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Abstract: Climate is undergoing a severe crisis. Ecosystems are collapsing, global
temperature is rising, and extreme atmospheric phenomena are more frequent than
ever. Renewable and low-carbon forms of energy represent the only way out of the
climate crisis. Solar and wind generators have unpredictable energy generation
patterns as their production depends on the weather. Integrating such generators
with the power grid poses significant challenges. Artificial intelligence (AI) may
help grid operators tackle these new challenges.

To foster new Al solutions, RTE (Réseau de Transport d’Electricité) has been or-
ganizing the "Learning To Run a Power Network" (L2RPN) challenge. The power
network control problem is cast in the Reinforcement Learning (RL) framework.
An RL agent observes the state of the power network and takes action based on
the current observation and previous experience to maximize the cumulative sum
of a scalar reward signal.

Our solution is a novel hierarchical multi-agent RL model. A set of agents deals
with local neighborhoods of the network, a small number of managers filters their
decision, and a head manager selects one of the managers’ decisions. The hierarchy
is dynamically generated given the grid topology and updated while learning.

We test our solution on two increasingly complex networks and show performance
superior to a challenging expert system. Our results demonstrate the feasibility of
multi-agent power network control bridging the general power network literature
and the L2RPN challenge community.
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1. Introduction

1.1. Motivation

Power grids enable energy transportation from production plants to consumers through thousands of kilometers
of transmission lines and the work of numerous people. In 2020, almost 85% of the energy produced came
from the combustion of fossil fuels that emit greenhouse gases [2]. Those emissions have been consistently
growing. To prevent the irreversible destruction of many ecosystems reducing greenhouse gas emissions has
become urgent. Alternative energy conversion devices that exploit renewable and low-carbon forms of energy
are becoming ubiquitous. Such devices have drastically improved over the past two decades. A growing amount
of research investigates the feasibility of a 100% renewable energy system [8].
However, solar and wind power have some drawbacks regarding their integration into power networks. Their
production highly depends on the weather which is hard to predict accurately [10]. Energy storage facilities
allow us to tackle such unpredictability, but our overall storage capacity is low.
As of today, increasingly uncertain power injection patterns and the inherent complexity of power networks
make the control problem harder than ever. Highly trained engineers called dispatchers ensure the system’s
security by performing several actions:

e switching: managing power overflows and preventing cascading failures by changing interconnection

patterns of transmission lines to redirect power flows;

e redispatching: asking producers or consumers to change what they inject into the power network;

e storing: modifying the amount of power produced or absorbed by storage units;

e curtailing: limiting the amount of energy injected by renewable generators in case of overproduction or

local issues.

Dispatchers rely on their understanding of the system because current optimization methods are lagging, and
satisfying heuristics are still under test. In the future, we hope artificial intelligence (AI) can assist dispatchers
in making better decisions to control the power network and keep all equipment secure.

1.2. Goals

Since 2019, RTE (Réeseau de Transport d’Electricité) has been organizing the "Learning to Run a Power
Network" (L2RPN) Challenge [45] to foster AI applications to power network control. RTE provides the
physical simulation of a power grid, and participants build algorithms to safely and efficiently control such grid.
Power network control in the L2ZRPN challenges is framed as a sequential decision-making problem and cast in
the Reinforcement Learning (RL) framework. RL is a machine learning (ML) paradigm that deals with learning
an optimal behavior (i.e., policy) in a given environment by maximizing the cumulated sum of a scalar reward
signal. An RL agent observes the current state of the network and decides what action to take, such action
changes the environment’s state, and the loop repeats. The actions allowed to the autonomous agent are akin
to those available to a human dispatcher: switching, redispatching, and curtailing. The control problem ends
when the total demand is not met anymore, i.e., a blackout is triggered.

The first edition of the L2RPN challenge took place in 2019. The provided network was composed of 20
powerlines, 11 loads, and 5 generators. In 2020, the power network contained 59 powerlines, 37 loads, and
22 generators. In 2021, organizers added an alarm feature: the agent alarms the operator if an emergency is
predicted up to 30 minutes in advance. Overall, the complexity of the control task keeps rising each year, and
the winning solution becomes more articulated.

However, scientific challenges foster competition rather than collaboration. Challengers often build instance-
optimized throw-away models to maximize their score and win the challenge. Such behavior hurts scientific
progress. Building a brute-force model whose sole purpose is achieving the top score in a specific environment
is certainly not a positive route to solve real-world problems.

Conversely, challenges offer standardized and reproducible benchmarking platforms. Practitioners can evaluate
the performance of their models on publicly available benchmarks fostering more open and inclusive research.
Reproducibility is a crucial issue in AT research [18], results are often difficult to replicate, and models are hardly
comparable. Scientific challenges are a step in the right direction in alleviating the AI reproducibility crisis.
Therefore, we decided to take the best of both worlds by evaluating our model on the challenge platform without
taking part to the competition. This way, we stress the relevance of the task proposed in the challenge and give
us sufficient time to devise a solution free of the competition peculiarities.



1.3. Contributions

We created a hierarchical multi-agent RL system. Power networks contain numerous nodes, and the challenges
model far smaller environments than real-world grids. We deployed one RL agent per node. On top of this,
we decided not to have a purely horizontal decision structure as the complexity of consensus scales with the
number of agents trying to reach an agreement [1]. We built a hierarchical decision structure. Managers handle
communities of agents and select the best decision among the ones proposed by each agent. Finally, a head
manager collects managers’ proposals and decides on the one to enact. Both managers and the head manager
are RL agents.
In the results section, we evaluate our model on two environments of increasing size and complexity. We
show that the model is capable of performing substantially better than the baseline expert system proposed by
challenge organizers in both settings.
We argue that multi-agent power network control is feasible and effective. Multi-agent systems allow controlling
huge environments by naturally factorizing them, thus promising real-world scalability.
Our main contributions are:

e a novel hierarchical multi-agent RL architecture for power network control;

e an empirical evaluation of the proposed model on two challenge environments.
In the following sections, we detail the prerequisite knowledge, the problem setting, the literature on RL
applications to power networks, previous challenge winners, the proposed model, the empirical model evaluation,
and some possible extensions to this work.



2. Background

The nature of learning is interacting with our environment. Reinforcement learning (RL) [64] consists in learning
what to do to maximize a numerical reward signal cumulated over time . The learner must discover which actions
yield the most reward by trying them. Actions affect the immediate reward, the following situation, and the
subsequent rewards. The idea is that an agent must be able to sense the state of its environment and must be
able to take actions to affect the state and reach a specific goal.

In the following sections, we discuss the place of RL among machine learning paradigms, the formalization of
the RL problem, a specific solution method, and how a RL agent senses a graph environment. Refer to fig. 1
for a high-level overview of an RL agent interacting with a graph environment.

2.1. Machine Learning Paradigms

The three main ML paradigms are supervised, unsupervised, and reinforcement learning. Table 1 outlines the
main aspects of each paradigm.

Supervised Learning Unsupervised Learning
> Model learns from labeled examples > Model learns from unlabeled examples
> Aims at generalizing context > Aims at uncovering structure in data
> Relies on an external supervisor > Does not rely on external supervision

Reinforcement Learning

> Agent learns from experience
> Aims at learning an online control task

> Relies on an a scalar signal called reward

Table 1: ML paradigms.

2.1.1 Supervised Learning

Supervised learning [6] deals with learning from an external supervisor’s labeled examples. Labels are the
ground truth in a dataset. For example, classifying images by subjects is a supervised task. In this case, labels
would specify the subjects for each photo.

Each sample is a description of a situation together with a specification: the label of the correct action the
system should take in that situation. This paradigm aims at learning a generalized representation of a context
from a limited amount of examples.

Supervised learning is not adequate for learning from interaction. Interactive problems often make it impractical
to obtain examples of desired behavior that are both correct and representative of all the situations in which
the agent has to act. An agent must be able to learn from its own experience.

2.1.2 Unsupervised Learning

Unsupervised learning [6] is about finding structure hidden in collections of unlabelled data. Unsupervised
learning comprehends many tasks, among which:
e clustering: a data mining technique that groups unlabeled data based on their similarities or differences
e association rules: a rule-based method for finding the relationship between variables in a given dataset
e dimensionality reduction: a technique used when the number of features, or dimensions, in a given
dataset is too high to reduce the number of data inputs to a manageable size
The main difference with RL is that the latter tries to maximize a reward signal instead of finding a hidden
structure. Uncovering structure in an agent’s experience can be helpful in RL but by itself does not address the
RL problem. Therefore, we consider RL to belong to a different ML paradigm.



2.1.3 Reinforcement Learning

The main challenge in RL and not present in other kinds of learning is the tradeoff between exploration and
exploitation. On the one hand, the agent has to exploit what it has already experienced to obtain a reward. On
the other hand, the agent has to explore to take better actions in the future. The problem is that the agent can
pursue neither exploration nor exploitation exclusively without failing the task. The agent must try a variety of
actions and progressively favor those that appear to be best. On a stochastic task, each action must be tested
many times to gain a reliable estimate of its expected reward.

2.2. Reinforcement Learning Formalization
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Figure 1: RL agent interacting with a graph environment.

In the RL framework, the decision maker is called agent, and the recipient of agent actions is called environment.
We model the environment as a Markov Decision Process (MDP) that is a 4-tuple (S, A, p,r) where:

e S is a set of states called state space

e A(s) is a set of actions available in state s € S called the action space

e p(s',r|s,a) is the probability that action a € A in state s € S will lead to state s;11 € S yielding reward

r(s,s’,a) and is called state transition function

The states of an MDP must satisfy the Markov Property , which intuitively means the current state and action
include all aspects of the past agent-environment interaction that impacts the future.

Definition 2.1 (Markov Property). Given s € S and a € A(s) the next state s’ € S is conditionally independent
of all other previous states and actions.

A finite MDP has finite state and action spaces.

At each timestep ¢ the agent receives some representation of the environment’s state s; € S and selects an
action a; € A(s). As a consequence of action at, the agent finds itself in a new state s;11 € S and receives a
reward 1, € R(s¢, St41,a) . The MDP and agent together thereby give rise to a sequence or trajectory

80, 00,70, 51,01,71,82,02,T2 . .. (1)

See fig. 1 for a depiction of an agent-environment interaction. For a more in-depth treatment of the RL problem
formalization refer to [64].



2.2.1 Expected Return

The agent’s reward r; € R models the agent’s goal. The reward hypothesis [64] implies that such a reward
expressed through a scalar signal may describe any goal.

Definition 2.2 (Reward Hypothesis). Goals and purposes can be thought of as the maximization of the
expected value of the cumulative sum of a received scalar signal (called reward)

More formally, we seek to maximize the expected return where the return G; is defined as the discounted sum
of the rewards:

o0
Gy =141 +YTeq2 + ’YQTtJrS + =11 G = Z VthJrkJrl (2)
k=0

where 7y is a parameter 0 < <1 called the discount factor.

The discount factor determines the present value of future rewards. A reward received k timesteps in the future
is worth only v*~! times what it would be worth if it were received immediately. If v < 1, the expected return
has a finite value, while if v = 0, the agent maximizes only immediate rewards.

