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Abstract

Within the Industry 4.0 paradigm, robotic programming of industrial
tasks is developed with increasing automation. This thesis work is centered
on the optimization of a sealing task, which requires an advanced velocity
planning to achieve the quality standard of the final products. The research
focus is the trajectory planning using feature recognition and the analysis
of the experimental task.

The developed algorithm enhances learning and reproduction of a
taught path, by generating a trajectory planner for the end-effector motion
that automatically characterizes the execution through a punctual velocity
reference defined accordingly with the path geometry. A Fuzzy Logic
controller has been exploited to assign the right execution velocity to each
path features (such as curves or sharp edges). The computed velocity
reference is then used as input for a Dynamical Movement Primitives
framework, which computes the position for the robot end-effector.

The proposed work aims to create a robust controller which is able to
recognize the path geometry and execute it with an optimized velocity,
while it also provides a smoothing effect on the reference, taking into
account the acceleration limits of the physical setup.

This method has been implemented to work also in a collaborative
environment, by generating an online trajectory planner which allows work-
sharing between the robot and the human operator such that the operator
can interact on the manipulator without stopping the task execution.

Keywords: Autonomous Robotics, Collaborative Robotics, Dynamical
Movement Primitives, Fuzzy Logic, Trajectory Planning
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Sommario

Nel paradigma dell’industria 4.0, la programmazione di robot per
operazioni industriali viene sviluppata con metodi sempre più automatizzati.
Questo lavoro di tesi si focalizza sull’ottimizzazione di una applicazione di
sigillatura, per la quale è necessario descrivere un pianificatore avanzato di
velocità al fine di raggiungere gli standard qualitativi richiesti. L’obiettivo
della ricerca è una programmazione di traiettoria che utilizzi un algoritmo
di riconoscimento e analisi della geometria del percorso di riferimento.

L’algoritmo sviluppato permette il riconoscimento e la riproduzione di
un percorso insegnato, attraverso la generazione della traiettoria che de-
scrive il movimento dell’utensile montato all’estremità del braccio robotico.
Il percorso viene automaticamente caratterizzato in maniera puntuale da
una velocità di riferimento definita sulla base della geometria del tratto.
Si è scelto di utilizzare un controllore con logica Fuzzy per assegnare una
appropriata velocità di esecuzione ad ogni geometria del percorso (curve,
angoli retti, ecc). La velocità calcolata viene poi utilizzata come variabile
di ingresso per le Dynamical Movement Primitives, le quali calcolano la
posizione di riferimento del robot nel suo spazio operativo.

Il lavoro proposto genera un controllore robusto che è in grado di rico-
noscere le geometrie del percorso ed eseguirle con una velocità ottimizzata,
introducendo un filtraggio del segnale di riferimento sulla base dei limiti di
accelerazione del setup sperimentale utilizzato.

Il metodo è stato implementato con il fine di lavorare anche in ambienti
collaborativi, attraverso la generazione in tempo reale della traiettoria da
eseguire. Questo approccio permette una ripartizione del lavoro tra il robot
e l’operatore, in modo tale che il tecnico possa intervenire sull’operazione
automatizzata senza bloccarne l’esecuzione.

Parole chiave: Dynamical Movement Primitives, Logica Fuzzy, Pianifica-
zione di Traiettoria, Robotica Autonoma, Robotica Collaborativa
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Chapter 1

Introduction

The development of Industry 4.0 is requiring that an increasing number
of manual tasks have to be executed in a more efficient way, firstly by time-
optimization, but also through higher quality standards. To achieve that,
automatization is becoming the preferential solution in several different
manufacturing environments, from automotive and aerospace to food
industry. The use of automatized machines is taking over human force,
thanks to their larger potentialities. In this background, the study and
implementation in factories of industrial manipulators and collaborative
ones is continuously rising.

1.1 Thesis Objective

This thesis focuses on the optimization of an automatized sealing
task, which is executed by a collaborative robotic arm in a human-robot
collaborative workspace. The automatization applied to the production
process enhances the repeatability of the results if compared to the one
achieved by a human operator, while also allowing higher production rate
and related cost-cutting.

The proposed work introduces a novel approach to the core of task
planning, which is the trajectory definition. A general input path must be
characterized by an execution velocity, which in general can be a continuous
varying reference. This analysis is crucial in the background of sealing
applications, where a generic path needs to be defined not only by its
geometrical dimensions, but also by a time characterization. In these kinds
of tasks, both the End-Effector (EE) velocity and the deposition flow are
parameters that must be precisely controlled in order to achieve a proper
sealant distribution.

1
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The here-presented analysis permits to set the deposition velocity
reference through an automatic control algorithm instead of requiring a
manual definition by the operator. In this way, the operator just needs to
define the path to be executed, then the algorithm analyzes it identifying
the geometry features and relating a reference velocity to each point.

Even if the work has been developed on a reference sealing task, the
code provides a very general framework, that allows the use of it also for
other applications outside the thesis topics. Moreover, once the algorithm
is tuned on the productive setup, it can approach any path, without the
need to manually tune the controller every time the reference path is
slightly changed.

The trajectory planning characterization combined with the automatic
velocity reference can be described as a general purpose planning algorithm,
since it can be implemented in numerous applications, but it is then applied
on a quite un-traditional setup. Indeed, larger studies and analysis for
trajectory planning in sealing, welding and cutting application have been
made for industrial robots and it is quite uncommon to perform the sealing
task in a collaborative environment. This characteristic of the provided
testbed also required the implementation of a model that could adapt and
benefit from the interaction with the human operator.

All the thesis materials, which includes the developed Python algo-
rithms, Arduino sketches and 3D CAD drawings, are available at:

https://github.com/emarescotti/VelocityPlanning_DMP_FL

1.2 Thesis Structure

This introduction aims to give a brief description of the presented thesis
work, explaining the topics of each chapter and the workflow from State of
the Art trajectory planning strategies to the experimental validation of
the proposed novel approach.

In the following chapter [chap. 2], some basic concepts are remarked.
Starting from the background related to the manipulation definition and
its constitutive equations, are then presented the already existing general
trajectory planning algorithms and industrial applications similar to the
reference task.

This thesis analysis selects an innovative Dynamical Movement Prim-
itives (DMP) framework, which modifies the standard DMP approach
introducing a variable velocity reference along the path. To clarify the
classical DMP theory, in [chap. 3] all the formulations provided by Ijspeert

https://github.com/emarescotti/VelocityPlanning_DMP_FL
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and Schaal [4] and further studies are provided.
In [chap. 4] the used experimental setup is described. It is reported a

brief analysis of the provided manipulator, a Franka Emika Panda robot,
and a study of the commercial caulking gun used to perform sealant
deposition. Additional constructive tips necessary for the implementation
of the test-bed are provided in [app. A].

The novelty introduced by this thesis is the path analysis and the
automatic velocity reference generation with acceleration constraint val-
idation, which are widely described in [chap. 5]. The Fuzzy Logic (FL)
controller theory is introduced and it is presented the specific tuning of
the membership functions related to the actual work. To facilitate the
comprehension of the complete algorithm, some parts of the Python code
are provided in [app. B], i.e. the acceleration limits analysis during the
velocity definition.

The experimental validation of this thesis work is carried out in [chap.
6]. This chapter aims to compare the results obtained with a classical
DMP formulation with respect to the complete approach developed in this
thesis work. Relevance focus has been made both on the tuning of the
model, both on the validation experiments performed.

At last, [chap. 7] depicts all the considerations about the experiments
and the pros and cons of the developed method are discussed. Indeed, it is
also reported a brief parley over the open possibilities of the method and
on further applications that could be implemented.





Chapter 2

State of the Art

The increasing need of automatization for traditional manual processes
requires the use of machines and robots that are precisely trained and
programmed to execute the planned task. For standard series productions
automatized industrial machines were preferred over robots, but in a
framework of high variability of applications and tasks, robots are gaining
space over the market.

The International Federation of Robotics (standard ISO/TR 8373),
defines a manipulator as follows [5]:

“A manipulating industrial robot is an automatically controlled,
re-programmable, multipurpose manipulator, programmable in three
or more axes, which may be either fixed in place or mobile for use in
industrial automation applications.”

In this framework, this study is focused on the fixed place robots, and
more specifically on collaborative ones, which are conceived as "mechanical
colleagues" of the human, where a relaxed human-robot interaction can be
created, and the machine can be an assistant for reaching the final goal
[6]. This thesis analyses the use of a collaborative robot for an industrial
process, which is the sealing of an aerospace panel. The selection of this
type of machine is made with the aim of accomplishing the task while
being close to a human collaborator which can enter in the robot operating
space and act on the environment [fig. 2.1].

Trajectory execution is a quite common task performed by robots,
thanks to their ability to firmly reproduce the provided route. Manipulators
must at least convey a movement form the starting to goal position, then
the selected motion control algorithm will characterize the transition.

5
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Figure 2.1: Human-Robot collaborative workspace. Source: [6]

Several algorithms have been developed, and they are always referred to
as trajectory planning.

Before analysing possible methods, it must be clarified the difference
between path and trajectory [2]:

“A path denotes the locus of points in the joint space, or in the
operational space, the manipulator has to follow in the execution of
the assigned motion; a path is then a pure geometric description of
motion. On the other hand, a trajectory is a path on which a time law
is specified, for instance in terms of velocities and/or acceleration.”

2.1 Robots Mechanical Structures

Robots are complex electro-mechanical structures composed of multiple
sub-systems. The mechanical skeleton is typically made of a locomotion
apparatus, for mobile robots, and of a manipulation one, typically me-
chanical arms and EE. The motion of this structure is conveyed through
actuators, like servomotors, drives and transmission, that are controlled
by a power electronic which imposes the motion control strategy. Robots
are also equipped with sensors that are necessary to perform measures and
acquire data both related to the executed movement, both to the external
environment, like force sensors or cameras.

The manipulator structure is composed of rigid bodies (links) connected
by hinges or articulations, the joints. The arm is the sequence of links that
ensures mobility, while the EE is the component that performs the task.
All movements are conveyed through the joints, which can perform:
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Figure 2.2: Conventional representation of joints. Source: [2]

• Revolute motion, a relative rotation between the two links;

• Prismatic motion, a relative translation between the two links.

those two types of joints are graphically schematized as in [fig. 2.2].
The structure of the robot influences the complexity of the system.

For open-kinematic-chain robots the number of joints corresponds to the
number of Degrees of Freedom (DOF), while for closed-kinematic-chain
the number of DOF differs from the joints one, due to closed-loop physical
constraints [2]. In the scope of this thesis, the former structure will be
selected, because it is in accordance with the given setup [chap. 4]. Two
example configurations are reported in [fig. 2.3].

(a) Open-kinematic-chain (b) Closed-kinematic-chain

Figure 2.3: Comparison of the two kinematic chain structures of manipulators.

The selection of the manipulator must be related to the task that has
to be computed. If a positioning and orientation of the EE is required
in three-dimensional space (3D), then 6 DOF are required, since 3 of
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(a) SCARA Robot (b) Cartesian Robot (c) Antropomorphic
Robot

Figure 2.4: Comparison of different workspaces of manipulators. Source: [2]

them characterize the position (x, y, z) while the other 3 characterize the
orientation with respect to the reference frame (φ, ϑ, ψ).

Common applications in 2D space can be achieved either with sim-
ple robots as Cartesian or Selective Compliance Assembly Robot Arm
(SCARA) ones, that perform movements on parallel planes, or with more
complex manipulators, as anthropomorphic ones, that typically have more
DOF, and sometimes are even redundant, as they dispose a number of
DOF higher than the one needed to characterize a position in space (i.e.
manipulator of 7 DOF for a 3D movement). Thanks to these possible
multiple rotations of arms, these latter robots can execute more complex
movements and can cover larger task areas. In this framework the concept
of workspace has to be introduced as the locus of points that can be
reached by the manipulator Tool Center Point (TCP) for executing a task.
A graphical representation of the different workspaces related to different
robots is reported in [fig. 2.4].

Very simple robots as the Cartesian one reach univocally each point,
while others with more complex structure (SCARA, Anthropomorphic, etc.)
can display multiple possible configurations. In case of anthropomorphic
robots this extended motion is directly related to the mechanical structure,
which is typically a sequence of links and pure revolution joints, that occupy
a reduced space while permitting extensive motion in 3D. A scheme of a 3
DOF anthropomorphic manipulator is reported in [fig. 2.5], where each
joint is characterized by its reference frame (xi, yi, zi) and the admitted
movement which in this case is a pure rotation ϑ. The EE frame is:
(x3, y3, z3). Knowing the position of the TCP is fundamental to describe
its motion in the space, and so to define a proper trajectory planning
algorithm. To evaluate this position, there are two possible approaches:
direct kinematics and inverse kinematics.
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Figure 2.5: Anthropomorphic arm representation. Source: [2]

2.1.1 Direct and Inverse Kinematics

Finding the pose of the EE is fundamental to describe the desired tasks
that must be reproduced by the manipulator. In Direct Kinematic (DK),
the EE position is computed as a function of joint variables.

The posture of the EE can be described through a vector x ∈ <m,
which collects the positions pe and orientations φe of the robot hand:

xe =


x1
x2
...
xm

 =

[
pe
φe

]
(2.1)

while joint positions, q ∈ <n, which are represented with rotations and
translations according to the type of joint, are:

q =


q1
q2
...
qn

 (2.2)

where m ≤ n so that all points are reachable. DK equations describe the
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position of the hand gripper as function of the joint ones:

x = k(q) (2.3)

In Inverse Kinematic (IK) instead, the target is commonly to define
the joint positions while knowing the EE ones. This permits to define
the joints movements, and then compute the torques and force actions to
drive motion. Mathematically, these variables q are evaluated through an
inverse relationship with respect to DK:

q = k−1(x) (2.4)

The definition of these equations is not trivial when the number of
DOF increases, because the relationships are mostly non-linear and the
evaluation of the EE orientations φe may require the use of rotation
matrices.

2.1.2 Rotation Matrices, Euler Angles and Quater-
nions

A rotation matrix is a compact notation used to describe the orientation
of a point with respect to a selected reference frame [fig. 2.6].

The base frame is (x, y, z), while the object frame is (x′, y′, z′). To
describe the orientation of the body, the versors describing its position
must be calculated referring to the base frame:

x̂′ = x′xx̂+ x′yŷ + x′zẑ

ŷ′ = y′xx̂+ y′yŷ + y′zẑ

ẑ′ = z′xx̂+ z′yŷ + z′zẑ

(2.5)

where a′a terms represent the direction cosines with respect to each axis.
By switching to a matrix compact formulation, it is possible to obtain

the rotation matrix :

R =
[
x̂′ ŷ′ ẑ′

]
=

x′x y′x x′x
x′y y′y y′z
x′z y′z z′z

 (2.6)

The terms of the matrix represent the direction cosines needed to define
the orientation of the new reference frame with respect to the base one.
When multiple rotations are done, it is better to evaluate a rotation matrix
for each rotation angle and then compute the overall one.



