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Abstract

The research and development of Vertical Take-Off and Landing (VTOL) tran-
sition Unmanned Aerial Vehicle (UAV) configurations is one of the latest target
in the aeronautical field. Aircrafts which vertically take-off and land or hover at
a desired altitude and which perform a "wingborne flight" can unify the advan-
tages of the multirotor configuration and the fixed wing one, e.g. no need of a
long runway and efficiency during a flight at high speed and with long duration.
Aeronautical engineers have to deal with the trajectory generation and control in
the development of UAV to enable a complete autonomous flight. An approach
based on flatness, which is a property of some non-linear system, can simplify the
problem since the existence of flat outputs gives the possibility to write all the
states and control inputs using only algebraic relationships. The aim of the thesis
is to build an off-line trajectory generation algorithm based on flatness theory for
the position loop of a VTOL transition aircraft. Normally, the two flight phases
of this kind of aircraft need different trajectory generators and controllers while
the definition of the same flat outputs for both phases allow to generate physically
feasible trajectories with one unified algorithm. Four flight plans are defined to
verify whether the implemented flatness-based trajectory generator fulfill all the
requirements. Finally, the control problem, which is analyzed only considering the
wingborne phase, is introduced in order to demonstrate the advantages that the
built trajectory generator brings to the control scheme in terms of feedforward.
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Sommario

La ricerca e lo sviluppo di velivoli a pilotaggio remoto con configurazione a decollo
e atterraggio verticale e transizione è uno degli ultimi obiettivi nel campo aero-
nautico. Velivoli che decollano e atterrano verticalmente o volano a punto fisso ad
una quota desiderata e che completano un volo ad alta velocità possono unificare
i vantaggi della configurazione multirotore e di quella ad ala fissa, per esempio
l’eliminazione della necessità di piste di decollo e atterraggio lunghe e l’efficienza
durante un volo ad alta velocità e lunga durata. Gli ingegneri aeronautici de-
vono occuparsi della generazione e del controllo della traiettoria nello sviluppo di
un velivolo a pilotaggio remoto al fine di permettere un volo completamente au-
tonomo. Un approccio basato sulla flatness, che è una proprietà di alcuni sistemi
non lineari, può semplificare il problema dal momento che l’esistenza dei flat out-
puts fornisce la possibilità di scrivere tutti gli stati e gli input di controllo usando
soltanto relazioni algebriche. Lo scopo di questa tesi è di costruire un algoritmo
di generazione di traiettoria off-line basato sulla flatness per l’anello di posizione
di un velivolo a decollo e atterraggio verticale con transizione. Normalmente, le
due fasi di volo di questo tipo di velivolo necessitano di generatori e controllori di
traiettoria diversi mentre la definizione dei medesimi flat outputs per entrambe
le fasi di volo permette di generare delle traiettorie fisicamente fattibili con un
unico algoritmo. Vengono definiti quattro piani di volo al fine di verificare se il
generatore di traiettoria basato sulla flatness soddisfa tutti i requisiti prestabiliti.
Infine, il problema del controllo, che è analizzato considerando solo la fase di volo
ad alta velocità, viene introdotto per dimostrare i vantaggi che il generatore di
traiettoria, implementato in questa tesi, fornisce all’intero schema di controllo, in
particolare in termini di controllo in anello aperto.
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Chapter 1

Introduction

The combination of the multirotors and the fixed wing configurations is the latest
target of the research and development in UAV field. The classical multicopters
are not the best solution for many applications, such as the inspection of linear
infrastructures (highways, railways, pipelines, etc...) and the deliveries, because
of their physical and technological constraints. An aircraft characterized by the
possibility to vertically take-off and land or hover at a desired altitude and also
to have a "wingborne flight" can unify the advantages of the two configurations,
in particular:

• no need of a long runway;

• the efficiency during a flight at high speed and with long duration.

In the history of aeronautics, these ideas have been already followed in the devel-
opment of manned aircraft and not only UAVs. For example, the first generation
of Harrier, realized by the British manufacturing company Hawker Siddeley and
reported in Fig. 1.1, is the first truly successful aircraft capable of Vertical/Short
Take-Off and Landing (V/STOL) which used vectored thrust provided by a tur-
bofan with rotating nozzle.

Figure 1.1: Hawker Siddeley Harrier GR1. Photo by [36]

1



2 Chapter 1. Introduction

The AgustaWestland AW609 and Bell Boeing V-22 Osprey, represented in
Fig. 1.2a and Fig. 1.2b respectively, are two examples which achieve the transition
between the hover flight and the forward one using tilt-rotors.

(a) AgustaWestland AW609. Photo by [37] (b) Bell Boeing V-22 Osprey. Photo by [38]

Figure 1.2: Tilt-rotor aircrafts

In general, there are different technical solutions to accomplish the transition
task:

• in the engine with rotating nozzle, the thrust can be directed;

• in the tilt-rotor, only the propeller-engine turns;

• in the tilt-wing, the propeller-engine and the wing turn together.
It is worth to notice that more complicated configurations, which mix the pre-
viously mentioned concepts to the standard multirotor and fixed wing, can be
developed.

The Flight System Dynamics (FSD) institute of Technical University of Mu-
nich (TUM), where the thesis work was carried out, is doing research about these
topics; in particular, the aircraft considered during the thesis is an electric Vertical
Take-Off and Landing (eVTOL) transition aircraft, whose simple scheme is shown
in Fig. 1.3.

ω1 ω2

ω4

ω3

δ1 δ2

η

Figure 1.3: Scheme of the FSD VTOL transition configuration



1.1. Aim of the thesis 3

It is characterized by four propellers where two of them, called main propellers,
are fixed on the fuselage and the other two are tilt-rotors fixed on two moving
aerodynamic surfaces, named as tilt servos. All the control effectors are listed in
Table 1.1.

Control effectors Activation
Wingborne Hover

η Elevator deflection X
δ1 Deflection tilt servo left X X
δ2 Deflection tilt servo right X X
ω1 Rotational rate tilt propeller left X X
ω2 Rotational rate tilt propeller right X X
ω3 Rotational rate main propeller front X
ω4 Rotational rate main propeller rear X

Table 1.1: Control effectors

The names wingborne and hover are used to define the two different flight
phases of a VTOL transition aircraft, namely the forward flight and the hover one
respectively.

The control problem of this kind of aircraft is challenging due to the presence of
the two phases and the transition between them. It is usually treated considering
different controllers for wingborne and hover.

The thesis work is inserted in the already started project of the FSD institute
regarding a unified control strategy based on an Incremental Nonlinear Dynamic
Inversion (INDI).

1.1 Aim of the thesis
The aim of the thesis is to build an off-line trajectory generation algorithm based
on the flatness theory for VTOL transition aircrafts.

The idea consists in generating physically feasible trajectories for the position
loop of the hover flight phase and the wingborne flight phase with one unified
algorithm which provides the entire flight path before the flight starts. In partic-
ular, the trajectory generation module shall have kinematic speed and waypoint
list (with all related properties) as inputs. The trajectory generation module must
produce outputs which can be followed by the controller in all flight phases.

The approach based on flatness, which is a property of some non-linear system,
allows to build a trajectory generator which provides only the flat outputs. If it
is possible to find the same flat outputs for both phases of VTOL transition
aircraft, an unique algorithm can generate trajectories for any kind of maneuver.
In addition, the study of all the available types of trajectories is fundamental in
the construction of the algorithm so that the trajectory generator can fulfill all
the requirements. Specifically, the flight path has to be 3D and continuous in
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position, speed and acceleration; moreover, the absolute value of speed must be
constant and equal to 25 m/s during the wingborne phase. Finally, the maximum
value of the track rate χ̇ and the tangential acceleration acctang must be lower or
equal to 10 deg/s and 2 m/s2 respectively.

The advantage of flatness property is related also to the complete control
scheme because the flatness relationships between the flat outputs and the states
and control inputs can be used in several way. For example, the feedforward
control can be implemented without the need to solve any differential equations
but only algebraic ones.

The software used to perform all the practical work is MATLAB & Simulink.

1.2 Thesis overview
A brief outline of the thesis is reported below.

Chapter 2 provides the literature review concerning the topic of the thesis, which
is divided in four paragraphs regarding the flatness theory, the VTOL tran-
sition dynamics, the trajectory generation and the flatness-based trajectory
control in order to be as clear as possible.

Chapter 3 introduces the flatness theory and its application to simple systems.
Then, the mathematical model for both phases of the considered aircraft is
presented and finally, the flatness property of the system is proved with the
choice of the proper flat outputs.

Chapter 4 explains the trajectory generation problem both from a general point
of view and from the aeronautical one. Subsequently, the chosen approach
between all the possibilities is motivated and lastly, the Simulink model of
the trajectory generator is described.

Chapter 5 focuses on the results and their analysis of the trajectory generator
for four different flight plans. The latter ones are defined in order to verify
whether all the requirements can be satisfied.

Chapter 6 examines the simulation of the complete control scheme composed
by the trajectory generator, the trajectory controller and the simple VTOL
model only for the wingborne phase. It is important to underline that the
model is really simple because it has not been possible to use the high fidelity
one already existing at the FSD institute because of Covid-19.

Chapter 7 shows all the reached conclusions and the possible further develop-
ments.



Chapter 2

State of the art

The VTOL transition aircraft is a very innovative machine and research about all
its aspects, such as the dynamic modeling, the control system, etc ..., is growing
fast as mentioned in Chapter 1. The literature still provides a few number of
papers regarding the VTOL aircraft and, all the more reason, the application of
flatness theory to solve its control problem is not already taken into account in a
deep way.

Considering the lack of specific material, the authors decide to face the prob-
lem step-by-step which means that all the aspects of the thesis are studied and
analyzed in order to have a complete overview of the problem. Firstly, an in-
depth knowledge of flatness theory is necessary, then the second step is to study
the VTOL dynamics. The third step consists in going through the problem of
trajectory generation and its resolution thanks to flatness. Since the advantages
of flatness can be seen not only by the trajectory generation point of view but
also by the control one, it is useful to understand which are the pros in a complete
control scheme and in particular for what concerns the feedforward control part,
despite the main aim of this thesis is to build a flatness-based trajectory generator.

The literature is divided in paragraphs considering which is the most inter-
esting aspect treated in any paper although some of them regard two or more
topics.

Flatness theory
The definition of flatness property for a nonlinear system, all the mathematical
formalism and the related properties are presented and discussed in [1]. Among
them, the interesting concept of defect δ is used in the case of a not-completely
flat system to mark the distance to flatness. As already mentioned, the request
is to demonstrate if the VTOL satisfies the flatness condition and which are the
flat outputs; if it is not possible, the solution is to consider the VTOL as a system
with a certain defect from flatness. In Chapter 3, it will be proved that the chosen
VTOL mathematical model is completely flat and so, the defect is useless in this
thesis.

5



6 Chapter 2. State of the art

In [1], there are also some practical examples, both for flat and non-flat sys-
tems, but the most useful ones to understand the theory with an engineering point
of view are shown in [2]. Considering a DC motor, two different control laws based
on a classical PID controller, where the first one has a step speed reference and
the other has a flatness-based reference trajectory, are tested to demonstrate the
advantages of the theory during the transient phase. For what concerns the linear
motor with oscillating masses, it is evident that a flatness-based control scheme
provides better results than a standard one in terms of oscillations after the dis-
placement of the motor. These examples prove that it is possible to generate and
follow fast trajectories with high accuracy positioning, using poor actuators and
sensors.

The example of a generic aircraft is provided in [2] and [3]. Firstly, the flatness
property of the system is proved and then the application in the design of the
autopilot is presented; in particular, considering the case of a steady turn, it is
demonstrated how the flatness approach solves the problem of discontinuity at
the junction point of the straight line and the curve.

VTOL transition aircraft dynamics
The dynamic modeling and flatness analysis of a convertible aircraft is studied in
[4]. First of all, a description of the VTOL is carried out specifying eleven control
inputs and the two different flight phases, namely the take-off/landing/hover and
the fast forward flight; under the hypothesis of fault-free conditions, only five
control inputs are identified for each phase while the other six ones are considered
redundant. Subsequently, the nonlinear model of the aircraft and the formulae
of the forces and moments are presented. The standard set of equations for a
conventional airplane is shown; in addition, vertical Euler angles, explained in
Section 7.6.2 of [5], are introduced for the hover phase in order to avoid a gimbal
lock problem for γ close to 90 deg. The consequence is that there are two different
models for the two different phases. The last passage of the paper is the choice
of flat outputs and their mathematical demonstration; since there are five control
inputs, the flat outputs are five: x(t), y(t), z(t), α(t) and β(t).

A novel model of the so-called Tilt-Rotor VTOL is presented in [6]; the struc-
ture, based on a blended wing equipped with a tilt-rotor, gives the possibility
to vertically take-off/land and to have the transition to a forward flight at high
speed. A good characterization of the three operational modes of a VTOL aircraft
is provided by [7].

1. Hover Flight (HF): "the 3D vehicle’s motion relies only on the rotors.
Within this phase the vehicle features VTOL flight profile. The controller
for this regime disregard the aerodynamic terms due to the negligible trans-
lational speed".

2. Slow-Forward Flight (SFF): "it is possible to distinguish an intermediate
operation mode, the SFF, which links the two flight conditions, HF and
FFF. This is probably the most complex dynamics".
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3. Fast-Forward Flight (FFF): "FFF regime mode (Aft position), at this flight
mode the aircraft has gained enough speed to generate aerodynamic forces to
lift and control the vehicle motion".

A representation is reported in Fig. 2.1.

Hover	Flight

Forward	Flight

Tra
nsi
tio
n Transition

Vertical
Take-off

Hover	Flight

Vertical
Landing

Figure 2.1: Operational modes of a VTOL aircraft

Regarding the first mode, a complete dynamical model is provided by the
paper [8]. It is worth to notice that the dynamics of the hover phase is similar to
the one of a quadcopter while, for what concerns the wingborne phase, the VTOL
can be seen as a conventional airplane. For these reasons, the wingborne phase
is described by the equations of forward flight reported in [3] and in [4] while,
since the use of vertical Euler angles in the latter one is not so advantageous,
the decision is to face the hover phase taking into consideration the quadcopter
dynamics.

A lot of research on the quadcopter has been done in the past years. A
mathematical model under a precise set of hypotheses is proposed by [9]; the
equations of motions are found thanks to a Newton-Euler method and listed in
the cited paper. A similar set of equations, relying on the reported assumptions,
is presented also in [10] where a flatness-based approach is used to deal with the
position control block. The choice and the demonstration of the flat outputs,
namely w = [x, y, z]T , is inherent with the needs of this thesis.

Trajectory generation
A characterization of the flat outputs for a linear time-invariant controllable sys-
tem is reported in [11] and the application on the trajectory planning is provided;
knowing the relationships between flat outputs and the states and inputs, "it
suffices to generate a polynomial trajectory for y with respect to time to gener-
ate displacements of the stage from one steady state to another one". A list of
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flatness-based trajectory generators applied to the aeronautical field is reported
below.

• The quadrotor desired path used in the control scheme of [10] is provided
by a real-time trajectory generator explained in [12].

• A similar work is carried out in [13]; an optimization function on the integral
of the norm square of the snap (fourth derivative of the position) is added to
find an optimal trajectory connecting a sequence of points in the 3D space.
Other constraints, such as on velocities or to remain in a specified corridor,
can be imposed.

• A possible application to military field consists in the differential flatness-
based optimal maneuver generation algorithm for one-to-one aerial combat
games, treated in [14]. It is worth to notice that the flat outputs of the fixed
wing aircraft 2D model are x and y and that B-spline functions are used to
parameterize them.

• A trackable reference trajectory for the quadrotor aerial vehicle is presented
in [15]. In this case, the flat outputs are x, y, z and ψ; it recalls the choice of
[10]. The trajectory generator, providing only the function of flat outputs in
time, can determine all the other states, namely the components of speed,
the Euler angles and rates, and the control inputs.

Another contribution to the potentialities of the trajectory generator is given by
the couple of papers [16] and [17] despite they do not involve flatness theory. This
method is "not only able to compute offline trajectories, but is also capable of
controlling position, velocity, and acceleration of the Micro Air Vehicle (MAV) in
real-time"; for example, the latter feature allows to generate trajectories from an
inadmissible state to a permissible one.

In order to discover more aspects on flatness-based trajectory generation, also
examples, which do not regard the aeronautical field, are taken into account and
listed below.

• The ballbot, presented in [18], is "an omnidirectional, dynamically stable
mobile robot. It is a human-sized robot that balances on a single spherical
wheel". The mathematical model is based on two degrees of freedom, namely
the lean angle φ and the ball angle θ, and one control input, the torque
between ball and body. The flat output has a physical meaning because it
is a linear combination of the lean and ball angles despite it is not part of
the state vector. Since it is required a C4 continuity, ten conditions need
to be imposed and, as a consequence, the trajectory has to be generated
with a ninth degree polynomial. Differently from the quadcopter in [13], the
minimization function is defined on the fifth derivative of the flat output,
named crackle. The last interesting aspect is the possibility to generate
recovery trajectories and not only rest-to-rest motions.
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• Flatness applied to the trajectory generator of the battery state of charge
for Hybrid Electric Vehicle (HEV) is presented in [19]. The first interesting
part of the paper consists in the choice and the demonstration of the flat
output yf , which is battery State of Charge (SoC). The second one regards
the use of B-spline functions of third degree for the parameterization of yf .

• An overview of a complete control scheme for a pumped storage power sta-
tion using flatness is shown in [20]. In particular, the trajectory planning
problem is developed choosing appropriate flat outputs and smooth trajecto-
ries as spline ansatz. Moreover, a flatness-based trajectory generator allows
to build a dynamic feedforward control which has greater advantages than
the static one, which is normally used.

• In [21], an analytical offline multi-point trajectory generation scheme for dif-
ferentially flat systems is explained in a general way. A 3-DoF gantry crane,
whose flat outputs are the payload positions xp, yp and zp, is considered as
example.

In order to have a complete overview on all the possible smooth trajectories used
in robotics, the authors refer to the book [22].

Flatness-based trajectory control
Considering the 2-DoF control scheme shown in Fig. 2.2, [23] proposes a new
approach to the feedforward ΣFF based on flatness property for the transition
between stationary setpoints of nonlinear SISO systems. The most interesting
aspect is the remark on the differences between a flat approach and the standard
inversion-based ones. In particular, the first one brings to a purely algebraic design
of the feedforward control while the other ones are more challenging and need to
solve partial differential equations.

Σ* ΣFB Σ

ΣFF

y*

u*

u y
-

Figure 2.2: Structure of the 2-DoF control scheme

The problem of output tracking based on flatness theory for a Planar Vertical
Take-Off and Landing (PVTOL) aircraft is treated in a complete way in [24]. After
having presented its mathematical model based on the three degrees of freedom
(x, z and θ), the procedure to get the flat outputs is explained; it is worth to
notice that the latter ones are not part of the state but they have a physical



10 Chapter 2. State of the art

meaning. After that, the problem of trajectory generation and control is analyzed,
simulated and compared with a conventional design. In addition, three different
types of inversion-based feedforward for nonminimum-phase PVTOL aircraft, are
examined and compared in [25].

Recalling the quadcopter example in [10], the exact feedforward linearization,
presented in [26], is used in order to design the controller. According to [26],
"the overall control law consists of two parts: the feedforward signal based on
differential flatness, which steers the system when being on the desired trajectory,
and a feedback control part, which forces the system to converge to the desired
trajectory". The expression of the new control input to be used in the flatness
relationships is

vi = ξ̇∗i,ki
+ Λi (e) = v∗i + Λi (e) , i ∈ {1, . . . ,m}, (2.1)

where e = ξ−ξ∗, v∗i is the desired trajectory and Λi (e) is the feedback part which
can be any type of control. In [10] and in [26] the latter one is an extended PID
controller. The SISO case is deeply discussed in [27]. Since only stability results
are reported in the previous papers, the robustness with respect to parametric
uncertainty is analyzed in [28]. Together with exact feedforward linearization,
other possible control schemes based on flatness are presented in Section 5.2 of
[29].

Considering the conventional airplane of [3], a single universal controller can
be designed, i.e. "a controller able to make the aircraft track any trajectory without
reconfiguration of the variables on which we close the loop and without modification
of the gains and other parameters involved in the feedback loop". The outer position
loop of the helicopter in [30] satisfies the flatness property and so, after having
defined the flat outputs x, y, z and ψ, the outer controller, built under flatness
considerations, generates a desired trajectory for the inner system.

All the previously mentioned works have been really useful to the authors in
order to understand the different aspects of the thesis topic. In particular, some
of them have a greater importance to develop each specific part and so, they will
be recalled in the next chapters.



Chapter 3

Flatness theory and
mathematical model

The flatness theory can be a very useful approach to the control problem of a
nonlinear system. It was developed by Jean Levine but a lot of researchers sum-
marized in their works and papers its main aspects and possible applications to
different systems, as shown in Chapter 2. The purpose of this chapter is to ex-
plain which is the concept of flatness, seen by an engineering point of view, and
which are the most important advantages of this theory for trajectory generation
and control [Section 3.1]. An overview of the used reference frames is reported in
Section 3.2. Moreover, a mathematical model of the specific problem, namely the
VTOL aircraft and so both wingborne and hover phase, is presented in Section 3.3,
leading to the flat outputs choice and the demonstration of the considered system
flatness, which are shown in Section 3.4.

3.1 Brief explanation of flatness
A nonlinear system ẋ = f (x(t),u(t)) with time t ∈ R, state x(t) ∈ Rn and input
u(t) ∈ Rm, is said to be (differentially) flat if there exists a set of m differentially
independent variables w = [w1, ..., wm]T , called flat outputs, such that:

w = G(x,u, u̇, ...,u(δ))
x = fx(w, ẇ, ...,w(ρ))
u = fu(w, ẇ, ...,w(ρ+1))

(3.1)

where G, fx and fu are smooth functions of their arguments, at least in an open
subset of their domain, and δ, ρ are the maximum orders of derivatives of u and
w needed to describe the system ([1] and [10]).

The usefulness of this property is provided by the fact that it is possible to
write all the variables in dependence of flat outputs and finite number of their
derivatives; an interesting remark would be that there are no more distinctions

11
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between states, inputs and outputs. The application to trajectory generation and
control problem is evident for the following reasons:

• the outputs of trajectory generation block are only the flat ones, which can
be defined as different kind of splines (polynomial, trigonometric, exponen-
tial, etc);

• the feedforward control is realized only knowing algebraic relationships be-
tween control inputs and flat outputs. In the feedback part, the states are
constructed knowing the measurements and so, having previously defined
the relationships between flat outputs and states, it is simple to obtain the
actual flat outputs and compute the error with respect to the reference val-
ues. A consequence is that there are no differential equations to be solved.

3.1.1 Examples of flat systems
The following examples, taken from [2], are reported to show the flatness prop-
erty of two simple systems in order to clarify the theoretical concepts previously
explained.

Mass-spring system: considering the system in Fig. 3.1:

O x

G2G1

k2k1 m1 m2

l1	+	x1

l2	+	x2

u

Figure 3.1: Mass-spring system

• m1 and m2 are the masses of the two bodies;

• k1 and k2 are the springs stiffness;

• G1 and G2 are the gravity centres;

• l1 and l2 are the equilibrium positions of G1 and G2;

• γ1 (ẋ1) and γ2 (ẋ2) are the viscous frictions and they are non negative, twice
continuously differentiable and γ1 (0) = γ2 (0) = 0;

• u is the force applied to G2.
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The dynamics equations are

m1ẍ1 + k1x1 + γ1 (ẋ1) = k2 (x2 − x1)
m2ẍ2 + k2 (x2 − x1) + γ2 (ẋ2) = u.

(3.2)

In order to prove that the flat output is x1, it is necessary to demonstrate that
x2 and u can be expressed only through x1 and its derivatives. Starting from the
first equation of Eq. (3.2), the expression of x2 is found:

x2 = 1
k2

(m1ẍ1 + (k1 + k2)x1 + γ1 (ẋ1)) . (3.3)

Then, differentiating the latter one, its derivative is

ẋ2 = 1
k2

(
m1x

(3)
1 + (k1 + k2) ẋ1 + γ′1 (ẋ1) ẍ1

)
. (3.4)

and, using the second equation of Eq. (3.2) and the expressions of x2 and ẋ2, u is
written as

u =m1m2

k2
x

(4)
1 +

(
m2k1

k2
+m2 +m1

)
ẍ1 + k1x1 + γ1 (ẋ1) + . . .

+ m2

k2

(
γ′′1 (ẋ1) (ẍ1)2 + γ′1 (ẋ1)x(3)

1

)
+ . . .

+ γ2

(
m1

k2
x

(3)
1 + 1

k2
((k1 + k2) ẋ1 + γ′1 (ẋ1) ẍ1)

)
.

(3.5)

Eq. (3.3) and Eq. (3.5) prove that the states and the control inputs can be ex-
pressed as functions of x1 and its derivatives until the fourth order. In conclusion,
the system is flat with x1 as flat output.

Non holonomic vehicle: considering the vehicle with four wheels which roll
without slipping on the horizontal plane in Fig. 3.2:

P

Ql

O

y

x

	φ

θ

Figure 3.2: Non holonomic vehicle
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• (x, y) are the coordinates of the point P ;

• P and Q are the middle points of the rear axle and the front one respectively;

• l is the distance between P and Q;

• θ is the angle between the longitudinal axis of the vehicle and the x-axis;

• ϕ is the angle of the front wheels.

This system is called non holonomic vehicle because the rolling without slipping
condition is a non holonomic constraint.

The dynamics equations are

ẋ = u cos θ
ẏ = u sin θ

θ̇ = u

l
tanϕ,

(3.6)

where the modulus of the car speed u and the angle ϕ are the control variables.
The system is flat with x and y as flat outputs. The demonstration is the

following one; considering the first and the second equation of Eq. (3.6), Eq. (3.7)
is obtained dividing them as

tan θ = ẏ

ẋ
, (3.7)

while Eq. (3.8) is reached summing the squares of them:

u2 = ẋ2 + ẏ2. (3.8)

Differentiating Eq. (3.7), the expression of θ̇ is

θ̇
(
1 + tan2 θ

)
= ÿẋ− ẏẍ

ẋ2 → θ̇ = ÿẋ− ẏẍ
ẋ2 + ẏ2 . (3.9)

Inserting the square root of Eq. (3.8) and Eq. (3.9) in the third equation of
Eq. (3.6), it is deduced that:

tanϕ = lθ̇

u
= l

ÿẋ− ẏẍ
(ẋ2 + ẏ2)3/2 . (3.10)

In conclusion, all the states and control inputs can be expressed as functions of x
and y and their derivatives until the second order.

3.2 Reference frames
Before proceeding with the definition of the VTOL mathematical model and the
flatness analysis of the problem, a brief recap of all the reference frames used in the
thesis is reported in the next paragraphs. The information are basic knowledge
of aerospace engineering but, to be as complete as possible, the authors refer to
[31] and [32].
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WGS84 coordinates: the WGS84 is a geodetic system based on a reference
ellipsoid and defined in 1984. Its features are listed below:

• the origin coincides with the Earth center of mass;

• the x-axis lies in the equatorial plane and it is directed to the Greenwich
meridian;

• the y-axis lies in the equatorial plane and it is obtained in order to form a
right-hand system with the x-axis and z-axis;

• the z-axis is the rotation axis of the Earth and it points to the North Pole.

The geographical coordinates of a point are the following ones.

• Latitude (lat): angle, measured in the meridian plane, between the equa-
torial plane and the parallel passing through the point.

• Longitude (long): angle, measured in the equatorial plane, between Green-
wich meridian and the meridian plane of the point.

• Altitude (h): height above the ellipsoid.

ECEF frame: the characterization of the ECEF frame is identical to the one
previously explained for the WGS84 ellipsoid. The position of an object in the
space is defined thanks to the x, y and z coordinates; it is obvious that the center
of the Earth corresponds to (0, 0, 0) coordinates. It is possible to pass from the
WGS84 coordinates to the ones in ECEF frame with the formulas

x = (N(lat) + h) cos (lat) cos (long)
y = (N(lat) + h) cos (lat) sin (long)

z =
(
b2

a2N(lat) + h

)
sin (lat),

(3.11)

where N(lat) = a√
1−e2 sin (lat)2 , a is the semi-major axis, b is the semi-minor axis

and e is the eccentricity of the ellipsoid.

Local NED frame - O frame: the local NED frame (named O frame) is
characterized by the following features.

• The origin is a reference point. In this thesis, it is fixed as the position of
the FSD Institute since all the flight plans are set in the proximity of this
place;

• the x-axis is parallel to the local geoid surface and it is directed to the north
direction.

• The y-axis is parallel to the local geoid surface and it is directed to the east
direction.
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• The z-axis is perpendicular to the local geoid surface and it is directed
downwards.

The local NED and ECEF coordinates are related by

rNED = RT (rECEF − rref ) , (3.12)

where

R =

− sin (lat) cos (long) − sin (long) − cos (lat) cos (long)
− sin (lat) sin (long) cos (long) − cos (lat) sin (long)

cos (lat) 0 − sin (lat)

 . (3.13)

Kinematic frame - K frame: the kinematic frame (namedK frame) is defined
in the following way:

• the origin is the aircraft reference point;

• the x-axis is aligned with the kinematic speed and it points to its direction;

• the y-axis is directed to the right and it forms a right-hand system with the
x-axis and z-axis;

• the z-axis is parallel to the projection of local surface normal of the WGS84
ellipsoid into a plane perpendicular to the x-axis and it points downwards.

The rotation matrix to pass from the K frame to the O frame is

MOK =

cosχ cos γ − sinχ cosχ sin γ
sinχ cos γ cosχ sinχ sin γ
− sin γ 0 cos γ

 , (3.14)

where χ and γ are the track and climb angles respectively.

