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Abstract

ENERGY efficiency is one of the most important features of mod-

ern wireless communication systems. The components having

a stronger impact on the power consumption of wireless systems are

radio frequency chains. To improve their energy efficiency and reduce

the associated costs, it is useful to limit the peak power of the trans-

mitted signals. Therefore, power constraints are used to accurately

model the limitations imposed on such communication systems and

provide a reliable information theoretic baseline to efficiently maxi-

mize the achievable mutual information.

In this work, it is investigated the capacity of both nonfading and

fading vector Gaussian channels subject to input power constraints.

The considered transmitter configurations are those employing either

one or several concurrent power constraints. Results on the capacity-

achieving distribution are presented for nonfading channels. More-

over, accurate estimates of the optimal input distribution and of the

resulting channel capacity are derived.

Two families of upper bounds are proposed for fading channels.

The first family relies on a sphere packing argument and can be ap-

plied to any convex input constraint. The second family of upper

bounds is specifically devised for multiple parallel power constraints.
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Chapter 1

Introduction

Channel capacity is one of the fundamental concepts in information

theory and provides the maximum information rate that a channel can

sustain while guaranteeing an arbitrarily small error probability. The

capacity of an Additive White Gaussian Noise (AWGN) channel sub-

ject to average power constraints was first introduced in Shannon’s

most celebrated work [1]. As communication technologies progressed,

the interest in faster and more efficient transceivers grew substantially.

In the pursuit of higher information rates, multi-antenna communica-

tion systems were envisioned as a technology capable to offer signif-

icant capacity gains [2–4], prompting an intense research effort. The

derivation of Shannon’s channel capacity was extended to the case of

multi-antenna systems in [5] by Telatar. Because of the rapid growth

of the cellular industry and of wireless communication systems as a

whole, also multi-user Multiple-Input Multiple-Output (MIMO) sys-

tems were extensively studied [6–11]. Another extremely relevant re-

search topic that ignited even more the interest in wireless commu-

nications is that of massive MIMO systems. These systems enable a
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Chapter 1. Introduction

dramatic increase in terms of throughput, obtained by employing a

large number (in the order of hundreds) of antennas [12–17]. Mas-

sive MIMO systems, together with device-to-device communications,

Internet of things, and ultra-dense networks have received increasing

attention because of the unstoppable growth of mobile devices and

applications [18].

As the number of antennas and devices scale, the consequences in

terms of power consumption and environmental impact caused by

wireless systems become unsustainable [19]. Moreover, the amount of

transmitted data and new applications dealing with sensitive informa-

tion, exacerbates the privacy concerns in communication systems [20].

As of today, the demand for higher information rates has not

slowed down. It is currently estimated that the Information and Com-

munication Technologies (ICT) industry is responsible for about 2–3%

of all the carbon footprint generated by human activities [21–23]. As

a consequence, in the last years the theme of Green Communications

has gained more and more traction in the world of ICT.

A particularly representative case, in wireless communication sys-

tems, is that of the cellular industry. In wireless cellular networks,

base stations are the elements having the strongest impact in terms

of power usage [24]. Moreover, within the base station, the power

amplifiers typically account for roughly 50 − 80% of the total power

consumption [25]. Due to their nonlinear characteristic, power ampli-

fiers become inefficient when they are fed with an input power out

of their linear range. Since power amplifiers are ubiquitous in com-

munication transceivers and since their employment will dramatically

increase with massive MIMO technologies, a countermeasure to im-

2



prove the overall efficiency of communication systems is worthwhile.

A solution is to reduce the power consumption by strictly constraining

the peak power, or equivalently the peak amplitude, of the transmitted

signals. To maximize the mutual information under such constraints,

it is fundamental to accurately characterize the problem from an in-

formation theoretic viewpoint. While average power constraints have

been thoroughly investigated in the literature, peak power constraints

have received far less attention.

One of the first and most notable result is the evaluation of the chan-

nel capacity under both peak and average power constraints derived

in [26]. The author proves that the capacity-achieving distribution is

discrete and comprises a finite number of mass points. In [27], similar

insights on the structure of the optimal input distribution are derived

for the quadrature case. Moreover, the authors of [28] further general-

ize the results of [27] and prove that the capacity-achieving input dis-

tribution for vector Gaussian channels has, again, uniform phase and

a finite and discrete number of amplitude mass points. Then, the sup-

port of the capacity-achieving distribution comprises of n-dimensional

concentric hyperspheres. In [29], the authors provide an upper bound

on the number of hyperspheres. Other important contributions and

results on the structure of the optimal input Probability Density Func-

tion (PDF) are presented in [30–32].

In [33], the author presents a simple and tight upper bound on the

capacity of scalar Gaussian channels subject to amplitude constraints.

In [34], the authors extend and refine the bound in [33] to MIMO

channels. Specifically, the authors of [34] consider a nonfading MIMO

channel and an amplitude constraint on the norm of the input vector.

3



Chapter 1. Introduction

For the scalar case, a further improvement on the refined upper bound

of [34] is presented in [35].

For scalar systems the structure of amplitude constraints is well de-

fined, i.e., it is an interval. On the other hand, in multi-dimensional

systems the constraint region can be any n-dimensional subset of Rn.

For instance, in [34] the amplitude constraint is set on the norm

of the input vector. Therefore, the resulting constraint region is an

n-dimensional closed ball centered at the origin. Furthermore, the

bounds derived in [34] hold just for nonfading channels.

In the case of fading channels, far less has been done. The struc-

ture of the optimal input distribution is known just for real and

complex-valued scalar models. In [36, 37], the authors show that, for

scalar Gaussian channels with independent and unknown fading,

the capacity-achieving distribution is still discrete and comprising

a finite number of mass points, for both peak and average power

constraints. However, the mathematical tools used by [36, 37] for the

scalar case cannot be used to the MIMO case. The main available

results for fading MIMO channels are the derivation of capacity

bounds. Furthermore, these works consider a different fading model,

characterized by a random, but known and fixed, fading channel

matrix. In [38], the authors evaluate bounds on the capacity of fad-

ing 2 × 2 MIMO systems for rectangular input constraint regions.

Moreover, the authors of [39] derived much more general upper and

lower bounds, valid for any n-dimensional constraint region and any

arbitrary full rank fading channel matrices. Despite being applicable

to a wide variety of cases, the capacity gap between upper and lower

bounds presented in [39] is far from zero in most scenarios and there

4



1.1. Contributions

is still room for improvement.

Amplitude-constrained models are relevant for several kinds of

wireless communication paradigms. The most renowned ones are

microwave wireless and free-space optical communications. The

results derived in each scenario can often be adapted to the other case

with some modifications. The main difference is that, since free-space

optical communications deal with intensity signals, the constraint

region has to lie in the positive real n-dimensional vector space Rn
+.

For more details on the capacity of optical intensity channels under

peak and average power constraints, see [40–46]. In this work, the

focus will be on microwave wireless communications.

1.1 Contributions

The main results presented in this work are bounds on the capacity

of MIMO vector Gaussian channels affected by fading and insights

on the capacity-achieving input distribution of nonfading channels.

Throughout this work, the fading model is characterized via a matrix

which is random, but fixed and known at both the transmitter and the

receiver. The results are applied to amplitude constraints induced by

commonly used transmitter configurations.

Nonfading Vector Gaussian Channels:

In [47], we derived new insights on the structure of the capacity-

achieving input distribution. Furthermore, we presented a numerical

procedure to estimate the optimal input distribution and the channel

capacity. Similar results are extended to the case of nonfading wiretap

channels in [48].

Fading Vector Gaussian Channels:

5



Chapter 1. Introduction

In [49], for two kinds of amplitude constraints, we derived upper and

lower bounds on the channel capacity tighter than the best available at

the time [39]. We considered constraints on the norm of the input vec-

tor and constraints on the amplitude of each input entry. In [50], we

presented an upper bounds based on a sphere packing argument that

improves, again, on the results of [39]. The derived sphere packing

upper bounds is valid for any constraint region and any channel ma-

trix. The results derived in [50] are further examined and exemplified

in [51]. Furthermore, in [52] we presented an alternative upper bound

that specifically targets transmitter configurations employing multiple

parallel power constraints.

1.2 Structure of the Thesis

Chapter 2.1 formally defines key concepts used throughout this work,

such as the channel models, the channel capacity definition, the con-

sidered amplitude constraints, and so on. Part I introduces the results

achieved for nonfading channels. Chapter 3 includes several results on

the capacity-achieving distribution for the considered amplitude con-

straints. Furthermore, the results on the classic vector Gaussian chan-

nel are adapted to the wiretap case. Part II includes the results derived

for fading channels. In Chapter 4, it is derived an upper bound based

on a sphere packing argument suitable for any convex constraint re-

gion and any full rank channel matrix, as well as, an upper bound

suitable for specific kind of input constraints. Chapter 5 provides nu-

merical results for both the upper bounds presented in Chapter 4 and

compares their performance. Finally, Chapter 6 concludes this work.

6



Chapter 2

Amplitude-Constrained

Channel Capacity

In this chapter, the main features of the considered channel models

are presented. Several concepts and definitions about amplitude-

constrained vector Gaussian channels, useful throughout this work,

are introduced. Furthermore, the amplitude constraints of main in-

terest are formally defined, as well as a discussion about the practical

transmitter configurations inducing such constraints.

2.1 Channel Model

The focus of this work is on microwave wireless communication

systems. In such systems, the transmitted and received signals, by

each antenna, are assumed to have complex baseband representation.

Therefore, the main considered channel model is a complex-valued

MIMO AWGN channel. Let us denote by NTx the number of trans-

mitting antennas and by NRx the number of receiving antennas. This

7



Chapter 2. Amplitude-Constrained Channel Capacity

Tx

X ′
1

...

X ′
N

Rx

Y ′
1

...

Y ′
N

AWGN
Channel

Figure 2.1: Diagram of a vector AWGN channel model.

work focuses on the special case where NTx = NRx = N. Nonetheless,

notice that the channel models presented in this chapter can be still

applied to certain systems with NTx ̸= NRx. Specifically, the authors

of [41] show that for any channel model such that NTx < NRx and

rank(H) = NTx there exists an equivalent NTx × NTx channel, i.e., the

case considered in this work.

Let us begin by describing the resulting channel model in presence

of fading.

Definition 2.1.1 ( Fading Channel Model )

The N×N fading complex-valued channel model is given by

Y′ = H′X′ + Z′, (2.1)

where Y′ is the output vector, X′ is the input vector, H′ is the chan-

nel matrix, and Z′ is the AWGN. The output vector Y′ ∈ CN

and the same holds for X′ and Z′. The complex input vector X′ is

bounded to the amplitude constraint X ′, i.e., X′ ∈ X ′ ⊂ CN. The

noise vector has i.i.d. entries with zero mean and variance 2σ2
z , i.e.,

Z′ ∼ CN (0N, 2σ
2
z IN). The channel matrix H′ is an N × N complex-

valued matrix and it is assumed to be full rank, constant throughout

8



2.1. Channel Model

channel uses, and known both at the transmitter and the receiver.

A simple diagram of the described channel model is shown in

Fig. 2.1.

It is also convenient to define an equivalent real-valued channel

model that can be obtained by vectorizing the complex-valued channel

of Definition 2.1.1.

Definition 2.1.2 ( Vectorized Fading Channel Model )

Given the complex-valued model of Definition 2.1.1, an equivalent

real-valued (2N)× (2N) channel model is

Y = HX+ Z, (2.2)

where the complex-valued output vector Y′ is vectorized as Y =(
Re{Y ′

1}, Im{Y ′
1}, . . . ,Re{Y ′

N}, Im{Y ′
N}
)T
∈ R2N, and similarly for X

and Z. The vectorized noise vector is such that Z ∼ N (02N, σ
2
z I2N)

and the equivalent real-valued channel matrix is defined as H =

Re{H′}⊗I2+Im{H′}⊗[ 0 −1
1 0 ], where⊗ denotes the Kronecker product.

Notice also that, given the complex input constraint X ′ ⊂ CN, we

can derive the real-valued input constraint region X ⊂ R2N by map-

ping each complex subspace C to R2. Given any complex number

c = a+ ib ∈ C, where i =
√
−1 is the imaginary unit, the considered

bijective map from C to R2 is such that a + ib 7→ (a, b) and similarly

for higher order vector spaces.

The model of Definition 2.1.1 is general and accounts for fading

through the channel matrix H′. It is also convenient to treat separately

the nonfading scenario, where H′ = IN.

9



Chapter 2. Amplitude-Constrained Channel Capacity

Definition 2.1.3 ( Nonfading Channel Model )

The N×N nonfading complex-valued channel model is given by

Y′ = X′ + Z′, (2.3)

where Y′ ∈ CN is the output vector, X ∈ X ′ ⊂ CN is the amplitude-

constrained input vector and Z′ ∼ CN (0N, 2σ
2
z IN) is the complex

Gaussian noise.

Similarly to the fading case, let us also define the vectorized non-

fading channel model as follows.

Definition 2.1.4 ( Vectorized Nonfading Channel Model )

Given the complex-valued model in Definition 2.1.3, an equivalent

(2N)× (2N) vectorized nonfading real-valued channel model is

Y = X+ Z, (2.4)

where Y =
(
Re{Y ′

1}, Im{Y ′
1}, . . . ,Re{Y ′

N}, Im{Y ′
N}
)T
∈ R2N is the

output vector and similarly for X and Z. The input vector is X ∈
X ⊂ R2N, with X being the real-valued input constraint derived as

in Definition 2.1.2. Finally, the noise vector Z ∼ N (02N, σ
2
z I2N) is

Gaussian-distributed.

Since the focus is on amplitude constraints, the Signal-to-Noise Ra-

tio (SNR) definition used throughout this work is not the usual one

and, instead, we prefer to resort to the following more convenient def-

inition.

10



2.1. Channel Model

Definition 2.1.5 ( SNR for amplitude-constrained channels )

Given the amplitude constraint X , the SNR is defined as

SNR ≜
(rmax(X ))2

2Nσ2
z

, (2.5)

where rmax(X ) is the maximum radius of X , i.e., rmax(X ) ≜

supx∈X∥x∥.

Furthermore, since all the considered random processes are station-

ary and ergodic by [53], a general definition for the channel capacity

of amplitude-constrained channels is the following.

Definition 2.1.6 ( Channel capacity )

The channel capacity is defined as

C
(
X ,H, σ2

z

)
≜ sup

fX: supp(fX)⊆X
I(X ;Y) (2.6)

= sup
fX: supp(fX)⊆X

h(Y)− h(Z), (2.7)

where fX is the input distribution law and

supp(fX) ≜ {x ∈ X : fX(x) ̸= 0}, (2.8)

is the support of fX.

