in a type of disease known as early onset AD (EOAD).
AD with onset after age 65 is called late onset AD (LOAD). In the early
stages of AD, individuals assist to a slowly progressive memory decline and,
in more rare cases, also behavioural or language symptoms are visible. As
depicted in Fig. 6.1, both EOAD and LOAD are characterised by a pre-
clinical phase that may begin 20 years earlier. In this condition, individuals
can show occasionally forgetfulness, irritability and a low mood [182]. As
the cognitive degradation progresses, the individual enter a condition called
mild cognitive impairments (MCI), where some symptoms can occur before
any conspicuous functional decline has manifested [5]. The detection of MCI
can be further complicated because symptoms may be confused with those
of normal ageing [16]. In the later stage, the medial temporal lobe atrophies,
including other surrounding structures as the hippocampi. Brain pathology
and dysfunction can be found by looking for plaque deposition in multiple
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Figure 6.1: The continuum of cognitive decline.

regions of the brain using amyloid positron emission tomography (PET)
and bilateral temporoparietal hypometabolism by fluorodeoxyglucose-PET,
respectively. [183].

Currently, pharmacologic treatments which modifies the AD are not
available. Therefore, the clinical and translational research focuses on the
early detection of cognitive decline, in addition to the therapeutic targeting
of the disease’s histopathology [184].

In the clinical practice, the assessment of dementia includes three ele-
ments: i) the investigation of the clinical history; ii) the neurological ex-
amination (with the assessment of the mental status) and iii) selected in-
strumental and laboratory exams [5]. Very important for the detection of
the cognitive decline, also for reasons related to the non-invasiveness, is a
detailed mental status examination. It analyses various domains of mental
function, among which basic attention, memory, visuospatial abilities and
executive functions.

A screening tool for the dementia severity is the mini-mental state exami-
nation (MMSE) [185]. However, since its sensitivity can be low for some elder
populations, a battery of several verbal or paper-based neuropsychological
tests are further carried out to deepen the investigation on the symptoms and
to achieve a more precise diagnosis. Each test is evaluated with the assign-
ment of a numerical score according standardised rules. The outcome of the
cognitive assessment is based on the comparison of the scores the subjects
received with reference values [186]. The scoring of some tests, such as the
two variants of the trial making test (TMT) [187], is pretty straightforward
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(i.e. its calculation is just based on the time of execution of the test vari-
ants). For other tests, as the Rey Osterrieth complex figure (ROCF) test,
the evaluation can be more convoluted [188], since they account for various
cognitive functions.

Digital version of simpler tests, like the TMT, has been also proposed
in the eHealth scenario to enable their (remote) self-administration in com-
munity dwelling elders [25]. In the context of home monitoring, these type
of technologies might improve the effectiveness of early detection of cogni-
tive decline as the clinician can timely receive the negative scores as soon as
the individual performed the test at home. For the ROCF test digital im-
plementation instead, major limitations are represented by the difficulty in
developing an accurate reliable automatic scoring system and the high inter
rater scoring variability. In addition, the sole remote inspection of the test
output by the clinician does not supply sufficient material for the evaluation.

In this study, a computer algorithm is developed to give assistance to
the clinician in the evaluation of the ROCF test, even when just the output
image of the ROCF copy is available. The algorithm consisted in a decision
support system (DSS) which help the evaluation of the test using knowledge
of previous administered tests.

The rest of this chapter is organised as follows: Sec. 6.1 induces and
explains the ROCF test and its evaluation method; Sec. 6.2 presents the data
collection and pre-processing for the implementation of the DSS, the methods
for the the ROCF-copy patterns evaluation and the diagnosis formulation
algorithms; then, results are shown in Sec. 6.3 and discussed in Sec. 6.4.

6.1 The Rey-Osterrieth Complex Figure Test

The Rey-Osterrieth Complex Figure (ROCF) [189], in Fig. 6.2, is a nonverbal
neuropsychological test widely used to evaluate visuo-constructional abilities
and nonverbal memory [190], also in presence of motor symptoms [191], in
children, adults and older adults. Neuropsychological testing is the main
non-invasive diagnostic instrument for the assessment of impaired conditions,
such as mild cognitive impairment (MCI) and dementia, in elder individuals
[192]. The mental assessment consists of a battery of several tests whose
score give detailed information about various cognitive domains (visuospatial
function, memory, attention, executive function and language). It generally
involves two variants of the ROCF test: the copy and the recall. In the copy
test, the subject have to sketch the ROCF while looking at a template figure
as reference. In the recall test instead, the task is repeated after 30 minutes
without the reference image.

The ROCF is articulated in 18 geometrical patterns (see Fig 6.5). The
outcome of the test consists of a total score computed as the sum of the
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Figure 6.2: The Rey-Osterrieth complex figure (ROCF).

single scores the clinician assigned to each pattern drawn by the subject.
A standard protocol for the assessment of the ROCF test is the Osterrieth
system [26]. A numerical score (between 0 and 2) is given to each pattern
according to the quality of its representation: 0 if indistinguishable or absent,
0.5 if deformed and misplaced, 1 if correct and misplaced or just deformed,
and 2 if correct and well placed in the figure. The higher the total score, the
better the cognitive performance of the subject are. According to Bertolani
et al. [193], an age and schooling-corrected total score in the copy test lower
than 28 indicates a deficit, while a score between 28 and 32 may suggest
cognitive decline.

Several studies however investigated the reliability of the ROCF test
scoring and, some of them, reported poor rater agreement [27, 194]. Sys-
tematic differences were found on both the copy and recall variants, as sta-
tistically significant mean differences were observed, with a possibly of score
variations approaching the 20% [27]. With these inter-rater discrepancies, it
seems plausible that clinical assessment can be affected by an aberrant score.
However, the impact on the determination of the diagnosis in the clinical ex-
amination can be little, since it does not depend on the sole ROCF test. On
the contrary, the investigation of the relationship between central nervous
system impairments with changes in memory functions and the study of the
subject’s cognitive variation over time could be altered by minor differences
in the ROCF test scoring [28, 195].

Some works developed computer algorithms to automate the ROCF scor-
ing with the aim of improving the inter-rater reliability and the sensitivity
of the test [196, 197]. Although high performance in accuracy were obtained
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using multiple deep neural networks, the correlations between the automated
scores and the human raters’ scores were not strictly equivalent [197].

In this study, a decision support system (DSS) for the evaluation of the
ROCF copy test was developed with the goal of supplying qualitative in-
formation about the judgement of each pattern and of suggesting the most
probable diagnosis for the subject among normal, MCI and dementia. The
system was not aimed at replicating and replacing the human scoring, but
it was intended to be an additional tool for the experts in the subject’s
examination process. Indeed, the design was focused to provide an instru-
ment which helps improve the accuracy of the diagnosis, leveraging on the
knowledge about numerous previous assessments of the ROCF-copy test and
methods from explainable artificial intelligence (AI). The DSS required the
initial human action of selecting strategic point in the image. Then it run
computer vision and deep learning (DL) algorithms to detect and evaluate
the patterns. The software returned 18 categorical scores, one per pattern,
and the most probable diagnosis for the subject. The DSS algorithms were
calibrated and trained using retrospective copy-test records from 250 mid-
aged to older individuals (healthy, MCI and with dementia). The system
performance were assessed by computing the accuracy in the pattern evalu-
ation and various classification metrics in the formulation of the diagnosis.