Rotated kinematic frame - K̄ frame: rotating the K frame by the bank
angle, the rotated kinematic frame (named K̄ frame) is obtained. The rotation
matrix is defined as

MK̄K =

1 0 0
0 cosµ sinµ
0 − sinµ cosµ

 , (3.15)

where µ is the bank angle.

Body-fixed frame - B frame: the body-fixed frame (named B frame) is char-
acterized by the fact that:

• the origin is the aircraft reference point;

• the x-axis lies in the aircraft symmetry plane and points towards the aircraft
nose;
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• the y-axis is directed towards the right wing and it forms a right-hand system
with the x-axis and the z-axis;

• the z-axis lies in the aircraft symmetry plane; it points downwards and it is
perpendicular to the x-axis and the y-axis.

Aerodynamic frame - A frame: the aerodynamic frame (named A frame) is
defined in the following way:

• the origin is the aircraft reference point;

• the x-axis is aligned with the aerodynamic speed and points to its direction;

• the y-axis is directed towards the right and it forms a right-hand system
with the x-axis and the z-axis;

• the z-axis points downwards; it is parallel to the projection of the local
surface normal of the WGS84 ellipsoid into a plane perpendicular to the
x-axis.

3.3 Mathematical model
The flatness analysis is performed only on the position loop because the attitude
one has already been treated in a different way. In general, the procedure explained
below can be carried out for a complete dynamic model of a VTOL aircraft.

The mathematical models, regarding only position information and not at-
titude ones, are obtained both for the wingborne phase and hover one in Sec-
tion 3.3.1 and Section 3.3.2 respectively. The hypothesis for the VTOL aircraft
modeling are:

• constant mass equal to m;

• rigid body and so no aerolastic effects are present;

• constant gravity acceleration, equal to g = 9.81 m/s2 and so the Center of
Mass (CoM) coincides with the Center of Gravity (CG);

• zero wind condition.

3.3.1 Wingborne phase
Firstly, the complete set of equations for a generic aircraft is presented using as
reference Eq. (3) of [3] and Eq. (28.1 - 28.10) of [4]. It is worth to notice that the
translational motion is expressed in the aerodynamic frame A while the rotational
one is written in the body frame B.

ẋ = V a
A cosχ cos γ
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ẏ = V a
A sinχ cos γ

ż = −V a
A sin γ

V̇ a
A = XA

m
− g sin γ

β̇ = p sinα− r cosα + mg cos γ sinµ+ YA
mV a

A

α̇ = q − (p cosα + r sinα) tan β + g

V a
A

cos γ cosµ
cos β + ZA

mV a
A cos β

χ̇ = −ZA sinµ+ YA cosµ
mV a

A cos γ (3.16)

γ̇ = −mg cos γ − YA sinµ− ZA cosµ
mV a

A

µ̇ = −g cosµ cos γ sin β
V a
A cos β + p cosα + r sinα

cos β − ZA sin β
mV a

A cos β + . . .

+ (YA cosµ− ZA sinµ) sin γ
mV a

A cos γ

ṗ = (Ixz (Ixx − Iyy + Izz) p− (I2
xz − Izz (Iyy − Izz)) r) q + IxzNB + IzzLB
IxxIzz − I2

xz

q̇ = −Ixzp
2 − r (Ixx − Izz) p+ Ixzr

2 +MB

Iyy

ṙ = ((I2
xz + Ixx (Ixx − Iyy)) p− Ixz (Ixx − Iyy + Izz) r) q + IxxNB + IxzLB

IxxIzz − I2
xz

where:

• x, y and z are the position coordinates of the CoM in the O frame;

• V a
A is the aerodynamic speed;

• α and β are the aerodynamic angles, namely the angle of attack and the
side-slip angle respectively;

• χ, γ and µ are the track, the climb and the bank angles;

• p, q and r are the roll, the pitch and the yaw rates;

• XA, YA and ZA are the forces in the A frame while LB, MB and NB are the
moments in the B frame;

• Iij are the inertial moments.

As mentioned before, only a sub-set of Eq. (3.16) is selected to describe the posi-
tion with respect to time. The useful set of equations is

ẋ = V a
A cosχ cos γ

ẏ = V a
A sinχ cos γ
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ż = −V a
A sin γ

V̇ a
A = XA

m
− g sin γ (3.17)

χ̇ = −ZA sinµ+ YA cosµ
mV a

A cos γ

γ̇ = −mg cos γ − YA sinµ− ZA cosµ
mV a

A

,

where x = [x, y, z, V a
A , χ, γ]T is the states vector and u = [XA, YA, ZA]T is the

control inputs vector.
In order to have a well-posed problem, an expression of µ, taken from Eq. 4.8

of [31], needs to be added as

µ = arctan V
a
A χ̇

g
. (3.18)

3.3.2 Hover phase
During the hover phase, the γ angle is close to 90 deg and Eq. (3.16) can not
be used because a gimbal lock problem is introduced. For this reason, another
set of equations must be used. Since the hover phase is a typical dynamics of a
quadcopter, its complete set of equations, taken from [10], is considered. These
equations are derived with respect to the O and B reference frames.

ẍ = U1
(cosψ cosφ sin θ + sinψ sinφ)

m

ÿ = U1
(sinψ cosφ sin θ − sinφ cosψ)

m

z̈ = U1
(cos θ cosφ)

m
− g

ṗ = (Iy − Iz)
Ix

qr + 1
Ix
U2 −

Jm
Ix
qΩR

q̇ = (Iz − Ix)
Iy

pr + 1
Iy
U3 + Jm

Iy
pΩR (3.19)

ṙ = (Ix − Iy)
Iz

pq + d

Iz
U4

φ̇ = p+ q sinφ tan θ + r cosφ tan θ
θ̇ = q cosφ− r sinφ

ψ̇ = sinφ
cos θq + cosφ

cos θ r

where:

• x, y and z are the position coordinates of the CoM in the O frame;

• φ, θ and ψ are the roll, the pitch and the yaw Euler angles;



20 Chapter 3. Flatness theory and mathematical model

• p, q and r are the attitude rates;

• U1, U2, U3 and U4 are the inputs and are defined in terms of motor angular
rates Ωi;

• Ii are the body principal moments of inertia;

• Jm is the inertia motor;

• ΩR = −Ω1 − Ω3 + Ω2 + Ω4.

Since it is required to describe only the position, the first three equations are
selected.

In the following approach, the aircraft during the hover phase is treated as a
point mass, simplifying the equations. As a matter of fact, θ, φ, ψ and U1 loose
their meaning and, as done for the wingborne phase, the control inputs are the
three components of the force.

Considering the first three equation of Eq. (3.19) and taking into account all
the above considerations, the useful equations are

ẋ = vx

v̇x = XO

m
ẏ = vy

v̇y = YO
m

(3.20)

ż = vz

v̇z = ZO
m

+ g,

where x = [x, vx, y, vy, z, vz]T is the states vector, u = [XO, YO, ZO]T is the control
inputs vector and it is important to notice that also the identity equations are
added for the seek of completeness.

The unique problem could be that there are no information about the yaw
angle in this kind of system but the attitude controller is able to deal with it
during the hover phase and, in particular, during the initial tracking of the first
waypoint.

3.4 Flat outputs choice
The following remarks need to be taken into account during the choice of flat
outputs:

• the number of flat outputs has to be equal to the one of control inputs;

• it is not necessary that they have a physical meaning;
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• the simplest procedure to find the flat outputs is to start from states or
quantities which have a particular physical meaning and, after having chosen
them, provide the mathematical demonstration.

The number of control inputs is equal to three for both phases; as explained before,
the number of flat outputs has to be the same.

The decision is taken following these considerations. It is already known that
χ and γ are available flat outputs for a conventional airplane and so they could
be chosen also for the wingborne phase of a VTOL aircraft. The problem is that
these angles are useless to describe the hover phase since it is already shown that
they are not present in its mathematical model of Eq. (3.20). In [10], x, y and z
are the flat outputs for the quadcopter position controller while in [4], they are
part of flat outputs vector. Taking into account these suggestions and referring
to Eq. (3.20), it is simple to notice that the same flat outputs can be chosen. For
what concerns Eq. (3.17), the same quantities appear in the formulation and they
could be valid flat outputs.

For the reasons listed above, the idea of this thesis is to choose the flat outputs
vector as

w = [w1, w2, w3] = [x, y, z]T . (3.21)

It is very simple to demonstrate that w is a function of the states vector for both
phases:

• wingborne phase

w = G (x) = Gx, G =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 ; (3.22)

• hover phase

w = G (x) = Gx, G =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 . (3.23)

3.4.1 Mathematical demonstration
The mathematical demonstration is reported below for both phases.

3.4.1.1 Wingborne phase

The first step consists in substituting the expression of µ, using Eq. (3.18) in
Eq. (3.17). By dividing the second and the first equations of Eq. (3.17) as

ẏ

ẋ
= tanχ → χ = arctan ẏ

ẋ
= arctan ẇ2

ẇ1
. (3.24)
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Then, the division between the third and the second equations of Eq. (3.17) pro-
vides

ż

ẏ
= −tan γ

sinχ . (3.25)

Inserting Eq. (3.24) in Eq. (3.25),

ż

ẏ
= − tan γ

sin
(
arctan ẏ

ẋ

) (3.26)

and the expression of γ is

γ = arctan
(
− ż
ẏ

sin
(

arctan ẏ
ẋ

))
= arctan

(
−ẇ3

ẇ2
sin

(
arctan ẇ2

ẇ1

))
. (3.27)

Now, considering the first equation of Eq. (3.17) and substituting the relationships
previously found, it is possible to write

V a
A = ẋ

cosχ cos γ

= ẋ

cos
(
arctan ẏ

ẋ

)
cos

(
arctan

(
− ż
ẏ

sin
(
arctan ẏ

ẋ

)))
= ẇ1

cos
(
arctan ẇ2

ẇ1

)
cos

(
arctan

(
− ẇ3
ẇ2

sin
(
arctan ẇ2

ẇ1

))) .
(3.28)

Having demonstrated that the states χ, γ and V a
A can be written in dependence

of flat outputs and their derivatives, the next passage is to find the relationships
for the control inputs XA, YA and ZA. The XA force is found using the fourth
equation of Eq. (3.17):

XA = m
(
V̇ a
A + g sin γ

)
(3.29)

where V̇A
a can be computed following the normal procedure for the derivative of

a composed function. In order to simplify the notation, the following expressions
dependent on flat outputs are re-called as

A = fA (w) = sin
(

arctan V
a
A χ̇

g

)
,

B = fB (w) = cos
(

arctan V
a
A χ̇

g

)
,

C = fC (w) = mV a
A γ̇ +mg cos γ,

D = fD (w) = mV a
A χ̇ cos γ,

(3.30)

so that the fifth and the sixth equations of Eq. (3.17) become

D = BYA − AZA,
C = −AYA −BZA.

(3.31)
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They are manipulated to obtain the expression of YA and ZA. From the first
equation, YA in dependence of ZA is found as

YA = D + AZA
B

(3.32)

and then it is inserted in the second one remembering that A2 + B2 = sin2 µ +
cos2 µ = 1:

C = −AD + AZA
B

−BZA → ZA = −DA+BC

A2 +B2 = −DA−BC. (3.33)

Finally, the expression of ZA is substituted in Eq. (3.32) of YA:

YA = D −DA2 −BCA
B

= D (1− A2)−BCA
B

= DB2 −BCA
B

= DB − CA.
(3.34)

To write the entire mathematical expression of control input forces in dependence
of the flat outputs and their derivatives, it is necessary to compute the derivatives
of χ, γ and V a

A as

χ̇ = ẋÿ − ẏẍ
ẋ2 + ẏ2 ,

γ̇ = żÿ sinχ− ẏ (z̈ sinχ+ żχ̇ cosχ)
ẏ2 + ż2 sin2 χ

, (3.35)

V̇ a
A = ẍ cosχ cos γ + ẋ (χ̇ sinχ cos γ + γ̇ cosχ sin γ)

cos2 χ cos2 γ
.

Substituting the expressions ofA, B, C andD (reported in Eq. (3.30)) in Eq. (3.29),
Eq. (3.33) and Eq. (3.34), it is possible to find the relationships of the forces in
dependence of χ, γ, V a

A and their derivatives. Knowing the formulae Eq. (3.24),
Eq. (3.27), Eq. (3.28) and Eq. (3.35), the forces written using only the flat outputs
and their derivatives are obtained. The complete expressions are shown below:

XA =m

 ẍ cos
(
arctan ẏ

ẋ

)
cos

(
arctan

(
− ż
ẏ

sin
(
arctan ẏ

ẋ

)))
+ . . .

cos2
(
arctan ẏ

ẋ

)
cos2

(
arctan

(
− ż
ẏ

sin
(
arctan ẏ

ẋ

)))
+ẋ
 ( ẋÿ−ẏẍ

ẋ2+ẏ2

)
sin

(
arctan ẏ

ẋ

)
cos

(
arctan

(
− ż
ẏ

sin
(
arctan ẏ

ẋ

)))
+ . . .

+
 żÿ sin (arctan ẏ

ẋ)−ẏ
(
z̈ sin (arctan ẏ

ẋ)+ż cos (arctan ẏ
ẋ)
(

ẋÿ−ẏẍ

ẋ2+ẏ2

))
ẏ2+ż2 sin2 (arctan ẏ

ẋ)

 · . . .

· cos
(
arctan ẏ

ẋ

)
sin

(
arctan

(
− ż
ẏ

sin
(
arctan ẏ

ẋ

))) 
+ . . .
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+ g sin
[
arctan

(
− ż
ẏ

sin
(

arctan ẏ
ẋ

))] =

=m

ẅ1 cos
(
arctan ẇ2

ẇ1

)
cos

(
arctan

(
− ẇ3
ẇ2

sin
(
arctan ẇ2

ẇ1

)))
+ . . .

cos2
(
arctan ẇ2

ẇ1

)
cos2

(
arctan

(
− ẇ3
ẇ2

sin
(
arctan ẇ2

ẇ1

))) (3.36)

+ẇ1

 ( ẇ1ẅ2−ẇ2ẅ1
ẇ2

1+ẇ2
2

)
sin

(
arctan ẇ2

ẇ1

)
cos

(
arctan

(
− ẇ3
ẇ2

sin
(
arctan ẇ2

ẇ1

)))
+ . . .

+
 ẇ3ẅ2 sin

(
arctan ẇ2

ẇ1

)
−ẇ2

(
ẅ3 sin

(
arctan ẇ2

ẇ1

)
+ẇ3 cos

(
arctan ẇ2

ẇ1

)(
ẇ1ẅ2−ẇ2ẅ1

ẇ2
1+ẇ2

2

))
ẇ2

2+ẇ2
3 sin2

(
arctan ẇ2

ẇ1

)  · . . .

· cos
(
arctan ẇ2

ẇ1

)
sin

(
arctan

(
− ẇ3
ẇ2

sin
(
arctan ẇ2

ẇ1

))) 
+ . . .

+ g sin
[
arctan

(
−ẇ3

ẇ2
sin

(
arctan ẇ2

ẇ1

))];

YA =m

 ẋ

cos
(
arctan ẏ

ẋ

)
cos

(
arctan

(
− ż
ẏ

sin
(
arctan ẏ

ẋ

))) ẋÿ − ẏẍ
ẋ2 + ẏ2 · . . .

· cos
[
arctan

(
− ż
ẏ

sin
(

arctan ẏ
ẋ

))]
cos

[
arctan

(
. . .

ẋ

g cos
(
arctan ẏ

ẋ

)
cos

(
arctan

(
− ż
ẏ

sin
(
arctan ẏ

ẋ

))) ẋÿ − ẏẍ
ẋ2 + ẏ2

)]
+ . . .

−

 ẋ

cos
(
arctan ẏ

ẋ

)
cos

(
arctan

(
− ż
ẏ

sin
(
arctan ẏ

ẋ

))) · . . .
·
żÿ sin

(
arctan ẏ

ẋ

)
− ẏ

(
z̈ sin

(
arctan ẏ

ẋ

)
+ ż cos

(
arctan ẏ

ẋ

) (
ẋÿ−ẏẍ
ẋ2+ẏ2

))
ẏ2 + ż2 sin2

(
arctan ẏ

ẋ

) + . . .

+ g cos
[
arctan

(
− ż
ẏ

sin
(

arctan ẏ
ẋ

))] sin
[

arctan
(
. . .

ẋ

g cos
(
arctan ẏ

ẋ

)
cos

(
arctan

(
− ż
ẏ

sin
(
arctan ẏ

ẋ

))) ẋÿ − ẏẍ
ẋ2 + ẏ2

)] =

=m

 ẇ1

cos
(
arctan ẇ2

ẇ1

)
cos

(
arctan

(
− ẇ3
ẇ2

sin
(
arctan ẇ2

ẇ1

))) ẇ1ẅ2 − ẇ2ẅ1

ẇ2
1 + ẇ2

2
· . . .

· cos
[
arctan

(
−ẇ3

ẇ2
sin

(
arctan ẇ2

ẇ1

))]
cos

[
arctan

(
. . . (3.37)
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ẇ1

g cos
(
arctan ẇ2

ẇ1

)
cos

(
arctan

(
− ẇ3
ẇ2

sin
(
arctan ẇ2

ẇ1

))) ẇ1ẅ2 − ẇ2ẅ1

ẇ2
1 + ẇ2

2

)]
+ . . .

−

 ẇ1

cos
(
arctan ẇ2

ẇ1

)
cos

(
arctan

(
− ẇ3
ẇ2

sin
(
arctan ẇ2

ẇ1

))) · . . .
·
ẇ3ẅ2 sin

(
arctan ẇ2

ẇ1

)
+ . . .

ẇ2
2 + ẇ2

3 sin2
(
arctan ẇ2

ẇ1

)
−ẇ2

(
ẅ3 sin

(
arctan ẇ2

ẇ1

)
+ ẇ3 cos

(
arctan ẇ2

ẇ1

) (
ẇ1ẅ2−ẇ2ẅ1
ẇ2

1+ẇ2
2

))
+ . . .

+ g cos
[
arctan

(
−ẇ3

ẇ2
sin

(
arctan ẇ2

ẇ1

))]  sin
[

arctan
(
. . .

ẇ1

g cos
(
arctan ẇ2

ẇ1

)
cos

(
arctan

(
− ẇ3
ẇ2

sin
(
arctan ẇ2

ẇ1

))) ẇ1ẅ2 − ẇ2ẅ1

ẇ2
1 + ẇ2

2

)];

ZA =−m

 ẋ

cos
(
arctan ẏ

ẋ

)
cos

(
arctan

(
− ż
ẏ

sin
(
arctan ẏ

ẋ

))) ẋÿ − ẏẍ
ẋ2 + ẏ2 · . . .

· cos
[
arctan

(
− ż
ẏ

sin
(

arctan ẏ
ẋ

))]
sin

[
arctan

(
. . .

ẋ

g cos
(
arctan ẏ

ẋ

)
cos

(
arctan

(
− ż
ẏ

sin
(
arctan ẏ

ẋ

))) ẋÿ − ẏẍ
ẋ2 + ẏ2

)]
+ . . .

+
 ẋ

cos
(
arctan ẏ

ẋ

)
cos

(
arctan

(
− ż
ẏ

sin
(
arctan ẏ

ẋ

))) · . . .
·
żÿ sin

(
arctan ẏ

ẋ

)
− ẏ

(
z̈ sin

(
arctan ẏ

ẋ

)
+ ż cos

(
arctan ẏ

ẋ

) (
ẋÿ−ẏẍ
ẋ2+ẏ2

))
ẏ2 + ż2 sin2

(
arctan ẏ

ẋ

) + . . .

+ g cos
[
arctan

(
− ż
ẏ

sin
(

arctan ẏ
ẋ

))] cos
[

arctan
(
. . .

ẋ

g cos
(
arctan ẏ

ẋ

)
cos

(
arctan

(
− ż
ẏ

sin
(
arctan ẏ

ẋ

))) ẋÿ − ẏẍ
ẋ2 + ẏ2

)] =

=−m

 ẇ1

cos
(
arctan ẇ2

ẇ1

)
cos

(
arctan

(
− ẇ3
ẇ2

sin
(
arctan ẇ2

ẇ1

))) ẇ1ẅ2 − ẇ2ẅ1

ẇ2
1 + ẇ2

2
· . . .

· cos
[
arctan

(
−ẇ3

ẇ2
sin

(
arctan ẇ2

ẇ1

))]
sin

[
arctan

(
. . . (3.38)

ẇ1

g cos
(
arctan ẇ2

ẇ1

)
cos

(
arctan

(
− ẇ3
ẇ2

sin
(
arctan ẇ2

ẇ1

))) ẇ1ẅ2 − ẇ2ẅ1

ẇ2
1 + ẇ2

2

)]
+ . . .
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+
 ẇ1

cos
(
arctan ẇ2

ẇ1

)
cos

(
arctan

(
− ẇ3
ẇ2

sin
(
arctan ẇ2

ẇ1

))) · . . .
·
ẇ3ẅ2 sin

(
arctan ẇ2

ẇ1

)
+ . . .

ẇ2
2 + ẇ2

3 sin2
(
arctan ẇ2

ẇ1

)
−ẇ2

(
ẅ3 sin

(
arctan ẇ2

ẇ1

)
+ ẇ3 cos

(
arctan ẇ2

ẇ1

) (
ẇ1ẅ2−ẇ2ẅ1
ẇ2

1+ẇ2
2

))
+ . . .

+ g cos
[
arctan

(
−ẇ3

ẇ2
sin

(
arctan ẇ2

ẇ1

))]  cos
[

arctan
(
. . .

ẇ1

g cos
(
arctan ẇ2

ẇ1

)
cos

(
arctan

(
− ẇ3
ẇ2

sin
(
arctan ẇ2

ẇ1

))) ẇ1ẅ2 − ẇ2ẅ1

ẇ2
1 + ẇ2

2

)].
These equations are reported only for the sake of completeness but they are not
used during the implementation because the forces can be found through all the
other states.

In conclusion, this section has demonstrated that all the states and control
inputs satisfy the property of flatness and that the derivatives maximum order is
two.

3.4.1.2 Hover phase

Starting from Eq. (3.20), the demonstration is immediate and really simple with
respect to the case treated above:

vx = ẋ = ẇ1,

vy = ẏ = ẇ2,

vz = ż = ẇ3,

XO = mv̇x = mẅ1,

YO = mv̇y = mẅ2,

ZO = m (v̇z − g) = m (ẅ3 − g) .

(3.39)

It is therefore evident that the states vector x and the control inputs vector u can
be expressed only through the flat outputs vector w and its derivatives up to the
second order.

A final remark is that the use of flatness for the hover phase may seem silly
because the equations are very easy to solve; despite that, the interesting aspect
is the possibility to use the same flat outputs for both phases; the advantage is
that the trajectory generation block, providing only w = [x, y, z]T , could work for
all VTOL dynamics and, as a consequence, the controller is simpler to realize.

3.4.2 Final relationships
The control inputs are needed in the kinematic frame K.
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For what concerns the wingborne phase, the equations provide control inputs
in the aerodynamic frame. In zero wind condition, the A frame coincides with
the rotated kinematic frame K̄ so that the results must be rotated of the µ angle
with the matrix of Eq. (3.15).

Regarding the hover phase, the results are in the O frame and the rotation
into the K frame is not treated in this thesis because it will be done in the inner
loop.

The following scheme collects the useful expressions of each quantity which
are used in the control system and, after that, the rotations of the control inputs
are shown.

3.4.2.1 Wingborne phase

• States:

x = w1

y = w2

z = w3

V a
A = ẇ1

cosχ cos γ (3.40)

χ = arctan ẇ2

ẇ1

γ = arctan
(
−ẇ3

ẇ2
sinχ

)
;

• Control inputs:

XK̄ = XA = m
(
V̇ a
A + g sin γ

)
YK̄ = YA = m (V a

A χ̇ cos γ cosµ− (V a
A γ̇ + g cos γ) sinµ)

ZK̄ = ZA = −m (V a
A χ̇ cos γ sinµ+ (V a

A γ̇ + g cos γ) cosµ) ;
(3.41)

• Rotation from K̄ to K frame: it is a 2D rotation around the x-axis. In
matrix form, the expression is

FK = MKK̄FK̄ =

1 0 0
0 cosµ − sinµ
0 sinµ cosµ

FK̄ . (3.42)

The relationships of the forces in K frame with respect to the ones in K̄
frame are

XK = XK̄

YK = YK̄ cosµ− ZK̄ sinµ
ZK = YK̄ sinµ+ ZK̄ cosµ.

(3.43)
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3.4.2.2 Hover phase

• States:
x = w1

vx = ẇ1

y = w2

vy = ẇ2

z = w3

vz = ẇ3;

(3.44)

• Control inputs:
XO = mẅ1

YO = mẅ2

ZO = m (ẅ3 − g) .
(3.45)



Chapter 4

Trajectory generation

This chapter deals with the trajectory generation problem. Firstly, Section 4.1
provides an overview for a generic control system; a categorization of the already
existing kinds of trajectories, used in many environments of robotics, is proposed.
Section 4.2 analyzes the topic from an aeronautical point of view; all the funda-
mentals of flight path generation are listed, starting from the concept of fixes and
leg types and arriving to the necessity of transitions to have the correct smooth-
ness of the path. Considering all the types of function that can be used and are
presented in Section 4.1 and taking into account the aeronautical requirements,
the followed approach is motivated in Section 4.3. Finally, Section 4.4 describes
in a deeper way all the model realized by the authors thanks to the MATLAB &

Simulink software.

4.1 Outline of trajectory generation problem
Generally, in a control system the trajectory generator provides the setpoint,
namely the reference trajectory which has to be followed by the aircraft and is used
by the feedback controller to compute the error with respect to the measurements.
This control system block has the aim to find the relationships between the time
and the quantities chosen as outputs. In this case, it is realized under a flatness-
based approach, so the problem consists only in finding the relationships between
the time and the flat outputs because all the variables of the system, namely the
states and the control inputs, can be written in dependence of flat outputs and a
finite number of their derivatives. A simple scheme of the trajectory generation
block is reported in Fig. 4.1 where it is possible to notice that the flat outputs are
x, y and z, coordinates of the 3D position.

All the information explained in this section are mainly taken from the book
"Trajectory Planning for Automatic Machines and Robots" of L. Biagiotti and C.
Melchiorri [22]; the useful topics for this thesis are then elaborated. The part
related to the combination of straight-lines and circular-arcs is explained in the
PhD dissertation of Volker Schneider [31].

29
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Trajectory
generator

Waypoint	list
(properties)

VK z

y

x

Figure 4.1: Trajectory generation block

4.1.1 Trajectory categories

As shown in Fig. 4.2, the main distinction among all the trajectory categories is be-
tween one- and multi-dimensional; the first one is related to a system characterized
by only one DoF while the second one concerns a system in a multi-dimensional
space.

Another classification is based on the fact that a trajectory can be defined
from the initial and final points only, called point-to-point, or with also a list of
intermediate points between the initial and final ones; in the latter case, known
as multi-point trajectory, all the points have to be interpolated or approximated.
In the interpolation, the curve crosses the given points for all the values of time
while in the approximation the curve does not pass exactly through the points
but an error with a prescribed tolerance is present.

Both point-to-point and multi-point trajectories are used to obtain a complex
motion. With the former ones, the path is calculated by joining several point-
to-point trajectories which are individually optimized, considering the initial and
final boundary conditions on velocity, acceleration, etc... and the constraints on
their maximum values. Conversely, in the case of multi-point trajectories, by
specifying the intermediate points, the path is found as the solution of a global
optimization problem which depends on the conditions imposed on each via-point
and on the overall profile.

Trajectories

Multi-dimensional

Point-to-pointMulti-point

One-dimensional

Point-to-point Multi-point

ApproximationInterpolation Interpolation Approximation

Figure 4.2: Main trajectory categories
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4.1.2 Point-to-point trajectories
In Section 4.1.1, the use of several point-to-point trajectories to generate a complex
path is introduced. The problem is to find a function q(t), t ∈ [t0, t1] which satisfies
conditions on position, velocity, acceleration and also their successive derivatives
at t0, t1. Since the constraints can be of any kind in a wide spectrum, it is
fundamental to fix them in order to make a choice of the most suitable trajectory.
Contemporaneously, a description of the characteristics of each type of trajectory,
from the most elementary to the more complex one, is needed.

4.1.2.1 Polynomial trajectories

Polynomial trajectories are defined as

q(t) = a0 + a1t+ a2t
2 + ...+ ant

n, (4.1)

where the n+1 coefficients ai are determined imposing the initial and final condi-
tions, not only on the trajectory but also on its time derivatives (velocity, acceler-
ation, jerk, snap, etc...). For this reason, the degree n of the polynomial is related
to the number of conditions that have to be imposed and to the smoothness of the
motion. The number of constraints is usually even and consequently the degree n
is odd, i.e three, five, seven and so on.

A brief description of different polynomial functions is presented below.

Linear trajectories:
q(t) = a0 + a1 (t− t0) (4.2)

where coefficients a0 and a1 are computed imposing positions q0 and q1. A char-
acteristic of this trajectory is the constant velocity.

Parabolic trajectories: realized as the composition of two second degree poly-
nomials, one in the interval [t0, tf ] and the other one in [tf , t1] where tf is the flex
point. The main characteristic is that the absolute value of the acceleration is
constant with opposite sign in the two segments.

qa(t) = a0 + a1 (t− t0) + a2 (t− t0)2 , t ∈ [t0, tf ]
qd(t) = a3 + a4 (t− tf ) + a5 (t− tf )2 , t ∈ [tf , t1] . (4.3)

In order to obtain the coefficients ai, the conditions are the positions q0, qf and
the velocity v0 for the function qa(t) while for the function qd(t) the conditions
are the positions qf , q1 and the velocity v1.