2.2.2 Value Functions

Value functions are functions of states or state-action pairs that estimate how good it is for the agent to be in
a given state or to perform a given action.

A policy is a mapping from each state to a probability distribution over the action space. Suppose the agent is
following policy 7 at time ¢ then 7(a|s) is the probability of playing action a € A(s) when in state s € S. RL
methods specify how the agent’s policy changes due to its experience.

The state value function of a state s € S under a policy 7 denoted v, (s) is the expected return when starting
in s € § and following 7 after that:

V7r - Ew [Gt‘st - S] (3)

Similarly, we define the action-value function of a state-action pair (s,a) € S X A(s) under a policy 7 denoted
d=(s,a) as the expected return starting from s € S when taking action a € A and then following policy :

Qr(s,a) = E;[G¢ls: = s,a; = a (4)

2.2.3 Bellman Equations

The goal of an RL agent is to find the optimal policy for a given MDP. Value functions define partial ordering
over policies. A policy 7 is defined to be better than or equal to a policy « if its expected return is greater
than or equal to that of 7’ for all states:

7> = Vi(s)>Vu(s) VseS (5)
Thus the optimal policy is defined as:
7 (s) € argmazr;Vy(s) Vse S (6)

A fundamental property of the value functions used throughout RL is that they can be defined recursively
through their Bellman equations:

Vals) = 3o m(als) 3o pls',rlss)lr +9Ve(s)] Vs €S (7)

Qr(s,a) = Zp(s’,ﬂs, a)lr + vzﬂ(aﬂs’)qﬂ(s',a')] VY(s,a) e S x A (8)

We can now define the Bellman optimality equations, which are the definitions of the value functions associated
with the optimal policy. Therefore, we can define both value functions without referencing any specific policy:

V*(8) = mazae a(s)Qr+ (5,0) = mazaeacs) Y p(s',7]s,a)[r + yV*(s")] 9)
Q*(s,a) = X:p(s'7 rls,a)[r + ymazqe c a5 Q" (s, a’)] (10)



For finite MDPs, the Bellman optimality equations have a unique solution. If the transition probabilities are
fully known, one could solve the equations and get @*. Once Q* is known, the optimal policy 7* follows by
choosing the action a € A(s) that maximizes Q* for the current state s.
Solving the Bellman optimality equations provides one route to finding an optimal policy, thus solving the RL
problem. However, at least three factors make solving Belmann equations impossible or infeasible:
e environment dynamics: transition probabilities in non-trivial environments are often unknown and
very hard or even impossible to find;
e computational resources: environments such as a chessboard or a large network yield huge state
spaces, which make the Bellman equations unfeasible to solve;
e Markov property: real-world environments rarely respect the Markov property.
Many RL methods can be understood as approximating the Bellman optimality equation using experienced
transitions instead of knowledge of the expected transitions.

2.3. Temporal-Difference Methods and Deep RL

In the following sections we detail several Temporal-Difference (TD) methods to build a Double Dueling Deep
Q Network Agent with Prioritized Experience Replay. This is the architecture found in all the RL agents of
our multi-agent system. Refer to algorithm 1 for an overview of the training process of such agents.

Algorithm 1 Double Dueling DQN with Prioritized Experience Replay

Input: minibatch k, step-size v, replay period K, size N, exponents «, 3, budget T’
Initialize replay memory H =0, A =0,p; =1
Observe so and choose ag ~ mp(s0)
fort=1...T do

Observe s;, 14,V

Store transition (s¢—1,ar—1,7¢,Vt, S¢) in ‘H with maximal priority p; = max;<¢p;

if t =0 mod K then

for j=1...kdo .
Sample transition j ~ P(j) = %};g

.P(i))—8
Compute importance-sampling weight w; = %

Compute TD-error §; = 75 + vjQtarget (5, argmaz,Q(sj, a)) — Q(s;j—1,aj—1) with g-values
computed as Q(s,a) = V(s) + (A(s,a) — mazyc 4 A(s,a’))
Update transition priority p; < |0;]
Accumulate weight-change A <~ A + wj - 05 - VoQ(sj-1,a;-1)
end for
Update weights 6 <— 6 + v - A and reset A =0
Every tiarget steps copy weights into target network Oiarger < 6
end if
Choose action a; ~ mp(st)
end for

2.3.1 Q Learning

One of the early breakthroughs in RL is Q-learning [74], which is an off-policy TD control algorithm. TD
methods can be seen as a combination between Monte Carlo (MC) ideas and Dynamic Programming (DP). Like
MC, TD methods can learn directly from raw experience without a model of the environment’s dynamic. Like
DP, TD methods update estimates based in part on other learned estimates without waiting for an outcome.
On top of this, Q-learning is off-policy because it learns the state-action value function by following a policy
different from the policy it is estimating, called behavior policy.

The Q-learning update is defined as:

Q(st,at) + Q(st,at) + afry + ymazae a(s,)Q(St+1,a) — Q(8¢, at)] (11)

where action a; is sampled from a policy derived from Q. We call the greedy policy maz,e4(s,)Q(5¢+1,a) the
target policy as it directly estimates the optimal policy 7*



2.3.2 Deep Q Networks

A Deep Q-Network (DQN) [46] is an agent which combines Q-learning with deep neural networks. The general
idea is to use a deep neural network to approximate the optimal action-value function, defined in eq. (10). Non-
linear approximators have long caused instabilities to RL agents when used to approximate the action-value
function due to three key issues:

e correlation between observations: the sequence of observations yield naturaly correlated observations

e action-value dynamics: a small update to ¢ may significantly change the policy

e action values and target values correlation: action values and target values are directly correlated

given r + maxqyq(s’,a’)

Mnih et al. [46] implemented experience replay to randomize the data and remove the sources of correlation.
Experience replay means storing the agent’s experiences e; = (8¢, a, 7, St+1) at each timestep ¢ in a dataset
D = {ey,...,e:} and applying Q-learning updates on minibatches of experiences sampled uniformly from the
dataset. The g-learning update at iteration ¢ minimizes the following loss:

Li(0:) = E(s a,r,s)~0 () [(r + ymaza Q(s', a3 07) — Q(s, a; 6:))?] (12)

Where U(D) is the uniform distribution over the agent’s past experiences. Then, the action-value function is
parametrized for the weights of the deep neural networks approximating it and is written Q(s,a;6;) where 6;
are the parameters of the network at timestep ¢. We also use a target network used to compute the target
with parameters §; at timestep ¢; such parameters are updated with 6; every C' steps and held fixed between
individual updates. The loss in eq. (12) represents the mean squared error of the Bellman equation discussed
in section 2.2.3. The target values are replaced with estimated ones and defined r + ymaz, Q(s',a’;6;). This
loss is then minimized through stochastic gradient descent.

The DQN algorithm is both model-free and off-policy. Firstly, it solves the RL task directly using samples
from the environment without explicitly estimating the reward or the transition function. Then, it is off-policy
because it learns about the greedy policy a = argmaz, Q(s, a’;0) while following a behavior distribution that
ensures adequate exploration of the state space. In practice, the behavior distribution is often selected by an
epsilon-greedy policy that follows the greedy policy with probability 1 — € and selects a random action with
probability e.

Algorithm 2 DQN with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function ) with random weights 6
Initialize target action-value function Q with weights 6= = 6
for episode =1... M do
Initialize sequence s; = {z1} and preprocessed sequence ¢1 = ¢(s1)
fort=1...T do
With probability € select a random action a;
otherwise select a; = argmax,Q(¢(st), a; )
Execute action a; observe reward r; and next state s;11
Preprocess the observed state ¢;11 = ¢(s141)
Store transition (¢y, at, ¢, ¢r+1) in D
Sample random minibatch of transitions (¢;, aj, 75, ¢;41) from D
Set rj if episode terminates at step j-+1
oY Tj +maxa/QA(¢j+1,a’;6*) otherwise
Perform a gradient descent step on (y; — Q(¢j, a;;6))? with respect to network parameters ¢
Every C' steps reset Q= Q
end for
end for

2.3.3 Double Deep Q Networks

Van Hasselt et al.[68] showed that the Q-learning algorithm, as discussed in section 2.3.1, suffers from substantial
overestimation in some games belonging to the Atari 2600 domain [75] which is a popular benchmark in the RL
community. They tracked down this overestimation issue to the max operator used both in standard Q-learning
and DQN, which use the same values both to select and evaluate an action, refer to eqs. (11) and (12). This



formulation makes it more likely to select overestimated values, resulting in over-optimistic value estimates.
They thus decided to implement double Q-learning [25] for DQNs to decouple selection and evaluation.

For each update, one set of weights is used to determine the greedy policy and the other to determine its value.
We can rewrite the target in eq. (12) to untangle the selection and evaluation:

YtDQN =141 +YQ(8¢41, argmazraQ(se41,a;0;);6;) (13)

Finally, we can rewrite the g-learning target in the double g-learning formulation by replacing the second set
of weight vectors with 67, the weights of the target network in the DQN formulation.

YtDOUblEDQN =741+ 'YQ(St+17 aTgmaxaQ(StH, a; 915)7 9;) (14)

2.3.4 Dueling Networks
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Figure 2: Dueling network architecture.

Many works focus on designing improved control and RL algorithms or incorporating existing neural network
architectures. Conversely, Wang et al. [73] concentrate primarily on creating a neural network architecture that
is better suited for model-free RL called dueling architecture (see fig. 2). The proposed architecture explicitly
separates the representation of state values and action advantages.

The advantage function is a value function defined as:

A(s,a) = Q(s,a) = V(s) (15)

The advantage function encodes a measure of the relative importance of each action by subtracting from the
action-value function the state-value function.

The main idea is to have a common embedding that separates into two streams that encode state values and
action advantages separately. The two streams are combined via a special aggregating layer to produce an
estimate of the action-value function ). The naive solution would be to build ) as follows

Q(s,a;0,a,8) =V (s;0,8) + A(s, a; 0, a) (16)

where V' is the output of the state-value stream parametrized to the weights of the embedding 6 and the weights
of the state-value stream . On the same line, A is the output of the advantage stream parametrized to the
embedding weights and the advantage stream weights. The issue is that eq. (16) is unidentifiable because given
@ we cannot recover V and A uniquely, which in practice means poor performance. To solve this issue, the
authors modified the action-value specification as follows:

Q(s,a;0,a,0) =V(s;0,8) + (A(s,a;0, ) — mama/eM‘A(s,a’; 0,a)) (17)



Now, for the optimal action a* :

a* = argmazeecaQ(s,a’;0,a,8) = argmazacaA(s,ad’;0,a) (18)

we obtain
Q(s,a";0,a,8) =V (s,0,0) (19)

In conclusion, the dueling network automatically produces separate estimates of the state value function and
advantage function without extra supervision. Therefore, the network can learn which states are valuable
without learning the effect of each action for each state. Such behavior is beneficial in states where actions do
not affect the environment in any relevant way.