6.2 Design of the Decision Support System

6.2.1 Participants and Data Collection

For this study retrospective data from subjects and neurological patients
who underwent a neuro-psychological examination in the Istituto Palazzolo,
Fondazione Don Carlo Gnocchi in Milan (Italy), were acquired within a time
period from Jan 2017 to Dec 2018. Digital versions of the ROCF copies were
collected by scanning the paper records filed in the annual clinical registers.
A total number of 57 samples were acquired for the normal subjects, 131
for the MCI and 62 for the patients affected by dementia. The figures were
scanned with a resolution of 300dpi and saved as portable graphics format
(PNG) in RGB colours. Personal data (age, years of education) and other
information such as the date of the visit and the MMSE score were also re-
tained 1.

6.2.2 Categorical Patterns Evaluation

Each ROCF sample in our dataset was associated to an individual labelled
as normal, MCI or dementia, according to the outcome of his neuropsycho-

1The study was approved by the internal review board of the Instituto Palazzolo.

Page 108



Detection of Cognitive Decline

Table 6.1: The count of the patterns, divided for each label

Pattern number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Omitted 15 26 55 170 43 67 33 34 70 55 79 36 73 18 24 39 34 34
Distorted 104 139 76 16 107 0 0 153 30 55 23 101 65 55 46 11 94 112
Misplaced 42 0 43 0 8 12 56 0 36 10 8 0 8 15 24 38 0 0
Correct 89 85 76 64 92 171 161 63 114 130 140 113 104 162 156 162 122 104

logical evaluation. The eighteen patterns of the ROCF image were manually
inspected and scored using expert-based rules. A 4-elements categorical scor-
ing system was chosen, rather the standard Osterrieth scoring, to simplify the
automatic pattern evaluation of the DSS. Each pattern was independently
examined and one of the following scores was assigned when this specific
conditions applied2:

• 0 (omitted), if the pattern was not represented nor recognisable in the
figure;

• 1 (distorted), if a distorted3, yet recognisable, version of the template
pattern was represented in the figure;

• 2 (misplaced) if the pattern was not distorted but placed differently
from the expected location;

• 3 (correct) if all the previous conditions did not applied.

A 250 rows-dataset was build by inserting the 18 human-assigned scores
to each pattern as columns for each image. The last column reported the
individual’s clinical outcome. The count of the patterns, divided for each
label, is reported in Table 6.1.

6.2.3 Image Pre-processing

The preparatory phase of the image analysis consisted in the noise removal,
which was mostly characterised by the clinician’s annotations during the
ROCF copy evaluation. The clinician’s signs consisted in the numerical
score they sketched upon the drawing to keep memory about the already
evaluated patterns. In all the images collected, scores were written using red
and green ink pen, while the ROCF lines were drawn with a common pencil.
This marked difference between the clinician’s and patient’s sign allowed the
noise removal through the use of colour filtering techniques.

The images were converted in the hue-saturation-value (HSV) colour
space [198] to identify the colour shades to remove more easily. In the HSV
format, the colour of each pixel in the image is described by three values,

2The labels were treated as categorical. Yet they ranked from 0 to 3 according to the
correctness of the drawing

3The patterns which were not topological equivalent to the template were labelled as
distorted.
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in the range 0◦-360◦, 0-100 and 0-100 respectively, which defined the co-
ordinates of a cylindrical geometry. The first number represents the hue
spectrum where 0◦ is the red primary, 120◦ is the green primary and 140◦ is
the blue primary; the second coordinate indicates the saturation level as the
radial distance from the center and the last number expresses the mixture
value form dark to light, as the height of the cylinder. The HSV triplets [0 30
10] was found, for red ink, and [160 30 10], for green ink, as the optimal val-
ues to identify the noisy pixels in the image. Then, the colour of those pixels
was replaced with the most frequent pixel value, which was assumed to be
the background colour of the paper sheet. Other spurious noise component
were attenuated using low pass and median filtering with 3x3 kernels.

After the noise removal, the image were binarized. Unimodal threshold-
ing [199] was applied to separate the pixels belonging to the drawing (set
to 0 grey-scale intensity, black) from the ones belonging to the page (set to
255 in grey-scale, white). The handmade drawings however were imprecise.
That resulted in strokes with irregular thickness and non-perfectly closed
shapes in the binarized images. To attenuate the effect of these additive
disturbances, image erosion [200] with a 9x9 kernel was used to cover all
the gaps between close tracts. Then, a Skeletonization algorithm [201] was
applied to the negative-binary image to obtain one pixel wide lines. At last,
the drawing lines were dilated with a 3x3 kernel to enhance the objects in
the image.

All the images resulted very different in shapes, dimensions and pro-
portion. Therefore a figure standardisation was required before performing
further analysis. The user od the DSS was asked to manually select five
reference point in the image. Those points, indicated in Fig. 6.3(a), identi-
fied the four vertices of the main rectangle in the ROCF plus the rightmost
point of the figure, which coincided with a vertex of the right triangle. The
reference points were used to perform an image homography [202] to match
the reference points to their respective locations in the template model, pre-
serving the structure of the patient’s drawing. A binary representation of
the original ROCF centred in a 428x733 pixels biding box was retained as
template model image. An example of the figure standardisation is shown
in Fig. 6.3 (b). Noise removal, image processing and the homography were
implemented using the image processing Python libraries OpenCV 4.5.1.48
[203].

6.2.4 Workflow of the DSS

After the image preprocessing, the analysis of a sample ROCF image was
implemented in two main stages: the pattern evaluation and the diagnosis
formulation. Pattern evaluation in turn consisted of an initial detection step,
in which a pattern was searched in the figure to determine its presence or
absence, and an evaluation step in which a label was assigned to the pattern.
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Figure 6.3: Example of the standardisation of a ROCF sample, Panel (a)
represent the scan the of paper sheet where the template (in the upper part)
and the patient’s replica (lower part) of the ROCF are figured. The green
dots indicates the reference points selected by the examiner and the red lines
associate the drawing reference points to the ones of the template model.
Panel (b) shows the ROCF sample after the isomorphyc transformation.

