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Abstract

The problem of waste management has recently gained worldwide relevance,

having both an economic and social resonance in every country. One of the

most concerning issues is constituted by illegal dumping, consisting of the

uncontrolled discharge of waste into the environment. From the 1970s, with

the further development of technology, the need for automatic procedures

to monitor these types of phenomena increased over and over, bringing re-

searchers to explore many possible options. Until now, however, it has been

not possible to go beyond semi-automatic techniques, always requiring hu-

man intervention. In particular, the combination of satellite images with

geographic information systems (GIS) has been examined far and wide for

a long time. Even if it produced very good results, as anticipated, it has

never allowed achieving total independence from human expertise. A deci-

sive improvement towards fully automatic systems has been obtained with

the adoption of Deep Learning techniques, in particular Convolutional Neu-

ral Networks (CNNs). In this context, current experiments focus on the

automatic classification of images.

The goal of this research is to exploit one of the neural networks already

used in this field, the ResNet50 architecture, to further extend the moni-

toring capabilities of automatic systems, allowing them to also account for

the classification and localization of different types of objects characterizing

Illegal Landfills. In particular, firstly the ResNet50 architecture has been

used to solve the multilabel classification task, consisting in the recognition

of the presence (even concurrently) of the considered classes in the given

images. The proposed model reached an F1 score of 81% on average on the

test set. From the trained classifier, Class Activation Maps (CAMs) were

produced and analyzed to identify the regions of the images belonging to

the different waste types. The obtained results have been evaluated quan-

titatively using custom metrics based on the calculation of the Intersection

over Union, and qualitatively by actually looking at the obtained bounding

boxes, thus understanding the practical relevance of the achieved results.
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Sommario

Il problema della gestione dei rifiuti ha recentemente acquisito rilevanza a

livello mondiale, con una risonanza sia economica che sociale in ogni Paese.

Una delle criticità più preoccupanti è costituita dalle discariche abusive,

ovvero nello scarico incontrollato di rifiuti nell’ambiente. Dagli anni ’70, con

l’ulteriore sviluppo della tecnologia, la necessità di monitorare in maniera

automatica questi tipi di fenomeni è aumentata, portando i ricercatori a

esplorare molte possibili opzioni. Finora, però, non è stato possibile an-

dare oltre a tecniche semiautomatiche, che richiedono sempre l’intervento

umano. La combinazione delle immagini satellitari con i sistemi di infor-

mazione geografica (GIS) è stata esaminata in lungo e in largo per molto

tempo. Nonostante abbia prodotto ottimi risultati, queste tecniche non

hanno mai permesso di raggiungere la totale indipendenza dalle competenze

umane. Un deciso miglioramento verso i sistemi completamente automatici

è stato ottenuto con l’adozione di tecniche di Deep Learning, in particolare le

Convolutional Neural Networks (CNN). In questo contesto, gli esperimenti

attuali si concentrano sulla classificazione automatica delle immagini.

L’obiettivo di questa ricerca è sfruttare una delle reti neurali già utiliz-

zate in questo campo (ResNet50) per estendere ulteriormente le capacità di

monitoraggio di sistemi automatici, consentendo la classificazione di diverse

tipologie di oggetti che caratterizzano le discariche illegali. Inizialmente

l’architettura ResNet50 è stata utilizzata per risolvere la classificazione di

tipo multilabel, e quindi per riconoscere la presenza (anche contemporanea)

di oggetti appartenenti a diverse classi. Il modello proposto ha raggiunto

un F1 score del 81% in media sul test set. Successivamente, con il classifica-

tore allenato sono state prodotte le Class Activation Maps (CAMs), al fine

di identificare le regioni delle immagini che appartengono ai diversi tipi di

rifiuti. I risultati ottenuti sono stati valutati quantitativamente utilizzando

metriche personalizzate basate sul calcolo dell’Intersection over Union, e

qualitativamente guardando effettivamente i box di delimitazione ottenuti.
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Chapter 1

Introduction

Waste management is one of the most severe problems of modern times,

affecting not only the environment, but also the social and economic spheres

of each country, and gaining a worldwide resonance.

From the ’80s onwards the development of scientific knowledge and envi-

ronmental awareness, also at a legal level, have led to a significant increase

in the costs of waste disposal and, consequently, to an expansion of illegal

landfills, mostly managed by organized crime.

The major issue in this context is in fact given by the illegal dumping

phenomenon, that is the illicit action of uncontrolled discharge of waste

into the environment. This activity can be in particular restricted to the

disposal of a small amount of waste, produced by a single illicit event, or

it can be caused by repeatedly taken actions, covering larger-scale sites,

namely Illegal Landfills (ILs).

Illegal waste dumping is a matter of recent concern because of its numer-

ous impacts and the consequent troublesome problems for both inhabitants

and civic administration all over the world. In particular, the existence

of ILs continues to be an unsolved issue in the developed and peripheral

countries of Europe. Researches conducted in Germany, Austria (Allgaier

and Stegmann [4]), Ireland (Doak et al. [21]), France (Biotto et al. [10]),

Italy (Silvestri and Omri [65]), Romania (Apostol and Mihai [7]) and Ser-

bia (Vasiljevic et al. [71]) demonstrates the severity of this problem and

indicates that the analysis of ILs is complicated.

Regarding the environmental consequences, the uncontrolled disposal

of waste generates fluxes of contaminants in the adjacent areas (as it is

schematized in Figure 1.1). The width of the contaminated area depends

on the hydrology of the site and the type of pollutant.



Figure 1.1: Fluxes of emission

The soluble pollutants are more likely to be carried into groundwater,

spreading out into the environment easily. In particular, the liquid emissions

are generated by the surface run-off and the leachate percolation, compro-

mising the quality of groundwater and the bodies of water. The main effects

of this phenomenon are acidification, eutrophication, and oxygen depletion.

Moreover, the organoleptic qualities of groundwater can be compromised.

The gaseous pollutants, instead, are generated from illegal combustion

and degradation processes in the uncontrolled landfill and are carried by

the wind to the surrounding areas. Going deeper into details, the gaseous

emissions spread out in the atmosphere or infiltrate into the ground, lead-

ing to global warming, acidification, photochemical smog, and formation

of ground-level ozone. In addition, persistent pollutants bioaccumulate in

animals and crops, also impacting the health of the people.

For what regards the social and health sphere, hazards are mainly linked

to the toxicity of some pollutants (freed in the combustion process, released

into groundwater, or accumulated in the food chain) and to the infectious

diseases carried by insects and animals that can act as vectors. This is par-

ticularly dangerous for children, that are more vulnerable and exposed to

pollution than adults since they spend more time outside and since their im-

mune system and lungs are not fully developed. Frequent exposure to some

chemicals, such as heavy metals and polychlorinated biphenyls, during early

fetal development, can cause neurodevelopmental disorders and subclinical
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brain dysfunction (Grandjean and Landrigan [30]). As a consequence, liv-

ing in a community that has visible dump sites, together with the factors

previously mentioned, could also wear on mental health, and thus on the

quality of life itself.

Regarding instead the economic sphere, ILs have a huge impact on both

citizens and governments, with a cause-effect relation. In the Lombardy

region, as an example, in recent years, have been paid out 25.9 million euros

to clean up 16 illegal waste sites (Affinito Domenico [2]). Waste disposal

is in fact very expensive, in particular in the case of illegal landfills, which

in this way results in the waste of public money and the increase of taxes.

In addition to this, a country characterized by the problem of illegal waste

dumping also results to be not attractive to potential buyers and investors,

thus causing a decrease in the whole market. These instead results attractive

from the point of view of organized criminality, which finds in illegal waste

trafficking one of the most profitable sectors, with revenues in the order of

4 billion euros per year (Europol [22]).

Until the ’70s the recognition of ILs made use of non-automated methods,

mainly entrusted to field research. However, this methodology has been

proven to be unfeasible, being very expensive and time-consuming, even

more considering that areas of investigation are generally very wide.

In recent years, thanks to the advances of earth observation technology

(Qiong Hu et al. [34], Luis Gomez-Chova et al. [28]), Remote Sensing

(RS) has become more and more a valuable data source for earth obser-

vation, allowing to measure and observe detailed structures on the Earth’s

surface. RS, together with the application of Geographic Information

Systems (GIS), allowed the reduction of field research and the improve-

ment of the detection process, making possible a better characterization

of the ILs phenomenon both on a geophysical and socio-demographic level

and proving the validity of the Multi-Criteria Decision Making (MCDM)

approach.

Although this approach opened the way towards automated ILs detec-

tion, the differences in terms of geophysical and socio-demographic factors

between different countries make the human intervention still required.

In parallel with the advances in RS technologies, in the last decades

Deep Learning (DL) techniques, and in particular Convolutional Neu-

ral Networks (CNNs), demonstrated to be particularly effective, espe-

cially when dealing with images. This type of network can be used to solve

several different tasks, among these image classification, object detection,

and instance segmentation.

In 2019, the regional agency for environmental protection of Lombardy
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region in Italy (ARPA Lombardia) started a project called Savager (Ad-

vanced Waste Management Surveillance) [46] which aims to introduce Arti-

ficial Intelligence (AI) techniques in the process of ILs detection, in this way

lightening the workload entrusted to the highly specialized human operators

and thus significantly speeding up the whole process (see Figure 1.2).

In addition to many other organizations, this project involves the DEIB

department of Politecnico di Milano, which is experimenting for this purpose

with a series of methods aimed at recognizing ILs in the context of geo-

spatial intelligence. In particular, the baseline neural network used in the

Savager project is ResNet50.

Figure 1.2: ARPA Advanced Waste Management Surveillance

As previously anticipated, Deep Learning techniques demonstrated to

be very effective when dealing with images, and not only in the binary clas-

sification task but also in the recognition of a higher number of categories.

Since landfills are often composed of different types of objects and materials,

one of the ways that points towards further automation and refining of the

waste management process is that of performing Multilabel Classifica-

tion. This task consists of recognizing the different types of objects that

are present in an image, even when there are multiple categories in the same

picture at the same time.

Moreover, due to the high dimension of remote sensing images and to
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the coexistence of a high number of different ground objects, another task

that can reduce in a significant way the need for human intervention is that

of not only recognize the different types of objects composing waste but also

localize them in the image. This type of task in the context of AI is called

Object Detection.

Classic (i.e. Supervised) Object Detection, however, requires to manu-

ally label a high number of images with not only the names of the classes in-

cluded in them but also the bounding boxes enclosing the objects that make

the image belonging to those classes, which is a long and tedious problem.

Since Deep Learning models, if correctly tuned, are already able to learn

really good features within the classification task, and since many of them,

in particular way ResNet50, demonstrated to maintain a remarkable local-

ization ability until the very final layer, an alternative is that of the Weakly

Supervised Object Detection (WSOD). This approach allows in fact to

perform the Object Detection task by exploiting the discriminative regions

that the model uses while performing the classification task, thus making

the process even more independent from the human intervention.

The main goal of this study is to perform the Multilabel Classification

task and to prove that the obtained class activation maps are good enough

to also localize different categories of objects composing Illegal Landfills

in remote sensing images, thus demonstrating that the Weakly Supervised

approach of performing Object Detection is very promising. In particular,

the purpose is that of designing a dataset on which the ResNet50 architecture

can be trained, validated, and tested, such that it can learn good enough

features to recognize the different categories of objects of interest included in

an image, demonstrating that the model is using the correct discriminative

regions.

Initially 12 categories have been considered, however for 6 of them it has

not been possible to find a reasonable number of samples for being able to

include them in the study (the process that brought to this conclusion is

exposed in Appendix A). The six remaining categories faced the problem of

high similitude among them. This issue was studied in depth resulting on

similar classes being grouped (the process that brought to this conclusion is

exposed in Appendix B). Thus, the three pairs have been merged, and so in

the end three categories have been taken into consideration: Cisterns and

Pallets, Scattered and General waste, and Caissons and Containers.

Once the dataset has been defined, the ResNet50 architecture has been

trained, validated, and tested, and after some fine-tuning, it has been reached

an F1 score of 81% on average within the Multilabel Classification task.

The quantitative and qualitative analysis demonstrated the capability
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of the model to learn relevant features. This, together with the ability

of ResNet50 architecture to retain remarkable localization, has brought to

the feasibility study of the Weakly Supervised Object Detection task. In

particular, the bounding boxes enclosing the objects of interest have been

derived through a thresholding mechanism on the Class Activation Maps

(CAMs) produced by the architecture. Subsequently, both a quantitative

and a qualitative study of the obtained results have been performed.

1.1 Thesis Structure

The thesis is organized as follows:

• Chapter 2 gives an overview of the technical background on which the

thesis is structured, starting from a description of the computer vision

field and then entering in the details of deep learning and artificial

neural networks.

• Chapter 3 presents the researches and methods that have been used

till now for ILs detection, giving an idea of the importance assumed

by deep learning in this field.

• Chapter 4 enters in the details of the proposed solution, describing

the dataset that has been used to train, validate and test the model

and the techniques that have been exploited in order to build it.

• Chapter 5 describes the details of the adopted architecture, the tech-

niques that have been applied during the process and the way in which

the output is used.

• Chapter 6 provides the quantitative and qualitative analysis of the

results obtained within the multilabel classification task. In particu-

lar, a detailed analysis of the graphs and metrics is given, also showing

the calibration of the model. Regarding the qualitative analysis, the

performance of the model is exposed in terms of CAMs (Class Acti-

vation Maps), in terms of robustness to image resolution and in terms

of predictions of completely unseen territories.

• Chapter 7 provides the quantitative and qualitative analysis of the

results obtained within the feasibility study of the weakly supervised

object detection task. In particular, a detailed analysis of the graphs

and metrics is given. For what regards the qualitative analysis, ex-

amples showing how the model localizes the critical objects are given,
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comparing the predictions with the ground truth, and also displaying

positive and negative aspects of the model performance.

• Chapter 8 summarizes the results obtained from the experiments and

proposes some possible improvements for the future.
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Chapter 2

Technical Background

This chapter will describe the concepts at the basis of Deep Learning and

Computer Vision, giving an articulated overview of these topics and the

theory behind them.

2.1 Computer Vision

Computer Vision (CV) is the field of study that seeks to develop tech-

niques to help computers “see” and understand the content of digital images,

and, at an abstract level, the goal of computer vision is to use the observed

image data to infer something about the world.

The problem of Computer Vision appears simple because it is trivially

solved by people, even very young children. Nevertheless, it largely remains

an unsolved problem based both on the limited understanding of biological

vision and on the complexity of visual perception in a dynamic and nearly

infinitely varying physical world.

As a consequence, a whole field, homonymously called Computer Vision,

has emerged as a discipline in itself with strong connections to mathemat-

ics and computer science and looser connections to physics, psychology of

perception, and the neurosciences.

CV was born in the early 1960s at universities, that viewed the project

as a stepping stone to Artificial Intelligence. Initially, this field of study

was mainly focused on geometry, as it could be seen in the very first works

such as Larry Roberts’ Ph.D. thesis [60]. Here, the Block World model is

explained, which is the simplification of the visual world into basic geometric

shapes to recognize and reconstruct them.