Cubic trajectories:

q(t) = a0 + a1(t− t0) + a2(t− t0)2 + a3(t− t0)3, t0 ≤ t ≤ t1 (4.4)

where coefficients a0, a1, a2 and a3 are determined imposing position and velocity
at t0 and t1.



32 Chapter 4. Trajectory generation

Fifth degree polynomials: the necessity of having not only continuous posi-
tion and velocity profiles but also acceleration leads to

q(t) = a0 + a1(t− t0) + a2(t− t0)2a3(t− t0)3 + a4(t− t0)4 + a5(t− t0)5, (4.5)

where coefficients a0, a1, a2, a3, a4 and a5 are obtained imposing six conditions
on initial and final position, velocity and acceleration. The result is a smoother
profile than the cubic one which is already a smooth one.

Seventh degree polynomials: in particular cases, the request of smooth pro-
file can lead to the definition of a high degree polynomial, such as seven or higher,
if necessary.

q(t) = a0 + a1(t− t0) + a2(t− t0)2a3(t− t0)3 + a4(t− t0)4 + . . .

+ a5(t− t0)5 + a6(t− t0)6 + a7(t− t0)7 (4.6)

where coefficients a0, a1, a2, a3, a4, a5, a6 and a7 are found using eight conditions.
Section 4.1.3 deals with polynomial functions in the case of multi-point tra-

jectories and so, more details are provided.

4.1.2.2 Trigonometric trajectories

Trigonometric trajectories are characterized by non-null continuous derivatives for
any order of derivation in the interval [t0, t1]; in t0 and t1, the derivatives may be
discontinuous. There are three different analytical expressions, namely harmonic,
cycloidal and elliptic motion, which have specific characteristics in terms of curve
profiles, such as acceleration and jerk.

In this section, they are not taken into account in a deeper way since they are
not useful in aeronautics.

4.1.2.3 Exponential trajectories

Since discontinuities in the trajectory may cause vibrations and oscillations in the
machine, the use of exponential trajectories may be convenient in order to adjust
smoothness. The mathematical formulation of exponential function for velocity is

q̇(τ) = vce
σf(τ,λ), (4.7)

where σ and λ are free parameters and the possible choices for the function f(τ, λ)
are

fa(τ, λ) = (2τ)2∣∣∣1− (2τ)2
∣∣∣λ ,

fb(τ, λ) = sin πτ 2

|cosπτ |λ
.

(4.8)
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The most important decision concerns σ and λ since their values can be assigned
in order to minimize the maximum amplitude of the high frequency components
of the acceleration profile, which are related to the vibrations induced in the
machine. Conversely, the choice of fa and fb has not so great importance on the
motion profile.

4.1.2.4 Combination of elementary trajectories

The functions explained in the pages before can be combined together in order to
satisfy particular requests; for example, it could be useful to define a continuous
function not only with continuous derivatives but also with other features, such
as minimum values for the maximum acceleration and jerk. The most common
ones are the trapezoidal velocity and the double S trajectories.

A detailed explanation is provided only for the last one which is used to build
the trajectory generator.

Trajectories with double S velocity profile: this kind of trajectory is con-
structed adopting a continuous, linear piece-wise, acceleration profile. It is as-
sumed that:

jmin = −jmax, amin = −amax, vmin = −vmax, (4.9)

where jmin, jmax, amin, amax, vmin and vmax are respectively the minimum and
maximum values of jerk, acceleration and velocity.

The aim is to plan a trajectory connecting q0 and q1 that, when it is possible,
reaches the maximum or minimum values for jerk, acceleration and velocity, so
that the total duration T is minimized.

For the sake of simplicity, only the case with q1 > q0 is considered. The
boundary conditions are:

• initial and final velocities v0 and v1,

• initial and final accelerations a0 and a1, both set to zero.

Three phases can be distinguished.

1. Acceleration phase (t ∈ [0, Ta]): the acceleration has a linear profile from
the zero initial value to the maximum one, then it keeps a constant value
and finally it goes back to zero.

2. Maximum velocity phase (t ∈ [Ta, Ta + Tv]): the acceleration is equal to zero
and a constant velocity is maintained.

3. Deceleration phase (t ∈ [Ta + Tv, T ]): remembering that T = Ta + Tv + Td,
the profiles are opposite with respect to the acceleration phase.
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First of all, it is important to verify whether a trajectory can be performed sat-
isfying the constraints of Eq. (4.9). For example, the distance between q0 and
q1 may be too small in order to change velocity between initial and final values,
considering the constraints on maximum acceleration and jerk.

The conditions to be satisfied in order to have a feasible trajectory are

q1 − q0 >

 Tj
∗ (v0 + v1) , if Tj

∗ < amax

jmax

1
2 (v0 + v1)

[
Tj
∗ + |v1−v0|

amax

]
, if Tj

∗ < amax

jmax

, (4.10)

where
Tj
∗ = min

{√
|v1−v0|
jmax

, amax

jmax

}
. (4.11)

After the check shown above, it is important to compute every time interval.
There are many trajectories with only acceleration or deceleration part, other
ones which reach the maximum velocity or vice versa; for each case, the time
intervals have to be calculated in different ways which are reported in [22]. Every
possibility is not analyzed in detail; only a list of all possible time interval types
is shown below.

• Tj1: time-interval in which the jerk is constant (jmax or jmin) during the
acceleration phase;

• Tj2: time-interval in which the jerk is constant (jmax or jmin) during the
deceleration phase;

• Ta: acceleration period;

• Tv: constant velocity period;

• Td: deceleration period;

• T = Ta + Tv + Td: total duration of the trajectory.

Once the time intervals are calculated the trajectory can be computed as follows.
The case with q1 > q0 and t0 = 0 is considered.

1. Acceleration phase:

a) t ∈ [0, Tj1] 

q (t) = q0 + v0t+ jmax
t3

6

q̇ (t) = v0 + jmax
t2

2
q̈ (t) = jmaxt

q(3) (t) = jmax;

(4.12)
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b) t ∈ [Tj1, Ta − Tj1]



q (t) = q0 + v0t+ jmax
t3

6

q̇ (t) = v0 + jmax
t2

2
q̈ (t) = jmaxt

q(3) (t) = jmax;

(4.13)

c) t ∈ [Ta − Tj1, Ta]



q (t) = q0 + (vlim + v0) Ta2 − vlim (Ta − t)− jmin
(Ta − t)3

6

q̇ (t) = vlim + jmin
(Ta − t)2

2
q̈ (t) =,−jmin (Ta − t)

q(3) (t) = jmin = −jmax.

(4.14)

2. Constant velocity phase:

a) t ∈ [Ta, Ta − Tv]



q (t) = q0 + (vlim + v0) Ta2 + vlim (t− Ta)

q̇ (t) = vlim

q̈ (t) = 0
q(3) (t) = 0.

(4.15)

3. Deceleration phase:

a) t ∈ [T − Td, T − Td + Tj2]



q (t) = q1 + (vlim + v1) Td2 + vlim (t−−T + Td) + . . .

jmax
(t− T + Td)3

6

q̇ (t) = vlim − jmax
(t− T + Td)2

2
q̈ (t) = − jmax (t− T + Td)

q(3) (t) = jmin = −jmax;

(4.16)
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b) t ∈ [T − Td + Tj2, T − Tj2]


q (t) = q1 + (vlim + v1) Td2 + vlim (t− T + Td) + . . .

+ alimd

6
(
3 (t− T + Td)2

)
+ . . .

− alimd

6
(
3Tj2 (t− T + Td) + Tj2

2
)

q̇ (t) = vlim + alimd

(
t− T + Td −

Tj2
2

)
q̈ (t) = − jmaxTj2 = alimd

q(3) (t) = 0;

(4.17)

c) t ∈ [T − Tj2, T ]

q (t) = q1 + v1 (T − t)− jmax
(T − t)3

6

q̇ (t) = v1 + jmax
(T − t)2

2
q̈ (t) = − jmax (T − t)

q(3) (t) = jmax.

(4.18)

4.1.2.5 Combination of straight-line and circular-arc segments

The approach, explained in this paragraph, has been used by Volker Schneider for
the trajectory generation system of the Automatic Flight Guidance and Control
System of the TUM-FSD [31]. The main features of this method are listed below:

1. it is based on dividing the flight path in segments instead of describing the
full path as a whole;

2. a trajectory is composed by three different kind of segments, namely straight-
line, circular-arc and transitions. The first and the second one are steady-
state while the third one depends on the aircraft dynamics.

A brief explanation of each segment is reported below.

Straight-line segments: the mathematical formula is

x (k) = k

{
cosχ
sinχ

}
, (4.19)

where χ is the angle representing the line direction and k is the running parame-
ter. The issue is that the curve is not continuous differentiable at each waypoint
(named rCi in Fig. 4.3) and so the circular-arcs are introduced.
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(rC0)	

(rC1)	

(rC2)	

(rC3)	

Figure 4.3: Straight-lines trajectory

Circular-arc segments: the parameterization of a circle is provided by

(x (ϕc))c = rc

{
sinϕc

1− cosϕc

}
c

, (4.20)

where rc > 0 and ϕc is the angle defined in Fig. 4.4.

yC

xC

φC

rC(1-cosφC)

rCsinφC
rC

Figure 4.4: Circular-arc segment

Eq. (4.20) represents a right hand turn circle; if the yc component is multiplied
by −1, it represents a left turn. The arc length is equal to s = rcϕc and, as a
consequence, the curvature κ is defined by

κ (ϕc) = dϕc
ds

= 1
rc
. (4.21)
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In the case of an horizontal circular flight path with a constant trajectory speed
VT , the turn radius is expressed by

rc = VT
χ̇T
, (4.22)

where χ̇T is the turn rate.
Considering the following relationship between the turn rate and the kinematic

bank angle µK ,
tanµK = VT χ̇T

g0
, (4.23)

assuming that the aircraft is flying in wind-free condition and without any sideslip
angle, namely µK ≈ φ where φ is the Euler bank angle, the turn radius can be
written in dependence of the bank angle as

rc = V 2
T

g0 tanφ. (4.24)

The equations presented in the previous lines characterize the circular-arc seg-
ments. It is evident not only the computational simplicity but also the critical
aspect of this kind of curve. Analyzing Eq. (4.21), it is possible to notice that the
curvature is a constant non-zero value. Combining straight-line and circular-arc
segments, there is a curvature step in the points rP1 and rP4, shown in Fig. 4.5.

(rC0)	

(rC2)	

(rC3)	

(rCC)	

(rP1)	

(rC1)	

(rP4)	
rC

Figure 4.5: Trajectory with a combination of straight-lines and circular-arcs

Transitions: these segments, characterized by a smoother change in the cur-
vature, can be used to solve the problem mentioned in the previous paragraphs
regarding the step in the curvature function.

It is necessary to introduce two points, rP2 and rP3; the first one links the turn-
in and the circular-arc while the second one links the circular-arc and the turn-
out. In Fig. 4.6, transition segments are used to link two straight-lines and one
circular-arc. The clothoid curve is one of the possible solutions for the transition
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problem. It is characterized by a constantly increasing curvature, proportional to
the curve length. The specific features, such as the mathematical formulas, are
not presented in this document because they are not useful for this thesis.

Circular-arc

Straight-line

Straight-line

Transition

Transition

(rP1)

(rP2) (rP3)

(rP4)

rC

Figure 4.6: Transition maneuver between straight-line and circular arc segments

4.1.3 Multi-point trajectories
Methods to build a trajectory using all waypoints at once are considered in this
section. Differently from point-to-point trajectories, which take into account only
the initial and final points, also intermediate points are used.

4.1.3.1 Polynomial functions

A polynomial function of degree n is able to interpolate n+ 1 points:
q (t) = a0 + a1t+ · · ·+ ant

n. (4.25)
Given the points (tk, qk) and k = 0, . . . , n a unique polynomial of degree n exists.
The interpolation problem can be seen as the solution of a linear system of n+ 1
equations in n+ 1 unknowns (the coefficients ak of the interpolating polynomial).
A vector representation of the problem, using Vandermonde matrix T, can be
expressed as

q =



q0
q1
...

qn−1
qn

 =



1 t0 . . . tn0
1 t1 . . . tn1
... ... ... ...
1 tn−1 . . . tnn−1
1 tn . . . tnn





a0
a1
...

an−1
an

 = Ta. (4.26)
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If tk+1 > tk, k = 0, . . . , n − 1, the matrix T is invertible and the coefficients ak
can be computed as

a = T−1q. (4.27)
The following aspects are the main advantages of using polynomial functions.

• This technique guarantees the exact crossing of the given points.

• The function is described only by the n+ 1 coefficients.

• The derivatives of the function q (t) are continuous in the range [t0, tn]. The
n-th derivative is constant and all the higher order derivatives are null.

• q (t) is unique.
The disadvantages are listed below.

• It is characterized by inefficiency from the computational point of view and
by the possibility of numerical errors for large values of n since the condition
number of T increases with n. This problem can be avoided using Lagrange
formula or recursive formulations such as the Neville algorithm.

• The number of calculations may be heavy because it depends on n.

• The change of one point (tk, qk) brings to the re-computation of all the
coefficients of the polynomial;

• The insertion of an additional point (tn+1, qn+1) implies an higher degree
polynomial and the calculation of all the coefficients.

• The obtained trajectories usually show pronounced oscillations.

• In order to add conditions on initial, final or intermediate velocities and
accelerations, it is necessary to use high order polynomial functions and
consider other constraints on the coefficients. The consequences are the
problems related to an high value of n which have already been explained
above.

4.1.3.2 Orthogonal polynomials

An alternative to the standard polynomials is the use of orthogonal polynomials.
Their formulation of degree m is

q (t) = a0p0 (t) + a1p1 (t) + · · ·+ ampm (t) , (4.28)
where a0, a1, . . . , am are constant parameters and p0 (t) , p1 (t) , . . . , pm (t) are poly-
nomials of proper degree. The last ones are called orthogonal because they have
the following properties:

γji =
n∑
k=0

pj (tk) pi (tk) = 0, ∀j, i : j 6= i

γii =
n∑
k=0

[pi (tk)]2 6= 0,
(4.29)
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where t0, t1, . . . , tn are the instants in which the polynomials are orthogonal. It is
possible to interpolate, or approximate with a tolerance, n+ 1 given points. The
error εk for the least squares method is defined as

εk =
qk − m∑

j=0
ajpj (tk)

 , k = 0, . . . , n (4.30)

and the total square error is equal to

ε2 =
n∑
k=0

ε2k. (4.31)

If ε2 = 0, the interpolation is exact. In general, aj are calculated in order to
minimize ε2. Defining

δi =
n∑
k=0

qkpi (tk) , i ∈ [0, . . . ,m]

γji =
n∑
k=0

pj (tk) pi (tk) , j, i ∈ [0, ...,m]
(4.32)

and omitting some mathematical passages, the expression of the parameters is
given by

aj = δj
γjj

. (4.33)

The next issue consists in finding the orthogonal polynomials pj (t) and there
are a lot of different methods to find them (e.g. the Chebyshev polynomials),
but it is not treated in detail in this explanation. The advantages of orthogonal
polynomials are:

• great flexibility for the definition of a trajectory interpolating a sequence of
point;

• simplicity to use standard formulation once ai and pj (t) are found.

On the contrary, a disadvantage is that the calculation of the polynomials is not
very efficient from a computational point of view.

4.1.3.3 Trigonometric polynomials

Trigonometric polynomials are convenient when the trajectory is characterized
by a periodic motion, namely a value T exists such that q(t) = q(t + T ). The
mathematical formula of a trigonometric polynomial is

q(t) = a0 +
m∑
k=1

ak cos
(
k

2πt
T

)
+

m∑
k=1

bk sin
(
k

2πt
T

)
, (4.34)

whose coefficients are computed imposing the interpolation conditions on the
points. Given a set of points qk, k = 0, . . . , n with q0 = qn (condition of peri-
odic motion) to be interpolated at time instants tk, k = 0, . . . , n, the degree m of
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the trigonometric polynomial is found such that 2m + 1 = n. Assuming t0 = 0,
the result is that tn = T . The set of 2m + 1 system equations in the unknowns
ak, bk is

q0
q1
...

qn−2
qn−1

 =



1 c1(t0) s1(t0) . . . cm(t0) sm(t0)
1 c1(t1) s1(t1) . . . cm(t1) sm(t1)
... ... ... ... ... ...
1 c1(tn−2) s1(tn−2) . . . cm(tn−2) sm(tn−2)
1 c1(tn−1) s1(tn−1) . . . cm(tn−1) sm(tn−1)





a0
a1
b1
...
am
bm


, (4.35)

where ck(t) = cos
(
k 2πt
T

)
and sk(t) = sin

(
k 2πt
T

)
. The values of coefficients ak

and bk are computed by solving Eq. (4.35). The advantages of trigonometric
polynomials are that:

• the trajectory is periodic by construction;

• the continuity of the trajectory is guaranteed for any order of derivatives
(in other words, the trajectory is C∞ continuous). Fixing the periodic con-
ditions, the derivatives are also continuous between the initial and the final
points.

On the other hand, the negative aspects are that:
• the inversion of the matrix could require a high computational cost. The

problem can be solved using a similar form to the Lagrange formula for
polynomial interpolation, namely

q(t) =
n∑
k=0

qk n∏
j=0,j 6=k

sin
(
π
T

(t− tj)
)

sin
(
π
T

(tk − tj)
)
 . (4.36)

• The trigonometric curves show larger oscillations than the algebraic ones
and, as a consequence, larger speeds and accelerations.

4.1.3.4 Cubic splines

Given n + 1 points, it is possible to use n polynomials of degree p, usually lower
than n, for each segment instead of a unique polynomial of degree n. The function
s(t) is called spline of degree p, where the value of p is related to the number of
derivatives for which the continuity is guaranteed. The most famous kind of spline
is the cubic one which guarantees the continuity of the velocity and acceleration
at the time instants tk:

s(t) = {qk(t), t ∈ [tk, tk+1] , k = 0, . . . , n− 1} ,
qk(t) = ak0 + ak1(t− tk) + ak2(t− tk)2 + ak3(t− tk)3.

(4.37)

Since n polynomials are necessary for the definition of a trajectory through n+ 1
points and each polynomial is characterized by four coefficients, the total number
of unknowns is equal to 4n. As a consequence, it is necessary to find 4n conditions:
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• each cubic polynomial has to cross the points at the extremities and so 2n
conditions for the interpolation of the given points are provided;

• n− 1 conditions for the continuity of the velocities at the transition points;

• n − 1 conditions for the continuity of the accelerations at the transition
points.

The result is a total amount of 2n + 2 (n− 1) = 4n − 2 conditions. Since the
unknowns are 4n, other two conditions have to be found to set a well-posed
problem. Among all the possibilities, there are different constraints that can be
assigned:

• the initial and final velocities ṡ(t0) = v0 and ṡ(tn) = vn;

• the initial and final accelerations s̈(t0) and s̈(tn);

• the cyclic conditions for a periodic spline, with period T = tn − t0: ṡ(t0) =
ṡ(tn) and s̈(t0) = s̈(tn);

• the continuity of the jerk at time instants t1 and tn−1:

d3s(t)
dt3

∣∣∣∣∣
t=t−1

= d3s(t)
dt3

∣∣∣∣∣
t=t+1

,
d3s(t)
dt3

∣∣∣∣∣
t=t−n−1

= d3s(t)
dt3

∣∣∣∣∣
t=t+n−1

. (4.38)

In general, the features of a spline s(t) are:

1. the sufficient parameters for the definition of a trajectory s(t) of degree p,
interpolating the points (tk, qk), k = 0, . . . , n, are n(p+ 1);

2. given n+1 points and the boundary conditions, the interpolating spline s(t)
of degree p is univocally determined;

3. there is no relationship between the degree p of the polynomials and the
number of data points;

4. s(t) has continuous derivatives up to the p− 1 order;

5. assuming that s̈(t0) = s̈(tn) = 0, the cubic spline is, among all the functions
f(t) interpolating the given points and with continuous first and second
derivatives, the function minimizing the functional:

J =
∫ tn

t0

(
d2f(t)
dt2

)2

dt. (4.39)

It can be interpreted as a sort of deformation energy, proportional to the
curvature of f(t). With these conditions, the spline is called natural spline.
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This list provides a general overview of splines and so how to decide whether
this kind of trajectory fit in a correct way the necessities; in particular, the most
important advantage is the guarantee of continuous derivatives until p− 1 order.

On the other hand, considering the case of a cubic spline, it is not possible to
assign the initial and final velocities and accelerations at the same time and, as a
consequence, at the extremities, the spline is discontinuous either on the velocity
or on the acceleration. The solutions to this problem can be the following ones.

• Use of a fifth degree polynomial for the first and the last segments. The
cons would be to allow larger overshoots in these segments and to increase
the computational cost.

• Addition of two free extra points in the first and the last segments. Their
values are computed by imposing the desired initial and final velocities and
accelerations.

4.1.3.5 B-spline functions for trajectories with high degree of conti-
nuity

Some applications require trajectories with continuous derivatives up to an higher
order than two. In these cases, it is very useful to use splines in the B-form (called
B-splines).

s (u) =
m∑
j=0

pjBp
j (u) , umin ≤ u ≤ umax (4.40)

where u is the independent variable, Bp
j (u) are the basis functions of degree p,

defined for knot vector u = [u0, . . . , unknot
], and pj are the control points. This

approach is really useful for multi-dimensional problems but it can be used also
for the one-dimensional ones. In the latter case, the independent variable is u = t
and the general expression can be rewritten as

s (t) =
m∑
j=0

pjB
p
j (t) , tmin ≤ t ≤ tmax, (4.41)

where pj are scalar parameters. The degree p of the B-spline represents also the
degree of continuity. Knowing p and qk, k = 0, . . . , n to be interpolated at tk, the
problem consists in finding pj, j = 0, . . . ,m, which makes true the expression

s (tk) = qk, k = 0, . . . , n. (4.42)

The first passage to follow is the definition of the knot vector u. To this aim,
there are many possibilities which are not treated in a deep way in this thesis.
After that, the interpolation condition of each qk at time tk is given by

qk = [Bp
0 (tk) , Bp

1 (tk) , . . . , Bp
m−1 (tk) , Bp

m (tk)]



p0
p1
...

pm−1
pm

 , k = 0, . . . , n. (4.43)
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In order to have a unique solution, other conditions must be added (e.g. on
the velocity, acceleration, jerk, etc...). Since the parameters pm are constant, the
constraints are written using the above expression and deriving only Bp

j . A generic
formulation for all conditions may be

s(i) (tk) =
m∑
j=0

pjB
p(i)
j (tk) . (4.44)

The continuity condition of the curve and its derivatives, at the initial and final
time instants, can be also added as

s(i) (t0) = s(i) (tn) . (4.45)

All these conditions can be mixed to obtain the desired profiles. The final vector
generic formulation is the following one:

Ap = c (4.46)

where A is the matrix containing all Bp(i)
j , c is the vector containing all the values

of conditions to be satisfied in every time instant (e.g position, velocity, etc...)
and p are the parameters. Finally, the B-splines own a lot of advantages:

• they are very useful in multi-variable trajectories because of their clear ge-
ometric meaning;

• they are p− k continuous differentiable at a knot of multiplicity k;

• B-splines can be used also in one-dimensional problems since they simply
provide continuity between contiguous segments.

4.1.4 Multi-dimensional case
Multi-dimensional trajectories concern a system in a multi-dimensional space. In
this section, methods which consider the problem as a vector one, are presented.

First of all, it is useful to consider a parametric representation of a curve in
the space:

p = p (u) , u ∈ [umin, umax] (4.47)

where p is a continuous vector function whose independent variable u ranges
over some interval of the domain space. The planning of a trajectory consists in
defining:

• the function p (u), which interpolates a set of points;

• the motion law u = u (t) describing how the object should move along the
path.
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Before starting to analyze different methods, it is important to notice that, in the
3D space, two different kinds of continuity exist, namely the geometric and the
parametric ones (velocity and acceleration), and both of them must be guaranteed.

The following list explains the main different criteria for multi-variable trajec-
tories.

• Interpolation: exact fitting of the points.

• Approximation: passage near the points within a prescribed tolerance.

• Global: based on the whole set of points, it involves an optimization prob-
lem. If one point is modified, the entire curve must be changed.

• Local: based on local data for each pair of points, it causes less compu-
tational issues but, at the same time, the continuity at the joints is more
difficult to achieve. It allows to construct corners, straight-line segments
and other shapes in a simpler way. If one point is modified, only the two
adjacent segments must be changed.

The main methods for multi-dimensional trajectories are described in the following
lines.

4.1.4.1 Definition of the geometric path through motion primitives

As in the one-dimensional space, the simplest kinds of trajectory are available also
for the multi-dimensional case.

Straight lines: between two points p0 and p1, the curve is

p (u) = p0 + (p1 − p0)u, with 0 ≤ u ≤ 1. (4.48)

Circular arc: given a starting point p0, the center located on a desired axis
defined by a unitary vector z1, a generic point d and having defined r = p0 − d,
the procedure brings to the definition of the geometric path.

The radius and the position of the circle center with respect to the reference
point o0, from which also the position p0 is computed, are equal to

ρ = |p0 − o1|
o1 = d +

(
rTz1

)
z1.

(4.49)

The parametric representation of the circular arc in the reference frame centered
in o1 is

p1 (u) =

ρ cos (u)
ρ sin (u)

0

 , with 0 ≤ u ≤ θ, (4.50)

while the one in the reference frame centered in o0 is

p (u) = o1 + Rp1 (u) (4.51)
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where R is the rotation matrix between the two reference frames.
A remarkable aspect is that the trajectories computed with these techniques

show continuity but have discontinuous derivatives at the intermediate points.

4.1.4.2 Global interpolation using B-splines

Firstly, uk for each qk and a knot vector u = [u0, . . . , unknot
] have to be defined.

After that, the problem can be written in the following forms:

qk = s (ūk) =
m∑
j=0

pjBp
j (ūk) , (4.52)

qTk = [Bp
0 (ūk) , Bp

1 (ūk) , . . . , Bp
m−1 (ūk) , Bp

m (ūk)]



pT0
pT1
...

pTm−1
pTm

 . (4.53)

The cubic B-splines with p = 3 are often used.

4.1.4.3 Global approximation using B-splines

Simpler curves are used when there is the need of reducing the computational
issues through the decrease of the data points number, at the expense of lower
precision. These trajectories approximate the via-points within a prescribed tol-
erance δ.

Starting from the points q0, . . . ,qn to be approximated, considering p ≥ 1 and
providing that n > m > p, the trajectory using B-splines is expressed as

s (u) =
m∑
j=0

pjBp
j (u) , umin ≤ u ≤ umax. (4.54)

The end points are exactly interpolated, i.e. q0 = sk (0) and qn = s (1) while the
internal points qk are approximated in the least square sense, i.e. by minimizing
the functional

n−1∑
k=1

wk|qk − s (ūk) |2. (4.55)

The coefficients wk can be freely chosen to weight the error at different points.

4.1.4.4 Smoothing cubic B-splines

The formulation is the same of B-splines of order p = 3 whose control points are
computed considering the goals to find a good fit of the points and to obtain a
trajectory as smooth as possible.

In order to obtain the control points, the functional to minimize is

L := µ
n∑
k=0

wk|s (ūk)− qk|2 + (1− µ)
∫ ūn

ū0

∣∣∣∣∣d2s (u)
du2

∣∣∣∣∣
2

du, (4.56)
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where µ ∈ [0, 1] expresses the importance given to the two conflicting goals and
wk can be arbitrarily chosen to modify the weights of different quadratic errors
on the global estimation.

4.1.4.5 B-spline functions for trajectories with high degree of conti-
nuity

The use of B-splines with p > 3 can be useful when it is required to have also
continuous jerk, snap or even higher order derivatives. This approach can be used
for interpolation and also for approximation problems.

The basis is the same of the B-splines already explained and the following
considerations can be done for the interpolation problem. To build a trajectory
r times differentiable, which interpolates n+ 1 points, it is necessary to choose a
B-spline of degree p = r+1. The choice of the knots distribution uk depends on p,
which could be odd or even. If p is odd, p− 1 additional constraints are necessary
to have a unique solution while, if p is even, p additional conditions are needed.
Adding new knots and increasing the number of pj, it is possible to consider new
constraints, for example on the value of the tangent vectors.

4.1.4.6 Use of NURBS for trajectory generation

The Non-Uniform Rational B-Spline (NURBS) can represent a wide variety of
curves like circles, parabolas, ellipses, lines and hyperbolas. They can be written
as

n (u) =

m∑
j=0

pjwjBp
j (u)

m∑
j=0

wjBp
j (u)

, umin ≤ u ≤ umax, (4.57)

where Bp
j (u) are standard B-spline basis functions, pj are the control points and

wj are the weights associated to each control point. If wj = 1, j = 0, ...,m the
NURBS curves are standard B-splines. They are really useful in CAD/CAM
environments.

4.1.4.7 Local interpolation with Bézier curves

Bézier curves are used when the trajectory has to be constructed in an interac-
tive manner or when it is necessary to find a trajectory based only on local data.
Nevertheless, these techniques require to know not only the points to be interpo-
lated but also the derivatives at these points in order to guarantee the necessary
smoothness. It is possible that the tangent and the curvature directions have to
be computed; for this purpose, many methods exist. Firstly, the cubic Bézier
curves are presented:

b (u) = (1− u)3 p0 + 3u (1− u)2 p1 + 3u2 (1− u) p2 + u3p3, u ∈ [0, 1] . (4.58)
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The most important steps to obtain a trajectory interpolating qk, k = 0, . . . , n
are the following ones:

• if necessary, compute the tangent vectors tk;

• given qk and qk+1, the Bézier curve bk (u), u ∈ [0, 1], can be computed by
assuming that:

p0,k = qk p3,k = qk+1
t0,k = tk t3,k = tk+1

(4.59)

and computing the position of the internal control points p1,k and p2,k. To
do this, these expressions are used:∣∣∣b(1) (0)

∣∣∣ =
∣∣∣b(1) (1)

∣∣∣ =
∣∣∣b(1) (1/2)

∣∣∣ = α,

p1 = p0 + 1
3αt0, p2 = p3 −

1
3αt3, (4.60)

aα2 + bα + c = 0,
where

a = 16− |t0 + t3|2 ,
b = 12 (p3 − p0)T (t0 + t3) ,
c = −36 |p3 − p0|2 .