Notice that the channel capacity C(X ,H, σ2
z) is a function of the in-

put constrain region X , the channel matrix H, and the noise variance

σ2
z . To ease the notation, we will often denote the channel capacity

simply by C. Notice also that Definition 2.1.6 and Definition 2.1.5 hold

for all of the presented channel models.

11



Chapter 2. Amplitude-Constrained Channel Capacity

2.2 Input Amplitude Constraints

The concept of input amplitude constraint is trivial in the real-valued

scalar case. The scalar input X is confined within a continuous interval

X ⊂ R. The features of this interval are directly connected to the con-

sidered system. For instance, since free-space optical communications

use intensity signals, the interval X can only be a subset of R+. Let

us denote by R the amplitude constraint factor. Then, the interval X
for the free-space optical communications could be defined as X =

[0,R]. On the other hand, for microwave wireless communications

this requirement is not necessary and the interval can span through-

out R. Therefore, a reasonable choice would be X = [−R,R]. Whether

microwave or free-space optical wireless communications are consid-

ered, the concept of amplitude constraint is clearly and unequivocally

defined in the scalar case.

Let us now consider vector Gaussian channels and the associated

input constraints. Let us focus on the vectorized models of Defini-

tion 2.1.2 and 2.1.4. The input vector is such that X ∈ X ⊂ R2N. While,

for the real-valued scalar case, a connected set X can only be an inter-

val, for the vector case,X can be any constrain region in the considered

vector space, i.e., any connected subset of R2N. The focus of this work

is on specific constraint regions X of practical interest.

2.3 Amplitude Constraints of Practical Interest

As mentioned in Chapter 1, to ensure that the communication system

stays energy efficient, a valid design choice is to limit the peak power

of the transmitted signals. This constraint is advantageous because it

12



2.3. Amplitude Constraints of Practical Interest

Series to
Parallel

X ′
1

...

X ′
N

Power
Constraint

Figure 2.2: Total Amplitude transmitter configuration.

can bound the input signal out of the nonlinear response of the power

amplifiers. Since the power constraints can be imposed on the signal

fed to one or multiple antennas, there can be different transmitter con-

figurations of practical interest. Notice that each configuration induces

a different constraint region X . Let us introduce the main constraints

of practical interest, as well as the associated transmitter configura-

tions.

2.3.1 Total Amplitude Constraint

A single power constraint, applied to the multi-dimensional signal

feeding all the transmitting antennas, bounds the norm of the input

vector X′. Let us refer to this constraint as total amplitude constraint.

The transmitted signal is constrained in its peak power (or peak am-

plitude) and therefore, given a constraint factor R, the norm of X′ is

such that ∥X′∥ ≤ R. A diagram of such transmitter is shown in Fig. 2.2.

The Total Amplitude (TA) transmitter configuration is relevant for any

wireless system in which energy efficiency is a critical feature. Indeed,

bounding the peak power of the input is clearly an effective way to re-

duce the overall power consumption of the system. Notice that, for the

vectorized model in (2.2), the equivalent constraint on the real-valued

13



Chapter 2. Amplitude-Constrained Channel Capacity

input vector is ∥X∥ ≤ R. Therefore, the constraint region X can be

interpreted as the (2N)-dimensional ball centered at the origin and of

radius R. Let us define the n-dimensional closed ball of radius R as

Bn
R ≜ {x ∈ Rn : ∥x∥ ≤ R}. (2.9)

Let us also define the n-dimensional unitary closed ball as Bn = Bn
1 .

Definition 2.3.1 ( Total Amplitude Constraint )

The TA constraint region is given by

X = B2N
R , (2.10)

where B2N
R is the (2N)-dimensional ball of radius R centered at the

origin.

Notice that, this definition of TA constraint is valid just in the case of

microwave wireless communications. For free-space optical commu-

nications, the structure of X is different and it would be the portion of

the ball lying in the positive orthant.

2.3.2 Per-Antenna Constraint

Another transmitter configuration of practical interest employs

separate power constraints for each complex signal feeding each

transmitting antenna [54–56]. Let us refer to the induced constraint as

per-antenna constraint. In Fig. 2.3, it is shown a diagram of the corre-

sponding transmitter configuration. The Per-Antenna (PA) constraint

bounds the peak amplitude of each complex-valued input vector

entry, i.e., |X ′
i| ≤ Ri, with i = 1, . . . ,N and where Ri is the constraint

14



2.3. Amplitude Constraints of Practical Interest

Series to
Parallel

X ′
1

...
X ′

N

Power
Constraint 1

Power
Constraint N

Figure 2.3: Per-Antenna transmitter configuration.

factor associated with each power constraint. For each entry of X′,

it holds (Re{X ′
i}, Im{X ′

i}) ∈ B2
Ri
⊂ R2. Then, the PA constraint is

defined as follows.

Definition 2.3.2 ( Per-Antenna Constraint )

The PA constraint region for the vectorized channel of Defini-

tion 2.1.2 is the N-fold Cartesian product of 2-dimensional balls, i.e.,

X = X1 × · · · × XN, (2.11)

where Xi = B2
Ri
, ∀i.

Remark 1. In the case of fading channels, it is always possible to con-

sider an equivalent system with mutually identical Ri’s by suitably

scaling the columns of the channel matrix H′, which is assumed to be

known. Therefore, while we will consider arbitrary Ri’s for the non-

fading case, for fading channels, we will assume Ri = R, ∀i without

loss of generality.

Again, Definition 2.3.2 is accurate in the case of microwave wireless

15



Chapter 2. Amplitude-Constrained Channel Capacity

Re{X ′
i}

Im{X ′
i}

Ri

Ri

> Ri

Figure 2.4: Constraint region induced by bounding the complex input (circle) or by bound-
ing the real and imaginary part of the input, independently (square).

communications, where antennas can transmit/receive complex-

valued signals, but not for free-space optical communications. In the

latter case, each antenna transmits and receives real-valued signals,

therefore the resulting constraint region would be a hyperrectangle.

Fig. 2.4 intuitively shows that constraining separately the real and

imaginary parts of X ′
i induces a weaker constraint than ∥X ′

i∥ ≤ Ri. In

turn, this would result in an overestimation of the achievable capacity.

2.3.3 Antenna Subsets Constraint

The last examined transmitter configuration considers a hybrid solu-

tion between the previous configurations. The corresponding diagram

is shown in Fig. 2.5. This transmitter configuration employs a number

of power constraints, denoted by T , such that T ≤ N. In general, each

power constraint is applied to the signal transmitted by an arbitrary

subset of the transmitting antennas. We refer to the constraint induced

by this transmitter configuration as antenna subsets constraint. Notice

16



2.3. Amplitude Constraints of Practical Interest

that the PA constraint can be seen as a special case of the Antenna Sub-

sets (AS) constraint. Indeed, when T = N each power constraint limits

the peak power of the signal fed to a single transmitting antenna and

we obtain again the PA constraint. In general, the AS constraint region

bounds the peak amplitude of subvectors of X′. For this reason, it is

useful to subdivide X′ in T subvectors, with each subvector associated

with a single power constraint. Notice that one can always reorder

the entries of the input vector. Therefore, to simplify the notation, we

assume X to be always defined in such a way that only consecutive

entries are associated with the same power constraint. As shown in

Fig. 2.5, we denote by X′
i the ith subvector of X′, bounded by the ith

power constraint. We denote by Ni the number of entries in X′
i ∈ CNi

and we have that
∑T

i=1Ni = N. Then, the AS constraint is such that

∥X′
i∥ ≤ Ri, with i = 1, . . . , T and where the Ri’s are the constraint fac-

tors associated with the T power constraints. Let us refer once more

to the vectorized model of Definition 2.1.2 and let us denote by Xi the

vectorized version of X′
i. Notice also that Xi is a (2Ni)× 1 vector. Like

for the TA constraint, each subvector is constrained to a hyperball, i.e.,

Xi ∈ B2Ni
Ri

, for i = 1, . . . , T .

Definition 2.3.3 ( Antenna Subsets Constraint )

The AS constraint is given by the following Cartesian product

X = X1 × · · · × XT , (2.12)

where Xi = B2Ni
Ri

, ∀i.

Similarly to Remark 1 for the PA constraint, we can assume Ri = R,

17



Chapter 2. Amplitude-Constrained Channel Capacity

Series to
Parallel

X ′
1

...

X ′
N1

Power
Constraint 1

X′
1

...
...

Series to
Parallel

X ′
N−NT+1

...

X ′
N

Power
Constraint T

X′
T

Figure 2.5: Antenna Subsets transmitter configuration.

∀i for the fading case, while keeping the Ri’s arbitrary for nonfading

channels.

Once more, the case of free-space optical wireless communications

is slightly different. Similarly to the TA constraint, each subvector Xi

would be constrained to the portion of an (2Ni)-dimensional ball lying

in the positive orthant.
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PART I

Nonfading Channels

The channel model of Definition 2.1.1 accounts for both the cases of

nonfading, i.e., H = I2N, and fading channels, therefore, in principle

treating them separately would not be necessary. Nonetheless, in this

work the distinction is motivated by a crucial difference between the

two cases. For nonfading channels subject to the amplitude constraints

defined in Section 2.2, the structure of the capacity-achieving input

PDF is either known, or it can be derived. On the other hand, this is

not the case for fading channels. This crucial difference justifies the

distinction between the two cases, as the methodologies adopted to

investigate the capacity of these channel models will be substantially

different. In the case of nonfading channels, knowing the structure of

the capacity-achieving distribution will allow us to evaluate estimates

of the channel capacity and of the associated optimal input distribu-

tion.
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Chapter 3

The Capacity-Achieving

Input Distribution

In this chapter, the main features of the capacity-achieving input dis-

tribution of nonfading amplitude-constrained channels are presented.

As mentioned in Chapter 1, the first crucial results were developed for

the capacity-achieving distribution of amplitude-constrained scalar

channels. The author of [26] showed that the optimal input distribu-

tion is discrete, comprising of a finite number of mass points. Further

results on the structure of the capacity-achieving input distribution,

for the TA constraint, are derived in [27] and [28], for the quadrature

and vector Gaussian channels respectively.

Let us consider the nonfading channel models defined in Sec-

tion 2.1. The complex-valued channel model in Definition 2.1.3 is used

for most analytical derivations. On the other hand, the vectorized

channel model of Definition 2.1.4 and the TA constraint of Defini-

tion 2.3.1, will allow us to give a clear geometrical interpretation of
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Chapter 3. The Capacity-Achieving Input Distribution

the input distribution. It is also useful to define the (2N)-dimensional

hypersphere as

S2N
ρ ≜

{
x ∈ R2N : ∥x∥ = ρ

}
. (3.1)

In [28], the authors describe the distribution of the capacity-achieving

input norm to be composed of a discrete and finite number of am-

plitude mass points with uniformly distributed phase. Therefore, the

support of the optimal input distribution is composed of concentric

hyperspheres. Let us denote the capacity-achieving input distribution

by fX⋆ . Then, its support is such that

supp(fX⋆) =
T⋆⋃

i=1

S2N
ρ⋆i

, (3.2)

where T ⋆ is the optimal number of hyperspheres and the ρ⋆i ’s are their

radii. Since the capacity-achieving distribution fX⋆ is isotropically

symmetric [28], it is always possible to fully characterize fX⋆ by the

distribution of the input norm, i.e., P∥X⋆∥. In [47], we showed that, as

a consequence, the maximization problem in (2.6) can be carried over

mono-dimensional distributions of the input norm P∥X∥, instead of

the (2N)-dimensional fX. Indeed, one can simply map P∥X⋆∥ to fX⋆ as

follows

fX⋆(x) =





P∥X⋆∥(ρ⋆i )

Vol

(
S2N
ρ⋆
i

) x : ∥x∥ = ρ⋆i

0 elsewhere,

(3.3)

where Vol
(
S2N
ρ⋆i

)
= 2πN(ρ⋆i )

2N−1/Γ(N) is the surface area of the ith
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3.1. Equivalent Channel Capacity Definition

hypersphere. In the following, it is convenient to consider the equiv-

alent complex-valued model of Definition 2.1.3. By a slight abuse of

notation, complex-valued vectors and the equivalent vectorized real-

valued vectors will be denoted by the same variables Y, X, and Z

and which one is used will be made clear by the context. Notice also

that (3.3) is the same for both the complex-valued and real-valued

channels.

3.1 Equivalent Channel Capacity Definition

The possibility to equivalently express the capacity-achieving input

distribution as a mono-dimensional Probability Mass Function (PMF),

instead of a N-dimensional complex-valued PDF, can be exploited to

drastically simplify the complexity of the maximization in the channel

capacity definition. Let us consider the equivalent complex-valued TA

constraint X =
{
x ∈ CN : ∥x∥ ≤ R

}
, the complex-valued nonfading

channel model of Definition 2.1.3, and let us assume σ2
z = 1. Then, the

channel capacity C(X , IN, 2) from Definition 2.1.6 can be redefined as

a maximization over scalar random variables, i.e., on the input norm

∥X∥. Notice that

h(Y)
(a)
= h(∥Y∥) + (2N− 1)E[log∥Y∥] + hλ(∠Y) (3.4)

(b)
= h

(
∥Y∥2

)
+ (N− 1)E

[
log∥Y∥2

]
+ log

πN

Γ(N)
, (3.5)

where ∠Y ≜ Y/∥Y∥ is the direction of the vector Y and hλ(·) is a

differential entropy-like quantity for complex-valued random vectors

lying on the unit N-dimensional hypersphere [57, Lemma 6.16]. Fur-

thermore, step (a) holds thanks to the independence between ∥Y∥ and
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Chapter 3. The Capacity-Achieving Input Distribution

∠Y and to [57, Lemma 6.17], while step (b) holds thanks to ∠Y being

uniformly distributed and to [57, Lemma 6.15]. By plugging the en-

tropy defined in (3.5) into the channel capacity definition, we obtain

the following equivalent capacity expression

C(R) = sup
P∥X∥: ∥X∥≤R

h
(
∥Y∥2

)
+ (N− 1)E

[
log∥Y∥2

]
+ log

πN

Γ(N)
− h(Z)

(3.6)

= sup
P∥X∥: ∥X∥≤R

h
(
∥Y∥2

)
+ (N− 1)E

[
log∥Y∥2

]
− log((2e)NΓ(N)).

(3.7)

Notice that we made explicit the dependence of the capacity on the

constraint factor R, as this definition will be convenient in the next

section.