2.1. Robots Mechanical Structures 11

Figure 2.6: Orientation and position of a rigid body in space. Source: [2]

The definition of the 3 rotational coordinates φe that describe the
orientation of a body in space is done though Euler Angles. Euler Angles
are a set of three angles:

φe = [φ, ϑ, ψ]T (2.7)

which represent the rotation of a reference frame with respect to a base
one. They are commonly used to compute the direction cosines of the
rotation matrices.

The definition of the Euler Angles is not trivial, because 12 different
sets of angles can be used to describe an orientation. These sets depend on
the sequence of rotations performed to reach the final position. To better
explain this concept, refer to [fig. 2.7] and to the following calculus [7].

Considering to perform a rotation from the reference frame x = (x, y, z)
to the final reference one x̄ = (x̄, ȳ, z̄), it is possible to perform three
separate rotations using three rotational matrices. Considering the case
showed in [fig. 2.7], the procedure is:

• Perform a rotation φ around x-axis, x = Xx̄I :xy
z

 =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

x̄IȳI
z̄I

 (2.8)

• Perform a rotation ϑ around y-axis, x̄I = Y x̄II :x̄IȳI
z̄I

 =

 cos(ϑ) 0 sin(ϑ)
0 1 0

− sin(ϑ) 0 cos(ϑ)

x̄IIȳII
z̄II

 (2.9)
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Figure 2.7: Reference Frame rotation through Euler Angles

• Perform a rotation ψ around z-axis, x̄II = Zx̄:x̄IIȳII
z̄II

 =

 cos(ψ) − sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

x̄ȳ
z̄

 (2.10)

By combining the three equations, it is possible to obtain the final comp-
lessive matrix required to perform the framework rotation:

x = (X Y Z) x̄ = M x̄ (2.11)

where M(φ, ϑ, ψ) is the rotation matrix function of the three Euler Angles.
The selection of the sequence of rotations defines the M matrix. Con-

sidering each possible combination, there will be 12 possible sets of Euler
angles. In aeronautical applications, the typical sequence is ZYX which
means to perform a first rotation around z-axis, then a rotation around
y-axis and the last rotation around x-axis, the angles are typically called:
Roll, Pitch and Yaw.

Quaternion formulation can be selected alternatively. This representa-
tion uses four parameters to univocally select an orientation for a point in
space. They are formally defined as the vector [w, x, y, z] [8]:

q = w + xi+ yj + zk (2.12)
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where w, x, y, z ∈ <, and the norm of the quaternion is 1:

w2 + x2 + y2 + z2 = 1 (2.13)

According to the definition, it is possible to call qw = w the scalar part of
the quaternion, and qv = (x, y, z) the vectorial one.

Robot controllers often require the use of quaternions to define orienta-
tions. Considering the Euler sequence ZYX, where the angles in sequence
are ψ for z-axis, ϑ for y-axis and φ for x-axis, the quaternion is obtained
as: 

w = cos(φ
2
) cos(ϑ

2
) cos(ψ

2
) + sin(φ

2
) sin(ϑ

2
) sin(ψ

2
)

x = sin(φ
2
) cos(ϑ

2
) cos(ψ

2
)− cos(φ

2
) sin(ϑ

2
) sin(ψ

2
)

y = cos(φ
2
) sin(ϑ

2
) cos(ψ

2
) + sin(φ

2
) cos(ϑ

2
) sin(ψ

2
)

z = cos(φ
2
) cos(ϑ

2
) sin (ψ

2
)− sin(φ

2
) sin(ϑ

2
) cos(ψ

2
)

(2.14)

Mind that for each sequence of Euler Angles, the law that links them to
quaternions is different. All the 12 equations are reported in [7].

2.2 Trajectory Planning
Task execution for manipulators is commonly controlled through motion

planning algorithms, called trajectory planning. This topic is widely studied
in robotics because the selection of the proper planning strategy can
substantially improve the execution of the task [9]. Planning consists in
generating a time-sequence of points or positions that must be executed
either by the EE or by the joints.

According to the provided path description, these algorithms can set a:

• Point-to-point motion or position control, where only starting and
goal positions are provided, and the objective is simply to reach the
end position regardless of the followed trajectory;

• Path motion if the robot EE motion is specified with a defined
sequence of points parametrized in time.

In [fig. 2.8] the two different approaches are reported with a graphical
representation of the target motion. In the first case, the control strategy
simply imposes the three points to be reached and then the robot controller
chooses the proper path that must be performed; in the latter case the
input is exactly the red 2D trajectory that must be followed.

The goal of trajectory planning control strategies is to generate a
reference trajectory for the robot controller, which is a time-sequence of
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Figure 2.8: Position Control on the left, where only three intermediate points
are given VS Path Control on right, where all the path is provided
(red)

positions, velocities and accelerations that map the desired trajectory.
Planning can be done either in joint space or in task one (Cartesian space),
according to the movement that must be executed. For applications like
welding, sealing or laser cutting, the joints of the robot can move almost
freely in the workspace, with limitations only for singularity positions and
physical spatial constraints, while proper planning for the TCP is imposed
in cartesian space.

Trajectory planning algorithms can be schematized considering the
planning steps and input parameters of the activity. In case of task space
tracking, the operational space trajectory must be converted into a joint
motion signal through the use of IK such that the robot motion control
system will generate the torques and forces needed to activate motors [fig.
2.9].

Instead, joint space planning results in a faster motion because directly
creates the signal qout(t) that must be fed into motion controller but it is
not an optimal solution for precise path tracking since it describes a joint
motion.

Figure 2.9: Steps of trajectory (planning activity)
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Figure 2.10: Joints on a manipulator. Source [5]

2.2.1 Joint Space Control

Joint space planning maps a set of positions for the TCP by controlling
joint ones. This solution is preferrable when dealing with motion near pos-
sible manipulator singularities, or when a certain joint movement must be
described. Example applications can be found in point-to-point motion or
in motion through a sequence of points, where joints starting, intermediate
and final positions are specified and the planning algorithm controls the
interpolation and time execution in joint coordinates between one point
and another.

Joint space motion is characterized by computation of joint positions
of the robot, traditionally referred to with the variable q. A simple
representation is proposed in [fig. 2.10] where it is possible to observe a 3
DOF manipulator with pure rotational joints.

Considering a more general open-kinematic-chain manipulator with
n-DOF, characterized by n joint coordinates: q ∈ <n.

q =


q1
q2
...
qn

 (2.15)

where each coordinate is related to the movement generated by the physical
link, revolute joints q will be represented by a rotation, while prismatic
joints by translations.

Joint space trajectory planning algorithms interpolate the q(t) positions
while respecting the imposed constraints, which can be physical limits of
the manipulator (velocities, accelerations) or objective constraints imposed
by the chosen interpolating function (i.e. Jerk minimization [10, 11], Time
minimization etc.).
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Point-to-Point Motion

The simplest planning algorithm is the point-to-point motion. The
joints have to move from a starting configuration q(t0) = q0 to a final
one q(tf ) = qf in a certain time interval tf while respecting the imposed
constraints.

Cubic polynomial interpolation algorithm is used to minimize the energy
dissipated on each motor. The joint movement is obtained through a third-
order polynomial function, such that the velocity profile is represented by
a parabola: {

q(t) = a0 + a1t+ a2t
2 + a3t

3

q̇(t) = a1 + 2a2t+ 3a3t
2

(2.16)

to characterize the motion law, 4 constraints must be imposed: initial and
final joint position and velocity. Higher order polynomials, such as fifth
order polynomial are commonly used to impose also the acceleration limits.

Another common algorithm for interpolation is the trapezoidal velocity
profile. This method is preferred when the motion must be executed at an
imposed cruise velocity level, with a specific acceleration value during only
starting and final stages [fig. 2.11].

Trapezoidal velocity profile is defined as:

• Acceleration:

q̈(t) =


q̈+max, t ∈ [t0, t1]

0, t ∈ [t1, t2]

−q̈−max, t ∈ [t2, tf ]

(2.17)

• Velocity:

q̇(t) =


q̈+max(t− t0) + q̇0, t ∈ [t0, t1]

q̇max, t ∈ [t1, t2]

−q̈−max(t− t2) + q̇max, t ∈ [t2, tf ]

(2.18)

• Position:

q(t) =


1
2
q̈+max(t− t0)2 + q̇0(t− t0) + q0, t ∈ [t0, t1]

q̇max(t− t1) + q1, t ∈ [t1, t2]

−1
2
q̈−max(t− t2) + q̇max(t− t2) + q2, t ∈ [t2, tf ]

(2.19)

where at t0 the motion is starting, at t1 the acceleration step has ended,
at t2 starts deceleration and at tf motion ends. The velocity of execution
is identified by q̇max.
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(b) Cartesian Robot

Figure 2.11: Comparison between cubic polynomial interpolation and trape-
zoidal velocity profile with null velocity at starting and ending
conditions, amax = 6, t = 1 and qf = 1

Motion Through a Sequence of Points

More complex tasks require a path characterization with more than just
two points. Intermediate points or sequences are necessary to describe with
higher precision the motion in space, indeed this planning approach is used
whenever there are obstacles to be avoided or when a particular trajectory
must be performed. The intermediate points between the starting and
goal position are called via-points. The higher the number of via-points,
the higher the definition of the motion (i.e. curve characterization requires
more points with respect to a straight line motion).

Provided a sequence of N points that must be reached by the manip-
ulator at certain time instants, it is necessary to define an interpolating
function Π, to provide a continuous motion between the via-points. Mathe-
matically it must be used a (N−1)-order polynomial, but while N increases,
several problems may arise:

• Initial and final velocities cannot be assigned;

• High order polynomials show unnatural oscillatory behaviours (Runge’s
phenomenon);
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Figure 2.12: Via-points interpolation with (N − 1) polynomials. Source: [2]

• The solution of the system for defining polynomials coefficients results
computational expensive;

• The polynomial definition strictly depends on the via-points, if one
should be changed, all the coefficients must be re-computed.

Moreover, whenever a dense sequence of points is provided, such as
to describe a proper path definition, the via-points are very close one
to another, resulting in a quasi-continuous trajectory. Especially in this
situation, selecting a (N − 1)-order polynomial is not advised. The best
solution is to use (N − 1) polynomials of lower order to describe a motion
between one point and the following one: Πi, i ∈ [1, N − 1], [fig. 2.12].

Cubic polynomials are advised for maintaining a velocity continuity
between one point and the following one, but they require a velocity
characterization at each via-point. Also, lower order polynomials can be
used, but they generate a non-smooth transition between one interval
movement and another, and they lose the continuity in velocity.

Whenever via-points are very dense, the choice of the interpolating
polynomial results less critical from the displacement point of view, because
the movement to be executed in between is not large enough to show a
characteristic difference in results [fig. 2.13], but the velocity profile will still
show a non-smooth behaviour that will result in a non-optimal movement
of the joints. Non continuous transitions can be the cause of vibrations
during the execution of the task, especially if it requires a good precision.
In [12] it is studied a trajectory generation algorithm that permits to
achieve smooth transitions while controlling also joint positions.
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Figure 2.13: Comparison between different interpolation methods when the
number of via-points increases [N = 10 and N = 30]

2.2.2 Task Space Control

In task space planning the motion of the manipulator is mapped by
controlling the motion of the EE. This control strategy is preferred when-
ever a precise movement of the TCP is requested, i.e. in precise geometry
following applications, like welding and sealing.

Planning in operational space can be done with two main approaches:

• By performing interpolations between numerous via-points with the
same method presented for the joint-space motion, typically using
linear micro-interpolations with a point density equal to the robot
frequency;
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• Through generation of analytical motion primitives.

Interpolation has been exploited in [sec. 2.2.1]. In the same way it is
possible to describe several via-points in the cartesian space, such that the
movement of the EE is directly controlled.

Path-Velocity Parameterization

Path primitives are analytical functions used to precisely and analyti-
cally describe the motion of the EE. These functions characterize features
of the path while providing a time law to determine the motion execution.
According to the formal definition of path primitives, it is possible to refer
to them through the equation:

p = f(s) (2.20)

where p is a three-dimensional vector that describes the space position,
f is a continuous vector function parametrized over the variable s, the
natural coordinate, which represents the percentage of completion over all
the path. If s increases, the execution along the cartesian path described
by the function f proceeds [fig. 2.14].

The characterization in time of the motion execution is provided by the
mathematical law that links the natural coordinate with time: s = s(t).
Typically, when t = 0 → s = 0, while when s = sf = path length the
overall time requested to perform all the path is reached, t = tf .

The execution velocity along the path depends on the time parametriza-
tion of the natural coordinate. Indeed:

ṗ =
dp

dt
=
df(s(t))

dt
=
df

ds

ds

dt
(2.21)

where ds
dt

represents the magnitude of the velocity vector in correspondence
of the selected time instant, while df

ds
is the tangent vector to the path.

Traditionally a motion primitive provides a mathematical description
of a precise motion, i.e. they are commonly used on humanoid robots
to describe basic movements, such as walking or catching; they are then
joined together to obtain a complex outcome [13]. A motion primitive
describes the execution of a proper movement with related constraints,
both in space and velocity. In [14] motion primitives are exploited to
analyse the possible outcomes while combining three basic primitives. A
proper analytical parametrization of each path is requested, and the overall
motion is obtained as a sequence of these sub-paths.
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Figure 2.14: Completion of the analytical function f(s), in green the percentage
of path already executed, si is the actual position along the path

With the proper formulation, even one path primitive can be used
to obtain a complex motion, without the need to subdivide the path in
smaller intervals. Obviously, this approach can be selected only in certain
situations, not for all the numerous cases of task planning. This specific
analysis will be deepened in the next chapters of the thesis, since it recalls
the selected method for planning the task execution.

2.3 Robotic Industrial Processes

Now that the basic concepts of trajectory planning have been explained,
it is possible to analyse several methods already implemented in industrial
applications that require a precise movement of the EE.