2.3.5 Prioritized Experience Replay

Experience replay has been devised together with Deep Q Networks [46] to break the temporal correlations by
mixing more and less recent experiences at each update and reusing rare experiences in multiple updates.
Schaul et al. [57] investigated how prioritizing which transitions are replayed can make experience replay more
efficient and effective than if all transitions are replayed uniformly. The key idea is that an RL agent can learn
more effectively from some transitions than others. Transitions may be more or less surprising, redundant, or
task-relevant. Some transitions may not be immediately valuable to the agent but might become so when the
agent’s competence increases. Experience Replay frees online learning agents from processing transitions in the
exact order they are experienced. Prioritized replay further frees agents from considering transitions with the
same frequency they are experienced.

The central component of prioritized replay is the criterion by which the importance of each transition is
measured. One idealized criterion is the amount the RL agent can learn from a transition in its current state,
which we call expected learning progress. While this measure is not directly accessible, a reasonable proxy is
the magnitude of transition’s Temporal Difference (TD) error ¢; defined as:

O =141 + YV (s141) — V(sy) (20)

The TD error measures the difference between the estimated value of s; and the better estimate 711 +~vV (st41),
thus indicating how unexpected the transitions are. This is particularly suitable for incremental online RL
algorithms such as Q-learning that already compute the TD error and update the parameters in proportion to
6. However, greedy TD-error prioritization has several issues:

e local updates: to avoid expensive sweeps over the entire replay memory, TD errors are only updated
for the transitions that are replayed, which means that transitions with a low TD error on the first visit
may not be replayed;

e noise spikes: stochastic rewards may induce large approximation errors;

e small subset of experience: errors shrink slowly, meaning that initially, huge error transitions get
replayed frequently.

All the cited issues make the system prone to overfitting.
Thus, stochastic sampling is introduced by interpolating between pure greedy optimization and uniform random
sampling. Schaul et al. define the probability of sampling transition i as:

(0%
P(i) = <2
(2) S o
where p; > 0 is the priority of transition ¢. The exponent « € [0, 1] determines how much prioritization is used,
and a = 0 corresponds to the uniform case. The variant we will consider is the direct proportional prioritization
where p; = |d;| + € and € is an arbitrarily small constant.
In deep Q networks, we minimize an expectation with regard to a uniform sampling distribution as in eq. (12).
The sampling from the replay buffer is still expected to be uniform. Prioritization modifies this distribution in
an uncontrolled manner by oversampling transitions with high priority. Therefore, they introduced importance
sampling to down-weight the importance of oversampled transitions. We now correct the bias with the following
weighting

(21)

1 1
(. B 22
where N is the size of the replay buffer. The weighting in eq. (22) fully compensate for the non-uniform
probabilities P(i) if 8 = 1. Finally, these weights are added into the Q-learning update by using w;d; instead of
d;. Refer to algorithm 1 for a more detailed view of the training process of an RL agent employing prioritized
experience replay.
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2.4. Graph Neural Networks

Concluding the background, we discuss how RL agents in our system perceive a graph environment through
Graph Neural Networks (GNNs) [21, 56]. The GNN formalism is a general framework for defining deep neural
networks on graph data. The key idea is that we want to generate representations of nodes that depend on the
graph’s topology and any feature information we have. We will now give an overview of GNNs’ inner functioning
and discuss the main layers used in our work. For a more detailed discussion, refer to [24].

2.4.1 Neural Message Passing

__Target Node

j\

(1) —|AGGREGATE |— ® — (2) —|ase.[—(3)

@) —fros]— @

Figure 3: High-level view of neural message passing.

The defining feature of a GNN is that it uses a form of neural message passing in which vector messages are
exchanged between nodes and updated using neural networks [19].

During each message-passing iteration in a GNN, a hidden embedding hg“) corresponding to each node u € V
is updated according to the information aggregated from u’s graph neighborhood A(u). This message passing
update can be expressed as:

h{F+Y = UPDATE® (), AGGREGATE® ({h} v € N'(u)})) = UPDATE® (b, m{y) )  (23)

where UPDATE and AGGREGATE are arbitrarily differentiable functions and mys(,) is the message that
is aggregated from u’s graph neighborhood A (u). Superscripts distinguish the embeddings and functions at
different iterations of message passing.

At each iteration k, the AGGREGATE function takes as input the set of embeddings of the nodes in u’s graph

neighborhood A (u) and generates a message m(kzu) based on this aggregated neighborhood information, see

fig. 3. The UPDATE function then combines the message m(k)u) with the previous embedding hq(f_l) of node

N(
u to generate updated embedding hgk). The initial embeddings at k = 0 are set to the input features of all the
nodes h&o) =x, Vu € V. After running K iterations of the GNN message passing, we can use the output of

the final layer to define the embeddings for each node:

z, =h) vuey (24)

u
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2.4.2 The Basic GNN

Until now, we have described an abstract GNN, as in eq. (23). We will now discuss the basic implementation
of UPDATE and AGGREGATE. The basic GNN message passing is defined as:

h{) = o (WD + Wi, D bl +b®) (25)

neigh
veEN (u)

k k (k) o g(k—1) . . . . .
where Wéel)f, Wr(lez h € R4 xd are trainable parameter matrices and o denotes an elementwise non-linearity.

The bias term b®) € R4 is often omitted for notational simplicity, but including the bias term can be important
to achieve strong performance.

Message passing in the basic GNN framework is analogous to a standard multi-layer perceptron (MLP) as it
relies on linear operations followed by a single elementwise non-linearity. Firstly, we sum the messages incoming
from the neighbors. Then, we combine the neighborhood information with the node’s previous embedding using

a linear combination. Finally, we apply an elementwise non-linearity.
We can now define the basic GNN through the UPDATE and AGGREGATE functions:

my () = AGGREGATE® ({h{(", Vv e N(w)}) = Y h, (26)
vEN (u)
UPDATE(hu, mN(u)) = U(Wselfhu + Wneighmj\/(u)) (27)
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3. Problem Description

() substation

/\ load

generator

B 4
Figure 4: L2RPN case 14 environment.

The "Learning to run a power network” (L2RPN) challenge is a series of competitions that model the sequential
decision-making environments of real-time power network operation. The participants’ algorithms must control
a simulated power network within a Reinforcement Learning (RL) framework [45].

The French electricity network management company RTE (Reseau de Transport d’Electricite) has been orga-
nizing the L2RPN challenges since 2019 because power networks have faced systemic changes that bring current
technology to the edge. The advent of intermittent renewable energies on the production side and prosumers on
the demand side, coupled with the globalization of energy markets over a more interconnected European grid,
poses significant challenges to grid operators [44].

Currently, operators must analyze massive amounts of data to make complex and coordinated decisions over
time. For this reason, recent advances in Deep Reinforcement Learning [59] have drawn the attention of the
power system community for their capacity to learn representations and their parallelizable architectures.
RTE has therefore developed Grid20p [13], a Python module that casts the power grid operational decision
process into a Markov Decision Process (MDP).

Grid20p represents a power grid as a set of objects: powerlines, loads, generators, and batteries with substations
linking everything together. Powerlines connect substations and allow power to flow from one place to another.
A graph akin to the one in fig. 4 naturally models the power grid as we have described it. See table 3 for an
overview of the node and edge features in the Grid20p’s power network model.

However, our power network model needs to take into account also the internal structure of substations, where

1 Bus1 Bus?2 ~"|Bus1 Bus?2
4 Bus1Bus2 .°

-\

(a) Buses (b) Switches

Figure 5: Substation inner working.
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substations powerlines topologies action space size
rte case 5 5 8 31.320 585
rte case 14 14 20 1.397.519.564 3580
12rpn wccei 2020 36 29 1.88 e+21 3.941.849
IEEE case 118 [31] 118 186 3.88 e+76 13.419.900

Table 2: Complexity of different power networks available in Grid20p.

we find two busbars to which every grid object connects, as in fig. 5a. Substations connect elements through
switches, as depicted in fig. 5b, which allow the operator to electrically separate elements from each other. Any
switching action which isolates a load or a generator from the rest of the network yields an invalid topology and
causes a blackout.

On top of validity considerations, action space size has the utmost importance when dealing with power networks.
Given a substation with & elements there are 2*~! different configurations while N powerlines imply 2V actions.
Each generator can be redispatched, which means the network operator may request a power plant to change the
production set point to deal with a higher or lower power request. To deal with such a combinatorial explosion,
Grid20p introduces several operational constraints that limit the agent’s actions at each timestep.

First, the number of concurrent powerlines modifications is limited to one. Powerline changes have severely
nonlinear effects on the grid, fostering human operators to avoid concurrent powerline modifications. Second,
substations mutations may affect no more than two substations together. Human operators can only focus on
a few simultaneous operations, so the number of substations affected by their intervention rarely exceeds two.
Finally, you can act on the same grid object with limited frequency. The more you reconfigure a real-world
switch, the faster you can expect it to age, and the more fragile it will eventually become. In table 2, we
summarize the actions space size of several environments subject to the operational constraints discussed so far.
The model we just discussed significantly simplifies an actual power grid. Above all, real power networks ac-
commodate a large variety of heterogeneous objects with much more complex properties than loads, generators,
substations, and powerlines. Moreover, substations are significantly simplified both in the number of buses they
contain and in the switching structure, which is usually more articulated to ease frequent switching operations.
In conclusion, we frame the network operation problem as an MDP. The agent is the network operator, capable
of performing actions on the environment, which is the power network itself.

The main MDP components are:

states: description of the physical network, including load, generators, and line connections;

actions: topological changes or generator redispatching;

reward: some measure of economic, environmental, or security cost or performance;

transition function: a function determining the new state of the network given the previous state and
the action taken by the agent.

The RL task structure is episodic, with episodes running from midnight until the agent disconnects a load from
a generator or the episode ends, the following midnight; timesteps are recorded every five minutes. Loads and
generators each day follow a specific behavior mimicking that of an actual power grid.

feature node or edge | description

active power flow node and edge | The power consumed or utilised in the grid

the part of complex power that corresponds to storage

ti fl d d ed . .
reactive power Low | node and eaee | ind retrieval of energy rather than consumption

voltage node and edge | difference in electric potential
phase difference between voltage
h 1
phase angle node and edge and current in the circuit
powerline capacity edge only observed current flow divided by the thermal limit
cooldown edge only the number of time step the powerline is unavailable

Table 3: Node and edge features available in the Grid20p power network model.
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4. Related Works

The increasing complexity of today’s large interconnected power systems requires advanced control techniques.
Better communications infrastructure, more robust computational capabilities, and new control devices open
up the possibilities to implement advanced control schemes which can process the observations realized on the
power system and control it appropriately [85]. Embedding the learning methods into the control schemes is an
effective way to endow the controllers with the capability to learn and update their decision-making [20]. RL
offers a panel of methods that allows controllers to learn a goal-oriented control law from interactions with a
system or its simulation model [9, 64]. In this section, we will first investigate the state of the art in applying
reinforcement learning to power networks’ operational control, and then we will discuss the solutions of the
previous L2ZRPN winners.

4.1. RL for Power Network Operational Control

Reference Approach Notes

[76] Nash Q-Learning Eligibility traces for multi-temporal decisions
[78] Coordinated Q learning Agents One agent per power network area

[79] Deep Forest Agents handle different timescales

[83] Decentralized Deep Forest Leader-Follower Approach

[29] Deep Q Learning Framework akin to Grid20p used

[53] Deep Q Learning Comparison with tabular Q-learning

[77] Deep Q Learning DQL applied to multiple timescales

[12] Deep Q Learning Voltage and set-point control together

Table 4: Main papers discussing RL applications to power networks.

