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1. Introduction 

This thesis aims to address the challenge of testing wind 

turbine structural integrity over their lifespan. Creating 

scaled test benches is essential due to the impracticality 

of replicating the full-scale turbines. However, scaling 

introduces non-linearity in load estimation, 

necessitating a method for accurate load estimation. 

Current practices rely on costly, intrusive physical 

measurements, prompting the exploration of a virtual 

sensing strategy. The Kalman filter, specifically the 

Augmented Extended Kalman Filter (AEKF), is 

proposed for state-input-parameter estimation. Virtual 

prototypes, coupled with strain measurements, help 

reduce development costs. Additionally, optimal sensor 

placement is crucial for stable estimation, and an 

Optimal Sensor Placement (OSP) strategy is introduced 

for joint estimation, building upon prior work. 

2. Augmented Extended Kalman 

Filter 

It is possible to estimate the states 𝒙 and the unknown 

inputs 𝒖𝑈𝐾 simultaneously using a Kalman filter, simply 

considering the inputs as if they were new states and 

adding them to the state vector itself, so generating the 

augmented state vector, [2], [4], [5], [18], [19]: 

 

𝒙∗ = [
𝒙

𝒖𝑈𝐾] 

 
In order to define the Augmented Kalman Filter, the 

dynamics of the input has also to be modeled, so a 

zeroth-order random walk model for the vector of 

unknown inputs is introduced: 

 
𝒖𝑘+1

𝑈𝐾 = 𝒖𝑘
𝑈𝐾 + 𝒘𝑘

𝑈𝐾  

 
where 𝒘𝑘

𝑈𝐾 k is a white, zero mean, uncorrelated random 

process with the associate covariance matrix 𝑸𝑢. The 

selection of 𝑸𝑢 is done using the same approach used by 

Cumbo et al. [4]: 

 
𝑸𝑢 = (∆𝑡 ∙ �̅�𝑢 ∙ �̅�𝑢)2 

 
Where �̅�𝑢 and �̅�𝑢 represent indicative values chosen by 

the user and have the same order of magnitude of the 

input frequency and amplitude respectively. Clearly, the 

matrices that characterize the dynamic system in the 

form of a discretized state will be modified as follows: 

 

𝑨∗ = [
𝑨 𝑩𝑢

𝟎 𝑰
] 
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𝑯∗ = [𝑪 𝑫] 

 
Usually the output does not depend on the input, so 𝑫 =

𝟎. 

 

{
[
𝒙𝑘+1

𝒖𝑘+1
𝑈𝐾 ] = [

𝑨 𝑩𝑢

𝟎 𝑰
] [

𝒙𝑘

𝒖𝑘
𝑈𝐾] + [

𝒘𝑘

𝒘𝑘
𝑈𝐾]

𝒚𝑘 = [𝑪 𝑫] [
𝒙𝑘

𝒖𝑘
𝑈𝐾] + 𝒗𝑘

 

 
Where 𝒘𝑘 is the Gaussian process noise and 𝒗𝑘 is the 

Gaussian measurement noise. Written in compact form: 

 

{
𝒙𝑘+1

∗ = 𝑨∗𝒙𝑘
∗ + 𝒘𝑘

∗

𝒚𝑘 = 𝑯∗𝒙𝑘
∗ + 𝒗𝑘

 

 
Therefore, the augmented covariance matrix 𝑸∗ will be 

written as: 

 

𝑸∗ = [
𝑸 𝟎
𝟎 𝑸𝑢

] 

 
Where 𝑸𝑢 ≫ 𝑸. 

Some important observations coming from Capalbo et 

al. [2] need to be made: 

• To have the maximum theoretical 

observability, a number of strain sensors must 

be used at least equal to the total number of 

quantities to be estimated (inputs and 

parameters). 

• Mass parameters cannot be observed in static 

conditions, therefore in the estimation, for 

example, of the mass of a body it is necessary to 

use a dynamic input. Moreover, the input must 

be characterized by a frequency more or less 

similar to the dynamic excitation frequency of 

the component. 