Sealing procedures include numerous types of applications, from silicone
sealing to welding and gluing. Traditionally those activity are performed by
a human operator, but automatization is requiring novel approaches with
the use of robot manipulators. Welding procedure can be the main reference
application for the sealing tasks, as it has already several automatized
processes, but it is also possible to analyse other similar applications, like
Fused Deposition Modeling (FDM) 3D printing or laser cutting.
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Figure 2.15: Human performing a silicone deposition

2.3.1 Sealing Applications

Sealing is a traditional manual operation that requires the deposition
of a ribbon of sealant material that will permanently join separate pieces
[fig. 2.15]. This operation requires a precise path tracking to deposit the
material in the correct zones, and a proper characterization of the motion
to generate a correct deposition.

Skillful manual operators can achieve a good quality level by slowly
performing the task, robots can achieve a higher quality deposition in a
faster way.

The main problems of silicone deposition are related to:

• Velocity of deposition;

• Caulking gun orientation during deposition.

The first problem for human operators is partially solved through a trial
and error movement, for robots it is the object of the planning algorithm,
that must characterize and optimize the execution velocity.

The gun orientation changes for the human and robotic case, because
the two cases have different features and control strategies. A human cannot
have the precision in position, orientation and velocity of a manipulator, so
it must perform a deposition in a way that both the path and the sealant
material ribbon can be semi-optimal. To achieve that, a proper deposition
of the sealant material can be obtained sliding the gun nozzle on the path
to be executed while keeping the gun with a certain inclination, such that
the nozzle cannot be obstructed and the material can properly flow.
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Instead, robots do not need to slide on the path since an accurate
positional controller permits to perform a sealing application moving above
the deposition plane with a fixed offset. Since the offset prevents the nozzle
to be clogged, the caulking gun can be maintained vertical during all the
execution. This way, the deposition can be done similarly to a FDM 3D
printing process, with a constant and precise vertical distance from the
plane and a completely perpendicular orientation.

Figure 2.16: Gluing application. Source: www.rrrobotica.it/incolla.htm

Figure 2.17: Innovative sealant deposition. Source: abb.com/robotics

A gluing industrial application is reported in [fig. 2.16], while an
alternative version which uses an improved sealing and gluing process is
reported in [fig. 2.17]. In the latter example, the manufacturer employed

http://www.rrrobotica.it/incolla.htm
https://library.e.abb.com/public/0e2465655d0b46a18a3c4d7b45e89dd9/9AKK10103A2845-DispensingFP-Rev.C.pdf
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Figure 2.18: Welding Robot scheme. Source: [15]

an industrial robot to set the plane height and cartesian position with
respect to the fixed sealant extruder.

2.3.2 Welding Applications

Welding is a traditional mechanical procedure used to join two or more
metallic or thermoplastic parts. The pieces are heated up at the edges
that must be joined, and then the connection is sealed with the cooldown
of the material. The execution of this activity requires the use of arc
welding torches that are fixed at the EE and that must be precisely moved
along the joining edge. The cartesian movement must be described for
the coordinate framework of the tip of the torch, the TCP and not for the
robot flange reference one [fig. 2.18].

A known robotic algorithm for welding applications is the Descartes
Algorithm [16]. This algorithm finds the proper movement for the ma-
nipulator by checking a timing constraint for the EE and joints positions.
Through this algorithm it is possible to avoid motion redundancy by impos-
ing a cost function on the joint positions, even if the motion is controlled in
cartesian space. The planning strategy provides a sequence of TCP poses
without any velocity or acceleration information and then characterizes
the motion in time by introducing a timing constraint.

This approach is proper for large displacements in the workspace that
need a time optimization for the joints movement, but it does not assess
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(a) Spline Interpolation (b) DMP Reproduction

Figure 2.19: Comparison between velocity outputs obtained for Spline interpo-
lation and DMP motion with a high number of via-points. Source:
[19]

the problem related to the point velocity execution. In the scope of this
thesis, this method does not provide any advantage because the sealing task
will be executed on a collaborative robot, so a collaborative environment
must be considered, in correspondence of a reduced workspace area and on
a predominant 2D trajectory such that the robot internal controller will
automatically optimize joints movements.

In [17] it has been studied an optimal planning for welding applications,
through an analysis on the task execution that minimizes the time and
interpolates cartesian via-points with B-spline method. This approach
imposed a welding torch velocity fixed along the path and did not include a
proper feature characterization, as this thesis aims to do. Another general
approach which uses B-spline interpolation is studied in [18], this analysis
is not specifically made on welding problems but can provide an interesting
online planning strategy.

Considering a more general robotic background, the interpolation
method has been proved to not always be the best choice for path planning.
A comparison between a motion primitive algorithm (in this case DMP)
and a traditional spline interpolation is reported in [19]. The result shows
that while the cartesian tracking execution is similar, the velocity behaviour
differs and results less smooth and acceptable for a robotic manipulator
[fig. 2.19]. According to these outcomes, it is in the interest of this thesis
to focus on the more robotic friendly method, that would compute smooth
transitions during execution.





Chapter 3

Dynamical Movement Primitives

This thesis is built over a very general purpose framework for trajectory
planning, which is called DMP [20]. This method has been introduced by
Ijspeert, Nakanishi and Schaal in 2002 [21], with the aim of approximating
a movement of a humanoid robot.

The algorithm has been developed in order to solve some disadvantages
of other techniques that try to learn and reproduce a motion, such as the
increasing difficulty in learning when the number of DOF rises and the
large time needed for tuning the model parameters [4]. The main reason
behind the choice of this control structure is related to the large potential
of this framework in collaborative environments, which allows to easily
implement features like obstacle avoidance and disturbance rejection [22,
23], while performing a precise tracking of the taught path.

DMP framework approximates a path, or a simple movement, in a
physical manner (i.e. with velocity continuity and intrinsically smoothing
sharp edges). The intrinsic physical behavior is provided by the DMP
definition itself, in a nutshell, a taught motion is performed by a punctual
mass-spring-damper critical system, which is carried from an initial state to
a goal position by means of a non-linear forcing term. This mathematical
approximation provides high tracking potential, while filtering path features
that in reality a robotic arm would not be able to perform (i.e. noise or
small discontinuities). This definition can be easily applied to very simple
single DOF systems to complex multi-DOF robotic arms.

There are two main types of DMP which are characterized by the
definition of the attractor system. We can distinguish between point
attractor systems, that bring the state of the robot from a position to
another one, and limit cycle attractors when one wants to perform a
periodic movement (as in the oscillators) [4]. Due to the nature of the
problem at hands, only on the point attractor systems are considered

27
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in this thesis. This model is used to directly map the EE positions and
velocities in cartesian space, without the need to convert them into motor
behaviours in joint space. The computed trajectory from the DMP can be
transformed through IK into joint motions or directly fed into the robot
controller, using its built-it positional tracker.

Mathematics and researchers have been performing further studies over
DMP to examine in depth other applications in robotic field and also to
increase the power of the method. Several studies that have been used
into our thesis will be reported later and also the novel contribution to the
method.

3.1 DMP Dynamical System

DMP are modelled through a "non-linear attractor system" [4], where
several fundamental features are pursued through the model:

1. Learnable point attractor;

2. Autonomous system;

3. Reduced number of open parameters, with simple learning;

4. Spatial and temporal scaling;

5. Error coupling.

All of this points will be explained when recalling the mathematical formu-
lation provided by Jispeert, Nakanishi and Shaal [4, 21], where there will
be showed also their powerfulness.

3.1.1 Mathematical Formulation

As previously said, DMP are based on the simple dynamical system
of a unitary mass in a spring-damper configuration moved through an
external forcing action:

τ ÿ = αz(βz(g − y)− ẏ) + f (3.1)

which can be written in a state-space notation:{
τ ż = αz(βz(g − y)− z) + f

τ ẏ = z
(3.2)
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where position, velocity and acceleration are expressed through y, ẏ, ÿ,
then z is the state-space term, τ is the time-constant and αz, βz are
constants values tuned to provide a stable critically-damped response of
the dynamical system.

The parameters αz, βz were selected in accordance with the analysis
performed in [4, 21]. This structure is currently exploited through a mono-
dimensional path, but it can be easily extended to 2D or 3D simply by
describing the dynamical system for each spatial dimension of interest.

The second order differential equation (3.2) is characterized by two
external actions that need to be clarified: the forcing term, f , and the goal
position, g, which acts as a point attractor.

The goal position, g, is a constant fixed value, that represents the final
state that must be reached at the end of the simulation. The definition of
the target point is necessary to describe a system dynamics that converges
to the requested position even when the acting force, f , is null. The forcing
term is instead a nonlinear function:

f(t) =

∑N
i=1 Ψi(t) ωi∑N
i=1 Ψi(t)

(3.3)

which represents a weighted sum of N Gaussian basis functions, Ψ(t),
where ω are their weights.

At this point the DMP are still characterized by a non-autonomous
function, since there is an explicit time-dependance. This causes problems
in the coordination of multiple DOF, which is not allowed by the time
dependency. A Canonical System (CS) is then introduced (3.4), needed to
decouple the forcing function from time:

τ ẋ(t) = −αxx(t) (3.4)

which represents a decreasing exponential that tends to zero as the state
y gets closer to the goal position, so for y = y0, the starting position, we
have x(t0) = 1 and when y = g, then x(tsim) ' 0. The parameter αx must
be tuned to define the decay rate of the exponential. The standard value
is here considered: αx = 1 [fig. 3.1].

Thanks to the CS, it is possible to define a time-independent forcing
function, rearranging (3.3):

f(x) =

∑N
i=1 Ψi(x) ωi∑N
i=1 Ψi(x)

·x· (g − y0) (3.5)

This definition of f exploits the scalability in time and space of the DMP,
because the dependence on the x variable introduces the modulation in
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Figure 3.1: Exponential decay of the CS [αx = 1, τ = 1]

time of the force as we get closer to the goal position, while the space
scalability is provided by (g − y0).

The N Gaussian basis functions, Ψ, are defined as functions of the x
coordinate:

Ψi(x) = exp

(
− 1

2σ2
i

· (x− ci)2
)

(3.6)

where the shape of the Gaussian kernels depends on the center, ci, and on
the width, σi. It should be noticed that the centers are equally spaced in
time, so according to the CS there will be fewer kernels at the beginning of
the movement and denser ones closer to the end. This behaviour is shown
in an example in [fig. 3.2].

The Gaussian centers, ci, should be equally spaced in time, so their
characterization along the x parametrization is obtained through the
CS. Instead, the variance of the Gaussian basis functions, σi, is defined
accordingly with the equation (3.7), using a trial and error approach.

The distribution selected in this thesis is slightly different from the
standard one, because it has been chosen to use numerous Gaussian
functions, with a narrower shape.

σi = 2

√
c1.8i · ax
N1.5

(3.7)
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Figure 3.2: Example of 10 kernels in time and x domains, for a trajectory that
lasts 5 s (in the CS are visible denser Gaussian functions when
x = 0 is approached)

The DMP framework requires tuning of other parameters, which are
αz, βz, αx, σi and τ . For the purpose of this research some values already
studied and optimized has been selected [4, 21, 24], that have been collected
in [tab. 3.1], while others have been adapted to the proposed study.

Parameter Value

αz 25
βz αz/4
αx 1
τ 1

Table 3.1: DMP and CS system coefficients (in the standard formulation)
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3.2 Trajectory Learning: Locally Weighted
Regression

The general framework of the DMP has been described, but the forcing
term still needs to be defined (3.5), because its shape is characterized by
the weights, ωi, of each Gaussian kernel, whose values strictly depend on
the trajectory that must be reproduced.

Using the traditional definition of DMP, f is linearly dependent on the
Gaussian weights, ωi, as shown in equation (3.5); this permits to find ωi
using several possible learning algorithms. Calinon and Lee tested and
compared several methods which can be used to learn the weights [25].

The original framework uses supervised learning to define the weights
that fit the imposed target trajectory that must be reproduced. The most
commonly selected method is Locally Weighted Regression (LWR) [4, 26],
but for humanoid robots has also been used a Global Weighted Regression
[27]. The LWR has the advantage of less computational burden since each
kernel acts only closed to its center and so it is computed locally [fig. 3.3].
Instead, global regression considers all the motion together to compute
each kernel weight. This last method requires less basis functions, at the
cost of increased computational resources. In this study the originally
proposed method with LWR is followed because it was mainly adapted
to collaborative robot environments and it was proven to be very fast
and with independent learning for each kernel [28]. Moreover, due to the
algorithm definition, having sharp kernels which act locally is preferable.

To perform trajectory learning, the target path that must be reproduced
is defined: ydemo(t), ẏdemo(t), ÿdemo(t), where t ∈ [0, Tdemo]. This path can
be either mono-dimensional or with higher-order dimensions because the
DMP will evaluate a forcing action for each coordinate, and so will define
characteristic Gaussian weights for each dimension. For the purpose of
this research a two-dimensional trajectory has to be described, which can
simply be done by describing ydemo on a XY cartesian plane.

Reversing the equation (3.3), the forcing term ftarget is computed:

ftarget = τ 2ÿdemo − αz(βz(g − ydemo)− τ ẏdemo) (3.8)

Now, the learning problem has to generate an approximated forcing
term, f , as similar as possible to the target force, ftarget.

LWR minimizes the following cost functions, which describe locally
weighted quadratic errors [29], which in this case is needed to evaluate the
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Figure 3.3: Local effect of the basis functions φk using LWR for a path x01.
Source: [25]

correct ωi for each Gaussian kernel:

Ji =

Nsteps∑
t=1

Ψi(t) (ftarget(t)− ωix(t)(g − y0))2 (3.9)

As a LWR, the solution can be computed as:

ωi =
sT Γiftarget
sT Γis

(3.10)

where:

s =


x(1)(g − y0)
x(2)(g − y0)

...
x(Nsteps)(g − y0)

 ; Γi =


Ψi(1) 0

Ψi(2)
...

0 Ψi(Nsteps)

 (3.11)

and the force vector is:

ftarget =


ftarget(1)
ftarget(2)

...
ftarget(Nsteps)

 (3.12)



34 Chapter 3. Dynamical Movement Primitives

Figure 3.4: Scheme of the process for learning and evaluating the desired
trajectory, y, starting from the demonstrated one, ydemo

Figure 3.5: Insight on the "Non-Linear Force" block

Once the kernel weights are evaluated, the actual forcing term can be
computed. This will drive the artificial dynamical system using equation
(3.5).

A graphical recap of the steps needed to get the output trajectory that
imposes robot movement is reported in [fig. 3.4] and the zoom on the
non-linear force block is reported in [fig. 3.5]. In the presented system, only
one demonstrated path is fed into the trajectory learning algorithm; this
solution can be used in cases in which the desired trajectory is well known
(i.e. without errors). Whenever the demonstrated reference movement is
provided by human motion and interaction, it is very likely that smoothing
of noises is performed; this can be simply done through averaging during
LWR, without needing another complex algorithm for filtering. This
process is carried out in [28], where many acquisitions are averaged to
compute the final output [fig. 3.6]. In the represented case, learning is
performed through Receptive Field Weighted Regression, which is another
possible learning algorithm.