Many decision, control, and optimization problems arise in power networks, including energy management,
demand response, electricity market and operational control, to mention a few. The focus of our work is
active control: maintaining a continuous supply of power to all the consumers in the system. Operational
management is becoming increasingly challenging as solar and wind power become more prevalent. Renewable
generator production depends on the weather, and typically the energy storage capacity is low. Therefore, DRL
is widely used to estimate control strategies and optimization policies under large-scale scenarios with limited
information [20]. See table 4 for an overview of the main works in RL applied to power network operational
control and table 5 for a summary of the main tradeoffs induced by the adoption of RL in power network control.
There are many lines of work in this area, we now investigate the most prominent ones.

4.1.1 Renewable Energies

Xiet al. [76] propose a smart generation control scheme to tackle the penetration of renewable energy generators
in the smart grid. The model chosen by the authors is a multi-agent reinforcement learning approach based on
Nash Q-learning [35] and eligibility traces [61]. Nash Q-learning is a training algorithm for multi agent systems
based on finding the Nash equilibrium in a game among the agents to be trained. Yin et al. [78] follow a similar
approach by deploying one independent deep Q learning agent for each area of the power network but training
them independently.

The penetration of renewable energy in the smart grid poses demanding challenges to power grid operation. In
Grid20p latest challenges, the energy mix includes an ever-increasing amount of renewable energy. Grid2op
models renewable sources as non-controllable generators; we can only curtail their production, thus significantly
limiting the reaction surface of the agent to network emergencies. The work on operational control is far more
extensive than the work framed in the Grid20p framework but pursues the same targets.

4.1.2 The Curse of Dimensionality

Zhou et al. employ Deep forest [87] to tackle the curse of dimensionality. The Deep forest model is a tree-
ensemble model which builds a deep decision tree in a data dependent way without resorting to backpropagation
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for parameter update. The deep forest component is applied to predict the next systemic state of a power
system, including both emergency and routine states. Yin et al. [79] extend the work on deep forests for
power network control outlining a preventive strategy for reducing emergencies on large inter-connected power
grids with continuous disturbances. On top of deep forest, Zhang et al. [83] employ a decentralized consensus
algorithm based on virtual generation tribes [84]. The idea behind virtual generation tribes is that a different
agent manages each power network area. Agents and leader share Q-matrices, and the leader chooses the global
action to take. Multiple agents form the RL controller, each of which predicts one movement per next timestep.
Reliability, fault tolerance, and scalability are mandatory requirements for any production-ready power network
control system. Multi-agent approaches are common in operational control. To our knowledge, nobody proposed
multi-agent methods among the Grid20p previous winners due to the challenge format requiring more instance-
optimized models. On the other hand, we decided to leverage the maturity of the Grid20p ecosystem while
taking a step back from the challenge format by building a multi-agent controller.

4.1.3 Power Network Simulation Frameworks

Huang et al. [29] apply RL to build an adaptive emergency control scheme. On top of this, they developed
a power grid control benchmarking tool akin to Grid20p called Reinforcement Learning for Grid Control. It
exposes smaller power systems but with more extensive details concerning the electrical components of the grid.
Another reinforcement learning framework for optimal operational control and maintenance is developed by
Rocchetta et al. [53]. Similarly to previous proposals, renewable generators are the focus of the investigation,
together with the capability of RL to handle a larger state-action space with respect to tabular reinforcement
learning.

Deep function estimators allow RL agents to scale in large state-action spaces by decoupling the policy from a
large table that must host all state-action pairs. While no Grid20p participant proposed tabular approaches,
enumeration techniques have been used in some solutions to filter the action space. Enumeration approaches
while challenge-specific may give valuable insights for building expert systems which often go hand in hand with
RL agents in the power network context.

4.1.4 Voltage Control

On top of reducing emergencies, another common target in literature is voltage control. In this case, we aim
to control bus voltage within the desired region when large consumers such as electric vehicles and intermittent
generators enter the network. Yang et al. apply RL on two timescales [77] . On a faster timescale, the
agent configures the optimal set point of smart inverters, while on a slower timescale, it configures capacitors
to minimize the long-term discounted voltage deviations. In the same line of work, Diao et al. [12] develop
GridMind, a RL agent which learns its policy from offline simulations and can adapt not only to load or
generations changes but also to topological changes.

Voltage control is a complex problem of its own and it is not modeled in Grid20p. Voltage control needs a
much deeper understanding of the inner working of network devices, while Grid20p main objective is to give
an entry point to reinforcement learning practitioners in the power network world.

RL Advantages RL Disadvantages
> Leverage incomplete information > No consideration for devices’ physical structure
Learn continuous control > Lacking of multi-timescale decisions

under continuous state-action spaces Setpoint control is not coupled

> Deal with unpredictable emergencies with voltage and frequency control

RL Directions

> Combination of RL and classical control methods

> Hierarchical strategies layering control and optimization

> Merging of grid data features with device model features

Table 5: RL in the power network literature.
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4.2. L2RPN Past Challenges and Previous Winners
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Figure 6: L2RPN challenges timeline.

4.2.1 2019 Feasibility Challenge

In the 2019 edition [44], the organizers provided a slightly adapted version of the IEEE 14-bus network [32] with
20 powerlines, 11 loads, and 5 generators. The competition’s goal was to operate the power grid in real time
over several days at a 5-minute resolution. More precisely, the objective was to manage the power flows at every
timestep given production, loads, and the grid topology. The score function gave incentives to optimize the
margins through all lines to maximize the overall residual grid capacity given powerline capacities (i.e., thermal
limits). An agent could only use topological actions on lines and substations to manage the grid while meeting
further operational constraints on actions and overloads. In 2019, the organizers set the following operational
constraints:
e reaction time: time to react to an overload before the line gets disconnected by protections, set to 1
timestep (i.e., 5 real-time minutes);
e activation time: there is a maximum number of actions performed in a given period, one action per
substation in this case;
e recovery time (cooldown): due to the physical properties of the assets, there is a time interval after
activation before flexibility can be reactivated, set to 3 timesteps in this challenge. Flexibilities are akin
to budget. When you use one, you consume part of your budget that you will recover some time after.

First Place The winners [39] used the Double Deep Q-Learning (DDQN) algorithm [68] along with imitation
learning [30] to initialize the policy. Imitation learning is a supervised learning method used to pre-train RL
agents by providing good initial policies in the form of neural network weights. A power grid simulator generates
massive datasets, which they further process before being used to train the agent. On top of imitation learning,
a guided exploration training method is used instead of the more traditional epsilon-greedy way. At every
timestep, the agent selects a fixed number of actions with the highest Q-values, and then their performance is
simulated on the fly. Then the action with the highest reward is chosen and added to memory. With the help
of the action simulation function, the training process is more stable, and a better experience is stored and
used to update the agent. Finally, an early warning mechanism enhances system robustness. The idea of such
a mechanism is to simulate the effect of doing nothing before all the other actions. If the loading level of any of
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the power lines is higher than a predetermined threshold, then the guided exploration process starts otherwise
the agent does nothing.

Discussion In this work, we immediately see the relevance of expert rules in automatic power grid control.
Ideally, the agent should only act against emergencies because controlling an entire power network is infeasibly
complex to learn and would yield a naive optimal policy for most of the non-emergency situations. Indeed,any
situations do not require any intervention, while others require obvious interventions such as reconnecting
disconnected powerlines. In our design, we kept our expert system as lean as possible to emphasize agent
behavior framing the model as a support system, not a standalone grid controller. Conversely, many challengers
took the opposite direction because expert systems yield significant score improvements.

4.2.2 2020 NeurIPS and WCCI Challenges

In the 2020 edition, the power network was much more complex. It comprised 59 powerlines, 37 loads, and 22
generators [43]. The overall goal was to avoid blackouts while optimizing the cost of operations under safety
constraints. Environments were still episodic, running at a 5-minute resolution over a week. The game-over
condition is triggered if total demand exceeds total production.

WCCI Winner The winner of the WCCI edition [80] performed an actions space reduction to 1000 elements
using an expert system and initialized a policy parametrized by an extensive feed-forward neural network. Then,
they trained a policy using evolutionary black-box optimization. Yoon et al. assumed reconnecting was always
the best action to take, as for the winners of the 2019 edition [39]. They let the agent intervene only in hazardous
situations. The existence of a line in which the power flow is larger than the threshold hyperparameter determines
a dangerous condition, a setting naturally modeled as a semi-MDP [64]. The main challenge of the Grid20p
environment is the size of the state and action spaces. To address this problem, Yoon et al. adopted an actor-
critic architecture where function approximators trained through Soft Actor-Critic (SAC) [23] represent the
policy and the value function. In addition, they used the afterstate representation to capture many state-action
pairs being led to an identical after state by leveraging the transition structure. The idea of the after-state
representation is that the agent does not learn state-action pairs but learns the value, called afterstate value,
of the state reached by playing a given action in a given state called afterstate value. The main advantage
of using such an approach in this context is that a graph has many symmetries, so the space of afterstates
is practically smaller than that of state-action pairs. Generally, it is tough to take exploratory actions in the
Grid20p environment. The power grid will fail in a few steps if the agent takes random actions. For example,
the agent with the random policy performs vastly worse than the "do nothing" policy. The random exploration
policy would often get stuck at bad local optima that executes only one or two actions. A more structured
exploration is key to successful training. To this end, Yoon et al. extend the actor-critic algorithm to a two-level
hierarchical decision model by defining the goal topology configuration as the high-level action. This way, they
can take full advantage of the afterstate representation since the goal topology captures the equivalence of many
sequences of primitive actions that lead to identical topologies. In addition, exploration with goal topology is
more effective than with primitive actions since the policy only needs to focus on where to go, that is, the
desirable topology under the current situation, without needing to care about how to get there. The high-level
policy proposes a goal topology, while the low-level policy needs to find the action sequence that changes the
current topology into the goal topology. Thus, they consider a rule-based approach for the low-level policy
where the rule determines the order of substations to execute the bus assignment actions.

NeurIPS Winner At NeurIPS, the challenge comprised two tracks, one with an adversary randomly cut-
ting some wires and the other on a more extensive network based on the IEEE 118 network [31], which is a
standardized approximation of the American electric power system in the midwest as of December 1962. The
winning team [86] of both tracks used a neural network policy to select the top-k actions and applied an op-
timization algorithm to choose the best one . Zhou et al. introduced a novel search-based planning algorithm
that performs Search with the Action Set (SAS). The goal of such an algorithm is to maximize the average
long-term reward. The policy network outputs a probability distribution over the actions at each simulation
step, and the top-k activities with the highest probabilities form the action set. They then leverage the sim-
ulation function for action selection to ensure that the action meets the constraint by simulating the outcome
for each action and filtering out actions that violate the restrictions. Finally, the algorithm selects an action
from the set based on the value function with the future state predicted by the simulation function. Prior
work uses supervised learning to approximate the actual value function with the trajectory data. In power grid
management, they found an alternative estimate function that does not rely on approximation. The idea is
that the unsolved overloaded power line can induce more overloaded power lines and even lead to large-scale
blackouts. Thus, they define the max overload among all the powerlines as a risk function and replace the value
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function with this function when choosing the action to play. The main issue to overcome when using the risk
function instead of the value function is that the risk function depends on the simulation function, which is
often not differentiable. To overcome this issue, they apply black-box optimization of evolution strategies (ES)
[55] to update the policy, which does not require backpropagating the gradients for optimization. The idea is
that a population of parameter vectors is derived from current parameters and evaluated in the environment.
After that, the parameter vectors with the highest scores will be recombined and form the next generation. In
SAS, they repeatedly inject gaussian noise into the parameter vector of the original policy and obtain a bunch of
policies for exploration. Overall, during the optimization process, they generate the exploration policy, collect
the sampled noise parameters and the related reward for the computation of the combined gradient, and update
the policy parameters.