The squared norm of the output vector Y is such that

∥Y∥2 =
N∑

i=1

|Xi + Zi|2 d
=
∣∣∣∥X∥+ Z1

∣∣∣
2

+
N∑

i=2

|Zi|2, (3.8)

where d
= means equality in distribution. To show that the left and

right-hand side of (3.8) are identically distributed, let us denote by

χ2
n(ξ) the noncentral chi-squared distribution with n degrees of free-

dom and noncentrality parameter ξ. Since each component of the out-

put vector is (Yi | Xi = xi) ∼ CN (xi, 2), we have that (∥Y∥2 | X =

x) ∼ χ2
2N(ξ) with ξ =

∑N
i=1 |xi|2 = ∥x∥2. Notice that, for a given X, the

right-hand side of (3.8) is still a sum of N squared absolute values of

independent complex Gaussian variables, characterized by the same

variance. The only difference is that the expected values of the com-
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3.1. Equivalent Channel Capacity Definition

plex Gaussian variables on the right-hand side are all zeros, except the

first one, which is set to ∥x∥. Therefore, since the associated noncen-

trality parameter is, again, ξ = ∥x∥2, the resulting distribution is the

same of the left-hand side, i.e., the noncentral chi-squared χ2
2N(∥x∥2).

Let us denote by X⋆ the random vector with capacity-achieving distri-

bution fX⋆ . Given an arbitrary input PMF P∥X∥, the resulting PDF of

∥Y∥2 is computed as follows

f∥Y∥2(y) =
T∑

i=1

pifχ2
2N(ρ2i )

(y), y > 0, (3.9)

where the ρi’s are the mass point positions of P∥X∥ and the associated

probabilities are pi = P∥X∥(ρi). Furthermore, T =
∣∣supp

(
P∥X∥

)∣∣ and

fχ2
n(ξ)

is the PDF of a χ2
n(ξ) random variable. Given (3.9) and (3.7), let

us define the information density resulting for any given P∥X∥ as

i(ρ;P∥X∥) ≜
∫ ∞

0

fχ2
2N(ρ2)(y) log

yN−1

∑T
i=1 pifχ2

2N(ρ2i )
(y)

dy

− log
(
(2e)NΓ(N)

)
.

(3.10)

Notice that, therefore, the mutual information can be defined as fol-

lows

I
(
{ρi} ;P∥X∥

)
≜

T∑

i=1

pi · i(ρi;P∥X∥), (3.11)

where {ρi} is the set composed of the ρi’s. Finally, given (3.10), by [39]

it holds the following result.
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Theorem 3.1.1 ( KKT Conditions )

The input distribution P∥X⋆∥ is capacity-achieving if and only if

i(ρ;P∥X⋆∥) = C, ρ ∈ supp
(
P∥X⋆∥

)
, (3.12a)

i(ρ;P∥X⋆∥) ≤ C, ρ ∈ [0,R]. (3.12b)

3.2 Insights on the Input Distribution

In this section, further insights on the features of the capacity-

achieving input distribution are presented and are derived by

considering the equivalent channel capacity definition, defined in the

previous section.

Theorem 3.2.1

A lower bound on the number of hyperspheres T ⋆ in fX⋆ is given by

T ⋆ ≥ T ≜




√
(R2 + 2e)2 + 8π(N− 1)

8πe(N+ R2/2)



. (3.13)

Proof. Let us notice that

log T ⋆ = log
∣∣supp

(
P∥X⋆∥

)∣∣ (3.14)

= log
∣∣∣supp

(
P∥X⋆∥2

)∣∣∣ (3.15)

(a)

≥ H
(
∥X⋆∥2

)
(3.16)

(b)

≥ I
(
∥X⋆∥2 ; ∥Y⋆∥2

)
(3.17)

(c)

≥ I
(
∥X∥2 ; ∥Y∥2

)
(3.18)
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3.2. Insights on the Input Distribution

= h
(
∥Y∥2

)
− h

(
∥Y∥2 | ∥X∥2

)
, (3.19)

where step (a) and (b) hold thanks to the discreteness of ∥X⋆∥ and step

(c) comes from the suboptimal choice ∥X∥2 ∼ U [0,R2]. Moreover, we

can lower-bound h
(
∥Y∥2

)
as follows

h
(
∥Y∥2

)
= h

(∣∣∣∥X∥+ Z1

∣∣∣
2

+
N∑

i=2

|Zi|2
)

(3.20)

(a)

≥ 1

2
log

(
exp

(
2h

(∣∣∣∥X∥+ Z1

∣∣∣
2
))

+exp

(
2h

(
N∑

i=2

|Zi|2
)))

(3.21)

(b)

≥ 1

2
log
(
exp
(
2 log

(
R2+2e

))
+ exp(log(8π(N−1)))

)
(3.22)

=
1

2
log
((

R2 + 2e
)2

+ 8π(N− 1)
)
, (3.23)

where step (a) comes from the Entropy Power Inequality (EPI), step

(b) holds thanks to the following bound

h

(∣∣∣∥X∥+ Z1

∣∣∣
2
)

= h
(
∥X∥ejΦ + Z1

)
− log(π) (3.24)

(a)

≥ log
(
exp
(
h
(
∥X∥ejΦ

))
+ exp(h(Z1))

)
− log(π) (3.25)

= log
(
π exp

(
h
(
∥X∥2

))
+ 2πe

)
− log(π) (3.26)

= log
(
exp
(
h
(
∥X∥2

))
+ 2e

)
(3.27)

= log
(
R2 + 2e

)
, (3.28)

where the phase Φ ∼ U [0, 2π) is independent of any other variable and

in step (a) we used a lower bound on the entropy of a χ2
2N−2 variate de-

fined in [58, Appendix C]. Notice also that the last step holds thanks
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to h
(
∥X∥2

)
= log(R2). As for the conditional entropy in (3.19), it holds

h
(
∥Y∥2 | ∥X∥2

) (a)

≤ 1

2
E
[
log(8πe(N+ ∥X∥2))

]
(3.29)

(b)

≤ 1

2
log
(
8πe
(
N+ E

[
∥X∥2

]))
(3.30)

(c)
=

1

2
log(8πe(N+ R2/2)), (3.31)

where (a) holds thanks to the Gaussian maximum entropy princi-

ple, (b) thanks to Jensen’s inequality, and finally (c) derives from

E
[
∥X∥2

]
= R2/2. Plugging (3.23) and (3.31) into (3.19), proves the

claim.

Some more interesting insights on the optimal input distribution

can be derived by investigating the properties of the information den-

sity. Let us first consider the following result.

Lemma 1. The derivative of the information density with respect to ρ is given

by

i′(ρ;P∥X∥)

= −2ρ E


E


1
2

∥X∥
∥Y∥

IN−2(∥X∥∥Y∥)
IN−1(∥X∥∥Y∥)

−
(
1

2
+

N− 1

∥Y∥2
)∣∣∣∣∣∣
∥Y∥2 = Q′







(3.32)

where Q′ ∼ χ2
2(N+1)(ρ

2) and In(z) is the modified Bessel function of the first

kind of order n and argument z.

Proof. See the proof in Section 3.8.1.

Then, given Lemma 1, it holds the following.
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Theorem 3.2.2

Given the constraint ∥X∥ ≤ R, let us consider a PMF P∥X∥ such that

its largest mass point with nonzero probability is denoted by c, i.e.,

for ρ > c it holds that P∥X∥(∥X∥ > c) = 0. Let c < R. Then, the

derivative i′(ρ;P∥X∥) is lower-bounded by

i′(ρ;P∥X∥) ≥
ρ

1 + c2(2N+ρ2)
4(N−1/2)2

> 0, ρ > c (3.33)

and, therefore, the information density i(ρ;P∥X∥) is strictly increasing

for any ρ > c.

Proof. Let us define the function

sN−1(t) =
1

t

IN−1(t)

IN−2(t)
, t > 0. (3.34)

The function sN−1 is decreasing in t for any N > 3/2 [59, Lemma 2],

therefore its derivative is negative. We show that this is also true for

N = 1. Notice that I−1(t) = I1(t). Then, the derivative of s0(t) can be

written as

s′0(t)=
1

t

(
1− I20 (t)

I21 (t)

)
=

1

t

(
1+

I0(t)

I1(t)

)(
1− I0(t)

I1(t)

)
. (3.35)

The fact that I1(t) < I0(t), for t ≥ 0, together with (3.35), proves that

s′0(t) < 0 for all t > 0.

By (3.34), (3.35), and P∥X∥(∥X∥ > c) = 0, the derivative of the infor-

mation density is lower-bounded by

i′(ρ;P∥X∥) ≥ −2ρ E
[
1

2

c

∥Y∥
IN−2(c∥Y∥)
IN−1(c∥Y∥)

− 1

2
− N− 1

∥Y∥2
]
, (3.36)
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where ∥Y∥2 ∼ χ2
2(N+1)(ρ

2). Let us introduce the following equality,

defined in [60, Eq. 9.6.26]

Iν−1(z)− Iν+1(z) =
2ν

z
Iν(z). (3.37)

By (3.37) and (3.36), with ν = N− 1 and z = c∥Y∥, we get

i′(ρ;P∥X∥)

≥−2ρ E
[
N− 1

∥Y∥2
IN(c∥Y∥)

IN−2(c∥Y∥)− IN(c∥Y∥)
− 1

2

]
(3.38)

(a)
=−2ρ E

[
c

2∥Y∥
IN(c∥Y∥)
IN−1(c∥Y∥)

− 1

2

]
(3.39)

=−ρ
(∫ ∞

0

c

2
√
t
e−

t+ρ2

2
t
N
2

ρN
IN(ρ
√
t)

IN(c
√
t)

IN−1(c
√
t)
dt−1

)
(3.40)

=−ρ E
[
c

ρ

IN(c
√
J)

IN−1(c
√
J)

IN(ρ
√
J)

IN−1(ρ
√
J)
− 1

]
, (3.41)

where in step (a) we used once more (3.37) and in the last equality we

rearranged the integral by using J ∼ χ2
2N(ρ

2). Let us also introduce

the following inequality, defined in [61, Eq. (16)]

Iν+1(z)

Iν(z)
≤ Rν+1(z) ≜

z

ν + 1/2 +
√
(ν + 1/2)2 + z2

, (3.42)

where ν ≥ 0, z ≥ 0. By (3.42) and (3.41), we can further lower-bound

the derivative of the information density as follows

i′(ρ;P∥X∥) ≥ −ρ E
[
cRN

(
c
√
J
)1
ρ
RN

(
ρ
√
J
)
− 1

]
(3.43)

(a)

≥ −ρ E
[
RN

(
c
√
J
)
RN

(
c
√
J
)
− 1
]

(3.44)
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(b)

≥ −ρ E
[

c2J

4(N− 1
2
)2 + c2J

− 1

]
(3.45)

= E


 ρ

1 + c2J
4(N− 1

2
)2


 (3.46)

(c)

≥ ρ

1 + c2E[J ]

4(N− 1
2
)2

(3.47)

=
ρ

1 + c2(2N+ρ2)

4(N− 1
2
)2

, (3.48)

where step (a) holds thanks to ρ > c, step (b) thanks to J ≥ 0 in the

denominator, in step (c) we used Jensen’s inequality, and in the last

equality E[J ] = 2N+ ρ2.

Finally, as a consequence of Theorem 3.2.2, of the Karush–Kuhn–Tucker

(KKT) conditions [29, Lemma 7], and of the discreteness of the opti-

mal input PMF, it holds the following result.

Corollary 1. The support of the capacity-achieving input distribu-

tion supp(fX⋆) always includes the hypersphere of radius ρ = R, i.e.,

P∥X⋆∥(R) > 0.

3.3 Estimation of the Input Distribution

Since the maximization in (3.7) is carried over the mono-dimensional

distribution P∥X∥, it becomes computationally feasible to estimate the

capacity-achieving input distribution. In Algorithm 1, we define a nu-

merical procedure that estimates both P∥X⋆∥ and C(R). The algorithm

takes in input the constraint factor R, an initial tentative input PMF

P∥X0∥, a parameter L defining the number of iterations for the main
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Chapter 3. The Capacity-Achieving Input Distribution

Algorithm 1 Capacity and Input Distribution Estimation

1: procedure MAIN
(
R, P∥X0∥,L, ε

)

2: (ρ,p)← P∥X0∥
3: repeat
4: k ← 0
5: while k < L do
6: k ← k + 1
7: ρ← GRADIENT-ASCENT(ρ,p)
8: p← BLAHUT-ARIMOTO(ρ,p)
9: end while

10: v ← KKT-VALIDATION(ρ,p, ε)
11: if v = 0 then
12: (ρ,p)← ADD-POINT(ρ,p)
13: end if
14: until v = 1
15: P̂∥X⋆∥ ← (ρ,p)

16: Ĉ(R)← I
(
ρ ; P̂∥X⋆∥

)

17: return P̂∥X⋆∥, Ĉ(R)
18: end procedure

loop of the Algorithm, and a tolerance factor ε that determines the

precision of the capacity estimate.

First, let us provide a quick overview of each step in Algo-

rithm 1. For any generic P∥X∥ and T =
∣∣supp

(
P∥X∥

)∣∣, let us define

ρ = (ρ1, . . . , ρT ), as a vector composed of the mass point positions of

P∥X∥. Let us also define the vector p = (p1, . . . , pT ) comprising of the

probabilities associated with ρ, i.e., pi = P∥X∥(ρi), ∀i. At line 2, the

initial tentative PMF P∥X0∥ is used to initialize the vectors ρ and p.

From line 3 to 14, the algorithm runs two nested loops. The innermost

loop, from line 5 to 9, comprises of two functions that iteratively

update the vectors ρ and p to optimize the PMF estimate. Broadly

speaking, the function at line 7 uses a gradient ascent optimization to

update the mass points positions based on the ρ and p in input. On the
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3.3. Estimation of the Input Distribution

other hand, the function at line 8 runs a variant of the Blahut-Arimoto

algorithm [62, 63] to optimize the probabilities of the PMF. These two

steps are iteratively repeated L times, with L chosen empirically in

such a way that ρ and p can jointly reach convergence. At line 10,

given ε, ρ, and p, the KKT-Validation function checks whether the

KKT conditions defined in Theorem 3.1.1 are satisfied within the

tolerance ε. It returns the binary variable v, which is set to 1 if the

KKT conditions are satisfied and to 0 if not. If v = 0, the Add-Point

function adds a new mass point to the PMF, resets the vectors ρ

and p, and restarts the procedure from line 4. If v = 1, the capacity

estimate is sufficiently precise and the Algorithm stops after returning

an estimate of the capacity-achieving PMF, namely P̂∥X⋆∥, and an

estimate of the capacity, Ĉ(R). The PMF P̂∥X⋆∥ is defined at line 15 and

is given by the last values of ρ and p. The capacity estimate is stored

at line 16 as I
(
ρ ; P̂∥X⋆∥

)
1, defined in (3.11).