A schematic representation of the DSS workflow is reported in Fig. 6.4.
For their evaluation, the patterns were addressed as simple or complex and
computer vision (CV) or deep leaning (DL) methods were applied in the
former and in the latter case respectively. The patterns were sorted into
the two categories, as showed in Fig. 6.5, according to their shape and
elements. The initial coordinates of the area in the image in which a pattern
was searched, i.e. the region of interest (ROI), was chosen from the template
model as shown by the red shapes in Fig. 6.5. The initial ROI of a pattern
(noted with ROIp0 , where p indicates the pattern) could be adjusted during
the analysis, using the information of those previously detected. For the
detection of some patterns, additional rotated variants of the initial ROI

Figure 6.4: The workflow of the DSS.
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Figure 6.5: The ROCF patterns. Panel (a) shows the simple patterns and
panel (b) shown the complex patterns. The red squares indicate the region
of interest of each pattern.
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were considered (the parameters m−→
clk

and m←−
clk

determined the clockwise
or counterclockwise inclination respectively). The pattern were iteratively
searched by moving the ROIs in the horizontal and in the vertical direction.
In every iteration, A ROI was shifted by msh pixels, until it reached the
image limits or additional pattern-specific bounds.

In the diagnosis formulation stage, the labels assigned to each pattern in
the previous stage were used as features for the classification of the ROCF
copy in one of the 3 clinical outcomes, thus determining the subject’s most
probable diagnosis.

6.2.5 Simple Patterns Evaluation

The simple patterns were characterised by an easy and regular geometrical
structure, as a line, a regular polygon or multiple similar elements. CV
algorithm were used for the automatic detection and evaluation of these
patterns. The presence or absence of a simple pattern was determined using
line detection algorithms, for those as patterns number 1, 4, 6, 7, 8, 11, 13 and
16, which were mainly composed by lines, and shape detection techniques,
for the numbers 2, 9 and 14, which consisted in shapes. When a pattern was
detected within a ROI, it was evaluated with topological analysis.

Line Detection

Line detection was performed using the probabilistic Hough transform algo-
rithm implementation available in the OpenCV Python library [204]. The
algorithm’s parameters radius resolution r and the angle θ were fixed to 1
pixel and to 180/π respectively. The other parameters, namely the threshold
for the minimum number of edges to detect a tract (the), the minimum line
segment length (lmin) and the maximum number of gap between points al-
lowed in a line (maxg), were set differently for each pattern. The algorithm
returned the coordinates of all the detected lines edges. The lines belonging
to the adjacent patterns and the other noise components were filtered out by
setting a specific threshold (tα) on their inclination w.r.t. the horizontal di-
rection. Then, a set among the remaining lines was selected by counting the
percentage of the pixels coinciding with those of the original pattern over-
lapping the sample ROCF and the template model. How much a collection
of detected segments had to cover the template pattern to be identified as a
pattern was decided by defining a threshold on such percentage (Ac). From
the chosen set of segments, a single line was approximated using linear re-
gression with the edges of all the lines in the set. In the pattern 8, composed
by more than one line, the procedure was repeated for each line separately.
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Shape Detection

For shapes recognition, the contour detection method in OpenCV [205] was
used to find a set of geometrical objects in a ROI. To approximate the
obtained contours to a regular figures, the OpenCV implementation of the
Douglas-Peucker’s iterative end-point fit algorithm [206] was used. Given a
curve composed of line segments, a similar closed curve with fewer points was
returned. Then a single shape was selected applying the following criteria:
i) the convex shapes with the same number of vertices of the pattern to
search was checked, evaluating the convex hull [207]; ii) if more than one
shape met the requirements of (i), a threshold Pmin was set to discard all
the shapes whose perimeter was inferior to such value; iii) if there was still
more than one eligible shape, a hierarchical representation of contours was
computed and the innermost node (i.e. the outermost shape) was retained.
The contours hierarchy was calculated using the OpenCV dedicated tool.

Topological Analysis

The label was assigned to a pattern in the sample ROCF according to the
following rules: i) if no line or shape was detected in a ROI, the score omitted
was assigned to that pattern; ii) if some shape was found, but none with the
right number of vertices, the score distorted was assigned to the convex
shape with a perimeter longer than Pmin; iii) otherwise, the detected object,
defined by the set of its edges coordinates, was topologically analysed using
the the Python library Shapely [19]. The object was inspected to check if it
satisfied a set of structural properties (as continuity, intersections and gaps)
to be considered a correct drawn pattern. If the properties were partially
satisfied the pattern could be labelled whethermisplaced or distorted. Buffers
were considered to account for the natural inaccuracy of hand-made drawing.
Therefore, the thickness of the lines and shapes was increased according to
two parameters, dv for each vertex and dl for each segment, as ’margin error’,
in pixels. The pattern-specific properties to be satisfied in the topological
analysis are listed here, in the same order of pattern search.

• Pattern 2 (main rectangle). The main rectangle was identified by 4
of the reference points selected by the user. The topological analy-
sis returned: correct, if rectangular shape was found; distorted, if no
rectangular shape was found.

• Pattern 1 (main diagonals). ROI10 was split in four part, each of
them was dedicated to the detection of one half of a diagonal. The
topological analysis returned: distorted, if at least one half per diagonal
has been detected or at least two halves of the same diagonal did not
intersect; misplaced, if none of the previous conditions applied and at
least one vertex did not intersect the corresponding vertex of pattern
2; correct, if none of the previous conditions applied.
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• Pattern 4 (short horizontal line). The topological analysis returned:
distorted, if more than one lines was detected; correct, if a single line
was detected.

• Pattern 6 (horizontal line). If pattern 2 was previously found, the
ROI60 was centred with its horizontal axis of symmetry. The topo-
logical analysis returned: distorted, if a line was detected and at least
one of its vertices did not intersect an edge of pattern 2; misplaced, if
none of the previous conditions applied and the line did not intersect
pattern 1 in a single point; correct, if none of the previous conditions
applied.

• Pattern 7 (vertical line). If pattern 2 was previously found, the ROI70
was centred with vertical axis of symmetry. The topological analysis
returned: distorted, if a line was detected and at least one of its vertices
did not intersect an edge of pattern 2; misplaced, if none of the previous
conditions applied and the line did not intersect pattern 1 in a single
point; correct, if none of the previous conditions applied.

• Pattern 8 (parallel lines). Pattern 8 was composed by four parallel
segments so the initial ROI was divided in four sub-parts. The proce-
dure was repeated iteratively by searching a segment in each sub-ROI.
When a line was detected, the respective sub-ROI was excluded in the
next iteration. The topological analysis returned: distorted, if less or
more than four lines were detected and they did not intersect each
other; correct, if none of the previous conditions applied.

• Pattern 9 (topmost triangle). Pattern 9 was composed by four parallel
segments so ROI90 was divided in four sub-parts. A segment was
iteratively searched in each sub-ROI. When a line was detected, the
respective sub-ROI was excluded in the next iteration. The topological
analysis returned: distorted, if a convex shape with more than 3 edges
was found; misplaced, if none of the previous conditions applied and
the shape had no intersections with other lines of the figure; correct, if
none of the previous conditions applied.