Discussion WCCI winners stress two of the most fundamental challenges of the power network control
problem, action space size and long-term exploration. Regarding action space filtering, they use a greedy agent
to filter out irrelevant actions, which in general, introduces bias in the policy and does not scale to larger
topologies while performing exceptionally well in the challenging context. On the other hand, the hierarchical
structure of their decision-making system greatly informs our approach.

NeurIPS winners employ the action set approach to deal with action space size by learning to filter the action
space as part of the control task. Such an approach allows for avoiding bias through action filtering while
leveraging the advantages of action filtering. We decided to couple a hierarchical system with action selection
to reduce the action space along the hierarchy while keeping the system differentiable. Our approach allowed
us to take advantage of gradient descent while resorting to action selection for control stability and efficiency.

4.2.3 2021 L2RPN with Trust Challenge

In 2021 the L2RPN with trust challenge was organized to explore the role of artificial agents as support systems
for human power grid operators [42]. Existing Al technology lacks the robustness and trustworthiness required
for high-consequence, high-impact decision-making in real-time network operations. Experienced operators in
power networks deploy extensive domain or expert knowledge that current machine learning models need to
represent more adequately. The main idea behind this challenge is that the agent can actively send warning
signals to the human when the agent’s confidence about their actions is low. Sending these warning signals
improves reliability and credibility by providing selective enough details. The warning signals can be discrete or
continuous information about the confidence or aiming at explaining the warnings. In this challenge, regional
signals improve agents’ credibility. The attention budget develops over time, similar to intimacy. The attention
budget decreases when the agent warns the human. Intimacy can increase if the warning is relevant, or otherwise
it will reduce. In case of an unwarned failure, intimacy decreases substantially while the operator could have
paid attention. The attention budget is a balance for operators to decide when they can trust the agent or
their experience. A more accurate and transparent agent will build trust and result in greater public attention
and reduced supervision requirements. The competition ran on one-third subgrid of the IEEE 118 bus system.
The renewable share made up 20% of the overall energy mix, which is a proxy for high variability in network
operation parameters.

Third Place Enlite Al won third place in 2021 by extending the RL algorithm AlphaZero [60] to apply
it to the topology planning problem in large power grids. As in the original formulation of AlphaZero, they
implemented a distributed Monte Carlo tree search (MCTS) sampling [66], which generates an asynchronous
stream of MCTS sampled trajectories inserted in a rolling trajectory buffer. Once the buffer contains enough
transitions, they are filtered for dead-end pruning and then fed to the policy and value network. MCTS is costly
with such a sizeable state-action space as it explicitly explores state-action pairs. Therefore, they developed a
heuristic value function with early stopping to avoid frequently visited states. Enlite Al implemented a critical
state observer in line with the past winners, which bypasses the agent if no line overload exceeds a given value and
executes no action. They converted the action space to a sub-step action space allowing them to take multiple
discrete steps at a time, thus skipping explicit action space reduction while still keeping the model efficient.
While the most crucial bit of the implementation, more details have yet to be given on the actual transformation
to the action space. The reward was the exponential decay of the weighted sum of the maximum load on any
powerline and the number of offline powerlines. Feature engineering was kept to the minimum by adding
load-generation deltas to substations and powerlines and employing stacking and normalization. Regarding
alarm-specific mechanisms, they used a multi-step simulation rollout to detect simulation states in which the
agent must act. An alarm is sent to the human operator when the system detects a future state in which the
agent must act.
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Second Place H. Martinez won the second prize by extending the approach used by the team, ranking
second in the 2020 edition at NeurIPS. The idea is that a teacher model finds a greedy action to minimize
the maximum load rate of all lines by enumerating all possible steps and saves it in an action library. After
filtering out the less frequent actions, they obtained an action library of 208 actions. A tutor model plays a
greedy strategy but with an action space of 208 actions achieving a score of 54.69 in the competition. Once
fixed the operational plan, they devised the alarm strategy. We can pre-simulate grid evolution to have faster
alarm scoring, as alarms do not affect the grid state but the scoring function. After storing all the pre-simulated
episodes, they train a network for raising the alarm together with some expert rules that decide for alarms
based on powerlines overload.

First Place Finally, Elixir Technologies won first place. As per the other solutions, the general pipeline runs
the grid state through an expert module before eventually sending it to the agent module. The expert module
employs the usual expert rules. Wang et al. implemented a multi-step topological action combo agent through a
policy network with planning. After the agent chooses the action combo, an emergency module checks whether
the action still overflows the network. In that case, it takes into account dispatching actions. If even dispatching
actions fail the model resorts to emergency actions. Finally, when the simulation indicates that the grid will
fail at the following step, the model checks if some disconnections may save the network. Regarding the alarm
mechanism, the agent raises the alarm every time it cannot solve the overflow by itself but needs to resort to
the emergency module.

Discussion Simulations occupy a significant place in raising a timely alarm. In 2021 more than ever, expert
systems were of utmost importance. This time, the alarm mechanism called for more complex rules and more
extensive use of planning.

Enlite Al stressed the relevance of simulations by fitting Alpha Zero to the model. Alpha Zero relies heavily
on planning, extensive action filtering, and a heuristic value function that allows them to apply it to power
grid control. Action filtering is also central in H. Martinez’s solution. In this case, a system of greedy agents
takes care of running through many simulations and role out useless or inherently harmful actions. Combining
actions is far from being trivial, as many combinations yield invalid grid states or induce abrupt changes, which
cause cascading failures resulting in blackouts. Finally, action combos allowed Wang et al. to win first place.

Challenge Approach Notes

IJCNN 2019 [39] Double Deep Q Learning Imitation learning for initialization
WCCI 2020 [80] Actor Critic Semi-MDP setting with afterstates
NeurIPS 2020 [86] Planning Gradient-free optimization
ICAPS 2021 (3rd place) [15] Alpha Zero State value heuristic

ICAPS 2021 (2nd place) [15] Teacher-Tutor Greedy action filtering

ICAPS 2021 (1st place) [15] Planning Dynamic action composition

Table 6: L2RPN winners

20



5. Proposed Solution

5.1. Motivation

Renewable energies are posing severe challenges to power grid operational control. Solar panels and wind
turbines are weather-dependent generators that have non-stationary power output. However, Europe and many
other national and international organizations aim at carbon neutrality by 2050 [28, 67] to alleviate climate
change.

In this context, Réseau de Transport d’Electricité (RTE) organized the L2RPN challenges [54]. All participants
compete on controlling a power grid simulated through the Grid20p [13] framework. Challenges started in
2019, and the last edition took place at WCCI 2022 (see fig. 6 for a timeline of the challenges until today).
Three years later, tens of teams have used the Grid20p module, and the power grids have grown in size and
complexity.

Grid20p shadows many power network complexities behind the RL environment interface, thus, allowing state-
of-the-art models to be applied to this domain [15]. However, challenges force participants willing to achieve
top scores to build instance-optimized models that are often too specific to the problem at hand to generalize
to unseen topologies or more realistic scenarios. Conversely, these challenges have the merit of bridging the
gap between the power system community and the RL community by lowering the barrier of entry into power
network control.

Many works have been developed before and beside the L2RPN effort. In particular, a promising line of work
is the application of Multi-Agent RL (MARL) to power network control [17, 78]. Such efforts have been carried
out on custom simulators posing significant challenges to reproducibility and benchmarking. Therefore, we
decided to bridge the more general power network control literature to the challenge format to get the best of
both worlds.

We built a hierarchical, multi-agent RL system and benchmarked it on the Grid20p environments. We devised
our system with real-world scalability in mind without considering the peculiarities of any of the Grid20p
environments. This approach allows us to avoid the pitfalls of the challenge format while still getting the
stability and reproducibility advantages of the L2ZRPN environments.

5.2. Architectural Description

Head Manager

Manager Manager Manager

Agent Decision

Figure 7: High-level system architecture.
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We developed a hierarchical multi-agent RL system:

e hierarchical: different decision levels;

e multi-agent: multiple agents coordinate to take a decision.
The system has three main actors: substation agents, community managers, and a head manager. All system
actors are RL agents.
Our design assumes that every substation in the power network can house a substation agent. A substation is a
physical enclosure in which high-tension cables connect to buses, so housing a machine which runs a lightweight
agent should be of no particular difficulty. Each of these agents perceive their immediate neighborhood, the
measurements taken on the directly connected cables and substations. We assume it is feasible to send informa-
tion from one substation to the directly connected ones as the maximum distance between the two enclosures
is upper-bounded by the maximum length of high-tension cables with respect to the working voltage and the
maximum tolerated electricity loss. In general, we assume it is always feasible to communicate between all actors
in the system. On top of this, every substation houses a variable number of buses; in the Grid20p framework,
every substation houses two buses. Substation agents are designed to deal with any number of buses.
The graph in fig. 4 shows an example of a high-level power network model in Grid20p. System actors see a
slightly more detailed representation. In the lower-level representation, each node represents a bus, and each
edge represents a cable. In principle, each substation agent deals with an arbitrary number of neighborhoods
because a substation may have any number of buses inside. Therefore, the perception of a single substation
agent is a sequence of graphs of arbitrary length. Each of these graphs contains one of the buses inside the
substation, and the directly connected cables and buses. Generally, each of these graphs has an arbitrary
number of nodes and edges depending on the network’s static and dynamic topology. The static topology of the
network describes the fixed number of substations in the network, the number of buses they contain, and the
cables deployed. The dynamic topology describes which cables are connected to which bus in any substation at
any given moment.
Each community manager handles some community of agents. Communities are detected online as the graph
changes, and each community is assigned to a manager based on the previous communities it has handled.
Thus, a manager perceives a subsection of the graph, called community, in which every substation agent takes
an action. After substation agents decide, each manager must choose which of these decisions to submit to the
head manager. Community managers may handle more than one community or none at all.
Finally, the head manager receives the proposals from the community managers and must choose one to execute.
A proposal contains the substation agent chosen by a given community manager which means the action selected
by such substation agent. Therefore, executing a proposal means executing the action selected by the chosen
substation agent. The head manager decides given a summarized version of the graph in which every node
represents a community to which the related manager attaches a decision. The only edges represented are
inter-community edges.
See fig. 7 for an overview of the system architecture and algorithm 3 for an high-level description of the whole
system’s training loop.
In the following sections, we discuss how all system’s actors embed their observations, how communities are
detected on dynamic graphs and how managers are dynamically assigned to communities.

