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1. Introduction
Nowadays, the number of applications based
on sophisticated audio systems is increasingly
spreading and the capacity to provide high au-
dio quality is more and more significant. Smart
speakers, voice assistants, teleconferencing sys-
tems, and virtual and augmented reality are all
examples of such applications. In this context,
the ability to extract the so-called direction of
arrival (DOA) from multichannel recordings is
crucial for various applications such as speech
enhancement, speech separation, and efficient
noise reduction techniques.
The DOA estimation is still an open problem in
the field of signal processing that typically con-
cerns the localization of acoustic sources from
microphone array acquisitions. Conventional so-
lutions of source localization rely on signal pro-
cessing making assumptions about the statistics
of both the target signal and noise. A popu-
lar class of source localization methods is repre-
sented by subspace methods, whose most pop-
ular approach is multiple signal classification
(MUSIC). In recent years, the availability of mi-
crophone arrays with a high number of sensors

raised the adoption of different sound field trans-
formations, such as the spherical harmonic de-
composition. As a result, several source local-
ization techniques have been modified to work
in the spherical harmonic domain (SHD), such
as SHD-MUSIC. However, these techniques are
susceptible to degraded performance with low
signal-to-noise (SNR) ratios and reverberation.
To address this problem, inspired by the rela-
tive transfer function, in [3] were introduced the
relative harmonic coefficients (RHC) as valuable
features for localizing sources in the SHD.
Researchers have increasingly employed machine
learning, including deep-learning approaches, to
solve problems of acoustic signal processing such
as DOA estimation. In [1], the authors pro-
posed a convolutional recurrent neural network
(CRNN), exploiting both magnitude and phase
information of the STFT coefficients to perform
joint sound event detection and localization. It
is shown that the CRNN model provides good
performance for solving the localization prob-
lem. Fahim et al. [2] proposed a deep-learning
method based on measured spherical harmonics
coefficients. The paper shows that the proposed
framework outperforms conventional methods.
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In this work, we propose a CRNN-based frame-
work for the joint classification of azimuth and
elevation of the DOA. Differently from previous
solutions, we present the siamese neural net-
work for triplet loss training. The main idea
behind triplet loss is to create a feature embed-
ding where samples from the same class are clus-
tered towards the same point, while instances of
different classes are separated. Afterwards, we
employed the network trained with triplet loss
as the pre-trained model for the CRNN-based
network, in order to obtain a more refined and
structurally organized feature embedding. For
the training and the evaluation of the models, we
create a synthetic dataset composed of simulated
acoustic environments with different dimensions
and reverberation times. We present the anal-
ysis of the feature embeddings created by the
three networks. Finally, we compared the lo-
calization performance of the proposed method
with respect to conventional techniques.

2. Proposed Methods
2.1. RHC estimation
We consider a spherical microphone array mul-
tichannel signal decomposed into the SHD. The
RHC are ideally defined as the ratio between the
spherical harmonic coefficient αnm and α00,

βnm(t, k) =
αnm(t, k)

α00(t, k)
, (1)

with order n and mode m at frequency bin k. In
(1), dividing by the omnidirectional component
α00, we remove the source contribution from the
spherical coefficients. Therefore, RHC are not
affected by the time-varying source signal and
are only determined by the DOA of the sound
source. Actually, the array signal is corrupted
by noise, hence we adopt the estimator of RHC
[3] over the STFT domain as follows

β̃nm(k) ≈ Sαnmα00(k)

Sα00α00(k)
, (2)

where Sα00α00(t, k) and Sαnmα00(t, k) are respec-
tively the power spectral density (PSD) and the
cross-PSD of the measured spherical harmonic
coefficients. The RHC in (2) are a robust esti-
mation in presence of noise, making it suitable
for application in realistic scenarios.
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Figure 1: Block diagram of the proposed model
architecture.

