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1. Introduction 

Anomaly detection is the process of finding 

patterns or points that distinguish themselves from 

a more regular collection. Finding such patterns 

could be extremely important since negative effects 

can take place when an anomaly is present in a 

system. That is the case of building power 

consumption. When in the time series an 

irregularity is present, an increase in costs and in 

pollution will inevitably be generated. This thesis 

wants to analyze some machine learning methods 

that were claimed to perform well in the anomaly 

detection field. 

2. Analysis of the state of the art 

This field does not seem to have a clear state of the 

art. A big number of methods have been 

implemented, many arguing to be better than the 

others, but most of those research did not fully and 

clearly explain how to obtain such results. 

Sometimes the datasets used are not published 

because they are private, sometimes the methods 

might be hand-crafted to work particularly well on 

a specific dataset but not as a general method. 

Therefore, in this thesis an exploration of some of 

the most promising techniques has been 

performed, by using two datasets, one from a 

facility in the Netherlands, the other one from an 

office building in Bergamo.  

The anomalies were hand labelled by the author of 

this thesis, and were either artificially added, or 

were the holidays of the year, when the weekly 

pattern was disrupted. The methods analyzed 

were 2 types of autoencoders (one can be 

considered an offline method and the other an 

online one) two LSTMs, a multi-layer perceptron 

ensemble, support vector regression and random 
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forest. The results of this research were rather 

surprising since the methods did not seem to reach 

the same performances claimed in the original 

papers. 

3. Datasets 

Two different datasets were used in this work, both 

represent the power consumption of a facility. The 

first one is a dataset of a research building located 

in the Netherlands, the second one is an Italian 

office building in Bergamo. 

 

3.1 Dutch Facility 

A very clean dataset from 1997 (Figure 1), where 

most of the seemingly anomalous behavior comes 

from the low power consumption of holidays. It 

has a granularity of 15 minutes, which means 96 

points per day, and it has been used by many 

papers mentioned before.  

 

Figure 1: Dutch power consumption 

3.2 Italian Building 

The second dataset taken into consideration is 

about the power consumption of an office building 

in Italy over a period of three years, with a 

granularity of 15 minutes. Associated with it there 

are many other interesting features such as average 

temperatures and humidity but, most importantly, 

it came with power consumption per each floor. 

Every floor has a specification about its 

consumptions: 

- First floor: it concerns energy consumption for 

underground parking lighting, electric vehicle 

charging stations, UPSs for IT, front desk, outdoor 

lighting, firefighting system, and mechanical 

workshop. 

- Second floor: this floor aggregates the 

consumptions of lighting and power outlets of 

three office floors, auditorium, and cafeteria. 

- Third floor: finally, this floor reports the power 

consumptions of the heating and cooling system, 

the ventilation system, elevators, kitchen, and 

cafeteria’s refrigerators. 

For this dataset there are no labeled anomalies. The 

analysis phase was performed in the same fashion 

as for the previous dataset but, since holidays are 

not anomalies, in this case, they are not 

highlighted. 

 

Figure 2: Italian dataset 

The first two floors are very similar in power. For 

this reason, only the second will be considered in 

the following analysis shown in Figure 2.  

By just looking at the time series graph of the three 

floors it becomes obvious that these time series are 

less predictable than the first dataset, especially the 

third floor. Furthermore, there are far less 

prominent outliers.  

 

3.3 Experimental settings and exceptions 

Both datasets have been used for the 

implementation of the papers and both had to be 

somehow regularized. But while the Dutch one 

was complete and did not have any missing values, 

the Italian one was filled with holes, missing points 

and many negative/unrealistic values probably 

caused by faulty sensors. Two options were 

available at this point: 

-Try to fill the missing data by interpolation / copy 

data from the previous week 

- Try to select time windows that only contain 

nominal data to feed the NN. 

 

The first option while it may seem more correct, it 

does bring in a few problems. First, there are 

multiple sequential points missing, sometimes 

entire days. Obviously, an interpolation does need 
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a starting point and a finishing one but with this 

much missing data, the good theoretical effect of 

interpolation would be nullified. 

Second, by copying the data from the previous 

week we might be adding fictitious anomalies, 

which would increase the bias and variance of the 

model trained on such data. 

Moreover, the experimental setting had to be 

modified according to the needs of the paper. 

Sometimes it was just not possible to achieve good 

results in one paper by just feeding it the same 

dataset of another one because of missing points or 

incomplete sequences. 

In Figure 3 we can see a table containing 96 points, 

collected every 15 minutes for a temporal range of 

24 hours. 

- AvgP: The power dissipated by the building 

(Second floor). 

- hour: A variable containing a normalized version 

of the hour of the day. 

- Monday, Tuesday, Wednesday, Thursday, 

Friday, Saturday, Sunday: Columns containing the 

one hot encoding of the week. 

- anomaly: tells whether that point is to be 

considered an anomaly. 

 

Figure 3: Dataframe 

3.4 Results 

Four indices were taken in consideration when 

trying to evaluate the models: 

- Precision 

- Recall 

- F1 score 

- Area under the Curve 

In table 1 and 2 we can see the results obtained for 

each category by each method in the Dutch and 

Italian datasets respectively. 

 

Table 1: Performance metrics of Dutch dataset 

 

 

Table 2: Performance metrics of Italian dataset 

As it can be seen, the statistical methods (SVR and 

Random Forest) are the ones that overall obtained 

the best performances. The two autoencoders had 

drastically different performances but managed to 

highlight all the anomalous days even if only 

partially at times. All the other methods  

performed significantly worse, showing lack of 

robustness under these experimental settings. 

 

4. Transfer Learning 

It is not simple to obtain data for buildings, in 

general when a new structure is built, new data 

must be collected if we wanted to use one of the 

anomaly detection methods presented in this 

paper. 

But collecting it might be expensive and time 

consuming, therefore a possible solution might be 

transfer learning. Transfer learning for deep neural 

networks is the process of first training a base 

network on a source dataset, and then transferring 

the layers to a second network to be applied to a 

target dataset. This can improve the performances 

of the network as shown by [3].  

Bergamo DS Prec Recall F1 AUC

Offline AE 0,86 1,00 0,92 0,99

SVR 0,67 0,98 0,80 0,99

RF 0,58 0,95 0,73 0,99

Online AE 0,32 0,94 0,47 0,90

MLP 0,41 0,83 0,55 0,81

LSTM 1 0,33 0,80 0,47 0,62

LSTM 2 0,01 1,00 0,01 0,57
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Transfer learning applied to time series seems to be 

an unexplored field, but it does seem to have a lot 

of potential. 

 

 

Table 3: Performance metrics of first Italian test 

set with Transfer Learning 

 

Table 4: Performance metrics of winter Italian test 

set with and without Transfer Learning  

 

While in this case, as shown in Table 3 and Table 4, 

the performances did not have a significant 

improvement, they managed to be stable even 

though the two datasets used were significantly 

different. Both datasets deal with power 

consumption information, but it is easy to see that 

the winter period of the Bergamo dataset used as 

test set is extremely different from the winter 

period registered by the Dutch facility.  

The use of the Dutch dataset for training a neural 

network could be applied to the anomaly detection 

process in new buildings in Lombardy at least for 

the first years when the proprietary data is being 

collected. This will result in a final dataset with 

fewer anomalies, since they can be promptly 

caught thanks to a momentary anomaly detection 

system implemented using transfer learning. 

 

5. Conclusions and future work 

This work focused on trying to understand which 

machine learning method performs better for 

detecting anomalies in the context of building 

energy consumption. It was not easy to draw a 

conclusion because, for instance, the online 

autoencoder performed well in the partial 

recognition of the anomalies and managed to 

detect most of the anomalous days correctly but 

failed to predict the precise hours of the day at 

which the anomalies occurred, therefore lowering 

the performance metrics. This does not mean that 

such methods are not fit for this purpose, but rather 

that more research should be made before 

applying these methods in the real word. It must 

be noted that the entire datasets used here were not 

labelled at the source, but labelling was a task 

performed by the author of this thesis, who is not 

an expert in the field of building management. 

There are chances that the anomalies registered by 

a method like the online autoencoder were actual 

anomalies in the system that were not recognized 

when hand labelling. In any case all these results 

are conservative: even though the precision of the 

autoencoder is low it just means that there are 

many false positives, but the main anomalies were 

all discovered with good precision. The same can 

be said about the transfer learning technique: it 

obtained results on par with normal training. There 

is not a lot of background for transfer learning in 

time series, more research should be done on this 

topic as it seems to be promising, possibly, by 

trying to use properly labelled datasets. This thesis 

was therefore an explorative research in which the 

best methods according to performance obtained 

seem to be the statistical methods of SVR and 

Random Forest and the offline AE. It is extremely 

hard to evaluate all of these methods and compare 

them to the results reported in the original articles, 

since the datasets used by them were different and 

not publicly available. The transfer learning 

technique seemed rather promising especially as a 

temporary anomaly detection system to be used in 

BEMSs during the data collection period for 

buildings that do not adopt any anomaly control 

strategies. Therefore, in the future, a further 

exploration of autoencoders that implement 

transfer learning could be useful to confirm and 

extend the results obtained in this work. The focus 

should be on the usage of datasets that have more 

regular features, are complete and are properly 

labeled by experts.  