• Pattern 11 (short vertical line). The topological analysis returned:
distorted, if more than one line was detected or one line was detected
but it did not intersect either patterns 1 and 2; misplaced, one line
which intersect either patterns 1 and 2 is detected and it intersect
the two diagonals in the same point; correct, if none of the previous
conditions applied.

• Pattern 16 (right horizontal line). The topological analysis returned:
distorted, if more than one line was detected or one line was detected
but it did not intersect patterns 2 and 6; misplaced, if none of the
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Table 6.2: Parameters setting of the computer vision algorithms for the
detection and evaluation of the simple patterns.

Definition of the ROI variants Line/shape detection Topological
analysis

Pattern n◦ msh [pixel] m−→
clk

[◦] m←−
clk

[◦] the lmin [pixel] maxg tα [◦] Acov [%] Pmin [pixel] dv [pixel] dl [pixel]
1 20 30 30 50 40 20 20-60 60 - 15 1.5
2 - - - 50 40 20 - - 500 30 -
4 10 5 5 40 20 5 <10 60 - 20 1.5
6 15 10 10 75 40 20 <10 80 - 15 1.5
7 15 15 25 75 40 20 >70 80 - 15 1.5
8 5 5 12 30 10 5 <15 30 - 15 1.5
9 - - - - - - - - 200 25 3
11 10 10 30 50 20 10 >60 60 - 15 1.5
13 10 10 30 50 20 10 >80 50 - 15 2
14 - - - - - - - - 100 20 1.5
16 10 10 30 45 60 50 <10 80 - 15 3

previous conditions applied and the line did not intersect the manual
rightmost point; correct, if none of the previous conditions applied.

• Pattern 13 (right vertical line). The topological analysis returned: dis-
torted, if more than one line was detected or one line was detected but
it did not intersect at least one inclined edges of the delimiting trian-
gle; misplaced, if none of the previous conditions applied and the line
intersected the pattern 16 in its rightmost half; correct, if none of the
previous conditions applied.

• Pattern 14 (rhombus). The topological analysis returned: distorted, if a
convex shape with more or less than 4 vertex was detected; misplaced, if
none of the previous conditions applied and the shape did not intersect
the rightmost manual point. correct, if none of the previous conditions
applied.

The particular parameter choice for the CV algorithms used for the detection
of simple patters is reported in Tab. 6.2, for each pattern.

6.2.6 Complex Patterns Evaluation

The complex patterns were detected using DL algorithms by finding the
most similar region in the ROCF sample image to the pattern in the tem-
plate model. Then they were evaluated using a measure of similarity and
topological analysis.

The concept of similarity was defined as the euclidean distance (L2) be-
tween two images, calculated by mapping them into a 1024-dimensional
embedding space[208]. Two images were more similar the shorter the L2
distance between their vectors in the embedding space. An embedded rep-
resentation of the images was obtained using a modified ResNet50V2 neural
network architecture [29]. The fully-connected layer on top of the network
was removed, the output of the residual part flattened and a 1024-rectified
linear units (ReLU) fully-connected layer was added. A triplet loss as cost
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function was chosen, which has been shown to be efficient for this type of
tasks [208]. The triplet loss, Eq. 6.1, encouraged the images of the same
pattern to be projected onto very close points in the embedding space and
it enforced the margin between images of different objects by considering
triplets of vectors.

L = max(m+D(ξa, ξp)−D(ξa, ξn), 0). (6.1)

In the equation of the loss, ξa was the vector of a reference image (the anchor)
in the embedding space, ξp was the vector of an image of the same object
of the anchor (the positive) and ξn was the vector of an image of a different
object (the negative); D(ξi, ξj) was the squared euclidean distance between
the vectors of i and j; and m was the margin between positive and negative
pairs. The loss minimisation must satisfy the constraint in Eq. 6.2,

D(ξa, ξp) +m < D(ξa, ξn), (6.2)

therefore, D(ξa, ξp) was pushed to zero and D(ξa, ξn) to be grater than the
former plus m.

A different network was trained for the recognition of each complex pat-
tern. Pattern-specific dataset were created by manually cropping the pattern
representations from the ROCF of all the subjects. For the similarity mea-
surement, correct and distorted patterns only were considered. The scarce
amount of samples retrieved was incremented ten times applying the fol-
lowing data augmentation techniques to each dataset. The Phyton library
ImgAug [209] was used to perform the following image transformations in
random order:

• Gaussian blur with variance ranging from 0 to 0.5,

• aspect ratio preserving scaling with a factor ranging from 0.85 to 1.15,

• rotation by -10 to 10 degrees,

• shear mapping by -15 to 15 degrees,

• translation by -40 to 40% on x-axis and y-axis independently.

However, datasets were strongly unbalanced as the portion of wrongly drawn
patterns was consistently lower. In particular the percentage of correctly ex-
ecuted patterns was 66%, 77.4%, 86.7%, 70.8%, 88.8%, 72.5% and 70.2% for
patterns 3, 5, 10, 12, 15, 17 and 18 respectively. Therefore, heavier forms of
image augmentation to 100 correct samples to obtain other 1000 ’distorted’
versions were performed, with the aim of re-balancing the datasets. The
new data augmentation parameters were manually set to better resemble
the ’true’ distorted samples. To train a network, a batch of 32 pattern im-
ages was randomly extracted from a dataset and each of them was paired
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with the same pattern of the template model. A positive pair was generated
if the image was labelled as correct, or a negative pair if it was labelled dis-
torted. The network computed the L2 distance between the images of each
pair and the triplet loss was computed using the batch-hard strategy [210],
i.e. by selecting the hardest positive pair (with the maximum L2) and the
hardest negative pair (with the minimum L2) only. The training consisted
in 50 epochs in which the dataset was split in training and validation/test
set by randomly picking the 30% of the samples from both the correct and
distorted class. The Adam optimiser [211] was used with a learning rate of
0.0001 and the model with the lowest validation loss value among each epoch
was retained.

For detecting a complex pattern, the set its initial ROIs was moved in
the vertical and horizontal direction for a maximum distance of 50 pixels.
For each pattern, the ROI with the maximum value of similarity w.r.t to the
template was retained. Then, the assignment of the label according to the
followed procedure:

• omitted. A linear support vector machine (SVM) classifier was trained
and used to discriminate between the presence or the absence of the
pattern counting the portion of non-white pixels contained in the ROI.
Pattern-specific dataset were used, including the cropped samples of all
the omitted and the non-omitted patterns. The balanced accuracy of
the classification was estimated with the leave-one-out cross-validation
(LooCV); The label omitted was assigned when the SVM returned the
absence for the pattern.

• misplaced. If a pattern was detected, topological analysis was applied
to examine its correct location by checking all expected intersections
with the surrounding patters;

• distorted or correct. If the pattern was neither omitted nor misplaced,
a second linear SVM classifier was trained and used to discriminate
between a distorted and a correct representation. Pattern-specific
dataset, with correct and distorted patterns only, were used as training
data and the L2 from the template pattern was considered as single in-
put feature. The balanced accuracy of the classification was estimated
with LooCV.