(4.61)

The fifth degree Beziér curves, characterized by six parameters, can be useful to
define a G2 continuous trajectory. Its expression is

bk (u) =
5∑
j=0

B5
j (u) pj, 0 ≤ u ≤ 1. (4.62)

Both tangent and curvature vectors tk and nk at each point qk are necessary.
For each pair (qk,qk+1) the control points are computed by imposing the con-
ditions on initial and final tangents (t0,k = tk, t5,k = tk+1) and curvature vectors
(n0,k = nk,n5,k = nk+1) assumed of unit length:

bk (0) = p0,k = qk
bk (1) = p5,k = qk+1

b(1)
k (0) = 5 (p1,k − p0,k) = αktk

b(1)
k (1) = 5 (p5,k − p4,k) = αktk+1

b(2)
k (0) = 20 (p0,k − 2p1,k + p2,k) = βknk

b(2)
k (1) = 20 (p5,k − 2p4,k + p3,k) = βknk+1

(4.63)

where αk and βk are parameters which can be freely chosen. For example, αk can
be computed by assuming that

∣∣∣b(1)
k

∣∣∣ is equal at the endpoints and at the midpoint
in addition to the fact that βk = β̄α2

k. Following this procedure, the equations,
already shown and used in the cubic expression, can be formulated also for this
case.
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4.1.4.8 Linear interpolation with polynomial blends

The trajectory, which approximates the points qk, k = 0, . . . , n with a tolerance
δ, is constructed following these steps:

• for each qk, excluding the first and the last ones (q′′0 = q0, q′n = qn), two
additional points q′k and q′′k are obtained finding the intersections between
the lines qk−1qk, qkqk+1 and a ball of radius δ centered on qk;

• a straight line is used to join the pair
(
q′′k,q′k+1

)
;

• a Bézier curve of fourth (or fifth) degree is used to interpolate the pair
(q′k,q′′k).

This method guarantees a G2 continuous trajectory which is a sequence of linear
segments lk (u) and the Bézier blends bk (u), each one defined for u ∈ [0, 1]:

p = {l0 (u) ,b1 (u) , l1 (u) , . . . ,bk (u) , lk (u) ,bk+1 (u) , . . . ,
ln−2 (u) ,bn−1 (u) , ln−1 (u)}.

(4.64)

The generic i-th trajectory segment can be named pi (u), i = 0, . . . , 2n− 2.

4.2 Fundamentals on flight path generation
This section presents the basic aspects of the flight path generation providing a
deep analysis to the ones that regard this thesis. In Section 4.2.1 the concept of
fixes and a brief description of their different categories are exposed. Section 4.2.2
presents the definition of leg and all the types used in the generation of the
trajectory for the VTOL aircraft. Finally, Section 4.2.3 provides an outline of the
possible transitions between legs, which are distinguished by International Civil
Aviation Organization (ICAO) [33].

4.2.1 Fixes
A fix is described as a specific location on the face of Earth [34]. There are different
kinds of fixes, such as Navigational Aids (NAVAIDs), waypoints, intersections
and airports. The NAVAIDs are ground stations of several types, namely Non
Directional Beacon (NDB), Very High Frequency Omnidirectional Radio Range
(VOR) and Distance Measurement Equipment (DME) [31].

Initially, NAVAIDs are the basis for the Conventional Design Procedure not
related to the area navigation. This type of flight is not optimal because it is
constrained to the location of the NAVAIDs. During the years, the development
of the technology and the use of on-board systems gives the possibility to define
a new type of navigation, called Area Navigation (RNAV). In this case, the flight
path is constructed through a list of navigation fixes, which is defined by WGS84
latitude/longitude position [31]. The advantage is that it is no more necessary to
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use a physical station, located on the ground but it is sufficient to define a list of
waypoints in the space thanks to their coordinates.

In this thesis, the list of waypoints to develop and test the trajectory genera-
tion algorithm is built by using the WGS84 coordinates taken from Google Maps
around the FSD institute at TUM.

4.2.2 Leg types

ARINC 424 is the air transport standard for the definition of the airborne system
navigation databases. The concepts of path and terminator are the basis for the
different leg types. The path describes how the aircraft reaches the terminator by
flying direct; it can be a heading, a track, a course, etc... . The terminator is the
condition for which the aircraft switches to the following leg and it can be a fix,
an altitude, an intercept, etc...[34].

The ARINC 424 standard defines 23 different leg types that can be com-
bined by RNAV systems to generate complex paths; none of the existing database
equipment is capable of using all of them. A description of the features of all
the possible leg types is reported in the Instrument Procedures Handbook of the
Federal Aviation Administration (FAA) [34].

In this thesis, only the ones useful to describe all the paths for the wingborne
phase are reported, namely initial fix, track to fix and radius to fix. The reason
is that, through these kind of legs with the add of transitions between them, it is
possible to generate complex paths between a sequence of waypoints. For what
concerns the hover phase, it is sufficient to develop similar concepts in a proper
way in order to take into account also this VTOL aircraft dynamics.

4.2.2.1 Initial Fix (IF) leg

The IF defines a fix as a point in space which is used to set the beginning of a
route [Fig. 4.7].

IF

Figure 4.7: Initial Fix

4.2.2.2 Track to a Fix (TF) leg

The TF leg defines a generic track over the ground between two known database
fixes. The preferable method to connect the waypoints is the straight leg [Fig. 4.8].
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TF	le
g

Figure 4.8: Track to a Fix leg

4.2.2.3 Radius to a Fix (RF) leg

The RF leg defines a constant radius turn between two database fixes with the
definition of a specific center fix. It is also characterized by the fact that the
previous and the next lines are tangent to the arc [Fig. 4.9].
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Figure 4.9: Radius to a Fix leg

The RF leg can be confused with the fixed-radius transition which will be
briefly exposed in Section 4.2.3. Actually, [33] sets the difference between them;
the fixed-radius transition is used during an en-route procedure while the RF leg
is useful when there is a requirement for a constant radius path during a terminal
or an approach procedure.

Since the application of the VTOL transition aircraft differs from the one of
the civil airplanes to which the Performance-based Navigation (PBN) manual is
referred, it is decided to enlarge the use of the RF leg also to en-route procedures
in order to get some results and analyze them.
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4.2.3 Transitions

The last fundamental aspect of the path construction is the characterization of the
transitions between flight legs. ICAO distinguishes between three different types
of transition, namely fly-by, fly-over and fixed-radius [33]. The most important
information, useful to the development of this thesis, are reported below.

4.2.3.1 Fly-by transition

The fly-by transition is defined as a turn which is anticipated with respect to
the prescribed waypoint in order to connect the two legs without any overshoot.
Knowing the turn radius, it is necessary to compute two new waypoints that
substitute the original one and are the beginning and the end of the turn. The
RTCA DO-236B limits the path within a theoretical transition area defined by
the connection of the previous and next waypoints through a circular arc segment;
if the aircraft remains in this area, the trajectory is considered valid [31].

Fly-By	Waypoint

Previous	fix

Path

Containment	area

Next	fix

Figure 4.10: Fly-by transition

In Fig. 4.10, the solid line is the flight path while the region restricted by the
dashed lines is the containment area.

4.2.3.2 Fly-over transition

The fly-over transition is characterized by the fact that the aircraft starts the
turn to a new course only after being passed over the fix. The disadvantages
with respect to the fly-by transition are the presence of the overshoot and the
impossibility to set a containment area [Fig. 4.11].
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Fly-Over	Waypoint

Calculated	Waypoint

Figure 4.11: Fly-over transition

4.2.3.3 Fixed-radius transition

The fixed-radius transition is a fixed radius turn between two legs of a route. It
is used when there is the necessity to have a predictable path since there is a
predefined radius.

Waypoint

Calculated	Waypoints

Transition	radius

Containment	area

Figure 4.12: Fixed-radius transition

The containment area can be determined in relation to the kind of operation
that is considered, for example when it is necessary an exact maneuver or the
airspace does not allow a big transition area [Fig. 4.12]. Since there are no par-
ticular constraints on the airspace, the thesis does not use this type of transition.

4.3 Motivation for the chosen approach
Once the problem of trajectory generation is introduced by providing a brief disser-
tation of all kinds of trajectories, used not only in aeronautics but also in robotics,
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the aim of this section is to explain what are the features and the constraints of
the trajectory that the aircraft has to follow and what is the motivation of the
chosen approach.

In general, the trajectory of an aircraft in the space is a three-dimensional
problem and, also in this thesis, the trajectory generation block has to satisfy the
same requirement since the flat outputs are the components of position, x, y and
z. To treat the multi-dimensional problem, two approaches are available.

• The first one is based on the use of multi-dimensional approach introduced
in Section 4.1.4. The advantage is that there are specific methods to deal
with it which already return the solution as a vector.

• The second one consists in splitting the entire problem in three scalar ones.
The advantage is that the one-dimensional strategies, simpler than the
multi-dimensional ones, can be used. The con is that the synchronization
of time is needed to guarantee that each scalar component can be unified to
the other ones in a unique vector maintaining a physical meaning.

The decision is to solve a set of scalar problems; the simplicity of the trajectory
formulation, despite the necessity of synchronization, is preferred to the advan-
tages of the multi-dimensional approach.

Between the two sub-categories, namely point-to-point [Section 4.1.2] and
multi-point trajectories [Section 4.1.3], it is decided to use the first one for the
following aspects:

• in aeronautics, different types of trajectories may be used between each
couple of points to take into account all the flight phases;

• using the multi-point trajectory, an overshoot can occur more frequently;

• another negative aspect of multi-point trajectory is that it is necessary to
re-calculate the coefficients for the entire path each time a point is added,
removed or changed.

These reasons lead to build the entire trajectory as a sequence of point-to-point
segments.

A fundamental constraint, which influences the kind of chosen trajectory, is
the continuity not only in the position but also in the first and second derivatives,
namely speed and acceleration. The reason is that having a discontinuity in them
is unfeasible in a real problem. For what concerns speed, the continuity does not
concern only the modulus but also the direction. Considering the combination of
straight lines and circular arcs of Section 4.1.2.5, it is not sufficient to impose that
the speed on each straight line is equal to the same value because the change of
direction causes a step in its three components. Similarly, the same consideration
on modulus and direction can be done for the acceleration; referring to the same
example, the constant value and the continuity of speed does not guarantee the
continuity of acceleration. As a matter of fact, the connection of a straight line
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and a circular arc causes a sudden change in the curvature, which is related to
the centripetal acceleration and, as a consequence, a discontinuity in the profile
of total acceleration.

Between all the available trajectories, the decision is to combine first and fifth
degree polynomials in order to describe the basic maneuvers of wingborne and
hover phase. The motivations are reported below.

• First degree polynomial gives the possibility to set two conditions and so,
it is used when two points have to be connected by a straight line with a
constant speed [par. 1 of Section 4.1.2.1].

• Fifth degree polynomial is constructed imposing six conditions. For this
characteristic, it can be used whenever a curve along the entire path is
required without loosing the continuity; the reason is that it is possible to
set not only the initial and final positions but also a specific value of initial
and final speeds and accelerations [par. 4 of Section 4.1.2.1]. This type of
function is useful also in the case of vertical displacements for which more
information are added in Section 4.4.4.

For the horizontal acceleration and deceleration phases, a double S trajectory is
chosen. It is worth to notice that, for the former phase, only the first part of
double S, namely the acceleration and constant speed, is considered while for
the latter one, the portion of constant speed and deceleration is used. The great
advantage is also that the maximum absolute value of acceleration is not overcome
[Section 4.1.2.4].

Since the saturation of the track rate can be required, also circular arc is
implemented because it is the only trajectory that, thanks to a constant angular
rate, can provide a constant track rate value [par. 2 of Section 4.1.2.5].

4.4 Description of the simulink model
In the previous sections, all the fundamentals of the trajectory generation problem
in the aeronautical field are introduced and the reasons of how the algorithm is
constructed to satisfy all the requests, are explained.

This section contains the description of the model which is realized on MATLAB

& Simulink software. As explained in Section 4.1, the trajectory generation
block receives the waypoint list and the speed as inputs while provides the flat
outputs and their derivatives as outputs.

The model is built through a step by step procedure. It is worth to remember
the hypotheses of constant gravity and no wind. Firstly, only the wingborne phase
is taken into account under the hypothesis of 2D trajectory, so that the γ angle
is fixed to zero. The initial approach provides a profile of speed modulus variable
in time, in particular during the curves; since another request is to maintain a
constant speed during the wingborne phase, a scaling in time is introduced to
reach this goal. A further requirement, caused by a physical constraint, consists
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in keeping χ̇ under a prescribed value. After that, the model is generalized elimi-
nating the hypothesis of γ = 0 deg in order to consider also climb path and, as a
consequence, the trajectory always results as a 3D one. Finally, the last passage
is to add the hover phase; it means introducing not only all the dynamics of a
quadcopter but also the transition between the two phases.

Each subsection regards a part of the final complete model. In Section 4.4.1,
the waypoint list is treated in a deep way. Section 4.4.2 and Section 4.4.3 tell
respectively how the transformation of the waypoint list in the local NED frame
is performed and how the geometrical computations are done to generate the new
waypoint list. This one is used in the algorithm, presented in Section 4.4.4, to find
the flat outputs. Finally, Section 4.4.5 shows the last necessary manipulations to
provide the outputs as vectors.

4.4.1 Waypoint list
The waypoint list is one of the two inputs of the trajectory generation block. It
is a sequence of points in the space which are defined in the main code as vectors
of dimension four; in Table 4.1, each element of the vector is associated to a
feature of the waypoint. The ID number varies between 0 and 9 and each of these

Element Feature Measurement unit
id ID Number -
lat Latitude deg
long Longitude deg
h Altitude m

Table 4.1: Waypoint features

values corresponds to a specific kind of leg. The procedure for the definition of
the waypoint list follows this logic: considering two fixes, the information about
the type of segment that connects them are contained in the second fix of each
couple. This decision is a precise request also justified by what is reported in the
handbook of FAA [34], used as reference for the classification of the fixes and legs;
as a matter of fact, the latter one cites the ARINC 424 specification which defines
a leg through the concept of path and terminator and so the choice to insert all
the features in the second fix is reasonable.

The motivation to set this wide categorization comes from the necessity to
describe all the flight phases of the VTOL aircraft. The first passage is to take
into account the wingborne phase and the hover one in a separate way since their
dynamics are completely different. Secondarily, it is necessary to consider the
transition between the two phases and to define legs in which this procedure is
completed.

The initial fix represents the beginning of a trajectory both for the wingborne
and the hover phases.
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For what concerns the wingborne phase, the types of legs that are developed are
the track to a fix and the radius to a fix. TF is used to generate a path between two
following waypoints with straight legs as preferred method [34]. Despite ARINC
424 defines specific legs for climb path, such as fix to an altitude or course to an
altitude, TF developed in this thesis can be used not only for a displacement in
a plane but also for a three-dimensional one in order to avoid the use of another
leg and make the algorithm simpler. For the TF leg, it is also important to
characterize the transition to the next leg whenever it is necessary. Specifically,
the 0 ID number is referred to a TF leg which reaches the fix and no transition is
required; for example, it is the case of TF leg before a RF leg because the latter
one is built to guarantee the continuity. The 1 and 2 ID numbers are used in the
case of TF leg with fly-by and fly-over transitions respectively. From now on, these
two cases are called fly-by and fly-over waypoints for simplicity. As anticipated
in Section 4.2.3, the fixed-radius transition is not taken into account. As already
mentioned, radius to a fix leg connects the two waypoints with a curve and it can
be used when a huge change in the track angle is required.

On the other hand, the hover phase requires that the aircraft stays in the
hovering position, changes altitude by moving vertically along a straight line and
completes a fly-by maneuver to reach the next leg. For the second request, a
similar idea to TF along the vertical axis is defined and for the third one, the
concept of vertical fly-by waypoint is introduced. The latter one is realized by the
authors in order to perform a change in altitude with a smooth transition between
the vertical (or horizontal) plane and the horizontal (or vertical) one before (or
after) an acceleration (or deceleration) phase.

The last part is to consider the acceleration and deceleration maneuvers be-
tween two predefined speeds. The features related to each ID number are reported
in Table 4.2.

ID Number Leg Phase
0 Track to a Fix leg Wingborne
1 Fly-by waypoint Wingborne
2 Fly-over waypoint Wingborne
3 Radius to a Fix Wingborne
4 Vertical fly-by waypoint Hover
5 Acceleration phase Wingborne/Hover
6 Deceleration phase Wingborne/Hover
7 Hovering Hover
8 Change in altitude Hover
9 Initial Fix Wingborne/Hover

Table 4.2: Meaning of the ID numbers
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Figure 4.13: Trajectory generator
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4.4.2 Transformation in the local NED frame
The first important manipulation, to be done on the waypoint list, consists in the
transformation of the coordinates from the WGS84 reference system (lat, long, h)
to the local NED one (x, y, z) having as origin the position of the FSD institute. In
addition to this change of coordinates, the new waypoint list contains the values
of χ and γ, which are the track and the climb angles respectively. These quan-
tities are calculated for the connection legs between every couple of waypoints.
In the scheme of Fig. 4.13, the subsystem named WPtoNEDframe provides the
transformation explained. Fig. 4.14 shows the internal scheme of the subsystem.

1
wp_list

wp_ref

wp_list_geodetic

wp_NED

5

DefinitionWPNED

1
wp_NED

wp chifor	{	...	}

ComputationOfChi
1

wp Gammafor	{	...	}

ComputationOfGamma

Figure 4.14: Transformation in the local NED frame and addition of χ and γ

The input is the waypoint list explained in Section 4.4.1 and the constant
corresponds to the position of FSD institute. The main important blocks are
DefinitionWPNED, ComputationOfChi and ComputationOfGamma. The out-
put wpNED contains χ and γ and it is constructed thanks to the use of Reshape
and Matrix Concatenate blocks. For the first waypoint, χ and γ angles are set
to zero while for all the other waypoints they are referred to the leg which comes
before them, as explained in Section 4.4.1.

4.4.2.1 Definition of waypoint list in the local NED frame

DefinitionWPNED is a For Each block, which always uses the same values for
the reference waypoint and let flow all the other ones [Fig. 4.15].

For	Each

For	Each

1
wp_NED2

wp_list_geodetic

1
wp_ref

wp_ref

wp_list_geodetic
wp_NED

Geodetic2NED

Figure 4.15: For each block
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For every waypoint, the Simulink block LLAtoECEF, contained both in Geode
tic2ECEF_ref and Geodetic2ECEF, transforms the coordinates from WGS84
system to ECEF reference frame, as shown in Fig. 4.16. Finally, the subtraction
and the matrix multiplication are used to pass into the local NED frame. The
first one centers the origin of the new reference frame while the second one aligns
the axes in the direction of the NED frame.

mu_lambda_ref

h_ref
wp_ref_ECEF

Geodetic2ECEF_ref

mu

lambda

h

wp_ECEF

Geodetic2ECEF

μ	l DCMef

Matrix
Multiply

1
wp_ref

2
wp_list_geodetic

1
wp_NED

Figure 4.16: Transformation in the local NED frame

4.4.2.2 Computation of χ angle

For
Iterator1	:	N

For	Iterator

1
wp

Select
Columns

In1
Out1

Idx

Select
Columns

In1
Out1

Idx
1
chi

wp_0

wp_1

chi_rad

ComputationOfChi	

chi_rad chi

0to2pi

U

Idx11

YA

Figure 4.17: For Iterator block of χ computation

The value of χ for every couple of waypoints is calculated as shown in Fig. 4.18
using

χ = arctan y1 − y0

x1 − x0
. (4.65)

Starting from x and y coordinates and thanks to the use of atan2 block, the
value of χ is reached. In order to pick every couple of waypoints one by one, a for
iterator is used [Fig. 4.17].
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atan2
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wp_1

1
chi_rad

Figure 4.18: Computation of χ

The 0to2pi block, shown in Fig. 4.19 guarantees that the value of χ is the
correct one. The problem is that atan2 block in Fig. 4.18 provides angles only
between −π and π; this output enters the scheme in Fig. 4.19 which returns a
value of the track angle in the proper quadrant, namely with χ ∈ [0, 2π].

1
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isGeq0

piConst
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CompareToConstant
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T

F

isSmaller0

<	0
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Figure 4.19: Conversion from χ ∈ [−π, π] to χ ∈ [0, 2π]

4.4.2.3 Computation of γ angle

A For Iterator block is used with the same purpose of the one explained before
for χ [Fig. 4.20].

Once the coordinates in O frame of the two waypoints are picked, the value of
the climb angle is reached using

γ = arctan z0 − z1√
(x1 − x0)2 + (y1 − y0)2

. (4.66)
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For
Iterator1	:	N

For	Iterator
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Figure 4.20: For Iterator block of γ computation

The block atan2 provides γ ∈ [−π, π]. It is fine because the climb angle physically
remains included between −π/2 and π/2 along the entire trajectory. Differently
from the procedure used to compute the track angle, γ does not need further
manipulations [Fig. 4.21].

atan2

1
wp_0

2
wp_1

1
Gamma_rad

Figure 4.21: Computation of γ

4.4.3 Geometry calculation and definition of new way-
point list

Once the waypoint list is transformed from the WGS84 coordinates to the local
NED frame, the next step is to make the geometry calculation when it is needed or
to change only the ID number with the ones used in the algorithm; so, this passage
brings to the definition of a new waypoint list. This is the aim of ConversionWP
block of Fig. 4.13.
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The inputs are the waypoint list wpNED obtained in WPtoNEDframe block and
the vector of speeds, named vk and defined in the main code. Fig. 4.22 shows
that this block is composed by two sub-blocks: ComputationOfNewWPMatrix

and ExtrapolationNewWP. The output (called wp) is a matrix which contains
the new waypoint list. It is worth to notice that its dimension, in particular the
number of columns, depends strictly on the ID numbers, as it will be explained
in the following pages.

1
wp

1
wp_NED

wp_NED

v_k

wp_new_matrixfor	{	...	}

ComputationOfNewWPMatrix

wp_new_matrix wp

ExtrapolationNewWP2
v_k

Figure 4.22: Conversion of waypoint block

4.4.3.1 Computation of the new waypoint matrix

This block is the main part of the geometry calculation since it is the one that
analyzes all the waypoints and makes the necessary computations to obtain the
new waypoint list. The number of Switch Case conditions is equal to ten because
it is the same of the possible ID number, listed in Section 4.4.1.

Some Case Action blocks need only the current waypoint (named wp1), other
ones need also the next one (named wp2) and finally other ones need both the
next waypoint and the previous one (named wp0) in addition to wp1. In order
to make it possible, a For Iterator block is used with the combination of a
Variable Selector.

When only the change of ID number is required, simple Simulink schemes are
sufficient while in the cases of complex geometry computations MATLAB Function

blocks are used.
The output of all Case Actions must have the same dimension to ensure

that the Merge works properly. Specifically, the maximum dimension of the out-
put is equal to twelve because two waypoints are contained in the vector; if a
Case Action block provides only one waypoint, a vector of zeros has to be added.

The last remark is that the first position of each new waypoint is given in
relation to the kind of curve that has to be calculated in the algorithm. A specific
analysis will be done in Section 4.4.4. A deep view to all the Case Actions is
reported below.

Case 0: receiving wp1 as input, it returns the same waypoint with the add of
zeros vector.
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Case 1: receiving wp0, wp1, wp2, vk and χ̇des as inputs, the output is the vector
containing the two calculated waypoints for the fly-by maneuver during wingborne
phase.

The sturn, which is the distance between fly-by fix and the two calculated
waypoints, is found approximating the transition as a circular-arc segment. The
first passage is to calculate the αt angle:

∆χ = |χ2 − χ1|,
αt = |π −∆χ|.

(4.67)

Then, the radius rc is found:
χ̇ = χ̇des

π

180 ,

rc = vk
χ̇

(4.68)

where vk = 25 m/s and χ̇des is the desired track rate imposed by the user in the
main. Finally, the formula for sturn is

sturn =
∣∣∣∣∣ rc
tan αt

2

∣∣∣∣∣. (4.69)

Starting from wp1, in particular the position r1, the geometry calculation of the
two fly-by waypoints, namely r3 and r4, is

r3 = r1 + S1
r0 − r1

‖r0 − r1‖

r4 = r1 + S2
r2 − r1

‖r2 − r1‖
,

(4.70)

where S2 = S1 = sturn and it must be less than the distances r0r1 and r1r2 so
that r3 and r4 remain on the connection legs.

For what concerns wp3 there is an if on the id0 value so that the function
is generalized and can work not only for a fly-by waypoint during wingborne but
also for a "first" fly-by waypoint; this name is referred to the case in which the
fly-by is the first waypoint after an hover one and so an acceleration is necessary
to reach the standard wingborne speed of 25 m/s.

wp3 = [4; r3;χ1; γ1] , if id0 = 4, 6, 7
wp3 = [0; r3;χ1; γ1] , all the other cases

(4.71)

where the if is done in that way because 4, 6 and 7 are the ID number referred
to the hover phase. Defining wp4 as

wp4 = [1; r4;χ2; γ2] , (4.72)

the last passage is two build the output vector wpflyby as a concatenation of wp3
and wp4.

The complete MATLAB Function is reported in Appendix A.1.
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Case 2: receiving wp1 and wp2 as inputs, the output wpflyover is the vector
containing wp1 and the calculated waypoint of the end of the fly-over maneuver.
The latter one is obtained with the following formula:

r3 = r1 + S
r2 − r1

‖r2 − r1‖
(4.73)

where S = 2/3 (distance) and

distance =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (4.74)

As done for the previous case, wp1 and the waypoint just calculated are concate-
nated in the vector wpflyover:

wp1 = [0; r1;χ1; γ1]
wp3 = [1; r3;χ2; γ2] .

(4.75)

The complete MATLAB Function is reported in Appendix A.1.

Case 3: before explaining the calculations, it is important to remember that the
input wp1 is the end of the RF leg while the input wp2 is the following waypoint.
The approach for which the end of the RF leg contains its ID number is a decision
done by the authors of this thesis, already reported in Section 4.4.1.

The output is the vector containing the position r1 of waypoint wp1 but the
χ and γ angles are the ones of wp2 since the ones contained in wp1 represent
the straight line connecting wp0 and wp1. A vector of zeros is added to have the
correct dimension in the following way:

wpradiustofix = [1; r1;χ2; γ2; zeros(6, 1)] . (4.76)

The complete MATLAB Function is reported in Appendix A.1.

Case 4: receiving wp0, wp1, wp2 and the distance of vertical fly-by imposed
by the user and named vertflybydist

, the output is the vector containing the two
calculated waypoints for the vertical fly-by maneuver. The procedure is more or
less the same of the Case 1; differently from this case, the distance sturn is not
computed with the hypothesis of circular-arc segment (and so setting the desired
track rate) but it is directly fixed by the user as vertflybydist

.
Starting from the position r1 of waypoint wp1, the geometry calculation of the

two fly-by waypoints, namely r3 and r4, is

r3 = r1 + S1
r0 − r1

‖r0 − r1‖

r4 = r1 + S2
r2 − r1

‖r2 − r1‖

(4.77)

where S1 = S2 = vertflybydist
.
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For what concerns wp3, there is an if on the value of the distance in the vertical
axis (z2−z0) in the algorithm so that the MATLAB Function works properly both
for an upwards fly-by and for a downwards fly-by:

wp3 = [2; r3;χ1; γ1] , if z2 − z0 < 0
wp3 = [5; r3;χ1; γ1] , if z2 − z0 > 0.

(4.78)

In addition, defining wp4 as

wp4 = [3; r4;χ2; γ2] , (4.79)

the output vector wpverticalflyby is the concatenation of wp3 and wp4.
The complete MATLAB Function is reported in Appendix A.1.

Case 5: receiving wp1 as input, the output vector wpaccphase is equal to the input
with the unique difference on the first element which is set to 4, the ID number
of the acceleration straight line. For the reason exposed above, a zeros vector is
added.

Case 6: receiving wp1 as input, the only change is on the first position of the
output vector wpdecphase which has to be equal to 5, the code corresponding to the
deceleration straight line. Also in this case, a zeros vector is added.

Case 7: receiving wp1 as input, it is only changed the first position of the output
vector wphover which has to be 6, the code corresponding to the hovering; also in
this case, a zeros vector is added.

Case 8: receiving wp1 as input, the manipulations done in this block are quite
similar to the previous cases because it is only changed the first position of the
output vector wpvertdisp with the correct code 2 corresponding to the vertical
displacement and a zeros vector is added.

Case 9: the initial fix does not need any particular change.

4.4.3.2 Extrapolation of new waypoint list

The output of the previous block is a matrix of (2(m+2))×n dimension where m
and n are respectively the number of rows and columns of the original waypoint
list, 2 is added because the track and climb angles are inserted in WPtoNEDframe

block and finally, the multiplication by 2 is due to the fact that some Case Action

outputs contain two waypoints.
There are two problems: the first one is that a zeros vector is added in some

Case Action blocks so that the Merge one works; the second one is that the
matrix (2(m + 2)) × n has to be transformed into a (m + 2) × (2n) since each
column corresponds to a new wapoint.
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The ExtrapolationNewWP, represented in Fig. 4.23, has this aim. The Reshape
block let that the matrix is transformed from a (2(m+ 2))×n to a (m+ 2)× (2n)
dimension one. The Variable Selector, in the select columns mode, extrapo-
lates only the useful calculated waypoints eliminating the zeros vectors. This is
possible because in the main a variable, called indvector, is defined to select only
the proper waypoints.