The pseudo-algorithm of the Augmented Extended 

Kalman Filter for state-input estimation is shown 

below: 

 

 

3. Test Bench Down Scaling 

Starting from a test bench model of a certain size 

associated with the 3.4 MW wind turbine, we want to 

create a scaled test bench model, i.e. of reduced size, so 

that it allows to reproduce the same KPIs, like e.g. 

displacements of the ball bearing using a particular 

estimated load. 

A flexible model of the Wind Turbine Test Bench 

embedded in a full non linear framework to capture the 

non-linear body motion is used in combination with 

strain measurements to retrieve the loads transmitted 

from the blade by means of a state-input estimator. The 
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model is composed by a flexible hub modeled as a finite 

element model, a rigid blade connected to the hub 

through a pitch ball bearing bearing. 

 

 
     Figure 1: Flexible Multibody model of the system 

The steps to follow for the estimation are: 

1. Simulate the full-scale test bench model by 

applying a known static or dynamic load and 

collect sensor measurements. 

2. Create a test bench model that is scaled, i.e. of 

smaller size with respect to the previous model. 

3. Apply the AEKF algorithm to the scaled model 

to estimate the input forces needed to have the 

same displacement state measured in the 

previous simulation of the full scale model. 

In the following figure we can observe the trend of the 

forces estimated for the scaled test bench, in the case of 

measurements with and without noise compared with 

the forces applied in the original test bench. These 

estimated loads thus have to be applied to the scaled test 

bench to obtain the same KPIs as the full-scale testbench, 

like e.g. bearing displacements. 

 

 
    Figure 2: Estimated input forces of scaled test bench model 

 

 
Figure 3: Estimated state of the relative displacement sensor of 

the bearing 

 
Note that the 112RE is the full-scale testbench and the 

131RE is the scaled testbench. In the following figures we 

observe the measurements of one of the different strain 

sensors placed in the hub, the comparison between that 

obtained in the original non-scaled system and those 

estimated for the scaled system show that the latter have 

an absolute value smaller magnitude, which is what we 

expected since the forces estimated for the scaled system 

are also lower in magnitude. 

 

 
    Figure 4: Estimated state of a strain gage measurement taken 

from the hub 

In the following plot it is possible to observe the trend of 

the ratio between the dynamic load applied in the 

original test bench and that estimated in the scaled test 

bench, and as was expected, this ratio is highly non-

linear, thus confirming that it is not possible to reduce 
the magnitude of the loads by the same percentage of 

reduction as the test bench and thus showcasing the 

need for an estimator as proposed in this thesis. 

 

 
            Figure 5: Fx ratio 

4. Optimal Sensor Placement 

An Optimal Sensor Placement strategy aims to select the 

optimal position of the sensors needed to solve an input 

and parameter estimation problem, however, this thesis 

focuses mainly on optimizing the positioning of strain 

sensors, called Strain Gauges, [6], [22], [4]. Before 

proceeding with the description of the method, an 

important assumption must be made, that is, in the case 

of estimating the input, the knowledge of the direction 



Executive summary Gregory Cottone 

 

4 

of the input and the point of application of the same, are 

known, in any case, in the event that it is not possible to 

know the direction of the load, it would be sufficient to 

estimate the three Cartesian components of the load and 

obtain the direction of the resulting load by means of a 

simple vector operation. An outline of the first part of the 

method, the Training, is represented in the figure below. 

The training aims to reduce the number of sensors while 

keeping a large enough number before applying the 

second step of the method, that is the Steady State Error 

Covariance metric. 

 

 
Figure 6: Training of the system for the first coarse screening, 

[6] 

So we start from the generation of a pool of potential 

sensors, in particular we select a set of elements in the 

finite element model. Then the algorithm starts with the 

creation of the output matrix 𝑯 by placing a Strain Gauge 

sensor in the outer surface of each element contained in 

the starting element set. At this point we proceed with 

the Coarse Screening, which consists in simulating the 

system with a training input (usually sinusoidal), the 

measurements of the initial pool of sensors are collected 

and those with the lowest signal-to-noise ratio are 

removed, i.e. those less sensitive to training input. A 

further removal of sensors takes place on the basis of the 

proximity between them, in particular, all those nearby 

sensors are removed that create clusters in the surface of 

the model. In the end, a set of sensors that represent the 

basis on which the Steady State Error Covariance metric 

begins to work is obtained. 