[fig. 3.5] reports the steps needed to evaluate the actual forcing action
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Figure 3.6: Example of averaging procedure applied to multiple input acquisi-
tions: the output is a weighted average. Source: [28]

that will drive the system. All the fundamental passages that characterize
DMP are shown, such as the evaluation of the CS, needed to decouple the
kernels from time, and the Gaussian basis functions computation. It is
fundamental to recall that all the coupling terms and parameters must be
defined before starting the learning procedure, as reported in [tab. 3.1].

The τ parameter represents the temporal scaling factor, because as it
changes from the standard value, τ = 1, the execution of the trajectory
is performed at a different new velocity threshold. From experimental
analysis it is shown that using an lower value of τ means increasing the
mean velocity threshold, and so performing the path in a faster way;
simultaneously, if τ increases, then the path is performed in a longer time.

3.3 DMP Coupling
The powerfulness of DMP in collaborative robotics environments is

associated to the ability to couple the output DMP trajectory (y, ẏ, ÿ) with
the actual robotic movement (ya, ẏa, ÿa). A block scheme that implements
this strategy is proposed in [fig. 3.7], while the mathematical formulation
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Figure 3.7: Scheme of the DMP framework with coupling system

is shown below.
Basically, an error coupling term is modelled using the measurable

difference between the actual movement and the numerically computed
one. The error dynamics is evaluated through a decreasing exponential, to
represent a low-pass filter on the tracking error:

ė = αe(ya − y − e) (3.13)

The knowledge of the coupling error is used to introduce an external
forcing action on the dynamical system (3.2):

τ ż = αz(βz(g − y0)− z) + f + Ct

τ ẏ = z

Ct = kte

(3.14)

The standard formulation expresses the time scaling parameter as a
simple value to modify the execution time. In this case instead, τ is
function of the error dynamics:

τ = 1 + kce
2 (3.15)

Related to coupling, several studies have been made to define the proper
formulation to permit a path execution in presence of physical disturbances
on the EE. The original formulation studied by Ijspeert, Nakanishi and
Schaal [4] considers to correct the actual robot movement by evaluating
the reference robot acceleration through a feedback system:

ÿr = kp(y − ya) + kv(ẏ − ẏa) (3.16)
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The analysis performed on a Yumi collaborative robot [22], showed
that a better evaluation of the reference acceleration of the EE permits
to perform the movement with lower gains, and so with reduced motor
torques. To achieve all that, while maintaining the coupling properties,
they expressed ÿr in a PD feedback and feed-forward regulator:

ÿr = kp(y − ya) + kv(ẏ − ẏa) + ÿ (3.17)

where the acceleration computed by the DMP, ÿ, is the feed-forward
contribution.

3.4 Reference Velocity
The main limitation found in DMP framework, concerns the selection

of the velocity reference. The learning algorithm tries to replicate in a
smooth way the taught path at constant speed, except in correspondence
of sharp edges and discontinuities, at which the velocity drops to match
the physical limitations of the dynamical system. This behaviour does not
show problems for the classical pick and place tasks, where a precise path
execution is not the priority, but it cannot be applied in trajectories that
need a precise velocity tracking of all the path.

There are several approaches in literature [24, 30] that deal with velocity
discontinuities, but they only introduce a control action on the starting
and ending velocities, to avoid velocity discontinuities in correspondence
of the joining point between one motion primitive and another. These
approaches are a proper solution for the cartesian planning with multiple
path primitives that are combined to obtain a complex motion. Basically,
the complex path is subdivided into sub-motions that will be performed
in sequence. In this way, the system can learn separately the numerous
trajectories, and then they can be joined together.

The solution proposed in [24] uses the standard DMP framework with
a smoothing feature to join the different trajectories, but also introduces
a third-order dynamics; while [30] keeps the second-order dynamics but
introduces overlapping kernels at the joining points.

In this thesis, the problem has been approached in a different way, not
by changing the DMP structure itself, but by modifying the demonstrated
path. Basically it is considered to have a complex path that contains several
features and that planning is done in one shot (i.e. without dividing it
in smaller basic-feature parts), such that just one movement primitive
framework is requested. This approach permits to avoid a motion library
and separate learning of each path feature, that would require multiple



38 Chapter 3. Dynamical Movement Primitives

Figure 3.8: Complete scheme from path recognition to generation of the move-
ment signal using a motion library of possible path features. Source:
[31]

training activities. This more traditional approach in a complete framework
is reported in [fig. 3.8], while the selected framework with single motion
primitive and velocity reference is reported in [fig. 3.9]. Obviously, the
more complex the trajectory, the higher the effort requested when using
only one single DMP, but a proper tuning of the parameters permits to
execute every path with no tracking problems.

The proposed approach does not sub-divide the path in smaller elements
but analyses it completely while imposing a variable reference velocity
along all the trajectory. An example of this procedure is shown in [fig.
3.10], where it is possible to see that the velocity output from the DMP
framework is shaped to be not constant but it varies accordingly to the
path features, while the standard DMP framework generates an almost
constant velocity profile.
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Figure 3.9: Complete scheme from path recognition to generation of the move-
ment signal in this thesis framework

(a) Path to be performed (b) Velocity profiles

Figure 3.10: Comparison of possible velocity executions of the same path (a):
in (b)-upper graph standard DMP velocity output,
in (b)-bottom graph the proposed DMP approach, with variable
reference velocity





Chapter 4

Experimental Setup

This chapter explains and analyses the test-bed used in all the phys-
ical experiments. The task specifications required the development of a
trajectory planning algorithm for a collaborative robot, so the research
focuses more on the algorithm and on its implementation, while only minor
modifications to the provided experimental setup are made.

The test-bed can be sub-divided into four main blocks [fig. 4.1] that
interact with each other through communication signals managed by the
workstation. All the algorithms that generate the trajectory and control the
robot run into a Robot Operating System (ROS) environment. The robot
used for the tests is a Franka Emika Panda, a collaborative robot with
7 DOF, which mounts at the EE a commercial caulking gun, a Makita
DCG180, which is connected at the manipulator through a custom flange
created ad-hoc [fig. 4.2].

All the physical arrangements and some useful building instructions
for the development of the 3D printed flange and the motorized system
that controls the sealant deposition, are available in [app. A].

4.1 Franka Emika Panda Robot

The robot provided for physical experiments is a Franka Emika Panda
[fig. 4.3]. This collaborative redundant manipulator is often selected in
numerous human-robot applications thanks to some peculiar features:

• Versatility: it can work in environments that require precision, force
application and sensitive handling;

• Compact design and redundancy: its small dimension is not a limit
since it can reach large workspaces [fig. 4.4];

41
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Figure 4.1: Scheme of the physical setup: from left to right there is an Ubuntu
workstation which commands both the Arduino Nano and the
Franka Controller that manage the robotic manipulator motion
and sealant deposition flow

Figure 4.2: Physical setup for the experiments: (1) Franka robotic arm,
(2) Makita caulking gun, (3) 3D printed custom flange



4.1. Franka Emika Panda Robot 43

Figure 4.3: Franka Emika Panda

• Immediate control: it is provided with an easy block programming
environment for simple task execution, but it also has a complete
library of control commands useful to program it for more complex
activities.

Several mechanical characteristics are interesting for various applica-
tions, from tracking motion to pick and place tasks. Franka Emika Panda
manipulator is provided of torque sensors on all the joints, which are useful
both for impedance control activities, both for precise motion control,
moreover, it has a high frequency controller (1 kHz) and high repeatability
in position.

Thanks to the additional DOF, the same EE position can be reached
with multiple configurations. Moreover, it is also possible to keep fixed in
space the EE, while moving the arm, which is important in a human-robot
environment because it permits to change configuration and adapt to
the background (this characteristic is possible since the dimension of the
operational space is smaller with respect to the one of joint space). The
extra DOF allows also to avoid singularity configurations and to better
distribute the motion above all the axes.

Generally speaking, working in a collaborative environment means that
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(a) Workspace side view (b) Workspace top view

Figure 4.4: Franka Emika Panda Workspace [mm]

not only the robot must be collaborative, but also the task to be executed.
Indeed, selecting the robot before knowing the task can be problematic;
consider the welding application, even if a collaborative robot is chosen to
perform the activity, the safety regulations of the mechanical procedure
impose the use of fences around the robot workspace, and so it is impossible
to work with human cooperation.

The sealing task does not present relevant risks for human operators,
which means that a collaborative robot can be selected to accomplish and
improve the reference task.

The collaborative nature of the robot refers to the manipulator capa-
bility to be inserted in an industrial environment where human operators
can enter the robot workspace during the working activity. Typically this
robotic characteristic is achieved only when a safety degree can be assured,
which means implementing collision-detection sensors, with low velocities
and low detection times, that can stop the execution when an external
force is sensed on the joints.

In the case of Franka robot, the safety condition is provided by very
fast detection time (smaller than 2 ms) and high-resolution torque sensors,
which are able to achieve [32]:

• Resolution < 0.05 N

• Accuracy < 0.8 N

• Repeatability < 0.05 N
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Figure 4.5: Franka Emika Panda datasheet relevant information. Source:
www.franka.de/technology

The total reaction time is less than 50 ms according to datasheet informa-
tion [fig. 4.5]. Moreover, rubber bumpers are placed on the robot arm to
allow a reduced impact force if an unexpected collision happens.

4.1.1 Franka Control Interface

The Franka Controller Interface (FCI) [fig. 4.6] provides the low-level
control of the robot, both for the hand and for the arm. The connection is
bidirectional, so it is possible to either provide commands to the robot, or
to read measured data, such as joint positions and torque values with 1
kHz acquisition frequency [33].

Through the FCI it is possible to compensate gravity and friction, to
command the robot cartesian pose (or velocity) or command joint position
(or velocity). All those different interfaces are available through libfranka ,

https://s3-eu-central-1.amazonaws.com/franka-de-uploads/uploads/Datasheet-EN.pdf
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Figure 4.6: Schematic of non real-time Franka Control Interface. Source: [33]

which is the robot open source library, written in C++. A list of the robot
controllers is shown in [fig. 4.7].

The library provides also measures of the joints actual positions, of the
applied torques and force sensing for collision detection from the external
environment. Those data can be useful for closed-loop applications, where
a feedback signal with the knowledge of robot states is necessary.

Controlling the robot and providing a proper execution signal, can be
done in two ways:

• Using the web interface, useful to control simple basic movements,
but not recommended for providing a complete motion execution;

• Using the ROS environment, which is an open-source operating
system commonly used for robotic control activities.

This thesis uses the more complete environment, ROS, which permits
to implement a complex motion and to analyse the output signals of the
robot itself.

Franka robots come with a build-in ROS package, called franka_ros,
which provides the commands needed to interface the Python or C++ code
with robot. The franka_ros library will be briefly described in [sec: 4.2].

The use of ROS framework gives the possibility to plan robot movements
and simulate them in a software simulator environment (Rviz ).
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Figure 4.7: List of the available real-time controllers for the robot. Source:
[33]

4.1.2 Panda Dynamic Model

The dynamical structure of the Franka Emika Panda robot is in ac-
cordance with its description of collaborative manipulator. This means
that some flexibility is admitted in the structure and in the specific case
it is concentrated at the joints. This structure is in accordance with
Flexible-Joint Robot (FJR), and so the joints must be modelled as elastic.

To derive the dynamics equations of the robot several standard assump-
tions must be made, according to [34]:

• Rotors are homogeneous bodies with the center of mass on the
rotation axis;

• In a N joints manipulator, each motor is mounted on the i− 1 link
and conveys a motion on the i-link, where i ∈ [1, N ];

• Rotors have an angular velocity generated only by spinning action.

Joints can be modelled with two inertial contributions, rotor and link [fig.
4.8]. The rotation generated by the i-motor, ϑi, is converted in a joint
rotation qi through reduction ratios and the connection between the two
masses is considered elastic, such that a mass-spring-damper system can
be modelled on every joint.

The i-motor mass is defined as mmotor, while the link mass is mlink.
The spring stiffness is modelled with the parameter k and the damping
term related to friction forces is d.

The complete dynamic equation studies the motion of the robot dynam-
ical system considering external torques and forces, damping actions and
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Figure 4.8: Flexible joint kinematic model

stiffness terms. For a N -DOF system, the joint coordinates are q ∈ <N×1,
and the dynamical model is a set of N equations [35–37]:{

B(q)q̈ + C(q, q̇)q̇ + g(q) +K· (q − ϑ) = 0

Jϑ̈+K· (ϑ− q) = τ
(4.1)

where:

• B(q) ∈ <N×N is the manipulator inertial matrix;

• C(q, q̇)q̇ ∈ <N×1 is the Coriolis vector and centrifugal forces term;

• g(q) ∈ <N×1 is the vector of gravity terms.

• K ∈ <N×N is the joint stiffness matrix.

In the second equation is reported the rotor side:

• J ∈ <N×N is the rotor inertia;

• τ ∈ <N×1 is the vector of motor torques.

For a deeper analysis on the dynamics of a FJR it is advised to look at
[38]. This thesis does not focus on the impedance control or force analysis
due to the nature of the task to be executed.
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4.2 ROS Environment

The numerical code that controls the motions of the robot communicates
with the manipulator itself and with the caulking gun using the ROS
framework. This environment permits to command signals both to robot
motion control system and to the Arduino board.

The communication between scripts written in traditional programming
languages (Python, C++ etc.) and the robot is permitted by the franka_ros
package, a build-in library that permits to receive numerical data and
to send them to the robot. Instead, the Arduino is connected with the
workstation through a Serial Port, that sends messages at fixed time rate
to control the extrusion (this section is in open-loop, assuming that the
servo motor does not saturates its torque).

4.2.1 ROS Nodes

The communication between the parts involved in the motion of the
robot is permitted using nodes, which are sub-groups of the robot applica-
tion that communicate with each other to retrieve data. Basically, nodes
are executable programs that run inside the application. According to the
ROS definition:

“A node is a process that performs computations. Nodes are com-
bined together into a graph and communicate each others using stream-
ing topics, remote procedure call services, and the Parameter Server.
These nodes are meant to operate at a fine-grained scale; a robot
control system will usually comprise many nodes.”

In order to transmit a message from a node to another, ROS platform
uses buses called topics. Whenever a node is sending a signal, the procedure
is referred to as node publishing a topic, instead when a node is receiving
a message coming from a topic, then the node is subscribing to a topic.
A graphical representation of a single topic communication is reported in
[fig. 4.9], where it is also schematized the registration to the ROS master
environment. In complex systems, it is common to have multiple publishers
and multiple subscribers which exchange different message types over many
topics.