Bergamo1 Prec Recall F1 AUC

Offline AE 0,86 1,00 0,92 0,99

Online AE 0,32 0,94 0,47 0,90

Offline AE TL 0,83 1,00 0,90 0,98

Online AE TL 0,61 0,84 0,71 0,87

Bergamo2 Prec Recall F1 AUC

Offline AE 0,79 0,81 0,80 0,87

Online AE 0,71 0,67 0,69 0,78

Offline AE TL 0,82 0,72 0,77 0,86

Online AE TL 0,73 0,61 0,67 0,75
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Abstract 

Anomaly detection is the process of finding patterns or points that distinguish 

themselves from a more regular collection. There are different causes for this hap-

pening: it could be caused by external factors or related to faults in the system that 

generated the patterns or the points. Sometimes data come as time series, like for 

power consumption of buildings. One way to perform anomaly detection is to 

“teach” a machine learning method what the normal behavior of a system should 

be and then identify the deviations. The goal of this thesis is to investigate whether 

and to what degree some of the most promising machine learning methods, such 

as autoencoders, LSTM and statistical methods, have the potential to deal with  the 

problem of identifying anomalies in power consumption time series in buildings. 

The reason for finding such points that disrupt the general trend is not only eco-

nomical, since they might create unexpected costs, but also concerns the environ-

ment because an excessive consumption of resources in buildings generates more 

pollution. In a nutshell, the aim of this thesis is to try to find what method works 

best in this setting and understand why they might perform better under certain 
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conditions, and then try to propose a solution to the lack of datasets used for train-

ing the previously mentioned methods. This last solution is based on transfer 

learning. 

Keywords: Anomaly detection, Autoencoders, Neural Networks, LSTM, Transfer Learning, Power 

Consumption Time Series, Building, Machine Learning. 
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Sommario 

Il rilevamento di anomalie è il processo grazie al quale è possible trovere pattern o 

punti che si distinguono da un insieme più regolare. Ci sono svariate cause per 

l’emergere delle anomalie: potrebbero essere causate da fattori esterni oppure da 

problemi interni al sistema considerato. I dati sul consumo energetico degli edifici 

sono raggruppati in serie temporali nelle quali le anomalie vanno individuate. Un 

modo per attuare il rilevamento di anomalie è quello di “insegnare” ad un metodo 

di machine learning quale dovrebbe essere il comportamento normale di un 

sistema e poi riconoscere gli scostamenti. Quello che questo lavoro di tesi vuole 

vuole indagare è fino a che punto alcuni dei metodi più promettenti di machine 

learning, come autoencoders, LSTM e metodi statistici, hanno il potenziale di 

individuare anomalie nei dati di consumo energetico negli edifici. La ragione per 

trovare questi punti anomali che rompono il trend nominale non è solo economica, 

poichè potrebbero portare a costi inaspettati, ma riguarda anche l’ambiente, perchè 

un consumo eccessivo di risorse negli edifici può generare in incremento 

dell’inquinamento. In sintesi, lo scopo di questa tesi è quello di provare a capire 
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quale metodo funziona meglio in questo campo e capire perchè alcuni metodi 

potrebbero funzionare meglio sotto certe condizioni, e poi proporre una soluzione 

alla mancanza di dataset utilizzati per il training dei metodi mezionati 

precedentemente. Questa soluzione è basata sul transfer learning. 

Parole chiave: Rilevamento di Anomalie, Autoencoder, Reti Neurali, LSTM, Transfer Learning, 

Serie Temporali, Consumo Energetico, Edificio, Machine Learning. 
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Chapter 1  

Introduction 

With the term "anomaly detection" we mean the ability to recognize elements that 

behave abnormally, from a group that instead is considered to follow a certain pat-

tern or to have certain characteristics. These elements deviate from the nominal 

behavior. 

Anomaly detection is a field that has been widely explored during the years, and 

many methods have been introduced, ranging from statistical methods to machine 

learning methods [14]. These methods can be quite important when applied to time 

series. Time series are collections of points ordered by time, and they generally 

follow a periodic pattern, meaning they tend to show behaviors that should be 

somewhat predictable. Being able to recognize whenever a certain subsequence in 

a time series acts abnormally could have a huge impact on applications. 

Anomaly detection has been widely used in various industries, such as intrusion 

detection in network systems, fraud detection in financial transactions, and patient 

health monitoring in medical treatment. For instance, looking at electrocardio-

grams (ECGs) as a time series of points, detecting an anomaly inside could save a 

person's life. Another example could be the detection of anomalous points in a time 
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series of the power produced by an engine over a period: it is easy to see how 

analyzing such a collection of points could lead to finding improvements to better 

optimize the work done by the engine [9].  

This type of reasoning can be applied to more massive systems through the use of 

sensors, that are getting cheaper and more accurate. The example considered in 

this thesis is the detection of anomalies in the energy consumption of a building. 

The real-time building operational performance can be monitored and controlled 

through the Building Energy Management Systems (BEMS) or Building Automa-

tion Systems (BAS). Massive amounts of building operational data are being col-

lected and available for data analysis [7]. It is therefore very promising to develop 

data-driven approaches to achieve reliable and robust anomaly detection.  

A BEMS must deal with a lot of changes throughout the year, for instance the in-

ternal temperature regulation through the heating, ventilation, and air condition-

ing system (HVAC), to maintain a high comfort level for those living or working 

inside. By implementing an anomaly detection system inside a building, the build-

ing managers could easily be notified about an internal problem and promptly act 

to solve it. This does not only decrease the costs sustained by the owners and in-

crease the comfort of those inhabiting the complex, but it also has a huge impact 

on the environment since building operations are energy-intensive and contribute 

to approximately one third of the United States final energy consumption [1][7]. 
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The reduction of power consumption in building environments could support the 

urgently needed reduction in the world-wide power consumption and the related 

environmental interests. BEMSs have a substantial energy saving potential consid-

ering for instance the wide presence of equipment faults and energy-wasting oc-

cupant behaviors. In buildings, an anomalous behavior of an electrical device or of 

the end-user could occur either because of a faulty operation of a device, end-user 

negligence (e.g., cold loss in a room by keeping a window open while the air con-

ditioner is on or refrigerant leak in a fridge via maintaining the fridge door open), 

a theft attack, a non-technical loss, etc. From 15% to 30% of the energy waste in 

commercial buildings is due to the performance degradation, improper control 

strategy and malfunctions of HVAC systems [1]. An occurrence of anomalous be-

havior could lead to higher power consumption, longer operation time than nec-

essary and could result in a permanent malfunction of the device, caused for in-

stance by overheating. So, anomalies are not to be looked at from a cost perspective 

only, but also considering that faults in electrical systems could cause even more 

damages by ruining components, damage circuits, and cause data losses. It is 

therefore essential to find a way to avoid energy waste as much as possible. 

An anomaly could be happening with rarity maybe during days off, making it hard 

to identify it without a support system. Or, even worse, it could be happening si-

lently and be integrated and learned by the anomaly detection system as nominal 

data, therefore making it unrecognizable. It is therefore essential for this task to be 
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able to train the system on a long enough nominal dataset with only recognizable  

and complete weekly patterns, but generic enough so that the system manages to 

learn representations useful for the whole year. All the data that do not fit into the 

nominal category must not be fed to the algorithms responsible for the anomaly 

detection process. 

There are several challenges inherent to anomaly detection. Some are related to the 

definition of anomalies, some to the evaluation of the anomaly detection algo-

rithms and to availability of datasets. 

In this thesis we used different methods for anomaly detection to understand and 

compare how well they can perform in context of building power consumption by 

applying them to two power consumption datasets belonging to a Dutch research 

facility and an Italian office building located in Bergamo. Statistical methods and 

offline autoencoder seem to be the most accurate methods, while the others per-

formed significantly worse obtaining a high number of false positives. Further-

more, an analysis of transfer learning , which is an innovating technique that has 

not been widely applied to the setting of time series, is carried out, showing prom-

ising results as a temporary anomaly detection system in buildings that do not 

have yet proprietary data. 
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This thesis is organized as follows: 

In Chapter 2 we give an overview of the theory and concepts that are essential for 

understanding the work done in rest of the project. First, some preliminary infor-

mation about the basic concepts of neural networks is given, and then the most 

interesting methods used in the literature are presented. The different techniques 

are briefly explained and divided into categories, according to the nature of the 

method (statistical, deep learning etc.). 

In Chapter 3 the reader will be introduced to the experimental settings used for 

this work: the datasets used, the transformations done to them, the application of 

the different methods for anomaly detection, the results of the experiments per-

formed in this thesis and the corresponding comments. 

Chapter 4 focuses on one technique that could improve the existing methods, 

known as transfer learning. 

Chapter 5 presents the conclusions of this thesis and introduces possible future 

works. 
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Chapter 2 

Literature Review 

2.1 Preliminaries 

When given a time series, which is a collection of data points ordered by 

timestamp, it is sometimes possible to find anomalous points when an anomalous 

event is recorded. It is important to define what an anomaly is inside a system, and 

we can therefore identify three types of anomalies [32]: 

1- Point anomalies: a point is considered anomalous on its own when it behaves 

substantially differently from the other data points. 

2- Contextual anomalies: if a data point is abnormal when viewed in a particular 

context but normal otherwise it is regarded as a contextual anomaly. Context is 

often present in the form of an additional variable. Most common examples of this 

kind are present in time series data when a point is within normal range but does 

not conform to the expected temporal pattern. 
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3- Collective anomalies: a subset of data points within a data set is considered 

anomalous if those values as a collection deviate significantly from the entire   da-

taset, but the values of the individual data points are not themselves anomalous. 

For instance, when a time series deviates from its usual pattern. 

Anomalies are rare events, and it is not possible to have a prior knowledge of every 

type of anomaly. Moreover, the definition of anomalies varies across applications. 

Though it is commonly assumed that anomalies and normal points are generated 

from different processes. 