1
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1
wp_new_matrix

R
Select
Columns

In1

Out1

Idx

Figure 4.23: Extrapolation of new waypoint list block

4.4.4 Algorithm
The Algorithm block receives the new waypoint list, computed in Fig. 4.22,
the vector of speed vk and a vector containing the limits of acceleration and jerk
modulus (acclimits). It is a For Iterator and, thanks to a Variable Selector

set in the columns mode, the current waypoint (wp1), the next and the previous
ones (respectively wp2 and wp0) are extrapolated.

The TypesOfTrajectory and SavingDataForEachIteration blocks, shown
in Fig. 4.24, are deeply described in the next paragraphs.
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Figure 4.24: Algorithm block

The outputs are matrices of dimension equal to (s − 1) × 1000 where the
number of rows is related to the segments generating the entire path and the
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number of columns is equal to the discretization fixed by the authors. The total
number of outputs is equal to eleven; nine of them are referred to the components
of position vector and their first two derivatives while two of them are referred
to the time. The presence of two different time matrices will be explained in the
next paragraphs.

4.4.4.1 Different types of implemented trajectories

The algorithm is the core of the trajectory generator because it is the block which
computes each segment of the entire path. As explained in Section 4.4.3, a new
ID number is associated to the calculated waypoints in relation to the type of leg.
Table 4.3 lists all kinds of trajectories.

ID Number Trajectory
0 Horizontal straight line
1 Horizontal curve
2 Vertical acceleration and deceleration
3 Vertical curve
4 Horizontal acceleration
5 Horizontal deceleration
6 Hovering

Table 4.3: Types of trajectory used in the algorithm

As made in the ComputationOfNewWPMatrix, a Switch Case block is used
to deal with all kinds of trajectories. Depending on the value of the ID number,
the correct Case Action block is selected and, using a MATLAB Function, the
variables x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈, t, t′ are computed. Finally, eleven Merge blocks,
related to each output, choose the result of the proper Case Action.

A detailed dissertation of all the trajectories is reported in the next paragraphs.
It is important to remember that, in all the cases in which a time scaling is not
necessary, the new time vector t′ is equal to the original one t.

Horizontal straight line: this trajectory is used to connect two waypoints
when it is necessary to move along a straight line with a constant speed of 25 m/s
during wingborne phase. Despite the name and as mentioned in Section 4.4.1,
this type of leg is general because it is also possible to move with a desired climb
angle γ. The mathematical formulation is a first degree polynomial and it is
implemented in a MATLAB Function named horizontalstraightline.

The inputs are wp0, wp1 and the speed vector vk. First of all, the extrapolation
of all the waypoints information is performed. In order to compute the coefficients
of the first degree polynomial, it is necessary to know the whole time frame of
the straight line, named ∆t. Knowing the distance in 3D space between the two
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points and the constant speed, ∆t is obtained using

∆t = distance

vk
. (4.80)

After that, the vector of time t is built using linspace with one thousand values
and setting ∆t as the last one.

Considering the formulation of a first degree polynomial in Eq. (4.2), reported
in Section 4.1.2.1, the coefficients are found using the information on position
at initial and final times; evaluating Eq. (4.2) in time t, the position is easily
computed.

As explained in Section 4.3, the three directions are treated separately but,
using the same time vector, the synchronization is guaranteed by construction.

The complete MATLAB Function is reported in Appendix A.2.

Horizontal curve: this trajectory is used to connect two waypoints when a
change of χ angle is requested, i.e. when a fly-by transition or a fly-over one
or when a RF leg has to be performed. As in the straight line, it is possible to
move with a desired climb angle γ. Fifth degree polynomial is chosen for this
kind of curve as already explained in Section 4.3 and a MATLAB Function named
horizontalcurve is built in order to implement the computations of this leg
type.

The function inputs are the same ones of horizontalstraightline, namely
wp0, wp1 and vk. First of all, the information of the two waypoints are extrapo-
lated. Differently from the previous case, two possibilities to compute an approx-
imation of the time are implemented except for the fly-over maneuver. The first
one is the same of Eq. (4.80) used in horizontalstraightline while the second
one consists in approximating the curve as a perfect circular arc. The procedure
is listed below:

• knowing χ of the two waypoints, the coefficients of the tangents and the
perpendiculars to the trajectory are found;

• the intersection of the perpendicular lines is computed and it is the center
of the circle (xcenter, ycenter);

• knowing the radius rc and the angle to be swept ∆φ, the circular-arc length
larc is obtained using

rc =

√
(x0 − xcenter)2 + (y0 − ycenter)2 +

√
(x1 − xcenter)2 + (y1 − ycenter)2

2 ,

∆φ = π − αt, αt = |π −∆χ|, ∆χ = |χ1 − χ0|,
larc = ∆φrc;

(4.81)

• ∆t is calculated with Eq. (4.80) where distance = larc and vk = 25 m/s.
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The vector of time is split into one thousand values thanks to linspace.
Once the time is constructed, the values of position, speed and acceleration,

at initial and final instants, are needed to calculate the coefficients of the fifth
degree polynomial. The position is simply extrapolated from the input vectors
while the acceleration is set to 0 m/s2 in the three directions, both at the initial
time and at the final one. For what concerns the speed, the modulus is equal to
25 m/s and the values of the components are computed rotating the results from
the K frame to the O one. The rotation matrices at the initial and final times are
reported in Eq. (3.14) where χ and γ are equal to χ0 and γ0 at the initial time
and to χ1 and γ1 at the final time.

Knowing the six boundary conditions for every direction, the coefficients are
easily computed and so, every value of position, speed and acceleration is evaluated
in the one thousand time instants using Eq. (4.5) shown in Section 4.1.2.1.

The fifth degree polynomial guarantees the continuity of the variables already
explained in Section 4.3 but it does not satisfy the constraint of constant veloc-
ity. Since the latter one is a prescribed requirement, a further implementation is
needed. As suggested in [22], a scaling in time is the solution to reach this goal.
In particular, Section 5.2 of the book provides a general brief explanation of what
does it mean. Given a trajectory

q = q (t) , (4.82)

it is possible to modify the profiles of velocity, acceleration, etc..., by considering
a new time variable t′ related to t by means of a strictly increasing function
t = σ (t′). The consequence is that:

q̃ (t′) = (q ◦ σ) (t′) = q (σ (t′)) (4.83)

while the velocity and the acceleration are

˙̃q (t′) = dq (σ)
dσ

dσ (t′)
dt′

¨̃q (t′) = dq (σ)
dσ

d2σ (t′)
dt′2

+ d2q (σ)
dσ2

(
dσ (t′)
dt′

)2

.

(4.84)

Therefore, the time derivatives of q̃ (t′) can be changed according to the needs by
properly defining the function σ.

These equations are the starting point but useful information on how to define
σ and its derivatives in order to maintain a constant speed are taken by an example
reported in Section 9.4 of [22]. This part of the book analyzes the motion law
of multi-dimensional trajectories and the method to have a constant velocity; the
same formulae of u′ and u′′, the first and second derivatives of the motion law with
respect to time, are used for the derivatives of σ. Their expressions are reported
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below and their demonstration is in [35].

dσ (t′)
dt′

= vc
vmod (t)

d2σ (t′)
dt′2

= −v2
c

v (t)T · a (t)
vmod (t)4

(4.85)

where vc = 25 m/s is the constant speed in the K frame, v (t) is the speed vector
in time, vmod is its modulus and a (t) is the acceleration vector in time. dσ(t′)

dt′
and

d2σ(t′)
dt′2

are called λv and λacc in the horizontalcurve. All these quantities are
computed with the fifth degree polynomial before the scaling in time. Thanks to
Eq. (4.85) and using Eq. (4.84), the new values of speed and acceleration in every
direction can be calculated without changing the position values. Finally, also the
new time vector t′ is computed thanks to

t′ = t

λv (t) . (4.86)

Another request, which has to be satisfied, is that the maximum value of χ̇
must remain under a value fixed by the user, namely χ̇max. This goal can not be
achieved thanks to another scaling in time, because it may ruin the results which
maintain a constant speed, but there are three other possible ways.

• The first one is a good planning of the flight; if the waypoint list has proper
distances and angles between the points, the overcome of the χ̇ limit can be
avoided.

• The second one concerns only the fly-by maneuver and consists in reducing
the value of χ̇des used to compute the sturn distance.

• The third one, which is implemented in the MATLAB Function named
saturationchidot and which has the maximum value of χ̇, the speed
and the output of horizontalcurve as inputs, consists in replacing the
fifth degree polynomial points in the instants in which the limit is exceeded
with a circular arc.

The last option allows to maintain the value of χ̇ constant and equal to the
maximum admissible value during the circular arc. As expected, hypothesizing
that the first point remains in the same position, the final one changes and all the
trajectory after the curve is shifted; the insertion of a further constraint plus to
the already existing one on the speed generates this constraint on the geometry.
If there are more than one curve along the trajectory which overcome the limit,
the shifts are added one to the other. It could be seen as a problem but it can also
be an automatic way of giving a new waypoint list which can be followed keeping
into account the constraints on constant speed and maximum value of χ̇.
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In order to place the circular arc in the right position and to not create dis-
continuities, the flatness relationships are used to compute χ̇, χ and γ along the
fifth degree polynomial curve. First of all, making a comparison between the val-
ues of χ̇ and the limit, the points to be replaced are found. After that, using
the formulation of Eq. (4.20) and the other related equations, the new values of
position, speed and acceleration in the K frame are computed. These computa-
tions concern only the x and y directions, because the circular arc formulation
has meaning only in the 2D space. Finally, a rotation of these results in the O
frame and also the connection between the first part of fifth degree polynomial,
the circular arc and the second part of fifth degree polynomial are necessary. For
what concerns the z direction, no differences between the new trajectory and the
previous one are implemented. The function is able to understand whether the
limit is overcome or not thanks to an if condition and, as a consequence, if it is
necessary to make all these calculi or maintain the results of horizontalcurve
unchanged.

Both the horizontalcurve and the saturationchidot are reported in Ap-
pendix A.2.

Vertical acceleration and deceleration: this trajectory is a vertical straight
line used for a change in altitude during the hover phase. The choice is to use a fifth
degree polynomial since it is necessary to impose the initial and final conditions
on the speed and acceleration to guarantee the continuity. verticalaccdec is
the MATLAB Function in which the algorithm is implemented.

The required inputs are wp0, wp1, wp2 and the speed vector vk. After having
extrapolated the data from the waypoints, the first passage is to define the absolute
value of the initial and final speeds. Since the function has to be general, an if

condition is used to associate the correct values to the speeds. Specifically, there
are three different cases whose description is reported below. It is worth to notice
that the first two ones are grouped in the same option of the if which checks
the ID number value of the next and previous waypoints respectively. The choice
between them depends on the sign of z1−z0; remembering that the positive z-axis
points downwards, the displacement is upwards if the difference z1−z0 is negative
and vice versa.

• The first one is a vertical displacement upwards before a vertical fly-by
waypoint; since it is a movement along the negative z-axis, the speed has a
negative sign. For these reasons, the initial speed is equal to 0 m/s while
the final one is set to −2 m/s so that the continuity with the following
segment is guaranteed. As a matter of fact and as it will be explained
in its paragraph, it is decided that the vertical fly-by maneuver has to be
completed at a constant speed modulus equal to 2 m/s.

• The second one is the opposite case of the previous one, namely a vertical
displacement downwards after a vertical fly-by waypoint. Since the aircraft
has to move downwards, the speed has a positive sign. In particular, the
initial speed is set to 2 m/s while the final one is set to 0 m/s.
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• The third one concerns a general change in altitude between two waypoints
with speed equal to 0 m/s, for example two hovering waypoints. So, the
initial and final speeds are set equal to 0 m/s.

Since the displacement is only vertical, the speed is in the z direction and so the
x and y components have to be set to 0 m/s. For what concerns the acceleration,
the initial and final values are equal to 0 m/s2 in order to guarantee the continuity
in the entire path.

It is also important to define a mean speed to compute ∆t. In the first two
cases, it is equal to the absolute value of the mean between the initial and final
speeds while in the third one, the value has to be decided by the user because
the formula used for the other cases, providing 0 m/s, is useless. The authors
fix it to 1 m/s since this value allows to not overcome the maximum speed and
acceleration (equal to 2 m/s and 2 m/s2) for the performed flight plan. If there are
greater vertical displacements, these limits may be violated with vmean = 1 m/s
but the user can change it to avoid the problem.

The theoretical ∆t is computed in the same way of the horizontal straight line
and curve. After having calculated the distance between the two waypoints, ∆t is
found using Eq. (4.80). Finally, the time vector t between zero and ∆t is defined
with a discretization of one thousand points.

The last passage is the determination of the polynomial coefficients. This
procedure is realized for each direction in a similar way to the horizontal curve;
imposing the initial and final conditions on position, speed and acceleration, it is
possible to find the formulae for a0, a1, a2, a3, a4 and a5 for x, y and z directions.
By using Eq. (4.5) and deriving it until to the second order, the vectors of position,
speed and acceleration in all the directions are obtained.

The complete script of verticalaccdec is reported in Appendix A.2.

Vertical curve: this trajectory connects the two waypoints of a vertical fly-by
maneuver. As in the case of horizontal curve, the chosen polynomial is the fifth
degree one since the continuity of position, speed and acceleration is required.
The MATLAB Function is named verticalcurve.

The inputs are wp0, wp1 and the speed vector vk. Firstly, the information
about the waypoints are extrapolated from the input vector. As already mentioned
in the previous paragraph, the speed of this kind of curve is set equal to 2 m/s
for all maneuvers.

The theoretical ∆t is computed following the same method of the horizontal
straight line; hypothesizing a direct connection between the two waypoints, ∆t is
computed with Eq. (4.80). The time vector t between zero and ∆t is defined with
a discretization of one thousand points.

Before computing the coefficients, it is necessary to define the values of the
components of the initial and final speeds. An if condition on the sign of z1 −
z0 is introduced to characterize a vertical curve upwards and a downwards one,
respectively negative and positive signs. In the first case, the initial speed is
only on the z direction and it is equal −2 m/s; the final speed has to be found
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by rotating the speed into the K frame using the rotation matrix of Eq. (3.14)
imposing χ and γ equal to χ1 and γ1 respectively. In the second case, the initial
speed is found in a similar way to the final speed of the previous one; the only
difference is that χ and γ are equal to χ0 and γ0. The final speed is on the z
direction and it is equal to 2 m/s.

For what concerns the acceleration, the initial and final values are set to 0 m/s
to guarantee the continuity with the previous and next segments.

The computation of the polynomial coefficients is basically the same of the
horizontal curve and vertical acceleration and deceleration, already explained in
their paragraphs. Evaluating Eq. (4.5) and its derivatives in t, the position, speed
and acceleration are obtained.

Since the speed is not constant for the entire curve, a scaling in time is re-
quired as in the horizontal curve. The passages are the same: λv and λacc are
computed thanks to Eq. (4.85) where vc = 2 m/s; finally, the new vectors of
speed, acceleration and time are obtained by using Eq. (4.84) and Eq. (4.86).

The script verticalcurve is reported in Appendix A.2.

Horizontal acceleration: this leg is the segment connecting two waypoints
in which the aircraft accelerates. The mathematical formulation is taken from
the double S trajectory, explained in Section 4.1.2.4. The calculations are imple-
mented in the MATLAB Function named horizontalacceleration.

The function inputs are wp0, wp1, vk and acclimits. The last one is a vector
containing the maximum values of acceleration and jerk. First of all, the data
from the waypoints are collected. The acceleration is the phase in which the
aircraft increases its speed from 0 m/s or 2 m/s to the standard wingborne speed
of 25 m/s. The two possible initial speeds are related to the fact that this phase
is performed not only from a point with v = 0 m/s but also after a vertical fly-by.
To deal with this distinction, an if condition on the ID number of wp0 is inserted:

• if id0 = 3, the initial speed is equal to 2 m/s;

• in the other cases, the initial speed is set to 0 m/s.
On the other hand, the final speed is always equal to 25 m/s.

It is important to remind that a minimum distance between the two waypoints
is necessary to perform the acceleration with a fixed value of maximum accelera-
tion (named accmax) and with desired initial and final speeds; this issue has to be
taken into account in the trajectory planning.

The first step is to define the variable q whose initial and final values are equal
to 0 and distance between the two waypoints. Then, the reference times are found
referring to the following equations:

Tj1 = accmax
jmax

Ta = Tj1 + vk1 − vk0

accmax

Tv = qf − qi
vk1

− Ta
2

(
1 + vk0

vk1

) (4.87)
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where qi and qf are the initial and final values of q while vk0 and vk1 are the
initial and final speed modulus. If distance is equal to the minimum one, it is
important to remember that Tv = 0. The time vector t is built with one thousand
points sweeping from zero to the total time Ta +Tv. After having divided t in the
following phases:

• increasing acceleration with constant jerk,

• constant acceleration with null jerk,

• decreasing acceleration with constant jerk,

• constant speed with null acceleration,

the function uses Eq. (4.12), Eq. (4.13), Eq. (4.14) and Eq. (4.15) of a double S
trajectory to compute q, q̇ and q̈. Concatenating the results of each phase, the
complete vectors of q and its derivatives are obtained. The last passages are the
rotation from the K frame to the O frame thanks to Eq. (3.14) where χ and γ
are equal to χ1 and γ1 and the addition of the initial position r0 since qi = 0.

The complete script of horizontalacceleration is reported in Appendix A.2.

Horizontal deceleration: this trajectory connects two waypoints when a de-
celeration is needed. As for the acceleration, the mathematical formulation is the
one of double S in Section 4.1.2.4. The MATLAB Function is named horizontal

deceleration.
The inputs are wp0, wp1, wp2, the speed vector vk and the vector of acceleration

and jerk limits (named accmax and jmax respectively).
Firstly, the useful data of each waypoint are extrapolated from the inputs.

The deceleration is the phase in which the aircraft decreases its speed from the
wingborne speed of 25 m/s to a value which can be 2 m/s or 0 m/s. The
justification of the double choice is that the aircraft needs not only to reach the
hovering phase (characterized by v = 0 m/s) but also a point with speed equal to
2 m/s in order to do the vertical fly-by maneuver. As a consequence, the initial
speed is always equal to 25 m/s while for the final speed, an if condition on the
ID number value of wp2 is inserted:

• if id2 = 3, it means that the following segment is a vertical curve of fly-by
maneuver and so the final speed is imposed equal to 2 m/s;

• in the other cases, the deceleration is completed until the null speed is
reached and so, the final speed is set equal to 0 m/s.

Before proceeding with the description of the algorithm, it is worth to notice that
the deceleration can be completed if and only if a minimum distance between
the two waypoints exists. The reason is analogous to the acceleration phase, i.e.
there is a precise value of distance needed to change the speed considering the
constraints on acceleration and jerk. In order to avoid errors in the simulation,
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it is fundamental to plan correctly the trajectory; the deceleration starting and
ending waypoints need this minimum distance.

The procedure which has to be followed to generate this kind of trajectory is
similar to the acceleration one. After having computed the real distance between
the two waypoints (called distance), it is introduced a new coordinate q whose
initial and final values are equal to zero and to distance respectively. Then, all
the reference times are calculated using

Tj2 = accmax
jmax

Td = Tj2 + vk0 − vk1

accmax

Tv = qf − qi
vk0

− Td
2

(
1 + vk1

vk0

)
,

(4.88)

remembering that, if the real distance is perfectly equal to the minimum one,
there is no part of trajectory with constant speed (Tv = 0).

The time vector t between zero and the total time Td + Tv is determined with
the discretization of one thousand points. It has to be split in each sub-segment:

• increasing deceleration with constant jerk,

• constant deceleration with null jerk,

• decreasing deceleration with constant jerk,

• constant speed with null acceleration.
After having built position, speed and acceleration vectors of each sub-segment
using the equations of constant speed (Eq. (4.15)) and of deceleration (Eq. (4.16),
Eq. (4.17) and Eq. (4.18)), they are concatenated to obtain the vectors for the
entire phase, namely q, q̇ and q̈.

The last passage is the transformation of the results from the K frame to the
local NED frame; to make it possible, q, q̇ and q̈ are rotated by the matrix in
Eq. (3.14) where χ and γ are equal to χ1 and γ1. Finally, the initial position is
added to the position vector since the initial value of q was previously set to zero.

The script of the horizontaldeceleration is reported in Appendix A.2.

Hovering: the hovering point is performed by the simplest MATLAB Function

between all the previously explained ones, which is named hovering.
The function receives only wp1 and thover as inputs, where the latter one is the

duration of the hovering and can be set by the user in the main code. Firstly,
the information of the waypoint are taken. Then, the position is built as one
thousand elements vectors in x, y and z directions maintaining the values of the
waypoint position. Also speed and acceleration are constructed similarly but with
a constant value equal to 0 m/s and 0 m/s2 in every direction. At the end, the
corresponding time vector is built setting thover as final time and using linspace
in order to discretize the vector into one thousand values.

The hovering script is reported in Appendix A.2.
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4.4.4.2 Saving data block

This block is fundamental because the problem of saving data after each iteration
is hard to treat in Simulink software. Since it is impossible to use a dynamic
vector which increases its dimension after each iteration, it is decided to save
the data in a matrix of a predefined dimension as mentioned in the introduction
to the section. In order to do this, the Assignment block, which receives the
initialization matrix, the current vector of results and the current iteration index
as inputs, is used for each component of position, speed and acceleration and the
time vectors (Fig. 4.25).
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Figure 4.25: Saving data block

4.4.5 Final manipulation
The FinalManipulation block, shown in Fig. 4.13, performs the last passages to
reach final results. Since the algorithm provides the outputs in matrix form, due to
the saving issues explained in Section 4.4.4, FromMatrixToVector allows to pass
from matrix results to vector ones; then, ShiftInCaseOfSaturation adjusts
results with respect to saturation of χ̇ with circular arcs. Finally, EliminationOf
Duplicates eliminates the duplicates inserted in the trajectory by construction.

4.4.5.1 Transformation of the results from matrix to vector form

In FromMatrixToVector, Transpose and Reshape blocks are used respectively
to invert columns and rows, and to give a 1D array as output. For what con-
cerns the times, the manipulation is more complicated. The time vectors do
not have to restart from zero value after each leg is completed. The scheme us-
ing Variable Selector in select columns mode, Cumulative Sum in columns
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mode, Variable Selector in select rows mode and For Iterator provides the
right quantity to add at every time value in order to avoid this problem.
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Figure 4.26: Passage from matrix results to vector ones

4.4.5.2 Shift in case of saturation

When the saturation of χ̇ is activated, the position is no longer continuous in
time, as explained in Section 4.4.4. For this reason, a shift of x, y and z results is
necessary. A MATLAB Function named ShiftInCaseOfSaturation is used to
reach this purpose.

It has x, y and z as inputs and it provides their new values xshifted, yshifted
and zshifted as outputs. The shift consists in positioning the starting point of each
leg exactly in the end point of the leg before. This process is performed using
a For Iterator, starting from the first waypoint and arriving to the last one,
and changing all the values in a cascade iterative way. With this method, x, y
and z change only if there is the necessity, because, if the saturation of χ̇ is not
activated, the for cycle does not change the results.

The complete MATLAB script is shown in Appendix A.3.
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4.4.5.3 Elimination of the duplicates

The continuity between each leg is obtained by the algorithm imposing that the
final point of one leg is equal to the first one of the following leg. This procedure
causes the presence of duplicates at every legs connection. The block in Fig. 4.27
allows to eliminate the duplicates using Variable Selector in select columns
mode.
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Figure 4.27: Elimination of the duplicates



Chapter 5

Results and analysis

This chapter is the core of the thesis because the results of the trajectory generator,
described in Chapter 4, are presented and analyzed. Since there are a lot of
requirements to be fulfilled, four flight plans are chosen in order to show all the
possible maneuvers for both phases and to analyze the results in a more specific
way. They are summarized in Table 5.1.

Flight plan n. Name Reference
1 Wingborne with All Possible Maneuvers Section 5.1
2 Wingborne with Climb Paths Section 5.2
3 Wingborne with Saturation of χ̇ Section 5.3
4 Complete Flight Plan: Hover and Wingborne Section 5.4

Table 5.1: Flight plans

The objectives of each flight plan are listed below.

Flight plan n.1 → Verify the feasibility of TF leg with fly-by and fly-over tran-
sitions and RF leg.

Flight plan n.2 → Verify whether the request of climb path can be satisfied by
the implemented algorithm.

Flight plan n.3 → Study the methods of χ̇ saturation.

Flight plan n.4 → Verify whether it is possible to generate a trajectory with
wingborne and hover phases.

As anticipated in Section 3.2, the origin of the O frame is the FSD institute whose
coordinates are reported in Table 5.2.

81
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lat long h
[deg] [deg] [m]

48.266185 11.668320 478

Table 5.2: Coordinates of the FSD institute

A general consideration on fly-by transition must be taken into account before
proceeding with the analysis of the flight plans. As mentioned in Section 4.2.3.1,
the trajectory has to remain into a containment area during the entire maneuver.
To this aim, a fly-by transition between two straight lines with ∆χ = 30 deg is
considered as example. The two cases of fly-by transition are shown in Fig. 5.1
and Fig. 5.2, using respectively Eq. (4.80) and Eq. (4.81) to compute the ∆t.
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Figure 5.1: Containment area of fly-by transition using time computed with
straight line

Although there are small differences in the geometry of the two cases, both
trajectories lay into the containment area and so it is proved that both methods
to compute ∆t are valid. The results are expected by construction because the
two waypoints of the beginning and the end of transition are calculated in order
to remain in the connecting legs. As a consequence, the imposition of the right
boundary conditions guarantee the fulfillment of the containment area request.
From now on, it is decided to compute ∆t with the method of straight line because
it is more general and valid also for the fly-over transition. Despite the examples,
presented in Fig. 5.1 and Fig. 5.2, concern maneuvers with a prescribed ∆χ, the
reached conclusion can be extended to any kind of fly-by.
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Figure 5.2: Containment area of fly-by transition using time computed with
circular arc

5.1 Wingborne with all possible maneuvers

Since the objective of this flight plan is to study all the possible maneuvers of the
wingborne phase, the list of waypoints, reported in Table 5.3, is defined in order
to accomplish this task.

n. ID Number lat long h
[−] [−] [deg] [deg] [m]
1 9 48.267539 11.668193 518
2 0 48.268225 11.672281 518
3 3 48.273412 11.673054 518
4 1 48.274658 11.668848 518
5 2 48.272274 11.664337 518
6 0 48.268236 11.667856 518

Table 5.3: Waypoint list - Flight plan n.1

First of all, the trajectory geometry is analyzed thanks to the following graphs.
The representation in the 3D space is reported in Fig. 5.3.
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Figure 5.3: 3D trajectory - Flight plan n.1

Since all the waypoints are at the same altitude, a flat trajectory is expected.
A representation in 2D planes, namely YX, XZ and YZ ones, is provided. Looking
at Fig. 5.4 and Fig. 5.5, it is evident that the variation of altitude is not present.
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Figure 5.4: 2D trajectory in XZ plane - Flight plan n.1
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Figure 5.5: 2D trajectory in YZ plane - Flight plan n.1
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Figure 5.6: 2D trajectory in YX plane - Flight plan n.1
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In Fig. 5.6, the trajectory is represented from above. It is possible to notice
that all the available maneuvers in wingborne phase are performed:

• the first one is the RF leg which permits to connect two fixes with a curve;

• the second one is a fly-by turn between two straight legs which allows to have
a smooth transition passing near the determined fix through the anticipation
of the turn, as prescribed by [34];

• the last one is the fly-over transition for which the aircraft passes over the
fix and, after that, it starts the turn to reach the next waypoint.

The information about the calculated waypoints are reported in Table 5.4.

n. ID number x y z χ γ
[−] [−] [m] [m] [m] [deg] [deg]
1 9 150.5710 −9.4291 −39.9982 0 0
2 0 226.8649 294.0794 −39.9892 75.8897 −0.0017
3 1 803.6865 351.4342 −39.9396 293.9284 −0.0016
4 0 892.0771 152.2364 −39.9336 293.9284 −0.0016
5 1 865.4770 −57.7688 −39.9380 231.6339 0.0036
6 0 677.1325 −295.6894 −39.9572 231.6339 0.0036
7 1 377.7646 −121.5292 −39.9829 149.8109 0.0043
8 0 228.0807 −34.4491 −39.9958 149.8109 0.0043

Table 5.4: New waypoint list - Flight plan n.1

The values of the ID numbers reflect the fact that a wingborne trajectory can
be built as a sequence of horizontal straight lines and curves and so first and fifth
degree polynomials. The small variations along the z direction and in the value
of γ are caused by the fact that the Earth is not flat and so, deciding a precise
origin of the O frame, the altitude changes when the aircraft moves far from it
although the flight is horizontal.

The second passage is the analysis of the time histories of flat outputs x, y
and z and their derivatives until the second order to verify if the requirement on
continuity is satisfied. It is worth to notice that the time is named t′ because it
is the one obtained after the scaling in time, whose usefulness will be analyzed
later.

The time history of the components of position, speed and acceleration are
respectively shown in Fig. 5.7, Fig. 5.8 and Fig. 5.9.