3.2. OSP - Steady State Error 

Covariance Metric 

Starting from the pool of sensors obtained after coarse 

screening, this algorithm is based on the solution of the 

Continuous Algebraic Riccati Equation (CARE) for 

different sensor configurations, [6]: 

 
𝑭∗𝑷 + 𝑷𝑭∗𝑇 + 𝑸∗ − (𝑷𝑯∗𝑇𝑹−1)𝑹(𝑷𝑯∗𝑇𝑹−1)𝑇 = 0 

 
Where 𝑭∗ represents the augmented linearized state 

matrix, while 𝑯∗ represents the augmented 

measurement matrix. The term 𝑸∗ represents the plant 

covariance matrix expressing the uncertainty in the 

augmented model, that is, the uncertainty in the finite 

element model, and in the input and parameter 

dynamical model. An important assumption is that 𝑸 ≪

𝑸𝑢, 𝑸𝑝 , this is because we assume that the finite element 

structural model is orders of magnitude more accurate 

than the zeroth-order hold model of the input and 

parameter. So the following approximation of 𝑸∗ is 

proposed: 

 

𝑸∗ = [

𝟎 𝟎 𝟎
𝟎 𝑸𝑢 𝟎
𝟎 𝟎 𝑸𝑝

] 

 
𝑸𝑢 and 𝑸𝑝 are calculated on the basis of the type of 

estimate we want to make, in fact they take on a different 

form if the goal is to estimate only the input, only the 

parameters or the set of inputs and parameters. 

Finally, 𝑹 represents the covariance matrix of the 

measurements. 

 

3.2.1. State - Input Augmentation 
Starting from the state representation of the linear 

dynamic system under analysis, augmenting the state 

vector 𝒙 with the input 𝒖 means creating the following 

state vector: 

 

𝒙∗ = [
𝒒
�̇�
𝒖

] 

 
Consequently the new system becomes: 

 

{
�̇�∗ = 𝑭∗𝒙∗

𝒚 =  𝑯∗𝒙∗ 

 

Where:  

 

𝑭∗ = [
𝑨 𝑩
𝟎 𝟎

] = [
𝟎 𝑰 𝟎

−𝑴−1𝑲 −𝑴−1𝑪 𝑴−1𝑺
𝟎 𝟎 𝟎

] 

 
𝑯∗ = [𝑯 𝑫] 

 

3.2.2. State - Young’s Modulus Augmentation 
In the case when the augmentation is done with the 

Young’s modulus parameter, the dynamic system in 

state form is no longer linear, because inside the matrix 

𝑨 the stiffness matrix 𝑲 is a function of Young’s 

modulus, therefore consequently also the matrix 𝑨, since 

in the augmented version, the parameter is seen by the 

Kalman filter as simply a new state, it means that 𝑨 is 

dependent on the states (on the parameter) and therefore 

it is no longer linear, that is 𝑨 is no longer constant but 

varies over time. The following system is still linear 

because it is not the augmented version: 

 

{
�̇� = 𝑨(𝐸)𝒙 + 𝑩𝒖

𝒚 = 𝑯𝒙 + 𝑫𝒖
 

 
With:  
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𝑨(𝐸) = [
𝟎 𝑰

−𝑴−1𝑲(𝐸) −𝑴−1𝑪
] 

 
But if we augment the parameter 𝐸 with the states we get 

the following non-linear system: 

 

{
�̇�∗ = 𝑨∗(𝒙∗)𝒙∗ + 𝑩∗

𝒚 =  𝑯∗𝒙∗ + 𝑫𝒖
 

 
where: 

𝒙∗ = [

𝒒
�̇�
𝐸

] 

 

𝑨∗(𝒙∗) = [
𝑨(𝑥∗) 𝟎

𝟎 𝟎
] 

 

𝑩∗ = [
𝑩
𝟎

] 

 
𝑯∗ = [𝑯 𝑫] 

 
So all that remains is to linearize the system with respect 

to an augmented reference state: 

 

𝑭∗ =
𝜕(𝑨∗𝒙∗ + 𝑩∗𝒖)

𝜕𝒙∗
 

 

𝑭∗ = [

𝟎 𝑰 𝟎

−𝑴−1𝑲 −𝑴−1𝑪 𝑴−1
𝜕𝑲

𝜕𝐸
𝒒

𝟎 𝟎 𝟎

] 

 
𝜕𝑲

𝜕𝐸
= 𝑲𝐸 

 
𝑭∗ and 𝑯∗ are the matrices that will actually be used in 

solving the CARE. 