5.2.1 Graph Embedding

All actors in the system must deal with arbitrary graph topologies. Feed Forward Neural Networks [65] can
only deal with fixed input sizes, thus they cannot be employed in this context. Graph Neural Networks [56]
(GNNs) were introduced as a generalization of recursive neural networks that can directly deal with any graph
class. Therefore, every embedding in the system has as a top section a GNN layer. In particular, we used three
main layers: Graph Attention Layers (GAT) [70], Edge-GAT (EGAT) [36], and Graph Convolutional Layers
[38].

Agents have an embedding section comprised of one EGAT Layer followed by a dueling network. We tried to
keep agents’ networks as small as possible to reduce computational complexity and to account for the fact that
each agent sees a small section of the network. Managers have the same network structure but with two EGAT
layers on the embedding section as in the transductive learning architecture [70]. Finally, the head manager
employs two GAT layers with larger embedding sizes as more information needs to be condensed at the top
level.

Substation agents and community managers perceive a graph environment with the features discussed in table 3.
On the other hand, the head manager sees a summarized graph without edge features, therefore it does not
use EGAT layers which embed node and edge features together. The summarized network has as node features
the mean of the node embeddings over all community nodes and the managers’ choice. Node embeddings are
computed by the GNN layers in each manager embedding and then the mean is taken over each community.
Edge features in this representation do not have a clear meaning anymore. Inter-community edges cannot be
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Figure 8: Substation agent architecture.

regarded as powerlines, so we removed edge features from the head manager’s observations. Thus, GAT layers
are used in place of EGAT layers.

After the first section of the embedding, we need to map all the node embeddings to a single graph embedding
as we need to go deeper down to the dueling section, which expects a tensor as input. The main idea is that
a set of node features may be mapped to a graph embedding by taking their mean over the whole graph [24].
Many other strategies are possible [24], but we opted for a more straightforward approach not to add additional
complexities to the architecture. Agents and managers deal with node and edge features. Thus, we need to
map node and edge features to a single tensor before taking the mean. This mapping is accomplished through
a graph convolution on node features weighted with respect to the edge features. Once the node features are
obtained, we are back to the head manager case, and we can extract the graph embedding from the mean of the
node embeddings. For an overview of a substation agent’s architecture refer to fig. 8. Managers have a the same
architecture but with two EGAT layers instead of one in the graph embedding section. The hyperparameters
chosen for all the actors’ embeddings are discussed in appendix A.

The following sections discuss the main characteristics of the embedding layers used throughout all the system
actors.

Graph Attention Layer (GAT) Attention mechanisms [4] have become almost a de facto standard in
many sequence-based tasks. One of the benefits of attention mechanisms is that they allow for dealing with
a variable-sized input focusing on the most relevant parts of the information to make decisions. Vaswani et
al. [69] showed that attention is sufficient to build a robust model obtaining state-of-the-art performance on
machine translation tasks. Inspired by this line of work, Velickovic et al. [70] introduced GATs.

The input to the layer is a set of node features h = {hy,...,hx} with h; € RY where N is the number of
nodes and F the number of features. The layer produces a new set of node features h’ = {h}...h)y} with
h: € RY ". The transformation is comprised of a learned linear transformation W € R¥ "X F applied to every
node h; = Wh, and then attention coeflicients are computed for each pair of directly connected nodes:

€i5 = a(h'» h/) (28)

(ERad]

to indicate the importance of node j’s features to node i¢. The attention mechanism a is a single-layer feed
forward neural network parametrized by a weight vector a € R?/" and applying LeakyReLU nonlinearity. This
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mechanism is applied to the concatenation h; and h’; denoted h; || hl:
eij = LeakyReLU(a - [h; || h]) (29)

Edge-GAT (EGAT) GAT layers cannot handle edge features, but edge features are of utmost importance
in power networks. Edge features encode all the information about a given powerline, without which we cannot
represent the power network (table 3 discusses relevant edge features). Therefore, we chose EGAT layers [36]
to leverage the attention mechanism while still using edge features.

The idea of EGAT layers is adding edge features to GAT computations by changing eq. (29) to:

eij = Ffj; (30)

where F' is a learnable matrix and f]; is:

fij = LeakReLU (a- [h; || fij Il b)), (31)

where f;; are edge features between node ¢ and node j.

Graph Convolutional Layers A Graph convolutional layer applies a weight matrix W € RF *F where
F’ is the output feature space, and F' is the input feature space. We define the graph convolution as follows:

€.

h,/:J b+ th' 9 32
E e iW (32)
JEN (i)

where o is a non linearity (e.g. ReLU), N(i) is the neighbourhood of 7, ¢j; is the edge features between node j

and i, ¢;; = /|N(J)|v/IN(7)] and o is an activation function.

5.2.2 Dynamic Community Detection

As the capacity of the power grid increases, grid structure becomes more complicated. Community detection
allows us to factor the power grid in subnetworks of more manageable size. In particular, we employ it to
factor in the observation space of managers. Power grids are dynamic networks which can be represented as
a sequence of network snapshots changing over time G = {G(O), e ,G(t)} where Gy = GO U AG® and
AG®H = (AV® AE®) respectively the sets of nodes and edges being changed during the time period (¢, ¢+ 1].
Modularity [48] is a widely used criterion to evaluate the quality of a given community structure. Community
structures with high modularity have denser connections among nodes in the same communities but sparser
connections among nodes from different communities. Given network G = (V| E), with n = |V| nodes, m = |E)|
edges, A;; the sum of the weights of all the edges between nodes %, j and k; the sum of the weights of all edges
linked to node i, its modularity is defined as follows:

1 kik; 1 B2
Q:%Z {Aijzmj}@ijZ(OéOQm) (33)

i,jEV ceC

where a, = Zi,jec Aij, Be = D i kis 0ij equals to 1if 4, j are in the same community else equals to 0.

Since the modularity optimization problem is known to be NP-hard, various heuristic approaches have been
proposed [11, 14, 47]. Most of these algorithms have been superseded by the Louvain algorithm [7].

However, our final aim is to detect communities in a dynamic graph, the ever-changing observations of the power
grid that the system receives at each timestep. In particular, the power network is represented as the set of buses
connected to at least one other bus. This representation implies that the number of nodes changes together
with the number of edges. This kind of representation is a constraint imposed by the Grid20p framework. We
could have preprocessed the observations to avoid node variability, but we preferred to keep preprocessing to
the bare minimum to avoid additional bias as other challengers have already discussed [15]. We employ the
dynamic community detection algorithm DynaMo [88] to handle dynamic graphs.

As communities change, managers need to be reassigned to new communities. In this section, we devise a
mechanism to assign managers to communities similar to the ones they have handled in previous network
states.

In the following sections, we describe the Louvain algorithm [7], the DynaMo algorithm [88], and the community
assignment strategy.
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Louvain Algorithm Louvain algorithm [7] maximizes the modularity using a greedy optimization approach
composed of three steps:
e initialization: each vertex forms a singleton community;
e local modularity optimization: each vertex moves from its community to its neighbor’s community
to maximize the local modularity gain;
e network compression: nodes belonging to the same community are aggregated as super nodes, and a
new network is built with the super nodes.
Louvain algorithm repeats the last two steps until the modularity improvement is negligible.

Dynamo Given a dynamic network G = {G©), ... G®} where G is the initial network snapshot, let
c=AC . ....C (t)} denote the list of community structures of the corresponding network snapshots. The aim
is to detect Ct1) given G, C®) and AG®). DynaMo[88| has three components:

e initialization: use Louvain algorithm [7] to compute C) which generates comparatively accurate com-
munity structure of G(©)

e adaptive modularity optimization (DynaMo): given G}, C), AG® update the community struc-
ture of G from C®) to C**1) while maximizing the modularity gain using predesigned strategies
that fully depend on AG® and C). This is the core component of the DynaMo framework aiming to
maximize the modularity gain while maintaining efficiency.

e refinement: once the obtained modularity of C**t*) is less than a predefined threshold, use G+t as
the new initial network snapshot to restart our algorithm from the initialization step. This component
prevents DynaMo from being trapped in suboptimal solutions [88].

Community Assignment Dynamic community detection yields an updated community structure at every
timestep. Managers must be reassigned to the new communities when the community structure gets updated.
Managers may handle more than one community because graph neural networks allow managers to embed
graphs with different topologies seamlessly.

We cast the manager assignment problem as a community tracking problem [22]. Community tracking deals
with the evolution and structure of communities over multiple time steps in a dynamic network, where the life
cycle of each community is characterized by a series of significant events such as splitting or merging. A key
question concerns how to map communities at time ¢ + 1 to the existing communities at time ¢.

We decided to adapt an approach devised by Greene et al. [22] for social-network mining to our use-case. Our
main concern was computational efficiency. Such a procedure is part of the training loop and is executed at
each step. Therefore, we needed a simple and memory-less procedure.

Given a community structure C;, the next community structure detected is denoted C;41. We want to match
the communities in C;4q with C; so that managers from C; handle similar communities in C;y; . The similarity
between two communities ¢,, ¢, is measured through the Jaccard distance [33]:

. leq N eyl
sim(cg,Cp) = — . 34
( a b) |Ca U Cb| ( )
Given c to be assigned and a manager M; that handles communities ci, ..., c, we compute:
M7 =max,,eqc,,....c,} (sim(c, ¢;)), (35)

then we assign ¢ to the manager M maximizing M7 among all system’s managers. Through this formulation,
a community is handled by the manager assigned to the most similar community at the previous step.
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5.3. Model training

In algorithm 3 we have summarized the most relevant steps in training our system. The main idea is that higher
up the hierarchy the information is more condensed but more general while at the lower levels is more specific
and nearer to the unfiltered environment observation. Agents see a small unfiltered portion of the graph while
managers see a larger portion with the added information of the action agents would have taken at the lower
level. The head manager finally sees a summarized version of the graph in which nodes become supernodes and
edges no longer represent powerlines, such representation condenses all the network.

Algorithm 3 Training Algorithm

Input: Training steps T, environment £, batch size B, learning frequency f
Deploy one agent for each substation {Aj, ..., A;,} given m substations in £
Deploy one head manager H
Observe the initial observation sy from &
Detect community structure in sp and assign one manager per community {My,..., M.} given ¢
communities in sg
fori=1...tdo
Each agent A; observes its current neighborhood N, Aj(sz-) and picks an action a A;
Each manager M}, observes assigned communities Cpy, (si|akx) with ax being the actions commu-
nity members have picked, and chooses agents A,
The head manager observes the summarized graph S(s;|Ans,, ..., An,.) and chooses one com-
munity C' handled by manager M
Execute action a = a4,,, receive next observation s; 1 and reward r
Detect community structure in s;11 and assign managers to new communities (refer to sec-
tion 5.2.2)
Agent Ajs registers the transition (Na,,(s;), a,Na,, (si+1),7) in the replay buffer
Each agent A; observes its neighborhood Ny, (si+1) and picks an action a’Aj
Manager M registers the transition (Cas, (silak), Anar, Cas, (Siv1]ay ), ) in the replay buffer
Each manager M), observes assigned communities Cjy, (s;+1/aj) and chooses an agent A’Mk
Head manager H registers the transition (S(si|Au,, - .-, An,), M, S(si| Ay 5., Ay ), 7) in the
replay buffer
if ¢ mod f =0 then
Each actor in the system updates its weights by sampling B transitions from the replay buffer
end if
end for
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6. Experimental Results

6.1. Experimental Setup

Training a Multi-Agent Deep RL system is a notoriously challenging task [16, 49] requiring careful system
tuning. In the following sections, we discuss the most relevant training choices adopted throughout all the
experiments. Refer to appendix A for further discussion on hyperparameter values.