6.2.7 Diagnosis Formulation

The diagnosis formulation stage was aimed at associating the most proba-
ble subject’s diagnosis (between healthy, MCI and dementia) to each ROCF
sample, using the 18 labels assigned to its patterns as predictors. The ability
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of the system to discriminate between groups was investigated by setting var-
ious classification tasks. Four classifications were considered: healthy-MCI,
healthy-dementia andMCI -Dementia; and a multi-class classification includ-
ing the 3 groups. Since the classes were unbalanced, the four classification
tasks were repeated with new datasets created by randomly sampling (with-
out replacement) 50 elements per class and by averaging the outcomes of
50 iterations, for a more robust estimate. A state-of-art boosting algorithm,
Catboost [212], was trained to solve the classification tasks by choosing a
weighted cross entropy loss function [213] and setting a number of 500 it-
erations. The performance were evaluated by estimating the Accuracy, F1,
Precision and Recall scores with the Leave-one-out cross-validation (LooCV).
The normalised numerical labels of the patterns (0, 1, 2, 3) were normalised
(between 0 and 1) and used as input features. The classification tasks were
implemented with the Python library SciKit-learn [176].

6.2.8 Model Explanation

The binary classification tasks were further analysed by applying the model
explanation technique SHAP [214, 214]. Here, 3 randomly sampled datasets
with 50 samples per class were used, to avoid the stronger influence of the
more numerous group in the classification. SHAP used game theory to rank
the features (i.e. the patterns) importance and to assess the contribution
of each feature in the binary classification of a ROCF sample in the trained
models. The single feature contribution in the classification of each sample
was quantified by a weight (the Shapely value) which moved its prediction
toward a class or the other, if negative or positive, by an amount proportional
to its magnitude. The features rank was then obtained by considering the
average absolute weight of each feature for each sample. With this technique,
one could better interpret the effect of each single pattern in the binary
classification tasks and thus appreciate the sensitivity of the patterns in
discriminating between healthy from pathological individuals and between
different levels of cognitive decline.

6.3 Results of the DSS for the ROCF Analysis

6.3.1 Simple and Complex Patterns Evaluation

For each simple pattern, the total evaluation Accuracy was calculated as
the percentage of the correctly labelled patterns over the total number of
patterns. The total accuracy scores for the simple pattern are reported in
the upper section of Tab. 6.3. For the evaluation of the complex patterns
instead, a first SVM model predicted the presence or absence (label omitted)
of a pattern in the ROCF sample. Than, in the case of presence, topological
analysis was used to determine whether the pattern was misplaced or not. If
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Table 6.3: Pattern scoring accuracy.

Simple
patterns

total acc.
[%]

1 65.5
2 66.8
4 72.2
6 78.9
7 77.6
8 68.2
9 61.9
11 72.2
13 71.3
14 68.2
16 74.9
Complex
patterns

omitted/others
[balanced acc.]

correct/distorted
[balanced acc.]

total acc.
[%]

3 0.94 0.81 61.4
5 0.81 0.76 61.9
10 0.91 0.77 70.0
12 0.83 0.86 68.2
15 0.89 0.89 65.9
17 0.71 0.82 77.1
18 0.65 0.82 68.2

the pattern was present and not misplaced, a second SMV model predicted
whether the pattern was distorted or correct. The lower section of Tab. 6.3
shows the balanced Accuracy of the SVM models and the total Accuracy
for each of complex patterns. The total Accuracy score corresponded to
a 4-element labelling task and lower accuracy scores were observed for the
patterns 3, 5 and 9 (61.9%, 61.4% and 61.9% respectively). Patterns 6, 7,
16 and 17 achieved the highest total Accuracy scores (78.9%, 77.6%, 74.9%
and 77.1% respectively) and the rest of the patterns gained and average total
Accuracy score of 68.8%.

6.3.2 Diagnosis Classification

The 4 classification tasks (healthy-MCI, healthy-dementia, MCI-dementia
and 3-class) were performed using all the samples contained in each class.
Then, the same tasks were executed using new dataset created by randomly
sampling 50 samples for each class. In the latter case, the performance met-
rics were averaged from 50 iterations of dataset creation and classification.
The Accuracy, F1, Precision and Recall scores of all the tasks are reported in
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Table 6.4: Results of the diagnosis classification tasks.

All samples Random sampling
healthy-MCI healthy-dementia MCI-dementia 3-class healthy-MCI healthy-dementia MCI-dementia 3-class

Accuracy 0.89 0.92 0.87 0.76 0.85±0.03 0.91±0.02 0.83±0.03 0.73±0.04
F1 0.93 0.91 0.79 0.74 0.85±0.04 0.90±0.03 0.84±0.03 0.73±0.03

Precision 0.95 1.00 0.85 0.74 0.89±0.04 0.96±0.02 0.84±0.04 0.74±0.04
Recall 0.90 0.84 0.74 0.74 0.81±0.05 0.85±0.04 0.89±0.04 0.73±0.04

Tab. 6.4. In the left panel are listed the outcomes of the classifications made
using all the samples of each group. In the right panel, the average outcomes
(with standard deviation) are shown for the tasks performed with random
sampled datasets. High to excellent performance were obtained in the binary
classification tasks with all the samples, with Accuracy scores ranging from
87% (MCI-dementia) to 92% (healthy-dementia); F1 between 79% (MCI-
dementia) and 93% (healthy-MCI); Precision between 85% (MCI-dementia)
and 100% (healthy-dementia); and Recall between 74% (MCI-dementia) and
90% (healthy-MCI). Similar performance were achieved mediating the out-
comes of the classifications with the random sampled dataset. The lower
performance were obtained in the more complex multi-classification tasks:
scores from 73% to 76% were obtained for the Accuracy and scores from 73%
to 74% for the other metrics.

The confusion matrices and the receiving-operator curves (ROC) for the
4 classifications in which all the samples were retained are shown in Fig.
6.6. Results showed the high ability of the system in discriminating be-
tween healthy and pathological individuals or between a mild and a more
severe cognitive decline, when binary classification problems are considered.
Therefore, the DSS was capable to retrieve a significant amount of informa-
tion through the automated patterns analysis. The 3-groups classification
achieved lower scores of performance. However, the limitations are linked to
the increased complexity of the task and the limited amount of data avail-
able.