The ROS implementation performed in this thesis for the off-line motion
planning required the generation of one publishing node and one subscribing
node needed to send position messages from the Python code to the
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Figure 4.9: ROS standard communication

Figure 4.10: ROS structure: the Python node commands the robot positions
(PoseStamped) to the Franka node and it receives back the actual
robot position (Pose)

robot manipulator. The ROS node-topic framework related to the control
structure analysed in this work is reported in [fig. 4.10].

4.3 Flange for Caulking Gun

The provided testbed requires the use of a commercial caulking gun,
the Makita DCG180, for the implementation of the silicone deposition.

A physical limitation of the testbed was related to the mechanical
connection between the robot EE and the caulking gun handle. The
standard EE with the grasping hand [fig. 4.11] could not provide a rigid
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Figure 4.11: Franka Emika Panda standard gripper

connection between the two parts, so it has been studied and realized
through FDM 3D printing a custom flange which permitted a stable and
rigid application of the calking gun to the EE [fig. 4.12].

The designed flange firmly connects the gun to the robot EE, while also
providing a control of the silicone extrusion using a servomotor. During the
development of the flange, the following problems have been considered:

• Boundary matching: the design had to match the profile of the
robot flange (DIN ISO 9409-1-A50) and the shape of the gun handle;

• Motor action on the trigger: the motorized rotation-to-translation
mechanism generated by the servomotor;

• Stiff connection, to prevent unwanted vibrations on the gun tip
(which would result in poor quality of the deposition);

• Compactness, which intrinsically permitted to avoid collisions with
the robot arm.

The flange has been fully produced through FDM 3D printing, while some
commercial M6 screws have been inserted to connect the piece to the robot
EE with a clamped configuration.

During the design stage it has been defined the optimal system to
perform the silicone extrusion: according to the datasheet of the caulking
gun, the flow rate should have been proportional to the push on the trigger,
while the experiments proved that the gun works with a mainly on-off
system. Since the task requires a modulated extrusion rate of material, a
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Figure 4.12: Close-up of the custom flange on the rack-pinion mechanism side.
The red part is connected to the EE, while the grey part contains
the motorized mechanism

Pulse-Width Modulation (PWM) strategy has been used to control the
silicone flow.

To activate the extrusion, a rack-pinion mechanism motorized by a
servomotor has been selected. The pinion is driven by an Arduino-controlled
servomotor and the rack moves back and forth pressing the trigger [fig.
4.13].

For a complete implementation of the push mechanism it has been
discussed the proper control strategy, with manual or automatic activation.
In the former case it has been used a potentiometer which worked as a
knob, while in the latter one the command signal is directly fed into the
Arduino by means of a serial communication with the computer.

The automatic activation through a command signal is preferrable to the
manual one, because it is possible to numerically generate a proper control
signal that precisely presses the trigger, while in the manual case, the
operator controls the execution, causing a reduction in the automatization
of the task, and in reproducibility of the results. However, in both cases,
it has been verified that the caulking gun never saturates its pushing force
(5 kN from datasheet) since the overload warning light has never switched
on.
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(a) OFF state (b) ON state

Figure 4.13: Trigger activation, rack-pinion mechanism

4.3.1 Motor Controller

The trigger activation mechanism has been controlled with a servomotor
that has an angular excursion of ' 120◦ and a rating voltage of 5 V. Since
the current absorption is very low, it can be directly fed by the Arduino
board, which is connected to a 5 V power supply. The board also needs
an USB connection with the workstation, which is necessary for the serial
communication.

The angular position of the motor must be experimentally evaluated
in order to increase precision of the rotation-to-translation mechanism.
Knowing that the motor receives as an input a pulse of ' 500÷2500
µs, where the two limit values correspond to the angular limits in both
directions, the tuning of the motor consists in relating the pulse signal
with the angular position of the motor itself. In the analysed case, the
servomotor is connected with the rack-pinion mechanism, that controls
the push on the trigger [fig. 4.13], so it is possible to directly correlate the
pulse duration with the gun trigger pression.

The Arduino library Servo.h has been used to control the motor.
This environment has built-in functions that permit to directly generate a
motion by specifying the pulse duration in µs. The Arduino code used to
manage the motor is provided in [app. A].

PWM Flow Controller

The deposition flow rate has been set to be proportional to the cartesian
velocity of the TCP with an experimental correlation (i.e. max extrusion
rate at max EE speed and vice versa).

Since the extrusion control has a much lower bandwidth with respect
to the ROS node which manages the robotic arm (which works at 1 kHz),
the silicone flow is set with an update frequency of 5 Hz.

In order to modulate the silicone extrusion, the PWM control strategy
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Figure 4.14: Example of PWM with a total duration of 0.2 s: the two cases
show different duty cycles for different flow rates

has been used. Practically, each fifth of second (i.e. with a 5 Hz frequency)
the gun trigger is pushed with a pulse of variable duration [fig. 4.14]. This
duration is close to 0.2 s at maximum flow rate and conversely tends to zero
if the flow rate is minimum. This strategy permits to have a mean flow rate
that varies accordingly with the wished extrusion rate. The fluctuations of
the square wave are negligible if the frequency is high enough with respect
to the system dynamics.
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Algorithm Development

This chapter reports all the data processing steps needed to obtain the
final target trajectory that must be fed into the robot controller. This
procedure permits to switch from a generic reference path (input), to an
output trajectory which is approximated through DMP with an appropriate
punctual velocity reference.

Before analysing the effective planning strategy, the sealing process
must be analyzed. Typically, when an expert operator performs a manual
sealing task, the caulking gun is rotated of a certain angle α in the direction
of movement, with respect to the orthogonal axis of the deposition plane
[fig. 5.1]. This manual configuration permits to deposit the sealant in a
proper way, while also avoiding nozzle clogging.

In the proposed study-case, the collaborative robot will not have any
problems in maintaining a precise vertical offset form the deposition plane,
so proper results can be achieved by working vertically (i.e. α = 0), as
for a typical material extrusion of a FDM 3D printer [chap 2.3]. Keeping
fixed the EE orientation allows to have a wider bi-dimensional operational
space because the piston of the gun will not interfere with manipulator arm
movements. Moreover, fixing the orientation permits an easier planning of
the robot pose, since the Euler angles remain constant all over the path.

The task to be executed requires a TCP coordinate definition in 3D
space, but since the trajectory of interest is just bi-dimensional, the problem
can be analyzed in a simpler way. Indeed, the general EE pose (2.1) in 3D
is characterized by 6 parameters for each point of the path, but considering
the caulking gun perpendicular to the plane of the path, the EE pose (2.1)
has fixed orientation (φe) and fixed vertical offset (z) along all the path.

In order to optimize in time and quality the sealant deposition process,
the proposed approach analyses the execution velocity as a critical parame-
ter that must be tuned accordingly with the path features. This trajectory

55
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Figure 5.1: Different approaches for the gun pose definition: on the left there
is a perpendicular deposition, while on the right the gun is inclined
in the forward direction of an angle α

Figure 5.2: Scheme of the data-processing steps

characterization is strictly related with the background of the sealing task.
To perform a time optimization of a silicone deposition, the process

mean speed must be increased, but completely different path features
(straight line VS very tight curve) cannot be approached in the same way
otherwise the final extrusion quality would be highly penalized. To solve
this issue, it has been developed a code which automatically selects the
right velocity accordingly to the feature that the robot is performing.

The complete algorithm is composed of several pre-processing steps
before the motion planning one (DMP), which are necessary to generate
a correct signal, in terms of limit accelerations and smoothing analysis.
These sub-blocks are reported in sequence in [fig. 5.2], while a clearer
description of each part is provided in the following sections:

• Path re-sampling

• Curvature analysis

• Spatial velocity reference

• Acceleration and deceleration limits

• DMP execution
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The complete algorithm is developed to be modular. This means that
each block can be independently modified and adapted to the task setup.
In this thesis each block is tuned to work with the provided robot and
with the given caulking gun.

In [fig. 5.2], the input (ydes) is an array of points in cartesian coordinates
which can have any spatial discretization as the first step of the process is
a spatial re-sampling. This first passage is required to provide a general
framework, able to acquire any kind of via-points that characterize a path:
i.e. a straight line can be encoded at least with the two endpoints, but also
with an array of whatever point density. Also, curves can be mapped with
a low number of points, but obviously it would cause a poor resolution.

5.1 Path Re-Sampling

Since the core of the trajectory generation is the velocity reference, it
is important to consider not only the path geometry, but also the time
instant in which each point is reached. So, the first thing to do is to have
a general formulation for the path to be reproduced.

It has been assumed that a curve will have a different optimal velocity
with respect to a straight line. This means that the code must be able to
automatically distinguish between different path features.

Analysing the path geometry for sealing deposition depends on the
characteristic dimension of the caulking gun nozzle. The same curve can be
defined as large or tight according to the nozzle diameter itself. Whenever
the dimension of the tip is comparable with the feature, then the curve is
tight, instead if the feature is way bigger, the curve can be called large.

In [fig. 5.3] is represented a nozzle performing a hairpin turn: the
different subfigures show a qualitative representation of the behaviour
using different point density with respect to the length of a single nozzle
diameter.

As the number of points-per-diameter increases, the path definition
rises, but in physical applications too many points are useless because the
path would be over-characterized, causing at first larger computational
effort, but also inability of the nozzle to reproduce such small features. A
good trade-off between proper representation and low amount of data to
be managed is selected at: 4 pts per diameter . This parameter is very
important for the first re-discretization of the path, that rejects features
that are too small to be represented. This behaviour intrinsically smooths
the path, applying a sort of filtering effect to the reference input.
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Figure 5.3: Analysis of the point density along the path: the gray circle repre-
sents the nozzle at each point along the natural coordinate during
a hairpin turn (red curve). The path geometry and the nozzle
diameter are kept constant, while the point density increases. It
can be seen that a high density better approximates the curve.
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Given a series of Npts points expressed as XY coordinates:

ydes,i = [xi, yi] , i ∈ [0, Npts] (5.1)

they are re-sampled to be equally spaced, accordingly with the nozzle
diameter re-parametrization (4 points per diameter). It can be defined the
point density as:

ptdensity =
4

dnozzle

[pts]

[mm]
(5.2)

and the spatial step ds as:

ds =
1

ptdensity

[mm]

[pts]
(5.3)

At last, it is obtained the re-sampled path, yeq−space, with a number of
points Nnew equally spaced along the natural coordinate s:

Nnew = lpath · ptdensity (5.4)

where lpath is the total path length.

5.2 Curvature Analysis
From the re-sampled path, it is possible to analyze the curvature along

the natural coordinate. The aim of this process is to create a single
parameter, which defines punctually the characteristic of the path, i.e. it
must be identified if the EE is approaching a straight line or a curve.

Without loss of generality, straight lines can be considered as curves
of infinite radius, which permits to analyse the path by checking the
curvature of each feature. The tighter the curve, the higher the value of
the characteristic parameter defined as: steering.

5.2.1 Steering Parameter

The evaluation of the steering parameter requires the analysis of the
path: yeq−space(s). Basically, the slope is evaluated as the derivative of the
y-coordinate with respect to the x-coordinate:

slope =
dy

dx
(5.5)

then, the punctual steering value is described as the difference between
the inclination of the path:

steering = dβ (5.6)
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Figure 5.4: Example of vector of length 7 spaces, that approaches a curve

where β = arctan 2(dy, dx) is the inclination angle with respect to the x
axis.

The numerical analysis defines the steering value in the ith point with
the use of finite differences and a vector of length n; the procedure is here
reported with also a graphical representation [fig. 5.4]:

• the vector vi,i+n is defined, connecting the actual ith point under
analysis with a following one n points after;

• the vector vi+1,i+n+1 is defined, connecting the subsequent point with
respect to the one under analysis (ith + 1) with another point of n
spatial steps after;

• the angles between those two vectors and the horizontal axis are
computed: β(si) is the angle between vi,i+n and the horizontal axis,
and β(si+1) is the corresponding for vi+1,i+n+1;{

β(si) = arctan 2 (yi+n − yi, xi+n − xi)
β(si+1) = arctan 2 (yi+1+n − yi+1, xi+1+n − xi+1)

(5.7)

• the steering in the ith point is defined as the difference between
β(si+1) and β(si):

steeringi = β(si+1)− β(si) (5.8)

This analysis uses a moving vector to characterize the path; to better
explain this concept it can be imagined to have a vehicle moving on a
track; when it has to approach a curve its direction changes and the higher
the change of direction, the tighter the curve. Also, the size of the vehicle



5.2. Curvature Analysis 61

Figure 5.5: Example of different feature executions for two bodies which have
a very different length

affects the perception of the curve, indeed the shorter the vector (nmin = 1)
the more localized and sudden is the curvature effect. This parameter must
be precisely tuned to define the smoothing effect during the execution of
the track.

The difference between two consecutive values of β gives an idea of
the geometrical feature in that point of the path. It is easy to notice that
in the middle of a straight line, the angle computed with respect to two
subsequent steps will be the same, and consequently steering will be null.

5.2.2 Steering Vector Length

The choice of the vector length (in terms of points n) plays a funda-
mental role in the path analysis. A brief analysis is reported in [fig. 5.5],
where two different vector lengths are compared. Firstly, if considered a
very long body, it will not be able to characterize properly small features



62 Chapter 5. Algorithm Development

(in terms of steering value), indeed it will act as a filter on very sharp
directional changes.

Conversely, if the body is too short, it will properly characterize the
curve, but it will not recognize it enough steps in advance, causing a sudden
change of direction that will not smooth the execution velocity before the
curve itself. Moreover, a short vector may result in high fluctuations of
the steering value, which will affect the velocity reference.

This behaviour is not proper for good material deposition, which would
be negatively affected by discontinuous and sudden velocity variations. A
proper task execution is achieved only with smooth velocity variations,
so it makes no sense to have sharp changes in the steering (even if the
velocity variation is then processed taking into account the acceleration
limit).

In [fig. 5.5] are reported two opposite situations when facing a sudden
phenomenon: with a vector length of 3 ds, the geometry is well character-
ized in terms of direction change, but the feature is noticed too late. The
opposite behavior refers to the case of 9 ds length: the small path discon-
tinuity is recognized many steps in advance, but the sudden directional
change is not properly defined.