All these quantities are characterized by a continuous evolution in time and so,
the combination of first and fifth degree polynomials, imposing the right boundary
conditions, can fulfill this requirement for the wingborne phase.
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Figure 5.7: Time history of position components - Flight plan n.1
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Figure 5.8: Time history of speed components - Flight plan n.1
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Figure 5.9: Time history of acceleration components - Flight plan n.1
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Figure 5.10: Time history of speed absolute value - Flight plan n.1
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Another task consists in maintaining a constant speed equal to 25 m/s during
the wingborne phase. As explained in the paragraph concerning horizontal curve
of Section 4.4.4.1, a scaling in time is necessary to reach this goal. The time
history of speed absolute value is shown in Fig. 5.10 and it is evident that the
aircraft maintains the requested constant speed.

The scaling function σ between t and t′ is represented in Fig. 5.11. It is possible
to notice that the intervals contained by the red dashed circles, which correspond
to the curved path, are affected by the scaling in time because the ratio between
t and t′ differs from one.
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Figure 5.11: Scaling function t = σ (t′) - Flight plan n.1

Another mention can be done on the absolute value of the acceleration, re-
ported in Fig. 5.12.

As expected, the acceleration is equal to 0 m/s2 during the straight line but
it varies during the curves although the speed is constant. It is caused by the
presence of the centripetal acceleration along a curved path. The maximum value
during the fly-by transition and RF leg is around 4 m/s2 while 16 m/s2 is reached
during the fly-over maneuver. An high value of centripetal acceleration is re-
lated to an high value of χ̇, whose maximum value during the fly-over is equal
to 37 deg/s. It causes a feasibility problem since the request is to maintain its
value under 10 deg/s. This result underlines that the fifth degree polynomial is
not the most proper one for this kind of maneuver. The only solution is the au-
tomatic saturation of χ̇ with circular arc, explained in the paragraph concerning
the horizontal curve of Section 4.4.4.1 and analyzed in Section 5.3.

Despite the saturation works well, the use of fly-by and radius-to-fix is pre-
ferred; therefore, the fly-over transition will not be used in the simulations of
Chapter 6.
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Figure 5.12: Time history of acceleration absolute value - Flight plan n.1
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Figure 5.13: Radius-to-fix - Fifth degree polynomial vs Circular arc - Flight
plan n.1
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The last analysis is related to the RF leg: [34] and [33] specify that this
maneuver is characterized by a constant radius but the fifth degree polynomial
does not guarantee this feature. For this reason, a comparison between this curve
used by the implemented algorithm and a circular arc is required. The circular
arc connecting the beginning and the end of the RF leg is plotted in Fig. 5.13 and
the difference with respect to the fifth degree polynomial is evident.

In addition, Fig. 5.14 shows the gap between the value of the circular arc radius
and the distance from the circle center to the polynomial.
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Figure 5.14: Radius-to-fix - Distance vs rc - Flight plan n.1

As expected by the theory, the distance between the fifth degree polynomial
and the circle center, named Distance, is not constant and so [34] and [33] are
not strictly satisfied. On the other hand, the use of circular arc is not sufficient
because of the problem on curvature discontinuity explained in Section 4.1.2.5.
Taking into account these considerations, the choice of the fifth degree polynomial
is a compromise of the two aspects in order to test an alternative method with
respect to the one already existing in [31].

5.2 Wingborne with climb paths
The aim of this section is to show and analyze results regarding the possibility to
generate climb paths during wingborne phase. The waypoints are chosen with a
reasonable difference in altitude in order to accomplish this task. Additionally, the
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n. ID Number lat long h
[−] [−] [deg] [deg] [m]
1 9 48.267539 11.668193 518
2 1 48.264980 11.661760 568
3 0 48.263666 11.653949 598
4 3 48.262118 11.650655 598
5 1 48.258952 11.647853 598
6 0 48.258299 11.644073 558

Table 5.5: Waypoint list - Flight plan n.2

waypoint list, reported in Table 5.5, composes a trajectory in a precise direction,
which is the south-west one in this case, in order to visualize in a better way the
results in the three different planes, without any intersection.

First of all, Fig. 5.15 and Fig. 5.16 are different representations by two points
of view of the trajectory in 3D space.

Figure 5.15: 3D trajectory - First point of view - Flight plan n.2

Figure 5.16: 3D trajectory - Second point of view - Flight plan n.2

In order to appreciate the altitude variations, the representations of the tra-
jectory in XZ and YZ planes are shown in Fig. 5.17 and Fig. 5.18 respectively.
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Figure 5.17: 2D trajectory in XZ plane - Flight plan n.2
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Figure 5.18: 2D trajectory in YZ plane - Flight plan n.2
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As shown in Fig. 5.19, the aircraft completes a fly-by maneuver after the
first climb leg, then it proceeds along a TF leg to reach a RF leg and finally
another fly-by transition is performed before the last descent. The feasibility of
this geometry proves what is anticipated in Section 4.4.1, namely the fact that all
the implemented legs work not only for a 2D trajectory but also for a 3D one.
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Figure 5.19: 2D trajectory in YX plane - Flight plan n.2

The information about the calculated waypoints are reported in Table 5.6.

n. ID number x y z χ γ
[−] [−] [m] [m] [m] [deg] [deg]
1 9 150.5710 −9.4291 −39.9982 0 0
2 0 −112.6124 −451.2034 −86.2265 239.2160 5.1370
3 1 −144.2055 −527.6750 −92.0749 255.8663 2.8643
4 0 −280.0278 −1067.0648 −119.9048 255.8663 2.8643
5 1 −452.1235 −1311.6880 −119.8493 210.5957 −0.0113
6 0 −702.2159 −1459.5671 −119.7919 210.5957 −0.0113
7 1 −833.4952 −1633.4144 −103.5511 255.5126 −7.8713
8 0 −876.6796 −1800.5473 −79.6860 255.5126 −7.8713

Table 5.6: New waypoint list - Flight plan n.2

It is possible to notice that the value of γ reflects the variations in altitude
of the waypoints; in particular the first and second climbs are characterized by
γ ≈ 5 deg and γ ≈ 3 deg respectively while γ ≈ −8 deg during the descent.
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The change in altitude can be seen also in a clear way in the third graph of
Fig. 5.20. After that, it is worth to notice that the continuity of the position,
speed and acceleration in every direction remains guaranteed by the algorithm as
shown also in Fig. 5.20, Fig. 5.21 and Fig. 5.22.
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Figure 5.20: Time history of position components - Flight plan n.2
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Figure 5.21: Time history of speed components - Flight plan n.2
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Figure 5.22: Time history of acceleration components - Flight plan n.2

Finally, the absolute value of speed and acceleration with respect to t′ are
reported in Fig. 5.23 and Fig. 5.24. As expected, the value of speed remains
constant and equal to 25 m/s.
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Figure 5.23: Time history of speed absolute value - Flight plan n.2
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Figure 5.24: Time history of acceleration absolute value - Flight plan n.2

5.3 Wingborne with saturation of χ̇
Another requirement is that χ̇ remains under a specific value χ̇max, in this case
equal to 10 deg/s. As anticipated in the paragraph concerning the horizontal
curve of Section 4.4.4.1, there are three different ways to reach this goal but only
the second and the third ones are implemented in the trajectory generator block,
because a better flight plan is something that has to be done before the trajectory
generation.

The results reached with the variation of χ̇des and with the saturation using
circular arc are reported in Section 5.3.1 and Section 5.3.2 respectively.

In this section the same waypoints of the flight plan n.1, reported in Table 5.3,
are used but a different value of χ̇des, equal to 20 deg/s, is chosen in order to be
sure of overcoming the limits during the fly-by transition.

Looking the representation of the trajectory in YX plane, reported in Fig. 5.25,
it is possible to notice that the fly-by turn is completed more rapidly than the one
of flight plan n.1; a greater χ̇des causes a lower value of sturn.

n. ID number x y z χ γ
[−] [−] [m] [m] [m] [deg] [deg]
4 0 924.6809 78.7600 −39.9314 293.9284 −0.0016
5 1 915.3709 5.2582 −39.9329 231.6339 0.0036

Table 5.7: New waypoint list - Flight plan n.3 - χ̇des = 20 deg/s
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The difference of geometry can be seen also by the coordinates of the two
calculated waypoints for the fly-by, reported in Table 5.7, which differ from the
ones in Table 5.4.
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Figure 5.25: 2D trajectory in YX plane - Flight plan n.3 - χ̇des = 20 deg/s
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Figure 5.26: Time history of the track rate - Flight plan n.3 - χ̇des = 20 deg/s
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It is worth to notice that the time history of χ̇, reported in Fig. 5.26, is
computed thanks to the flatness relationships between the variables and the flat
outputs, in particular the first one of Eq. (3.35). Looking Fig. 5.26, it is evident
that the limit is not overcome during the RF leg while χ̇ is greater than χ̇max
during the fly-by and fly-over transitions. For what concerns the fly-by turn, both
methods, which will be treated in the next sub-sections, can be used to solve the
problem while the fly-over can be managed using the saturation with circular arc
because χ̇des does not influence its geometry. On the other hand, the RF leg is
planned in a good way but, in case of the limit overcoming, the considerations
that will be done later for the second method are valid also for this maneuver.

5.3.1 Variation of χ̇des

Imposing the value of χ̇des, it is possible to see that the χ̇max reached during a fly-
by turn has a greater value; this is caused by the fact that a fifth degree polynomial
is not a circular arc. A possible approach can be to decrease χ̇des randomly with
many attempts in order to not overcome the limit of χ̇max = 10 deg/s but it is not
an engineering way to solve the problem. If a mathematical relationship between
χ̇des and χ̇max is found, it can be used during the flight planning.
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Figure 5.27: χ̇max with respect to χ̇des sweeping different values of ∆χ
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To this aim, a general fly-by transition is simulated sweeping the value of ∆χ,
namely the change of track angle between the two legs, from 10 deg to 120 deg
and varying χ̇des between 1 deg/s and 20 deg/s for each case. The choice of
∆χ maximum value for a fly-by is taken from [31]. The obtained results are
reported in Fig. 5.27. It is important to underline that these results are referred
to ∆t calculated with straight line method and that there is a linear mathematical
relation between the quantities.

The same procedure can be done also with the circular arc ∆t and all the
values of χ̇max/χ̇des with respect to ∆χ are shown in Fig. 5.28 in order to compare
the two methods.
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Figure 5.28: Ratio between χ̇max and χ̇des collected for ∆χ ∈ [10, 120] deg

It is possible to notice that the interpolating polynomial obtained with straight
line time stays under the one obtained with circular arc time for ∆χ < 88 deg.
Considering the same imposed χ̇max and the same ∆χ, a lower value of the ratio
provides a greater value of χ̇des and so a lower sturn for a straight line ∆t. This
permits to design a transition which covers less space. Since the fly-by maneuver
is normally executed with ∆χ lower than 90 deg, the ∆t computed with straight
line is used in this thesis recalling the fact that it is more general and useful also
for fly-over.

Returning to flight plan n.3 and knowing that the fly-by ∆χ is equal to 62 deg,
χ̇des is chosen as follows:
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1. the corresponding value of χ̇max/χ̇des is found using Fig. 5.29;

2. χ̇des is calculated knowing that the desired χ̇max is equal to 10 deg/s and
using

χ̇des = χ̇max
(χ̇max/χ̇des (∆χ)) . (5.1)
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Figure 5.29: Application of the function χ̇max/χ̇des (∆χ) to the fly-by of flight
plan n.3

In this case the value of χ̇des is equal to 8.33 deg/s. If there are more than
one fly-by with different ∆χ, the same procedure can be followed and the more
restrictive value of χ̇des has to be chosen.

Imposing χ̇des = 8.33 deg/s, the geometry of the fly-by turn changes; in par-
ticular, the position of the calculated waypoints, listed in Table 5.8, is different
from the ones in Table 5.7.

n. ID number x y z χ γ
[−] [−] [m] [m] [m] [deg] [deg]
4 0 900.0858 134.1879 −39.9331 293.9284 −0.0016
5 1 877.7328 −42.2871 −39.9368 231.6339 0.0036

Table 5.8: New waypoint list - Flight plan n.3 - χ̇des = 8.33 deg/s
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Having a χ̇des lower than the one used in Fig. 5.25, sturn is greater, as it is
evident from Fig. 5.30.
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Figure 5.30: 2D trajectory in YX plane - Flight plan n.3 - χ̇des = 8.33 deg/s

The continuity and the constant speed are obviously guaranteed also in this
case while a comparison between the results using χ̇des = 20 deg/s and χ̇des =
8.33 deg/s is shown in the graph of the acceleration absolute value [Fig. 5.31].
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Figure 5.31: Comparison of the time history of acceleration absolute values -
Flight plan n.3
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During the fly-by transition, the acceleration absolute values differ significantly
since the turn with χ̇des = 20 deg/s is narrower and requires a greater centripetal
acceleration. It is worth to notice that the red line is shifted because a different
scaling in time causes a different t′.

Finally, the validity of this χ̇ saturation for fly-by is proved by Fig. 5.32.
The maximum value, equal to 9.95 deg/s, is not precisely 10 deg/s because the
function of Fig. 5.29 is found through an interpolation.
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Figure 5.32: Time history of the track rate - Flight plan n.3 - χ̇des = 8.33 deg/s

5.3.2 Saturation with circular arc

Fixing χ̇max = 10 deg/s in the main code, the saturationchidot block, ex-
plained in a deep way in the paragraph concerning horizontal curve of Section 4.4.4.1,
is automatically activated.

The shift of the trajectory, caused by the substitution of fifth degree polynomial
with circular arc and by the coexistence of the constraints on constant speed
and maximum χ̇ without changing the turn starting point, can be seen by the
representation in the YX plane of Fig. 5.33 and by the coordinates of the waypoints
in Table 5.9.
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n. ID number x y z χ γ
[−] [−] [m] [m] [m] [deg] [deg]
5 1 905.6008 −71.8764 −39.9329 231.6339 0.0036
6 0 667.3623 −372.8240 −39.9572 231.6339 0.0036
7 1 257.1221 −211.5249 −39.9829 149.8109 0.0043
8 0 107.4382 −124.4448 −39.9958 149.8109 0.0043

Table 5.9: New waypoint list - Flight plan n.3 - Saturation with circular
arc
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Figure 5.33: 2D trajectory in YX plane - Flight plan n.3 - Saturation with
circular arc

It is worth to notice that the RF leg is not changed by the saturation because
χ̇ does not overcome the limit during this maneuver thanks to a good planning.
As already mentioned, the method can work also for a RF leg and, in this case,
its activation would add another shift to the trajectory.

The inserted circular arcs do not compromise the continuity of position, speed
and acceleration in every direction and the constant speed of 25 m/s as shown in
Fig. 5.34, Fig. 5.35, Fig. 5.36 and Fig. 5.37.
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Figure 5.34: Time history of position components - Flight plan n.3 - Saturation
with circular arc
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Figure 5.35: Time history of speed components - Flight plan n.3 - Saturation
with circular arc



106 Chapter 5. Results and analysis

0 10 20 30 40 50 60 70 80 90 100
-6

-3

0

3

6

0 10 20 30 40 50 60 70 80 90 100
-6

-3

0

3

6

0 10 20 30 40 50 60 70 80 90 100

-6

-3

0

3

6

Figure 5.36: Time history of acceleration components - Flight plan n.3 - Satu-
ration with circular arc
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Figure 5.37: Time history of speed absolute value - Flight plan n.3 - Saturation
with circular arc
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Looking at Fig. 5.38, it is possible to notice the differences with Fig. 5.31 and,
in particular, that the acceleration absolute value is constant during the circular
arc paths since the centripetal acceleration is constant by construction differently
from a fifth degree polynomial.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

Figure 5.38: Time history of acceleration absolute value - Flight plan n.3 -
Saturation with circular arc
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Figure 5.39: Time history of the track rate - Flight plan n.3 - Saturation with
circular arc
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The circular arcs maintain also a constant value of χ̇. If its value is set to
10 deg/s, the desired saturation is achieved as shown in Fig. 5.39.

Considering that the FSD institute is more interested in the use of RF leg and
fly-by transition than the fly-over one, the approach consisting of a good planning
for the RF leg and the choice of the proper χ̇des for fly-by is preferred to the
circular arc one.

5.4 Complete flight plan: hover and wingborne
The flight plan n.4, whose waypoint list is reported in Table 5.10, is built in order
to show all the possible maneuvers, both in hover phase and in wingborne one.

n. ID Number lat long h
[−] [−] [deg] [deg] [m]
1 9 48.267539 11.668193 478
2 4 48.267539 11.668193 518
3 5 48.268225 11.672281 518
4 3 48.273412 11.673054 518
5 1 48.274658 11.668848 518
6 1 48.273555 11.664697 518
7 6 48.270460 11.663331 518
8 7 48.270460 11.663331 518
9 8 48.270460 11.663331 478

Table 5.10: Waypoint list - Flight plan n.4

For what concerns the fly-by turns, the analysis of ∆χ between the legs is
performed in order to find the necessary χ̇des and to plan a trajectory which
satisfies the limit of 10 deg/s. As already explained in Section 5.3.1, the presence
of two fly-by causes the choice of the more restrictive condition.

Fly-by n. ∆χ χ̇max/χ̇des χ̇des
[−] [deg] [−] [deg/s]
1 46 1.31 7.63
2 52 1.262 7.92

Table 5.11: Choice of χ̇des for fly-by - Flight plan n.4

The red value in Table 5.11 is fixed so that the limit is not overcome for both
fly-by turns. A good planning for the RF leg together with the last consideration
guarantee that the saturationchidot block is never activated.

A complete overview of the trajectory is reported in Fig. 5.40 where it is
possible to see every maneuver.
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Figure 5.40: 3D trajectory - Flight plan n.4

The list of calculated waypoints is written in Table 5.12, where the sign − is
referred to the fact that χ and γ angles for the waypoints which describe a leg of
hover phase are meaningless.

n. ID number x y z χ γ
[−] [−] [m] [m] [m] [deg] [deg]
1 9 150.5700 −9.4290 0.0018 0 0
2 2 150.5709 −9.4291 −34.9982 − −
3 3 151.7899 −4.5799 −39.9981 75.8897 −0.0017
4 4 226.8649 294.0794 −39.9892 75.8897 −0.0017
5 1 803.6865 351.4342 −39.9396 293.9284 −0.0016
6 0 910.2041 111.3852 −39.9324 293.9284 −0.0016
7 1 913.0304 −34.1827 −39.9329 248.2962 0.0020
8 0 853.3520 −184.1190 −39.9385 248.2962 0.0020
9 1 731.9974 −294.7692 −39.9492 196.4204 0.0048
10 5 475.4116 −370.3858 −39.9715 196.4204 0.0048
11 6 475.4116 −370.3858 −39.9715 − −
12 2 475.4086 −370.3835 0.0285 − −

Table 5.12: New waypoint list - Flight plan n.4

The variation of the z coordinate between the couple of waypoints (1, 2) or
(11, 12) remarks the possibility of a VTOL transition aircraft to perform vertical
displacements without moving in the YX plane thanks to the combination of the
hover phase and the wingborne one. The change in altitude can be appreciated
also in Fig. 5.41 while the vertical fly-by maneuver is zoomed in Fig. 5.42.
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Figure 5.41: 2D trajectory in XZ plane - Flight plan n.4
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Figure 5.42: 2D trajectory in YZ plane - Flight plan n.4
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All the maneuvers completed during the wingborne phase are clearly repre-
sented in Fig. 5.43.
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Figure 5.43: 2D trajectory in YX plane - Flight plan n.4

The continuity of the components of position, speed and acceleration is guaran-
teed for the entire trajectory as shown by the time histories in Fig. 5.44, Fig. 5.45
and Fig. 5.47; this result demonstrates the advantage of flatness theory because
the choice of the proper flat outputs allow to generate a unique reference trajectory
despite the presence of two different dynamics and different maneuvers.

In addition, it is important to verify whether all the prescribed maximum
values, listed in Table 5.13, are satisfied.

vwingborne vzmax acctangmax

[m/s] [m/s] [m/s2]
25 2 2

Table 5.13: Prescribed maximum values

Looking at the evolution in time of z in Fig. 5.44, it is possible to notice that
the aircraft starts at an altitude of 0 m, then it goes up to 40 m and stays at the
same altitude during the wingborne path, finally it returns at the initial altitude.
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Figure 5.44: Time history of position components - Flight plan n.4
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Figure 5.45: Time history of speed components - Flight plan n.4
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During the hover maneuvers, namely change in altitude and vertical fly-by,
the vertical speed vz in Fig. 5.45 remains always under the maximum speed vzmax .

The effectiveness of double S trajectory to describe the acceleration and decel-
eration, in which the transition between hover and wingborne happens, is evident
by the time history of the speed absolute value, reported in Fig. 5.46. It is worth
to notice that the speed remains constant and equal to 25 m/s during the wing-
borne maneuvers as in all the other flight plans. Between 133 s and 143 s, the
absolute value of the speed is equal to 0 m/s since it corresponds to the hovering
point whose duration in time is imposed to be 10 s in the main code.
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Figure 5.46: Time history of speed absolute value - Flight plan n.4

For what concerns the acceleration, the continuity is guaranteed in every di-
rection as already mentioned before. Since its absolute value, plotted in Fig. 5.48,
contains also the centripetal acceleration, it is necessary to take into account only
the tangential one in order to check if the maximum value is respected. From
Fig. 5.49, it is clear that:

• 2 m/s2 is never exceeded during the vertical displacements;

• the acceleration has a trapezoidal shape during the acceleration phase, which
is typical of double S trajectory. After the linear increase until 2 m/s2,
it remains constant, then decreases linearly arriving to zero value when
the final speed is reached. The opposite behavior is followed during the
deceleration.
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Figure 5.47: Time history of acceleration components - Flight plan n.4
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Figure 5.48: Time history of acceleration absolute value - Flight plan n.4
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Figure 5.49: Time history of tangential acceleration - Flight plan n.4





Chapter 6

Simulation of the complete
scheme for the wingborne phase

The aim of this chapter is to introduce some advantages that the flatness approach,
used for the trajectory generator, brings to the complete control scheme of a non-
linear system. In particular, the possibility of having a feedforward control using
only algebraic relationships, and so without resolving any differential equations,
is guaranteed by Eq. (3.41) and Eq. (3.45) for wingborne and hover phase respec-
tively. Although the flatness approach permits to generate the trajectory with a
unique generator and the flatness relationships allow to write the control inputs for
both phases, only wingborne phase is taken into account in this chapter because a
Simulink scheme which considers both models requires a deeper analysis. These
simulations can be seen as an introduction to the trajectory control problem of a
VTOL transition aircraft based on the flatness theory.

First of all, the used simple VTOL model is explained in Section 6.1. It has
a part containing the exact mathematical model of the wingborne phase and a
block which simulates the presence of the actuators. It is a really simplified model
but its fidelity is sufficient for the tasks of this thesis.

After that, Section 6.2 shows the Simulink model of the trajectory controller,
which consists of two parts, namely feedforward and feedback ones.

Finally, the results and the corresponding analysis are presented in Section 6.3.
In particular three different schemes are tested:

• Section 6.3.1 analyzes the results assuming an ideal VTOL model, without
the actuators, and using only the feedforward control;

• Section 6.3.2 analyzes the results assuming a VTOL model considering the
actuators and using only the feedforward control;

• Section 6.3.3 analyzes the results assuming a VTOL model considering the
actuators and using both feedforward and feedback controls.

The entire Simulink scheme is represented in Fig. 6.1.

117
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Figure 6.1: Complete control scheme
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6.1 Simple VTOL model

The simple VTOL model is realized adding the effect of the actuators to the wing-
borne mathematical model which corresponds to Eq. (3.17) and is implemented
in Fig. 6.2.
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Figure 6.2: Mathematical model block

Firstly, the rotation of the command forces from the K frame to the K̄ one is
performed using the transpose of the rotation matrix in Eq. (3.42). This passage
is necessary because the equations of the mathematical model need the forces in
K̄ frame.

After having computed the variables V̇ a
A , χ̇ and γ̇ using Eq. (3.35), they are

integrated in order to obtain V a
A , χ and γ. It is fundamental to set the proper

initial values for the integrator so that the simulation works in the right way. It
is worth to notice that the computation of µ angle is useful to complete the steps
just mentioned.

The states V a
A , χ and γ are used to find the derivative of position vector ẋ,

ẏ and ż using the first three equations of Eq. (3.17). Finally, the latter ones are
integrated to obtain the position components x, y and z. As already said for the
other integrators, it is very important to set the most proper initial values to reach
reliable results.

The actuators dynamics is modeled as a second order transfer function:

Gactuator (s) = ω2
n

s2 + 2ζωns+ ω2
n

(6.1)

whose natural frequency ωn and damping ratio ζ are reported in Table 6.1.
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ωn ζ
[1/s] [−]
20 1

Table 6.1: Features of the actuators transfer function

The Simulink block is shown in Fig. 6.3.
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ActCmdForces_K

1
CmdForces_K

Figure 6.3: Actuators block

It is possible to notice that the Manual Switch is inserted in order to stop
the actuators effects when the simulation of Section 6.3.1 is performed.

6.2 Trajectory controller
The control part of the scheme is composed by two blocks:

• the ReferenceSelector chooses the correct reference for each variable
among all the ones provided by the generator at each time instant of the
simulation;

• the TrajectoryController computes the control inputs of the simple
VTOL model, explained in the previous section.

Starting from the first one, shown in Fig. 6.4, the basic idea is to select the
reference comparing the actual simulation time and t′ provided by the trajectory
generator. The reason is that the TrajectoryGenerator block is off-line and so
all the quantities, that describe the reference trajectory, are already existing from
the beginning of the simulation.

To this aim, a counter selects the reference values of x, y, z and theirs deriva-
tives thanks to a Select Rows block. The difference between the selected t′ and
the actual time, provided by Clock block, is computed; whenever it becomes
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smaller than a prescribed value, a Triggered Subsystem is activated and the
value of the counter is increased.
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Figure 6.4: Reference selector

This method works well for this thesis but, obviously, other methods could be
implemented to select the reference values; for example, a condition on the error
position could be another solution.
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Figure 6.5: Trajectory controller
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On the other hand, the TrajectoryController, whose Simulink model is
reported in Fig. 6.5, is built as a combination of feedforward and feedback parts;
as explained in Chapter 2, the former one steers the aircraft along the desired
trajectory while the latter one breaks down the error between the desired path
and the actual one.

The FlatnessRelationships receives the desired acceleration accdes and
the generated speed velgensel as inputs and provides the command forces in the
K frame as outputs. This block, shown in Fig. 6.6, implements the equations of
Section 3.4.1, which relate the states and control inputs to flat outputs and their
derivatives. It is worth to notice that they are concatenated because the states
are necessary to compute the commands.
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Figure 6.6: Flatness relationships block

Referring to Fig. 6.5, it is possible to understand which control law is im-
plemented. The variable velgensel comes directly from the ReferenceSelector
while accdes is influenced by the feedback as follows:

accdes = accgensel+Kvel (velgensel − velmeas)+Kpos (posgensel − posmeas) (6.2)

where accdes is the desired acceleration, posgensel , velgensel and accgensel are the
selected reference values of position, speed and acceleration, posmeas and velmeas
are the measured position and speed. All these variables are vectors of dimension
3× 1. Finally, Kvel and Kpos are the gain matrices of dimension 3× 3 and they
are diagonal.

A Manual Switch permits to deactivate the feedback during the simulations
of Section 6.3.1 and Section 6.3.2.

6.3 Results and analysis
This section presents the results and the corresponding analysis for the simulations
summarized in Table 6.2. The used waypoint list is the same of flight plan n.4 of
Chapter 5 considering only the wingborne phase and hypothesizing that the speed
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starts and ends at 25 m/s; the consequence is that there are no acceleration and
deceleration phases.

n. Name Reference
1 Feedforward without Actuators Section 6.3.1
2 Feedforward with Actuators Section 6.3.2
3 Feedforward + Feedback Section 6.3.3

Table 6.2: Simulations of the complete scheme

During all the simulations the mass m of the VTOL aircraft and the gravity
acceleration g are set constant and equal to 5 kg and 9.81 m/s2 respectively.

6.3.1 Feedforward without actuators
Simulating the model without the actuators and using only the feedforward action
based on the flatness relationships, the trajectory is perfectly followed as expected.
The motivation is that the simple VTOL model without the actuators and any
other uncertainties corresponds exactly to the mathematical one used to find the
flatness relationships. Despite it is an ideal case, this analysis is very useful to
verify the exactness of the flatness relationships used to build the feedforward
control part.

The graphs below compare the generated trajectory with the simulated one.
In particular Fig. 6.7 and Fig. 6.8 show the path in the YX plane and in the XZ
one respectively.
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Figure 6.7: 2D trajectory in YX plane - Feedforward without actuators
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Figure 6.8: 2D trajectory in XZ plane - Feedforward without actuators

The time histories of the position and speed components and the speed abso-
lute value are reported in Fig. 6.9, Fig. 6.10 and Fig. 6.11.
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Figure 6.9: Time history of position components - Feedforward without actua-
tors
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Figure 6.10: Time history of speed components - Feedforward without actuators
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Figure 6.11: Time history of speed absolute value - Feedforward without actu-
ators
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Finally, it is possible to see the evolution in time of each component of the
command force from Fig. 6.12.
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Figure 6.12: Time history of command force components in K frame - Feedfor-
ward without actuators

The following considerations can be done:

• XK is always equal to 0 N because the absolute value of the speed is constant
during the entire trajectory;

• YK differs from 0 N during the turns and its sign during them is always
negative because they are on the left;

• ZK is always equal to −49.05 N . This force is perfectly equal to mg during
an horizontal flight.