This thesis wants to analyze some pre-existing methods, mainly using a particular 

type of neural network known as autoencoder. It will be done by implementing the 

methods proposed in some papers (slightly modified as the context, data, and the 

system itself used in this thesis were different) and later a discussion on a possible 

improvement using transfer learning will be started.  

 

2.1.1 Neural Networks 

In recent years, deep learning has emerged as one of the most popular machine 

learning techniques, obtaining state-of-the-art results for a range of supervised and 

unsupervised tasks [33]. The primary reason for the success of deep learning is its 

ability to learn high-level representations which are relevant for the task at hand. 
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These representations are learned automatically from data with little or no need of 

manual feature engineering and domain expertise. 

Neural networks (NNs) are a type of machine learning model inspired by the way 

the human brain works. The smallest unit in the neural network is called a node or 

more commonly a neuron. A neuron receives inputs from the incoming edges and 

multiplies the input by the corresponding edge weight, and then a non-linear func-

tion is applied. This is called activation function. Thanks to the activation function, 

an output is produced. 

The working of a neuron is illustrated in Figure 1 and can be represented mathe-

matically by the vector Equation 1, where the symbols x, w, b, dot, f, and y represent 

input vector, weight vector, neuron bias, dot product, activation function, and neu-

ron output respectively. 

 

Eq. 1: 𝑦(𝑥) = 𝑓(𝑤 ∙ 𝑥 + 𝑏) 

 

The output of a neuron is a non-linear function of the weighted sum of its inputs. 

The non-linearity is introduced by the activation function. 
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Figure 1: Basic structure of a neuron 

 

2.1.2 Activation Function 

The most used activation functions include logistic sigmoid shown in Equation 2, 

hyperbolic tangent in Equation 3 and the rectified linear units in Equation 4 

(ReLU). For regression problems which require predicting continuous values, lin-

ear activation is used as presented in Equation 5. 

Eq. 2: 𝜎(𝑧) = 1

1+𝑒−𝑧
 

Eq. 3: tanh(𝑧) = 𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
 

Eq. 4: 𝑅𝑒𝐿𝑢(𝑧) = 𝑚𝑎𝑥⁡(0, 𝑧) 

Eq. 5: 𝑎(𝑧) = 𝑧 
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The neurons are divided in layers and the neurons of a layer can be connected 

through edges to the previous and to the following layer. The first layer that re-

ceives an input is called the input layer. The last layer, that emits the final output 

is known as output layer. All the remaining layers are referred to as hidden layers. 

 

2.1.3 Loss Function 

During training, the network is presented with input data along with correspond-

ing outputs. A loss function which measures the distance between network output 

and the desired output is constructed to facilitate learning. The loss function com-

monly used for a regression problem (i.e., predicting a continuous value) is the 

mean squared error (MSE). MSE is computed as shown in Equation 6, where N is 

the number of observations, 𝑦𝑖 denotes the true value, and the predicted value is 

denoted by 𝑦̃𝑖. MSE measures the averaged squared distance between the predicted 

values and true values. The difference between the true value and predicted value 

is also referred to as the error or residual. 

 𝐸𝑞. 6:⁡𝑀𝑆𝐸 = ⁡
1

𝑁
∑ (𝑦𝑖 − 𝑦̃𝑖̃)

2𝑁
𝑖=1  

Another commonly used metrics is the MAE or mean absolute error (Equation 7). 

 𝐸𝑞. 7:𝑀𝐴𝐸 =⁡
1

𝑁
∑ |𝑦𝑖 − 𝑦̃𝑖|
𝑁
𝑖=1  
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The next step is to feed the data to the neural network and start the learning pro-

cess. The learning process is an optimization problem, with the goal to minimize 

the loss function by tuning the parameters of the neural network. One of the most 

used optimization algorithms is called gradient descent. Gradient descent involves 

calculating the gradients of the loss function with respect to the network parame-

ters i.e., weights and biases. But with big datasets, calculating the loss and gradient 

over the entire dataset may be too slow and computationally infeasible. Thus, in 

practice, a variant of gradient descent called stochastic gradient descent (SGD) is 

adopted. In SGD, the data is divided into subsets called batches, and the parame-

ters are updated after calculating the loss function over one batch. Other popular 

variants are: RMSprop, AdaGrad, Adam [25]. 

The method used to compute the gradients is called back-propagation and is based 

on the chain rule of derivatives [2]. The gradient is a measure of the change in the 

loss value corresponding to a small change in a network parameter. A scalar value 

called the learning rate (γ) is used to update the parameters (θ) in opposite direc-

tion of the gradient. The process is done iteratively by making several passes over 

the training data. A pass over training data is called an epoch and after every epoch 

the parameters move closer to their optimum values which minimizes the loss 

function. In Equation 8 the formula for the gradient descent is presented. 

     𝐸𝑞. 8:⁡𝜃 = 𝜃 − 𝛾 ∗
𝜕𝐿(𝜃)

𝜕𝜃
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A common problem in training Neural Networks is overfitting. Overfitting occurs 

when the model learns to fit the noise in training data and is often the result of 

using a more complex model than required. In the presence of overfitting, the 

model performs well on training data but poorly on new data as it is not able to 

generalize. Some methods to avoid overfitting exist, such as early stopping, where 

a small subset of the training data is used as a validation set. After every epoch the 

value of the loss function on the training set is compared to the value on the vali-

dation set. If the loss on the validation set starts increasing even though the loss on 

the training set is decreasing, it is an indication of overfitting, and the model train-

ing can be stopped. Dropout is another method used, where a fixed percentage of 

neurons are "turned off" at every epoch. 

While the network parameters like weights and biases are learned through train-

ing, the hyperparameters like the number of epochs or the learning rate, must be 

set before training by the user. Some tweaking is usually required to obtain good 

results. 

After the training is completed and the test set has been evaluated, what we are 

left with, is a prediction vector. In the vector the class for the normal state is as-

signed the class label 0 and the class with the abnormal state is assigned the class 

label 1. 
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2.1.4 Performance Metrics 

We can compare the results obtained through the prediction with the vector con-

taining the real anomalies. Doing so will give us information about the number of 

values that were correctly classified and those who weren’t. With the true posi-

tives, false positives, true negatives, and false negatives we are able to calculate 

different indexes of performance: 

-The precision is the ratio 𝑡𝑝

𝑡𝑝+𝑓𝑝
 where tp is the number of true positives and fp the 

number of false positives. The precision is intuitively the ability of the classifier not 

to label as positive a sample that is negative. 

-The recall is the ratio 𝑡𝑝

𝑡𝑝+𝑓𝑛
 where tp is the number of true positives and fn the num-

ber of false negatives. The recall is intuitively the ability of the classifier to find all 

the positive samples. 

-The F1 score can be interpreted as a weighted average of the precision and recall, 

where an F1 score reaches its best value at 1 and worst score at 0. The relative con-

tribution of precision and recall to the F1 score are equal. The formula for the F1 

score is  2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

. 

- The false positive rate and true positive rate are useful to obtain the so-called area 

under the curve of the ROC curve or AUC. The ROC curve is plotted with true pos-

itive rate(TPR) against the false positive rate(FPR) where TPR is on the y-axis and 
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FPR is on the x-axis. Since the TPR and FPR are both ranging from 0 to 1, the AUC 

will also range from 0 to 1. The AUC indicates how good a model is at separating 

between classes, therefore in general the higher the AUC, the better the model is at 

predicting 0 classes as 0 and 1 classes as 1. 

 

2.2 State of The Art 

In this subsection the state of the art on the methods used for anomaly detection is 

analyzed. 

As it was previously specified, a wide range of methods is available, and the choice 

of the method depends on the context and the type of anomaly analysis. 

We can divide the type of data used into two major categories: 

- Power consumption time series: the most commonly available data. The methods 

take the time series by themselves or together with other data like exogenous var-

iables (temperature, weather etc.) and try to learn to forecast data for that time 

series. After the prediction is made, it is compared to the real behavior. Then using 

a threshold, the system tries to understand whether there is an anomaly in the con-

sidered time window. This function can change from a simple threshold to a more 

complex system that integrates this step in the learning process like in variational 

autoencoders through the use of probabilistic measures, thus not requiring a data-
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specific threshold [3]. The problem of this approach is that it approximates the 

whole system with a single time series and thus if anomalous behaviors of different 

components balance out, for example if an appliance consumes less and another 

more than expected, it might not be able to detect an anomaly. 

- Power consumption time series per component: instead of a single time series, 

the dataset is composed of many different time series, one for each component of 

the system. In this way if the system does not show any anomalous behavior, the 

solution is able to understand if there are multiple anomalies that balances out over 

the system consumption. The issue with this approach is the significant rise in the 

complexity of the problem due to higher dimensionality of the data and the possi-

ble non-trivial modeling of relationships between these series. 

With different contexts it is necessary to apply different solutions as there's not yet 

one single method able to perfectly classify all the anomalies in each context, and 

different algorithms perform better when applied to the right problem [31]. 

 

2.2.1 Unsupervised Detection 

It aims at detecting previously unknown rare consumption observations or pat-

terns without using any a priori knowledge of these observations. Generally, this 
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kind of detection assumes that the amount of anomaly patterns to the overall con-

sumption data is small. Abnormalities in this case are unknown to the technique 

as the data is not labelled, therefore detecting anomalous consumption is reduced 

to the modeling of normal consumption behavior and to the recognition of abnor-

mal patterns. Unsupervised techniques are mainly built on clustering, semi-super-

vised learning, and dimensionality reduction algorithms. 