The numerical result of the analysis on the profile shown in [fig. 5.5] is
reported in [fig. 5.6] for the case of n = 3, n = 5 and n = 9. The different
steering profiles are:

• n = 3: slope perception only in correspondence of the slope, this
causes a large punctual steering value variation;

• n = 5: intermediate feature perception, this permits to achieve a
trade-off between smoothing and preparation to face the curve;

• n = 9: earliest perception of the change of slope, smoother final
profile with lower peaks.

Another example is reported in [fig. 5.7], where multiple vector lengths
are compared in correspondence of a hairpin turn. The longer the vector,
the sooner the curve is approached.

Considering the dimension of the geometrical features of interest for
the thesis topic, the best trade-off has been shown to be a body of length
n=5 . This dimension is a bit more than two times the nozzle diameter
and permits to well characterize small curves, while also generating a
smoothing effect on the punctual variations that are not advised for the
velocity reference generation.
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Figure 5.6: Steering value for different n lengths: the higher n, the smoother
the steering profile. For n = 3 the steering variation is sudden and
with higher variation, while for n = 9 the profile has lower peaks
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Figure 5.7: Hairpin turn performed by different body lengths

5.2.3 Steering Post-Process

Before proceeding with the velocity analysis, it is important to mention
some considerations on the steering parameter:

• It is not relevant if the curve is left-wise or right-wise, so the absolute
value of steering is considered;

• Very sharp edges cannot be performed at near zero speed, because
it would mean to stop the process, so the steering is clipped at a
maximum value (which will be correlated to the minimum velocity
in the definition of the FL controller);
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• Smooth velocity profiles are preferred for the task execution since
they reduce vibrations, so a moving window mean is applied to the
punctual value of steering. This passage permits to achieve an extra
smoothing (i.e. if a small straight line is placed between two curves,
the algorithm should not produce a high velocity reference between
the features, because it would cause a big acceleration/deceleration.
It is then preferred to have a slower velocity increase/decrease).

A sketch of code in which the steering value is computed, is reported in
[lst. B.1].

Once all those data-processing techniques have been applied, the veloc-
ity reference can be defined.

5.3 Spatial Velocity Reference
The post-processed steering parameter can now be related with the

velocity reference. Since a mathematical formulation of the velocity is
not obtainable in closed form due to the highly experimental setup, a FL
controller has been chosen for the definition of the velocity reference.

5.3.1 Fuzzy Logic Controller

The FL is a generalization of the classical Boolean algebra [39]. In
binary logic, a sentence can assume only two values, True or False (or
alternatively {0, 1}), while in FL each concept is expressed through a
degree of truth belonging to the full interval [0, 1].

This framework is widely adopted in decision making processes, since
it well replicates the way in which the human brain takes decisions. The
selection of FL is suitable whenever a mathematical model of the system
does not exist or when the system is difficult to be modeled, as in the
case of the presented work. Moreover, due to its capabilities of smoothly
passing from one output to another one and of allowing for an input to
belong to more than one class, FL is able to work with vague information
[40].

Fuzzy Logic Model

The FL controller transforms a crisp input value into a crisp output,
using Fuzzy sets to characterize the input and outputs and an inference
system as decision making process [41]. The basic steps of the procedure
are schematized in [fig. 5.8].



66 Chapter 5. Algorithm Development

Figure 5.8: Fuzzy Logic block scheme

Class name Steering Values Class name Velocity Values [mm/s]

Very tight curve [0.22, 0.5] Very slow [0, 30]
Tight curve [0.1, 0.45] Slow [15, 48]
Large curve [0.02, 0.22] Medium [30, 75]
Straight line [0, 0.1] Fast [66, 80]

Table 5.1: Input-Output Fuzzy Rules in [fig. 5.9]

The main characteristic of FL is that it allows partial belonging to
more than a single class during the fuzzification procedure. In this way,
an input value can be described by its degree of belonging to each class,
instead of defining it with only a single class (as in the case of classical
logic).

In [fig. 5.9] are reported the Fuzzy sets used in this thesis. Accordingly
with the experimental setup, there are been defined four classes, both for
the input steering parameter, both for the output velocity reference. The
selected values are reported in [tab. 5.1].

For example, considering the [fig. 5.9a], a steering value of 0.13 is
related to: 80% of a tight curve and 37.5% of a large curve. The fuzzy
process will define the output velocity value by considering these degrees
of truth. The fuzzified input is processed by an inference engine, which
considers a set of fuzzy rules to relate the input action to the output
one. Typically, the rules are if-then clauses. In reference to the previous
example, they can be:

“If the path feature is a straight line, then go fast”

“If the path feature is a small curve, then go slow ”

In this thesis a Mamdani inference model has been used [fig. 5.10],
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(a) Fuzzy input membership functions

(b) Fuzzy output membership functions

Figure 5.9: FL membership functions

which basically states that the degree of truth of the consequent of a Fuzzy
rule is equal to the one of the antecedent [42]. In case there is more than
just one antecedent rule, these are merged together with a min t-norm
operator, while in cases in which there are more than just one consequent,
they are combined using a max s-norm operator. The min t-norm assigns
to the consequent (green in [fig. 5.10]) the lower degree of truth between
the ones of the antecedents (red and blue in [fig. 5.10]), while the max
s-norm combines the consequents into the output evaluating for each point
of the discretization the maximum values of the consequents (orange in
[fig. 5.10]). The crisp output is typically computed evaluating the center
of mass of the max s-norm output.
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Figure 5.10: Example of Mamdani Fuzzy inference engines which uses min
t-norm and max s-norm

5.3.2 Fuzzy Logic Tuning

An experimental campaign is needed to tune the velocity references:
both the membership functions of the input and the output must be
identified.

Some standard features, like straight lines and different-radius curves,
are chosen as references, then some experiments are performed to establish
the best suited velocity for performing the feature. Once the matching
velocities have been evaluated, they are related with the corresponding
steering value set computed for that reference feature.

The standard geometries should be chosen to well-represent the full-
scale values of the steering parameter, then all the other intermediate
curves will be characterized by a velocity reference which is computed
by the FL controller. The full-scale of the fuzzy input must match the
steering value (i.e. from zero to the clipping value), while the output scale
must be from a near-zero velocity, to the maximum velocity reachable in
the physical setup (i.e. it is selected the lower value between the maximum
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Figure 5.11: Fuzzy I/O relation

deposition speed and the maximum robot velocity). The obtained FL
membership functions are reported in [fig. 5.9], as well as the input/output
relation [fig. 5.11].

5.3.3 Considerations on the Velocity Reference

It must be remembered that up to now the steering and velocity are
computed as function of the spatial coordinate s (instead of using time).
This means that the “classical” formulation of velocity as function of time, is
here expressed as function of space. This approach is necessary to define the
punctual velocity along the natural coordinate, while time characterization
is not addressed yet.

Since the DMP formulation requires an input expressed as an array of
points function of time, the FL output is manipulated to match the DMP
requirement. Using the definition of mean velocity:

vmean =
∆s

∆t
(5.9)

it is possible to compute the time interval between each step. Such that:

dti,i+1 =
si+1 − si
vmean,i

(5.10)
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Figure 5.12: Mean velocity along the natural coordinate

where the spatial step ds = si+1−si is fixed according to the first resampling
where yeq−space has been defined. The mean velocity of the space step is
simply:

vmean,i =
vi+1 + vi

2
(5.11)

Since the spatial step is fixed along all the path, the time steps will be
variable, depending on the instantaneous velocity value. The procedure is
reported in [fig. 5.12]. The desired output trajectory will be described as
cartesian points function of time. The cartesian axes need to be reversed
to pass from t(s) to s(t). This procedure is executed together with the
acceleration limit evaluation, which is explained in [sec. 5.4].

A last consideration on the velocity profile has to be made: in order for
the path to be feasible, both starting and ending velocity have been set
to be null, otherwise the signal sent to the robot would require a sudden
acceleration in starting and ending conditions.

5.4 Acceleration and Deceleration Limits

Some considerations similar to the ones proposed during the velocity
analysis, have to be done also for the acceleration: if the steering parameter
suddenly changes, it will result in a velocity gradient that cannot be
achieved by the system dynamics. In this case the proposed solution
sets the maximum acceleration (and deceleration) by relaxing the time at
which each point is reached; the algorithm changes when dealing with an
acceleration or a deceleration case. This passage of the process works with
the mean velocity for computing the time step, so directly with the data
manipulation procedure explained in [sec. 5.3.3].
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Figure 5.13: Graphical explanation of the procedure used to limit the accel-
eration. The fuzzy output, vfuzzy, is modified to match the
acceleration constraint. In the deceleration case the backward
modification of the fuzzy velocity, vfuzzy(si), may propagate to
multiple previous steps: vout,back(si), vout,back(si−1) etc.

It has been developed a code which examinates all the velocity references
at each s point:

• compute the mean velocity vmean,i for the ith step (5.11);

• compute the time step dti (5.10);

• compute the acceleration ai:

ai =
vmean,i
dti

(5.12)

• check the acceleration limit: ai < alim.

If this value, ai, matches the imposed limits of the algorithm it is possible
to proceed with the time characterization of the path, otherwise the time
required to compute a step from si and si+1 is locally increased to reduce the
acceleration. The procedure is reported in [fig. 5.13] with the acceleration
and deceleration cases.
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The acceleration limit is firstly explained since it is simpler with respect
to the deceleration one. If the new point si+1 has a time step that does
not match the acceleration limit, the time step is simply increased up to
the convergence of the acceleration value ai+1 ⇒ alim. This increment in
time requires a consequent reduction of the mean velocity and so of the
velocity reference at the point considered (the previous point is considered
as fixed).

The deceleration limit is a bit more complex, since the computed
velocity vfuzzy(si+1) value is fixed and cannot be increased to match the
deceleration limit, otherwise it would exceed the limit imposed by the
FL (if the FL assigns a velocity, it is assumed that this is the maximum
one at which that path feature has to be executed). Starting from the
last computed velocity value vfuzzy(si+1), the code proceeds backward
step-by-step reducing the previously computed velocities vfuzzy(si) till
an acceleration convergence. In this way, the right velocity at the last
computed point si+1 is guaranteed, and by decreasing the previous velocity
values also the mean velocity for each step reduces, till matching of the
deceleration limit. This procedure is repeated backward step-by-step, while
keeping the previously computed velocities still below the FL limit.

The code with the procedure is shown in [lst. B.2].

5.5 DMP Execution

After the velocity characterization of the FL controller, the original
taught path, ydes, becomes a trajectory with a proper time law, yref , that
can now be executed with the DMP framework [chap. 3]. The DMP
process can be subdivided in 3 steps:

• DMP initialization, which generates the framework with the CS and
the basis functions;

• Path imitation, in which the weights of the Gaussian basis functions
and the forcing action f are defined;

• DMP rollout, which generates the final EE reference.

The first two steps are executed offline, while the generation of the TCP
reference position to be sent to the robot controller can be computed either
offline or online. The former case is suitable when there is no positional
feedback from the robot (i.e. the trajectory is computed a priori and no
collaborative behaviour is implemented), while the latter computes at each



5.5. DMP Execution 73

time step the reference for the next step, allowing to consider a feedback
from the robot.

5.5.1 DMP Initialization

The DMP framework is initialized using 4 parameters:

• Number of DMP;

• Number of basis functions, Nbfs;

• Time step, dt;

• Runtime, Ttot.

The DMP number and the runtime are trivial, since they are equal
to the number of DOF (in the presented case 2 DOF: x and y), and to
the total duration of the execution, respectively. Instead, the other 2
parameters need some further considerations.

In general, the higher Nbfs, the more accurate is the path reproduction,
but the computational costs rises with it. The number of basis functions
needs to take into account both the most critical feature and the path
length; a sharp edge requires a high density of basis functions to be
properly defined and conversely, the longer the path, the less dense the
basis functions. It must be underlined that the selection of the Nbfs must
be related also to their variance; if numerous functions are required, their
shape can be very narrow, generating a very local action, indeed if a low
amount of functions is preferred, they cannot be as narrow as the previous
case, otherwise the basis function distribution would leave big gaps that
would not characterize all the path.

In this thesis work, Nbfs = 2000 has been chosen as trade-off between
reasonable computational time and accuracy of the reproduction (referred
to a path shorter that 1 meter with some straight edges).

The time step has instead to be chosen accordingly with the wished
time resolution. Together with the runtime, this parameter defines the
number of cycles that the algorithm must perform (i.e. the computational
costs). A good choice related to the system dynamic has shown to be dt
= 0.01 s. If the time step is lower and the trajectory is not trivial, it
is possible to face problems of small oscillations on the output velocity
profile.
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5.5.2 DMP Imitation

The imitation procedure refers to the computation of the non-linear
forcing actions that are defined through the values of the Gaussian weights.
The LWR algorithm has been chosen for the weights evaluation [sec. 3.2],
since it is a widely adopted method that allows each kernel to act only
close to its center.

In the proposed work, the taught path has been analytically defined,
so only one path is fed into the learning algorithm. Indeed, there is no
need to average many demonstrations to smooth out path errors, as for
human teaching situations.

5.5.3 DMP Rollout

The rollout step refers to the discrete evaluation of the DMP system
evolution. In cases of no error dynamic (i.e. there is no feedback with the
robot actual state), the trajectory output of the DMP framework, yout can
be computed offline in one passage. Otherwise, if it is needed a feedback
action on the robot positions, the rollout must be executed in real-time
step-by-step.

In the online computation, the workstation needs enough computational
power to perform the calculus of a discrete step in a time which must be
lower than dt.

A simplified version of the Python code which perform these two
processes is presented in [app. B]. The DMP discrete step is reported in
[lst. B.3], while the error dynamic is executed in the same branch of code
which manages the communication with the Franka controller [lst. B.4].
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Experiments and Results

The experimental part of this thesis is mainly subdivided in two steps:
first of all the physical setup must be calibrated, then some validation
tests are performed in order to show the improved results of the proposed
method with respect to the standard DMP approach.

All the calibration procedure is strictly related to the specific test-
bed provided [fig. 6.1], but the main approach can be generalized to
other applications. One main limitation is related to the dynamics of
the robot that cannot be exploited at its nominal values since it would
create unacceptable vibrations of the gun nozzle. The maximum allowed
acceleration must be addressed before starting the deposition experiments,
based on the EE dynamic response. In these tests, the robot is moved
back and forth with increasing values of acceleration up to the point in
which the caulking gun tip starts vibrating consistently.

This preliminary analysis is firstly performed on a straight line path
using a very basic Trapezoidal Velocity Profile [sec. 2.2.1], and then it is
verified on a more complex trajectory [fig. 6.2], especially in correspondence
of big changes of direction. It has been shown that moving the gun with
an acceleration higher than 30 mm/s2 produces undesirable vibration of
the tip, so even if the robot can easily achieve higher linear accelerations,
this value has been fixed as limit threshold.