Initially, with their tremendous optimism, researchers had raised public

expectations impossibly high while failing to appreciate the difficulty of the



challenge they had set for themselves. When the promised results failed

to live up to the hype, the field experienced intense critique and serious

financial setbacks. Early computing resources, in fact, could not keep pace

technically with the complexity of problems advanced by scientists, and even

the most impressive projects could solve only trivial problems. It is famous

the episode during which, in 1966, American computer scientist and co-

founder of the MIT AI Lab Marvin Minsky received a summer grant to hire

a first-year undergraduate student, Gerald Sussman, to spend the summer

linking a camera to a computer and getting the computer to describe what

it saw, but “Sussman didn’t make the deadline”.

Thus, by the mid-1970s vision turned out to be one of the most difficult

and frustrating challenges in AI, making people lose faith in CV.

As the internet became a mainstay, computer scientists gained access

to more data than ever before. Also, Computing hardware continued to

improve as costs went down. This, together with the birth of rudimen-

tary neural networks and the improvement of already present algorithms,

brought CV into hype again in the 1980s-90s. Of particular importance are

the studies made in a seminar group of works [23, 12, 48], where different

methods have been proposed to corroborate a similar idea: every object can

be decomposed into simple geometric primitives. In this way, the complex

structure of the object can be reduced into a collection of simpler shapes

and their geometric configurations. This posed the basis to one of the most

influential research fields: feature-based object recognition.

Of utmost importance has been the work made by David Lowe on SIFT

features [49], who, introducing the concept of invariants in images objects,

has introduced the concept of features. As a consequence, the task of object

recognition began with identifying these critical features on the object, which

is an easier task than pattern matching the entire object.

Although up to this point considerable progress has been made, the

whole of these researches remains a set of toy examples, without being able

of delivering tools satisfying real-world use cases.

As the new century progresses, however, the quality of images and power

of resources continued growing, giving researchers the possibility to access

an always wider amount of data. This, together with other factors, made

machine learning gain momentum in the CV field, and the results were so

good that in 2010 the ImageNet team rolled out an international challenge

called ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) to test

the image classification results for the CV algorithms. ILSVRC is still a de

facto benchmark to compare Computer Vision algorithms.

Now more than half a century old, the field of Artificial Intelligence fi-
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nally had its breakthrough moment in 2012 at the ImageNet Large Scale Vi-

sual Recognition Challenge (ILSVRC), where a team from the University of

Toronto entered a Convolutional Neural Network (CNN) called AlexNet that

changed the game for Artificial Intelligence and Computer Vision projects,

showing the vast potential of Deep Learning (DL).

Computer Vision has already been seamlessly integrated into many as-

pects of daily lives, and this trend shows no signs of slowing down, opening

day by day new and incredibly interesting ways to go.

2.1.1 Computer Vision Tasks

Although in this thesis the main focus is on Multilabel Classification and

on the feasibility study of the Weakly Supervised Object Detection,

CV can be used to solve a wide range of problems. In particular, the most

basic task is called Image Classification, which consists of the assignment of

a label to an entire image by choosing among a fixed set of labels. Further

researches, however, permitted the development of models able to go deeper

in information extraction from images. In particular, the main tasks that

CV can solve besides Image Classification (Figure 2.1) are:

• Semantic Segmentation: it consists of labeling each pixel of the

input image with a corresponding class from a fixed set.

• Image Classification with Localization: it consists of performing

the image classification task, also assigning to the image a bounding

box that localizes the object. The bounding box is usually provided

with the coordinates of a rectangular shape.

• Object Detection: it consists of performing an image classification

with localization task, but with input images containing more than

one object.

• Instance Segmentation: it consists of assigning a label to each pixel

of the input image in the same way Semantic Segmentation does, but

also distinguishing between different instances of the same class.
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Figure 2.1: Computer Vision tasks

Multilabel Classification is a variant of the image classification task,

where more than a single label from the fixed set can be assigned to each

input image (Figure 2.2).

Figure 2.2: Multilabel Classification

Weakly Supervised Object Detection (Figure 2.3) is instead a variant of

the object detection task, where the model is trained in the same way as

when performing the Multilabel Classification task, thus with image-level

category labels and without ground truth bounding boxes, and the output

bounding boxes are produced using the discriminative regions of the image

used for the classification task. These regions can be identified through class

activation maps (CAMs).
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Figure 2.3: Weakly Supervised Object Detection

2.2 Deep Learning

Machine Learning (ML) falls under the Artificial Intelligence (AI) um-

brella and consists of providing systems with the ability to automatically

learn and improve from experience without being explicitly programmed.

In particular, ML constitutes a fusion of algorithms and statistical models

to analyze and draw inferences from patterns in data.

Deep Learning (DL) is a subfield of ML that uses models, structures,

and algorithms inspired by the human brain. In particular, at the basis of

DL, there is the concept of Artificial Neural Network (ANN), a layered

architecture that can be compared to the computational model of the human

brain. It is in fact distributed among simple non-linear units, it is redundant

and thus fault-tolerant, and it is intrinsically parallel.

The development of DL was motivated in part by the failure of tradi-

tional ML algorithms in generalizing well on central problems in AI, such as

speech or object recognition. The mechanisms used in traditional Machine

Learning, in fact, revealed to be insufficient, making exceedingly difficult

the learning of complicated functions in high dimensional spaces, suffering

from the famous phenomenon called Course of Dimensionality.

The main differences between traditional ML and DL can be summarized

in three points:

• The model structure

• The lower need for human intervention

• The larger data requirements

The model structure has been already anticipated in the previous paragraphs

and will be further detailed in the next sections. The second point refers
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to the fact that ML is mainly concerned with finding the model to fit data,

making the work of features engineers completely transparent. DL, instead,

focuses also on the features extraction part. Deep learning algorithms in fact

do not need features engineering, because it is the machine itself that learns

not only the classifier but also the best representation of the data. Finally,

the fact that Deep Learning models also account for feature extraction makes

them very data-hungry.

2.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computing systems inspired by

the human brain. Their birth historically coincides with the birth of the

Perceptron model by Frank Rosenblatt in 1958 [62].

ANNs are based on the concept of Hebbian Learning, according to which

the strength of a synapse increases based on the simultaneous activation of

the relative input of the desired target [33]. In particular, as the human

brain, an ANN is constituted by hundreds or thousands of artificial neurons

called processing units, which are interconnected by nodes and organized in

different layers.

Figure 2.4: Human and artificial neuron comparison

The artificial neuron (Figure 2.4) is the basic block of ANNs. It can

receive one or more inputs to compute, producing a single output that can

be then sent to other neurons. Usually, each input is separately weighted,

either amplifying or dampening their significance, basing on the task that
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the algorithm is trying to learn. The weighted inputs are then summed

and passed through the so-called activation function, which is usually non-

linear, in this way determining whether and to what extent that signal should

progress further through the network to affect the outcome. If the signal

passes through, it is said that the neuron has been activated.

Connecting more of these neurons together, it is possible to extract from

the input data only the information that is necessary and important for the

task to be solved, acting as a sort of filter that forwards important signals

and removes useless ones.

ANNs are organized into layers, which are sets of parallel neurons (Fig-

ure 2.5). At the highest level there are three types of layers:

• The Input Layer, that receives the raw input data.

• The Hidden Layers, which are the ones that actually perform the

computation.

• The Output Layer, that is the one that produces the results for the

given input.

Figure 2.5: Artificial Neural Network structure

The learning process of an ANN is usually structured into two steps. The

first step is called forward pass (Figure 2.6) and consists of providing the

model with the input in the form of a vector. Data will then flow through

the hidden layers, which progressively transform it until the output layer
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is reached, where the model produces the desired result. This is also the

procedure with which the model predicts new unseen data.

Figure 2.6: Forward pass

During the training phase, however, a second step is needed, called back-

ward pass (Figure 2.7), during which the Backpropagation algorithm is per-

formed.

Figure 2.7: Backward pass

Backpropagation is a widely used algorithm for training feedforward neu-

ral networks. Several generalizations of it also exist for other types of ANNs

and they are usually all referred to as Backpropagation. This algorithm

32



computes the gradient of the loss function concerning the weights of the

network, doing it efficiently. In fact, it allows using gradient methods to

train multilayer networks. In particular, it updates the weights to minimize

the so-called Loss Function. The weights update is performed by another

procedure, such as Gradient Descent, even if the term Backpropagation

is often improperly used to refer to the whole process. At the basis of the

Backpropagation algorithm, there is the chain rule, which allows computing

the gradient one layer at a time, iterating backward from the last layer to

avoid redundant calculations of intermediate terms.

2.4 Convolutional Neural Networks

Images cannot be directly fed to a classifier, but it is necessary some in-

termediate step to extract meaningful information and to reduce the data

dimension: in other words, it is necessary to extract features (Figure 2.8).

Figure 2.8: Convolutional Neural Network structure

As previously anticipated, deep learning models also account for the

features extraction process, thus avoiding the need for human intervention.

Images are however highly spatially correlated, thus a traditional ANN built

by stacking in sequence a bunch of fully connected layers is not the right

choice. The reasons are mainly two:

• In this way the model does not take into account the spatial structure

of the image, because it treats all the input pixels in the same way,

either if they are far or close to each other.

• Connecting the output of each neuron in a layer with the input of all

the ones in the subsequent layer, the network introduces many param-

eters, often more than needed. In this way, the model will require a

long processing time and it will be much more prone to overfitting.
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These problems have been solved with Convolutional Neural Networks

(CNNs), an innovative architecture introduced for the first time by Yann

Lecun [41] in 1998 with the LeNet model, even if the breakthrough moment

for CNNs was in 2012 when AlexNet [39] outperformed all the other algo-

rithms. The first big advantage brought by CNNs has been that of being

constituted by more lightweight layers, by vastly reducing the number of pa-

rameters in the network. This makes the forward pass previously described

much more efficient, thus allowing to stack a higher number of layers and

so permitting the usage of deeper architecture, which demonstrated to be

particularly good with images.

CNNs are typically constituted by blocks that include four different types

of layers:

• The Convolutional Layers (the ones that give the name to the archi-

tecture)

• The Non-Linear Layers

• The Pooling layers

• The Fully Connected Layers

An image passing through a CNN is transformed in a sequence of so-called

volumes. As the depth of the volume increases, the height, and the width

decrease. Each layer type has a precise and well-defined purpose, but they

all take as input a volume and return as output a volume.

2.4.1 Input Layer

Of great importance is the input layer, which constitutes the entry point

of the model, holding the raw pixel values of the image. These pixels are

organized in matrices of size (H,W,C), where H and W are the height and

width of the image, while C represents the color channels (e.g. for color

images C = 3 like the RGB channels).

2.4.2 Convolutional Layer

Convolutional layers are of central importance in CNNs, so much that they

even give it its name. They “mix” all the input components making a linear

combination of all the values in a region of the input.

The parameters of this layer are called filters (or also kernels) and they

are used through the whole spatial extent of the input. Each filter must

have the same depth as one of the input volumes, and this is the reason
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why it is usually not specified. Filters have in fact a small spatial extent,

but a large depth extent, and each one of them yields a different slice in the

output volume. The output is also called activation maps and it is the

convolution against the filters of the input volume (Figure 2.9).

Figure 2.9: Convolution operation

CNNs, in particular, have two characteristics that make them particu-

larly efficient when working with images:

• Sparse Connectivity

• Parameter Sharing

For what regards sparse connectivity, as previously anticipated, the input

pixels are not connected to every hidden neuron like in fully connected layers.

The connections are made in small, localized regions of the input volume

called local receptive fields.

Parameter sharing clearly defines the fact that the same parameters are

shared across different locations of the input image, thus vastly reducing

the number of parameters involved in a CNN. In particular, it relies on

the assumption that if a patch feature is useful to compute at some spatial

position, then it should also be useful to compute at other positions.

The size of the output volume depends on four parameters: the number

of filters, the size of the filters, the stride, and the padding. As previously

anticipated, each filter yields a different slice of the output volume, thus

its depth is defined by the number of filters applied by the layer. The size
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of the filters, the stride, and the padding parameters define together the

spatial dimension of the output volume. The second one is the step size

with which the filter slides onto the input volume, while the third one refers

to the number of pixels added to an input image, such that the border of the

images are taken into consideration with the same frequency as the other

parts.

Defining the width of the input image as Win, the size of the filters as

Fs, the stride as S and the padding as P , the width of the output volume

can be calculated as

Wout =
Win − Fs + 2P

S
+ 1

Thus, finally, if the input volume has dimensions (Win ×Win ×D), the

dimensions of the output volume will be (Wout ×Wout × Fd), with Fd equal

to the number of filters.

2.4.3 Non-Linear Layer

Also known as Activation Layers, they have the purpose of introducing non-

linearity in the network, otherwise, the CNN might be equivalent to a linear

classifier.

They are usually placed right after the convolutional layer and they do

not modify the dimensions of the volume. There are many different types of

activation functions and, while for all the hidden layers the same function is

usually adopted, in the output layer it is important to choose the right one

in order to achieve the result that is wanted. The most popular activation

functions (Figure 2.10) are the following:

• Linear activation function

• Tanh activation function

• Sigmoid activation function

• ReLu activation function

The most commonly used in the hidden layers is the ReLu activation func-

tion (or variants of it) because other non-linear functions such as Sigmoid

or Tanh tend to saturate. They have gradients that are close to zero and

since the Backpropagation algorithm requires gradient multiplication, the

gradient far away from the output vanishes, and consequently the learning

in deep networks does not happen.
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Figure 2.10: Activation functions

2.4.4 Pooling Layer

The pooling layers are usually placed after convolutional layers (and so after

non-linear layers). Their purpose is that of reducing the spatial size of the

volume, operating independently on every depth slice of the input volume.

Going deeper into details, pooling layers solve an important problem

related to convolutional layers. A limitation of the feature map output of

convolutional layers is in fact that they record the precise position of fea-

tures in the input. This means that small movements in the position of

the feature in the input image will result in a different feature map. A

common approach to address this problem from signal processing is called

downsampling, which consists of creating a lower resolution version of the

input image, still maintaining the large or important structural elements.

Downsampling can be achieved with convolutional layers by changing the

stride of the convolution across the image, but a more robust and common

approach is to use a pooling layer. This procedure adds to the structure

of a CNN another fundamental property called equivariance to translations,

which allows the net to recognize features even if they are in different posi-

tions.

The pooling operation is specified, rather than learned, this means that

this type of layer does not have parameters. In particular, the most com-

monly used operation is the Maximum Pooling (or Max Pooling),

which calculates the maximum value for each patch of the feature map (Fig-

ure 2.11).