6.3.3 Model Explanation

The model explanation technique SHAP was applied to 3 binary classification
tasks, i.e. healthy-MCI, healthy-Dementia and MCI-dementia, considering 3
randomly sampled dataset with 50 samples per class. The outcomes revealed
how the features (i.e. the ROCF patterns) ranked by importance and how
their value (i.e. label) contributed in the classification of the samples in the
tasks. The average absolute Shapely values of each pattern are displayed in
Fig. 6.7, column (a), for the 3 tasks. The SHAP analysis revealed that pat-
terns 9, 11, 3, 6 and 4 were the most sensitive in the discrimination between
healthy subjects and MCI patients (as their average absolute Shapely value
was greater). Alternately, in the classification between MCI and dementia
patients the most informative resulted the patterns number 10, 13, 3, 18 and
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Confusion Matrix ROC
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HvsD
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3-Class

Figure 6.6: Performances for the 3 binary and the multi-class classification
tasks performed with all the samples (healthy vs MCI in the first row, healthy
vs dementia in the second, MCI vs dementia in the third). The confusion
matrices are reported in the left column and the ROC curves in the right
column. For the 3-class classification, the ROC curves are figured in the
same plot in different colours: green for the healthy class, blue for the MCI
class and red for the dementia class.
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a) b)

HvsM

HvsD

MvsD

Figure 6.7: Shapely values for the binary classifications of the ROCF samples
(healthy vs MCI in the first row, healthy vs dementia in the second, MCI vs
dementia in the third). Average Shapely values in column (a), scatter plots
of shapely values in column(b).
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17. In the remaining task (healthy-Dementia), similar patterns to both the
former cases were found as the most sensitive. The plots in Fig 6.7, column
(b), show the single Shapely values of the patterns for the classification of
each sample. Negative Shapely values pushed the classification of a sam-
ple towards the ’less severe diagnosis’ (i.e healthy in the first two tasks and
MCI in the third), while positive values moved the prediction towards the
other diagnosis. The blue-red colour-map of the dots indicated the quality of
the pattern representation, as a continuous interpolation from the minimum
score of 0 (in blue), corresponding to the label omitted, to the maximum
score of 3 (in red), which corresponded to the label correct. The use of this
model explanation technique was useful to reveal how the sensibility of the
pattern can change according to the level of the cognitive decline in the in-
dividual. Moreover, it gives information about the type of error a group of
individuals tend to commit more in the representation of the patterns.

6.4 Discussion

In this study, a DSS for the analysis of the ROCF copy test has been pro-
posed to assist clinicians in the diagnosis of MCI and dementia. The system
performs a semi-automatic analysis of a scanned ROCF image, returning a
qualitative score for each pattern and the most probable clinical outcome for
the subject between healthy, MCI or dementia.

To perform the analysis, the clinician is asked to select 5 reference points
in the figure. They indicate the main rectangle edges and the rightmost
vertex of the triangle on the right, which may often result very confused in
some distorted ROCF copies. Therefore a decision by the expert is required.
The DSS evaluates the patterns using both computer vision (CV) and deep
learning (DL), calibrated and trained using retrospective data of past ROCF
tests from healthy, MCI and dementia individuals. Then, it formulates the
most probable diagnosis using classification methods. The ability of the
system in discriminating between different diagnosis was assessed by testing
different classification tasks.

In addition, explainable AI was used to interpret the models decision by
estimating the single contribution of the patterns in the determination of
a subject’s diagnosis. This last DSS feature offers further insights on the
patterns sensibility to different levels of severity of mental decline.

The pattern evaluation phase of the DSS aimed at replicating an expert-
based qualitative labelling. The patterns of each sample in the dataset were
manually labelled as omitted, distorted, misplaced and correct. The four
labels were coded with integer numbers reflecting the quality of the pattern
representation, from 0 to 3.

The simple patterns were evaluated using hard-coded rules and low to
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medium total Accuracy scores were obtained in their labelling. The main
reason behind the choice of CV methods for the evaluation of the simple
patterns consisted in the small amount of samples available for each label
category. In some cases indeed, the rules were adjusted on a limited examples
of differently labelled patters. For example, pattern 9 resulted the hardest to
be evaluated (with a total Accuracy of 61.9%), since only a small portion was
labelled as distorted and a very diverse group of representations fell into that
category. The variety of the patterns replicas represented the main issue to
the formulation of general rules for the exact labelling (Tab. 6.1), although
some positive total Accuracy scores were obtained in the evaluation of the
patterns 6, 7 and 16 (Tab. 6.3).

For the evaluation of the complex patterns, the articulated shapes rep-
resented a further barrier to the use of explicit labelling rules. Therefore,
machine learning models were applied in their evaluation. A first SVM model
recognised the presence of a pattern with high Accuracy scores, ranging from
70% to 94%. Pattern 18 was the hardest to be detected by the SVM, with
an accuracy of 65%. Then, DL models were trained to estimate a measure
of a pattern ’good representation’ based on their similarity w.r.t. the tem-
plate model. The decision between the correct and the distorted label was
determined by a second SVM model, which achieved good Accuracy scores
(ranging from 76% to 89%). Only the assignment of the label misplaced was
implemented using explicit rules. The total Accuracy scores were similar to
those achieved with the simple patterns. Since the number of the differently
labelled patterns was unbalanced, data augmentation was used. However, it
could have resulted a too strong approximation of the real patterns represen-
tation by the subjects. Yet it is worthy to highlight that the total Accuracy
scores of the pattern evaluation were computed as the ratio of those cor-
rectly and wrongly labelled, considering the 4 four label categories. It is also
known that the combination of weak classifiers can handle noisy datasets
and outperform strong learners [215].

Very good to excellent classification metrics were obtained in the discrim-
ination between all the healthy and MCI individuals (Tab. 6.4). Despite of
the class unbalance, high Precision and Recall were achieved (95% and 90%
respectively). The ROC analysis revealed that the threshold of the classi-
fier could be adjusted to calibrate the true positive rate to the maximum
of 100%, tolerating a false positive rate of 30%. Even higher performances
were achieved in the classification between healthy and dementia individuals,
with the 100% of Precision score and a Recall equal to 84%. Such behaviour
was quite expected since an increased level of impairment of cognitive func-
tions is present in patients with dementia. Slightly lower performance were
obtained in the MCI-dementia classification with all the samples. However,
the initial Recall of 74% could be improved to 100% by selecting a differ-
ent threshold with a Precision equal to 80%. The fourth classification, with
the 3 groups, presented the lower performances (still good with 76% for the
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accuracy and 74% for the other metrics) as the task complexity increased.
The same tasks were repeated using random sampled balanced datasets and
mediating the classification metrics of 50 iterations, for a more robust perfor-
mance estimation. A higher Precision was kept in the tasks healthy-MCI and
healthy-dementia, while Recall resulted higher in the MCI-dementia classi-
fication. Similar performance were kept in the 3-class task.

