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1. Introduction
This document is the executive summary the
master’s thesis, titled ’A sensitivity analysis of
laser-propelled sail trajectories for a mission to
Proxima Centauri’. The thesis develops a nu-
merical model for propagating the trajectory of
a highly reflective, super-light sail headed to-
wards Proxima Centauri. This model integrates
a relativistic three-body problem with laser ac-
celeration models within the Solar System, and
the Galactic potential model beyond the Solar
System’s Hill sphere. The primary research ob-
jective is to analyze the sensitivity of the opti-
mal beam orientation (laser acceleration) nec-
essary to reach the target, considering all per-
turbations in the model. This included assess-
ing random errors during the acceleration phase
and their overall impact on the trajectory, to
analyze the sensitivity of the solution. This
summary concisely reports the overarching ob-
jectives, methodologies employed, and the key
results and impacts of the research.

2. Methodology
The method used in this research is a numer-
ical propagation of the trajectory. Using an

ODE solver with given initial conditions, an op-
timal solution is found in terms of right ascen-
sion αopt and declination δopt of the vector de-
scribing the orientation of the laser beam in an
Sun-centred equatorial frame. The optimization
process finds the optimal direction of accelera-
tion to minimize the distance from Proxima Cen-
tauri at arrival. The mission consists of a Solar
System escape phase and a Galactic phase. The
models involved in the simulation are reported
in the following sections.

2.1. Laser acceleration model
The laser propulsion is modelled according to
the relativistic solution for the acceleration,
given by Kulkarni et al. [4]:
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where β = v/c is the ratio of the spacecraft’s
velocity and the speed of light, P is the laser
power, m is the total mass of the spacecraft and
γ is the Lorentz factor that takes into account
relativistic effects. Equation 1 shows the
analytical expression of the acceleration due to
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an incident laser beam on the sail, considering
diffraction of light beyond the critical point L0,
where the laser spot size is equal to the size
of the sail. The involved masses, boost times
and sail parameters are described in detail in
the main work as well as the original paper by
Lubin [5].

2.2. Relativistic three-body problem
While the laser propulsion is active, the space-
craft reaches relativistic speeds while being un-
der the influence of Earth’s gravity, beginning its
trajectory from a parking orbit around Earth.
Upon exiting Earth’s sphere of influence, the
Sun’s gravitational acceleration also comes into
play. This phase is modeled as a relativistic
three-body problem, applying the solution to
the Relativistic N-body Problem as provided by
Masat [6], leading to the following equations:
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Where r and d represent the spacecraft’s posi-
tion vectors relative to the Sun and Earth, re-
spectively, while ρ denotes Earth’s position rel-
ative to the Sun. µE and µSun are the gravita-
tional parameters of Earth and the Sun respec-
tively, ṙ and r represent velocity and position of
the spacecraft in a heliocentric frame, and c is
the speed of light. As the spacecraft traverses
the Hill sphere of the Solar System, defined in
Souami (2020) [7], the gravitational influence of
the Solar System, specifically that of the Sun
and Earth, can be considered no longer domi-
nant in this approach. Consequently, the space-
craft becomes subject to the gravitational forces
of the Galaxy. This transition is modeled using
the Galactic potential model as described by Ir-
rgang (2013) [2], and the equations of motion

outlined by Dybczyński (2015) [1]:
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In the equations above, the accelerations along
x y and z in a Galactocentric frame are reported,
while Mb,Md,Mh, bb, ah, ad are constants re-
lated to the bulge, disk and halo components
of the Galaxy, reported in the paper mentioned
before, as well as the Galactocentric spherical
radius R defined as:

R =
√
r2 + z2 (2)

where
r =

√
x2 + y2 (3)

where x, y and z are Galactocentric coordinates.

3. Trajectory propagation
3.1. Optimal solution
An optimal solution is identified through the
minimization of the arrival distance, considering
all model perturbations. The result is a unit vec-
tor that specifies the optimal direction of accel-
eration for the particular mission scenario under
consideration. This vector is calculated in an
equatorial frame using the αopt and δopt coor-
dinates. The subsequent step involves assessing
the sensitivity of this optimal solution to random
Gaussian-distributed errors during the pointing
phase. This analysis aims to understand their
impact on the trajectory and to establish a maxi-
mum threshold for pointing errors, in connection
to the success of the mission.
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3.2. Sensitivity analysis
The sensitivity of the optimal solution is then
tested considering the following sources of er-
rors:

• Pointing errors in the acceleration laser
beam

• Position errors in the parking orbit with re-
spect to a nominal r0 position vector.