37



Figure 2.11: Maximum Pooling operation

As done in the case of convolutional layers, also for pooling layers it is

possible to determine a function of the input volume size Win, of the filter

size Fs and the stride S, to determine the dimension of the output volume:

Wout =
Win − Fs

S
+ 1

An important variant of the pooling layer is defined as Global Average

Pooling (GAP) layer, which can be used for two principal purposes. On

one side, it is a structural regularizer. In fact, being used in place of the

final fully connected layer, vastly reduces the number of parameters in the

network, making the model less prone to overfitting. It also gives to the

model the capacity of handling input images of different sizes, making it

more robust to spatial transformations of the images. On the other side,

instead, using GAP the network can retain a remarkable localization ability

until the final layer, allowing to easily identify the discriminative image

regions leading to a prediction. This can be done with the so-called Class

Activation Mapping (CAM).

2.4.5 Fully Connected Layer

Finally, a classical CNN is constituted by one or more fully connected layers

as output layers. The main purpose is that of compiling data extracted by

previous layers to form the final output. In particular, in fully connected

layers, as previously anticipated, each neuron is connected to all the neurons

in the previous layer.

2.4.6 Other Layers

The layers previously presented are the typical ones in CNNs, but two other

types of layers can be used to handle different problems:

• The Dropout Layer
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• The Batch Normalization Layer

The first one randomly sets input units to zero according to a probability

defined as a hyperparameter of the model. This is a stochastic regularization

technique that results to be particularly useful to mitigate overfitting.

Batch Normalization layers instead can be interpreted as doing prepro-

cessing at every layer of the network, but integrated into the network itself

in a differentiable way. This has been shown to improve the gradient flow

through the network, to allow using higher learning rates (thus allowing

faster learning), to reduce the strong dependence on weights initialization,

and to act as a form of regularization slightly reducing the need for dropout.

2.4.7 Class Activation Maps (CAMs)

As previously introduced, it is possible to see where the model focuses its

attention when producing the predictions. In particular, it is possible to

obtain the heat map representation of an image to highlight the pixels that

trigger the trained model to associate the image with a particular class.

This representation is called Class Activation Map (CAM), and in practice

consists of a matrix having the same dimensions of the input image, and con-

taining a floating-point number for each pixel. Higher values correspond to

regions that mostly influenced the model’s output predictions. An example

is shown in Figure 2.12.

Going deeper into details, CAMs can be obtained through the usage of a

Global Average Pooling layer at the end of the network, followed by a fully

connected layer and subsequently by a softmax layer. The steps to be taken

are the following:

1 Get all the weights connected between the fully connected layer and

the softmax class for which it is wanted to predict.

2 Assuming that the number of feature maps passed to the GAP layer is

n, for each class take the n feature maps, multiply them serially with

the correspondent weight, and finally add them.

The size of the heatmap is the size of the feature map, but it is possible

to scale it to the dimensions of the input image thus obtaining the result

shown in Figure 2.12.
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Figure 2.12: Class Activation Maps

The two main limitations of CAMs are related to the fact that the usage

of the Global Average Pooling layer is required, and they can only be applied

to the final layer, not to the ones before.

2.5 ResNet

Increasing the network depth by stacking an increasing number of layers

does not always improve performance. This was demonstrated by He et al.

[32], whose main investigation was to verify if it is possible to continuously

improve accuracy by stacking more and more layers.

As the depth of the network increases, the accuracy saturates and then

degrades rapidly. This however is not due to overfitting, since the same

trend is seen on training error, while in the case of overfitting, training and

test errors should diverge. Deeper models are in fact harder to optimize

than shallower models.

In principle, coping the parameters of the shallow network in the deeper

one, and then, in the remaining part, setting the weights to yield an identity

mapping should not impair the performance of the deeper model. The ob-

tained network in fact should be as good as the shallower ones. The problem

is that learning the identity is not easy.

The solution that has been proposed is residual learning, which is

based on the concept of residual block (Figure 2.13), introduced with the

so-called ResNet model (Figure 2.14).
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Figure 2.13: The residual block

The idea is that of building a model repeating this type of block which

consists of a series of layers with a skip connection that adds the input of

the block to its output, also called identity mapping. The rationale behind

adding this identity mapping is that it is easier for the following layers to

learn on top of the input value, mitigating the vanishing gradient prob-

lem and enabling deeper architectures. In fact, it does not add parameters

and in case there are excess blocks their weights will go to zero and the in-

formation will be propagated by the identity. This overcomes the difficulty

that the weights between the identity mapping have in practice in learning

the identity function. The performance achieved by ResNet suggests that

probably most of the deep layers have to be close to the identity.

Going deeper into details of residual learning, the intuition is that of

forcing the network to learn a different task in each block. If H(x) is the

ideal mapping to be learned from a plain network, by using skip connections

the network is forced to learn F (x) = H(x)− x, where x is the input of the

residual block. In particular, F (x) is called the residual, something to add

on top of identity to improve over the solution that can be achieved by a

shallower network.

Typically, at the end of this architecture there are no fully connected

layers, but a Global Average Pooling (GAP) layer is used, which fed the

final softmax function.
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Figure 2.14: ResNet50 architecture

2.6 Data Augmentation

Deep learning models are well known to be very data-hungry, and this is a

widespread problem because often the amount of available data is not suffi-

cient. One of the most used solutions that accounts for this problem is called

Data Augmentation, which consists of increasing the amount of data by

adding slightly modified copies of already existing data. When dealing with

images, the modifications usually consists of transformations like scaling,

cropping, flipping, padding, rotation, and translation, that introduce some

variability through which the model could learn better features.

2.6.1 RandAugment

A special type of augmentation technique is the RandAugment [17], which

is an automated data augmentation method that takes an image and two

integers N and M , where N is the number of transformations to be applied

and M is the magnitude with which they have to be applied (an example is

shown in Figure 2.15). With just these parameters, it can generate drasti-

cally different images and improve learners. In this way more random data

are introduced into the dataset, making the probability of learning trends

in noise very low.

This technique is particularly useful because it allows improving the

generalization power of the model, especially in the context of remote sensing

images, that are characterized by:

• Big intraclass diversity

• High interclass similarity

• Large variance of object/scene scales

• Coexistence of multiple ground objects.
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Figure 2.15: Transformation examples
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Chapter 3

Related Work

This chapter provides an overview of the techniques that have been used in

order to classify and detect Illegal Landfills. In particular, the main focus

will be on the most used Deep Learning and Computer Vision methods,

giving a background to the scope of this thesis.

3.1 Illegal Landfills Detection

Illegal landfills and uncontrolled waste combustion have always been a severe

problem, which is assuming more and more importance in recent years. For

this reason, research, even in completely different fields, has been tried to

find optimal and automatic ways for many years.

As anticipated, ILs affect negatively the groundwater quality: the sol-

uble pollutants leach freely into the ground and accumulate in the aquifer,

severely affecting water’s properties [45]. As a consequence, illegal land-

fills can cause such a significant change in water conductivity, that it can

be detected by using coils-based sensors [61]. Thus, the surrounding envi-

ronment can be harmed by eutrophication and acidification, and moreover,

some pollutants are toxic to living beings and can be accumulated into the

food chain.

Studies, [8, 72] have also demonstrated that many factors make the waste

sector vulnerable to waste crime. These factors include:

• New legislation and its weak regulatory enforcement.

• The economics of waste treatment, where legal and safe treatment of

waste can be more expensive than illegal operations.

• The complexity of the waste sector and the different actors who can



have some involvement, directly or indirectly, in the movement of ille-

gal wastes.

• The possibility to hide or disguise waste, which creates an opportunity

for illegal businesses to operate alongside legitimate waste operators.

Thus, another path that has been traveled to detect ILs is that of estimating

the probability of occurrence of illegal landfills, basing on the concurrent

presence of more than one of the cited factors [58, 38, 50], also ranking the

possibility of site expansion [59].

A decisive improvement towards fully automatic systems has been ob-

tained with the adoption of deep learning techniques, in particular Convo-

lutional Neural Networks (CNNs). These types of techniques demonstrated

in fact of being very effective when dealing with images. Initially, however,

the detection focused on images at the ground level, thus still requiring a

high level of human intervention. An example is given by A. Dabholkar et

al [18], who used AlexNet and GoogleNet as reference models to distinguish

six classes of waste: chair, mattresses, table, sofa, furniture, and trash, from

ground-level images. An accuracy higher than 70% for all the classes, with

a maximum of 95%, has been reached.

Another example is given by Alfarrarjeh et al [3], who performed image

classification to determine the level of cleanliness of streets. In this case,

in particular, ground-level images have been classified through a geospatial

classification approach in order to enhance classification accuracy. An F1

score of around 0.9 has been obtained.

In order to achieve a higher level of automation, multiple techniques are

emerged to also directly detect illegal landfills from remote sensing images

(RS). At the beginning, however, RS images were characterized by a very

low resolution and thus researches mainly focused on the usage of geographic

information systems (GIS), exploiting thermal images [26, 42], brightness

surface distribution [68], multi-temporal analysis [20, 19], vegetation indices

[13] or also multi-features algorithms [5, 27, 63, 68, 52, 70, 56, 40, 69, 65].

3.2 Deep Learning in Remote sensing

Remote sensing is a valuable data source for Earth observations and can help

to measure and observe detailed structures on the planet’s surface. In recent

years, more and more research is done to find ways that fully exploit the

huge potential of RS images [24, 43], also because the advances in technology

[35, 29] allowed fast growth in the number of RS data.
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Most of the researches done in the last decades has been driven by real-

world applications. In particular, most of them focused on scene classi-

fication, thus in the task of correctly labeling RS images with predefined

semantic categories. This has been in fact applied to a wide variety of tasks,

such as urban planning [47, 66], natural hazards detection [53, 51], environ-

ment monitoring [36, 25], vegetation mapping [44, 54], and geospatial object

detection [16, 15].

Initially, the spatial resolution of RS images was very low, and thus,

the size of a pixel was similar to the size of the objects of interest. For

this reason, the early researchers were mainly concerned with pixel-level

(or subpixel-level) classification [37, 67], labeling each pixel in the remote

sensing images with a semantic class.

With the passing of years, however, and the advance of remote sensing

imaging, the spatial resolution of this type of images became increasingly

finer than common objects of interest, and thus, single pixels lost their

semantic meanings. In such a case, recognizing scene images at the pixel level

solely demonstrated to be not so efficient [11], and so per-pixel analysis began

to be viewed with increasing dissatisfaction. Consequently, the idea that

analyzing remote sensing images at the object level is more powerful than

per-pixel analysis begun to spread all over, leading to a series of approaches

focused at the object level, that dominated remote sensing images analysis

for the last two decades.

With the improvement of RS image quality, Deep Learning techniques

started spreading also in this field, allowing a higher level of automation.

The achieved results demonstrated to be so good that there has been an

evolution and a convergence towards Deep Learning methods through time

[14]. Initially in fact, when remote sensing images had a quite low resolution,

the vast majority of researches were accomplished at the pixel level. Even if

there are still researches operating at this granularity [64], the improvement

of spatial resolution of remote sensing images and the impressive results ob-

tained with the usage of deep learning have conveyed most of them towards

object-level and scene-level detection.

Due to this evolution, which has highlighted the importance of analyzing

remote sensing images at the object level, and also thanks to the advances

in deep learning theory, deep learning-based algorithms have increasingly

prevailed in the area of remote sensing image classification, being able to

best exploit the increased availability of remote sensing data and parallel

computing resources. This also because deep learning demonstrated to cor-

rectly face the main challenges given by object and scene classification on

remote sensing images, that are: big intraclass diversity, high interclass sim-

47



ilarity (also known as low between-class separability), the large variance of

object/scene scales and coexistence of multiple ground objects.

Thus, deep learning automatic features extraction has prevailed and

numerous deep learning-based classification algorithms have emerged and

yielded the best classification accuracy. In particular, they can be grouped

into three categories: autoencoder-based methods, CNN-based methods,

and GAN-based methods.

For the scope of this thesis, a CNN-based method has been adopted

because the development of autoencoder-based methods demonstrated to

have reached a bottleneck and the performance of GAN-based methods is

relatively low, while CNN’s-based methods still dominate and have some

upside potential.

An example of what can be achieved with the usage of CNNs in the

remote sensing field is given by Biserka Petrovska et al [57], who proposed

a two-stream deep architecture, extracting features with a pre-trained CNN

and, after feature concatenation, classifying the features using a support

vector machine (SVM). The obtained classification accuracies reach a peak of

98.92%, demonstrating that the considered method has competitive results.

Impressive results have been reached also in the automatic classification

of crosswalks. Berriel et al [9] obtained an accuracy of 97.11% using free

available crowdsourcing data.

This study combines the potential of Deep Learning techniques with

the always increasing resolution and availability of Remote Sensing images

in order to solve the multilabel classification of objects constituting Illegal

Landfills. Thus, differently than previous researches, the recognition is no

longer performed at the ground level, but based on satellite images, which

allows achieving a higher grade of automation, also being able to inspect

larger areas at once.

3.2.1 Weakly Supervised Object Detection

Supervised object detection techniques can achieve astonishing results in

many fields of research, and recently this type of task has gained relevance

also in the context of automatic Illegal Landfills detection, focusing in partic-

ular on the usage of remote sensing images, helped by the growth in quality

and quantity of data. An example is given by Shynggys Abdukhamet [1],

who proposed a modified version of the state-of-the-art deep learning archi-

tecture called RetinaNet in order to perform landfills detection from satellite

images. In particular, he used a novel loss function named Focal loss, which

solves the class imbalance problem by down weighting the background class,
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thus letting the model focus on the regions of interest. Using DenseNet as

a backbone, it has been reached an average precision of 84.7%.

Researches in this direction are however still very few because Artificial

Neural Networks and Deep Learning, in general, are incredibly data-hungry,

thus depending on massive sets of hand-labeled training data. Data are

very costly to be obtained, mainly because of the time and human effort

required to label them. This is especially valid in the case of supervised

object detection, where besides the name of the class it is necessary to also

provide the ground truth bounding boxes that precisely enclose the objects

of interest. Moreover, in technical fields like the one of ILs detection, domain

expertise is also required, thus further increasing the costs both in terms of

time and money.

The technique that allows to significantly reduce these costs is called

Weakly Supervised Object Detection, which is recently gaining momentum

since it is also able to achieve results that are comparable to those obtained

with the supervised way. This approach consists in fact in exploiting the

regions of the image that the model used to perform the discrimination

in order to predict the exact location of the objects of interest, thus not

requiring ground truth bounding boxes, but only the labels of the objects

contained in the image, as in a generic classification task.

Due to the fact that both the Weakly Supervised Object Detection tech-

nique and the quality and amount of remote sensing images are grown only

in the last years, there are no precedent studies that tried to combine them

in order to perform Illegal Landfills detection. One of the research that is

close to this has been made by Mohd Anjum and M. Sarosh Umar [6], who

however solved the task at the ground level.

This study also evaluates the possibility of adopting the weakly super-

vised approach to perform landfills objects detection. In particular, it proves

how promising and beneficial is this direction, demonstrating that CNNs can

retain a remarkable localization ability while solving the Illegal Landfills

multilabel classification task.
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Chapter 4

Dataset

This chapter describes the dataset on which the proposed neural network

has been trained, validated, and tested. In particular, it specifies how the

dataset has been created, the preprocessing that have been performed to

obtain the final configuration, and the classes that have been considered.