Remark 2. Algorithm 1 optimizes separately ρ and p. To guarantee

that the independent optimizations provide joint convergence, we

need to prove that the information density i(ρi;P∥X∥) in (3.10) is

concave, differentiable, and that its gradient is Lipschitz continuous.

By [64, Theorem 7] and [64, Corollary 4], we have that the mentioned

properties are always satisfied in the case of amplitude-constrained

Gaussian channels.

Remark 3. Peak amplitude constraints are the focus of this work,

nonetheless, Algorithm 1 could be extended to joint average and peak

power constraints by applying the Lagrange multipliers method to

account for the average power constraint. As a result, all the functions
1Here, by a slight abuse of notation, the vector ρ is used equivalently to the set {ρi}.
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Chapter 3. The Capacity-Achieving Input Distribution

in Algorithm 1 would have to be modified accordingly. For instance, a

suitable implementation for the Blahut-Arimoto function, accounting

for average power constraints, is derived in [65].

Let us now characterize in further details the main functions of Al-

gorithm 1.

3.3.1 Gradient-Ascent Function

In Corollary 1, it was proved that the hypersphere of radius R is always

part of the support of the capacity-achieving distribution. Therefore,

R is always one of the optimal mass point positions among the ρ⋆i ’s.

Let us consider the number of mass points T , in the input PMF, to be

greater than 1. Given the definition of the mutual information in (3.11),

the relative partial derivatives with respect to the ρ2i ’s are derived as

∂

∂ρ2i
I
(
ρ ;P∥X∥

)
=

∫ ∞

0

pi
2

(
fχ2

2N+2(ρ
2
i )
(y)− fχ2

2N(ρ2i )
(y)

)

(
log
(
ri(y)y

N−1
)
− log

(
fχ2

2N(ρ2i )
(y)
))

dy. (3.49)

The ∂
∂ρ2i

I
(
ρ ;P∥X∥

)
’s form the gradient

∇I
(
ρ ;P∥X∥

)
=

(
∂

∂ρ21
I
(
ρ ;P∥X∥

)
, . . . ,

∂

∂ρ2T
I
(
ρ ;P∥X∥

))
. (3.50)

Then, the gradient-ascent update is given by

ρ =
√
ρ2 + α∇I

(
ρ ;P∥X∥

)
, (3.51)

where α is a suitably chosen step size and where the square root and

the squaring operations on the vectors are applied element-wise.
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3.3. Estimation of the Input Distribution

Remark 4. Each ρi must lie in the interval [0,R]. Therefore, after the

gradient-ascent update, any ρi fallen out of the interval [0,R] is pro-

jected back into the interval, i.e., any ρi < 0 is set to ρi = 0, while any

ρi > R to ρi = R.

Remark 5. Let us assume ρ1 = R. By Corollary 1, Theorem 3.2.2, and

Remark 4, the gradient-ascent update for ρ1 would always result in

ρ1 = R. Therefore, the evaluation of (3.50) can be slightly simplified by

setting ∂
∂ρ21

I
(
ρ ;P∥X∥

)
= 0.

3.3.2 Blahut-Arimoto Function

Given the number of hyperspheres T , their radii ρ, and the probabili-

ties p, by (3.11) we have

I
(
ρ ;P∥X∥

)

= − log
(
(2e)NΓ(N)

)
+

T∑

i=1

pi

∫ ∞

0

fχ2
2N(ρ2i )

(y) log

(
yN−1

r(y, {pj})

)
dy,

(3.52)

where

r(y,p) =
T∑

j=1

pjfχ2
2N(ρ2j )

(y). (3.53)

Then, the maximization of (3.52) over p can be rewritten as follows

max
p

I
(
ρ ;P∥X∥

)
= − log

(
(2e)NΓ(N)

)
+max

p

T∑

i=1

pi





∫ ∞

0

fχ2
2N(ρ2i )

(y)


 log

pifχ2
2N(ρ2i )

(y)yN−1

r(y, {pj})
− log(fχ2

2N(ρ2i )
(y))


dy − log(pi)





(3.54)
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(a)
= − log

(
(2e)NΓ(N)

)
+max

p
max
ri(y)

J(p, {ri(y)}) (3.55)

with

J(p, {ri(y)}) ≜
T∑

i=1

pi





∫ ∞

0

fχ2
2N(ρ2i )

(y) log
ri(y)y

N−1

fχ2
2N(ρ2i )

(y)
dy − log(pi)




,

(3.56)

where {ri(y)}Ti=1 is a valid PMF for any given y ∈ R+ and where in

step (a) we used the fact that the Kullback-Leibler divergence between

{pifχ2
2N(ρ2i )

(y)/r(y, {pj})} and {ri(y)} is nonnegative. Given the double

maximization in (3.55), for i = 1, . . . , T , the inner maximization is op-

timized by

ri(y) =
pifχ2

2N(ρ2i )
(y)

∑T
j=1 pjfχ2

2N(ρ2j )
(y)

, ∀y ∈ R+. (3.57)

As for the outer maximization, each entry of p is optimized by

p′i = exp

(∫ ∞

0

fχ2
2N(ρ2i )

(y) log
ri(y)y

N−1

fχ2
2N(ρ2i )

(y)
dy

)
. (3.58)

Finally, the new probabilities are evaluated by updating each entry of

p as follows

pi =
p′i∑T
j=1 p

′
j

, (3.59)

for i = 1, . . . , T . Similarly to the standard Blahut-Arimoto algorithm,

the steps in (3.57), (3.58), and (3.59) are reiterated until the pi’s con-

verge to a stable solution.
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3.3.3 KKT-Validation Function

To ensure that the estimated PMF is accurate, the algorithm imple-

ments a numerical version of the KKT conditions defined in (3.12).

Specifically, the KKT-Validation function sets v = 0 if either of the fol-

lowing conditions is verified

∣∣∣i(ρ; P̂∥X⋆∥)− I
(
ρ ; P̂∥X⋆∥

)∣∣∣ > ε, for some ρ ∈ supp
(
P̂∥X⋆∥

)
(3.60a)

I
(
ρ ; P̂∥X⋆∥

)
+ ε < i(ρ; P̂∥X⋆∥), for some ρ ∈ [0,R]. (3.60b)

On the other hand, the validation function returns v = 1 if neither is

verified. Notice that the conditions in (3.60) are obtained by negating

those in Theorem 3.1.1 and are numerically more efficient to verify.

Moreover, since the true capacity C is not known, in (3.60) the mutual

information I
(
ρ ; P̂∥X⋆∥

)
is used as an estimate of C.

3.3.4 Add-Point Function

In [66, Theorem 2], the authors prove that, for R smaller than a given

threshold value R̄2N, the optimal distribution comprises of a single hy-

persphere. As R and, therefore, also the SNR increase, new mass points

appear in the capacity-achieving distribution P∥X⋆∥ or, equivalently,

new hyperspheres are required in supp(fX⋆). In [66, Theorem 4], the

authors also prove that, as soon as R gets larger than R̄2N, a second

mass point is required in the optimal PMF and it appears in 0. As the

R gets even larger, we numerically observe that i(0;P∥X∥), eventually

becomes larger than any i(ρ;P∥X∥), with ρ ∈ (0,R]. Therefore, given

an arbitrary constraint factor R̃ such that the corresponding capacity-
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achieving PMF includes T mass points, we conjecture that for R > R̃

the first new mass point appears in ρT+1 = 0 and also that these mass

points appear one by one. Notice that whenever a new mass point is

introduced in ρT+1 = 0, the probability vector has to be updated by ap-

pending a new entry pT+1 to p. For slight SNR increments, we expect

the optimal PMF to evolve slowly, therefore the new probability entry

is set to zero2.

3.4 Numerical Results

In this section, numerical results obtained through Algorithm 1 are

presented. To better contextualize the derived capacity results, let us

first introduce previously available upper and lower bounds on the

channel capacity presented by other authors.

3.4.1 Bounds on the Channel Capacity

In [34], the authors derive two upper bounds based on a dual expres-

sion of the channel capacity. The first one is called McKellips-Type up-

per bound, a closed-form bound that extends the results of McKel-

lips [33] to vector channels; the other upper bound has closed form ex-

pression just at low SNR, while it is evaluated numerically otherwise.

The authors of [34] call it Refined upper bound as it is a refinement over

the first one. In this work, their McKellips-Type upper bound will be

denoted by CMcK and it is defined in [34, Eq. (67)] as

CMcK ≜ log

(
Vol
(
B2N
R

)

(2πe)N
+

2N−1∑

i=0

(
2N− 1

i

)
Γ
(
2N−i

2

)

2i/2Γ(N)
Ri

)
, (3.61)

2While not exactly zero, to avoid numerical instabilities we set pT+1 to values extremely close to zero.
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where Vol(Bn
R) =

πn/2

Γ(n
2
+1)

Rn is the volume of Bn
R.

Moreover, the numerical Refined bound, defined in [34, Eq. (82)],

will be denoted by CRef.

Finally, a capacity lower bound, based on the EPI, is defined in [34,

Eq. (78)] as

CEPI ≜ N log

(
1 +

(
Vol
(
B2N
R

))1/N

2πe

)
. (3.62)

3.4.2 Optimal Input Distribution and Channel Capacity Estimates

In this section, numerical estimates of the capacity-achieving input dis-

tribution are derived. Furthermore, the resulting channel capacity es-

timates are compared to the capacity bounds defined in the previous

section. The considered case study is characterized by N = 2, ε = 10−2,

and SNR ranging from −5 dB to 25 dB. In Fig. 3.1, it is shown a com-

parison between the capacity estimate Ĉ(R) and the bounds of Sec-

tion 3.4.1. From the figure, it is clear that the Refined bound CRef is

very close to our capacity estimate Ĉ(R) evaluated via Algorithm 1.

On the other hand, the McKellips-Type upper bound CMcK, defined

in (3.61), is significantly looser than CRef and Ĉ(R). Notice also that

the EPI lower bound is loose at intermediate SNR and gets closer to

the true capacity at low and at high SNR. In Fig. 3.2, it is shown the

evolution of the capacity-achieving PMF estimate P̂∥X⋆∥. The figure

shows the positions of the mass points, normalized by R at each SNR.

Moreover, the size of the circles is proportional to the associated prob-

ability measure. Note that, for the considered case and the given Def-

inition 2.1.5, the relationship between R and SNR is SNR = R2/(2N).
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Figure 3.1: Channel Capacity bounds and estimate versus SNR for N = 2, with tolerance
ε = 10−2.

As proven in Corollary 1, the mass point in R is always optimal and

indeed, it is always part of the estimate P̂∥X⋆∥. Each new mass point

appears in zero, with an associated probability close to zero.

Finally, Fig. 3.3 shows the estimated positions of the mass points

of P̂∥X⋆∥ versus R. Notice that, as N increases, each new mass point

appears progressively at larger R’s.

3.5 Other Constraints

The results described for the nonfading channel up to this point can

be, fairly easily, extended to the case of PA and AS constraints. Let
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Figure 3.2: Evolution of the numerically estimated P̂∥X⋆∥ versus SNR for N = 2, with
tolerance ε = 10−2.

us start with the latter, as the PA is a special case of the AS constraint.

Consider the constraint described in Definition 2.3.3. Notice that, since

X = X1 × · · · × XK is given by a Cartesian product of K subspaces and

since the noise Z has i.i.d. entries, we can decompose the nonfading

channel in Definition 2.1.3 into separate subchannels. The number of

subchannels K corresponds to the number of elements in the Cartesian

product X , that, in turn, is determined by the number of power con-

straints considered at the transmitter. Let us denote by Ni the number

of complex dimensions in the ith subchannel, by Xi ∈ Xi the corre-

sponding subvector of X, and similarly for Yi and Zi. Then, the ith

subchannel is defined as

Yi = Xi + Zi. (3.63)
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The associated subchannel capacity is

Ci = sup
fXi

:Xi∈Xi

h(Yi)− h(Zi). (3.64)

Moreover, let us denote by fX⋆
i

the input distribution maximiz-

ing (3.64). Then, the overall channel capacity is given by

C =
K∑

i=1

Ci. (3.65)

Finally, the capacity-achieving PDF fX⋆ is such that

fX⋆(x) =
K∏

i=1

fX⋆
i
(xi), ∀x ∈ X . (3.66)

Let us consider the vectorized and real-valued version of each Xi.

Then, whenever Xi = B2Ni
Ri

, ∀i, the subchannel capacities defined

in (3.64) can be estimated again via Algorithm 1. Moreover, an esti-

mate of the channel capacity C and of fX⋆ can be derived via (3.65)

and (3.66), respectively. Note that, when the Xi’s are not balls, one

can always derive an upper bound on the capacity by substituting Xi

with an enlarged constraint region. Let us define ri = rmax(Xi), i.e.,

the maximum radius of Xi. Then, since B2Ni
ri
⊇ Xi, evaluating the Ci’s

for Xi ∈ B2Ni
ri
⊇ Xi provides and an upper bound on each subchannel

capacity and, in turn, their sum upper-bounds the overall channel

capacity C.
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Figure 3.3: Evolution of the numerically estimated mass points positions of P̂∥X⋆∥ versus R
for N = 1, 3, 5, 7, with tolerance ε = 10−3.
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3.6 Approximate Discrete Input Distribution

Practical communication systems typically employ discrete input dis-

tributions. Therefore, one might want to evaluate suboptimal, but dis-

crete, input distributions that can be used in real life scenarios. Given

the results derived in the previous sections, let us consider viable dis-

crete approximations of the optimal PDF. Since the capacity-achieving

distribution is uniform over each hypersphere belonging to supp(fX⋆),

one option is to consider an approximated PMF with support com-

prising points uniformly spaced over the hyperspheres in supp(fX⋆).

Notice that, for a finite number of points, in general this is not the

capacity-achieving distribution, especially when few points are con-

sidered. Nonetheless, it provides a simple approximation that tends

to the optimal solution as the number of considered points increases.

Let us denote by XQ the discrete random vector of PMF PXQ
and

by K =
∣∣supp

(
PXQ

)∣∣ the number of mass points in the support of

supp
(
PXQ

)
. Given the number of hyperspheres T ⋆ in supp(fX⋆), let

us also denote by Ki the number of mass points approximating the ith

hypersphere, such that
∑T⋆

i=1 Ki = K.