In the binary tasks the contribution of the patterns in discriminating be-
tween different diagnosis was further investigated using a model explanation
technique. This analysis was aimed at identifying which patterns resulted as
the more sensitive in the recognition of the different severity levels of cogni-
tive decline (i.e MCI and dementia) and at revealing how much the quality
of the pattern representation weighted in the classification of each specific
class. Result showed different sets of patterns among the most sensitive
in the discrimination between the healthy-MCI and the healthy-dementia
groups. For example, patterns 9, 11, 6 and 4 were among the most impor-
tant in the former task, while they resulted in lower ranking positions in
the latter. In the task MCI-dementia instead, the most informative patterns
were the numbers 10, 13, 3, 18 and 17. In the classification between healthy
and dementia, some of the most significant features corresponded to those of
the other two tasks. As clearly visible in the scatter plots (Fig. 6.7, row (b)),
the Shapely values of the most important features had a sharp separation
between the high and the low features values in the two classes and the dots
were quite spread in the horizontal direction. A higher feature value indeed
represented a better quality (a better label achieved) of the pattern repre-
sentation. Consequently, higher feature values resulted more distributed on
the left side of the plots, i.e. in the class of those individuals with a less
severe cognitive decline. However, the separation between a good and a bad
pattern representation could appear not so clear in some cases. For example
in the task healthy-MCI, there was not an evident distinction between the
two classes in the labels assigned to patterns 5, 13, 15, 18 , 8 and 17. It could
suggested both that healthy subjects may draw those pattern incorrectly or
misplaced, and that MCI patients may be able to correctly represent them.
In the task MCI-dementia, the higher and lower feature values were not well
separated in the case of patterns 2, 9, 11 and 12. This may imply that mis-
placement or bad representations of those patterns were likely to be seen in
both groups. In the task healthy-dementia, in which the gap in the cogni-
tive functionality is more marked, a larger separation between high and low
feature values appeared for almost all the patterns.
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6.5 Clinical Impact of the Expert System

The DSS presented in this work is a prototype which can be used in the
study and development of medical expert systems applied in the diagnosis
of cognitive decline. It was a retrospective study in which past data samples
of the ROCF copy test were collected and accurately inspected by trained
operators to build the system’s base knowledge. The amount of past ROCF
examples constitutes the information level of the expert system, therefore it
is likely to increase as the number of data samples grows. An higher level of
information enhance the accuracy of the DSS in the pattern evaluation and
the confidence in the formulated diagnosis. Currently, samples data consist
of domain experts supervised ROCF copies, combined with the patient’s true
diagnosis. However, larger amount of samples might also allow the exploita-
tion of unsupervised techniques for the image analysis. Thus removing any
residual subjective component in the evaluation of the test.

Although explainable AI methods are applied to better interpret the DSS
proposed diagnosis, the system is not meant to take critical decisions in the
clinical setting. Indeed, the tool is proposed as a decision support system
to assist clinicians in the evaluation of the ROCF copy test by supplying
additive and objective information.

The extensive use of the system in the clinical practise might improve
the inter-rater reliability in the evaluation of the test. With this objective,
longitudinal control studies could be addressed to assess whether the use of
the DSS in clinical practice would enhance accuracy and efficiency in the
process of the cognitive evaluation. In particular, it could help to more ob-
jectively define a neuropsychological sign at the test, contributing to a more
reliable assessment. In addition, the DSS approach to neuropsychological
testing may help to discover and define new signs of cognitive dysfunction,
thus directly assuming high clinical value.

By relying on sensitive measures, it could help detect a neuropsycholog-
ical sign earlier than when it is typically done in the clinic, helping to place
a diagnosis at an earlier stage in the disease course. Indeed, the DSS al-
lows the remote (and posterior) analysis of the ROCF copy test. In remote
monitoring scenario, the expert system could be used by the practitioners
to evaluate the ROCF drawings done by subjects during tele-consultations
or in self-administered tests. Poor test results may suggest a possible degra-
dation of cognitive function. This would represents a more agile solution
to detect abnormal changes in the cognitive functionality of the individuals
than in-persons visits.
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Conclusions

This PhD research proposed novel eHealth methodologies to support the
early identification of age-related decline. Early diagnosis of chronic diseases
in older adults is a key element for the adaptation of the current health-
care models worldwide to face the rapid ageing population. Indeed, only
well timed interventions can stop or significantly slow down the effects of
a pathological decline in seniors, which leads to a poor quality of life for
the patient and a large impact on the public care system. Remote monitor-
ing of community dwelling elders and the remote assessment of the physi-
cal/cognitive functionality are possible strategies to improve the probability
to early diagnose a chronic disease. When in a pre-clinical stage, the typical
symptoms of the chronic diseases may not yet manifest. Therefore, a con-
tinuous tracking of the subject’s health status could allow the detection of
some anomalous variation in his physical/cognitive functionality which may
suggest an abnormal ageing process. Furthermore, tele-consultations and
remote evaluation of some clinical tests can provide operators with more
precise information on the targeted health aspects of the subject, in a more
agile and efficient fashion than the in person visit. This work proposed a
solution for the remote monitoring of the older adults physical and cogni-
tive decline through the ecological assessment of handwriting and an expert
system to help the experts in the remote examination of the Rey-Osterrieth
complex figure (ROCF) test, which is an important tool for the diagnosis of
MCI and dementia.

Ecological Assessment of Handwriting

The first objective consisted in a transnational study in which the applica-
tion of the handwriting analysis, as biomarker for the age-related decline,
was investigated and adapted in the unprecedented context of remote mon-
itoring. Being a common exercise and having been observed to vary with
ageing and pathology, handwriting appeared as an optimal candidate for
the instrumental daily-life activity monitoring purpose. The research was
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characterised by the following approach: first, i) a deep investigation of the
handwriting assessment in literature was carried with the aim of finding the
current methodologies, experimental settings, results and limitations for a
remote monitoring application; Then, ii) the limitations were addressed and
overcome with the design of a novel smart object technology and the ap-
plication cutting-edge methods from data analysis and explainable artificial
intelligence; iii) each design and development stage of the proposed solutions
were tested using ad-hoc experimental protocols and real-world data.

As explained in Chapter 3, the handwriting assessment consisted in the
analysis of certain indicators, computed from the signal acquired during the
handwriting activity. These quantities, related to the temporal, dynamic
and tremor characteristics of the writing gesture, were studied to undergo
variations with the presence of age or pathological decline in the individuals.
However, some limitations were found for the application of the handwriting
assessment in the remote monitoring in the home environment. A first barrier
was represented by the data acquisition instruments (tablets or digitizers),
which were not easy to be independently operated by older users. Then, the
use of standard protocols for the data acquisition in literature did not allow
to extend the results of the previous studies in the uncontrolled domestic
environment. Indeed, the use of standard protocols was excluded in the
remote monitoring scenario for the lack of any supervision.