4.1 Description

The scope of this thesis is that of solving the multilabel classification task on

remote sensing images, also proving the feasibility of the weakly supervised

object detection to classify and localize dumped wastes characterizing ILs

in the Lombardy region.

At the very beginning, twelve categories have been taken into consider-

ation: Cisterns, Scattered waste, Pallets, Caissons, General waste, Contain-

ers, Hay bales, Tubes, Wood, Tires, Grouped cars, and Plastic bags.

Images regarding these categories have been extracted from two different

data sources: Mapbox and Orthophoto. Mapbox is a location data platform

that powers the maps and location services used in many popular appli-

cations. Orthophoto images are instead aerial photographs geometrically

corrected for topographic relief, lens distortion, and camera tilt. With ref-

erence to the tasks to be solved, the difference that mainly concerns the

two sources is the change in terms of resolution. Orthophoto images are in

fact way higher in resolution, reaching also a pixel size of 0.08 meters, while

Mapbox images can arrive at a pixel size in the range of [0.6, 0.3] meters.

In Figure 4.1 it is possible to see an example of an image for each category

(in this case Mapbox images have been used).



Figure 4.1: Categories examples - Starting from top left: (1) Cisterns,(2) Scattered

waste, (3) Pallets, (4) Caissons, (5) General waste, (6) Containers, (7) Hay bales, (8)

Tubes, (9) Wood, (10) Tires, (11) Grouped cars, (12) Plastic bags

The images needed to build the dataset, and thus needed to train and

fine-tune the model, have been annotated using a tagger tool [55] that allows

to both define the segmentation and the class of the objects in images.

In Table 4.1 it is possible to see the number of objects that have been

labeled for each category and each source.

Ortophoto Mapbox Total

Cisterns 246 241 487

Scattered waste 1179 1061 2240

Pallets 457 503 960

Caissons 555 502 1057

General waste 623 750 1373

Containers 140 127 267

Hay bales 3 152 155

Tubes 8 93 101

Wood 0 113 113

Tires 0 27 27

Grouped cars 0 20 20

Plastic bags 0 47 47

Table 4.1: Initial dataset table
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As it can be noticed, the number of samples of the last six categories

is much smaller with respect to the first six ones, and deeply studying the

performance that the model can reach on those categories with so few im-

ages, it has emerged that the amount of available data is not sufficient to be

able to include these last six categories into the performed study (the whole

procedure that has brought to this conclusion is exposed in Appendix A).

Another important aspect that has been found to affect in a relevant

way the performance of the model is the clear similarity between some of the

considered classes. In particular, the reference is to the similarity between

the following three pairs of categories:

• Cisterns and Pallets

• Scattered waste and General waste

• Caissons and Containers

In Figure 4.2 is reported an example of similarity between the Cisterns

and Pallets classes on Mapbox images. The picture on the left could seem

to belong to the Pallets class but it belongs to the Cisterns one. Vice versa,

the picture on the right belongs to the Pallets class but could seem to belong

to the Cisterns one.

Figure 4.2: Similarity examples - Cisterns (left) and Pallets (right) from Mapbox

Analogously, the same situation is encountered in Figure 4.3, but on

Orthophoto images.
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Figure 4.3: Similarity examples - Cisterns (left) and Pallets (right) from Orthophoto

In Figure 4.4, instead, it is possible to see on the left a Mapbox image

belonging to the Scattered waste class that could seem to belong to the

General waste class, while on the right a Mapbox image that could seem

to belong to the Scattered waste category but that belongs to the General

waste one.

Figure 4.4: Similarity examples - Scattered waste (left) and General waste (right) from

Mapbox

Figure 4.5 shows the same situation on Orthophoto images.
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Figure 4.5: Similarity examples - Scattered waste (left) and General waste (right) from

Orthophoto

Regarding the Caissons and Containers classes, Figures 4.6 and 4.7 both

show on the left an image belonging to the Caissons class but that could

seem to belong to the Containers one, and on the right an image belonging to

the Containers category but that could seem to belong to the Caissons one.

Respectively, Figure 4.6 reports images taken from Mapbox, while Figure

4.7 shows Orthophoto pictures.

Figure 4.6: Similarity examples - Caissons (left) and Containers (right) from Mapbox
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Figure 4.7: Similarity examples - Caissons (left) and Containers (right) from Orthophoto

Also in this case a very detailed quantitative analysis of the problem has

been carried out, ending up with the conclusion that keeping them separate

does not make sense (the whole procedure that has brought to this conclusion

is exposed in Appendix B). For this reason, it has been proceeded with their

merging.

Thus, in the end, removing the last six classes because of the too-small

number of available samples and merging the three pairs of similar cate-

gories, three classes have been taken into consideration:

• Cisterns and Pallets

• Scattered and General waste

• Caissons and Containers

Thus, the dataset that has been built and used in order to train, validate and

test the chosen model is composed of 3164 total images, of which 1346 pos-

itives and 1818 negatives. In particular, the three sets have been organized

as follows:

• Training: 2233 images, of which 594 for class Cisterns and Pallets,

635 for class Scattered and General waste, 592 for class Caissons and

Containers, and 1300 for the negative class

• Validation: 471 images, of which 127 for class Cisterns and Pallets,

148 for class Scattered and General waste, 140 for class Caissons and

Containers, and 265 for the negative class
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• Testing: 460 images, of which 138 for class Cisterns and Pallets,

145 for class Scattered and General waste, 127 for class Caissons and

Containers, and 253 for the negative class

Going deeper into details, Table 4.2 shows how images are distributed be-

tween the different categories.

Ortophoto Mapbox Total

Cisterns and Pallets 477 382 859

Scattered and General waste 513 415 928

Caissons and Containers 476 383 859

Negatives 1718 100 1818

Total 3164

Table 4.2: Dataset table

As it can be seen effort has been invested in keeping the positive cate-

gories as balanced as possible in order to put the model in the condition of

being able to learn equally the features of each class. Unbalanced datasets

bring in fact to unbalanced results, with the model predicting with higher

frequency and confidence the classes characterized by a larger number of

samples. In particular, initially oversampling has been performed to exploit

all the available data, and thus the maximum number of samples has been

reached in each category. This however demonstrated to introduce overfit-

ting and thus the opposite direction has been chosen, undersampling the

categories with a higher number of images to the one with the minimum

amount. The Scattered and General waste class has a number of samples

a bit higher with respect than the others (despite the undersampling), be-

cause it is the most frequently occurring one, and thus it is often present

concurrently with the other two categories.

For what regards negatives, the optimal configuration is that of having

a number of samples that is almost doubled with respect to the amount of

samples for a single positive class.

All the images contained in the dataset have a dimension of 700 × 700.

It has been used such size because it revealed to be the optimal trade-

off between too large images, where objects result to be too little to be

recognized, and too small images, which do not allow the model to be able
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to generalize well on higher-dimensional images. In particular, besides the

mentioned one, the following dimensions have been tried: 300×300, 500×500

and 1000× 1000.

Also, the RandAugment technique, explained in Section 2.6.1, has been

adopted. Moreover, in order to introduce even more randomness, the flip

technique has been used, that consists in randomly flipping the image, thus

generating images with different orientation.

RandAugment has been performed five times, thus trying, on the one

side, to introduce as much randomness as possible to boost generalization,

and on the other to avoid the incurring of overfitting.
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Chapter 5

Architecture Definition and

Output Usage

This chapter provides a deep overview of the architecture that has been used

in order to perform the task. In particular, it specifies how classification has

been executed, describing which is the output of the model and how it has

been used. Analogously, it is also explained the approach with which the

feasibility study of weakly supervised object detection has been performed,

illustrating what is the required output and its usage.

5.1 Training Environment

Before starting with the description of the architecture, it is important to

make a small digression in order to describe the environment in which the

model has been developed.

The programming language adopted is Python 3 and it has been used to

develop training, evaluation, and visualization scripts. In addition, the Py-

Torch libraries are used to develop the structure of the previously described

models. Furthermore, two NVIDIA GeForce RTX 2080 Ti GPUs were used.

5.2 Training Hyperparameters

In order to further understand how the model has been built and trained it

is also important to outline some basic concepts regarding the architecture’s

parameters and processes.



Batch Size (BS)

Number of samples composing the set used in each iteration of the

training process in order to update the gradient.

Early Stopping

Technique for the limitation of the overfitting phenomenon consisting

of using a hold-out set (the validation set) to assess the training pro-

cess. It is an online estimate of the generalization error, which allows

stopping the training procedure when the validation error is at its min-

imum. In particular, if the online validation error does not improve

within a specific number of training epochs (defined as patience), the

process is stopped.

Early Stopping Minimum Delta

Hyperparameter related to the early stopping procedure defining the

minimum variation in the monitored quantity that can be qualified as

an improvement.

Early Stopping Patience

Hyperparameter related to the early stopping procedure that defines

the number of training epochs to wait for validation error improve-

ment. If the validation error does not improve within the number of

epochs specified by the patience, the training procedure is stopped.

Epoch

Full training pass over the entire dataset. It is organized in a number

of iterations equal to the total number of samples in the training set

divided by the batch size.

Number of Epochs

Amount of epochs through which the model has to be trained. In

other words, it defines the number of times the model has to pass

through the whole dataset in order to end the training process.

Learning rate

Hyperparameter defining the step size at each iteration while moving

towards the minimum of the loss function. It is often in the range

between 0 and 1.
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5.3 Architecture

The architecture that has been adopted in order to perform both the tasks

is the Resnet architecture, whose theoretical relevance has been widely dis-

cussed in Section 2.5 within Chapter 2. Here the aim is that of going deeper

in the description of the practical implementation of the model, depicting

the number and types of layers that constitute it and the values of the

hyperparameters that have been used.

5.3.1 Layers

The specific version that has been chosen is the ResNet50 which is a widely

used architecture with 48 Convolutional layers along with 1 MaxPooling

layer and 1 Average Pooling layer, characterized by 3.8× 109 floating-point

operations.

Going deeper into details, as it can also be seen in Table 5.1 the consid-

ered network is constituted by the following layers:

• A convolutional layer with 64 kernels of size 7×7, with a stride of size

2 and a padding of 3.

• A max-pooling layer with a stride of size 2, followed by a block of

three convolutional layers with respectively 64 1× 1, 64 3× 3 and 256

1× 1 kernels. This block is repeated three times, thus giving 9 layers

in total.

• A block of three convolutional layers with respectively 128 1× 1, 128

3 × 3 and 512 1 × 1 kernels. This block is repeated four times, thus

giving 12 layers in total.

• A block of three convolutional layers with respectively 256 1× 1, 256

3 × 3 and 1024 1 × 1 kernels. This block is repeated six times, thus

giving 18 layers in total.

• A block of three convolutional layers with respectively 512 1× 1, 512

3× 3 and 2048 1× 1 kernels. This block is repeated three times, thus

giving 9 layers in total.

• A convolutional layer with 3 kernels of size 1 × 1 for outputting the

classification predictions. In parallel, a global average pooling layer

is followed by a convolutional layer with 3 kernels of size 1 × 1 for

outputting the class activation maps.
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Layer name Parameters

Convolution 1 64 kernels 7× 7, stride 2

Convolution 2

3× 3 max pool, stride 2 1× 1, 64

3× 3, 64

1× 1, 256

× 3

Convolution 3

1× 1, 128

3× 3, 128

1× 1, 512

× 4

Convolution 4

 1× 1, 256

3× 3, 256

1× 1, 1024

× 6

Convolution 5

 1× 1, 512

3× 3, 512

1× 1, 2048

× 3

Convcolution 6
global average pooling

3 kernels 1× 1, stride 1

Table 5.1: Resnet50 layers

Thus at the end a Deep Convolutional Neural Network of 1 + 9 + 12 +

18 + 9 + 1 = 50 layers has been constituted.

Transfer learning has been adopted and, in particular, the weights of

a ResNet50 model pre-trained on the ImageNet dataset have been loaded

through Pytorch. This choice has been done due to the benefits that transfer

learning technique brings, that are mainly four:

• It gives a good weight initialization and a better starting point for the

training of the model.

• It allows a higher learning rate during the training process.

• It allows to converge to a higher performance level, enabling a more

accurate output.
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• It allows to achieve the desired performance faster than traditional

learning methods since it leverages a pre-trained model.

Moreover, batch normalization has been exploited to improve the gra-

dient flow through the network, to allow using higher learning rates (thus

allowing faster learning), to reduce the strong dependence on weights ini-

tialization, and to act as a form of regularization slightly reducing the need

for dropout. Batch Normalization layers in fact can be interpreted as doing

preprocessing at every layer of the network, but integrated into the network

itself in a differentiable way.

5.3.2 Hyperparameters

For what regards the hyperparameters described in Section 5.2, some of

them have been fine-tuned in order to select optimal settings, while others

have been fixed a priori. Table 5.2 shows all the hyperparameters that have

been used and the respective values that have been chosen.

Hyperparameter Value

Batch size 8

Number of epochs 80

Early stopping minimum delta 0.005

Learning rate 0.005

Early stopping patience 10

Table 5.2: Hyperparameter values - The first group contains the ones that have been

defined a priori, while the second the ones that have been fine-tuned

The Batch Size (BS) has been set a priori since it has been found that

8 is a good trade-off between having a small BS that requires less GPU

memory, but which is more affected by noise, and a larger BS that gives

a more accurate estimate of the error gradient, but which requires a larger

availability of GPU memory.

Regarding the number of epochs, it has been chosen 80 because on one

side allows a good number of iterations during the training process, letting

the model analyze the dataset for a reasonable amount of times. On the

other side, it also allows the early stopping procedure to complete its work,

blocking the training only when the model is going towards overfitting.
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Analogously, setting 0.005 as early stopping minimum delta is a reason-

able middle ground between too small or too large variations in the valida-

tion error.

The Learning Rate has been fine-tuned adopting a grid search technique,

exploring three different orders of magnitude: values in the around of 10−2,

of 10−3 and of 10−4. The first range immediately revealed to offer too

large values, because, in fact, the model demonstrated to be not able of

converging to a minimum point during gradient descent, not being able to

reach an acceptable accuracy. On the contrary, for values in the order of

magnitude of 10−4, the learning process became too slow, not allowing to

reach good solutions in a reasonable time. The range of 10−3 instead, and

in particular 0.005, revealed to be associated with the steepest drop in the

loss in the smaller time, thus this value has been adopted.

Finally, the early stopping patience has been set to 10 because it is

the best trade-off between a too large value that does not allow the early

stopping procedure to actually limit overfitting when the model is at its

minimum and a too-small value that stops the training process too early. In

particular, the following values have been taken into consideration:

{5, 7, 10, 12, 15}.

5.3.3 Model Output

Substantially, when an image is received as input by the model, it is traduced

into two different outputs (Figure 5.1):

• The classification scores

• The class activation maps (CAMs)

The first is used within the multilabel classification task and consists of

an array containing floating-point numbers. Going deeper into details, the

length of the array must be equal to the total amount of classes that have

been defined (three in the scope of this thesis), and each floating-point quan-

tity corresponds to a single category, constituting the prediction of the model

for the input image to belong to that category (expressed as a probability).