 

-Clustering: it is a machine learning technique used to split power consumption 

data into various clusters and helps in classifying them into normal or abnormal 

in unlabeled datasets. Many authors referred to this method in their work like 

[4][5][6]. In some, a version of clustering called k-means is used [4]. The k-means 

algorithm tries to divide the observations into k clusters, in which each observation 

belongs to the cluster with the closest mean. It is very fast (one of the fastest clus-

tering algorithms available), but it falls in local minima. That’s why it can be useful 

to restart it several times. 

 

-Dimensionality Reduction: in different machine learning applications, dimension-

ality reduction could be used as a feature extraction to help with the final classifi-

cation with a low computational cost as it can remove irrelevant power patterns 

and redundancy. Some of the most famous techniques belonging to this category 
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are Principal Component Analysis (PCA) [1] [7] and linear discriminant analysis 

[8]. 

 

-Generative Adversarial Networks: a  deep learning solution to deal with the un-

balanced property of anomaly detection datasets is generative adversarial net-

works (GAN) . It simultaneously trains two models: a generative model that cap-

tures the data distribution, and a discriminative model that estimates the probabil-

ity that a sample came from the training data rather than the generative part [34]. 

By training the GAN with nominal data it is possible to apply it to the anomaly 

detection problem and use the same threshold method to find points that do not 

follow the original data patterns. It can model complex and high-dimensional data 

of different types like images and time series. 

 

2.2.2 Semi-supervised Detection 

Semi- supervised learning is an approach that combines a small amount of labeled 

data with a large amount of unlabeled data during training. Semi-supervised 

learning falls between unsupervised learning (with no labeled training data) and 

supervised learning (with only labeled training data). 
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- Auto-Encoders: autoencoders (AE) are neural networks with a particular neu-

ronal disposition. They are used in order to learn efficient data encoding in an un-

supervised manner. The encoder maps input data x ∈ ℝ𝑑𝑥 to a latent space (or code) 

z ∈ ℝ𝑑𝑧 and the decoder maps back from latent space to input space [29]. The auto-

encoders training procedure is either unsupervised or semi-supervised and it con-

sists of finding the parameters that make the reconstruction 𝑥̂ as close as possible 

to the original input x, by minimizing a loss function that measures the quality of 

the reconstructions (e.g., mean squared error). Typically, the latent space z has a 

lower dimensionality than the input space x and, hence, AEs are forced to learn 

compressed representations of the input data. This characteristic makes them suit-

able for dimensionality reduction tasks, where they were proven to perform much 

better than other dimensionality reduction techniques, such as Principal Compo-

nent Analysis [3]. Autoencoders are an unsupervised /semi-supervised learning 

method, which does not need anomalies labels in order to learn to find them, even 

though this information is still necessary in order to make performance evaluation. 

The variational autoencoder is a deep generative model that constrains the latent 

code z of the conventional AE to be a random variable distributed according to a 

prior distribution 𝑝(z), usually a standard normal distribution, Normal(0, I). 
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As shown in Figure 2 taken from [26], two autoencoder layouts are commonly used 

based on the dimensionality of the neurons in the input and output (m) and the 

dimensionality of the neurons in the hidden layer (p): 

1. an under-complete or a bottleneck layout where p is smaller than m. 

2. an over-complete layout where p is larger than m. 

 

Figure 2: Structures of under-complete and over-complete autoencoder taken from [26] 
 
 
 

The under-complete layout learns a compressed representation of X while the 

over-complete layout learns a sparse representation of X. The sparse over-com-

plete representation can be regarded as a special case of under-complete represen-

tation, as the majority of hidden neurons are forced to be zeros. 
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2.2.3 Supervised Detection  

 Supervised anomaly detection in energy consumption necessitates training the 

machine learning classifiers using annotated datasets, where both normal and ab-

normal power consumptions are labeled. Although supervised anomaly detection 

can achieve high-accuracy identification results as demonstrated in academic 

frameworks, its adoption in the real world is still limited compared to unsuper-

vised methods, due to the absence of power consumption annotated datasets. 

 

- Long Short-Term Memory: It is a particular type of recurrent neural network, 

which can learn from past experience happening in a temporal order LSTMs were 

developed to deal with the vanishing gradient problem that afflicts the basic re-

current neural network. This method uses a particular structure over the neurons 

in the network in order to behave as a brain-like memory. It means that it can learn 

to remember knowledge from past experiences, making it more suitable to learn 

periodic or repetitive behaviors, typically found in time series which follow a sim-

ilar pattern under certain conditions. Many different approaches have been imple-

mented using this type of neural network in anomaly detection [9]. In time series 

there usually is repetitiveness, given by seasonal and weekly trends and patterns. 

It is therefore simple to see how a recurrent neural network that exploits LSTM 

with the ability to learn from these patterns can be applied to power consumption 
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time series. While falling in the supervised learning category, LSTMs could be also 

inserted as a layer inside an autoencoder, therefore they can also be applied to un-

supervised/semi-supervised learning. 

 

- Regression: It refers to identifying the relationship between two or more power 

variable classes in order to obtain model parameters to predict the generation of 

abnormal power observations [18]. Various regression models have been intro-

duced in the literature to identify abnormalities in building energy consumption, 

including linear regression and support vector regression (SVR) [14], the latter is 

an extension of Support Vector Machines (SVM). SVMs use hyperplanes in multi-

dimensional space to separate the different classes. While generally it is a super-

vised method, for the scope of this thesis it has been used in an unsupervised man-

ner since it can also be used without labels, by setting a threshold and applying it 

to the reconstruction error obtained. 

 

2.2.4 Statistical Models 

A totally different approach are statistical models. These models use statistical 

analysis of the data in order to compute the probability of a value or even the value 

itself in time series. Statistical models are used due to their great accuracy over 

periodical patterns. They embody this last statistical assumption and assign lower 
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probability to data which do not follow the assumption. The most used approaches 

in the literature are the following: 

 

- Seasonal Auto-Regressive Integrated Moving Average (SARIMA): ARMA, 

ARIMA and SARIMA are often used in this field since they usually are the way to 

go for time series analysis and forecasting [7]. They assume that the series main-

tains its stationarity or that an integration could make it stationary. This is usually 

the case for power consumption time series which do not show deviations from 

their previous behavior.  

 

- Generalized Additive Model (GAM): this is a very versatile model able to capture 

non-linear relationships in the data. The literature has shown the usefulness of this 

method, if combined it with ARMA models and weather data, to capture non-lin-

ear forms of non-stationarity of the data [10] or combined with ARCH, a different 

autoregressive model, focusing more on error variance [11]. 

 

- Symbolic Aggregate approXimation (SAX): while there are at least 200 different 

symbolic approximations of time series in the literature , SAX is unique in that it is 

the only one that allows both dimensionality reduction and lower bounding of 𝐿𝑝 

norms [12]. Applications of this technique have been used to find time series, to 
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mine rules in health data, for anomaly detection, to extract features from a hepatitis 

database, for visualization, and a host of other data mining tasks [12]. This function 

is usually used to make time series easier to read and analyze, by transforming the 

data in a string of symbols. It has been shown its usefulness in anomaly detection 

since it can capture deviations from the normal behavior of time series and make 

these deviations very simple to understand.  

 

2.2.5 Ensemble Methods 

During the training process, the models are subject to errors caused by the accu-

mulation of bias and the introduction of variance. For instance, retraining the same 

model might give extremely different predictions in the test phase, as the initial 

randomized parameters have a huge influence on the result. One way to mitigate 

this problem is to use ensemble methods. Ensemble methods are meta-algorithms 

that combine several machine learning techniques into one predictive model in or-

der to decrease variance (bagging) or bias (boosting). The main concept is that 

many unstable learners' predictions are combined to obtain a more robust result. 

The method proposed in [13], takes advantage of Ensemble Empirical Mode De-

composition (E-EMD) to uncover the patterns of power-draw signals, thereby en-

abling them to estimate the intrinsic inter-device correlations. 
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In [14] three methods are combined to obtain a more stable result. An autoencoder, 

a random forest (RF) which is a widely used ensemble learning approach for both 

classification and regression problems, and support vector regression which is a 

particular implementation of a SVM applied to regression, a technique that can 

reach good levels of generalization. To then be able to evaluate the performance of 

this method, the tp, fp, tn, fn parameters are calculated following a method con-

sisting in evaluating whether or not a sample has been classified in a positive or 

negative manner creating a matrix called Anomaly Classifier of dimension n x m 

where n is the length of the error vector found after the prediction(aka MSE, MAE 

etc.), and m is the length of the Unique error values vector which is the set of the 

error vector. This same Anomaly Classifier method has been implemented in this 

thesis to make an evaluation. After all the Anomaly classifiers have been found for 

the three methods, all the possible combinations of the three classifiers are com-

puted using a majority voting approach, which was not implemented here because 

of the computational demand. 

 

2.3 Difficulties of Anomaly Detection 

2.3.1 Problems with Missing Labels 

The biggest enemy common to all of the state-of-the-art approaches for anomaly 

detection is definitely the lack of labelled data. There is currently almost no dataset 
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with labels and many of the ones used in the experiments previously described are 

proprietary, therefore not publicly available. Others instead might add some arti-

ficially generated anomaly, which implies the impossibility to perfectly reproduce 

the dataset and obtain a fair comparison. This makes it almost impossible to com-

pare the performance of algorithms. Ideally it seems easy to compute the perfor-

mance of an anomaly detection algorithm, but without properly labelled data that 

is not feasible. 

 

2.3.2 Problems Identifying the Boundary of the State of the Art 

While in general in other fields circumscribing a state of the art might not be too 

challenging, in this case it is especially difficult. It is not only the lack of labelled 

dataset but also of the lack of shared public datasets. Most of the datasets used in 

the papers are not available and this makes it extremely challenging to be able to 

compare the qualities and flaws of different algorithms. Not only that but it is also 

almost impossible to find a codebase for the algorithms implemented. One must 

start from scratch every time. 