2.2. Proposed model
Inspired by the model in [1], we propose a
CRNN-based model for joint azimuth and eleva-
tion estimation. This network receives the RHC
features as input at the first convolutional layer.
The first part of the model is composed of a con-
volutional neural network (CNN). The CNN has
three sublayers, consisting of a 2D convolutional
layer with ReLU activation, a batch normaliza-
tion layer, and a max pooling layer. The out-
put of the CNN is fed to a bidirectional recur-
rent neural network (RNN), which is employed
to learn temporal information from the received
features. For the proposed model, we consider
a RNN involving two bi-directional gated recur-
rent units (GRU) layers with tanh activation.
The final section of the CRNN consists in two
distinct fully connected (FC) networks, which
receive the same feature vector from the RNN.
Hence performing the localization of the sound
source, each of the FC branches is employed ei-
ther for the elevation or the azimuth estimation.
During the training phase, we exploit the cross
entropy loss to implement multi-class classifica-
tion. The outline of the proposed model is rep-
resented in Fig. 1.

2.3. Proposed training strategy
A siamese neural network is a class of neural
network architectures that consists of two or
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more identical neural networks. The subnet-
works share the same structure and configura-
tion. The input received by the network is com-
posed of three samples, an anchor, a positive,
and a negative. The anchor and the positive
samples are extracted from the same class. In-
stead, the negative instance is selected from a
different class. For this reason, the proposed
siamese network comprises three identical CNN.
The CNN architecture is the same as the one
presented in Sec. 2.2, represented by the first
three blocks of the CRNN in Fig. 1. In order
to compare the outputs of the subnets, we em-
ployed the hard margin triplet loss, defined as

Ltriplet = [δ + S(σa,σ
−)− S(σa,σ

+)]+, (3)

where δ is the hard margin and σa,σ+ and σ−

denote an anchor sample, a positive sample and
a negative sample. S represents the cosine simi-
larity function and the [·]+ operator is the hinge
function max(·, 0). The aim of triplet loss is to
maximize the similarity between samples of the
same class while minimizing the similarity be-
tween the samples of different classes.

3. Performance Evaluation
3.1. Implementation details

3.1.1 Simulated Dataset

For the training and evaluation of the model,
we considered a dataset composed of approxi-
mately 165 hours of simulated audio recordings.
We generated the data by convolving spheri-
cal microphone array impulse response obtained
from SMIR generator1 with speech signals ex-
tracted from the Librispeech dataset. We simu-
lated rooms with sizes randomly selected in the
range [4, 8]× [5, 10]× [3, 5]m with uniform distri-
bution. We positioned the spherical array in the
center of each room at a height of 1.3m, which is
the average ear height of a seated person. A 4-th
order spherical array with 32 microphones and
4.2 cm radius is used. To simulate the thermal
noise of the microphones, we employed additive
white Gaussian noise with variance set to have
a SNR in the range from 5 to 60 dB. For each
room, we simulated around 500 random source
positions. The azimuth and the elevation of each
source location are in the range ϕ ∈ [0◦, 360◦]

1http://github.com/ehabets/SMIR-Generator

and θ ∈ [60◦, 130◦] with distance from the cen-
ter of the array randomly chosen in the inter-
val [1.5, 3.5]m with uniform distribution. As far
as the reverberation time (RT60) is concerned,
we considered 16 distinct values in the interval
[0.25, 1.0]s with a step of 0.05 s. For the training
process, we selected samples from one of the 120
simulated rooms. The selected room has size
5.1 × 6.8 × 3.3 m and RT60 = 0.5. Instead, the
evaluation of the model was calculated on a test
set composed of 3 randomly chosen rooms, with
different sizes and RT60 with respect to the one
employed for the training.