Once the classification scores have been generated, thresholding is per-

formed to establish if the input image has been predicted or not to belong

to a specific class (0.5 has been used for each category). Being a multilabel

classification task, each image can belong concurrently to more than one

class, and thus the predictions are independent of each other.
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Figure 5.1: Architecture

The class activation maps (CAMs) are obtained thanks to the usage of

a global average pooling layer (GAP) at the end of the architecture. In this

way the network can in fact retain a remarkable localization ability until
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the final layer, thus allowing to identify the discriminative image regions

leading to a prediction. In particular, a CAM consists of a 2-dimensional

array containing a floating-point value in the range [0, 1] for each pixel in the

input image. The higher is the value, the higher is the importance assumed

by that pixel in the discrimination process performed by the model. In this

case, however, values are not independent of each other. The classification,

in fact, is performed at the object level, and thus they are highly correlated,

generating clusters with higher values that correspond to the discriminative

regions. Also in this case a class activation map is generated for each one of

the considered categories.

This second type of output has been exploited to perform the second

task in the scope of this thesis, the feasibility study of the weakly supervised

object detection. In fact, in case the classification score for a specific class

is high, the discriminative regions identified by the correspondent CAM

coincide with the locations in which, according to the model, objects of

that class are placed. In particular, selecting in advance a proper threshold

value as before, it is possible to generate both the bounding boxes and the

segmentation localizing the objects of interest.
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Chapter 6

Evaluation - Multilabel

Classification

This chapter provides a quantitative and qualitative analysis of the results

obtained while solving the multilabel classification task by applying the

methods and the techniques exposed in the previous chapter.

In particular, for what regards the quantitative analysis, metrics will be

shown more in detail, and the model calibration will be investigated.

Regarding the qualitative analysis, firstly some examples of the model’s

CAMs will be shown, thus having an idea of which features it learns, and

subsequently the robustness of the model will be demonstrated through the

analysis of the difference in predictions between Mapbox and Orthophoto

images.

Before starting with the actual evaluation, however, to better illustrate

and frame the analysis, an explanation of the metrics that have been used

to guide the study is given.

6.1 Metrics

In order to give a better understanding of how the performance of the model

has been measured and improved, in this section the list of all the main met-

rics is provided, giving both the related definition and formula. In particular,

here the focus is on the metrics used in the multilabel classification task.



True Positives (TP)

Amount of samples that have been correctly predicted as belonging

to a positive class. In the considered case for example, if an image

actually contains cisterns and the model predicts Cisterns and Pallets

in that image, then this prediction is counted as a true positive.

True Negatives (TN)

Amount of samples that have been correctly predicted as belonging to

the negative class. In the considered case for example, if an image does

not contain any object belonging to the three considered categories

and the model predicts it as negative, then this prediction is counted

as a true negative.

False Positives (FP)

Amount of samples that have been wrongly predicted as belonging to

a certain positive class. In the considered case for example, if an image

does not contain caissons or containers, but the model predicts it as

belonging to the Caissons and Containers class then this prediction is

counted as false positive.

False Negatives (FN)

Amount of samples that have been wrongly predicted as belonging to

the negative class. In the considered case for example, if an image

contains caissons or containers, but the model predicts it as negative,

then this prediction is counted as a false negative.

Basing on the previous concept it is possible to define the following

metrics:

Accuracy (Acc)

Fraction of predictions that the model correctly predicts on the total

number of predictions.

Acc =
TP + TN

TP + TN + FP + FN
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Precision (Prec)

Fraction of positive predictions that the model correctly identified out

of all the samples that it has predicted as positives. Thus the frequency

with which the model is correct when predicts the positive class.

Prec =
TP

TP + FP

Recall (Rec)

Fraction of positive predictions that the model correctly identified out

of all the samples that are actually positives.

Rec =
TP

TP + FN

F1 Score (F1)

Harmonic mean of Precision and Recall. It allows to measure how

balanced are the Precision and the Recall of the models, favoring the

ones with a high balance between them.

F1 =
2

Prec + Rec
= 2 · Prec ·Rec

Prec + Rec
=

TP

TP + FN+FP
2

Precision-Recall Curve

Plot of the tradeoff between precision and recall for different thresh-

olds. A high area under the curve represents both high recall and high

precision, where high precision relates to a low false-positive rate, and

high recall relates to a low false-negative rate. High scores for both

show that the classifier is returning accurate results (high precision),

as well as returning a majority of all positive results (high recall).

Average Precision (AP)

Summary of the Precision-Recall curve as the weighted mean of pre-

cisions achieved at each threshold, with the increase in recall from the

previous threshold used as the weight.

AP =
∑
n

(Recn −Recn−1)Precn

where Precn and Recn are respectively the Precision and the Recall

at the nth threshold.
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Reliability Diagram

Plot of the actual distribution of the samples with respect to the pre-

diction probability. In other words, it measures the calibration of the

model verifying that the prediction probability reflects the actual fre-

quency with which those samples belong to a positive class. To be

more concrete, among all the images that have been predicted with a

probability of 70% as belonging to the Cisterns and Pallets class, 70%

of them should actually belong to that class.

Confidence Histogram

Plot of the distribution of the predictions in specific intervals. In

other words, for each considered interval it tells how many samples

have been predicted with a probability contained in that interval. In

this case, the [0, 1] range has been divided uniformly into ten intervals,

reflecting the same division that has been considered in the Reliability

Diagram.

Expected Calibration Error (ECE)

Scalar summary statistic of calibration. It is computed by partitioning

predictions into M equally-spaced bins (similar to the reliability dia-

gram) and taking a weighted average of the bins’ accuracy/confidence

difference.

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|

where n is the number of samples. The difference between the accuracy

and the confidence for a given bin represents the calibration gap.

Maximum Calibration Error (MCE)

Measure of the worst-case deviation between confidence and accuracy.

Similar to ECE, this approximation involves binning.

MCE = max
m∈{1,...,M}

|acc(Bm)− conf(Bm)|

It is possible to visualize both ECE and MCE on Reliability Diagrams,

where MCE is the largest calibration gap (red and orange bars) across

all bins whereas ECE is a weighted average of all gaps.
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6.2 Quantitative Analysis

In this section a quantitative analysis of the results achieved within the

multilabel classification task is given, also comparing it with the case in

which the six categories have been considered separately, thus without the

merging.

6.2.1 Results

In order to go deeper in the analysis of the results achieved in the multilabel

classification task, in Table 6.1 are shown the metrics obtained by the chosen

model on the validation and test set.

Validation Set Test Set

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Cisterns and Pallets 0.90 0.79 0.89 0.84 0.88 0.82 0.78 0.80

Scattered and General waste 0.91 0.82 0.93 0.87 0.88 0.77 0.91 0.83

Caissons and Containers 0.90 0.79 0.89 0.84 0.88 0.75 0.83 0.79

Micro Average 0.90 0.80 0.91 0.85 0.88 0.78 0.84 0.81

Table 6.1: Metrics of the chosen model

Here the micro average value has been used to show the overall per-

formance of the model because it is more suited when it is needed to pay

attention to class imbalance. In particular, it is measured aggregating the

contribution of all the classes, weighting each instance or prediction equally.

As it can be seen, it is possible to state that the classes are balanced and

this allows to also have balanced Precision and Recall metrics.

For the sake of making a comparison, Table 6.2 shows the metrics achieved

by the model on the validation and test sets, considering the six categories

separated, and so without the merging. As it can be noticed, in both the val-

idation and test set of the comparative model the metrics are really swinging,

not granting a real balance between the Precision and the Recall. This is

mainly due to the confusion that the similarity between the categories intro-

duces, thus further validating the choice that has been done. This swinging

trend has been in fact encountered in every other experiment performed, ex-

cept for the one is done with the merged categories, which, as it can be seen

from Table 6.1, brings to really high and balanced metrics, overall reaching

an F1 score of 81% on the test set.
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Validation Set Test Set

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Cisterns 0.91 0.73 0.20 0.32 0.89 0.53 0.28 0.36

Scattered waste 0.81 0.60 0.53 0.57 0.80 0.62 0.48 0.54

Pallets 0.85 0.71 0.34 0.46 0.82 0.70 0.28 0.40

Caissons 0.81 0.55 0.57 0.56 0.79 0.60 0.54 0.57

General waste 0.82 0.65 0.59 0.62 0.81 0.60 0.61 0.60

Containers 0.95 0.73 0.25 0.37 0.94 0.67 0.17 0.27

Micro Average 0.86 0.62 0.47 0.54 0.84 0.61 0.44 0.51

Table 6.2: Metrics of the comparative model

The same consideration can be done observing the graphs in Figure 6.1.

Figure 6.1: Comparison between chosen (on the left) and comparative (on the right)

models on Precision-Recall curves

Here the Precision-Recall curves of the two considered models are shown.

In particular, the one on the left refers to the model trained on the dataset

with the merged categories, while the one on the right is related to the train-

ing with the 6 categories separated. It is immediately visible the cleanness

obtained in the first case, in contrast with the confusion visible in the second

one. This further confirms the relevant influence that the similarity between

the classes has on the model performance.
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6.2.2 Distribution of Probability and Model Calibration

When performing a multilabel classification task, it is particularly important

to also take into consideration the calibration of the model, which defines

how much correspondence there is between the model prediction scores and

the frequency with which predictions match the actual labels.

To give a complete analysis, the model calibration has been firstly in-

vestigated on the single categories, and subsequently on the three classes

together. In parallel with the reliability diagram, which shows the calibra-

tion of the model, it has been also taken into consideration the confidence

histogram, defining the distribution of probability on the samples in the

defined prediction intervals.

Figure 6.2: Calibration of the model on the on the test set - Cisterns and Pallets

Figure 6.3: Calibration of the model on the test set - Scattered and General waste
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Figure 6.4: Calibration of the model on the test set - Caissons and Containers

In Figures 6.2, 6.3 and 6.4 are reported the confidence histograms and

the reliability histograms of the model on the three single categories. The

first impression could be that the model is not very well-calibrated, since

there are intervals that are a bit far from the 45◦ line. However, it must be

taken into consideration that in all the three cases the number of samples

predicted with a score between 0.1 and 0.9 is very few, and thus in most

of the cases is not possible to have a realistic measurement of the model

calibration. An example is given in interval [0.4, 0.5] in Figure 6.3, referring

to the category Scattered and General waste, where, as it can be seen from

the confidence histogram, there are very few samples predicted with those

scores. In fact, it has emerged that in this interval there is a single sample

predicted as negative. As a consequence, in the corresponding reliability

diagram, the relative bar is empty. This, of course, does not allow to give a

real indication of the model calibration in the middle intervals, and thus an

additional investigation of the overall case is needed.

Further confirmation of what has been stated is given by the difference

between the Expected Calibration Error (ECE) and Maximum Calibration

Error (MCE) measurements. In all the three cases the ECE remains low

since it averages among all the bins. The MCE, instead, reaches high values

because of the absence of a reasonable number of samples in some of the

intervals as explained previously.

To have a more realistic measurement of the model calibration it is nec-

essary to take into consideration all the categories together, thus looking at

the graph shown in Figure 6.5.
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Figure 6.5: Calibration of the model on the test set - All the categories

From what can be seen and knowing that in practical cases perfect cal-

ibration is impossible [31], it can be said that the model is very well cali-

brated. Also in this case, what has been stated is reflected by numbers: both

the ECE and MCE are low. The first one is inline with the single categories,

while the second one, which measures the maximum gap, has been almost

halved.

6.3 Qualitative Analysis

This section gives a qualitative evaluation of the results that have been

achieved within the multilabel classification task. In particular, the good-

ness of the features that the model has learned is assessed by looking at the

CAMs, while the generalization robustness is inspected through the compar-

ison between the predictions made on images representing the same place,

but with different resolutions and sizes.

6.3.1 Class Activation Maps Evaluation

In order to understand if the model has learned the right features and if it

is looking at the right places when making predictions, it is a good practice

to look at the class activation maps (CAMs) that it produces, that identify

which are the image discriminative regions according to the model. To do

this, here below are shown some examples that demonstrate how the model

looks at the input image in the process of classifying it.

On the top left of Figure 6.6 is shown an image which contains the

second and the third categories, thus whose ground truth includes both the

classes Scattered and General waste and Caissons and Containers. On the

75



top right (1) it is reported the class activation map that the model outputs

with respect to the Cisterns and Pallets class (predicted with probability

0.001), on the bottom left (2) the one referred to the Scattered and General

waste class (predicted with probability 0.999) and on the bottom right (3)

the CAM of the Caissons and Containers class (predicted with probability

0.999).

Figure 6.6: CAMs - Example 1

As it can be already seen in this first example, the model can retain

a remarkable localization ability until the very final layer, correctly and

concisely identifying the areas of the image that make it belonging to the

intended classes.

Figure 6.7 shows an additional example where the model correctly pre-

dicts the presence of the Scattered and General waste category (with prob-

ability 0.999), together with the Caissons and Containers class (with proba-

bility 1.000). Even in this case, it is possible to notice a very high precision

76



and cleanness of the model in the localization of the 2 caissons present in

the image. This is a further demonstration of the fact that the right features

have been learned.

Figure 6.7: CAMs - Example 2

In order to demonstrate the goodness of the model also with respect

to the Cisterns and Pallets class, in Figure 6.8 is reported an example of

an image belonging to this class and to the Scattered and General waste

category (that, as it can be noticed, is really frequent). Looking at the four

pictures, it is possible to see that also in this case all the critical regions

have been correctly covered with higher values of the CAMs. This sample

has been in fact predicted to belong to the first class (1) with a probability

of 1.000, to the second class (2) with a probability of 0.999, and to the third

(3) with a probability of 0.001.
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Figure 6.8: CAMs - Example 3

Finally, it is also important to show an even more difficult case, where

objects are very mixed between each other. In particular, the image at the

top left corner of Figure 6.9 shows a situation in which there are caissons

among general wastes. In these types of conditions, often also the human

eye has to pay a bit of attention. Despite this, the image has been correctly

predicted to belong to the Scattered and General waste (0.999) and Caissons

and Containers (0.999) categories, assigning instead a very low probability

(0.010) to the Cisterns and Pallets class. The correspondent class activation

maps further demonstrate that the model is focusing on the right regions.
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Figure 6.9: CAMs - Example 4

6.3.2 Mapbox and Ortophoto Comparison

As previously anticipated, the main difference between Mapbox and Or-

thophoto images is the resolution, which is lower in the first one with re-

spect to the second. For this reason, a deeper analysis has been carried out

in order to understand the influence of this factor on the performance of the

model.