6.3.2 Feedforward with actuators
The aim of this subsection is to demonstrate that the feedforward action is not
sufficient to follow the trajectory when the actuators are inserted in the VTOL
model. Looking at Fig. 6.13 it is evident that the simulated trajectory is com-
pletely different from the desired one in the YX plane. The difference between
the two trajectories is not only in this plane but also in the z direction [Fig. 6.14].
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Figure 6.13: 2D trajectory in YX plane - Feedforward with actuators
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Figure 6.14: 2D trajectory in YZ plane - Feedforward with actuators

The same conclusions can be reached also analyzing the time histories of the
position and speed components and the absolute value of the speed. In particular
the fact that vz remains always positive, which means that it points downwards,



128 Chapter 6. Simulation of the complete scheme for the wingborne phase

causes a descent for which the aircraft passes the 0 m altitude and so the ground;
obviously it is not physical.
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Figure 6.15: Time history of position components - Feedforward with actuators
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Figure 6.16: Time history of speed components - Feedforward with actuators
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Figure 6.17: Time history of speed absolute value - Feedforward with actuators

The components of the command force are the same of Fig. 6.12.

6.3.3 Feedforward + feedback

In order to solve the problems exposed in the previous section, the addition of
the feedback action is required. It is based on the control law of Eq. (6.2) where
the gains are tuned in an experimental way; starting from low values and taking
into account that the velocity loop is faster than the position one, the gains are
increased until satisfactory results are obtained. They are reported in Table 6.3.

x y z

Kpos [1/s2] 0.1 0.1 0.1
Kvel [1/s] 1 1 1

Table 6.3: Feedback gains

Firstly the usefulness of the feedback control part is evident comparing the
geometry of the simulated and the desired trajectories reported in Fig. 6.18 and
Fig. 6.19.
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Figure 6.18: 2D trajectory in YX plane - Feedforward + feedback
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Figure 6.19: 2D trajectory in XZ plane - Feedforward + feedback

The evolution in time of the position and speed components and the absolute
value of speed in Fig. 6.20, Fig. 6.21 and Fig. 6.22 shows that the feedback control
action allows to reduce significantly the error and follow the trajectory in a proper
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way. In particular, the initial error on the z components of position and speed is
immediately brought to a low value.
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Figure 6.20: Time history of position components - Feedforward + feedback
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Figure 6.21: Time history of speed components - Feedforward + feedback
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Figure 6.22: Time history of speed absolute value - Feedforward + feedback

Finally the components of the command force in Fig. 6.23 are very similar to
the ones in Fig. 6.12 in the x and y directions while the most remarkable difference
is in ZK whose initial values, not equal to −49.05 N , permit to overcome the initial
error in the z direction.
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Figure 6.23: Time history of command force components in K frame - Feedfor-
ward + feedback



Chapter 7

Conclusion and further
developments

This is the last chapter of the thesis and provides a final recap of the work done.
Firstly, Section 7.1 briefly explains all the theoretical choices which have been
taken to accomplish the requirements and shows all the reached results. Finally,
Section 7.2 presents possible future works which can improve the obtained results.

7.1 Conclusion

The first conclusion is that the position loop of the VTOL transition aircraft
dynamics can be described by two different models: the first one for the wingborne
phase is based on the equations for a conventional airplane while the second one
for the hover phase is characterized by the equations of quadrotor dynamics.

Secondly, the complete system containing both phases is flat and the flat out-
puts are the coordinates of position in NED frame, x, y and z. The implemented
algorithm generates the trajectory by using four kinds of curves, namely first de-
gree polynomials, fifth degree polynomials, double S trajectories and circular arcs,
in order to describe all the flight phases and their related maneuvers.

The four flight plans, whose results and analysis are treated in Chapter 5,
demonstrate that the flatness-based trajectory generator can provide trajectories
which involve both wingborne and hover phases and can take into account all
the fixed requests. A complete summary of the requirements and the respective
solution is reported in Table 7.1 in order to be as clear as possible.

Requirement Solution
3D trajectory Set of scalar problems synchronized

in time
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Different types of trajectories be-
tween each couple of waypoints to
take into account all the flight phases
and maneuvers

Sequence of point-to-point segments

Continuity in position, speed and ac-
celeration

First degree polynomials for straight
lines and fifth degree polynomials for
curves

Constant speed equal to 25 m/s dur-
ing wingborne phase

Scaling in time for the fifth degree
polynomials

Maximum value of χ̇ equal to
10 deg/s

Proper trajectory planning or varia-
tion of χ̇des or saturation with circu-
lar arc

Acceleration between hover and
wingborne phase with tangential ac-
celeration maximum value equal to
2 m/s2 and deceleration for the op-
posite case

Double S trajectory

Table 7.1: Summary of requirements-solutions

Finally, the simulations of the complete scheme for wingborne phase introduce
the advantages of flatness property by the point of view of trajectory control.
The results demonstrate that a feedforward control which steers the system along
the desired trajectory can be built using the flatness relationships, which are
only algebraic. In addition, it is proved that only a feedforward control is not
sufficient to follow the trajectory when the actuators transfer functions are inserted
in the model but it is also shown that a simple feedback law can be added to the
feedforward and allow to track the trajectory in a good way.

7.2 Further developments
Possible future works connected to the topic of this thesis are listed below.

• The first improvement is related to the trajectory control part. Since the
gains are found through an experimental way, the study of the error dynam-
ics would be a more rigorous method to tune the parameters. Subsequently,
the criteria to select the references could consider also the error on the po-
sition because the implemented one can be inaccurate if the model is more
complicated.

• The hover phase could be added to the complete control scheme in order to
simulate a flight plan which involves both phases, such as the flight plan n.4
defined in Section 5.4. It consists not only in the insertion of the mathemat-
ical model in the simple VTOL model but also in the addition of the hover
flatness relationships in the feedforward control part. An important aspect
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would be to find an accurate method to switch the two models in order to
deal with the transition between the two phases.

• Control strategies based on flatness theory, as the exact feedforward lin-
earization, could be applied and tested to follow the desired trajectory pro-
vided by the flatness-based trajectory generator presented in this thesis.

• The complete set of equations of VTOL transition aircraft dynamics, which
considers also the attitude loop, could be treated under a flatness approach.
So, a new flat outputs vector would be defined and a larger set of flatness
relationships would be found. The latter ones could be exploited by building
a complete flatness-based trajectory generator and controller for the attitude
and position loops.

• The simple VTOL model could be substituted by an higher fidelity one
which considers not only the actuators but also the sensors, the ground
contacts, the propellers and the control aerodynamic surfaces. In addition,
also the wind and aeroelastic effects can be added to the model since two of
the initial hypotheses are the zero wind condition and no aeroelasticity.





Appendix A

Matlab scripts

A.1 Geometry calculation

Fly-by

function wp_flyby = calculus_flyby(wp_0,wp_1,wp_2,v_k,chi_dot_des)

% Extrapolation of waypoints features
id_0 = wp_0(1);
x_0 = wp_0(2);
y_0 = wp_0(3);
z_0 = wp_0(4);
chi_0 = wp_0(5);
gamma_0 = wp_0(6);

x_1 = wp_1(2);
y_1 = wp_1(3);
z_1 = wp_1(4);
chi_1 = wp_1(5);
gamma_1 = wp_1(6);

x_2 = wp_2(2);
y_2 = wp_2(3);
z_2 = wp_2(4);
chi_2 = wp_2(5);
gamma_2 = wp_2(6);

% Creation of vectors
r_0 = [x_0,y_0,z_0]';
r_1 = [x_1,y_1,z_1]';
r_2 = [x_2,y_2,z_2]';

% Speed
v_k = v_k(3);
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% Alpha
delta_chi = abs(chi_2-chi_1);

alpha_t = abs(pi-delta_chi);

% Turn rate
chi_dot = chi_dot_des*pi/180;

% Turn radius
r_c = v_k/chi_dot;

s_turn = abs(r_c/tan(alpha_t/2));

% S_2 and S_1
S_1 = s_turn;
S_2 = s_turn;

% New positions
r_3 = r_1+S_1*(r_0-r_1)/(norm(r_0-r_1));
r_4 = r_1+S_2*(r_2-r_1)/(norm(r_2-r_1));

% New waypoints
if (id_0 == 4) || (id_0 == 6) || (id_0 == 7)
wp_3 = [4;r_3;chi_1;gamma_1];
else
wp_3 = [0;r_3;chi_1;gamma_1];
end

wp_4 = [1;r_4;chi_2;gamma_2];

wp_flyby = [wp_3;wp_4];

Fly-over

function wp_flyover = calculus_flyover(wp_1, wp_2)

% Extrapolation of waypoints features
x_1 = wp_1(2);
y_1 = wp_1(3);
z_1 = wp_1(4);
chi_1 = wp_1(5);
gamma_1 = wp_1(6);

x_2 = wp_2(2);
y_2 = wp_2(3);
z_2 = wp_2(4);
chi_2 = wp_2(5);
gamma_2 = wp_2(6);

% Creation of vectors
r_1 = [x_1,y_1,z_1]';
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r_2 = [x_2,y_2,z_2]';

% Distance and S
distance = sqrt((x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2);
S = 2/3*distance;

% New positions
r_3 = r_1+S*(r_2-r_1)/(norm(r_2-r_1));

% New waypoints
wp_1 = [0;r_1;chi_1;gamma_1];
wp_3 = [1;r_3;chi_2;gamma_2];

wp_flyover = [wp_1;wp_3];

Radius-to-fix

function wp_radiustofix = calculus_radiustofix(wp_1, wp_2)

% Extrapolation of waypoints features
x_1 = wp_1(2);
y_1 = wp_1(3);
z_1 = wp_1(4);
chi_1 = wp_1(5);
gamma_1 = wp_1(6);

x_2 = wp_2(2);
y_2 = wp_2(3);
z_2 = wp_2(4);
chi_2 = wp_2(5);
gamma_2 = wp_2(6);

% Creation of vectors
r_1 = [x_1,y_1,z_1]';
r_2 = [x_2,y_2,z_2]';

% New waypoints
wp_1 = [1;r_1;chi_2;gamma_2];

wp_radiustofix = [wp_1;zeros(6,1)];

Vertical fly-by

function wp_verticalflyby = calculus_verticalflyby(wp_0,wp_1,...
wp_2,vert_flyby_dist)

% Extrapolation of waypoints features
x_0 = wp_0(2);
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y_0 = wp_0(3);
z_0 = wp_0(4);
chi_0 = wp_0(5);
gamma_0 = wp_0(6);

x_1 = wp_1(2);
y_1 = wp_1(3);
z_1 = wp_1(4);
chi_1 = wp_1(5);
gamma_1 = wp_1(6);

x_2 = wp_2(2);
y_2 = wp_2(3);
z_2 = wp_2(4);
chi_2 = wp_2(5);
gamma_2 = wp_2(6);

% Creation of vectors
r_0 = [x_0,y_0,z_0]';
r_1 = [x_1,y_1,z_1]';
r_2 = [x_2,y_2,z_2]';

% S_1 and S_2
S_1 = vert_flyby_dist;
S_2 = vert_flyby_dist;

% New positions
r_3 = r_1+S_1*(r_0-r_1)/(norm(r_0-r_1));
r_4 = r_1+S_2*(r_2-r_1)/(norm(r_2-r_1));

% New waypoints
if z_2 - z_0 < 0
wp_3 = [2;r_3;chi_1;gamma_1];
else
wp_3 = [5;r_3;chi_1;gamma_1];
end
wp_4 = [3;r_4;chi_2;gamma_2];

wp_verticalflyby = [wp_3;wp_4];

A.2 Algorithms

Horizontal straight line

function [x,y,z,x_dot,y_dot,z_dot,x_dotdot,y_dotdot,z_dotdot,t,...
t_prime] = horizontalstraightline(WP_0,WP_1,v_k)

% Extrapolation of waypoints data
% Waypoint 0
X_0 = WP_0(2);
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Y_0 = WP_0(3);
Z_0 = WP_0(4);

% Waypoint 1
X_1 = WP_1(2);
Y_1 = WP_1(3);
Z_1 = WP_1(4);

% Speed
v_k = v_k(3);

% Time
distance = sqrt((X_1-X_0)^2+(Y_1-Y_0)^2+(Z_1-Z_0)^2);
delta_time = distance/v_k;
t = linspace(0,delta_time,1000);
t_prime = t;

% Construction of straight lines

% x direction
a_x_0 = X_0;
a_x_1 = (X_1-X_0)/delta_time;
x = a_x_0+a_x_1*t;

% y direction
a_y_0 = Y_0;
a_y_1 = (Y_1-Y_0)/delta_time;
y = a_y_0+a_y_1*t;

% z direction
a_z_0 = Z_0;
a_z_1 = (Z_1-Z_0)/delta_time;
z = a_z_0+a_z_1*t;

% First derivative
x_dot = a_x_1*ones(1,1000);
y_dot = a_y_1*ones(1,1000);
z_dot = a_z_1*ones(1,1000);

% Second derivative
x_dotdot = zeros(1,1000);
y_dotdot = zeros(1,1000);
z_dotdot = zeros(1,1000);

Horizontal curve

function [x,y,z,x_dot,y_dot,z_dot,x_dotdot,y_dotdot,z_dotdot,t,...
t_prime] = horizontalcurve(WP_0,WP_1,v_k)

% Extrapolation of waypoints data
% Waypoint 0
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X_0 = WP_0(2);
Y_0 = WP_0(3);
Z_0 = WP_0(4);
chi_0 = WP_0(5);
gamma_0 = WP_0(6);

% Waypoint 1
X_1 = WP_1(2);
Y_1 = WP_1(3);
Z_1 = WP_1(4);
chi_1 = WP_1(5);
gamma_1 = WP_1(6);

% Speed
v_k = v_k(3);

% COMPUTATION OF DELTA_TIME WITH STRAIGHT LINE
% Time
distance = sqrt((X_1-X_0)^2+(Y_1-Y_0)^2+(Z_1-Z_0)^2);
delta_time = distance/v_k;
t = linspace(0,delta_time,1000);

% Speed
v = [v_k,0,0]';

% v_O_0
M_OK_0 = [cos(chi_0)*cos(gamma_0) -sin(chi_0) ...

cos(chi_0)*sin(gamma_0);sin(chi_0)*cos(gamma_0) cos(chi_0) ...
sin(chi_0)*sin(gamma_0);-sin(gamma_0) 0 cos(gamma_0)];

v_O_0 = M_OK_0*v;

% v_O_1
M_OK_1 = [cos(chi_1)*cos(gamma_1) -sin(chi_1) ...

cos(chi_1)*sin(gamma_1);sin(chi_1)*cos(gamma_1) cos(chi_1) ...
sin(chi_1)*sin(gamma_1);-sin(gamma_1) 0 cos(gamma_1)];

v_O_1 = M_OK_1*v;

% x direction
v_x_0 = v_O_0(1);
v_x_1 = v_O_1(1);

% y direction
v_y_0 = v_O_0(2);
v_y_1 = v_O_1(2);

% z direction
v_z_0 = v_O_0(3);
v_z_1 = v_O_1(3);

% Acceleration
% x direction
acc_x_0 = 0;
acc_x_1 = 0;
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% y direction
acc_y_0 = 0;
acc_y_1 = 0;

% z direction
acc_z_0 = 0;
acc_z_1 = 0;

% Construction of fifth degree polynomial

% x direction
% Definition of coefficients a_0 to a_2
a_x_0 = X_0;
a_x_1 = v_x_0;
a_x_2 = acc_x_0/2;

% Constant values
A_x = X_1-a_x_0-a_x_1*delta_time-a_x_2*delta_time^2;
B_x = v_x_1-a_x_1-2*a_x_2*delta_time;
C_x = acc_x_1-2*a_x_2;

% Definition of coefficients a_3 to a_5
a_x_5 = (3/delta_time^3)*(C_x/6+2*A_x/(delta_time^2)-B_x/delta_time);
a_x_4 = (B_x-3*A_x/delta_time-2*a_x_5*delta_time^4)/(delta_time^3);
a_x_3 = (A_x-a_x_4*delta_time^4-a_x_5*delta_time^5)/(delta_time^3);

x = a_x_0+a_x_1*t+a_x_2*t.^2+a_x_3*t.^3+a_x_4*t.^4+a_x_5*t.^5;

% y direction
% Definition of coefficients a_0 to a_2
a_y_0 = Y_0;
a_y_1 = v_y_0;
a_y_2 = acc_y_0/2;

% Constant values
A_y = Y_1-a_y_0-a_y_1*delta_time-a_y_2*delta_time^2;
B_y = v_y_1-a_y_1-2*a_y_2*delta_time;
C_y = acc_y_1-2*a_y_2;

% Definition of coefficients a_3 to a_5
a_y_5 = (3/delta_time^3)*(C_y/6+2*A_y/(delta_time^2)-B_y/delta_time);
a_y_4 = (B_y-3*A_y/delta_time-2*a_y_5*delta_time^4)/(delta_time^3);
a_y_3 = (A_y-a_y_4*delta_time^4-a_y_5*delta_time^5)/(delta_time^3);

y = a_y_0+a_y_1*t+a_y_2*t.^2+a_y_3*t.^3+a_y_4*t.^4+a_y_5*t.^5;

% z direction
% Definition of coefficients a_0 to a_2
a_z_0 = Z_0;
a_z_1 = v_z_0;
a_z_2 = acc_z_0/2;

% Constant values
A_z = Z_1-a_z_0-a_z_1*delta_time-a_z_2*delta_time^2;
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B_z = v_z_1-a_z_1-2*a_z_2*delta_time;
C_z = acc_z_1-2*a_z_2;

% Definition of coefficients a_3 to a_5
a_z_5 = (3/delta_time^3)*(C_z/6+2*A_z/(delta_time^2)-B_z/delta_time);
a_z_4 = (B_z-3*A_z/delta_time-2*a_z_5*delta_time^4)/(delta_time^3);
a_z_3 = (A_z-a_z_4*delta_time^4-a_z_5*delta_time^5)/(delta_time^3);

z = a_z_0+a_z_1*t+a_z_2*t.^2+a_z_3*t.^3+a_z_4*t.^4+a_z_5*t.^5;

% First derivative
x_dot_1 = a_x_1+2*a_x_2*t+3*a_x_3*t.^2+4*a_x_4*t.^3+5*a_x_5*t.^4;
y_dot_1 = a_y_1+2*a_y_2*t+3*a_y_3*t.^2+4*a_y_4*t.^3+5*a_y_5*t.^4;
z_dot_1 = a_z_1+2*a_z_2*t+3*a_z_3*t.^2+4*a_z_4*t.^3+5*a_z_5*t.^4;

% Second derivative
x_dotdot_1 = 2*a_x_2+6*a_x_3*t+12*a_x_4*t.^2+20*a_x_5*t.^3;
y_dotdot_1 = 2*a_y_2+6*a_y_3*t+12*a_y_4*t.^2+20*a_y_5*t.^3;
z_dotdot_1 = 2*a_z_2+6*a_z_3*t+12*a_z_4*t.^2+20*a_z_5*t.^3;

% Rescaling the time to have constant speed along the path
mod_v = sqrt(x_dot_1.^2+y_dot_1.^2+z_dot_1.^2);

lambda_v = (v_k./mod_v);

v_vect = [x_dot_1;y_dot_1;z_dot_1]';
acc_vect = [x_dotdot_1;y_dotdot_1;z_dotdot_1];

lambda_acc = zeros(1,1000);
for i = 1:1000

lambda_acc_num = -(v_k^2)*(v_vect(i,:)*acc_vect(:,i));
lambda_acc(i) = lambda_acc_num/(mod_v(i)^4);

end

x_dot = lambda_v.*x_dot_1;
y_dot = lambda_v.*y_dot_1;
z_dot = lambda_v.*z_dot_1;

x_dotdot = x_dot_1.*lambda_acc+x_dotdot_1.*lambda_v.^2;
y_dotdot = y_dot_1.*lambda_acc+y_dotdot_1.*lambda_v.^2;
z_dotdot = z_dot_1.*lambda_acc+z_dotdot_1.*lambda_v.^2;

% New time
t_prime = zeros(1,1000);
for i = 2:1000

t_prime(i) = t_prime(i-1)+(t(i)-t(i-1))/lambda_v(i-1);
end

% % COMPUTATION OF DELTA_TIME WITH CIRCULAR ARC
%
% % m1 and m2
% if (chi_0>=0 && chi_0<=pi)
% m0 = tan(pi/2-chi_0);
% else
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% m0 = tan(3/2*pi-chi_0);
% end
%
% if (chi_1>=0 && chi_1<=pi)
% m1 = tan(pi/2-chi_1);
% else
% m1 = tan(3/2*pi-chi_1);
% end
%
% m0_per = -1/m0;
% m1_per = -1/m1;
%
% % q_0 and q_1
% q_0 = X_0-m0_per*Y_0;
% q_1 = X_1-m1_per*Y_1;
%
% % Center of the circle
% y_center = (q_0-q_1)/(m1_per-m0_per);
% x_center = m0_per*y_center+q_0;
% r_c = (sqrt((X_0-x_center)^2+(Y_0-y_center)^2)+...
% sqrt((X_1-x_center)^2+(Y_1-y_center)^2))/2;
%
% delta_chi = abs(chi_1-chi_0);
%
% alpha_t = abs(pi-delta_chi);
%
% delta_phi = pi-alpha_t;
%
% arc_length = delta_phi*r_c;
% delta_time = arc_length/v_k;
% t = linspace(0,delta_time,1000);

Saturation with circular arc

function [x1,y1,z1,x_dot1,y_dot1,z_dot1,x_dotdot1,y_dotdot1,...
z_dotdot1,t1,t_prime1] = saturationchidot(x,y,z,x_dot,y_dot,...
z_dot,x_dotdot,y_dotdot,z_dotdot,t,t_prime,v_k,chi_dot_max)

x1 = zeros(1,1000);
y1 = zeros(1,1000);
z1 = zeros(1,1000);
x_dot1 = zeros(1,1000);
y_dot1 = zeros(1,1000);
z_dot1 = zeros(1,1000);
x_dotdot1 = zeros(1,1000);
y_dotdot1 = zeros(1,1000);
z_dotdot1 = zeros(1,1000);
t1 = zeros(1,1000);
t_prime1 = zeros(1,1000);

% Speed
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v_k = v_k(3);

% Saturation of chi_dot

% Computation of chi
chi_dot = 1./(1+(y_dot./x_dot).^2).*...

((y_dotdot.*x_dot-y_dot.*x_dotdot)./(x_dot.^2));
chi_vecchio = atan2(y_dot,x_dot);
chi = zeros(1,1000);

for i = 1:1000
if chi_vecchio(i) < 0

chi(i) = chi_vecchio(i)+2*pi;
else

chi(i) = chi_vecchio(i);
end

end

% Computation of gamma
gamma = atan(-(z_dot./y_dot).*sin(chi));

if max(abs(chi_dot))>chi_dot_max
ind_chimajor10 = find(abs(chi_dot)>chi_dot_max);
length_ind = ind_chimajor10(end)-ind_chimajor10(1)+1;

r_c = sqrt((v_k^2-z_dot(ind_chimajor10(1):...
ind_chimajor10(end)).^2))/(chi_dot_max);

chi_3 = chi(ind_chimajor10(1)-1);
chi_4 = chi(ind_chimajor10(end)+1);

chi_dot_3 = chi_dot(ind_chimajor10(1)-1);

gamma_3 = gamma(ind_chimajor10(1)-1);
gamma_4 = gamma(ind_chimajor10(end)+1);

if (chi_3 <= pi/2 && chi_4 >= pi)||(chi_4 <= pi/2 && chi_3 >= pi)
ang_circ = abs((2*pi)-abs(chi_4-chi_3));

else
ang_circ = pi-(pi-abs(chi_4-chi_3));

end

% Rotation matrix
M_OK = [cos(chi_3) -sin(chi_3);sin(chi_3) cos(chi_3)];

% Initial position
x_3 = x(ind_chimajor10(1)-1);
y_3 = y(ind_chimajor10(1)-1);
z_3 = z(ind_chimajor10(1)-1);

% Circular arc
if chi_dot_3>0

phi_c = linspace(0,ang_circ,length_ind);
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t_circarc = linspace(t_prime(ind_chimajor10(1)),...
t_prime(ind_chimajor10(1))+ang_circ/chi_dot_max,length_ind);

phi_c_dot = (phi_c(4)-phi_c(3))/(t_circarc(4)-t_circarc(3));

x_circarc = r_c.*sin(phi_c);
y_circarc = r_c.*(1-cos(phi_c));

x_dot_circarc = r_c.*cos(phi_c)*phi_c_dot;
y_dot_circarc = r_c.*sin(phi_c)*phi_c_dot;

x_dotdot_circarc = -r_c.*sin(phi_c)*phi_c_dot^2;
y_dotdot_circarc = r_c.*cos(phi_c)*phi_c_dot^2;

else
phi_c = linspace(0,ang_circ,length_ind);

t_circarc = linspace(t_prime(ind_chimajor10(1)),...
t_prime(ind_chimajor10(1))+ang_circ/chi_dot_max,length_ind);

phi_c_dot = (phi_c(4)-phi_c(3))/(t_circarc(4)-t_circarc(3));

x_circarc = r_c.*sin(phi_c);
y_circarc = - r_c.*(1-cos(phi_c));

x_dot_circarc = r_c.*cos(phi_c)*phi_c_dot;
y_dot_circarc = - r_c.*sin(phi_c)*phi_c_dot;

x_dotdot_circarc = - r_c.*sin(phi_c)*phi_c_dot^2;
y_dotdot_circarc = - r_c.*cos(phi_c)*phi_c_dot^2;

end

% Rotation from K-frame to NED-Local-frame
pos_circarc = M_OK*[x_circarc;y_circarc];

x_circarc = pos_circarc(1,:);
y_circarc = pos_circarc(2,:);
z_circarc = z(ind_chimajor10(1):(ind_chimajor10(end)));

vel_circarc = M_OK*[x_dot_circarc;y_dot_circarc];

x_dot_circarc = vel_circarc(1,:);
y_dot_circarc = vel_circarc(2,:);
z_dot_circarc = z_dot(ind_chimajor10(1):(ind_chimajor10(end)));

acc_circarc = M_OK*[x_dotdot_circarc;y_dotdot_circarc];

x_dotdot_circarc = acc_circarc(1,:);
y_dotdot_circarc = acc_circarc(2,:);
z_dotdot_circarc = z_dotdot(ind_chimajor10(1):...

(ind_chimajor10(end)));

% Translation from NED-Local-frame to O-frame
x_circarc = x_3 + x_circarc;
y_circarc = y_3 + y_circarc;
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x1(1:(ind_chimajor10(1)-1)) = x(1:(ind_chimajor10(1)-1));
x1(ind_chimajor10(1):(ind_chimajor10(end))) = x_circarc;
x1((ind_chimajor10(end)+1):end) = (x_circarc(end)-...

x(ind_chimajor10(end)+1))+x((ind_chimajor10(end)+1):end);
y1(1:(ind_chimajor10(1)-1)) = y(1:(ind_chimajor10(1)-1));
y1(ind_chimajor10(1):(ind_chimajor10(end))) = y_circarc;
y1((ind_chimajor10(end)+1):end) = (y_circarc(end)-...

y(ind_chimajor10(end)+1))+y((ind_chimajor10(end)+1):end);
z1(1:(ind_chimajor10(1)-1)) = z(1:(ind_chimajor10(1)-1));
z1(ind_chimajor10(1):(ind_chimajor10(end))) = z_circarc;
z1((ind_chimajor10(end)+1):end) = (z_circarc(end)-...

z(ind_chimajor10(end)+1))+z((ind_chimajor10(end)+1):end);

x_dot1(1:(ind_chimajor10(1)-1)) = x_dot(1:(ind_chimajor10(1)-1));
x_dot1(ind_chimajor10(1):(ind_chimajor10(end))) = x_dot_circarc;
x_dot1((ind_chimajor10(end)+1):end) = ...

x_dot((ind_chimajor10(end)+1):end);
y_dot1(1:(ind_chimajor10(1)-1)) = y_dot(1:(ind_chimajor10(1)-1));
y_dot1(ind_chimajor10(1):(ind_chimajor10(end))) = y_dot_circarc;
y_dot1((ind_chimajor10(end)+1):end) = ...

y_dot((ind_chimajor10(end)+1):end);
z_dot1(1:(ind_chimajor10(1)-1)) = z_dot(1:(ind_chimajor10(1)-1));
z_dot1(ind_chimajor10(1):(ind_chimajor10(end))) = z_dot_circarc;
z_dot1((ind_chimajor10(end)+1):end) = ...

z_dot((ind_chimajor10(end)+1):end);

x_dotdot1(1:(ind_chimajor10(1)-1)) = ...
x_dotdot(1:(ind_chimajor10(1)-1));

x_dotdot1(ind_chimajor10(1):(ind_chimajor10(end))) = ...
x_dotdot_circarc;

x_dotdot1((ind_chimajor10(end)+1):end) = ...
x_dotdot((ind_chimajor10(end)+1):end);

y_dotdot1(1:(ind_chimajor10(1)-1)) = ...
y_dotdot(1:(ind_chimajor10(1)-1));

y_dotdot1(ind_chimajor10(1):(ind_chimajor10(end))) = ...
y_dotdot_circarc;

y_dotdot1((ind_chimajor10(end)+1):end) = ...
y_dotdot((ind_chimajor10(end)+1):end);

z_dotdot1(1:(ind_chimajor10(1)-1)) = ...
z_dotdot(1:(ind_chimajor10(1)-1));

z_dotdot1(ind_chimajor10(1):(ind_chimajor10(end))) = ...
z_dotdot_circarc;

z_dotdot1((ind_chimajor10(end)+1):end) = ...
z_dotdot((ind_chimajor10(end)+1):end);

t1(1:(ind_chimajor10(1)-1)) = t(1:(ind_chimajor10(1)-1));
t1(ind_chimajor10(1):(ind_chimajor10(end))) = t_circarc;
t1((ind_chimajor10(end)+1):end) = t_circarc(end)...