Once the acceleration has been fixed, the analysis can proceed with the
tuning of the FL shape functions and of the silicone extrusion flow. As
widely explained in [chap. 5], the FL is tuned on standard path features,
while the material deposition has been set to be proportional to the EE
velocity.
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Figure 6.1: Physical test-bed with used workspace

Figure 6.2: Validation of the limit acceleration value. Complete path analysis
with alim = 80mm/s2. Clear unwanted vibrations in correspon-
dence of big directional changes
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6.1 Tuning of the Fuzzy Logic Controller

The FL must be tuned to assign a proper execution velocity to each
path feature. This requires to select some reference geometries (straight
lines and different radius curves) and to relate them with an EE velocity.

Four standard features have been selected:

• a straight line;

• a very wide radius curve (radius ' 40 mm);

• a middle-radius curve (radius ' 25 mm);

• a hairpin curve (radius ' 10 mm).

The main problem faced during the FL tuning concerns the steady
state flow condition: to have a stable material deposition, it should be
created a long path with constant steering value. This behaviour is wished
since the caulking gun extrusion needs some transitory time to stabilize.
While this phenomenon is trivial in case of a straight line, which can be as
long as wished, a curve cannot be longer than a complete revolution and
steady state condition is not necessarily reachable in one turn. Even with
many concatenated curves, in the junction point the steering parameter
has a variation which leads to a variation of the flow.

Since the steady-state condition cannot be reached in narrow curves,
FL tuning is preferred on a complete path, such that it is possible to
study not only the single feature execution, but also the deposition in
transitory junction points. This approach permitted to tune individually
many geometrical features while performing just one trajectory.

6.1.1 Fuzzy Logic Results

The FL membership functions which are optimized for the reference
task are shown in [fig. 5.9]. With those shape functions, it is possible to
have the experimental input/output correlation which is reported in [fig.
5.11].

Those relations have been obtained with many rollouts of some example
paths. For what concerns the straight lines analysis, it has been used the
trajectory in [fig. 6.3], where the time-law is a Trapezoidal Velocity Profile
[sec. 2.2.1] with vmax as tuning parameter. Only the center part of the
longer straight line is considered, since the junction lines are executed at a
lower speed, resulting in material stack. Lack of material in [fig. 6.3] has
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Figure 6.3: Reference path for the characterization of the membership functions
related to the straight line. This example shows a lack of deposition
in (1) due to nozzle contact with the plane, proper deposition in
(2) and excess material in (3).

been addressed to misalignment of the deposition plane, indeed when the
nozzle touches the plane the extrusion is blocked.

For the curve analysis, two complete paths have been used, [fig. 6.7d]
and [fig. 6.7e] respectively. Those two trails have been studied with the
complete algorithm, using the modified DMP framework. The curves have
been tuned individually, considering their steering value and optimizing
the execution velocity.

6.2 Calibration of the Deposition Flow

The silicone extrusion rate must be modulated with respect to the EE
velocity in order to avoid material stockpiles when the EE moves at low
speed and conversely material lacks when the EE is at full speed. An
example is reported in [fig. 6.4].

As explained in [sec. 4.3.1], the caulking gun control is performed
through a PWM technique. This is the selected strategy since the caulking
gun trigger pression is not able to modulate the silicone extrusion (as was
initially expected according to the caulking gun datasheet). The material
deposition rate is maximum when the trigger is continuously pushed, while
it is minimum if the trigger is pressed intermittently with a very short
push. Accordingly with the PWM control strategy, the maximum flow will
be referred to 100% duty cycle, while the minimum flow to 0% duty cycle.

The gun is designed to be used by a human operator, so it implements a
drip catching feature that quickly cuts-off the extrusion when the trigger is
fully released. This characteristic is very useful when performing a manual
sealing application, but it is cumbersome in this automatic execution, since
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Figure 6.4: Excess deposition in hairpin curves due to extremely reduced speed
and unproper material flow. The two parameters must be correlated
to find a good extrusion quality.

it instantaneously nullifies the pression inside the cartridge. Experimentally
it has been shown that if the trigger is not fully released, the drip catching
procedure is not executed, so the low level of the PWM square wave has
been set maintaining the trigger slightly pressed. Conversely, the high level
is set with the trigger pressed with an intermediate stroke such that the
servomotor has only a limit angular distance to perform (increasing the
bandwidth of the system).

It can be assumed that the flow rate is proportional to the transversal
movement of the nozzle, but the relation between the trigger pression
and the extrusion is highly non-linear. To characterize the EE velocity
with a proper material flow, a simple test has been designed: the EE has
been moved linearly with a Trapezoidal Velocity Profile [sec. 2.2.1] with a
constant PWM duty cycle. Only the middle part of the line is considered,
neglecting boundary effects related to the acceleration stages.

This experimental analysis required a lot of trials, so only a small part
is presented in [fig. 6.5] with the related test data shown in [tab. 6.1].

The executed procedure is always the same, but due to the poor
repeatability of the caulking gun, the same parameters were tested many
times to average the results and smooth out the wrong depositions.
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Figure 6.5: Deposition flow rate tuning procedure, depending on EE velocity
and duty cycle. Testing parameters are shown in [tab. 6.1]

Test Duty cycle
[%]

vcruise
[mm/s] Notes

1 80 50 Almost finished cartridge
2 80 50 Almost finished cartridge
3 90 50 Unstable flow
4 80 50 Target quality reached - flow set
5 90 65 Target quality reached - flow set
6 100 80 Correct flow but wrong vertical offset

Table 6.1: Tuning parameters and notes of experiments shown in [fig. 6.5]

6.2.1 Flow Results

The experimental correlation between the EE velocity and the silicone
flow is obtained with a linear interpolation of the test points. Five different
velocity values have been evaluated, with the addition of the null flow
condition (achieved with near-zero duty) at null speed:

vvect = [0, 20, 35, 50, 65, 80]
mm

s
(6.1)

The results have been collected in [tab. 6.2], while a graphical repre-
sentation of the correlation is shown in [fig. 6.6].
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Figure 6.6: Linear interpolation procedure used to obtain a continuous relation
between velocity and flow duty cycle

EE Velocity [mm/s] 0 20 35 50 65 80

Duty Cycle [%] 2% 8% 22% 80% 90% 100%

Table 6.2: Duty cycle of the PWM modulation that controls the silicone extru-
sion, as function of the EE velocity

6.3 Testing Paths

Once both the feature velocities and the related deposition flow have
been addressed, the algorithm must be experimentally validated on com-
plete trajectories. The validation procedure has been carried out on
different paths [fig. 6.7], comparing the standard DMP execution proposed
by Ijspeert and Schaal [4] with the modified approach introduced by this
thesis work.

Each path has been generated to create some challenges for the planning
algorithm:

1. Different radius curves [fig. 6.7a]: the curve radius is progressively
reduced, so that the last curves (small radius) must be executed with
a slower reference velocity with respect to the initial ones (larger);

2. Saw tooth [fig. 6.7b]: the corners have a sudden directional change,
which allows to test the algorithm against this sort of discontinuity;
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Figure 6.7: Different proposed paths
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3. Square spiral [fig. 6.7c]: the main feature of the square spiral is
that the straight edges get closer while the spiral converges. This
results in shorter straight lines and consequently a lower acceleration
time;

4. Generic path 1 and 2 [fig. 6.7d, 6.7e]: complete trajectories that
contain a general sequence of standard features.

6.4 Results
During the experimental session, some issues related to the setup were

found. Here a list of the major problems and corresponding solution is
reported:

• The collaborative nature of the robot implies soft position tracking:
each joint, even with a good tracking control, results to be a little
movable if some external force (as example, a manual push of the
operator on the robotic arm) acts on it, with the consequence of
reduced precision compared to an industrial robot;

• The workspace was not stiffly connected with the robot base, resulting
in some small misalignments between different runs;

• The manual caulking gun has very poor repeatability: with the same
code and parameters, the results may significantly change: [fig. 6.8]
shows two subsequent runs of the same algorithm with the same
tuning parameters; the big difference in result is probably due to
the commercial caulking gun commanded with a force on the piston
instead of an extrusion velocity and to the cartridges;

• The silicone cartridge flow depends on the residual amount of material
inside the tube: when a cartridge is new, the required force is different
with respect to the case in which the cartridge is almost finished.

Improved deposition performances can be achieved with an ad-hoc
extrusion system that deposits a homogeneous material with a flow velocity
control. A general algorithm has been studied in this thesis, such that it
can be implemented either on more economic test-beds, as the used one,
or on expensive task-designed setups.

Despite the previously explained issues, some interesting results were
achieved. The proposed approach permits to execute the path with variable
velocity, allowing to speed-up the EE in straight lines while reducing
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(a) Good material deposition (not optimized)

(b) Unexpected flow reduction

Figure 6.8: Comparison of two material depositions with the same parameters:
unexpectedly the flow is completely different

the velocity accordingly with curves. This modulated behaviour is not
achievable with standard DMP, where it is possible to choose to perform
the path with a more or less constant mean velocity function of the imposed
runtime parameter. If one chooses a mean velocity suitable for straight
lines, it will result in vibrations when performing a curve; vice versa, if the
reduced velocity referred to curves is chosen, the total time required for
the path execution rises a lot, with a subsequent higher production cost
due to non-optimal time managing.

The main difference between the modified DMP approach and the
standard one lies in the movement definition. For standard DMP, trajectory
planning is defined accordingly with the target execution time and then
a mean velocity for performing the path is naturally computed. In the
proposed approach time is a consequence of the planned velocity along the
path, such that it is possible to optimize the execution accordingly with
the reference target velocity instead than fixing the runtime.

It must be noticed that both for the DMP standard approach and
the novel algorithm, the extrusion rate of material is set as proportional
to the EE velocity, as explained in [sec. 6.2.1]. This would be a further
improvement compared to the standard DMP approach executed with
constant flow rate, but the performed experiments are aimed to compare
the velocity planner instead than the extrusion process, so the material flow
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deposition has been performed in the same way for both the experiments.

6.4.1 Experimental Validation

The validation experiments have been carried out on the paths shown
in [sec: 6.3]. Each path has its own characteristics, but the generality of
the proposed algorithm permits to execute all those tests without changing
any model parameters.

Different Radius Curves

This path has been proposed to show the velocity planning against
different radius curves [fig. 6.9]. While the standard approach executes
all the path at constant speed, the proposed algorithm starts with high
velocity (in the large curves) and progressively slows while approaching
the end of the path (small radius curves) [fig. 6.10].

In [fig. 6.11], the PWM wave is shown. It is visible that the higher the
velocity, the higher the duty cycle. Between 1÷ 2 s there is a duty cycle
transition related to the velocity increment.

(a) Standard DMP formulation (b) Improved DMP with reference velocity

Figure 6.9: Experimental test on Path 1: different radius curves
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Figure 6.10: Velocity profile comparison for Path 1
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(a) Example of PWM duty cycle on Path 1
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(b) Magnification of the first 4 s of (a)

Figure 6.11: PWM Duty cycle, related to execution of Path 1
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It has been experienced that for this specific application the final result
is almost the same since there are no big discontinuities and directional
changes, but the modified approach shows a more uniform deposition flow.

Saw Tooth

This path is more critical to be executed since it presents many sudden
directional changes [fig. 6.12]. Path discontinuities are the most difficult
features to be executed, since they generate consistent vibrations on the
EE tip and they must be faced at reduced speed [fig. 6.13].

The proposed algorithm manages the reduced velocity at the edges,
presenting many improvements with respect to the basic DMP, where no
speed reduction is assessed and it is generated a poor deposition.

(a) Standard DMP formulation

(b) Improved DMP with reference velocity

Figure 6.12: Experimental test on Path 2: saw tooth
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Figure 6.13: Velocity profile comparison for Path 2

Square spiral

Path 3 has been selected to analyse the flow management over a quite
long path with repeated sudden directional changes [fig. 6.14].

(a) Standard DMP formulation (b) Improved DMP with reference velocity

Figure 6.14: Experimental test on Path 3: square spiral
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Figure 6.15: Velocity profile comparison for Path 3

The standard DMP execution is forced to work with the same runtime
of the modified DMP framework. It is visible that without the slowing
down procedure, major vibrations happen in correspondence of the square
edges and there is also a non-uniform sealant deposition between longer
and shorter sides.

Generic Path 1

This path was selected to analyse the ability of the algorithm to execute
different features in series and to control the flow deposition [fig. 6.16].
The standard DMP executed at a properly tuned runtime manages to
perform a good deposition but not optimal in the hairpin curves. Instead,
the proposed approach reaches a more homogeneous distribution along all
the path.

A major flaw related to standard DMP is that an unproper selection of
the runtime would lead to too high or too low speed, causing a low-quality
result. Defining the correct execution time is more difficult than tuning the
velocity reference profiles, since there is no modelled relationship between
time and path complexity.
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(a) Standard DMP formulation (b) Improved DMP with reference velocity

Figure 6.16: Experimental test on the generic Path 4.1
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Figure 6.17: Velocity profile comparison for Path 4.1
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Generic Path 2

This last example tests the algorithm on a trajectory that includes all
the previously examined features [fig. 6.18]. The final execution of the
standard DMP shows big vibrational problems on the junction points.

(a) Standard DMP formulation (b) Improved DMP with reference velocity

Figure 6.18: Experimental test on the generic Path 4.2
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Figure 6.19: Velocity profile comparison for Path 4.2





Chapter 7

Conclusions

This thesis work proposes a novel approach to trajectory planning,
using an automatic velocity characterization that showed an enhanced task
execution, permitting to reduce the total task time without compromises
about the sealing quality.

The developed algorithm generates a punctual velocity reference using
a FL controller, which requires a one-time tuning based on the physical
setup before starting the effective production. As presented in [chap. 6],
some preliminary experiments are needed to well define both the velocity
reference as function of the path geometry and the extrusion flow rate.
Once this procedure is accomplished, the human operator can directly
feed whatever path to the planning algorithm, without caring about the
velocity characterization that is instead automatically computed by the
proposed controller.

While the standard DMP approach requires a demonstration both in
terms of space and time characterization, the proposed modified planner
deals with only the geometrical path automatically assigning a time-law
optimized on the execution velocity. If well-tuned, this approach permits
to execute the task in the fastest possible way that guarantees the best
achievable quality, without needing to manually tune the total execution
time. Instead, using a standard DMP framework requires to manually
tune the runtime and consequently the execution is performed with a more
or less constant velocity value, which does not exploit the full velocity in
straight lines and conversely may cause too high velocities across tight
curves.