6.1.1 Expert System

We paired our RL system with a rule-based expert system with the following rules:

e line reconnection: reconnect a disconnected powerline every time there is a chance to do so;

e emergency handling: if no line exceeds the overflow threshold, do nothing; otherwise query the RL

system.

The use of this system is dictated by the complexity of learning the whole operational control task; this way, the
agent only learns to deal with emergencies. The emergency handling rule depends on an overflow threshold. The
overflow threshold is a limit value for the maximum load on any of the powerlines and goes from 0, representing
no load, to 1, representing overload. We set it to 0.99 [58]. The higher the threshold, the fewer times the RL
system is queried. We decided to stick to the expert system developed by Serre et al. [58] for the baseline
of the WCCI 2022 competition. Using a simple expert system emphasizes the behavior of the learning agent.
Many challengers employed far more complex expert systems [80]. Since the expert system handles reconnection
actions, we restricted the RL system to operating on generators. In particular, the RL system may redispatch
non-renewable generators or curtail renewable generators (see section 1.1 for further discussion on redispatching
and curtailing).

6.1.2 Optimization Procedure

Each agent in the system has its optimizer to learn network parameters. All the optimizers in the system are
Adam optimizers [37] as it is a widely adopted solution in practice [3, 27, 46]. Adam optimizers have two main
parameters of interest for RL, the learning rate and the Adam-e. The learning rate determines how significant
weight updates are, thus influencing the system’s sensibility to local optima and the overall training stability.
The Adam-e¢ is used to avoid zero division during the optimization procedure. While usually kept very low,
such hyperparameter brings significant regularization benefits in the RL domain [27] so we decided to set it at
1073, Such value is far higher than the usual value for supervised learning 10~8 [52]. While a popular choice in
practice, Adam is subject to exploding gradients as many others optimization procedures [51]. To tackle such
a problem, we clip the gradients computed by Adam at 40 before backpropagating them. This procedure has
been popularized by Hessel et al. [27] and has been widely adopted since then.

6.1.3 Reward and Scoring

The agent receives 1 for every timestep in which no blackout happens otherwise it receives -1 and the episode
ends. The interval has been chosen because it has been found to have stabilizing effects on DQNs [46]. Then,
the reward structure has been kept as simple as possible to avoid introducing bias in the learning process.
One of the advantages of the challenge format is agent scoring. Practitioners can use any reward during training,
but all agents are evaluated with the same scoring function in the evaluation phase. As a scoring function, we
used the WCCI 2022 scoring function. The score is computed over episodes: scenarios over which the system
took action. The score function represents the cost of operations of a power grid, including the cost of any
blackout that could occur. The cost of operations is defined as:

Coperations (t) = Closses (t) + Credispatching(t) + Ccurtailment (t), (36)
and the cost of a blackout is defined as:
Chlackout (t) = load(t) x p(t), (37)

where p(t) is the marginal price of electricity and load(t) is the overall grid load at time ¢. This score penalizes
agents that redispatch generators too often. Then, it also penalizes blackouts when the electricity demand (i.e.,
the load) is high. Finally, the score is scaled between 0 and 100 where 0 is the score achieved by the Do-Nothing
Agent (DNA). The DNA is an agent which does nothing at each timestep.
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6.1.4 Exploration Strategy

We employ the e-greedy strategy with an exponentially decaying e [46]. The idea is that at the beginning
of the learning process the agent should explore more while exploiting the acquired knowledge later (refer to
section 2.3.2 for further discussion on e-greedy policies).

On top of this, we also use an increasing prioritization S [57] from 0.5 to 1 . The idea is to employ a more
uniform sampling in the first exploration phases while activating prioritization in later stages when the TD
errors have stabilized (refer to section 2.3.5 for further discussion on ).

6.1.5 Benchmarks

Challenge organizers propose the DNA as a strong benchmark [58]. Power networks are highly non-linear
systems. Therefore, many actions induce cascading effects to the point of causing undesired blackouts. The
DNA does not do anything, thus avoiding any destructive action.

Another strong benchmark is the expert system described in section 6.1.1. Such a system can be used as
a benchmark by pairing it with the DNA. The idea is to follow the reconnection policy and do nothing in
emergencies.

The expert system and the DNA achieve the same score on the L2RPN Case 14 Environment. They both
score 0 as discussed in section 6.1.3. They achieve such a score because the environment has neither powerline
maintenance nor an attacker. Therefore, the line reconnection policy of the expert system has no effect and we
employ the DNA as a benchmark in the L2RPN Case 14 Environment.

On the NeurIPS 2020 Environment, the expert system achieves a higher score than the DNA. The line recon-
nection policy correctly deals with some of the challenges introduced by maintenance and attackers. We will
use the expert system as a benchmark to correctly estimate the performance improvement introduced by our
RL system.

6.2. Results on the L2RPN Case 14 Environment
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Figure 9: Multiple training runs with different values for the exponential e-decay half-life in the L2RPN
case 14 Environment. The e-decay half-life is set equal for agents, managers and head manager.

We conducted the first set of tests on the L2ZRPN Sandbox Case 14 environment. This environment uses the
IEEE casel4 power grid [32] with two added generators. It counts 14 substations, 20 powerlines, 6 generators,
and 11 loads. Refer to fig. 4 for an overview of the grid.

In fig. 9, we show the rewards achieved by the system when changing the e-decay half-life. We can see that
the system is remarkably susceptible to such a hyperparameter. There is a sensibly different result for one
specific value. This behavior is to be attributed to the existence of two local maxima in the environment at
hand, one far higher than the other. By changing the decay rate of €, we expose the agents to different degrees
of exploration, which means that they explore different portions of the state-action space with varying levels
of extensiveness. If the exploration phase is too short, the agent does not evaluate a sufficient portion of the
state-action space, thus often finding the most prominent local maxima.
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Figure 10: Timesteps survived by the best trained RL agent and the Do Nothing agent on 10 test
episodes in the L2RPN case 14 Environment.

On the other hand, in case of excessive exploration, the agent may encounter a local maximum by randomly
trying actions and, while the exploration phase declines, miss sufficient incentives to deviate to other policies.
Both these two phenomena are visible in fig. 9, mainly due to the limited size of the environment. Nonetheless,
this environment allows us to show the correct functioning of our system in optimizing the long-term cumulated
reward. In this context, such consideration is not trivial given that all actors except for the head manager have
partial observations of the MDP [40] and the head manager sees a summary of the whole observation. On top
of this, the only actors taking direct action on the system are the substation agents, while all other actors can
only choose among those actions.

The best agent, the one with an e-decay half-life of 1250, achieves a mean score of 35 over 100 on a 30-episode
test set. Such a score is very promising for a system without optimization for the specific instance. The challenge
organizers on a larger environment with a single-agent model achieve a score of 22 over 100 with almost twice
the training steps [58]. While their environment is far larger, this sets a reference to interpret the score.

In fig. 10, we show the timesteps the best RL system survived with respect to those of the DNA. We show
the survived timesteps because the scores are compound metrics that can be hard to interpret relative to the
simpler concept of steps survived throughout an episode without causing a blackout. On top of this, challenge
organizers scale the score between 0 and 100 by setting at 0 the score of the DNA. In this instance, survived
timesteps give a more precise performance outline. Our agent defeats or equals the DNA in every episode, thus
confirming the positive performance announced by the mean score. It is essential to notice that our agent, at
worst, equals the DNA. Such behavior is not always expected. In larger environments, the action space is larger
and thus contains many more destructive actions. Learning to avoid destructive actions can be challenging
when dealing with large action spaces.

6.3. Results on the NeurIPS 2020 Environment

This set of tests is conducted on the NeurIPS 2020 robustness track environment. This environment is part of
the IEEE 118 grid [31], where some generators have been added. It counts 36 substations, 59 powerlines, 22
generators, and 37 loads. Some loads represent interconnections with other grid sections, meaning there can
be negative loads. On top of this, an opponent will randomly attack some lines of the grid every day. Finally,
challenge designers introduced planned maintenance that disconnects powerlines for a given time. The expert
system handles maintenance and attacks; every time a line gets disconnected, the expert system reconnects it,
as per section 6.1.1. Therefore, the expert system, which selected as benchmark in section 6.1.5 scores 7.39
points more than the DNA.

In fig. 11, we repeated the tests we conducted on the case 14 environment. Firstly, the impact of € is far less
dramatic than in section 6.2. This behavior is to be referred to the larger size of the environment, which makes it
less prone to local maxima. The most striking behavior is that of the model with 1500 steps as e-decay half-life.
We notice the training process converging to a local maximum with a mean reward of 0.994 and being unable
to further optimize the mean reward. Power networks yield many of these local maxima due to their highly
non-linear dynamics. All the other tests do not get trapped in such maximum. The agent with the largest
half-life is the best performing among our experiments. As expected, in a larger and more complex environment
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Figure 11: Multiple training runs with different values for the exponential € decay half-life in the
L2RPN NeurIPS 2020 Environment. The e-decay half-life is set equal for agents, managers and the
head manager.

thorough exploration is crucial.

Figure 12 shows the best agent’s performance. As discussed in section 6.1.3, the score is computed by summing
the operational cost of managing the power network and the costs induced by the possible blackout. In this
case, we decided to show the scores and not the timesteps survived due to the greater weight the operational
costs have in this network with respect to the smaller one. A larger network has far higher and more variable
operational costs, thus inducing greater variability in the score with respect to the timesteps survived. As
depicted in fig. 12, the expert agent performs worse than the Do Nothing Agent in episode 7. The expert
system survives longer but the blackout happens in a moment with higher loads in the networks, thus inducing
a cost that exceeds the benefits of having survived more. In the same episode, our system can find a policy that
makes the system perform better than the DNA. In general, our agent achieves a mean score of 10.09 over 30
episodes, which is 2.70 points larger than the expert system alone and significantly higher than the DNA.
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Figure 12: Score of the best trained RL system with respect to the expert system and the DNA on 10
test episodes in the L2RPN NeurIPS 2020 Environment
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7. Conclusions and Future Work

7.1. Conclusions

The advent of renewable energy on the production side poses significant challenges to grid operators. For
this reason, RTE instituted the L2RPN challenge [45, 54]: a series of competitions that model the sequential
decision-making environments of real-time power network operation. The power systems community has been
lately focusing on Deep RL [59] solutions for their capacity to learn representations and their parallelizable
architectures.