In Figures 6.10, 6.11 and 6.12 are shown the three situations which have

been distinguished while comparing the performance of the model on Map-

box and Orthophoto images.
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Mapbox Orthophoto

Ground Truth Prediction Ground Truth Prediction

Cisterns and Pallets no no (0.01) no no (0.25)

Scattered and General waste no no (0.00) no no (0.27)

Caissons and Containers yes yes (0.73) no no (0.25)

Table 6.3: Mapbox and Orthophoto comparison - First situation

Figure 6.10: Mapbox (left) and Ortophoto (right) comparison - Different content

In Figure 6.10, in particular, the images, even if representing the same

place, have different resolutions, and different content. This is a situation

that happens often because Mapbox and Orthophoto images are taken in

time instants that could be even very distant, thus in that time frame of

difference one place can change very much. Despite this, most of the time

the model correctly predicts in both the sources, as it is possible to see in

Table 6.3 referred to the example shown above. The ground truth in fact

changes between the two images and the model correctly account for the

variation. This means that it was focusing on the right regions for detecting

the Caissons and Containers class.
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Mapbox Orthophoto

Ground Truth Prediction Ground Truth Prediction

Cisterns and Pallets yes yes (0.99) yes yes (0.99)

Scattered and General waste no no (0.22) no no (0.00)

Caissons and Containers no no (0.06) no no (0.00)

Table 6.4: Mapbox and Orthophoto comparison - Second situation

Figure 6.11: Mapbox (left) and Ortophoto (right) comparison - Similar content

In Figure 6.11 is shown the second type of situation, where the content

is practically identical, thus the only difference is related to the resolution.

As it can be seen in Table 6.4, in both cases the image contains only the

Cisterns and Pallets category in the ground truth, and the model correctly

identifies it in its predictions. The difference in resolution is reflected in the

probability values that are produced. In fact, it is possible to notice that

while in the Mapbox case the model is more prone to predict positively, in

the Orthophoto case, it tends to be more conservative, giving a higher score

to the categories that are evidently present and a lower one to those that

are less visible.

81



Mapbox Orthophoto

Ground Truth Prediction Ground Truth Prediction

Cisterns and Pallets yes yes (0.91) yes yes (0.99)

Scattered and General waste yes yes (0.94) yes yes (0.96)

Caissons and Containers no no (0.02) yes yes (0.99)

Table 6.5: Mapbox and Orthophoto comparison - Third situation

Figure 6.12: Mapbox (left) and Ortophoto (right) comparison - Grainy Mapbox

Figure 6.12 is instead an example of the third situation, where the Map-

box image is even more grainy than usual, making the object distinction

task difficult even for the human eye. In the reported Mapbox image for

example it is absolutely not trivial to identify the Cisterns and Pallets in

the middle (both the blue heap of cisterns and the near sequence of pallets

groups), however, the model correctly predicts even in this case. It also ac-

counts for the difference in the content of the two pictures. The Orthophoto

image, in fact, contains some containers that are not present in the Mapbox

one, and this is reflected in the prediction of the model, as it is possible to

see in Table 6.5.

In general, it has been instead noticed that the model tends, in both

cases, to confuse some types of buildings with the Caissons and Containers

class. A clear example is given in Figure 6.13. The relative predictions

are shown in Table 6.6. However, as it can be seen, there are objects that

clearly seem to be containers. Only using other sources to investigate (such

as Google Maps) it is possible to know that they are small buildings. The
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model, overall, tends more to predict positively on Mapbox images, due to

the lower resolution.

Mapbox Orthophoto

Ground Truth Prediction Ground Truth Prediction

Cisterns and Pallets no no (0.01) no no (0.00)

Scattered and General waste yes yes (0.51) no no (0.01)

Caissons and Containers no yes (0.96) no yes (0.89)

Table 6.6: Mapbox and Orthophoto comparison - Caissons and Containers

Figure 6.13: Mapbox (left) and Ortophoto (right) comparison - Caissons and Containers

In conclusion, in order to have a complete idea of how differently the

model acts on Mapbox and Orthophoto images, the model has been run on

an entire territory, the same on both the sources. In particular, a portion of

Nave municipality has been analyzed and the results that have been obtained

for each category and each source are reported in Table 6.7.

Mapbox Images Ortophoto Images

Cisterns and Pallets 108 6

Scattered and General waste 150 24

Caissons and Containers 70 62

Table 6.7: Mapbox and Ortophoto comparison - Model run on a new territory
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Considering the differences in the content of the images and the fre-

quency of occurrence of more grainy images, this discrepancy in numbers is

expected.

A further example of the robustness of the model is shown in Figure 6.14,

which displays two images taken from the analyzed territory. Even if they

are almost similar, the Mapbox one (on the left) is evidently more grainy

with respect to the Orthophoto image (on the right), and in the bottom

part it contains scattered waste. As it can be seen in Table 6.8, the model

correctly takes into account the difference, predicting the presence of the

Caissons and Containers class in both the images, and of the Scattered and

General waste only in the one from Mapbox.

Mapbox Orthophoto

Ground Truth Prediction Ground Truth Prediction

Cisterns and Pallets no no (0.06) no no (0.00)

Scattered and General waste yes yes (0.99) no no (0.11)

Caissons and Containers yes yes (0.99) yes yes (0.97)

Table 6.8: Mapbox and Orthophoto comparison - Fourth situation

Figure 6.14: Mapbox (left) and Ortophoto (right) comparison - Further example of

diversity
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Chapter 7

Evaluation - CAMs Analysis

for Weakly Supervised

Object Detection

This chapter provides a quantitative and qualitative analysis of the results

obtained while studying the feasibility of the weakly supervised object de-

tection task, based on the features learned in the multilabel classification

task.

In particular, for what regards the quantitative analysis, metrics will be

shown more in detail, giving an analytic idea of how good are the discrimi-

native regions identified by the model.

Regarding the qualitative analysis, some examples of the bounding boxes

derived from the model predictions will be shown, comparing them with the

ones in the ground truth, and showing the strengths and weaknesses of this

approach.

Also in this case, before starting with the actual evaluation of the results,

the metrics that have been used for the specific task are described, thus

framing the analysis.

7.1 Metrics

In order to give a better understanding of the way in which the performance

of the model has been measured, in this section the list of all the main metrics

is provided, giving both the related definition and formula. In particular,

here the focus is on the metrics used in the feasibility study of the weakly

supervised object detection task.



Intersection over Union (IoU)

Measure of the extent of overlap between two boxes. The greater is

the overlapping region and the larger is the IoU.

Figure 7.1: Intersection over Union computation

Component IoU

Evaluation of how much the class activation map focuses on the single

categories. First, the class activation map foreground area is divided

into connected components, which means groups of pixels connected

to each other. Then the IoU value is calculated between each ground

truth bounding box and the connected components that intersect it.

Finally, the average is taken.

This is done for each considered threshold on the class activation maps,

which is used to consider only CAMs with a value greater than the

threshold. It can be calculated also by considering the bounding boxes

derived from the predicted CAMs instead of the CAMs themselves, in

order to evaluate the final model performance.

Global IoU

Plot of the measurements of the IoU between the union of all the

bounding boxes in the image and the entire foreground area of the

class activation map given a threshold. This metric is calculated for all

threshold values and assesses how the class activation map focuses on

the whole waste region, favoring models that generate wider and more

connected areas rather than separated components. This is repeated

for every considered threshold. It can be calculated also by considering

the bounding boxes derived from the predicted CAMs instead of the

CAMs themselves, in order to evaluate the final model performance.
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Bounding Box Coverage

Plot of the number of bounding boxes that are covered by class acti-

vation maps. This metric alone is not enough to characterize the per-

formance because a trivial class activation map that covers the entire

image would have 100% coverage. However, coupled with the two pre-

vious metrics, it can give information about which model can generate

CAMs that can highlight a large fraction of objects belonging to the

considered categories. This is repeated for every considered threshold

and can be calculated also by considering the bounding boxes derived

from the predicted CAMs instead of the CAMs themselves, in order

to evaluate the final model performance.

Irrelevant Attention

Percentage of CAMs area outside any bounding box. When evaluating

the global IoU, a low value can occur for two reasons: the two areas

have a very small intersection, or the two areas overlap well but one is

much larger than the other. Thus, an analysis of how much the class

activation maps focus on irrelevant parts of the image helps to char-

acterize low global IoU values. This is repeated for every considered

threshold. It can be calculated also by considering the bounding boxes

derived from the predicted CAMs instead of the CAMs themselves, in

order to evaluate the final model performance.

7.2 Quantitative Analysis

In this section, a quantitative analysis of the results achieved within the

feasibility study of the weakly supervised object detection task is given. In

particular, the Component IoU, the Global IoU, the Bounding Box Coverage,

and the Irrelevant Attention metrics have been measured in three different

configurations:

• Measurement of the four metrics between the ground truth bounding

boxes and the class activation maps predicted by the model.

• Measurement of the four metrics between the ground truth segmenta-

tions and the class activation maps predicted by the model.

• Measurement of the four metrics between the bounding boxes of the

ground truth and the ones derived from the CAMs predicted by the

model.
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7.2.1 Ground Truth Bounding Boxes and CAMs

In the first measurements that have been performed, the four metrics pre-

viously exposed have been computed between the bounding boxes given by

the ground truth and the CAMs produced by the model. In particular,

thresholds are used in order to identify the foreground region of the class

activation maps to consider in the calculation.

Besides the estimate of the model performance, in this case, these four

metrics have been also computed in order to gather quantitative hints on

which threshold is most suited for the derivation of the bounding boxes from

the predicted CAMs. The same metrics have been in fact calculated for each

threshold in the [0, 1] range with a step of 0.05.

Figure 7.2 shows the obtained Component IoU.

Figure 7.2: Component IoU - GT Bounding Boxes and CAMs

For what regards the classes Scattered and General waste and Cisterns

and Pallets it is possible to notice a similar trend. Both reach high values

with thresholds in the range [0.1, 0.15], which means that the model is precise

at distinguishing the areas of the image that are occupied by the objects

of interest, from the regions where the considered categories are absent.

In fact, it is enough to use a low threshold value to obtain a very good

superimposition between what the model predicts and the ground truth.

Regarding the Caissons and Containers class, the model struggles a bit

more, but still reaches good values in the same threshold range. On one side

this is due to the fact that, while in the other two categories single objects

are small and in most of the cases organized in clusters, in the Caissons and
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Containers one the single objects are more distinguishable between each

other. Even if in many cases some caissons and containers are close between

each other, the model tends to identify them separately, with one bounding

box per single object. The ground truth, instead, in the majority of these

situations, encloses the entire group of caissons and/or containers within the

same rectangle. Of course, this causes a lowering of the intersection over

union metric, because ground truth bounding boxes are inevitably bigger

than the predicted ones. However, this can be considered as an advantage

because demonstrates another time how good are the features that the model

has learned, and allows it to also be more precise in the localization task. An

example of what has been said is reported in Figure 7.15 in the qualitative

analysis Section.

On the other side, this is mainly due to the fact that, as also happened

and outlined while solving the multilabel classification task, the model clas-

sifies some types of buildings as belonging to the Caissons and Containers

class. As it has been already demonstrated, however, in many cases it is

difficult even for the human eye to untangle this kind of situation (a clear

example has been made in Figure 6.13).

In the end, considering the three categories together, the model achieves

a maximum of 24.11% of Component IoU.

Figure 7.3, instead, shows the Global IoU, thus the IoU between the

union of all the bounding boxes in the image and the entire foreground area

of the class activation map given a threshold.

Figure 7.3: Global IoU - GT Bounding Boxes and CAMs
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Also in this case, which is an alternative way of measuring the inter-

section over union, is possible to notice the same trend that has been en-

countered previously, thus having a further confirmation of the fact that the

model reaches the best results on the first two classes of the dataset (Cis-

terns and Pallets and Scattered and General waste), achieving instead a bit

lower performance on the third one, but acting very well in the overall case.

Moreover, even in this case, a low threshold is enough to sharply divide the

positive regions from the negative ones, being again in the around of 20% of

intersection over union between the ground truth bounding boxes and the

predicted CAMs.

In order to go further in the current analysis, it is possible to look at

the Bounding Box Coverage and at the Irrelevant Attention measurements

shown respectively in Figures 7.4 and 7.5. These two metrics are in fact

an optimal way of getting a deeper understanding of the curves seen in the

previous graphs.

Figure 7.4: Bounding Box Coverage - GT Bounding Boxes and CAMs

The Bounding Box Coverage in fact helps in figuring out how good is

the model in covering the ground truth bounding boxes with the predicted

CAMs. The first thing that can be noticed is that the architecture works in

an almost equivalent way over all the three classes. The deviation between

the three curves is in fact really minimal. Additionally, the model retains a

good covering of the ground truth bounding boxes even when the threshold

gets at high values like 0.4. In fact, even in this case, the predicted CAMs

are able of intersecting on average 35% of the ground truth bounding boxes.
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Figure 7.5: Irrelevant Attention - GT Bounding Boxes and CAMs

The analysis on how much the class activation maps focus on irrelevant

parts of the image helps instead in characterizing low Global IoU values.

In particular, Irrelevant Attention corresponds to the percentage of CAM

area outside any bounding box. This metric revealed in fact really useful to

understand the reason why the models gain lower values over the Caissons

and Containers class. As it can be seen in Figure 7.5, the curve related

to the cited category is evidently detached from the others, always reaching

higher values. This, in practice, demonstrates what has been said previously

regarding the fact that the model tends sometimes to classify some types of

buildings as belonging to the Caissons and Containers class, thus including in

the CAM also regions that are totally outside of the ground truth bounding

boxes. So, when measuring the IoU, these regions contribute to lowering the

metric.

7.3 Ground Truth Segmentations and CAMs

In this section are shown the same four metrics that have been analyzed in

the previous one, but this time considering the ground truth segmentations

instead of the bounding boxes. A general observation that is worth doing

before showing any graph is that in this case, the performance is of course

lower than before. This is however expected since the segmentations cover a

very restricted area of the image, much smaller with respect to the bounding

boxes. The metrics calculation is instead very useful also in this case in order

to further investigate the performance and the behavior of the model.
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Regarding the Component IoU, shown in figure 7.6, the first thing that

can be noticed is that even in this case the model reaches its maximum

performance within the same range as before ([0.1, 0.15]). Here however

there is no longer the same detachment seen in the previous case. Taking into

account the scale used on the y-axis, curves are in fact really close between

each other. This demonstrates that even if the model tends to consider some

types of buildings as belonging to the Caissons and Containers class, in the

end, it correctly covers also the right objects in the same way it does with

the other two classes.

Figure 7.6: Component IoU - GT Segementations and CAMs

The theory is proved also in the Global IoU graph shown in Figure 7.7,

where the Caissons and Containers reach higher values with higher thresh-

olds. This in fact means that the model, even if it sometimes incorrectly

considers some object, gives higher values to the pixels of the image that

actually represent the objects of interest. Consequently, in order to get an

improved overlap between the ground truth segmentation and the class ac-

tivation map, higher thresholds are needed in order to filter out the wrong

regions and keep instead only the ones that are interesting for the prediction.
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Figure 7.7: Global IoU - GT Segmentations and CAMs

Regarding the Bounding Box Coverage and the Irrelevant Attention,

respectively shown in Figure 7.8 and 7.9, in this case, they show an equiva-

lent trend for all the three classes, thus further validating the fact that the

model acts in an equivalent way for all the three classes in terms of actually

recognizing the pixels of the image occupied by the objects of interest.