3.1.2 Training

Pre-processing Before entering the training
loop, the simulated data are pre-processed.
Since we are considering the spherical harmonics
up to the first order, we select the first 4 chan-
nels of the simulated recordings. The time do-
main data are transformed in the STFT domain.
For each of the 4 channels, we computed the log
mel-spectrogram and the estimate RHC with the
biased estimator described in Sec. 2.1. From the
RHC definition (2), the 0-th order RHC is al-
ways equal to 1. Therefore, we consider only
the last three channels of the RHC. Then, in or-
der to have the same frequency dimension of the
log mel-spectrograms, we convert the linear fre-
quency axis of the RHC in mel frequency bins.
The network is fed with the complex RHC fea-
tures represented in terms of real and imaginary
parts.
For the training stage, we set the time sequence
length of the input features to Tf = 50 samples
and the number of mel-frequency bins to 64. The
training can be divided into three main stages:
(1) we train the proposed model in Sec. 2.2; (2)
we train the siamese network with triplet loss;
(3) we train the CRNN model exploiting CNN
network trained in stage (2) as pre-trained net-
work, exploiting the pre-trained model as the
initial state of the training, allowing the model
to optimize the classification embeddings.
The models are trained using Adam optimizer.
The starting learning rate is set to 5×10−4 and it
is halved if the validation loss does not decrease
within 25 consecutive epochs. The training is
set to 300 epochs, and it is stopped if the vali-
dation loss does not improve within 100 epochs.
Regarding training of the siamese network
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(a) free design. (b) pre-trained. (c) triplet loss.

(d) free design. (e) pre-trained. (f) triplet loss.

Figure 2: (a-c) The T-SNE 2D representation of 5 different DOA classes. (d-f) Representation of the
evaluation dataset divided in 4 macro classes based on the azimuth quadrant.

model, the anchor sample and the positive sam-
ples are extracted randomly from the same DOA
class. Instead, we choose the negative feature
vector by selecting a sample of a random class.
The triplets are organized in batches of ζ × η =
8×16 time sequences, where ζ and η denote the
number of different DOAs (classes) considered
in a single batch and the number of different se-
quences per DOA class, respectively. We consid-
ered the triplet loss function in (3), with margin
δ = 2.

3.1.3 Metrics

In order to evaluate the effectiveness of the
model, we employed metrics that measure the
performance of sound source localization sys-
tems. Hence, the effectiveness of the proposed
models is computed using gross error (GE) and
mean absolute estimated error (MAEE).

Gross error The GE metric is a measure of
the performance of the DOA estimator in de-
tecting the correct DOA. The GE is defined as

GEΩ =
1

ZΩ

ZΩ∑
z=1

∆((|ω − ω̂|)− λ) , (4)

where ZΩ represents the number of estimated
DOAs. Furthermore, ωz and ω̂z are the ground
truth and the estimated DOAs, respectively.
∆(z) is the indicator function which takes the
values of 0 when its argument is less than 0, and
1 when is greater or equal to 0. Therefore, the
DOA estimation is considered correct when the
distance between the ground truth and the esti-
mated angles is lower than λ = 10◦.

Mean absolute estimation error The
MAEE is the measure expressed in degrees of
the average error between the estimated DOAs
and the ground truth. The MAEE is defined as
the mean of all the absolute differences between
estimated and real values:

MAEE =
1

Z

Z∑
z=1

|ϕz − ϕ̂z|+ |θz − θ̂z|, (5)

where Z is the total number of joint DOA esti-
mations, ϕ and θ are the ground truth azimuth
and elevation, and ϕ̂ and θ̂ are the predicted az-
imuth and elevation.
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Figure 3: GEϕ, GEθ, GE and MAEE performance comparison against SNR.

3.2. Visualization of the learned em-
beddings

We analyze the learned embeddings for three
proposed methods. For the evaluation, we se-
lected rooms from the simulated dataset discard-
ing the room employed during the training stage.
We apply the T-SNE method to visualize the 2D
feature embedding of test data. In Fig. 2 we can
observe the learned feature embedding. From
the T-SNE representation in Fig. 2a-c, we can
observe that for all the three considered models,
we can identify the different DOA classes. As ex-
pected, the free design embedding and the pre-
trained embedding are comparable. However,
the free design embedding shows separated clus-
ters that are closer to each other with respect
to the other methods. Instead, the triplet loss
model displays well-separated clusters, while the
pre-trained model maintains the cluster separa-
tion given by the triplet loss model. Therefore,
as expected, the triplet loss embedding has bet-
ter interpretability compared to the other em-
beddings. The pre-trained model achieves sim-
ilar performance as the free design embedding
network, but with a less sparse feature space.
Therefore, pre-training with triplet loss results