-t(ind_chimajor10(end)+1)+t((ind_chimajor10(end)+1):end);

t_prime1(1:(ind_chimajor10(1)-1)) = ...
t_prime(1:(ind_chimajor10(1)-1));

t_prime1(ind_chimajor10(1):(ind_chimajor10(end))) = t_circarc;
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t_prime1((ind_chimajor10(end)+1):end) = t_circarc(end)-...
t_prime(ind_chimajor10(end)+1)+...
t_prime((ind_chimajor10(end)+1):end);

else
x1 = x;
y1 = y;
z1 = z;
x_dot1 = x_dot;
y_dot1 = y_dot;
z_dot1 = z_dot;
x_dotdot1 = x_dotdot;
y_dotdot1 = y_dotdot;
z_dotdot1 = z_dotdot;
t1 = t;
t_prime1 = t_prime;

end

Vertical acceleration and deceleration

function [x,y,z,x_dot,y_dot,z_dot,x_dotdot,y_dotdot,z_dotdot,t,...
t_prime] = verticalaccdec(WP_0,WP_1,WP_2,v_k)

% Extrapolation of waypoints data
% Waypoint 0
id_0 = WP_0(1);
X_0 = WP_0(2);
Y_0 = WP_0(3);
Z_0 = WP_0(4);
chi_0 = WP_0(5);
gamma_0 = WP_0(6);

% Waypoint 1
X_1 = WP_1(2);
Y_1 = WP_1(3);
Z_1 = WP_1(4);
chi_1 = WP_1(5);
gamma_1 = WP_1(6);

% Waypoint 2
id_2 = WP_2(1);

% Speed
if (id_2 == 3) || (id_0 == 3)

if Z_1 - Z_0 < 0
v_k_0 = v_k(1);
v_k_1 = v_k(2);

else
v_k_0 = -v_k(2);
v_k_1 = -v_k(1);

end
v_mean = abs(v_k_0+v_k_1)/2;
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else
v_k_0 = v_k(1);
v_k_1 = v_k(1);
v_mean = 1;

end

% Max speed and acceleration
v_max = 2;
acc_max = 2;

% COMPUTATION OF DELTA_TIME WITH A STRAIGHT LINE
% Time
distance = sqrt((X_1-X_0)^2+(Y_1-Y_0)^2+(Z_1-Z_0)^2);
delta_time = distance/v_mean;
t = linspace(0,delta_time,1000);

% Speed
% v_O_0
v_O_0 = [0,0,-v_k_0]';

% v_O_1
v_O_1 = [0,0,-v_k_1]';

% x direction
v_x_0 = v_O_0(1);
v_x_1 = v_O_1(1);

% y direction
v_y_0 = v_O_0(2);
v_y_1 = v_O_1(2);

% z direction
v_z_0 = v_O_0(3);
v_z_1 = v_O_1(3);

% Acceleration
% x direction
acc_x_0 = 0;
acc_x_1 = 0;

% y direction
acc_y_0 = 0;
acc_y_1 = 0;

% z direction
acc_z_0 = 0;
acc_z_1 = 0;

% Construction of fifth degree polynomial

% x direction
% Definition of coefficients a_0 to a_2
a_x_0 = X_0;
a_x_1 = v_x_0;
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a_x_2 = acc_x_0/2;

% Constant values
A_x = X_1-a_x_0-a_x_1*delta_time-a_x_2*delta_time^2;
B_x = v_x_1-a_x_1-2*a_x_2*delta_time;
C_x = acc_x_1-2*a_x_2;

% Definition of coefficients a_3 to a_5
a_x_5 = (3/delta_time^3)*(C_x/6+2*A_x/(delta_time^2)-B_x/delta_time);
a_x_4 = (B_x-3*A_x/delta_time-2*a_x_5*delta_time^4)/(delta_time^3);
a_x_3 = (A_x-a_x_4*delta_time^4-a_x_5*delta_time^5)/(delta_time^3);

x = a_x_0+a_x_1*t+a_x_2*t.^2+a_x_3*t.^3+a_x_4*t.^4+a_x_5*t.^5;

% y direction
% Definition of coefficients a_0 to a_2
a_y_0 = Y_0;
a_y_1 = v_y_0;
a_y_2 = acc_y_0/2;

% Constant values
A_y = Y_1-a_y_0-a_y_1*delta_time-a_y_2*delta_time^2;
B_y = v_y_1-a_y_1-2*a_y_2*delta_time;
C_y = acc_y_1-2*a_y_2;

% Definition of coefficients a_3 to a_5
a_y_5 = (3/delta_time^3)*(C_y/6+2*A_y/(delta_time^2)-B_y/delta_time);
a_y_4 = (B_y-3*A_y/delta_time-2*a_y_5*delta_time^4)/(delta_time^3);
a_y_3 = (A_y-a_y_4*delta_time^4-a_y_5*delta_time^5)/(delta_time^3);

y = a_y_0+a_y_1*t+a_y_2*t.^2+a_y_3*t.^3+a_y_4*t.^4+a_y_5*t.^5;

% z direction
% Definition of coefficients a_0 to a_2
a_z_0 = Z_0;
a_z_1 = v_z_0;
a_z_2 = acc_z_0/2;

% Constant values
A_z = Z_1-a_z_0-a_z_1*delta_time-a_z_2*delta_time^2;
B_z = v_z_1-a_z_1-2*a_z_2*delta_time;
C_z = acc_z_1-2*a_z_2;

% Definition of coefficients a_3 to a_5
a_z_5 = (3/delta_time^3)*(C_z/6+2*A_z/(delta_time^2)-B_z/delta_time);
a_z_4 = (B_z-3*A_z/delta_time-2*a_z_5*delta_time^4)/(delta_time^3);
a_z_3 = (A_z-a_z_4*delta_time^4-a_z_5*delta_time^5)/(delta_time^3);

z = a_z_0+a_z_1*t+a_z_2*t.^2+a_z_3*t.^3+a_z_4*t.^4+a_z_5*t.^5;

% First derivative
x_dot = a_x_1+2*a_x_2*t+3*a_x_3*t.^2+4*a_x_4*t.^3+5*a_x_5*t.^4;
y_dot = a_y_1+2*a_y_2*t+3*a_y_3*t.^2+4*a_y_4*t.^3+5*a_y_5*t.^4;
z_dot = a_z_1+2*a_z_2*t+3*a_z_3*t.^2+4*a_z_4*t.^3+5*a_z_5*t.^4;
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% Second derivative
x_dotdot = 2*a_x_2+6*a_x_3*t+12*a_x_4*t.^2+20*a_x_5*t.^3;
y_dotdot = 2*a_y_2+6*a_y_3*t+12*a_y_4*t.^2+20*a_y_5*t.^3;
z_dotdot = 2*a_z_2+6*a_z_3*t+12*a_z_4*t.^2+20*a_z_5*t.^3;

t_prime = t;

Vertical curve

function [x,y,z,x_dot,y_dot,z_dot,x_dotdot,y_dotdot,z_dotdot,t,...
t_prime] = verticalcurve(WP_0,WP_1,v_k)

% Extrapolation of waypoints data
% Waypoint 0
X_0 = WP_0(2);
Y_0 = WP_0(3);
Z_0 = WP_0(4);
chi_0 = WP_0(5);
gamma_0 = WP_0(6);

% Waypoint 1
X_1 = WP_1(2);
Y_1 = WP_1(3);
Z_1 = WP_1(4);
chi_1 = WP_1(5);
gamma_1 = WP_1(6);

% Speed
v_k = v_k(2);

% COMPUTATION OF DELTA_TIME WITH A STRAIGHT LINE
% Time
distance = sqrt((X_1-X_0)^2+(Y_1-Y_0)^2+(Z_1-Z_0)^2);
delta_time = distance/v_k;
t = linspace(0,delta_time,1000);

% Speed
if Z_1 - Z_0 < 0

% v_O_0
v_O_0 = [0,0,-v_k]';

% v_O_1
v = [v_k,0,0]';
M_OK_1 = [cos(chi_1)*cos(gamma_1) -sin(chi_1) ...

cos(chi_1)*sin(gamma_1);sin(chi_1)*cos(gamma_1) cos(chi_1) ...
sin(chi_1)*sin(gamma_1);-sin(gamma_1) 0 cos(gamma_1)];

v_O_1 = M_OK_1*v;
else

% v_O_0
v = [v_k,0,0]';
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M_OK_0 = [cos(chi_0)*cos(gamma_0) -sin(chi_0) ...
cos(chi_0)*sin(gamma_0);sin(chi_0)*cos(gamma_0) cos(chi_0) ...
sin(chi_0)*sin(gamma_0);-sin(gamma_0) 0 cos(gamma_0)];

v_O_0 = M_OK_0*v;

% v_O_1
v_O_1 = [0,0,v_k]';

end

% x direction
v_x_0 = v_O_0(1);
v_x_1 = v_O_1(1);

% y direction
v_y_0 = v_O_0(2);
v_y_1 = v_O_1(2);

% z direction
v_z_0 = v_O_0(3);
v_z_1 = v_O_1(3);

% Acceleration
% x direction
acc_x_0 = 0;
acc_x_1 = 0;

% y direction
acc_y_0 = 0;
acc_y_1 = 0;

% z direction
acc_z_0 = 0;
acc_z_1 = 0;

% Construction of fifth degree polynomial

% x direction
% Definition of coefficients a_0 to a_2
a_x_0 = X_0;
a_x_1 = v_x_0;
a_x_2 = acc_x_0/2;

% Constant values
A_x = X_1-a_x_0-a_x_1*delta_time-a_x_2*delta_time^2;
B_x = v_x_1-a_x_1-2*a_x_2*delta_time;
C_x = acc_x_1-2*a_x_2;

% Definition of coefficients a_3 to a_5
a_x_5 = (3/delta_time^3)*(C_x/6+2*A_x/(delta_time^2)-B_x/delta_time);
a_x_4 = (B_x-3*A_x/delta_time-2*a_x_5*delta_time^4)/(delta_time^3);
a_x_3 = (A_x-a_x_4*delta_time^4-a_x_5*delta_time^5)/(delta_time^3);

x = a_x_0+a_x_1*t+a_x_2*t.^2+a_x_3*t.^3+a_x_4*t.^4+a_x_5*t.^5;
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% y direction
% Definition of coefficients a_0 to a_2
a_y_0 = Y_0;
a_y_1 = v_y_0;
a_y_2 = acc_y_0/2;

% Constant values
A_y = Y_1-a_y_0-a_y_1*delta_time-a_y_2*delta_time^2;
B_y = v_y_1-a_y_1-2*a_y_2*delta_time;
C_y = acc_y_1-2*a_y_2;

% Definition of coefficients a_3 to a_5
a_y_5 = (3/delta_time^3)*(C_y/6+2*A_y/(delta_time^2)-B_y/delta_time);
a_y_4 = (B_y-3*A_y/delta_time-2*a_y_5*delta_time^4)/(delta_time^3);
a_y_3 = (A_y-a_y_4*delta_time^4-a_y_5*delta_time^5)/(delta_time^3);

y = a_y_0+a_y_1*t+a_y_2*t.^2+a_y_3*t.^3+a_y_4*t.^4+a_y_5*t.^5;

% z direction
% Definition of coefficients a_0 to a_2
a_z_0 = Z_0;
a_z_1 = v_z_0;
a_z_2 = acc_z_0/2;

% Constant values
A_z = Z_1-a_z_0-a_z_1*delta_time-a_z_2*delta_time^2;
B_z = v_z_1-a_z_1-2*a_z_2*delta_time;
C_z = acc_z_1-2*a_z_2;

% Definition of coefficients a_3 to a_5
a_z_5 = (3/delta_time^3)*(C_z/6+2*A_z/(delta_time^2)-B_z/delta_time);
a_z_4 = (B_z-3*A_z/delta_time-2*a_z_5*delta_time^4)/(delta_time^3);
a_z_3 = (A_z-a_z_4*delta_time^4-a_z_5*delta_time^5)/(delta_time^3);

z = a_z_0+a_z_1*t+a_z_2*t.^2+a_z_3*t.^3+a_z_4*t.^4+a_z_5*t.^5;

% First derivative
x_dot_1 = a_x_1+2*a_x_2*t+3*a_x_3*t.^2+4*a_x_4*t.^3+5*a_x_5*t.^4;
y_dot_1 = a_y_1+2*a_y_2*t+3*a_y_3*t.^2+4*a_y_4*t.^3+5*a_y_5*t.^4;
z_dot_1 = a_z_1+2*a_z_2*t+3*a_z_3*t.^2+4*a_z_4*t.^3+5*a_z_5*t.^4;

% Second derivative
x_dotdot_1 = 2*a_x_2+6*a_x_3*t+12*a_x_4*t.^2+20*a_x_5*t.^3;
y_dotdot_1 = 2*a_y_2+6*a_y_3*t+12*a_y_4*t.^2+20*a_y_5*t.^3;
z_dotdot_1 = 2*a_z_2+6*a_z_3*t+12*a_z_4*t.^2+20*a_z_5*t.^3;

% Rescaling the time to have constant velocity along the path
mod_v = sqrt(x_dot_1.^2+y_dot_1.^2+z_dot_1.^2);

lambda_v = (v_k./mod_v);

v_vect = [x_dot_1;y_dot_1;z_dot_1]';
acc_vect = [x_dotdot_1;y_dotdot_1;z_dotdot_1];
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lambda_acc = zeros(1,1000);
for i = 1:1000

lambda_acc_num = -(v_k^2)*(v_vect(i,:)*acc_vect(:,i));
lambda_acc(i) = lambda_acc_num/(mod_v(i)^4);

end

x_dot = lambda_v.*x_dot_1;
y_dot = lambda_v.*y_dot_1;
z_dot = lambda_v.*z_dot_1;

x_dotdot = x_dot_1.*lambda_acc+x_dotdot_1.*lambda_v.^2;
y_dotdot = y_dot_1.*lambda_acc+y_dotdot_1.*lambda_v.^2;
z_dotdot = z_dot_1.*lambda_acc+z_dotdot_1.*lambda_v.^2;

% New time
t_prime = zeros(1,1000);
for i = 2:1000

t_prime(i) = t_prime(i-1)+(t(i)-t(i-1))/lambda_v(i-1);
end

Horizontal acceleration

function [x,y,z,x_dot,y_dot,z_dot,x_dotdot,y_dotdot,z_dotdot,t,...
t_prime] = horizontalacceleration(WP_0,WP_1,v_k,acc_limits)

% Extrapolation of waypoints data
% Waypoint 0
id_0 = WP_0(1);
X_0 = WP_0(2);
Y_0 = WP_0(3);
Z_0 = WP_0(4);
chi_0 = WP_0(5);
gamma_0 = WP_0(6);

% Waypoint 1
id_1 = WP_1(1);
X_1 = WP_1(2);
Y_1 = WP_1(3);
Z_1 = WP_1(4);
chi_1 = WP_1(5);
gamma_1 = WP_1(6);

% Speed
if id_0 == 3

v_k_0 = v_k(2);
else

v_k_0 = v_k(1);
end
v_k_1 = v_k(3);
v_mean = (v_k_0+v_k_1)/2;



156 Appendix A. Matlab scripts

% Max acceleration and jerk
acc_max = acc_limits(1);
j_max = acc_limits(2);

% Distance
distance = sqrt((X_1-X_0)^2+(Y_1-Y_0)^2+(Z_1-Z_0)^2);

% Position initialization
q_i = 0;
q_f = distance;

% Time
Tj_1 = acc_max/j_max;
Ta = Tj_1 + (v_k_1-v_k_0)/acc_max;
Tv = (q_f-q_i)/v_k_1 - Ta/2*(1 + v_k_0/v_k_1);

t = linspace(0,Ta + Tv,1000);

ind_1 = find(t < Tj_1);
ind_2 = find(t < Ta-Tj_1);
ind_2 = ind_2(ind_1(end)+1:end);
ind_3 = find(t < Ta);
ind_3 = ind_3(ind_2(end)+1:end);
t_1 = t(ind_1);
t_2 = t(ind_2);
t_3 = t(ind_3);
t_4 = t(ind_3(end)+1:end);

q_1 = q_i + v_k_0*t_1 + j_max/6*t_1.^3;
q_1_dot = v_k_0 + j_max/2*t_1.^2;
q_1_dotdot = j_max*t_1;

q_2 = q_i + v_k_0*t_2 + (acc_max/6)*(3*t_2.^2 - 3*Tj_1*t_2 + Tj_1^2);
q_2_dot = v_k_0 + acc_max*(t_2 - Tj_1/2);
q_2_dotdot = acc_max*ones(1,length(t_2));

q_3 = q_i + (v_k_1+v_k_0)*Ta/2 - v_k_1*(Ta-t_3) + j_max/6*(Ta-t_3).^3;
q_3_dot = v_k_1 - j_max/2*(Ta-t_3).^2;
q_3_dotdot = j_max*(Ta - t_3);

q_4 = q_i + (v_k_1+v_k_0)*Ta/2 + v_k_1*(t_4-Ta);
q_4_dot = v_k_1*ones(1,length(t_4));
q_4_dotdot = zeros(1,length(t_4));

q = [q_1,q_2,q_3,q_4];
q_dot = [q_1_dot,q_2_dot,q_3_dot,q_4_dot];
q_dotdot = [q_1_dotdot,q_2_dotdot,q_3_dotdot,q_4_dotdot];

% Rotation matrix
M_OK = [cos(chi_1)*cos(gamma_1) -sin(chi_1) ...

cos(chi_1)*sin(gamma_1);sin(chi_1)*cos(gamma_1) cos(chi_1) ...
sin(chi_1)*sin(gamma_1);-sin(gamma_1) 0 cos(gamma_1)];

% Position
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x = zeros(1,1000);
y = zeros(1,1000);
z = zeros(1,1000);

% First derivative
x_dot = zeros(1,1000);
y_dot = zeros(1,1000);
z_dot = zeros(1,1000);

% Second derivative
x_dotdot = zeros(1,1000);
y_dotdot = zeros(1,1000);
z_dotdot = zeros(1,1000);

for i=1:1000
pos = M_OK*[q(i),0,0]';

x(i) = pos(1);
y(i) = pos(2);
z(i) = pos(3);

vel = M_OK*[q_dot(i),0,0]';

x_dot(i) = vel(1);
y_dot(i) = vel(2);
z_dot(i) = vel(3);

acc = M_OK*[q_dotdot(i),0,0]';

x_dotdot(i) = acc(1);
y_dotdot(i) = acc(2);
z_dotdot(i) = acc(3);

end

x = X_0 + x;
y = Y_0 + y;
z = Z_0 + z;

t_prime = t;

Horizontal deceleration

function [x,y,z,x_dot,y_dot,z_dot,x_dotdot,y_dotdot,z_dotdot,t,...
t_prime] = horizontaldeceleration(WP_0,WP_1,WP_2,v_k,acc_limits)

% Extrapolation of waypoints data
% Waypoint 0
id_0 = WP_0(1);
X_0 = WP_0(2);
Y_0 = WP_0(3);
Z_0 = WP_0(4);
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chi_0 = WP_0(5);
gamma_0 = WP_0(6);

% Waypoint 1
id_1 = WP_1(1);
X_1 = WP_1(2);
Y_1 = WP_1(3);
Z_1 = WP_1(4);
chi_1 = WP_1(5);
gamma_1 = WP_1(6);

% Waypoint 2
id_2 = WP_2(1);

% Speed
v_k_0 = v_k(3);
if id_2 == 3

v_k_1 = v_k(2);
else

v_k_1 = v_k(1);
end
v_mean = (v_k_0+v_k_1)/2;

% Max acceleration and jerk
acc_max = acc_limits(1);
acc_min = -acc_max;
j_max = acc_limits(2);

% Distance
distance = sqrt((X_1-X_0)^2+(Y_1-Y_0)^2+(Z_1-Z_0)^2);

% Position initialization
q_i = 0;
q_f = distance;

% Time
Tj_2 = acc_max/j_max;
Td = Tj_2 + (v_k_0-v_k_1)/acc_max;
Tv = (q_f-q_i)/v_k_0 - Td/2*(1 + v_k_1/v_k_0);

t = linspace(0,Tv + Td,1000);

ind_1 = find(t < Tv);
ind_2 = find(t < Tv+Tj_2);
ind_2 = ind_2(ind_1(end)+1:end);
ind_3 = find(t < Tv+Td-Tj_2);
ind_3 = ind_3(ind_2(end)+1:end);
t_1 = t(ind_1);
t_2 = t(ind_2);
t_3 = t(ind_3);
t_4 = t(ind_3(end)+1:end);

q_1 = q_i + v_k_0*t_1;
q_1_dot = v_k_0*ones(1,length(t_1));
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q_1_dotdot = zeros(1,length(t_1));

q_2 = q_f - (v_k_0+v_k_1)Td/2 + v_k_0(t_2-Tv) - j_max/6*(t_2-Tv).^3;
q_2_dot = v_k_0 - j_max/2*(t_2-Tv).^2;
q_2_dotdot = -j_max*(t_2-Tv);

q_3 = q_f - (v_k_0+v_k_1)Td/2 + v_k_0(t_3-Tv) + ...
acc_min/6*(3*(t_3-Tv).^2 - 3*Tj_2*(t_3-Tv) + Tj_2^2);

q_3_dot = v_k_0 + acc_min*(t_3-Tv-Tj_2/2);
q_3_dotdot = acc_min*ones(1,length(t_3));

q_4 = q_f - v_k_1*(Tv+Td-t_4) - j_max/6*(Tv+Td-t_4).^3;
q_4_dot = v_k_1 + j_max/2*(Tv+Td-t_4).^2;
q_4_dotdot = -j_max*(Tv+Td-t_4);

q = [q_1,q_2,q_3,q_4];
q_dot = [q_1_dot,q_2_dot,q_3_dot,q_4_dot];
q_dotdot = [q_1_dotdot,q_2_dotdot,q_3_dotdot,q_4_dotdot];

% Rotation matrix
M_OK = [cos(chi_1)*cos(gamma_1) -sin(chi_1) ...

cos(chi_1)*sin(gamma_1);sin(chi_1)*cos(gamma_1) cos(chi_1) ...
sin(chi_1)*sin(gamma_1);-sin(gamma_1) 0 cos(gamma_1)];

% Position
x = zeros(1,1000);
y = zeros(1,1000);
z = zeros(1,1000);

% First derivative
x_dot = zeros(1,1000);
y_dot = zeros(1,1000);
z_dot = zeros(1,1000);

% Second derivative
x_dotdot = zeros(1,1000);
y_dotdot = zeros(1,1000);
z_dotdot = zeros(1,1000);

for i=1:1000
pos = M_OK*[q(i),0,0]';

x(i) = pos(1);
y(i) = pos(2);
z(i) = pos(3);

vel = M_OK*[q_dot(i),0,0]';

x_dot(i) = vel(1);
y_dot(i) = vel(2);
z_dot(i) = vel(3);

acc = M_OK*[q_dotdot(i),0,0]';
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x_dotdot(i) = acc(1);
y_dotdot(i) = acc(2);
z_dotdot(i) = acc(3);

end

x = X_0 + x;
y = Y_0 + y;
z = Z_0 + z;

t_prime = t;

Hovering

function [x,y,z,x_dot,y_dot,z_dot,x_dotdot,y_dotdot,z_dotdot,t,...
t_prime] = hovering(WP_1,t_hover)

% Extrapolation of waypoints data
% Waypoint 1
id_1 = WP_1(1);
X_1 = WP_1(2);
Y_1 = WP_1(3);
Z_1 = WP_1(4);
chi_1 = WP_1(5);
gamma_1 = WP_1(6);

% Position
x = X_1*ones(1,1000);
y = Y_1*ones(1,1000);
z = Z_1*ones(1,1000);

% First derivative
x_dot = zeros(1,1000);
y_dot = zeros(1,1000);
z_dot = zeros(1,1000);

% Second derivative
x_dotdot = zeros(1,1000);
y_dotdot = zeros(1,1000);
z_dotdot = zeros(1,1000);

t = linspace(0,t_hover,1000);
t_prime = t;

A.3 Other scripts

Shift in case of saturation
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function [x_shifted,y_shifted,z_shifted] = shift(x,y,z,s)

x_shifted = x;
y_shifted = y;
z_shifted = z;

for i = 1:s-2
x_shifted((i*1000+1):((i+1)*1000)) = x((i*1000+1):...

((i+1)*1000))+x_shifted(i*1000)-x_shifted(i*1000+1);
y_shifted((i*1000+1):((i+1)*1000)) = y((i*1000+1):...

((i+1)*1000))+y_shifted(i*1000)-y_shifted(i*1000+1);
z_shifted((i*1000+1):((i+1)*1000)) = z((i*1000+1):...

((i+1)*1000))+z_shifted(i*1000)-z_shifted(i*1000+1);
end

Main code

%% Mass and gravity acceleration
g = 9.81;
mass = 5;

%% Parameters used in Simulink
% Coordinates of the FSD Institute
wp_FSD = [48.266185;11.668320;478];

% Vertical fly-by distance
vert_flyby_dist = 5;

% Duration of hovering
t_hover = 10;

% Characteristic speeds
v_hover = 0;
v_verticalflyby = 2;
v_wingborne = 25;
v_k = [v_hover,v_verticalflyby,v_wingborne];

% Prescribed limits
acc_max = 2;
j_max = 2;
acc_limits = [acc_max,j_max];

% Desired chi_dot
chi_dot_des = 7.63;

% Maximum chi_dot
chi_dot_max = 10/180*pi;

%% Waypoint List
% Altitude
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h = 518;

% Definition of waypoints
id_0 = 9;
mu_0 = 48.267539;
lambda_0 = 11.668193;
h_0 = h-40;
wp_0 = [id_0,mu_0,lambda_0,h_0]';

id_1 = 4;
mu_1 = 48.267539;
lambda_1 = 11.668193;
h_1 = h;
wp_1 = [id_1,mu_1,lambda_1,h_1]';

id_2 = 5;
mu_2 = 48.268225;
lambda_2 = 11.672281;
h_2 = h;
wp_2 = [id_2,mu_2,lambda_2,h_2]';

id_3 = 3;
mu_3 = 48.273412;
lambda_3 = 11.673054;
h_3 = h;
wp_3 = [id_3,mu_3,lambda_3,h_3]';

id_4 = 1;
mu_4 = 48.274658;
lambda_4 = 11.668848;
h_4 = h;
wp_4 = [id_4,mu_4,lambda_4,h_4]';

id_5 = 1;
mu_5 = 48.273555;
lambda_5 = 11.664697;
h_5 = h;
wp_5 = [id_5,mu_5,lambda_5,h_5]';

id_6 = 6;
mu_6 = 48.270460;
lambda_6 = 11.663331;
h_6 = h;
wp_6 = [id_6,mu_6,lambda_6,h_6]';

id_7 = 7;
mu_7 = 48.270460;
lambda_7 = 11.663331;
h_7 = h;
wp_7 = [id_7,mu_7,lambda_7,h_7]';

id_8 = 8;
mu_8 = 48.270460;
lambda_8 = 11.663331;
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h_8 = h+20;
wp_8 = [id_8,mu_8,lambda_8,h_8]';

wp_list = [wp_0,wp_1,wp_2,wp_3,wp_4,wp_5,wp_6,wp_7,wp_8];

% Dimension of waypoint list
dim = size(wp_list);
m = dim(1,1);
n = dim(1,2);

% Computation of the number of added waypoints
d = 0;
for i=1:n

if wp_list(1,i)==1 || wp_list(1,i)==2 || wp_list(1,i)==4
d = d+1;

end
end

% Computation of the new total number of way-points
s = n+d;

% Definition of index vector used in ExtrapolationNewWP
j = 0;
ind_vector = [];
for i = 1:n

if wp_list(1,i) == 1 || wp_list(1,i) == 2 || wp_list(1,i) == 4
j = j+1;
ind_vector = [ind_vector,j];
j = j+1;
ind_vector = [ind_vector,j];

else
j = j+1;
ind_vector = [ind_vector,j];
j = j+1;

end
end

dim_vector = (s-1)*1000;

% Definition of final_selector used in the EliminationOfDuplicates
final_selector = [1:1:1000];
for i = 1:s-2

adding_vector=[final_selector(end)+2:1:final_selector(end)+1000];
final_selector=[final_selector,adding_vector];

end

%% Launch SIMULATOR
sim trajectory_generator

%% Plot
plot_traj
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Acronyms

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

ARINC Aeronautical Radio Incorporated

CAD/CAM Computer-Aided Design/Computer-Aided Manufacturing

CG Center of Gravity

CoM Center of Mass

DME Distance Measurement Equipment

DoF Degree of Freedom

ECEF Earth-Centered Earth-Fixed

eVTOL electric Vertical Take-Off and Landing

FAA Federal Aviation Administration

FFF Fast-Forward Flight

FSD Flight System Dynamics

HEV Hybrid Electric Vehicle

HF Hover Flight

ICAO International Civil Aviation Organization

IF Initial Fix

INDI Incremental Nonlinear Dynamic Inversion

MAV Micro Air Vehicle

NAVAIDs Navigational Aids
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NDB Non Directional Beacon

NED North East Down

NURBS Non-Uniform Rational B-Spline

PBN Performance-based Navigation

PhD Doctor of Philosophy

PID Proportional Integral Derivative

PVTOL Planar Vertical Take-Off and Landing

RF Radius to a Fix

RNAV Area Navigation

RTCA Radio Technical Commission for Aeronautics

SISO Single Input Single Output

SFF Slow-Forward Flight

SoC State of Charge

TF Track to a Fix

TUM Technical University of Munich

UAV Unmanned Aerial Vehicle

VOR Very High Frequency Omnidirectional Radio Range

V/STOL Vertical/Short Take-Off and Landing

VTOL Vertical Take-Off and Landing

WGS84 World Geodetic System 1984
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