Figure 7.8: Bounding Box Coverage - GT Segmentations and CAMs
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Figure 7.9: Irrelevant Attention - GT Segmentations and CAMs

7.3.1 Ground Truth Bounding Boxes and Predicted Bound-

ing Boxes

The last quantitative measurements are meant for assessing the actual good-

ness of the model in producing CAMs that correctly localize the discrimi-

native regions of an image. The same four metrics have been exploited to

accomplish this evaluation because they demonstrated to be able to give a

complete and in-depth quantitative understanding of the model behavior.

Figure 7.10 shows the Component IoU.

Figure 7.10: Component IoU - GT Bounding Boxes and predicted Bounding Boxes
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With respect to the values obtained in the first case, in which CAMs were

considered instead of the derived bounding boxes, it is possible to notice that

the interval in which the curves reach their maximum value has shifted a

bit towards higher threshold values. This mainly because bounding boxes

cover a larger area with respect to the corresponding class activation maps

and so higher thresholds are needed in order to reduce the regions that fall

outside the ground truth bounding boxes.

The second observation that can be made regards the fact that, while

the curves corresponding to Cisterns and Pallets class and to Scattered and

General waste class get in general lower values than in the first measure-

ments, the curve corresponding to the Caissons and Containers category

grows. This enforces what has been said in Section 7.2.1 regarding the fact

that the model tends to identify caissons and containers singularly, even if

they are close between each other, while the ground truth encloses objects

belonging to this class in the same bounding box when they are close. Since

the derived bounding boxes enlarge the considered area, the overlap with

the ground truth bounding boxes improves, and thus the metric grows.

Regarding the overall performance, the curve still stays in the around of

24%. To be precise it arrives at a maximum of 23.56% with a threshold of

0.2.

Figure 7.11: Global IoU - GT Bounding Boxes and predicted Bounding Boxes

Figure 7.11 shows the Global IoU. The shift of the peak values towards

the left can be seen also here, confirming the fact that higher thresholds are

needed to reduce the additional area considered by the derived bounding

boxes and that falls outside the ground truth bounding boxes. Differently
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than before, in this case, all the three curves related to the single categories

grow. This however is due to the fact that the specific metric, as previously

said, favors wider and more connected bounding boxes.

For what regards the Bounding Box Coverage, shown in Figure 7.12, as

in the previous two cases it is possible to notice that the model behaves

similarly for all the three categories. It is worth outlining that also here the

curves are slightly higher than the ones obtained with the class activation

maps. This because the bounding boxes cover a larger area with respect to

CAMs.

Figure 7.12: Bounding Box Coverage - GT Bounding Boxes and predicted Bounding

Boxes

The same behavior has been encountered in the calculation of the Irrel-

evant Attention, shown in Figure 7.13, where curves slightly grow for the

same reason explained before. Moreover, analogously to the first situation,

thus the one in which class activation maps have been evaluated against

ground truth bounding boxes, the curve referred to the Caissons and Con-

tainers class is higher than the other two (and of course of the overall one).

The explanation is even in this case related to the fact that the model,

in some more complicated situations, positively classifies some objects that

have a shape similar to the caissons and containers one, thus increasing the

CAMs area that falls outside the ground truth bounding boxes.

96



Figure 7.13: Irrelevant Attention - GT Bounding Boxes and predicted Bounding Boxes

In conclusion, according to what has been seen in the entire quantitative

analysis, it seems that the best threshold to be used is to be chosen within

the interval [0.20, 0.25].

7.4 Qualitative Analysis

This section gives a qualitative evaluation of the results that have been

achieved within the feasibility study of the weakly supervised object detec-

tion task. In particular, some examples are shown, that clearly display how

the model is able to retain a remarkable localization ability with respect to

the objects belonging to the three considered classes. All the images that

are shown in this Section follow a specific color code in terms of bounding

boxes:

• Red bounding boxes enclose Cisterns and Pallets class.

• Green bounding boxes enclose Scattered and General waste class.

• Blue bounding boxes enclose Caissons and Containers class.

Regarding the threshold value, the interval obtained during the quantita-

tive analysis has been tested. Even if those values already give good visual

results, a threshold of 0.4 has been adopted, which helped in producing

cleaner images, still maintaining good localization capabilities.

In general, from what has been seen, the model acts very well, being

able to get very close to the ground truth in many cases. Sometimes it is
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even difficult to distinguish between the bounding boxes derived from the

prediction and those given by the ground truth. An example is given in

Figure 7.14, where the model succeeds in correctly localizing most of the

objects of interest. Here in fact two classes have been detected: Cisterns

and Pallets and Scattered and General waste. Looking at the prediction

(on the left) it is possible to see that for the second category, two out of

two groups of waste have been correctly detected and localized. Regarding

the first category, two out of three groups of pallets have been individuated.

Carefully looking at the image it is possible to notice that even the third

one has been detected, however, evidently, the predicted CAM scores are

too low to generate a reasonable rectangle enclosing it.

Figure 7.14: CAMs qualitative analysis for Weakly Supervised Object Detection - First

example (On the left the derived prediction and on the right the ground truth)

Another good example is given in Figure 7.15, where, again, most of the

objects outlined by the ground truth have been correctly predicted. In par-

ticular, here there is a bit more difference between the ground truth and the

prediction. As previously outlined in the quantitative analysis section, in

fact, the model tends to classify containers singularly, or in smaller groups,

while in the ground truth sets of caissons and/or containers that are close

between each other are enclosed all in the same bounding box. Labeling

them singularly, however, would require an even larger amount of time for

the dataset creation, resulting in the further increase of costs. On the other

side, this is a clear example that gives unequivocal evidence of how much

this difference in behavior can affect the Intersection over Union calculation.
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The explanation is related to the fact that performing object detection with-

out looking at the ground truth bounding boxes does not allow the model

to know the interpretation that the ground truth gives, thus, even if the

prediction is equivalently correct, the metrics get lower. For this reason, it

is very important to accompany the quantitative analysis with a qualitative

investigation of the obtained results.

Figure 7.15: CAMs qualitative analysis for Weakly Supervised Object Detection - Sec-

ond example (On the left the derived prediction and on the right the ground truth)

Just looking at these first two examples (Figures 7.14 and 7.15), it is pos-

sible to notice that in general, the model tends to generate smaller bounding

boxes with respect to the ones defined in the ground truth. This is mainly

due to the choice of the threshold, that filters out lower values, however,

it does not constitute a problem at all, since the main goal of finding the

objects of interest is reached. In some cases it can also result to be an advan-

tage because it allows more precise localization of the categories, not risking

to include objects that have nothing to do with the category in question

only because of a bad disposition that requires a larger bounding box.

A further demonstration of the model robustness is given in Figure 7.16,

where there is a bit more confusion between objects and categories. The

model, in fact, seems to not have too many problems in correctly finding

most of the critical areas. Also in this case it is possible to notice some

slight difference in the interpretation of the model with respect to the one

used in the ground truth in terms of how to surround the critical objects.
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Figure 7.16: CAMs qualitative analysis for Weakly Supervised Object Detection - Third

example (On the left the derived prediction and on the right the ground truth)

As it has been already observed in previous investigations, also during

the qualitative analysis it has been noticed a bit more of struggle in dis-

tinguishing objects actually belonging to the class Caissons and Containers

and objects that have only a shape similar to them. An example is shown

in Figure 7.17.

Figure 7.17: CAMs qualitative analysis for Weakly Supervised Object Detection - Fourth

example (On the left the derived prediction and on the right the ground truth)
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Here there is only one real caisson, but beyond that also other areas have

been enclosed with blue boxes. As already happened in previous examples,

also here the human eye would have struggled a bit in telling whether some

of them (apart from the ones that clearly enclose cars) belong or not to the

Caissons and Containers class.
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Chapter 8

Conclusions and Future

Work

The goal of this research was twofold:

• Image classification based on the distinction of suspicious objects that

usually constitute Illegal Landfills.

• Evaluation of the potential of the discriminative regions for waste lo-

calization.

To be more specific, the first task that has been solved is called multilabel

classification, while the second one consists of the feasibility study of the

weakly supervised object detection through the analysis of the class activa-

tion maps produced by the model.

First of all, the state of the art regarding the application of automatic

and semi-automatic methods to the identification of ILs was presented, un-

derlining that the final objective of the current research still lies in the com-

plete automation of these processes. As it has been widely explained, Deep

Learning techniques represent the most promising area, achieving always

increasing results in the world of Artificial Intelligence applied to images, in

particular with the usage of Convolutional Neural Networks (CNNs). Re-

mote sensing images however often represented the Achilles tendon of these

types of algorithms due to the numerous factors that contribute to the com-

plexity of the task.

In this work are studied the performances that state-of-the-art techniques

can achieve in the particular field of remote sensing images, with a focus on

the multilabel classification task, also studying how promising is the weakly

supervised approach for objects localization purposes. This study is part of a

project promoted by the ARPA of the Lombardy Region for the monitoring



of ILs in the regional territory, which uses ResNet50 as the CNN to perform

this task. The proposed solution extends the monitoring capability of the

system by applying the same architecture in the concurrent classification of

multiple categories and exploiting the goodness of the features learned by

the model to also localize the critical objects.

The images composing the dataset used for training, validation and test-

ing were provided by experts, and have been taken from the areas included in

the provincial territories of Brescia, Pavia and Lodi. Two data sources have

been used, Mapbox and Orthophoto, which mostly differ in the higher reso-

lution of the images coming from the second one with respect to the first one.

Also, the data augmentation technique called RandAugment demonstrated

to give a significant contribution to the improvement of the generalization

power of the model, mostly accounting for the high interclass similarity and

intraclass variability.

Initially 12 classes have been considered, however, for half of them it has

been not possible to find a number of samples that allowed their inclusion

in the study. Also, among the remaining categories, it has been proved the

presence of such a marked similarity between pairs of classes that has made

it meaningless to keep them separate. In the end, three classes have been

considered in the study: Cisterns and Pallets, Scattered and General waste,

and Caissons and Containers.

The analysis process started with the multilabel classification task, as-

sessing various configurations in terms of balancing of the categories, image

size, and amount of data augmentation.

Given the higher frequency in the presence of certain classes and given

the importance of a good balancing among them, the dataset has been pop-

ulated maintaining the number of images per each positive class as equal as

possible. In this sense, in order to exploit all the available data, it has also

been tried to use oversampling for the classes with a lower number of samples

with respect to the others. However this introduced overfitting, and thus

the opposite direction has been traveled, undersampling the classes with too

many images.

For what regards the image size, it has been found that the best trade-off

is achieved considering 700 × 700 images, which are neither too large, thus

not showing objects that are too little to be recognized, nor too small, thus

allowing a good generalization power.

Different experiments have been performed also to understand the opti-

mal amount of data augmentation. It has been found that applying Ran-

dAugment five times makes the model increase its performances without

incurring into overfitting.
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Once the multilabel classification task has been completed, the obtained

results have demonstrated that the model learned very good features, being

able to recognize the objects of interest even in the worst quality images.

Moreover, due to the usage of Global Average Pooling at the end of the

network, the model demonstrated to retain a remarkable localization abil-

ity until the final layer, thus allowing to identify the discriminative image

regions leading to a prediction. This made possible the exploitation of the

produced class activation maps to also assess the feasibility of the weakly

supervised object detection task, thus without training the model on the

ground truth bounding boxes, but only utilizing the features learned within

the classification task.

In the end, the proposed solution allowed to reach an F1 score of 81% on

average within the multilabel task, also keeping the values related to the Pre-

cision and Recall really balanced, and a maximum Component Intersection

over Union of 23.55% within the CAMs analysis for the weakly supervised

object detection task. These results, together with the qualitative analysis

performed, demonstrate the feasibility of automating the monitoring pro-

cess for illegal landfills, showing that the combination of remote sensing

images with Deep Learning techniques brings the achievement of this goal

very close.

8.1 Future Work

In addition to a progressive improvement of the DL architectures in general,

advances in the results illustrated in this research can be obtained in these

specific areas:

Expansion of the categories list

As demonstrated during the study, this field is rich in categories that

can be considered and distinguished among wastes, thus, when hav-

ing enough data it is possible to experiment with a larger number of

classes, also considering the ones that have been left away, such as

tires and plastic bags, that are still very dangerous in terms of the

environment.

Expansion of the hyperparameters fine-tuning

In this study it has been tried to use the best set of parameters,

however, many improvements can be still done in this direction. For

example, gradient accumulation techniques could be applied in order

to increase the maximum batch size (BS).

105



Fine-grained classification

This field is highly affected by interclass similarity, and this has

brought to the merging of pairs of categories that demonstrated to

be nearly indistinguishable in many cases. Fine-grained classification

is a sub-field of object recognition that aims at distinguishing subor-

dinate categories within entry-level categories, and thus could be used

to try to increase the performance of the model without merging the

categories.

Semi-supervised learning dataset expansion

Given the good quality of the features that have been learned by the

model and the increasing relevance that the field of semi-supervised

learning is assuming, it would be for sure an interesting approach

applying an iterative procedure consisting of executing the model on

unseen and unlabeled images, to be then used to integrate and enlarge

the dataset at each iteration. The combination of soft and hard labels

can be in fact exploited to account for potentially wrong labels in the

training set, giving the model the possibility to always add something

more to learn at each iteration of the process.

Super Resolution

Super Resolution is the process of upscaling and/or improving the

details within an image. Often a low-resolution image is taken as an

input and the same image is scaled to a higher resolution. Details

in the high-resolution output are filled in where they are essentially

unknown.

Having seen that the model is more inclined to predict positively on

Mapbox images because of the lower resolution, Super Resolution tech-

niques could be adopted to make the model predictions more homo-

geneous.
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Appendix A

Low Occurring Classes

It has been deeply analyzed the possibility of taking into consideration also

the categories that have a very low number of samples in the dataset:

• Hay bales

• Tubes

• Wood

• Tires

• Grouped cars

• Plastic bags

The aim is that of finding enough samples to allow the model to learn

good features also for them. In particular, in Table A.1 is shown the initial

situation of the dataset. As it is possible to see, the last six categories have

a very low number of samples with respect to the first 3 and considering

that it is also very important the balance between categories in a dataset

(it directly affects the performance of the model), ideally, it is necessary to

have a number of samples that is as near as possible to the numbers of the

first 6 categories.
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Ortophoto Mapbox Total

Cisterns 246 241 487

Scattered waste 1179 1061 2240

Pallets 457 503 960

Caissons 555 502 1057

General waste 623 750 1373

Containers 140 127 267

Hay bales 3 152 155

Tubes 8 93 101

Wood 0 113 113

Tires 0 27 27

Grouped cars 0 20 20

Plastic bags 0 47 47

Table A.1: Initial dataset table

In this Appendix, the Tires category will be taken under consideration

as an example. The metrics that have been obtained for this category before

performing the following study are shown in Table A.2.

Average Precision Precision Recall F1-score

1.00 0.67 1.00 0.80

Table A.2: Initial model performance on the Tires class - Test set

To improve the model performance four main paths have been explored:

• Look at all the available images still unlabeled and manually label

them in case the 6 categories of interest appear.