The experimental testing procedure validates the presented thesis work:
the algorithm defines a velocity reference as function of the path geometry,
allowing a good execution of tight curves and a fast travelling time when
performing straight lines. Even with the complications of the used test-bed,
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the results showed an improvement with respect to the standard DMP
approach (which executes the taught path at constant speed). Examples of
the enhanced quality are less vibrations when performing sudden directional
changes, more homogeneous sealant deposition and smoother acceleration.

The choice of FL as velocity planner has been experienced to be suc-
cessful in the reference test-bed, since the high non-reproducibility of the
setup and the uncertainties of the model do not allow to use more refined
optimization algorithms. Indeed, the velocity correlation required a fully
experimental definition.

The selection of DMP as motion planning algorithm is related to the
large amount of possible further implementations of the method, starting
from collaborative adaptation with obstacle avoidance and disturbance
rejection, which can be obtained with on-line implementation of the al-
gorithm, to learning of multiple trajectories. Moreover, the DMP works
as a filter on the taught trajectory and gives continuity to the velocity
reference generated by the FL controller.

This method allows future improvements of the planning procedure,
for example with the introduction of vision feedback systems either to
automatically acquire the path, or to improve the quality through an online
feedback signal. Moreover, it can be implemented a direct path definition
through Computer Aided Design (CAD) drawings, which would result in
further time saving.

Finally, even if all the procedure has been optimized on a sealing
task, the framework is general and can be adapted to any other industrial
procedure. The here-presented algorithm works in 2D space, but it is
trivial to extend it to more DOF considering the vertical displacement and
the EE rotation.



Appendix A

Flange Construction

In this appendix there is a material list and some construction tips
that may be useful for anyone who wants to build up the same setup
used in this thesis, which is exhaustively explained in [chap. 4]. A Bill of
Materials (BOM) of the components needed to build the flange [fig. A.1]
is provided, together with some drafts of electrical circuit and the code
which runs on Arduino.

A.1 List of Used Materials

The BOM includes both commercial components [C] and 3D printed
parts [3D]:

• [3D] Base Flange, that is directly connected to the robot EE;

• [3D] Top Flange, which closes on the gun handle and by means of
long screws, it clamps the gun. Both the motor and the mechanism
have been inserted inside this component;

• [3D] Mechanism: it is composed by a rack and a pinion. The
pinion is mounted on the motor standard flange (which needs to be
cut to adapt it to the pinion);

• [C] Arduino Nano: electronic controller of the system. It receives
as input the potentiometer and controls in output the servomotor;

• [C] MG995 (high speed): servomotor with a stall torque of 0.8
Nm. It can be directly fed by an Arduino board;
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(a) Developed flange (CAD) (b) Real component

Figure A.1: Sketches of the custom flange

• [C] Potentiometer: any kind can be used, preferrable a linear one
instead of logarithmic. The full scale of the potentiometer must be
set in order to match the Arduino A/D converter;

• [C] M6x100, 2 hex head screws that keep all the flange together;

• [C] M6x20, countersunk head screw, used to fix the base flange to
the robot EE;

• [C] M6x15, countersunk head screw, used to fix the base flange to
the robot EE;

• [C] M3x8, screwdriver slotted screw, that fix the pinion to the
motor. The pinion is directly sustained by the motor shaft.

All the CAD drawings that are needed to print the custom flange are
provided as STereoLitography (STL) files, available at:

https://github.com/emarescotti/VelocityPlanning_DMP_FL/tree/main/
Flange_CAD_drawings

A.2 Trigger Controller

The gun trigger can be controlled in two ways: manually through a
potentiometer, or automatically feeding the Arduino serial port directly
with the Python ROS node.

https://github.com/emarescotti/VelocityPlanning_DMP_FL/tree/main/Flange_CAD_drawings
https://github.com/emarescotti/VelocityPlanning_DMP_FL/tree/main/Flange_CAD_drawings


A.2. Trigger Controller 97

(a) Scheme of the circuit on the bread-
board

(b) Real circuit

Figure A.2: Electrical circuit

In the first case a knob is used to choose the extrusion rate between no-
pressed trigger and fully pressed trigger, while in the second case an integer
number is written in the Arduino serial port (with a fixed publication rate):
the input range [0÷ 99] is correlated with the two limit positions of the
trigger.

The potentiometer is always connected, so that it is possible to choose
between the two possibilities at the beginning of the Arduino code. The
electrical circuit is shown in [fig. A.2].

The Arduino code is finally reported:

Listing A.1: (Arduino) Caulking gun controller code

1 #include <Servo.h>
2 Servo motor;
3
4 const int pinServo = 4;
5 const int pinPot = A1;
6 const int pinLed = 3; // just for debug
7
8 int pot = 512; // potentiometer reading
9 String text = ""; // string value from the serial

port
10 int alpha = 0; // gun trigger pression [0-9]
11 int muS = 1400; // microseconds used as motor

input
12
13 bool MODE = 1; // CHOOSE: 0 = potentiometer
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14 // 1 = serial input
15 void setup(){
16 Serial.begin(115200);
17 motor.attach(pinServo);
18 motor.writeMicroseconds(muS);
19 }
20
21 void loop(){
22 if(MODE==0) { // POTENTIOMETER
23 pot = analogRead(pinPot);
24 muS = map(pot,20,1000,1400,1930); //

interpolation
25 motor.writeMicroseconds(muS);
26 delay(10); // pause
27 }
28 else { // SERIAL READING
29 while (Serial.available() > 0) {
30 char inChar = Serial.read();
31 text += inChar;
32
33 // after reading the data, command the motor
34 if (inChar == ’\n’) {
35 alpha = text.toInt();
36 muS = map(alpha,0,100,1400,1930);
37 motor.writeMicroseconds(muS);
38 text = ""; // clear for next input
39 }
40 }
41 }
42 }



Appendix B

Developed Listings

It has been decided not to report here all the developed listing, since it
would have been very long and not so meaningful for the thesis purposes.
Anyway, for a full view of the code used, a repository in which there is all
the developed listing is provided:

https://github.com/emarescotti/VelocityPlanning_DMP_FL/tree/main/
Python_code

The most significant parts, which may help explaining some mechanisms
of the algorithm, are instead reported here. Each part is widely explained
in the chapter of interest, while here is reported only an idea of the related
context.

B.1 Code: Steering Computation
The following code refers to the computation of the steering parameter

[sec. 5.2], which characterize the curvature of each path features:

Listing B.1: (Python) Function for steering computation

1 def steeringAngle(path,body_length):
2 # check that "path" is a column array
3 if np.size(path,1) > np.size(path,0):
4 path = path.T
5 # intialization of vectors
6 angle = np.zeros(int(body_length/2))
7 steering = np.array([0])
8 last = 0 # for unwrapping the angle profile
9

10 for i in range(int(body_length/2),int(
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11 np.size(path,0)-body_length/2)+1):
12 a = path[i+int(body_length/2),1] -
13 path[i-int(body_length/2),1]
14 b = path[i+int(body_length/2),0] -
15 path[i-int(body_length/2),0]
16 c = np.arctan2(a,b) # angle computation
17

18 # unwrapping procedure
19 while c < last - np.pi: c += 2*math.pi
20 while c > last + np.pi: c -= 2*math.pi
21 last = c
22

23 angle = np.append(angle,c) # data saving
24

25 # fix first values
26 angle[0:int(body_length/2)] = np.ones(int(
27 body_length/2))*angle[int(body_length/2)]
28

29 # restore correct length of the 2 vectors
30 angle = np.append(angle,np.ones(
31 int(body_length/2))*angle[-1])
32

33 for i in range(1,np.size(path,0)):
34 steering = np.append(steering, angle[i] -
35 angle[i-1]) # finite differences
36

37 return angle, steering

B.2 Code: Acceleration Limit
The following listing explains the implementation of the acceleration

limit [sec. 5.4]. The code recursively changes the velocity (lowering it),
up to convergence of the actual acceleration to the limit value. A lower
velocity value generates a longer time needed for the spatial step, which
consequently also lowers the acceleration in that step.

Listing B.2: (Python) Procedure to limit the acceleration

1 # THIS CODE IS INSERTED INSIDE THE VELOCITY OUTPUT
FROM FUZZY, SO "v_ref[-1]" REFERS TO THE LAST
COMPUTED VELOCITY VALUE
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2

3 # evaluation of the instantaneous acceleration
4 t_inst = 2 * ds / abs(v_ref[-1] + v_out)
5 acc_inst = (v_out - v_ref[-1]) / t_inst
6 if abs(acc_inst) > acc_lim:
7 if acc_inst > 0: # ACCELERATION
8 while acc_inst > acc_lim:
9 v_out -= 0.1

10 t_inst = 2 * ds / abs(v_ref[-1] + v_out)
11 acc_inst = (v_out - v_ref[-1]) / t_inst
12

13 v_ref = np.append(v_ref,v_out)
14 t_ref = np.append(t_ref,t_ref[-1]+t_inst)
15 acc_ref = np.append(acc_ref,acc_inst)
16

17 else: # DECELERATION
18 v_ref = np.append(v_ref,v_out) # last value
19 t_ref = np.append(t_ref,t_ref[-1] + t_inst)
20 acc_ref = np.append(acc_ref,acc_inst)
21 back = 0 # counter of back instants
22 while back >= 0:
23 t_inst = 2 * ds / abs(v_ref[-2-back] +

v_ref[-1-back])
24 acc_inst = (v_ref[-1-back] - v_ref[-2-

back]) / t_inst
25 while abs(acc_inst) > acc_lim:
26 v_ref[-2-back] -= 0.1
27 t_inst = 2 * ds / abs(v_ref[-2-back]

+ v_ref[-1-back])
28 acc_inst = (v_ref[-1-back] - v_ref

[-2-back]) / t_inst
29 # changing the 2nd last velocity, the last 2 time

instants will be longer (UPDATE)
30 t_back = 2 * ds / abs(v_ref[-3-back] +

v_ref[2-back]) # dt of 2nd last step
31 shift_back = t_back - (t_ref[-2-back] -

t_ref[-3-back]) # time shift due to
change in velocity, of the previous
time step

32 shift = t_inst - (t_ref[-1-back] - t_ref
[-2-back]) + shift_back # time shift
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due to change in velocity, of the
actual time step

33

34 t_ref[-1] += shift
35 t_ref[-1-back:-1] += shift
36 t_ref[-2-back] += shift_back
37

38 acc_ref[-1-back] = acc_inst
39 acc_ref[-2-back] = (v_ref[-2-back]-v_ref

[-3-back]) / t_back
40 # check on acc at prev time instant
41 if abs(acc_ref[-2-back]) < acc_lim:
42 back = -1
43 else: back += 1
44 else: # BASE CASE (LIMIT IS NOT REACHED)
45 v_ref = np.append(v_ref,v_out)
46 t_ref = np.append(t_ref,t_ref[-1] + t_inst)
47 acc_ref = np.append(acc_ref,acc_inst)

B.3 Code: DMP Step
A single step of the DMP rollout [sec. 5.5.3] is here presented. This

function is recalled each time-step during the online execution of the task.
This version has already implemented an error dynamic, while without it
the equations simplifies a lot.

Listing B.3: (Python) Single DMP step

1 def step(self,ya,error=0.0,tau=1.0):
2 # Run the DMP system for a single timestep
3 self.ae = 5.0
4 kp = 35.0
5 kv = 8.0
6 kc = 0.5
7 tau = 1.0
8

9 # adaptive time constant (considering the error)
10 tau_adapt = tau*(1+(kc*error**2))
11 # generate basis function activation
12 psi = self.gen_psi(self.cs.x)
13
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14 for d in range(self.n_dmps):
15 self.dya[d] = (ya[d] - self.ya_old[d]) /

self.dt
16 self.ya_old[d] = ya[d]
17

18 # Feed Forward Control on ACTUAL ROBOT
MOVEMENT

19 self.ddyr[d] = kp*(self.yc[d]-ya[d]) + kv*(
self.dyc[d]-self.dya[d]) + self.ddyc[d];

20

21 # generate the forcing term
22 f = self.cs.x*(self.goal[d]-self.y0[d])*(np.

dot(psi,self.w[d]))/np.sum(psi)
23

24 # z coupling
25 self.dz[d] = 1/tau_adapt * (self.ay[d] * (

self.by[d] * (self.goal[d]-self.yc[d])-
self.z[d]) + f)

26

27 self.z[d] += self.dz[d] * self.dt
28

29 self.dyc[d] = self.z[d]
30

31 self.ddyc[d]= (self.dz[d] * tau_adapt - tau*
self.z[d]*2*kc*error*(self.ae*(ya[d]-self
.yc[d]-error)))/tau_adapt**2

32

33 self.yc[d] += self.dyc[d] * self.dt
34

35 _ = self.cs.step(tau=tau_adapt)
36

37 return self.yc, self.dyc, self.ddyc, self.ddyr

B.4 Code: ROS Node
The Python ROS node which publishes the commanded position to

the robot controller and receives the robot state (actual position), is here
reported.

Listing B.4: (Python) ROS node which communicates with the robot controller
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1 p = PoseStamped()
2

3 def callback(Pose):
4 global s
5 s = Pose
6

7 pub = rospy.Publisher(’/DMP_pose’, PoseStamped,
queue_size=1)

8 sub = rospy.Subscriber(’/franka_ee_pose’, Pose,
callback)

9

10 rospy.init_node(’DMP_planner’, anonymous=True)
11 rate = rospy.Rate(1/dt) # 100 Hz
12 task_ended = False
13

14 while not rospy.is_shutdown():
15 if not task_ended:
16 for t in range(timesteps):
17

18 ytrack[0] = x_off - s.position.x *
1000.0 # [mm]

19 ytrack[1] = y_off - s.position.y *
1000.0 # [mm]

20

21 # run and record timestep
22 yc, dyc, ddyc, ddyr, tau_adapt = step(ya

=ytrack,error=error_now)
23

24 for i in range(n_dmps):
25 dyr[i] += ddyr[i] * dt
26 yr[i] += dyr[i] * dt
27

28 error_now += dmp.ae * (np.sqrt((ytrack
[0]-yc[0])**2 + (ytrack[1]-yc[1])**2)
- error_now) * dt

29 error = np.append(error,error_now)
30

31 x = (-yr[0] + x_off) / 1000.0 # [m]
32 y = (-yr[1] + y_off) / 1000.0 # [m]
33
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34 p.pose.position.x = round(x,5);
35 p.pose.position.y = round(y,5);
36

37 pub.publish(p)
38 rate.sleep()
39

40 task_ended=True
41 pub.publish(p)
42 rate.sleep()
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