Another problem are datasets that do not show anomalous behavior: the only pub-

lic dataset used with labeled anomalies, uses holidays as anomalies. That is the 

case of the Dutch dataset used in this thesis and in that will be presented in Chapter 

3. Although this is useful to understand the ability of the different algorithms to 
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learn this kind of anomalous behavior, it does not reflect the behavior of anomalies 

in BEMS.  

And finally, even if the datasets were shared, most papers decide to inject artificial 

anomalies without explaining how they have been injected which makes a com-

parison almost impossible, since a different injected anomalous behavior could re-

sult in lower-than-expected performance of the newly implemented algorithm. 

 

2.4 State of the Art in reality 

In Table 1 and 2 we can see the papers and scientific articles previously mentioned, 

that have implemented the solutions mentioned from Subsection 2.2.1 to Subsec-

tion 2.2.5.  
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Table 2: References, algorithm type, database, database type and granularity 
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Among those papers, the first four papers shared the same Dutch Power Demand 

dataset used in this work. The techniques presented by them are various and not 

only based on NN, like the LSTMs, but also statistical methods, like SAX. The other 

papers instead used different datasets, proprietary to the research facility respon-

sible for the paper. 

In all papers the authors tried to find traces of anomalous behavior inside time 

series describing the power consumption of office buildings, university buildings 

or houses through the sensors installed in the facilities. The main difference be-

tween these three types of settings is the shape of the input data. While offices and 

universities generally follow a weekly pattern composed of five days with high 

power consumption and then two days with a lower power consumption, the 

houses behave in the opposite way. The time series generated by a house power 

consumption tend to have five days of low demand during the day and high in the 

evening, and two days of high demand at all times since most people tend to be at 

work during the week.  

Another major difference stands in the granularities of the points in the datasets 

used. The Dutch Power Demand dataset was used with the same granularity of 

this thesis (15 minutes). In general, the granularities used range from 15 minutes 

to 60 minutes per point. Occasionally some datasets have a very fine granularity 

of a point per minute, that is the case of the paper [20] which deals with real-time 

anomaly detection.  
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Another conceptual difference between the methods implemented is the idea of 

online/offline algorithm. Offline algorithms need to receive the entire input to be 

able to compute a solution, while online algorithms can instead analyze and output 

a solution when the input is given to the code piece-by-piece, without the need of 

collecting the whole data from the beginning. This difference is evident when ap-

plied to the anomaly detection setting: the offline methods need to receive batches 

of data to be able to detect whether an anomaly occurred, while online methods 

only need the last collected point to classify it. Most of the methods implement an 

offline algorithm since real-time anomaly detection tends to be more computation-

ally eager. The online methods in Table 1 are mainly statistical methods like PARX, 

GAM, fuzzy systems with nearest neighbor clustering and k-means but also an 

Artificial Neural Network-ARIMA hybrid. 

The anomalies are mostly derived from holidays rather than real malfunctions in 

the systems, others are not specified, and others are synthetically generated and 

added to a test set. However, it is not clear how these anomalies have been gener-

ated and to what days they have been added.  
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Chapter 3 

Experimental Comparison of Anomaly 

Detection for Power Consumption  

3.1 Datasets 

In this section the datasets used are going to be presented, as well as the adjust-

ments made while cleaning the data. 

Two different datasets were used in this work, both representing the power con-

sumption of a facility. The first one is a dataset of a research building located in the 

Netherlands, the second one is an Italian office building in Bergamo. 

 

3.1.1 Dutch Facility 

This is a very clean dataset from 1997, where most of the seemingly anomalous 

behaviors come from the low power consumption of holidays. It has a granularity 

of 15 minutes, which means 96 points per day, and it has been used by many pa-

pers mentioned before. 
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Figure 3: Complete dataset of Dutch facility. 

 

By just looking at Figure 3 we can see the patterns given by seasonality, and a 

weekly behavior, where five days a week have a high-power consumption, while 

the last two days of the week have a low one. The dataset does not have any miss-

ing data, furthermore it also does not have any huge trend change so it is rather 

regular. 

 

3.1.2 Italian Building 

The second dataset taken into consideration is about the power consumption of an 

office building in Italy over a period of three years, with a granularity of 15 

minutes. Associated with it there are other interesting features such as average 

temperatures and humidity but, most importantly, it came with power consump-

tion per each floor. Every circuit breaker has a specification about its consump-

tions: 
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- First floor: it concerns energy consumption for underground parking lighting, 

electric vehicle charging stations, UPSs for IT, front desk, outdoor lighting, fire-

fighting system, and mechanical workshop. 

- Second floor: this floor aggregates the consumptions of lighting and power out-

lets of three office floors, auditorium, and cafeteria. 

- Third floor: finally, this floor reports the power consumptions of the heating and 

cooling system, the ventilation system, elevators, kitchen, and cafeteria’s refriger-

ators. 

For this dataset there are no labeled anomalies. The analysis phase was performed 

in the same fashion as for the previous dataset but, since holidays are not anoma-

lies, in this case, they are not highlighted. 

 

Figure 4: Complete dataset of second floor of Bergamo facility. 

 

The first two floors are very similar in power, and they almost completely overlap. 

For this reason, the analysis will be carried on with the power consumption of the 

second floor, shown in Figure 4.  
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By just looking at the time series graph of the three floors it becomes obvious that 

these time series are less predictable than the first dataset, especially the third floor. 

Furthermore, there are far less prominent outliers.  

 

3.2 Experimental Setting and Exceptions 

Both datasets have been used for the implementation of the methods  and both had 

to be regularized. The Dutch one was complete and did not have any missing val-

ues. In the Italian one instead, the data is not available for certain periods, there 

are missing points and many unrealistic values probably caused by faulty sensors 

like temperatures under 0K. Two options were available at this point: 

-Try to fill the missing data by interpolation / copy data from the previous week. 

- Try to select time windows that only contain the most regular data to feed the 

methods implemented. 

The first option while it may seem more correct, it does bring in a few problems. 

First, there are multiple sequential points missing, sometimes entire days. Obvi-

ously, an interpolation does need a starting point and a finishing one but with this 

much missing data, the good theoretical effect of interpolation would be nullified. 

Secondly, by copying the data from the previous week we might be adding ficti-

tious anomalies, which would increase the bias and variance of the model trained 

on such data. 
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Moreover, the experimental setting had to be modified according to the needs of 

the specific methods. Sometimes it was just not possible to achieve good results in 

one method by just feeding it the same dataset of another one because of missing 

points or incomplete sequences. It is the case of [9] where an even more scarce 

version of the dataset had to be used. In this method there was the need to have 

big sliding windows, therefore all the data fed to the LSTM had to be sequential 

and without holes, something that other methods did not need. 

It did seem therefore better to the author to simply use the original data by shat-

tering it to smaller windows and manually selecting those that seemed to have the 

most regular features and were anomaly-free.  

 

 

Figure 5:  Cut version of the Dutch training set 

 

 

In Figure 5 we can see the way the Dutch dataset has been cut. A portion of it has 

been removed to be used for testing since it contained most of the holidays. 
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Figure 6: Cut version of the Italian training set 
 
 

 

The Italian dataset had to be trimmed even further considering the amount of miss-

ing data as seen in Figure 6.  

As for the test sets, three time slots have been selected, 1 from the Dutch dataset 

and 2 from the Italian dataset. Both datasets were normalized using min-max nor-

malization. 

The first, the Dutch one in Figure 7, shows a period with both normal and anoma-

lous days. The anomalous days in this set are 4: 

-30th of April – Queen’s Birthday 

-5th of May – Liberation Day 

-8th of May – Ascension Day  

-19th of May – Whit Monday  
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Figure 7: Dutch test set 
 
 

 

The first Italian test set in Figure 8 includes both real and artificial anomalies for a 

total of 6 anomalous days: 

-8th of August – Artificial Anomaly 

-10th of August – Artificial Anomaly 

-14th of August – Gap Day because of Holiday  

-15th of August – Feast of the Assumption 

-16th of August – Gap Day because of Holiday  

-17th of August – Gap Day because of Holiday  
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Figure 8: First Italian test set 

 

 

Figure 9: Second Italian test set 

 

The second Italian test set in Figure 9 is instead a longer collection of days. Here 

the days that have extremely high peaks or that have an unbalanced behavior com-

pared to the Italian training set in Figure 6 are considered anomalous. 
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The second Italian dataset has only been used with the two autoencoders. That is 

because it is going to be part of the focus of Chapter 4 and the transfer learning 

technique. 

The jumps with missing data are given by the fact that the data has not been inter-

polated for the aforementioned reasons. 

The data has then undergone a pre-processing phase that added, modified, and 

extended the features. 

- Normalization: the data has been rescaled using the min-max normalization 

so to have values always in the range 0-1.  

- Feature expansion: 8 new features w.r.t. the original dataset have been in-

troduced to help the NN understand better the context of each value of the 

power consumption. Such features have been selected from the DateTime 

feature. The first feature to be introduced is the hour of the day normalized 

on a scale of 0-1 which was done to maintain the whole output in the same 

range as the power consumption. The other 7 features are a one-hot encod-

ing of the days of the week, such that only one day per row contains a 1 and 

all the others a 0. 

Another one-hot encoding of the months was also initially added but given the 

noisy nature of the Italian dataset, it did not yield any improvement, so it was later 

excluded from the model. 
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- Sequence creation: training and test sequences are then computed.  

In one paper [26], a time window of one day or 96 points has been used, together 

with a stride of 96 points. Basically, the autoencoder is fed with single days and is 

then able to classify an entire day as correct or as an anomaly. 