For N = 1 complex dimension, the equivalent real-valued con-

straint is a circle. Therefore, supp(fX⋆) is the union of concentric cir-

cumferences. Distributing evenly spaced points on a circumference is

a simple task while, on the other hand, the problem is not so trivial for

any N > 1. The only known configurations of points that are evenly

spread over an n-dimensional hypersphere are those defined by the

vertices of convex regular polytopes. Furthermore, for n ≥ 5 there

are only 3 known regular polytopes [67]. In this work, the focus will,

44



3.6. Approximate Discrete Input Distribution

therefore, be on the more tractable case of N = 1.

Nonetheless, an interesting fact is that finding evenly spread points

on a sphere is related to Thomson problem [68], that is, finding the

configuration of a finite number of electrons on a sphere such that their

electrostatic potential energy is minimized. In [69], the Thomson prob-

lem is generalized to higher dimensions. The electrostatic potential

energy depends on the Coulomb forces acting between the electrons,

therefore, in principle an approximate configuration of evenly spread

points could be derived by simulation. Indeed, one could simulate the

Coulomb interaction among a given a set of electrons constrained on

the hypersphere. When they reach a stable configuration, the positions

of the electrons can be used as a rough approximation of evenly spread

points on the hypersphere.

Let us now focus on the performance that can be achieved by using

approximate PMFs for N = 1.

3.6.1 Single Hypersphere Regime

As already mentioned, in [66, Theorem 2], the authors derived the

maximum radius R̄2N, such that the support of the optimal distribu-

tion is a single hypersphere. Let us consider first the single hyper-

sphere regime.

We are interested in the evaluation of the information loss de-

termined by the approximate discrete PMF over the true optimal

input distribution. Let us define the information loss for the (2N)-

dimensional real-valued channel of Definition 2.1.4 as

L2N

(
PXQ

,K
)
≜ C− I(XQ ;YQ) = h(Y)− h(YQ), (3.67)
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where K is, again, the number of mass points in the approximate input

PMF PXQ
and

YQ = XQ + Z. (3.68)

Notice that, in the single hypersphere regime, the channel capacity can

be directly evaluated and the optimization defined in Algorithm 1 is

not necessary. Indeed, the resulting capacity for R ≤ R̄2N is given by

C = i(R;P∥X⋆∥) (3.69)

=

∫ ∞

0

fχ2
2N(R2)(y) log

yN−1

fχ2
2N(R2)(y)

dy − log
(
(2e)NΓ(N)

)
. (3.70)

Let us focus on the mono-dimensional complex case. For N = 1, the

resulting equivalent 2-dimensional real-valued optimal input is dis-

tributed uniformly over a circumference of radius R, i.e., S2
R. Therefore,

a suitable approximate input distribution could be that composed of K

evenly spaced mass points, lying on S2
R and with equal probabilities.

Let us define the mass points of the approximate input distribution as

xQ,k = R · ej 2π
K

(k−1), for k = 1, . . . ,K. (3.71)

Then, the resulting PMF is

PXQ
(x) =





1
K
, x ∈ {xQ,k, k = 1, . . . ,K},

0, elsewhere,
(3.72)

and its support is shown in Figure 3.4. In the single hypersphere

regime, the only parameter to optimize to derive PXQ
is, therefore,
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S2R

2πR
K xQ,1

xQ,2

. . .

. .
.

xQ,K

Figure 3.4: Example of supp
(
PXQ

)
for the 2-dimensional case and for R ≤ R̄2.

the number of mass points K. Let us denote by K̄(R), the minimum

number of mass points required, for each value of R, to obtain an in-

formation loss smaller than 10−2, i.e., L2

(
PXQ

, K̄(R)
)
≤ 10−2.

In the single hypersphere regime, it is still feasible to numerically

evaluate the minimum K required to reach a given target information

loss at each R. On the other hand, in the multiple hypersphere regime,

the same task becomes computationally harder. Indeed, one would

have to optimize simultaneously the total number of mass points K

and the Ki’s associated with each hypersphere. Therefore, it is conve-

nient to derive an empirical procedure to roughly estimate the number

of mass points. Let us assume that K depends just on R and on the

noise variance σ2
z . Since the mass points xQ,k’s are evenly spaced on

S2
R, a reasonable strategy could be to choose K in such a way that the

distance between two consecutive mass points dK = ∥xQ,k − xQ,k+1∥
stays more or less constant at any R. Notice that dK coincides with the

chord of B2
R given by an angle 2π/K. As K increases, the chord can be

approximated by the arc 2πR/K. Therefore, an empirical estimate of K
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Figure 3.5: Number of mass points in supp
(
PXQ

)
versus R for two approximate input

distributions PXQ
.

is given by

K̂(R, γK) ≜

⌈
2π

γKσz

R

⌉
+ 1, (3.73)

where γK is a parameter that can be adjusted to satisfy the desired tar-

get information loss and ⌈x⌉ is the ceiling function, defined as ⌈x⌉ =
min{n ∈ Z : n ≥ x}. Intuitively, as K increases, PXQ

better approxi-

mates the true PX⋆ . Therefore, for any γK such that K̂(R, γK) ≥ K̄(R), it

holds L2(PXQ
, K̂(R, γK)) ≤ L2

(
PXQ

, K̄
)
≤ 10−2.

A suitable value of γK for the considered target information loss can

be derived numerically. Let us consider γK = 2
√
2 and let us define

K̂(R) = K̂(R, 2
√
2) to simplify the notation. In Fig. 3.5, it is shown the

resulting empirical estimate K̂(R) and K̄(R), both as a function of R and

and for σ2
z = 1. Notice that, indeed, K̂(R) ≥ K̄(R) for any R ≤ R̄2.

3.6.2 Multiple Hyperspheres Regime

Let us now focus on the multiple hyperspheres regime. The first dif-

ference with the previous case is that, since there are multiple hyper-
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3.6. Approximate Discrete Input Distribution

spheres, it is necessary to consider the sequence {Ki}, where each Ki is

the number of mass points used to approximate the ith hypersphere.

Moreover, like for Algorithm 1, it is also necessary to evaluate the

probabilities pi’s associated with each hyphersphere, the radii ρi’s, and

the number of hyperspheres T . The information loss for the multiple

hyperspheres regime is defined as

L2N

(
PXQ

)
≜ Ĉ(R)− I(XQ ;YQ) = h(Y)− h(YQ), (3.74)

where Ĉ(R) is the capacity estimate3 obtained via Algorithm 1.

Let us focus once more on the complex case with N = 1. In this

regime, the mass points of PXQ
are defined as

xQ,(i,k) = ρi · ej
2π
Ki

(k−1)
, ∀i, k, (3.75)

where i = 1, . . . , T is the index associated with each circumference and

k = 1, . . . ,Ki. Then, the resulting approximated PMF is

PXQ
(x) =





pi
Ki
, x ∈

{
xQ,(i,k), ∀i, k

}

0, elsewhere.
(3.76)

An example of supp
(
PXQ

)
is shown in Fig. 3.6. Let us evaluate the in-

formation loss that can be achieved via two considered approximated

PMFs, denoted by PXQ,A
and PXQ,B

. For PXQ,A
, the ρi’s, pi’s, and T

used are those of the PMF estimate P̂∥X∥ obtained via Algorithm 1.

The number of mass points Ki used to approximate each circumfer-

ence can be estimated via (3.73). Therefore, let us consider Ki = K̂(ρi)

3The capacity estimate in (3.74) is evaluated with a tolerance factor ε = 10−4.
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S2ρ1=R

2πR
K1

xQ,(1,1)

xQ,(1,2)

. . .

. .
.

xQ,(1,K1)

S2ρ2

xQ,(2,1)

xQ,(2,2)

xQ,(2,K2)

2πρ2

K2

S2ρT

. .
.

xQ,(T,1)

Figure 3.6: Example of supp
(
PXQ

)
for the 2-dimensional case and R > R̄2.

for all i and a total number of mass points K =
∑T

i=1 Ki. Fig. 3.7

shows the information rate resulting from PXQ,A
and the capacity es-

timate Ĉ(R) given by Algorithm 1. Moreover, the blue dashed line

shows log2 K. Since I(XQ ;YQ) ≤ H(XQ) ≤ log2 K, the blue dashed line

gives us a rough indication on how appropriate is the considered K

at each SNR level. Roughly speaking, the fact that log2 K scales simi-

larly to the channel capacity indicates that the number of mass points

K, chosen according to the empirical estimate (3.73), is reasonable.

Fig. 3.8 shows that the information loss, in the considered SNR range,

isL2(PXQ,A
) ≤ 10−2. Notice that, naturally, one can always improve the

accuracy of the approximation by considering a larger number of mass

points K. Nonetheless, the goal of the approximation is to define an in-

put distribution that can be practically implemented by keeping the K

as small as possible. The considered target, i.e., L2(PXQ
) ≤ 10−2, pro-

vides a good trade off between the information loss and the number
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Figure 3.7: Capacity results for the approximate input distribution PXQ,A
versus SNR and

for N = 1.

of mass points required K. Notice that, PXQ,A
relies on the derivation

of the optimal positions ρi’s and probabilities pi’s via Algorithm 1. A

coarser approximation can be derived by noticing that, roughly speak-

ing, the ρi’s tend to be evenly spaced as the SNR grows and the asso-

ciated probabilities pi’s tend to be proportional to Vol
(
S2N
ρi

)
. Let us

denote this coarser approximated PMF by PXQ,B
. Then, let us define

the radii used in PXQ,B
as

ρi = ρi−1 −∆ρ, i = 2, . . . , T , (3.77)

where ρ1 = R, ∆ρ is the spacing between each ρi and ρi+1 that has to

be adjusted empirically, and T = ⌈R/∆ρ⌉. A suitable radii spacing,

empirically derived for the considered target information loss, is ∆ρ =

51



Chapter 3. The Capacity-Achieving Input Distribution

−4 −2 0 2 4 6 8 10 12 14 16 18 20
10−3

10−2

10−1

SNR (dB)

L 2
(P

X
Q
)

(b
pc

u)
PXQ,A

PXQ,B

Figure 3.8: Comparison of the information losses versus SNR obtained via the approximate
distributions PXQ,A

and PXQ,B
, with ∆ρ = 3.

3σz = 3. Furthermore, the associated probabilities can be defined as

pi =
Vol
(
S2
ρi

)
∑T

j=1 Vol
(
S2
ρj

) , i = 1, . . . , T . (3.78)

The Ki’s are, again, chosen as Ki = K̂(ρi). In Fig. 3.8, it is shown a

comparison between the information loss given by PXQ,A
and PXQ,B

.

Notice that, at low SNR, the resulting information losses coincide. In-

deed, for R ≤ R̄2 we are in the single hypersphere regime and, there-

fore, PXQ,A
= PXQ,B

, with ρ1 = R and p1 = 1. On the other hand, as the

SNR increases, it is noticeable that the coarser definition of PXQ,B
de-

termines a worse performance compared to PXQ,A
. For PXQ,B

, one can-

not improve the resulting information loss simply by increasing the

number of mass points K, as it is possible for PXQ,A
. Indeed, because

of the suboptimal choice of the ρi’s and pi’s, a larger number of mass

point K does not provide a significant improvement in terms of the re-

sulting information loss. Nonetheless, for the number of mass points

Ki = K̂(ρi), ∀i, the information loss obtained via PXQ,B
is still compa-
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rable to that of PXQ,A
and, therefore, might be a viable low-complexity

option.

Finally, notice that, by Section 3.5, the presented results on the ap-

proximate input distributions can be extend also to MIMO systems

subject to a PA constraint. Indeed, for any N-dimensional complex-

valued MIMO system subject to the PA constraint, Ni = 1 for i =

1, . . . ,N. Therefore, each fX⋆
i

can be approximated via the techniques

described in this section and the overall approximate discrete input

distribution can be evaluated via (3.66).

3.7 Application to Wireless Wiretap Channels

The results derived for the nonfading channels can also be easily

adapted to another interesting scenario, namely that of wireless

wiretap channels. The definition of wiretap channel was proposed

by Wyner in [70], that described it as a channel model in which a

malicious user can gain access to the transmitted information. If the

malicious user is assumed to perceive a noisier channel than the legiti-

mate user, then one can introduce also the concept of secrecy-capacity.

It is defined as the maximum rate at which information can be reliably

and privately transmitted to the legitimate user, in presence of an

eavesdropper [70]. The definition of wiretap channel and secrecy

capacity were further generalized to the case of Gaussian channels

in [71], where the authors proved that the secrecy capacity-achieving

distribution under average power constraints is Gaussian. The case of

multi-antenna legitimate transmission and of a single antenna mali-

cious receiver is investigated in [72]. The Gaussianity of the optimal
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input distribution for MIMO AWGN channels under average power

constraints is proved both in [73] and in [74]. Further results on MIMO

wiretap channels are presented in [75–77]. For more information on

wiretap channels, see [78–82]. In this section, we will focus on the

secrecy capacity for nonfading channels. For further detail on wiretap

channels subject to fading, see [83–86].

Like in the case of the traditional channel capacity, less is known in

the case of wiretap channel under amplitude constraints if compared

to average power constraints. One of the main results for the scalar

case is introduced in [87]. Other important results about the optimal

input distribution are presented in [88–90].

The main result that is used in this work is that derived in [90]. Like

for the capacity-achieving distribution in the nonfading standard case,

the authors of [90] prove that the support of the optimal input distribu-

tion for the nonfading vector wiretap channel under peak amplitude

constraints comprises of a finite number of concentric spheres.

Let us describe the channel model. A diagram of such channel is

shown in Fig. 3.9. The input-output relationships are similar to Defi-

nition 2.1.3 and are given by

YB = X+ ZB, (3.79a)

YE = X+ ZE, (3.79b)

where ZB ∼ CN (0N, 2σ
2
BIN) and ZE ∼ CN (0N, 2σ

2
EIN), with σ2

E > σ2
B.

The secrecy capacity is defined as

Cs = max
fX:X∈X

I(X ;YB)− I(X ;YE), (3.80)

54



3.7. Application to Wireless Wiretap Channels

AWGN Channel
CN
(
0N, σ2

BIN
)X

AWGN Channel
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(
0N, σ2

EIN
)

YB (Legitimate Receiver)

YE (Malicious Receiver)

Figure 3.9: Diagram of the wireless vector Gaussian wiretap channel.

where X =
{
x ∈ CN : ∥x∥ ≤ R

}
is the input constraint region and R ∈

R+ is, again, the constraint factor. Notice also that, thanks to [90], we

know that the structure of the optimal input distribution is the same

as that described in Section 3.1. Therefore, we can rewrite I(X ;YB)

and I(X ;YE) as function of the mono-dimensional distribution of the

input norm P∥X∥ defined in (3.3). As a consequence, we can also adapt

the numerical procedure in Algorithm 1 to the wiretap channel with a

few minor changes.