• Look for coordinates of places where those categories might appear in

Google Maps.

• Train a binary classification model for each of the 6 categories and

execute it on new territory.

• Try a particular data augmentation technique.
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A.1 Look at all the available images still unlabeled

and manually label them in case the 6 cate-

gories of interest appear

It has been used the tagger tool in order to analyze 7 campaigns. Table A.3

shows the number of unlabelled images that have been checked to find other

examples of the low occurring categories.

Images per campaign

Pavia Ortophoto 636

Lodi Ortophoto 122

Brescia Ortophoto 156

Piemonte Mapbox 806

Pavia Mapbox 636

Lodi Mapbox 122

Campania Mapbox 244

Total 2722

Table A.3: Total number of unlabeled images that have been checked

The results of this analysis, and so the number of samples per category

that have been found, are shown in Table A.4.

New images per category Frequency

Hay bales 29 1.06%

Tubes 3 0.11%

Wood 7 0.26%

Tires 25 0.92%

Grouped cars 3 0.11%

Plastic bags 7 0.26%

Table A.4: Total number of added samples per category

As it can be seen from the numbers obtained, the frequency of the con-

sidered categories is very low with respect to the total number of images
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seen. It is thus evident that even having twice as many images as those

considered, the number of obtained samples would be not sufficient for even

having acceptable results in terms of performance. Another consideration

is that having seen such a large portion of the Lombardy region without

finding an even slightly significant number of samples of these categories

could mean that the disposal of these types of wastes is not a very diffused

problem until now.

As an example, in Table A.5 are shown the metrics that have been ob-

tained on the Tires category after having added the new images (in the next

Section the same model will be run on an unseen territory showing that

these high metrics are due to complete overfitting of the dataset).

Average Precision Precision Recall F1-score

1.00 1.00 1.00 1.00

Table A.5: Model performance on the Tires class after first experiment - Test set

A.2 Look for coordinates of places where those

categories could appear in Google Maps

The procedure has been that of looking in Google Maps for places where it’s

likely that those categories appear, such as, for example, for Tires, it has

been looked for tire dealers.

Even in this case the results have been really poor: looking in three

different regions (Lombardy, Piedmont, and Campania) an average of only

20 pairs of coordinates have been found for each category. In most of the

cases, however, considering the corresponding images from Mapbox and Or-

thophoto, most of them did not show the same content seen in Google Maps,

thus further reducing the number of additional samples available for each

category to about 4 on the initial 20. Thus, also in this case, there is a really

low number of these sites and also not all of them contain what is needed.

An example for the category Tires is shown in image A.1.
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Figure A.1: Images from Google Maps example - Google image on the left, Orthophoto

image in the middle and Mapbox image on the right

In conclusion, also this path revealed not to be a good way to find the

needed number of samples.

A.3 Train a binary classification model for each

of the 6 categories and execute it on a new

territory

In this experiment, 6 different binary classification models have been trained,

one for each category of interest. Each dataset was composed of all the avail-

able images in the respective category and the number of negatives doubled

with respect to the number of positives. Once trained, the models have been

run on new territory in order to see if it was possible to automatically detect

new samples.

Also here however results were really bad since most of the models pre-

dicted all the new images as positives. In all the cases the obtained results

were of no sense at all, thus further demonstrating the problem of having so

few images even in a simpler task like binary classification. In conclusion,

even this path has been discarded. As an example, running the binary clas-

sification model for the Tires category, the results shown in Table A.6 have

been obtained.
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Total images 7843

Images with prediction over 0.9 964

Images with prediction in range (0.8, 0.9] 1445

Images with prediction in range (0.7, 0.8] 5401

Images with prediction in range (0.3, 0.7] 33

Images with prediction in range (0.2, 0.3] 0

Images with prediction in range [0.1, 0.2] 0

Images with prediction under 0.1 1 0

Table A.6: Number of predictions per interval

The metrics are the same as in Table A.5, since the same model has been

used. Figure A.2 shows some examples of positively predicted images.

Figure A.2: Examples of positively predicted images

A.4 Try a particular data augmentation technique

In order to leave no stone unturned, a particular augmentation technique

has also experimented that consists of cropping the objects of the considered

categories from the available images and pasting them on other images,

paying attention to not superpose them on other annotations. This allows

a sort of data augmentation giving a wider variability in terms of context,
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which might help the model to see more varying images and so to learn

better features.

Figure A.3 shows an example of an image created through this technique

for the Tires class.

Figure A.3: Example of augmented Tire image

In Table A.7 is shown the number of samples that have been added using

this technique.

New images per category Total images

Hay bales 136 291

Tubes 143 244

Wood 189 302

Tires 158 185

Grouped cars 164 184

Plastic bags 164 211

Table A.7: Total number of added samples per category with the particular augmenta-

tion technique



122 Appendix A. Low Occurring Classes

The datasets have been built by using all the available images for each

of the six categories and adding a number of negative samples doubled with

respect to the number of positive ones. After having created again 6 differ-

ent datasets for performing binary classification on the single categories and

after having trained the model on them, the results demonstrated the poor

validity, in the case under analysis, of this technique. The model in fact

completely overfits the dataset, not being able at all to predict new terri-

tories. As already happened in the previous experiment, images are always

predicted as positives, thus making the model completely useless.

In order to give a more concrete example, Table A.8 shows the numbers

obtained running the Tires model on new territory.

Total images 1507

Images with prediction over 0.9 1494

Images with prediction in range (0.8, 0.9] 8

Images with prediction in range (0.7, 0.8] 1

Images with prediction in range (0.3, 0.7] 2

Images with prediction in range (0.2, 0.3] 1

Images with prediction in range [0.1, 0.2] 1

Images with prediction under 0.1 0 0

Table A.8: Number of predictions per interval with the particular augmentation tech-

nique

The metrics obtained are shown in Table A.9.

Average Precision Precision Recall F1-score

1.00 1.00 1.00 1.00

Table A.9: Model performance on the Tires class after experiment with the particular

augmentation technique - Test set

Figure A.4 shows some examples of images predicted as positives with

the respective CAMs, demonstrating that the model is learning nothing

good.
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Figure A.4: Examples of positively predicted images with the particular augmentation

technique

A.5 Conclusions

After having performed a very deep analysis, trying every possible path

and tool available and without achieving any good result that would give

a minimum of hope, it is necessary to conclude that for the moment it is

not possible and not feasible to consider the categories mentioned at the

beginning of the Appendix (Hay bales, Tubes, Wood, Tires, Grouped cars,

Plastic bags) for the Illegal Landfills multilabel classification task.
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Appendix B

Similarity of Classes

During the evolution of the study, it has been found that some of the con-

sidered classes are very similar to each other. The categories in question

are:

• Cisterns and Pallets

• Scattered and General waste

• Caissons and Containers

This has been demonstrated quantitatively by performing eight specific

experiments, merging with different configurations the pairs of classes:

• No merges and General waste category removed

• Only Cisterns and Pallets merged

• Only Scattered waste and General waste merged

• Only Caissons and Containers merged

• Cisterns - Pallets, Scattered waste - General waste merged

• Cisterns - Pallets, Caissons - Containers merged

• Scattered waste - General waste, Caissons - Containers merged

• Cisterns - Pallets, Scattered waste - General waste, Caissons - Con-

tainers merged

In the following experiments, the obtained results will be always com-

pared with the ones obtained without making any modification of the ones

listed above, thus just considering the six separated categories. Table B.1

shows the metrics obtained on the test set in the case described.
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Test Set

Accuracy Precision Recall F1-score

Cisterns 0.89 0.53 0.28 0.36

Scattered waste 0.80 0.62 0.48 0.54

Pallets 0.82 0.70 0.28 0.40

Caissons 0.79 0.60 0.54 0.57

General waste 0.81 0.60 0.61 0.60

Containers 0.94 0.67 0.17 0.27

Table B.1: Metrics of the comparative model

B.1 No merges and General waste category re-

moved

Since the category General waste includes many different types of objects,

the first investigation has been that of understanding if considering this

category could bring much confusion to the model. So, the experiment

carried out is that of maintaining the same configuration used in Table B.1,

but removing the General waste category. The obtained results on the test

set are shown in Table B.2.

Test Set

Accuracy Precision Recall F1-score

Cisterns 0.87 0.47 0.43 0.45

Scattered waste 0.83 0.67 0.50 0.57

Pallets 0.85 0.63 0.66 0.65

Caissons 0.82 0.61 0.54 0.57

Containers 0.95 0.58 0.41 0.48

Table B.2: No merges and General waste category removed

Comparing Table B.1 and B.2, it is not possible to see a significant

improvement, either in terms of single metrics nor in terms of balancement

between Precision and Recall.
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B.2 Single pairs of categories merged

In the second, third, and fourth experiments, a single pair of categories has

been merged at a time, with the aim of understanding whether there is a

pair that is responsible for most of the confusion introduced.

The results on the test sets are respectively shown in Tables B.3, B.4,

B.5.

Test Set

Accuracy Precision Recall F1-score

Cisterns and Pallets 0.87 0.75 0.67 0.71

Scattered waste 0.84 0.72 0.70 0.71

Caissons 0.82 0.58 0.62 0.60

General waste 0.80 0.66 0.38 0.48

Containers 0.96 0.78 0.28 0.41

Table B.3: Single pairs of categories merged - Cisterns and Pallets

Test Set

Accuracy Precision Recall F1-score

Cisterns 0.87 0.45 0.49 0.47

Scattered and General waste 0.87 0.74 0.78 0.76

Pallets 0.84 0.59 0.74 0.66

Caissons 0.83 0.58 0.59 0.59

Containers 0.96 0.67 0.43 0.52

Table B.4: Single pairs of categories merged - Scattered waste and General waste
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Test Set

Accuracy Precision Recall F1-score

Cisterns 0.90 0.42 0.23 0.30

Scattered waste 0.83 0.77 0.44 0.56

Pallets 0.84 0.61 0.58 0.59

Caissons and Containers 0.82 0.61 0.67 0.64

General waste 0.80 0.59 0.58 0.59

Table B.5: Single pairs of categories merged - Caissons and Containers

Looking at the results, it is possible to state that there is not a pair of

categories that, with the merging, predominantly improves the performance

of the model. In fact, it seems that the most significant improvement is in

the merged categories, while for what regards the others, they tend to have

metrics really close to the ones achieved in the experiment without merges.

B.3 Two pairs of categories merged

In the fifth, sixth, and seventh experiments, a combination of two pairs of

categories have been merged at a time.

The results on the test sets are respectively shown in Tables B.6, B.7,

B.8.

Test Set

Accuracy Precision Recall F1-score

Cisterns and Pallets 0.85 0.82 0.65 0.73

Scattered and General waste 0.84 0.78 0.73 0.75

Caissons 0.84 0.65 0.88 0.75

Containers 0.95 0.60 0.25 0.35

Table B.6: Two pairs of categories merged - Cisterns - Pallets and Scattered waste -

General waste
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Test Set

Accuracy Precision Recall F1-score

Cisterns and Pallets 0.84 0.74 0.64 0.68

Scattered waste 0.82 0.67 0.55 0.60

Caissons and Containers 0.85 0.65 0.75 0.69

General waste 0.82 0.62 0.58 0.60

Table B.7: Two pairs of categories merged - Cisterns - Pallets and Caissons - Containers

Test Set

Accuracy Precision Recall F1-score

Cisterns 0.91 0.53 0.41 0.46

Scattered and General waste 0.84 0.70 0.81 0.75

Pallets 0.86 0.69 0.79 0.74

Caissons and Containers 0.85 0.83 0.64 0.72

Table B.8: Two pairs of categories merged - Scattered waste - General waste and

Caissons - Containers

Also in this case the results demonstrate that only the categories that

have been merged have a significant improvement, while the other ones main-

tain similar metrics as in experiments where categories have been merged.

This confirms the fact that all three pairs of categories have an equivalent

influence on the model performance and that each pair introduce confusion

independently with respect to the others.

B.4 All the pairs merged

The last experiment has been that of merging all three pairs of categories.

Here, as expected, the most significant results have been obtained, achiev-

ing metrics that are both high and balanced between each other. Results

obtained on the test set are reported in Table B.9.
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Test Set

Accuracy Precision Recall F1-score

Cisterns and Pallets 0.88 0.82 0.78 0.80

Scattered and General waste 0.88 0.77 0.91 0.83

Caissons and Containers 0.88 0.75 0.83 0.79

Micro Average 0.88 0.78 0.84 0.81

Table B.9: All the pairs merged

After having seen the results, and considering also the qualitative anal-

ysis made on examples of images, which has shown the high difficulty that

also the human eye makes to distinguish between categories belonging to the

same pair, this configuration has been adopted. The decision is also justified

by the fact that, in most of the cases, if a category is predicted, also the

corresponding one belonging to the same pair tends to be predicted, thus

making the choice of keeping them separated of no sense.

In order to provide a concrete demonstration of what has been said, Table

B.10 displays the co-occurrence matrix, that shows the frequency with which

categories are predicted together.

Cisterns Scattered waste Pallets Caissons General waste Containers Support

Cisterns 100% 45% 41% 36% 40% 10% 375

Scattered waste 19% 100% 41% 57% 44% 10% 866

Pallets 21% 49% 100% 40% 40% 9% 724

Caissons 16% 58% 34% 100% 40% 11% 859

General waste 17% 44% 34% 40% 100% 11% 859

Containers 18% 41% 29% 43% 44% 100% 219

Table B.10: Co-occurrence matrix

As it can be seen in the reported co-occurrence matrix, where each row

defines the category under consideration, while columns define the frequency

with which the other categories appear together with the one considered, in

most of the cases the similar categories are both present in the same image.

In particular, apart from Containers and Cisterns that have a low number

of samples with respect to other categories (as it can be noticed from the

support column), and thus a lower co-occurrence frequency in each case,

nearly half of the times, if a category is present, also the similar one appears.
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In order to also give an overall vision of the confusion introduced keeping

the categories separated, a variant of the confusion matrix is shown in Table

B.11. This variant focuses on false positives predictions, telling which are

the categories that are actually present in the image when the one under

consideration is predicted as false positive.

Cisterns Scattered waste Pallets Caissons General waste Containers Support

Cisterns 0% 9% 30% 16% 17% 13% 375

Scattered waste 52% 0% 61% 50% 63% 33% 866

Pallets 54% 41% 0% 47% 51% 33% 724

Caissons 48% 45% 59% 0% 59% 47% 859

General waste 50% 59% 54% 56% 0% 47% 859

Containers 9% 11% 8% 11% 8% 0% 219

Negatives 1% 0% 0% 0% 0% 7% 219

Table B.11: Variant of confusion matrix

Here it is also more clear that when a category is predicted as false

positive (row), in most of the cases there is its similar category in the image

(column). As an example, from the table is clearly visible the difficulty that

the model does in distinguishing Scattered and General waste. Looking at

the second row in fact, when the category Scattered waste is predicted, in

63% of the cases the category General waste is actually present in the image.
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