• Boost time errors
with the following standard deviations:

Variable nominal value Standard deviations σ

αoptimal 0.01 - 1 [deg]
δoptimal 0.01 - 1 [deg]
timepropulsion 0.01 - 1 [s]
Initial position vector orien-
tation

0.01 - 1 [deg]

Table 1: The column of the standard deviations
shows a range of standard deviations used to
propagate the trajectories. The assumed values
do not reflect real standard deviations in a real
mission scenario but are arbitrary values.

A swarm of 1000 spacecraft, each with a unique
set of initial conditions influenced by errors, is
initialized. The outcomes are presented here,
focusing on three scenarios for the case where
msail equals 1 gram and the achieved speed is
v = 0.2 c:

Figure 1: Miss distances from Proxima Centauri
with 1000 launches with a 0.01 degrees stan-
dard deviation for the pointing and initial posi-
tion and 0.01 seconds for the boost time. It’s
important to note that the exact output values
may differ from the original work, as the out-
comes are random according to the random er-
rors in the simulations.

Figure 2: Dispersion plot around Proxima Cen-
tauri in a galactocentric reference frame. Prox-
ima Centauri (i.e. the centre of its volume error)
is not in scale.

Figure 3: Miss distances from Proxima Centauri
with 1000 launches with a 0.1 degrees standard
deviation for the pointing and initial position
and 0.1 seconds for the boost time.

Figure 4: Dispersion plot around Proxima Cen-
tauri. The reference sphere here is 100 AU.
Proxima Centauri is not in scale.
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Figure 5: Miss distances from Proxima Centauri
with 1000 launches with a 1 degrees standard
deviation for the pointing and initial position
and 1 seconds for the boost time.

Figure 6: Dispersion plot around Proxima Cen-
tauri. The reference sphere here is 1000 AU.
Proxima Centauri is not in scale.

The results indicate that with each order of mag-
nitude increase in standard deviations, the mean
error correspondingly increases, mirroring the
findings of A. Jackson [3]. The analysis also re-
veals that pointing errors are the primary con-
tributors to trajectory deviations, while errors in
boost times and initial orientation result in de-
viations of approximately 10−3 AU. The magni-
tudes of errors obtained and shown in the previ-
ous histograms exceed the spacecraft’s capacity
for trajectory correction, highlighting the criti-
cal importance of pointing accuracy during the
acceleration phase.
Lubin [5] suggests that trajectory adjustments
up to 1 AU might be achievable, utilizing the
electrical and thermal components of thrust

from an onboard RTG (Radioisotope Thermo-
electric Generator) with 0.3 grams of Pu-238
over an estimated 20-year mission. However,
given the simplifications in the model and poten-
tial future improvements in trajectory correction
technology, a conservative margin is considered.
Consequently, the safe zone is defined as being
within less than 3 AU from the target.
Setting this threshold to define mission success
and focusing solely on pointing errors, the fol-
lowing is observed:

σpointing [arc-
sec]

Mean Success Rate
(Miss distance < 3 AU)

36 0.53%
28.8 0.67%
21.6 1.07%
18 1.53%
10.8 4.33%
7.2 9.77%
3.6 35.04%
2.88 47.15 %
2.16 64.9 %
1.8 74.5 %
1.08 95.71 %
0.72 99.4 %
0.36 100 %

Table 2: Mean success rates for various stan-
dard deviations of the pointing errors. The suc-
cess rate is defined as the fraction of spacecrafts
that intercepts the target with a miss distance
smaller than 3 AU. The simulations are per-
formed for 1000 launches.

Table 2 illustrates that the precision needed for
this model to reach the target within a 3 AU
distance is approximately ∼ 1 arcsecond or less.
The scenario with σpointing = 36 arcseconds
or 0.01 degrees, also depicted in Figure 1, re-
sults in a mean success rate of 0.53% across
1000 launches. A 100% mean success rate is
achieved with a pointing standard deviation of
σpointing = 0.36 arcseconds or 10−4 degrees. Fur-
thermore, a 96.7% success rate is observed when
assuming a miss distance of 1 AU from the tar-
get.

4. Conclusions
The study simulates interstellar travel using a
laser-propelled spacecraft, revealing the critical
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impact of pointing inaccuracies on the mission’s
success. Even arcsecond-level errors can cause
significant deviations, with a pointing accuracy
range of 0.01 to 1 degrees leading to off-target
distances of tens of thousands of AU. Pointing
errors are dominant with respect to the consid-
ered errors due to the boosting times and to the
initial orientation of the spacecraft on the park-
ing orbit. However, maintaining standard devia-
tions within 0.36 arcseconds ensures a 100% suc-
cess rate, assuming it as the spacecraft’s arrival
within 3 AU of Proxima Centauri. The findings
emphasize the trajectory’s sensitivity to initial
conditions, revealing the need of a high preci-
sion lasers with precision pointing in the order
of ∼ 1 arcsecond or even less, threshold that
may change according to the definition of the
considered mission success.
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