The solutions to overcome the limitations related to the data acquisition
devices and the ecological validity of the handwriting assessment were ex-
plained in Chapter 4. A sensorized IoT ink pen was developed to allow the
ecological handwriting gesture data acquisition in paper-and-pen tasks. The
device was successfully tested, validated and then used to collect data from
healthy subjects. Then, data were used to study the handwriting assessment
in a conditions which was similar to the uncontrolled remote setting. Indeed,
the data acquisition protocol was designed to resemble the common writing
activity: subjects were asked to write a short free text and a grocery list,
without any further constraint. As first, the reliability of the indicators was
confirmed in test-retest writing tasks. Then, their sensibility to age-related
variation was studied in 3 differently aged groups of healthy subjects. In a
total of 12 indicators, 8 of them showed significant changes with age. This
result confirmed the possibility to use the handwriting assessment as an in-
strument to detect variation related to the ageing process in uncontrolled
environments. Although the variation trend of each indicator with age was
analogous with those reported in literature, their mean values not always
corresponded with the previous studie in controlled settings. The reason
should be found in the experimental setting used in this work, which was
designed to be minimally constrained and the most similar to the normal
writing activity. This rather uncontrolled framework represented a substan-
tially different setup than the previous ones and the measurements were more
likely to be affected by noise. As a consequence, a remote monitoring system
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based on the handwriting assessment should not rely on standard reference
values for the indicators, but it should consider a multivariate approach in
which various patterns of indicators may be associated to age or pathological
variations in the subject.

In Chapter 5, a supervised and population-specific anomaly detection
approach was presented as a method to exploit the handwriting assessment
in the remote monitoring of the subject’s age or pathological-related decline.
The aim was that to use the handwriting indicators to classify subjects in
the correct age class or pathological (PD) group they belonged. In the re-
mote monitoring context, the unexpected classification of an individual (for
example a subject aged between 60-70 classified as an over 70 years of age,
or an healthy subjects classified as a PD patient) may indicate an abnormal
ageing process. Therefore, such event should trigger a deeper investigation
on his health status. This strategy was tested by solving various classifica-
tion tasks between group of differently aged healthy individuals and a group
of PD patients. A state-of-art classification algorithm (Catboost) was used
and the achieved performance were high in terms of Precision and Recall in
all the tasks. Since the classification algorithm was a black box model, a
recent explanation technique (SHAP) was applied to understand each model
decision. This additional method increased the interpretation of the anomaly
detection strategy, as it revealed the impact and the behaviour of the hand-
writing indicators (known quantities) in the identification of the subject’s
group.

The proposed solution combined the more traditional signal processing
techniques with the novel advancement in artificial intelligence to maximise
the information obtainable from noisy and multidimensional data. Raw
handwriting data were analysed using conventional techniques to obtain reli-
able quantities with a precise physical meaning. This allowed the association
of the handwriting measurements to specific behaviours in the gesture dy-
namic and tremor domains, and it also include the possibility to clinically in-
terpret the indicators by healthcare professionals. Artificial intelligence was
then used to efficiently search in the highly complex space of the handwriting
indicators the patterns which may be related to the physical or cognitive de-
cline in the subjects. The effectiveness of this approach is evidenced by the
high performances obtained by the classification algorithms, which usually
need a large amount of data to match such results. In addition, the use of
explainable AI allowed to relate the outcomes of the classification algorithms
to the physically-explicable domain of the handwriting indicators.

A critical point of this proposed solution can be found in the limited
amount of data that could be collected (80 healthy subjects and 20 PD
patients). Although the modest number of samples, very good outcomes
in terms of classification performances were obtained. Yet, a more robust
performance estimation would be envisaged using a larger number of indi-
viduals. Furthermore, the addition of more pathological categories (such as
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MCI and dementia), would enlarge the spectrum of the abnormal detectable
conditions. Another limitation can be addressed to the population-specific
nature of the anomaly detection methods which was tested in this research.
A more subject-centred approach would increase the sensibility in the iden-
tification of the abnormalities in the handwriting data, overcoming the prob-
lems related to the inter-subjects variability. However, longitudinal studies
are necessary to acquire subject-specific data which may supply information
about the individual’s decline trajectory.

Expert System for the ROCF Copy Test

The second objective (Chapter 6) consisted in the design and development
of a decision support system (DSS) for the analysis of the ROCF copy test.
In the clinical cognitive assessment, the ROCF is one of the non-verbal tests
which can be administered to the subject to investigate several cognitive
functionalities. The specialists can use battery of tests to diagnose age-
associated pathological conditions such as MCI and dementia, yet some is-
sues related to the in-person visits (for example the examination is usually
posterior to the evident manifestation of the symptoms in the individuals
and the waiting times of outpatient facilities are generally long) paradigm
may cause a delay in the diagnosis. To overcome this issue, various eHealth
strategies have been investigated in literature to allow the remote adminis-
tration or evaluation of some cognitive tests: they can be remotely supervised
during tele-consultations or self-administered by the subject and forwarded
to the specialist.

The application of the ROCF test in a remote monitoring setting could
give important information about the cognitive decline in the subject, be-
cause of its clinical relevance. However, some studies pointed out that the
interpretation of the test though the standard procedure may have a poor
inter-rater reliability. Although it might not impact the diagnosis in the
clinical practice (since a number of various cognitive tests are applied), this
issue could affect the remote evaluation of the self-administered test by the
subject and overlook the presence of fleeing signs related to a cognitive de-
generation during time. To address this limitation an expert system based
on retrospective knowledge have been proposed to support the clinicians in
the evaluation of the ROCF copy test.

The DSS was based on retrospective knowledge collected from past ROCF
copies examples from normal, MCI and dementia individuals. It used com-
puter vision and deep learning algorithms to detect and evaluate the 18
patterns in the ROCF, by assigning a qualitative score each. Then, it used
the scores to classify the image with the most probable diagnosis. The DSS
was able to correctly discriminate the ROCF copy tests between healthy
and MCI individuals, and between MCI and dementia patients, with good
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levels of Precision. Domain specialist could use the system to have sugges-
tions about the evaluation of the single patterns of the ROCF and about the
most probable diagnosis for the examined individual, especially in a remote
assessment framework. In addition, the information the specialists would re-
trieve by using the DSS was enriched with the application of the explainable
AI model SHAP. This tool returned the impact of each of the 18 ROCF’s
patterns in the classification outcomes, so it revealed how the sensibility of
the patterns changed with the progression of the cognitive decline in the
individuals. The system could be also used in research, as it might highlight
correlations of different mental disorders or impaired functionalities with
particular elements in the ROCF copy test.

The DSS was based on retrospective knowledge, therefore it is likely
to improve its accuracy and robustness as the number of past ROCF test
examples increases. The limited number of samples in this study might have
affected the accuracy in the evaluation of some patterns, yet the performance
in the diagnosis classification were surprisingly high. Especially considering
that the ROCF copy test is just a partial element of the clinical cognitive
assessment procedure.

A very large collection of ROCF copies could improve the performance
of the DSS in the pattern evaluation and increase the robustness in the
classification of the pathology. Higher amount of data could also encourage
the use or more unsupervised approaches in the analysis of the figure, which
it may exclude any subjective component in the evaluation of the ROCF and
increase its general validity.
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