Consequently, much literature focuses on applying RL models to power grid operational control. On the one
hand, several authors [76, 78, 79, 87] have focused on multi-agent RL systems to deal with the size of real-
world power networks. On the other hand, the challenge format asks participants to build ad-hoc solutions
incentivizing single-agent models [15, 39, 80, 86].

All this considered, we decided to take advantage of the maturity of the L2RPN ecosystem without taking part
in any challenge. The L2RPN setting provides standardized environments and evaluation procedures, which
are vital for reproducibility and benchmarking. Conversely, the challenge setup forces participants to build
throw-away models optimized for the task. We thus decided to build a model and evaluate it on the L2RPN
environments without taking part to any competition.

We developed a novel hierarchical multi-agent RL system. The system has three main actors: substation agents,
community managers, and a head manager. Every substation houses an agent which, at every timestep, must
select an action given its immediate neighborhood. Every community of agents is handled by a manager which,
at every timestep, must choose an agent given the actions they have selected. Finally, the head manager must
choose one manager given the agent they have selected.

The hierarchical structure we described allows us to decrease the action space complexity with respect to the
grid size. Thus, we say it is scalable. Substation agents see an action space that depends only on their immediate
neighborhood. Managers have an action space size upper-bounded by the number of community in the networks,
which is usually much smaller than the number of substations.

We significantly reduce the action space handled by single agents by dynamically factorizing it over the graph
topology. The factorization is dynamic because the communities are updated at each timestep. Thus, the
number of choices each community manager evaluates changes with network topology.

At training time, the RL system has been paired with an expert system introduced in the 2022 baseline by
challenge organizers [58]. Participants have widely used expert systems far more complex than ours [80]. Our
expert system greedily reconnects the lines when it can and does nothing except for emergencies when it queries
the RL system. As a result, we significantly reduce the scope of the task from complete operational control to
emergency handling while still giving the utmost relevance to the RL system.

We scored the system on the L2RPN case 14 environment and the NeurIPS 2020 environment using the same
scoring as the WCCI 2022 challenge. On the L2RPN case 14 environment, we scored 35 out of 100 points above
the do nothing agent. This result is encouraging with respect to the 22 points obtained by challenge organizers
with an ad-hoc single-agent approach with more training time on a larger environment [58]. On the L2RPN
NeurIPS 2020 environment, the expert system alone scores 7.3, and our whole system scores 10.09. Scoring
above the expert system in such a large environment demonstrates the feasibility of multi-agent power network
control. In particular, we validated our approach’s soundness, showing how the system correctly optimizes the
cumulated reward against 36 substations and 22 controllable generators.

Concluding, in our work, we developed a novel hierarchical multi-agent RL architecture and tested it on the
L2RPN environments. We showed the feasibility of our approach and tested different exploration setups.

We sincerely hope scientific challenges will become meaningful collaboration opportunities rather than mere
competitions.

7.2. Future Work

7.2.1 Intrinsically Motivated RL

Throughout all our experiments, we used the same exploration strategy for all agents, managers, and the head
manager. However, every agent and manager sees a different section of the grid and thus needs a specific degree
of exploration dependent on the actual complexity of this task. Devising such an exploration strategy for each
agent is infeasible and hard to scale to large topologies.

Intrinsic motivation plays a prominent role in human development and learning, and researchers in many
areas of cognitive science have emphasized that intrinsically motivated behavior is vital for intellectual growth.
Intrinsically motivated RL [5, 82] deals with applying intrinsic rewards to drive an agent’s policy optimization
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process. Barto et al. [5] used the term intrinsic reward to refer to rewards that produce analogs of intrinsic
motivation in RL agents and extrinsic reward to refer to rewards that define a specific task or rewarding outcome
as in standard RL applications.

One of the most prominent exploration strategies based on intrinsic motivation is curiosity-driven exploration
[50]. Pathak et al. define curiosity as the error in an agent’s ability to predict the consequence of its actions
and use that as an intrinsic reward signal.

Our system would greatly benefit from implicit motivation approaches. Each actor perceives different sections
of the environment. Hence, implicitly motivated exploration allows diverse exploration strategies adapted to
each agent’s task. Specific exploration strategies for each agent [34] would directly follow from the difference in
their perception, thus pushing our system towards a more generalizable form.

7.2.2 Pointer Networks

Managers deal with variable inputs because they need to choose among a varying number of agents. We can
model their task as a ranking among the input agents. A community manager must choose the best agent from
a community, where the best one is the one that maximizes the cumulated reward when chosen by the head
manager. In our solution, we decided to use managers that output a vector of preferences for each agent and
take as the choice the preferred one. This approach has one major drawback. The manager needs to output a
vector with a length equal to the number of substations. Such architecture is dictated by the fact that, in the
worst case, a manager may handle a community covering the whole network. In our implementation, we mask
all the agents which do not participate in the community at hand and choose the preferred one by taking the
highest entry among the non-masked values.

Our approach to community managers hinders real-world scalability as the output vector size of each manager
is tied to the number of substations of the network. We propose to implement the decision layer of managers
with Pointer Networks [71]. A pointer network learns the conditional probability of an output sequence with
elements that are discrete tokens corresponding to positions in an input sequence. Such a mechanism allows
the selection of the best element from a variable-sized input sequence. On top of this, Graph Pointer Networks
[41] and Hybrid Pointer Networks [63] show successful pointer networks applications to graphs.

On top of restricting managers’ output layer, pointer networks would also allow generalizing the whole system
further. Through a pointer network, managers may choose the best-k agents from a community, thus exposing
more choices to the head manager.

Concluding, pointer networks and their graph applications give further flexibility to managers and head managers
while breaking the explicit dependency by the number of substations and the decision surface of each manager.

7.2.3 Power Supply Modularity

Louvain Modularity (see eq. (33)) is a purely topological measure. Therefore, our community detection al-
gorithm ignores the electrical characteristics of the network. To solve this issue, we propose to adopt Power
Supply Modularity [72] as an alternative measure to replace the Louvain modularity in DynaMo [88]. Wang
et al. propose Power Supply Modularity to consider the complex electrical properties and the functionality of
power networks. The EFS matrix is proposed to reflect the characteristics of buses and lines regarding power
transmission efficiency. The EFS matrix is the sum between the two buses’ electrical coupling strength and the
power supply strength. The electrical coupling strength between two buses is the sum between transmission
capacity and admittance. The power supply strength quantifies the association between generators and loads.
Such an extension to the community detection procedure would allow the system to stress the power network’s
electrical characteristics further and reflect them in the community structure.

7.2.4 Recurrent DQNs

One of the main issues in training our RL system is partial observability [40]. Agents and managers see just a
portion of the whole state, thus perceiving stochasticity in environment dynamics. Hausknecht et al. introduced
deep recurrent Q-learning [26] to deal with Partially Observable MDPs (POMDPs) [62]. The idea is to add
a Long-Short Term Memory Module (LSTM) [81] to the agent embedding to filter out the stochasticity by
integrating over a sequence of observations. Adding LSTMs to each agent subject to partial observability would
significantly increase the system’s computational cost. On the other hand, we expect LSTMs to greatly enhance
each actor’s performance, potentially giving considerable system benefits.
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A. Training Hyper-Parameters

’ Value ‘ Description
Expert system threshold over which
f - .
Safe max-p 0-99 the RL system handles an emergency
Learning rate le-5 Optimizers’ learning rate for gradient descent
Learning frequency | 4 Number of training steps between weight updates
Gradient Clipping 40 Gradients clip value before backpropagation
Loss Function Huber Loss Loss minimized by network optimizers
huber loss clips gradients to §
Huber-o 2 for residual absolute values larger than §
Training steps to wait before copying parameters
1 1
Replacement steps 00 from the Q network to the target network
Number of observations sampled from
Batch Si 2 )
atch Size 88 the replay buffer on each weight update
Adam-e 1 504 Adam parameter for numerical stability,

avoids division by zero during optimization

Exploration-¢

Case 14: 1250

€ exponential decay half-life,

half-life NeurIPS 2020: 1750 | governs the length of the exploration phase
Exploration-¢ 10, 1] € exponential decay limits
Range ’ starts from 1 and decays to 0

e e . Determines the prioritization degree when
Prioritization-a 0.7 sampling from the replay buffer, goes from 0 to 1
Prioritization-3 0.5, 1] Determines the bias correction

Range

when computing priorities in the replay buffer

Prioritization-g
Grow Rate

half of € half-life

Determines how bias correction
changes in the replay buffer during learning

Replay Buffer
Capacity

Agents: 1e3
Managers: led

Old transitions are replaced by new ones
when capacity is over

Head Manager: 1eb
. Agents: 2
gzalﬁ: Embedding Managers: 3 Number of layers in the embedding section
p Head Manager: 3
. Agents: 128
g;;zph Embedding Managers: 512 Output feature size of the embedding section
Head Manager: 512
A 02
Advantage Stream Mgainz:;erséil 9 Output feature size of the linear layer
Size Head Manager: 512 in the advantage stream
A 02
Value Stream gents: 256 Output feature size of the linear layer
Size Managers: 512 in the value stream
Head Manager: 512
Table 7: Most relevant training hyperparameters. When not specified the hyperparameter value is the

same across all system’s agents.
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Abstract in lingua italiana

Stiamo attraversando una crisi climatica senza precedenti. Gli ecosistemi stanno collassando, la temperatura sta
aumentando e fenomeni atmosferici estremi sono sempre piu frequenti. Le energie rinnovabili e a basso impatto
ambientale rappresentano 'unica via d’uscita. I generatori solari e quelli eolici hanno andamenti imprevedibili
data la loro dipendenza dalle condizioni meteorologiche. L’intelligenza artificiale (IA) puo aiutare gli operatori
di rete ad affrontare queste nuove sfide.

Per incentivare nuove soluzioni basate sull'TA, 'RTE (Réseau de Transport d’Electricité) organizza dal 2019
delle competizioni, denominate "Learning to Run a Power Network" (L2RPN). Il problema di controllo della
rete viene specificato in queste competizioni come un problema di Apprendimento per Rinforzo (AR). Un agente
di AR osserva lo stato della rete elettrica e compie un’azione basata sullo stato corrente della rete e sulle sue
passate esperienze, in modo da massimizzare la somma cumulata di un segnale di rinforzo.

La nostra soluzione ¢ un nuovo modello gerarchico multi-agente di AR. Un insieme di agenti gestisce il grafo
localmente, un piccolo numero di gestori filtra le loro decisioni e, infine, un direttore seleziona una delle decisioni
proposte dai gestori. La gerarchia viene generata dinamicamente sulla base della topologia di rete e viene
aggiornata durante ’apprendimento.

La bonta del modello viene valutata in due ambienti di dimensione e complessita crescenti, dimostrando perfor-
mance superiori a un sistema esperto particolarmente sfidante. I nostri risultati dimostrano ’applicabilita dei
sistemi multi-agente alla gestione di reti elettriche. Col nostro lavoro vogliamo a creare un ponte tra i precedenti
lavori sullla gestione automatica di reti elettriche e la comunita scientifica cresciuta intorno a L2RPN.

Parole chiave: Reti Elettriche, Apprendimento per Rinforzo, Sistemi Multi-Agente, Sistemi di Decisione

Gerarchici, Riconoscimento di Comunita, Reti Neurali per Grafi
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