Let us define the secrecy density as

is(ρ;P|X|) ≜ iB(ρ;P|X|)− iE(ρ;P|X|), (3.81)

where iB(ρ;P|X|) and iE(ρ;P|X|) are, respectively, the information den-

sities associated with (3.79a) and (3.79b). Notice that the information

density definition is slightly different than that of (3.10), where we as-

sumed the noise variance to be unitary. For the general case of Defini-

tion 2.1.3, the information density is defined as

i(ρ;P∥X∥) ≜
∫ ∞

0

fχ2
2N(ρ2/σ2

z)
(y) log

yN−1

∑T
k=1 pkfχ2

2N(ρ2k/σ
2
z)
(y)

dy

− log
(
(2e)NΓ(N)

)
.

(3.82)
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Therefore, we can use (3.82) to evaluate both iB(ρ;P|X|) and iE(ρ;P|X|).

Furthermore, similarly to (3.11), we define the secrecy information as

Is
(
ρ ;P∥X∥

)
≜

T∑

i=1

pi · is(ρi;P∥X∥). (3.83)

Then, the changes required to adapt Algorithm 1 to the wiretap

channel are the following.

In the gradient-ascent function, we have to evaluate the gradient of

the secrecy information in (3.83). It holds

∂

∂ρ2i
Is
(
ρ ;P∥X∥

)
=

∂

∂ρ2i

T∑

i=1

pi · is(ρi;P∥X∥) (3.84)

=
∂

∂ρ2i

T∑

i=1

pi · iB(ρi;P∥X∥)−
∂

∂ρ2i

T∑

i=1

pi · iE(ρi;P∥X∥),

(3.85)

where both partial derivatives are evaluated as in Section 3.8.2. Then,

similarly to that of Section 3.3.1, the gradient is

∇Is
(
ρ ;P∥X∥

)
=

(
∂

∂ρ21
Is
(
ρ ;P∥X∥

)
, . . . ,

∂

∂ρ2T
Is
(
ρ ;P∥X∥

))
, (3.86)

and the gradient-ascent update is

ρ =
√
ρ2 + α∇Is

(
ρ ;P∥X∥

)
, (3.87)

where α is, again, a suitably chosen step size.

For the Blahut-Arimoto function of Section 3.3.2, the probability up-
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dates are defined as

p′i = pi exp
(
is(ρi;P∥X∥)

)
. (3.88)

For the KKT-Validation function of Section 3.3.3 and the Add-Point

function of Section 3.3.4, the only required change is to use the se-

crecy density Is

(
ρ ; P̂∥X∥

)
of (3.83) and is(ρi;P∥X∥) of (3.81), instead of

I
(
ρ ; P̂∥X∥

)
and i(ρi;P∥X∥), respectively.

Finally, line 15 of Algorithm 1 is unchanged and line 16 is used to

estimate the secrecy capacity Ĉs(R) = Is

(
ρ ; P̂∥X∗∥

)
.

3.8 Appendix

3.8.1 Proof of Lemma 1

Proof. Let us consider two values ρ1, ρ2 such that ρ1 > ρ2 and the fol-

lowing definition of information density

i(ρ;P∥X∥) ≜
∫ ∞

0

fχ2
2N(ρ2)(y) log

yN−1

∫ R

0
fχ2

2N(t2)(y)dP∥X∥(t)
dy

− log
(
(2e)NΓ(N)

)
.

(3.89)

Then, it holds the following

i(ρ1;P∥X∥)− i(ρ2;P∥X∥)

=

∫ ∞

0

(
fχ2

2N(ρ21)
(y)− fχ2

2N(ρ22)
(y)
)
log

yN−1

f∥Y∥2(y;P∥X∥)
dy

(3.90)

= −
∫ ∞

0

(
Fχ2

2N(ρ22)
(y)− Fχ2

2N(ρ21)
(y)
) d

dy
log

f∥Y∥2(y;P∥X∥)

yN−1
dy (3.91)
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where we used integration by parts. Let us also notice that

∫ ∞

0

(
Fχ2

2N(ρ22)
(y)− Fχ2

2N(ρ21)
(y)
)
dy = ρ21 − ρ22, (3.92)

and that, since χ2
2N(ρ

2
1) is statistically dominant compared to χ2

2N(ρ
2
2),

the integrand function in (3.92) is always positive. Furthermore, let us

also define an auxiliary output random variable Q with PDF

fQ(y; ρ1, ρ2) =
Fχ2

2N(ρ22)
(y)− Fχ2

2N(ρ21)
(y)

ρ21 − ρ22
, y > 0. (3.93)

Given (3.93), the integral in (3.91) can be rewritten as

i(ρ1;P∥X∥)− i(ρ2;P∥X∥)

= −(ρ21 − ρ22)

∫ ∞

0

fQ(y; ρ1, ρ2)
d

dy
log

f∥Y∥2(y;P∥X∥)

yN−1
dy.

(3.94)

The derivative in (3.94) is such that

d

dy
log

f∥Y∥2(y;P∥X∥)

yN−1
(3.95)

(a)
=

yN−1

f∥Y∥2(y;P∥X∥)

∫ R

0

d

dy

fχ2
2N(ρ2)(y)

yN−1
dP∥X∥(ρ) (3.96)

(b)
=

∫ R

0

(fχ2
2(N−1)

(ρ2)(y)

2yN−1
−
(
1

2
+

N− 1

y

)
fχ2

2N(ρ2)(y)

yN−1

)
dP∥X∥(ρ)

yN−1

f∥Y∥2(y;P∥X∥)

(3.97)

= E


1
2

fχ2
2(N−1)

(∥X∥2)(∥Y∥2)
fχ2

2N(∥X∥2)(∥Y∥2)
− (

1

2
+

N− 1

∥Y∥2
) | ∥Y∥2 = y


 (3.98)

= E

[
1

2

∥X∥
∥Y∥

IN−2(∥X∥∥Y∥)
IN−1(∥X∥∥Y∥)

− (
1

2
+

N− 1

∥Y∥2
) | ∥Y∥2 = y

]
(3.99)
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where step (a) holds thanks to f∥Y∥2(y;P∥X∥) =
∫ R

0
fχ2

2N(ρ2)(y)dP∥X∥(ρ)

and step (b) to

d

dy
fχ2

2N(ρ2)(y) =
1

2
fχ2

2(N−1)
(ρ2)(y)−

1

2
fχ2

2N(ρ2)(y). (3.100)

By plugging (3.99) into (3.94), we obtain

i(ρ1;P∥X∥)− i(ρ2;P∥X∥) =

− (ρ21 − ρ22)E

[
E

[
1

2

∥X∥
∥Y∥

IN−2(∥X∥∥Y∥)
IN−1(∥X∥∥Y∥)

− (
1

2
+

N− 1

∥Y∥2
) | ∥Y∥2 = Q

]]
.

(3.101)

Let us now evaluate the derivative of the information density as fol-

lows

i′(ρ;P∥X∥)

= lim
h→0

i(ρ+ h;P∥X∥)− i(ρ;P∥X∥)

h

(3.102)

= −2ρ E
[
E

[
1

2

∥X∥
∥Y∥

IN−2(∥X∥∥Y∥)
IN−1(∥X∥∥Y∥)

− (
1

2
+

N− 1

∥Y∥2
) | ∥Y∥2 = Q′

]]

(3.103)

where Q′ ∼ χ2
2(N+1)(ρ

2), see the following Lemma.

Lemma 2. We have

lim
h→0

fQ(y; ρ+ h, ρ) = fχ2
2(N+1)

(ρ2)(y), y > 0. (3.104)

Proof. Given (3.93), it holds

lim
h→0

fQ(y; ρ+ h, ρ) (3.105)

59



Chapter 3. The Capacity-Achieving Input Distribution

= lim
h→0

Fχ2
2N(ρ2)(y)− Fχ2

2N((ρ+h)2)(y)

h(2ρ+ h)
(3.106)

= lim
h→0

1

h(2ρ+ h)

∫ y

0

(
fχ2

2N(ρ2)(t)− fχ2
2N((ρ+h)2)(t)

)
dt (3.107)

=
1

2ρ

∫ y

0

∞∑

i=0

lim
h→0

1

h

(
e−ρ2/2(ρ2/2)i

i!
− e−(ρ+h)2/2((ρ+ h)2/2)i

i!

)

fχ2
2N+2i

(t)dt

(3.108)

=
1

2ρ

∫ y

0

∞∑

i=0

d

dρ

(
e−ρ2/2(ρ2/2)i

i!

)
fχ2

2N+2i
(t)dt (3.109)

=
1

2

∫ y

0

∞∑

i=0

(
−e−ρ2/2(ρ2/2)i

i!
+

e−ρ2/2(ρ2/2)i−1

(i− 1)!
1(i ≥ 1)

)
fχ2

2N+2i
(t)dt

(3.110)

=
1

2

∫ y

0

(
−fχ2

2N(ρ2)(t) + fχ2
2(N+1)

(ρ2)(t)
)
dt (3.111)

=

∫ y

0

d

dt
fχ2

2(N+1)
(ρ2)(t)dt (3.112)

= fχ2
2(N+1)

(ρ2)(y), (3.113)

where 1(·) is the indicator function.

3.8.2 Partial Derivatives of the Secrecy Information

Let us consider the information density i( · ;P∥X∥) for the channel

model of Definition 2.1.3 defined in (3.82). The derivative of the non-

central chi square PDF is given by

∂

∂ρ2

[
fχ2

2N(ρ2/σ2
z)
(z)
]

=
∂

∂ρ2
1

2
e
− 1

2
(z+ ρ2

σ2
z
)
(

z

ρ2
σ2
z

)N−1
2

IN−1

(ρ
σ

√
z
) (3.114)
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= −1

2
e
− 1

2
(z+ ρ2

σ2
z
)
(

z

ρ2
σ2
z

)N−1
2

IN−1

(ρ
σ

√
z
)
· 1

2σ2
z

− 1

2
e
− 1

2
(z+ ρ2

σ2
z
)
(

z

ρ2
σ2
z

)N−1
2

IN−1

(ρ
σ

√
z
)
· 2N− 1

2ρ2

+
1

2
e
− 1

2
(z+ ρ2

σ2
z
)
(

z

ρ2
σ2
z

)N−2
2

IN−2

(ρ
σ

√
z
)
·
(

z

2ρ2

)
(3.115)

=

(
1−N

ρ2
− 1

2σ2
z

)
fχ2

2N(ρ2/σ2
z)
(z) +

(
z

2ρ2

)
fχ2

2N−2(ρ
2/σ2

z)
(z). (3.116)

Furthermore, given that

∂

∂ρ2j

[
log

zN−1

∑K
i=1 pifχ2

2N(ρ2i /σ
2
z)
(z)

]
= −pj

∂
∂ρ2j

[
fχ2

2N(ρ2j/σ
2
z)
(z)
]

∑K
i=1 pifχ2

2N(ρ2i /σ
2
z)
(z)

, (3.117)

we obtain

∂

∂ρ2j

[
fχ2

2N(ρ2j/σ
2
z)
(z) log

zN−1

∑K
i=1 pifχ2

2N(ρ2i /σ
2
z)
(z)

]
=

log

(
zN−1

∑K
i=1 pifχ2

2N(ρ2i /σ
2
z)
(z)

)
∂

∂ρ2j

[
fχ2

2N(ρ2j/σ
2
z)
(z)
]

− pj
fχ2

2N(ρ2j/σ
2
z)
(z)
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i=1 pifχ2

2N(ρ2i /σ
2
z)
(z)

∂

∂ρ2j

[
fχ2

2N(ρ2j/σ
2
z)
(z)
]
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(3.118)

Finally, we have that

∂

∂ρ2j

K∑

k=1

pk · i(ρk;P∥X∥)

=
K∑

k=1

pk

∫ ∞

0

∂

∂ρ2j

[
fχ2

2N(ρ2k/σ
2
z)
(z) log

zN−1

∑K
i=1 pifχ2

2N(ρ2i /σ
2
z)
(z)

]
dz

(3.119)
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= pj

∫ ∞

0

∂

∂ρ2j

[
fχ2

2N(ρ2j/σ
2
z)
(z) log

zN−1

∑K
i=1 pifχ2

2N(ρ2i /σ
2
z)
(z)

]
dz

+
K∑

k ̸=j

pk

∫ ∞

0

fχ2
2N(ρ2k/σ

2
z)
(z)

∂

∂ρ2j

[
log

zN−1

∑K
i=1 pifχ2

2N(ρ2i /σ
2
z)
(z)

]
dz.

(3.120)
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PART II

Fading Channels

Let us now consider fading channels. The immediate consequence

is that our channel model will also include a channel matrix H. The

results derived in the following part are valid for any full rank channel

matrix. The fading is characterized by a channel matrix H, which is

random, but known and fixed throughout the considered channel

uses. While for nonfading channel the structure of the capacity-

achieving input distribution is known, this is not the case for fading

channels. Therefore, the focus in this part will be on the derivation of

bounds on the channel capacity.
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Chapter 4

Capacity Bounds

In this chapter, upper bounds based on the capacity of amplitude-

constrained fading channels are introduced. The channel model used

throughout this chapter is that of Definition 2.1.2. The first bound is

based on a sphere packing argument and it can be adapted to any con-

vex constraint region X and, therefore, also those introduced in Chap-

ter 2. The second upper bound uses an entirely different approach and

targets specifically the AS and PA constraints. To better contextualize

these bounds, let us first introduce the main results that were available

in the literature prior to both the presented upper bounds.

4.1 Literature Review

One of the main contribution in the investigation of the channel capac-

ity for fading amplitude-constrained channels is presented in [39]. The

authors of [39] develop both capacity upper and lower bounds. Given

the constraint region X , let us refer to HX as output constraint region.

They derive duality upper bounds by considering an enlarged output
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constraint region D ⊃ HX . This approach, although suboptimal, is vi-

able for any convex constraint region X . Note that there exist special

cases for which one can still use a duality approach tailored on HX ,

see [41], but they only apply to specific X . The enlarged constraint

region D is designed to make the derivation of an upper bound feasi-

ble. The techniques presented in [39] considerD to be either a ball or a

box, specifically, the smallest ball or box containing the original output

constraint region HX . Let us denote by D1 the (2N)-dimensional ball

of radius d1 = rmax(HX ) and by D2 the smallest box containing HX .