 

3.2.3. OSP Algorithm 
Then, once the case of interest has been defined and the 

appropriate 𝑭∗ and 𝑯∗ matrices have been selected based 

on the kind of augmentation is used, we proceed with 

the application of the OSP algorithm based on the 

solution of the CARE. The pseudo algorithm is shown 

below: 

 
 

3.3. Hub Test Bench Numerical 

Testing 

The numerical test of the OSP is performed on the hub of 

the Test Bench, where the load (the input) is applied 

directly in node ID 2 rather than in the blade. 

 

3.3.1. OSP – Input Estimation 
Once the parameters of interest have been estimated, we 

have a more accurate model of the system available, so it 

is now possible to estimate a generic input. The 

following figures show the results of the OSP for the 

estimation of the input. 

 

 
 
The following figures show the results of the input 

estimate, in particular on the left we observe the estimate 

of one of the four strain sensors while in the figure on the 

right we observe the estimate of the input. 

 

 
 

3.3.2. OSP - Young’s Modulus Estimation 
The training load for the coarse screening that is applied 

is a sinusoidal input with a frequency of 20 Hz and an 

amplitude equal to 1e10 Newton along the global X-

direction, the signals generated in the training 

simulation are not affected by noise. 

The number of sensors that is selected after the coarse 

screening is set to 100, it has been avoided to increase this 

number to avoid that the algorithm arrives at the 

solution in too long computational times. The two 

figures below show the results of the algorithm, in 

particular the image on the left shows where the 4 final 

sensors are located in the surface of the hub, while the 

image on the right shows the trend of the Parameter 

Error Covariance (PEC) metric used in the OSP: 
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It can be seen from the graph on the left that two clusters 

of two sensors each have been created, suggesting that 

some of them are redundant, in fact sensors close enough 

to each other will give the same information, obviously 

with the assumption that the strain field doesn’t change 

too much throughout the structure/that region, this 

implies that the Young’s modulus could be estimated 

using just two sensors. Furthermore, it can be seen from 

the graph on the trend of the metric that in passing from 

the initial 100 sensors obtained from the first coarse 

screening to the final 4 sensors of the OSP, the metric 

quadruples. At this point, the next step consists in 

simulating the dynamic system by applying an input 

equal to that used in the training scenario of the OSP and 

the measurements coming from the four optimal sensors 

previously obtained with the OSP are collected. Finally, 

the AEKF algorithm is used to estimate the strains in the 

elements of the OSP set and the Young’s modulus 

parameter. The following figures show the results of the 

estimation of the parameter, in particular on the left we 

observe the estimate of one of the four strain sensors 

while in the figure on the right we observe the estimate 

of the Young’s modulus parameter. 

 

 
 
As can be seen from the figures, the estimate of the 

sensor coincides almost perfectly with the real one, while 

the estimate of the parameter converges to the real value 

almost instantaneously. 

 

5. Conclusions 

The thesis demonstrates the effectiveness of the 

Augmented Extended Kalman Filter (AEKF) in 

estimating loads, strain fields, and parameters in Wind 

Turbine Test Benches. This approach, based on flexible 

multibody models, offers a cost-efficient alternative to 

direct measurements. The AEKF's suitability for 

nonlinear systems like wind turbines and its ability to 

handle uncertainties make it a valuable tool for virtual 

sensing. The Optimal Sensor Placement (OSP) strategy 

enhances load-parameter estimation. Future research 

directions include applying AEKF to diverse mechanical 

systems, optimizing sensor placement, exploring 

alternative estimation techniques, extending virtual 

sensing to higher-level parameters, and conducting real-

world validations for practical implementation. 
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