In paper [14], a sliding window of one day with a stride of one point (15 minutes) 

has been used. While in the beginning all methods were supposed to be imple-

mented with a one point stride, the experiments performed with the NN presented 

in [26] showed that it was not able to recognize any of the anomalies in the test sets 

presented. It is very likely that this is due to the noisiness of the dataset. Initially a 

sliding window of one week was also tried and even though it did start showing 

some promising results, it was extremely inefficient, and the idea was abandoned 

shortly after, towards a more efficient solution of using a single day. It is not pos-

sible to have a perfectly uniform experimental setting since it might not fit the 

needs of one or more specific methods. However, this condition is not invalidating 

for the purpose of evaluating different methods. It must just be noted that different 

methods learn differently under different conditions and might not perform as 

well as expected if not implemented correctly. 

Paper [4] was only able to recognize anomalously high peaks because its input 

contained 23 hours previous to the prediction but was not able to distinguish be-

tween working days and holidays. Therefore, the input was modified by feeding 

the method 7 days and predicting the 8th day. 
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Paper [9] used a similar approach, but with a longer time window consisting of 14 

days and predicting the 15th day. 

Paper [6] used the same principle with 7 days of input and an output consisting of 

the 8th day. 

In Figure 10 we can see a table containing 96 points, collected every 15 minutes for 

a temporal range of 24 hours. 

- AvgP: The power dissipated by the building (Second floor) 

- hour: A variable containing a normalized version of the hour of the day 

- Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday: Columns 

containing the one hot encoding of the week 

- anomaly: tells whether that point is to be considered an anomaly 

 

Figure 10: Dataframe of Italian building 
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3.3 Methods 

Firstly, three methods with some simple implementations of NNs have been con-

sidered. 

 

3.3.1 LSTM 1 

In [4] two ideas are built: 

- hybrid approach with k-means-LSTM  

-the use of an autoencoder 

This thesis focuses only on the LSTM part, so to compare the goodness of this 

method with the others.  

That is an LSTM with weekly inputs: instead of predicting the consumption of the 

following hour like specified in [4], this network wants to predict the consump-

tions of the following day starting from an input composed of the past seven days, 

so to be able to identify the weekly trends.  

 

3.3.2 MLP 

[6] trained 10 different multiple layer perceptrons to perform Ensemble + ANN. 

Both with the Netherlands dataset and the Italian (completely nominal training 

set) decent results were achieved and the prediction of the test set was mostly done 
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correctly. This was achieved with different granularities of 12 points per day (one 

point every two hours) and 96 points per day (one point every 15 minutes). 

 

3.3.3 LSTM 2 

In [9] a LSTM is trained to predict the same time series but moved of one day for-

ward, and to use the predicted sequence and the real sequence to create a residual 

vector. These vectors are then used to calculate the average and covariance to study 

the Gaussian distribution of non-anomalous data. Then a threshold is found by 

separating the anomalous data from the normal one. Furthermore, it is proposed 

to use the 𝐿𝑝 norm instead of the likelihood as the evaluations were obtaining bet-

ter results. The training set only contains nominal data, and the test set contains 

both nominal and anomalous data. 

But this also contains a major flaw. When giving the NN a sequence of weekly 

values, if the sequence is not anomalous it is not a problem since the following day 

will be predicted correctly. That is the case of for instance L L H H H H H, where 

the first two Lows represent the weekend and the Highs the weekdays. But as soon 

as an anomalous week is given as input like L L L H H H H it is not possible to 

distinguish anymore the following day. For instance, the L L L sequence could be 

interpreted as a Friday (holiday), Saturday, Sunday or as Saturday, Sunday, Mon-

day (holiday). 
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The hyperparameters used have been found using the TPE (Tree of Parzen Estima-

tors). The network is composed of stacked LSTM and between each level of the 

LSTM there is a fully connected layer with an activation function (swish). 

Analyzing the residual distribution with statistical tests like Henze-Zirkler, Kol-

mogorov-Smirnov and D’Agostino-Pearson it was found that the distribution is 

not Gaussian. 

 

3.3.4 Offline Autoencoder 

In [26] the authors want to create a neural network, more specifically an autoen-

coder able to predict anomalies in building power consumption time series. The 

hardest part is always to do it knowing that there are no labels to indicate the cor-

rectness of the prediction made so other methods must be employed. 

They found that the main limitations of existing unsupervised anomaly detection 

methods are: 

1.  The anomaly detection performance and computational efficiency can be 

degraded dramatically when applying to big data. Conventional methods 

like motif discovery are based on exhaustive search, which results in the 

computational costs increasing dramatically for long time series and is 

therefore not applicable. For instance, statistical methods are not scalable to 

large-scale data, and they are subject to stringent mathematic assumptions, 
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like normality of the data or independence, which may be adapted but not 

fulfilled by real-world high-dimensional data. Some unsupervised data 

mining techniques have been used to enhance the effectiveness and effi-

ciency in analyzing big data. Nevertheless, the associated post-mining 

workload can be overwhelming [27]. 

2. The performance of existing unsupervised methods relies heavily on fea-

tures used. Currently, features for anomaly detection are selected or con-

structed based on domain expertise or simple statistics (e.g., the mean and 

standard deviation of a numeric variable). There is a lack of data-driven 

methods to automate the feature generation process for generalization pur-

poses. More advanced methods are desired to enhance the performance and 

applicability of unsupervised anomaly detection in the building field. One 

promising solution to these limitations is the autoencoder. An autoencoder 

adopts the neural network architecture to perform unsupervised learning, 

where the model input and output are set identical. The rapid development 

in the deep learning community has provided various techniques for ana-

lyzing different types of data (e.g., cross sectional or temporal data) and 

training models with advanced architectures (e.g., deep convolutional au-

toencoders) [28]. 
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An autoencoder, as explained before, consists of an encoder and a decoder, the 

encoder transforms the input data into high-level features and the decoder tries to 

reconstruct the input starting from the high-level features. 

Two types of possibilities were analyzed by giving the raw information or by add-

ing extra information by using a vector of one hot encoding highlighting the 

month. 

In this thesis a similar approach was implemented but adding information about 

the months did not bring any improvement. What improved the results was add-

ing information about the time of the day and the day of the week (one hot encod-

ing). The most obvious enhancement came thanks to the idea of feeding the NN 

sequences starting each day at 00:00 and ending at 23:45. This allowed the net to 

correctly classify anomalous days on the most basic test set. This means that the 

vector containing the label “anomaly” does not refer to the single data point but 

rather to an entire day. It surely might seem that the autoencoder is not able to 

correctly classify the single point anomalies, but it must be taken into consideration 

that a building manager would overview the whole process when actions to fix 

power consumption problems must be taken. 
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3.3.5 Support Vector Regression 

In [14] an ensemble method is proposed. In this thesis it was instead decided to 

break apart the pieces composing the ensemble and evaluate them singularly to 

better understand the difference between autoencoders and more statistical/en-

semble-based methods. Also, the optimization method to find the optimal thresh-

old was taken from this paper using the roc curve and the anomaly classifier pre-

sented in it to calculate the vector of anomalies for each threshold. That is done by 

finding the point with minimum distance from the point (0,1) of the roc curve, that 

is the value that should optimize the true positives and the false positives. How-

ever, this method, as will be shown later in this research, did not obtain similar 

results to the claims made in the paper.  

 

3.3.6 Random Forest 

The second method described in [14] is the Random Forest. Random forests or ran-

dom decision forests are an ensemble learning method for classification, regression 

and other tasks that operates by constructing a multitude of decision trees at train-

ing time.  
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3.3.7 Online Autoencoder 

The third method presented in [14] is an autoencoder, and the results seem prom-

ising as well. With the MAE it seems to recognize at least partially the days with 

an anomaly, but also adding anomalies for a period of about a third of a day right 

before each anomalous day. That is because the time window of each slice is 24 

hours or 96 points. When an anomaly starts approaching the sliding window, the 

MAE/MSE of that window starts rising, but the point connected to the window is 

the first, therefore the anomalous points are shifted by about half a day. 

 

3.4 Results 

In this section the results obtained are going to be presented. Four indices, that 

have been introduced in Subsection 2.1.4, were taken in consideration when trying 

to evaluate the models: 

- Precision 

- Recall 

- F1 score 

- Area under the Curve 
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3.4.1 Results LSTM 1 

 

Figure 11: Prediction for Dutch test set with LSTM 1 

 

As it can be seen in Figure 11 the model managed to detect some of the anomalous 

days in the Dutch dataset. The first anomalous day was correctly classified (1st of 

May), but in the third week we can see that it missed the low Monday (5th of May), 

correctly detected the anomalous Thursday (8th of May). As for the fifth week, the 

Monday (19th of May) was correctly considered anomalous but gave two false pos-

itives on the 24th and 26th.  
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Figure 12: Prediction for Italian test set with LSTM 1 

 

In the Italian dataset results instead, most of the days are incorrectly labelled (Fig-

ure 12). The first week is considered completely anomalous, and only the second 

artificial anomaly has been categorized as such out of all the anomalies presented 

in the Section 3.2. 

 

3.4.2 Results MLP 

 

Figure 13: Prediction for Dutch test set with MLP 
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The Dutch test set had many normal days labelled as anomalous which lowered 

the precision in the final metrics (Figure 13). The anomalies that were correctly 

classified were on the 5th, 8th, and 19th of May. 

 

Figure 14: Prediction for Italian test set with MLP 

 

As for the Italian test set (Figure 14), only the two artificial anomalies were cor-

rectly put into the anomalous category, together with the false positives in the 

same week. The anomalous days from the 14th to the 17th have been categorized as 

normal while obviously being erroneous because of too many low days in a row. 