The resulting duality upper bounds derived in [39, Theorem 10] are

C ≤ CD,1 ≜ log

(
c2N(d1) +

Vol2N(D1)

(2πeσ2
z)

N

)
, (4.1)

where c2N(d1) =
∑2N−1

j=0

(
2N−1

j

)Γ(N−j/2)

2j/2Γ(N)
(d1/σz)

j and

C ≤ CD,2 ≜
2N∑

j=1

log

(
1 +

d2,j√
2πeσ2

z

)
, (4.2)

where d2,j is the jth side length of the box D2. Although introducing

D makes the upper bound fairly general, the main drawback comes

from the fact that the more D differs from HX the less accurate the

bounds become. Loosely speaking, better results than those in [39] can

be achieved if one is able to derive an upper bound that depends on a

more suitable constraint region S such that D ⊃ S ⊇ HX .

As for the lower bound, the main result is given by the general-

ization to fading channels and any constraint region X of the EPI

lower bound defined in (3.62) for the nonfading case. By following

the derivation in [39, Theorem 12], we define the EPI lower bound for
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amplitude-constrained fading channels as

C ≥ CEPI ≜ N log

(
1 +

det(H)1/NVol2N(X )1/N
2πeσ2

z

)
. (4.3)

In [49], we introduce a slightly improved variant of the EPI lower

bound, which is defined as follows. Let λi be the ith singular value

of H. Whenever even just a single λi ≈ 0, we have that CEPI ≈ 0. Intu-

itively, since all the other singular values are nonvanishing, the capac-

ity should not be vanishing as well. The EPI lower bound is not able

to, roughly speaking, exclude the vanishing singular value because of

the term det(H) =
∏2N

i=1 λi. Let us assume that the MIMO channel is

rearranged in such a way that λ1 ≥ · · · ≥ λ2N. Then, if a given λi is

vanishing, then all λi+1, . . . , λ2N will be vanishing as well. Let us in-

troduce a variant of the EPI lower bound and refer to it as Piecewise

Entropy Power Inequality (P-EPI) lower bound. By EPI and data pro-

cessing inequality, for any k = 1, . . . , 2N, it holds

C ≥ sup
f
Xk

1
:Xk

1∈Xk
1

I
(
Xk

1 ;Y
k
1

)
(4.4)

≥ k

2
log


1 +

(∏k
i=1 λ

2/k
i

)
Volk

(
X k

1

)2/k

2πeσ2
z


, (4.5)

where fXk
1

is the input distribution of Xk
1 = (X1, . . . , Xk)

T and the vec-

tor Yk
1 is defined similarly to Xk

1. Moreover, X k
1 is the projection of

X onto the subspace Rk. Then, we define the P-EPI lower bound as
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follows

C ≥ CP-EPI ≜ max
k

k

2
log


1 +

(∏k
i=1 λ

2/k
i

)
Volk

(
X k

1

)2/k

2πeσ2
z


, (4.6)

where k = 1, . . . , 2N. Notice that the maximization is carried out sep-

arately at each SNR level.

4.2 Sphere Packing Upper Bound

Let us now focus on the derivation of the sphere packing bound. Sim-

ilarly to the duality upper bounds in [39], the sphere packing bound

can be applied to any convex constraint region and for any full rank

channel matrix. Furthermore, the sphere packing bound converges

asymptotically to the capacity as the SNR goes to infinity. The pro-

posed bound heavily relies on concepts of convex geometry and in

particular with functionals associated with a convex set, called intrin-

sic volumes. Therefore, the next section provides a brief introduction to

the most relevant geometrical concepts for the definition of the bound.

4.2.1 Convex Geometry Preliminaries

Let K be a convex body in Rn. The Lebesgue measure of K, i.e., its

n-dimensional volume, is denoted by Voln(K). In convex geometry,

the well known n-volume is one of the important geometric function-

als that can be associated with a given set K. These functionals are

called intrinsic volumes. Let us denote by Vj(K) the jth intrinsic vol-

ume of K, with j = 0, . . . , n. Intrinsic volumes are nonnegative, ho-

mogeneous, and monotonic functionals and represent a fundamental
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measure of content for a convex body [91]. The jth intrinsic volume is

obtained by rotating uniformly at random the set K, projecting it onto

a j-dimensional subspace and evaluating the average j-dimensional

volume of the rotated projections of K. Formally, let us denote by

Pj an n × n orthogonal matrix, projecting any point onto a given j-

dimensional subspace of Rn. Furthermore, let us denote by Q an n× n

random rotation matrix drawn uniformly from the Haar measure1 on

the compact, homogeneous group of n × n orthogonal matrices with

determinant one.

Definition 4.2.1 ( Intrinsic Volumes )

The jth intrinsic volume of a convex set K is defined as

Vj(K) ≜
(
n

j

)
κn

κjκn−j

E[Volj(PjQK)], j = 0, . . . , n, (4.7)

where the expectation is taken with respect to the random rota-

tion matrix Q and where κi ≜ π
i
2/Γ
(
i
2
+ 1
)

is the volume of the

i-dimensional unit ball.

Notice that the nth intrinsic volume of K is the volume Voln(K).
Moreover, the surface area of K can be evaluated as 2Vn−1(K), while

2V1(K)κn−1/(nκn) is the mean width, and V0(K) = 1 is the Euler char-

acteristic [93]. Let us consider a simple example to better understand

Definition 4.2.1. Let K be a cube. In Fig. 4.1, it is given a graphical

representation of the steps required in the evaluation of Volj(PjQK)
in (4.7), for the intrinsic volume V2(K). The random matrix Q ro-

tates the cube, while P2 projects it onto a plane. Then, the volume

Vol2(P2QK) corresponds to the measure of the gray area in Fig. 4.1.
1A rigorous definition of the Haar measure can be found in [92].
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K

y
x

z
Q

y
x

z
P2

xz-plane

Figure 4.1: Example of rotation and projection of a cube K for the evaluation of the 2nd
intrinsic volume V2(K).

Averaging this area over random rotations Q and scaling it by the fac-

tor
(
n
j

)
κn

κjκn−j
provides V2(K).

To better characterize these functionals, it is also useful to present

their most important properties. They are nonnegative

Vj(K) ≥ 0, ∀j. (4.8)

As mentioned, intrinsic volumes are also homogeneous functionals.

Then, given R ∈ R+ we have

Vj(RK) = RjVj(K), ∀j. (4.9)

Given a set K such that K ⊃ R, thanks to their monotonicity it holds

Vj(K) ≥ Vj(R), ∀j. (4.10)

Another relevant application of the intrinsic volumes in the field

of convex geometry is Steiner’s formula [94, Theorem 4]. Let us first

introduce an operator called Minkowski sum. LetK andR two convex
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subsets of a vector space. The operator ⊕ denotes the Minkowski sum

and summing the subsets K andR results in a new subset obtained by

adding each vector in K to each vector inR

K⊕R ≜ {k+ r | k ∈ K, r ∈ R}. (4.11)

Steiner’s formula [94, Theorem 4] is another notable result from con-

vex geometry that closely ties the concept of intrinsic volumes to the

Minkowski sum and it is given by

Voln(K ⊕ Bn
δ ) =

n∑

j=0

Vj(K)Voln−j

(
Bn−j
δ

)
, (4.12)

where δ ≥ 0. Since the right-hand side of (4.12) is a convolution, it

is convenient to define the (logarithmic) generating function of the in-

trinsic volumes of K as [94, Theorem 8]

GK(t) = log

(
n∑

j=0

Vj(K)ejt
)
. (4.13)

A property of these generating functions, defined in [91] and relevant

in the derivation of the sphere packing bound, is that, given two sets

K andR, it holds

GK×R(t) = GK(t) +GR(t), ∀t ∈ R. (4.14)

Finally, it is also convenient to provide a definition for the convex con-

jugate of a function. Let T be a topological vector space and T ∗ be the

corresponding dual vector space, i.e., the set of all linear forms on T .

Given a function f : T → R∪{−∞,+∞}, by [95] the convex conjugate
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of f is defined as f ∗ : T ∗ → R ∪ {−∞,+∞} such that

f ∗(t∗) ≜ sup
t∈T
{t · t∗ − f(t)}. (4.15)

4.2.2 Main Upper Bound Definition

In this section, the Sphere Packing (SP) upper bound is introduced.

The capacity of Gaussian scalar channels, subject to both average and

peak power constraints, is investigated via an SP argument in [94].

The upper bound provided in their work has been the starting point

in the definition of the SP upper bound that we proposed in [50]. Let us

first introduce the idea behind the bound in [94]. The authors consider

n → ∞ channel uses and, therefore, they define the corresponding

n-dimensional input constraint region K. Then, thanks to the SP argu-

ment, they claim that, roughly speaking and as the SNR increases, the

number of noise balls that can be packed intoK is≈ Voln(K)/Voln(Bn
δ ),

where Bn
δ is the noise ball. On the other hand, at finite SNR levels,

the number of balls cannot be approximated just by considering the

mentioned ratio. Nonetheless, it is possible to derive an upper bound

as Voln(K ⊕ Bn
δ )/Voln(Bn

δ ), where K ⊕ Bn
δ is the Minkowski sum be-

tween the input signal space K and the noise ball Bn
δ . Notice that

the Minkowski sum K ⊕ Bn
δ is given by the union of an infinitely

many replicas of the noise ball Bn
δ , centered at each point of K. Let

us look at a simple example for a finite value of n. In Fig. 4.2, the red

dashed hollow circle represents K = B2, the light gray circles are the

noise balls, and the dark gray circle is the Minkowski sum between

K and a single noise ball. Therefore, Fig. 4.2 intuitively shows why

Voln(K ⊕ Bn
δ )/Voln(Bn

δ ) is an upper bound on the number of balls that
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4.2. Sphere Packing Upper Bound

Figure 4.2: Two sphere packing examples under an amplitude constraint and different SNR
values. For both cases, the red dashed circle delimits the border of the input signal space
K = B2. The dark gray circle is given by the Minkowski sum between K and the noise
ball. The light gray circles represent the noise balls at low SNR, on the left side, at higher
SNR, on the right side.

can be packed in the output signal space. Notice also that Fig. 4.2

shows intuitively how, as the SNR increases, the difference in vol-

ume between the dark gray circle and the red dashed hollow circle

becomes negligible, i.e., limδ→0Voln(K ⊕ Bn
δ ) = Voln(K). In [94], the

authors use this SP argument to define a capacity upper bound as

lim supn→∞
1
n
log(Voln(K ⊕ Bn

δ )/Voln(Bn
δ )), where δ =

√
nσ2

z . In [50],

we extend their results to amplitude-constrained MIMO fading chan-

nels.

Let n = 2N ·M. Then, the n channel uses can be seen as M uses

of a (2N)-dimensional MIMO channel, with M → ∞. Moreover, each

MIMO channel use is independent of the other and, therefore, the con-

straint region K is an M-fold Cartesian product of the output signal

space for a single channel use, i.e.,K = [HX ]×M. Then, an upper bound

on the capacity of MIMO channels can be derived as follows [50].

Theorem 4.2.1

The SP bound is defined as

C ≤ CSP ≜ ℓ(σ2
z)−N log

(
2πeσ2

z

)
, (4.16)
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where ℓ(σ2
z) is

ℓ(σ2
z) = sup

θ∈[0,1]



− 2N sup

t



θt− 1

2N
log




2N∑

j=0

Vj(HX )ejt






+ (1− θ)N log
2πeσ2

z

1− θ



. (4.17)

Proof. See Appendix 4.4.1.

Notice that, since h(Z) = N log(2πeσ2
z), by (4.16) and (2.6) the term

ℓ(σ2
z) in Theorem 4.2.1 is an upper bound on the output signal entropy,

i.e.,

sup
FX: supp(FX)⊆X

h(Y) ≤ ℓ(σ2
z). (4.18)

Moreover, the SP bound asymptotically converges to the capacity.

Proposition 1. The capacity gap between the SP bound of Theorem 4.2.1 and

the EPI lower bound in (4.3) is asymptotically vanishing.

gSP ≜ lim
σ2
z→0

CSP − CEPI = 0. (4.19)

Proof. See Appendix 4.4.2.

Notice that the results of Theorem 4.2.1 and Proposition 1 hold for

any full rank channel matrix H, any MIMO dimension 2N, and any

convex constraint region X .
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4.2.3 Generalized Sphere Packing

Although, in principle, the SP can be applied to any convex constraint

region X , in practice, to compute the term ℓ(σ2
z) in Theorem 4.2.1 one

has to also evaluate the intrinsic volumes Vj(HX ), for j = 0, . . . , 2N.

While V0(HX ) and V2N(HX ) are trivial to evaluate, the other intrinsic

volumes can be problematic. They are known just for simple geomet-

ric shapes. Specifically, for balls and boxes, in closed form, while the

intrinsic volumes of ellipsoids can be evaluated numerically [91, 96].

Moreover, even if the intrinsic volumes of X were known, it would

not be trivial to evaluate the intrinsic volumes of HX . A solution is

given by the Generalized Sphere Packing (G-SP) upper bound, defined

in [50]. The G-SP approach derives a further upper bound on CSP.

The fundamental concept is similar, in essence, to that of [39]. The

authors derive their upper bounds by considering a larger constraint

region D ⊃ HX . Since intrinsic volumes describe geometric measures

of a set, the same strategy can be applied to the SP bound. Indeed,

thanks to (4.10), by considering a larger regionD one can upper-bound

the intrinsic volumes of HX with those of D. Furthermore, one does

not have to choose a single D for all of the intrinsic volumes, as all

of them can be bounded independently. The G-SP approach, that we

defined in [50], uses (4.10) to upper-bound each intrinsic volume in the

most efficient way possible. One crucial feature of the G-SP approach

is that it allows us to keep the last intrinsic volume unaltered. Notice

that, as mentioned, V2N(HX ) is trivial to evaluate, i.e., V2N(HX ) =

Vol2N(HX ) = det(H)Vol2N(X ). Moreover, V0(K) = 1 for any convex

region K. For each j = 1, . . . , 2N − 1, let Sj be a convex constraint

75



Chapter 4. Capacity Bounds

region, such that Sj ⊃ HX . Then, the intrinsic volumes of HX can be

upper-bounded as follows

Vj(HX ) ≤ Vj ≜





1, j = 0,

Vj(Sj), j = 1, . . . , 2N− 1,

det(H)Vol2N(X ), j = 2N.

(4.20)

The Sj’s are chosen among those sets that are the closest to HX , while

still having known intrinsic volumes. By the G-SP approach, let us

define the following result.

Lemma 3. Consider the upper bounds Vj on the intrinsic volumes of HX
defined in (4.20). The G-SP upper bound is defined as

C ≤ CG-SP ≜ ℓG(σ
2
z)−N log

(
2πeσ2

z

)
, (4.21)

where ℓG(σ
2
z) is

ℓG(σ
2
z) ≜ sup

θ∈[0,1]



− 2N sup

t



θt− 1

2N
log




2N∑

j=0

Vje
jt







+ (1− θ)N log
2πeσ2

z

1− θ



.