in an effective DOA classification and a more
interpretable embedding. In Fig. 2d-f, we repre-
sented the entire test set and divided the sam-
ples into four main classes based on the azimuth
values. In the feature embedding space the dis-
tinction between the classes is evident in all
three methods, but in triplet loss, the samples
are more clearly separated. Interestingly, we no-
tice that in Fig. 2e, the azimuth classes divide
the feature space into four equal parts. More-
over, the pre-trained model displays a structured
space that can be related to the direction of ar-
rival (DOA) division in the spatial domain, in-
dicating a more robust correlation between the
feature space and the spatial dimension.

3.3. DOA estimation results
We compare the DOA classification performance
of the proposed pre-trained model with the base-
line. The localization performance is evalu-
ated in terms of GE and MAEE, and compared
with the conventional method MUSIC, RMU-
SIC, SHD-MUSIC, and SHD-RMUSIC. The re-
sults are computed for various azimuth and el-
evation angles. For the GE metrics, the val-
ues were obtained by summing all DOA esti-
mation frames in the test set, while for MAEE
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the reported values represent the average of all
observations. In Fig. 3, we demonstrated az-
imuth GE (GEϕ), elevation GE (GEθ), GE, and
MAEE by evaluating various rooms with differ-
ent SNR levels. We have evidence that the per-
formance of PT-CRNN is superior with respect
to the subspace methods in both GE and MAEE
metrics, suggesting that the pre-trained model
is able to estimate the DOA more precisely than
the baseline methods. Furthermore, PT-CRNN
model exhibits constant performance over differ-
ent SNR levels, while for the baseline methods,
we observe a performance drop for low SNR val-
ues. Then, we study the metrics varying the
RT60, considering SNR > 40 dB. The results
demonstrated higher localization performance,
especially in the azimuth plane. The model also
outperformed other methods in terms of MAEE.
Finally, we computed the considered localization
metrics against the distance of the sound source
from the center of the microphone array. The
results demonstrate similar behaviour to pre-
vious tests, where PT-CRNN method exhibits
a constant behaviour over different distances.
Overall, PT-CRNN demonstrates higher perfor-
mance than the baseline approaches for both
GE and MAEE metrics. Moreover, in non-ideal
acoustic scenarios such as low SNR and high re-
verberation, the proposed model outperformed
the other methods, and indicating improved ro-
bustness than the conventional approaches. All
the graphs and a deeper analysis of these results
are reported in the thesis.

4. Conclusions
In this thesis, we have developed a deep-learning
based method for the sound source DOA esti-
mation. We adopted a recently introduced fea-
ture representation known as RHC which pro-
vides meaningful spatial information about the
sound field. In this context, we introduced the
triplet loss training, which promotes a struc-
tured and meaningful features space with im-
proved clustering of similar samples and better
discrimination of dissimilar samples. We pro-
posed a CRNN-based architecture for the joint
estimation of azimuth and elevation. The pro-
posed models have been trained in a single room
and tested in different rooms, demonstrating the
ability to generalize on unseen data. As a result,
the proposed solution showed improved perfor-

mance in DOA estimation with respect to base-
line methods in complex scenarios with low SNR
and high RT60. Then, we proposed a CNN-
based siamese neural network. During the train-
ing with triplet loss, the network was able to cre-
ate a feature space encouraging similar samples
to be close together. Instead, dissimilar samples,
i.e, source with different DOAs were pushed fur-
ther apart, while preserving a structured corre-
spondence with the spatial domain. This pro-
motes the interpretability of the features em-
bedding. Furthermore, the analysis of the fea-
tures embedding shows that the feature space
of the pre-trained network has higher spatial
correspondence with respect to the free design
embedding while maintaining accurate DOA es-
timation performance. Finally, we presented
the localization results by performing tests on
rooms with different dimensions and reverbera-
tion times. The proposed method demonstrated
to be able to generalize when dealing with un-
seen data, providing improved performance from
baseline methods. Furthermore, the network ex-
hibits higher robustness, with minimal reduc-
tion of the performance even in complex envi-
ronments.
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