In both datasets some anomalous days were highlighted but there is a tendency to 

also label normal days incorrectly. 
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3.4.3 Results LSTM 2 

The second LSTM performed worse than the first one. The training fit was accurate 

in both datasets, but this did not show in the test sets. It is therefore very likely that 

the model ended up overfitting. In Figure 15 it is shown that many days were in-

correctly classified  as anomalous, almost as if the network couldn’t recognize the 

weekly pattern anymore. 

 

Figure 15: Prediction for Dutch test set with LSTM 2 
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Figure 16:  Prediction for Italian test set with LSTM 2 

 

Both Figure 15 and Figure 16 show that many false positives were found. The Ital-

ian dataset basically only contains false positives, which explains the 0.01 obtained 

in the precision metric.  

 

3.4.4 Results Offline Autoencoder 

The first model was fed with the Dutch facility data, the cleaner of the two datasets 

available, and the results seem promising. All the anomalies were found, and they 

were all days with anomalous low power consumption (Figure 17).  
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Figure 17: Prediction for Dutch test set with offline AE 

 

Then the Italian dataset was given as input to the autoencoder for training and 

testing. 

From the artificial peaks inserted on the 8th and 10th day of the test set we can 

realize how the same type of anomaly can have different impact on this solution. 

Since the NN learned a representation for each day of the week, there might be 

days with significantly more noise than others, and the prediction for those days 

becomes less reliable (Figure 18). 

 

Figure 18: Prediction for Italian test set with offline AE 
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In Figure 19 we can see that the application of the same model to the winter part 

of the Italian test set considered anomalous almost all days, but mainly because 

the test set included extremely unregular days since the winter season was notice-

ably different from the training set that included only nominal summer data. 

Therefore 38 days with anomalies were found in this run, although it must be no-

ticed that this value ranged between 35 and 53 in different runs. This show also an 

extremely unstable behavior probably induced from a training set that was filtered 

excessively and the neural network is now not able to recognize similar patterns 

but with different offsets. Days with similar consumption are classified in different 

manners, showing an extreme sensitivity to small differences. 

 

 

Figure 19: Prediction for Italian winter test set with offline AE 
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3.4.5 Results Support Vector Regression 

The results obtained in the prediction were good enough for both the Dutch  

(Figure 20) and the Italian (Figure 21) test sets. 

 

Figure 20: Prediction for Dutch test set with SVR 

 

 

Figure 21: Prediction for Italian test set with SVR 

 

It is easy to notice that the predictions about the anomaly of a day were mostly 

correct in both datasets. Some false positives were found, especially in the Dutch 

dataset. 
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3.4.6 Results Random Forest 

Just like the SVR, it managed to capture most of the anomalies correctly in both 

Dutch (Figure 22) and Italian (Figure 23) datasets, but just like the SVR retained a 

few false positives. 

 

Figure 22: Prediction for Dutch test set with RF 
 

 

Figure 23: Prediction for Italian test set with RF 

 

But it also managed, contrary to the SVR, to obtain a prediction much closer to the 

real values. That can be observed when comparing the graph of mean squared er-

rors of both methods. 
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Figure 24: MSE of Dutch test set predicted by SVR 
 

 

Figure 25: MSE of Dutch test set predicted by RF 

 

The first graph in Figure 24  shows a much noisier prediction, and the anomalies 

are barely recognized from the threshold found (red line), while Figure 25, shows 



 

66 
 

a much higher ratio between the MSE of anomalous points and the MSE of nominal 

ones in the RF prediction. And the same applies to the Italian dataset MSE shown 

in Figure 26 and Figure 27 . 

 

 

Figure 26: MSE of Italian test set predicted by SVR 
 
 

 

Figure 27: MSE of Italian test set predicted by RF 
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3.4.7 Results Online Autoencoder 

Different sizes of the time windows were tested while implementing this autoen-

coder. The 40 and 20 points sliding windows did obtain slightly better results, in-

creasing the precision but at the cost of decreasing the recall. In Figure 28 we can 

see that, at least partially, all the anomalous days were highlighted. 

 

 

Figure 28: Prediction for Dutch test set with online AE 

 

 

Figure 29: MSE of Dutch test set predicted by online AE 
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A good fit was found here. A very clean MSE graph in Figure 29 comes out with 

little noise  and a high ratio between the height of anomalies and the nominal 

points.  

The autoencoder had as input all the information about the day, hour, and power 

and by compressing and reconstructing the input it managed to obtain a good rep-

resentation of each time window. Similarly, when applied to the Italian dataset, 

the autoencoder manages to show a decent number of anomalies as shown in Fig-

ure 30 while still presenting some false positives. 

 

 

Figure 30: Prediction for Italian test set with online AE 

 

 

 

Figure 31: MSE of Italian test set predicted by online AE 
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In Figure 31 we can see that the MSE graph of the Italian dataset is also extremely 

clean with high peaks where the anomalies have been identified. 

As for the winter dataset in Figure 32,  many days were highlighted because of the 

difference in the power consumption offset with the summer dataset used for 

training, therefore labeling them as anomalous. 

 

 

Figure 32: Prediction for Italian winter test set with online AE 
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3.4.8 Metrics Analysis 

In Table 3 we have the results concerning the Dutch dataset, the most regular of 

the two. 

 

Table 3: Performance metrics of Dutch dataset 

 

The results, when analyzed, do not seem to show the complete win of a method 

over the others. Surely the “offline” autoencoder managed to get the highest score 

of all but it must be recalled that it also had not the single points to check for anom-

alies, but the entire day was classified as anomalous. With a precision of 1, it did 

not obtain any false positives, but the 0.75 of recall means that there were some 

false negatives. 

There seems to be a good fit with support vector regression and random forest. 

They have achieved 77% and 60% in precision, respectively, and an almost perfect 

recall, showing the sturdiness of the statistical methods. 

DUTCH DS Prec Recall F1 AUC

Offline AE 1 0,75 0,85 0,91

SVR 0,77 0,98 0,86 0,99

RF 0,60 0,97 0,75 0,99

Online AE 0,28 0,94 0,44 0,95

MLP 0,44 1 0,61 0,85

LSTM 1 0,2 1 0,33 0,89

LSTM 2 0,33 0,04 0,07 0,47
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As for the online autoencoder, while it did show a good recall, the same cannot be 

said for the precision. With a 0.28 it found several false positives decreasing a lot 

the precision. That seems to be because the anomalies are all shifted by about half 

a day and creates a lot of false positives. Aside from that, few false negatives were 

found as the recall scored a 0.94. 

The MLP or multilayer perceptron ensemble, did score higher than the online au-

toencoder, with a 0.44 of precision and a perfect recall. But similarly, to the offline 

autoencoder, it did have the advantage of classifying only days and not the single 

data points. It therefore means that it still obtained too many false positives. 

The LSTM 1 is the one that performed the worse in precision. While it managed to 

get a good fit to the training set, the test did not seem to show the same pattern 

and while it did not classify any false negatives, lots of false positives were found. 

The LSTM 2 showed a precision of 0.33 and a recall of 0.04 meaning that a lot of 

both false positives and negatives were found.  

 

In Table 4 we have the results gathered with the Italian dataset, the noisier one: 
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Table 4: Performance metrics of Italian dataset 

 

The results for this second test set (Table 4) seem to follow qualitatively the ones 

presented above. 

The offline AE had the best overall performance, obtaining 0.86 in precision and 1 

in recall. Very few false positives were found. 

The statistical methods showed a good stability here as well, decreasing only by a 

few percentage points in precision, given the noisiness of the dataset, but held a 

good recall of  >94% in both cases. 

The online autoencoder behaved similarly to the other dataset as well: low preci-

sion, high recall but by looking at the graph all the points were just shifted and in 

general the anomalous days were all marked correctly, at least partially. 

The LSTM 1 did not move too far away from the previous prediction, with a low 

precision and a 0.8 of recall. 

Bergamo DS Prec Recall F1 AUC

Offline AE 0,86 1,00 0,92 0,99

SVR 0,67 0,98 0,80 0,99

RF 0,58 0,95 0,73 0,99

Online AE 0,32 0,94 0,47 0,90

MLP 0,41 0,83 0,55 0,81

LSTM 1 0,33 0,80 0,47 0,62

LSTM 2 0,01 1,00 0,01 0,57
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The LSTM 2, instead, performed significantly worse. While it obtained  100% in 

recall, the precision dropped to 0.01. It is curious to see this as the training fit 

seemed precise, but the test set was fitted poorly, almost as if it was not able to 

recognize the patterns anymore. 

 

3.5 Comments 

There does not seem to be a clearly winning method here, all performed differently 

under different conditions. The offline autoencoder seems to be the one perform-

ing better in most situations, but at the cost of losing some information about the 

exact time at which the anomalous event happened, since it is only able to express 

if an anomaly occurred during the day. The statistical methods instead performed 

well in both situations, by not losing too much in precision and being able to cor-

rectly highlight most of the anomalous points.  

The online autoencoder surprisingly performed worse than expected. But even 

though there was a shift of the anomalous data points and that while the perfor-

mances were not as good as anticipated, the days that were labelled as anomalous 

were still highlighted. A possible explanation is that the optimization method to 

find the threshold through the roc curve for the MSE does not perform as well as 

it was suggested in the paper from which it was taken from [14]. More work should 

be done in this regard to further investigate the cause. 
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Chapter 4 

Transfer Learning 

As previously mentioned, one of the major problems afflicting anomaly detection 

for electrical power consumption in buildings, especially when done with neural 

networks, is the lack of data. 

It is not simple to obtain data for buildings, in general when a new structure is 

built, new data must be collected if we want to use one of the anomaly detection 

methods presented in this paper. To collect such data is not only time consuming, 

since a few years of data must be gathered to be able to distinguish among the 

different seasons and obtain a decent generalization of the underlying patterns and 

trends, but it is also economically expensive. That is because if an anomaly detec-

tion system is not used during the data collection process, the system faults are not 

detected, and the nominal data collected are not clean, obtaining in the end a barely 

usable dataset like the Bergamo dataset used in this thesis. It seems therefore nec-

essary to find a viable solution to obtain better data and reduce effort. 

4.1 Basics of Transfer Learning 

The solution that is proposed in this thesis is the use of transfer learning. 
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Transfer learning for deep neural networks is the process of first training a base 

network on a source dataset, and then transferring a small part of its layers to a 

second network to be trained on a smaller target dataset. This idea has been shown 

to improve deep neural network’s generalization capabilities in many computer 

vision tasks such as image recognition and object localization [31]. 

Despite its recent success in computer vision, transfer learning has been rarely ap-

plied to deep learning models for time series data. The intuition behind the transfer 

learning approach for time series data is also partially inspired by the observation 

of Cui et al. [30], where the authors showed that shapelets (or subsequences) [13] 

are related to the filters (or kernels) learned by CNNs. In [31] the authors evaluate 

their developed framework thoroughly on the largest publicly available bench-

mark for time series analysis: the UCR archive1, which consists of 85 datasets se-

lected from various real-world domains. 

 For each pair of datasets (D1 and D2) in the UCR archive two experiments are 

performed in [31]:  

• D1 is the source dataset and D2 is the target dataset.  

• D1 is the target dataset and D2 is the source dataset.  

Which makes it in total 7140 experiments for the 85 datasets in the archive. 

 
1 https://www.cs.ucr.edu/~eamonn/time_series_data/ 
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These experiments yielded interesting yet hard-to-understand results. Here we 

first present the result of the 85×84 experiments in a form of a matrix in Figure 33. 

 

 

Figure 33: Matrix showing the accuracy variation of cross training in multiple datasets taken 

from [31] 
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Figure 33 displays the variation in percentage over the original accuracy when fine 

tuning a pre-trained model. The rows’ indexes correspond to the source datasets 

and the columns’ indexes correspond to the target datasets. The red color shows 

the extreme case where the chosen pair of datasets (source and target) deteriorates 

the network’s performance. Where on the other hand, the blue color identifies the 

improvement in accuracy when transferring the model from a certain source da-

taset and fine-tuning on another target dataset. The white color means that no 

change in accuracy has been identified when using the transfer learning method 

for two datasets. 

Figure 34 is used to visualize the worst- and best-case scenarios when fine-tuning 

a model against training from scratch, they plotted a pairwise comparison of three 

aggregated accuracies {minimum, median, maximum}. 

By taking the minimum, it is easy to understand that one can find a bad source 

dataset for a given target dataset and decrease the model’s original accuracy when 

fine-tuning a pre-trained network. On the other hand, the maximum accuracy 

(blue dots) shows that there are also cases where a source dataset increases the 

accuracy when using the transfer learning approach. As for the median (yellow 

dots), it shows that on average, pre-training and then fine-tuning a model on a 

target dataset improves without significantly hurting the model’s performance. 
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Figure 34: Aggregated accuracies with or without transfer learning taken from [31] 
 
 
 

This analysis showed us that blindly and naively using the transfer learning ap-

proach could decrease the model’s performance. This is largely due to the fact that 

the initial weights of the network have a significant impact on the training. This 

problem has been identified as negative transfer learning in the literature, where 

there still exists a need to quantify the amount of relatedness between the source 

and target datasets and whether an attempt to transfer knowledge from the source 

to the target domain should be made. 
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In the end, the authors of [31] concluded that transferring deep CNNs on a target 

dataset works best when fine-tuning a network that was pre-trained on a similar 

source dataset. 

From this paper we pursue the idea of extending the research in the transfer learn-

ing field to the anomaly detection problem. 

 

4.2 Transfer Learning in Building Electricity Consumption Anomaly Detection 

Training the autoencoders presented in Section 3.3.4 and Section 3.3.7 on the Dutch 

dataset, which is more realistic and less prone to anomalies compared to the Italian 

smoothed dataset, and then performing a few epochs of fine tuning with the Italian 

one, seems to have improved stability. A much more stable prediction of the winter 

test set has been achieved over different runs and the anomalous days count was 

ranging between 30-35 over multiple runs (contrary to the 35 to 53 range obtained 

in the normal training discussed in Section 3.4.4),  even though autoencoders are 

considered instable learners.  

Moreover, the anomalies that were caught by the network were mostly days with 

a higher power consumption (both weekdays and weekends) but also some days 

with a lower power consumption than usual. 
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Figure 35: Prediction of Italian winter test set of offline AE with transfer learning 

 

The results of the metrics used to compare the different models, presented in Table 

5 and Table 6, did not show a drastic improvement that one could wish to expect, 

aside from a slight enhancement in the precision in the online AE in the first Ber-

gamo test set going from 0.32 with normal training, to 0.61 with transfer learning 

at the cost of slightly reducing the recall. At the same time, the results did not show 

any degradation in performance. 

 

Table 5: Performance metrics of first Italian test set with and without transfer learning 

 

 

 

Bergamo1 Prec Recall F1 AUC

Offline AE 0,86 1,00 0,92 0,99

Online AE 0,32 0,94 0,47 0,90

Offline AE TL 0,83 1,00 0,90 0,98

Online AE TL 0,61 0,84 0,71 0,87
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Table 6: Performance metrics of winter Italian test set with and without transfer learning 

 

The higher overall precision shown in the second dataset is due to the fact that 

entire days were labelled as anomalous during the annotation period. That is be-

cause during the winter period from which this data was collected, there seemed 

to be anomalies also during the nighttime, where higher consumptions were reg-

istered. 

Thus, it is possible to obtain similar or better results by performing transfer learn-

ing in anomaly detection using these two datasets. Even though both datasets deal 

with power consumption information, it is easy to see that the winter period of the 

Bergamo dataset used as test set is extremely different from the winter period reg-

istered by the Dutch facility. But even with that much difference, the models were 

able to still obtain around 80% and 70% of precision of positive samples respec-

tively, although losing some points in recall, therefore reducing the number of er-

rors in the samples classified as positive (higher precision) but increasing the num-

ber of false negatives (lower recall). Similarly, the harmonic mean of precision and 

recall (F1 score) and the area under the curve (AUC score) show that the transfer 

learning in this case loses some percentage points compared to the model trained 

Bergamo2 Prec Recall F1 AUC

Offline AE 0,79 0,81 0,80 0,87

Online AE 0,71 0,67 0,69 0,78

Offline AE TL 0,82 0,72 0,77 0,86

Online AE TL 0,73 0,61 0,67 0,75
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and tested with the same dataset. That should not be a surprise since there is a 

certain amount of bias and variance introduced when training a model with data 

from two buildings that are geographically distant and that have different insula-

tion systems. This latter fact can be assumed given that the Dutch dataset follows 

much more stable trends and patterns all year round. Nonetheless it is easy to see 

how the use of the Dutch dataset for training a neural network could be applied to 

the anomaly detection process in new buildings in Lombardy at least for the first 

years when the proprietary data is being collected. This will result in a final dataset 

with fewer anomalies, since they can be promptly caught thanks to a momentary 

anomaly detection system implemented using transfer learning. 
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Chapter 5 

 Conclusion and Future Work 

This work focused on trying to understand which machine learning method per-

forms better for detecting anomalies in the context of building energy consump-

tion. It was not easy to draw a conclusion because, for instance, the online autoen-

coder performed well in the partial recognition of the anomalies and managed to 

detect most of the anomalous days correctly but failed to predict the precise hours 

of the day at which the anomalies occurred, therefore lowering the performance 

metrics. This does not mean that such methods are not fit for this purpose, but 

rather that more research should be made before applying these methods in the 

real word. It must be noted that the entire datasets used here were not labelled at 

the source, but labelling was a task performed by the author of this thesis, who is 

not an expert in the field of building management. There are chances that the 

anomalies registered by a method like the online autoencoder were actual anoma-

lies in the system that were not recognized when hand labelling. In any case all 

these results are conservative: even though the precision of the autoencoder is low 

it just means that there are many false positives, but the main anomalies were all 

discovered with good precision. The same can be said about the transfer learning 
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technique: it obtained results on par with normal training. There is not a lot of 

background for transfer learning in time series, more research should be done on 

this topic as it seems to be promising, possibly, by trying to use properly labelled 

datasets. 

This thesis was therefore an explorative research in which the best methods ac-

cording to performance obtained seem to be the statistical methods of SVR and 

Random Forest and the offline AE. It is extremely hard to evaluate all of these 

methods and compare them to the results reported in the original articles, since the 

datasets used by them were different and not publicly available.  

The transfer learning technique seemed rather promising especially as a temporary 

anomaly detection system to be used in BEMSs during the data collection period 

for buildings that do not adopt any anomaly control strategies. Therefore, in the 

future, a further exploration of autoencoders that implement transfer learning 

could be useful to confirm and extend the results obtained in this work. The focus 

should be on the usage of datasets that have more regular features, are complete 

and are properly labeled by experts.  

The discovery of a stable enough method to deal with anomaly detection could 

theoretically have an astonishing impact on the quality of life of people inhabiting 

the buildings and even more on the life of all the people on Earth, thanks to the 

reduced CO2 emission. 
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