(4.22)

Proof. The proof follows the same steps of that of Theorem 4.2.1. Aside

from the upper bounds Vj on the intrinsic volumes of HX , the SP and

G-SP have the same formulation. Notice that the logarithm is a mono-

tonic increasing function. Moreover, we already mentioned that the

intrinsic volumes are always nonnegative. Since each Vj(HX ) acts as

the coefficient of the jth exponential term in the sum of (4.17), upper-
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bounding each intrinsic volume via Vj determines a further upper

bound on the whole (4.17). In other words, ℓG(σ
2
z) ≥ ℓ(σ2

z) and, in

turn, C ≤ CSP ≤ CG-SP.

Moreover, keeping the (2N)th intrinsic volume unaltered, deter-

mines the following results.

Proposition 2. The capacity gap between the G-SP bound of Lemma 3 and

the EPI lower bound in (4.3) is asymptotically vanishing.

gG-SP ≜ lim
σ2
z→0

CG-SP − CEPI = 0. (4.23)

Proof. As mentioned, beside the intrinsic volumes definition, the for-

mulations of ℓG(σ
2
z) in Lemma 3 and of ℓ(σ2

z) in Theorem 4.2.1 are

identical. Therefore, as σ2
z decreases, similarly to ℓ(σ2

z) in (4.103), also

ℓG(σ
2
z) tends asymptotically to be equal to log(V2N). Moreover, since

V2N = V2N(HX ), the same result of (4.19) applies also to gG-SP.

4.2.4 Piecewise Sphere Packing

Let us define another variant based on the SP bound, namely the

Piecewise Sphere Packing (P-SP) upper bound. Notice that both the

SP and G-SP bounds are asymptotically tight as proven in Proposi-

tion 1 and 2. Nonetheless, they can become loose in the low SNR

regime. Indeed, as the SNR decreases, the tightness of the SP and,

even more so, of the G-SP bounds get worse. The reduced accuracy

is due to the Minkowski sum in (4.67). The sum of [HX ]×M with

the noise ball Bn
δ gives a result that, roughly speaking, is equivalent

to the support of a convolution of the noise ball Bn
δ over a uniform

distribution on [HX ]×M. While close to optimal as the SNR goes
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to infinity, at low SNR this is far from ideal. Specifically, a true

sphere packing argument considers nonoverlapping noise balls, while

the Minkowski sum uniformly distributes these balls over [HX ]×M.

As already mentioned, indeed Fig. 4.2 shows graphically that the

Minkowski sum becomes an accurate approximation of the output

signal space determined by a true sphere packing only as the SNR

increases and the noise balls get smaller. Therefore, let us now define

the family of P-SP upper bounds from [50] that provides better results

than the SP and G-SP approaches in the low SNR regime.

Lemma 4. Let us denote the maximum radius of X by r ≜ rmax(X ). More-

over, let us use the singular value decomposition of H = UΛVT . Finally, let

λ1, . . . , λ2N be the diagonal elements of Λ, such that

λ1 ≥ λ2 ≥ · · · ≥ λ2N. (4.24)

Notice that, without loss of generality, we can assume that (4.24) is always

satisfied since this can be achieved by simply rearranging accordingly the

MIMO subspaces. Let u and l be any pair of positive integers such that

u+ l = 2N. The P-SP bound is defined as

C ≤ CP-SP ≜ min
u:

u+l=2N

sup
α∈[0,1]

{ℓU(α) + ℓL(α)} −N log(2πeσ2
z), (4.25)

with ℓU(α) given by

ℓU(α) ≜ sup
θ∈[0,1]



− u sup

t



θt− 1

u
log

u∑

j=0

Vj(ΛUXU)e
jt





+ (1− θ)
u

2
log

2πeσ2
z

1− θ



, (4.26)
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where ΛU is the u × u submatrix of Λ of diagonal elements λ1, . . . , λu and

XU = Bu
r
√
1−α2 . Furthermore, ℓL(α) is given by

ℓL(α) ≜
l∑

k=1

1

2
log
(
2πe
(
λ2
u+kPk(α) + σ2

z

))
, (4.27)

where Pk(α) is the power allocation determined via the water-filling algo-

rithm, for l parallel channels and a total power α2r2 allocated according to

σ2
z/λ

2
u+1, . . . , σ

2
z/λ

2
2N.

Proof. See Appendix 4.4.3.

Remark 6. In general, the asymptotic gap between the P-SP upper

bound in Lemma 4 and the EPI lower bound in (4.3) never vanishes,

even as the SNR goes to infinity. The only special case for which the

capacity gap goes to zero is that of X being a ball. Notice that, in this

special case, for u = 2N the P-SP formulation is equivalent to that of

the standard SP approach and, therefore, by Proposition 1 the P-SP

bound converges to the capacity.

4.3 Quasi Parallel Channels Upper Bound

Let us now introduce another upper bound that is particularly rele-

vant for those input constraints that can be decomposed as a Cartesian

product of subregions, like the PA and the AS constraints. The idea

is to exploit the Cartesian features of the input constraint region and

define an upper bound that is given by a sum of approximately inde-

pendent capacity contributions. Indeed, the name Quasi Parallel Chan-

nels (QPC) refers to the fact that the bound depends on the sum of the

subchannels capacities corresponding to the subspaces in which each
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Xi lies. The term quasi stands for the fact that, other than the sum of

capacities, the bound depends on a residual nonnegative logarithmic

term that, roughly speaking, quantifies how far the subchannels are

from being truthfully parallel.

The QPC upper bound is defined as the compound bound given by

the minimum between two contributions. The first one is suitable for

the high SNR regime and, as mentioned, approximates the capacity as

a sum of independent terms plus a distortion term. On the other hand,

for the low SNR regime, a similar approach to that of the P-SP is used,

based on a Gaussian maximum entropy argument.

Let us start with the high SNR regime.

4.3.1 High SNR Regime

Given the vectorized channel of Definition 2.1.2, it is convenient to

consider the equivalent channel model multiplied by the inverse of the

channel matrix H. Note that since H is known and full rank it is always

possible to evaluate its inverse. Therefore, the equivalent channel is

defined as

H−1Y = H−1H ·X+ H−1Z (4.28)

= X+ H−1Z (4.29)

= X+ ZD, (4.30)

where ZD = H−1Z is such that ZD ∼ N (02N,D) with covariance matrix

D = σ2
zH

−1H−T . Let us consider the AS constraint region X of Defini-

tion 2.3.3. Moreover, let Dk,l denote the element (k, l) of D and let Di be
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8

Covariance Submatrices
Given Xi ⊂ RNi , let us partition the covariance matrix D as

D =




2N1︷ ︸︸ ︷ 2N2︷ ︸︸ ︷ 2NT︷ ︸︸ ︷

2N1

{
D1 ∗ · · · ∗

2N2





∗ D2 · · · ∗

... ... . . . ...
2NT

{
∗ ∗ · · · DT




Figure 4.3: Diagram of the block diagonal submatrices of D.

the block submatrices, on the main-diagonal of D, given by

Di ≜ [Dk,l]
mi+2Ni

k,l=mi+1, i = 1, . . . , T , (4.31)

where mi =
∑i−1

j=1 2Nj and m1 = 0. See Figure 4.3 for a more intuitive

graphical representation. Finally, let Xi be the 2Ni × 1 subvector of X

such that Xi = (Xmi+1, Xmi+2, . . . , Xmi+2Ni
)T and

X =
( X1∈R2N1︷ ︸︸ ︷
X1, . . . , X2N1 , . . . ,

XT∈R2NT︷ ︸︸ ︷
XmT+1, . . . , X2N

)T
(4.32)

= (X1, . . . ,XT )
T . (4.33)

Consider also a similar partition of the vector ZD into the subvectors

ZD,i ∈ R2Ni .

Theorem 4.3.1 ( Quasi Parallel Channels: High SNR )

Given a constraint region X that can be decomposed in a Cartesian
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product of subregions, as defined in (2.12), an upper bound on the

channel capacity is given by

C ≤ C1 ≜

(
T∑

i=1

Ci

)
+

1

2
log

∏T
j=1 det(Dj)

det(D)
, (4.34)

where

Ci ≜ max
fXi

:Xi∈Xi

h(Xi + ZD,i)− h(ZD,i) (4.35)

and ZD,i ∼ N (02Ni
,Di).

Proof.

C = max
fX:X∈X

I(X ;HX+ Z) (4.36)

= max
fX:X∈X

I(X ;X+ ZD) (4.37)

= max
fX:X∈X

h(X+ ZD)− h(ZD) (4.38)

(a)

≤
(

max
fX:X∈X

T∑

i=1

h(Xi + ZD,i)

)
+

1

2
log

1

det(D)

−N log(2πe)

(4.39)

=

(
T∑

i=1

max
fXi

:Xi∈Xi

h(Xi + ZD,i)

)
+

1

2
log

1

det(D)

−N log(2πe) +
1

2
log

∏T
j=1 det(Dj)∏T
k=1 det(Dk)

(4.40)

=

(
T∑

i=1

max
fXi

:Xi∈Xi

h(Xi + ZD,i)− h(ZD,i)

)

+
1

2
log

∏T
j=1 det(Dj)

det(D)
,

(4.41)
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where the step (a) derives from the subadditivity of the differential

entropy, while ZD,i is the result of the marginalization of ZD on the

ith subspace to which Xi belongs. Since ZD is multivariate Gaussian-

distributed with zero mean and covariance matrix D, the result of the

marginalization is ZD,i ∼ N (02Ni
,Di). Moreover, since X is a Carte-

sian product, the capacity-achieving distribution fX will be a product

distribution of the T terms fXi
. Therefore, the maximization in (4.39)

can be decomposed and carried out into T independent subspaces, one

for each subchannel. Since the maximization is carried over indepen-

dent subspaces, it is also possible to invert the order of the sum and

the maximization in (4.39) without making the bound looser. In (4.40),

the logarithmic term 1
2
log
∏

i det(Di) is added and subtracted. Finally,

the subtracted term is combined with the noise entropy to derive the

h(ZD,i)’s in (4.41).

Remark 7. Since the Ci’s depend on the maximization over the fXi
’s,

C1 is defined implicitly and requires additional step to be evaluated.

Nonetheless, it is possible to evaluate upper bounds on the Ci’s via any

given suitable technique. For instance, the SP bounds in Section 4.2 can

be used for any convex constraint X . Then, the upper bounds on the

subchannel capacities Ci’s can be used in (4.34) to derive an explicit

upper bound on C1. Notice also that, whenever the subregion Xi is a

ball and Di is a scalar matrix, then we can also apply the upper bounds

of [34], defined in Section 4.1, or also the capacity estimate given by

Algorithm 1 from Chapter 3.

Remark 8. Using the SP approach on the subchannel capacities Ci’s to

derive an upper bound on C1 via the QPC is fundamentally different
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than directly applying the SP upper bound to the capacity of the entire

channel. Both approaches are viable and yield to different results.

Remark 9. Since D is a covariance matrix, it is positive-semidefinite and

by Fischer’s inequality [97], it holds that det(D) ≤∏T
j=1 det(Dj). Then,

we have also that

log

∏T
j=1 det(Dj)

det(D)
≥ 0. (4.42)

Remark 10. Loosely speaking, the logarithmic term in (4.34) quanti-

fies the inaccuracy induced by the marginalization of ZD on each of

the T subspaces. This intuitive interpretation is supported by the fact

that, whenever D is block diagonal and has zero off-diagonal elements,

det(D) =
∏T

i=1 det(Di) and, therefore, the logarithmic term log det(D)∏
j det(Dj)

vanishes. In this special case, the upper bound in (4.34) becomes the

true capacity. Notice that, therefore, the sum
∑T

i=1 Ci accounts for the

contribution due to the diagonal submatrices Di, while the logarithmic

term accounts for the distortion induced by the off-diagonal terms of D.

As for the SP bounds, the capacity gap given by the difference be-

tween C1 and the EPI lower bound in (4.3) goes to zero as the SNR

increases.

Lemma 5. Let σ2
z → 0. The resulting capacity gap is

lim
σ2
z→0

C1 − C = 0. (4.43)

Proof. The mutual information for the ith subchannel is defined as

I(Xi ;Xi + ZD,i) = h(Xi + ZD,i) − h(ZD,i). Let Mi denote the (2Ni) ×
(2Ni) matrix for which Di = σ2

zM−1
i M−T

i . Again, since Di is a covari-
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ance matrix it is also positive-semidefinite, therefore the matrix Mi can

always be computed. Then, we can equivalently express the mutual

information as

I(Xi ;Xi + ZD,i) = I(Xi ;MiXi + Zi), (4.44)

where Zi ∼ N (02Ni
, σ2

z I2Ni
). Moreover, it holds

lim
σ2
z→0

T∑

i=1

Ci =
T∑

i=1

max
fXi

:Xi∈Xi

h(MiXi)− lim
σ2
z→0

h(Zi) (4.45)

=

(
T∑

i=1

log Vol2Ni
(MiXi)

)
− lim

σ2
z→0

h(Z) (4.46)

=

(
T∑

i=1

log det(Mi)Vol2Ni
(Xi)

)
− lim

σ2
z→0

h(Z), (4.47)

where (4.46) holds because the uniform distribution overXi maximizes

the entropy term h(MiXi). Notice that

lim
σ2
z→0

1

2
log

∏T
i=1 det(Di)

det(D)
= lim

σ2
z→0

1

2
log

∏T
i=1 det

(
σ2
zM−1

i M−T
i

)

det(σ2
zH

−1H−T )
(4.48)

= log det(H)−
T∑

i=1

log det(Mi), (4.49)

where we used the following property of the determinant det(H−1H−T ) =

(det(H−1))2 = 1/(det(H))2 for both H and the Mi’s.

Given the EPI lower bound, we have that

lim
σ2
z→0

C = lim
σ2
z→0

N log

(
(Vol2N(HX ))

1
N

2πeσ2
z

)
(4.50)

= lim
σ2
z→0

log(Vol2N(HX ))− h(Z) (4.51)
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= lim
σ2
z→0

log det(H) + log

(
T∏

i=1

VolNi
(Xi)

)

− h(Z).

(4.52)

Since X is a Cartesian product, we can evaluate its volume as

Vol2N(X ) =
∏

i Vol2Ni
(Xi).

By putting everything together all these results we obtain the claim

lim
σ2
z→0

C1 − C = 0. (4.53)

Remark 11. In Remark 7, we mentioned that one has to resort to upper

bounds on the Ci’s to get an explicit formulation for C1. Nonethe-

less, whenever the upper bounds used on the Ci’s converge to the true

capacity as the SNR increases, then Lemma 5 is valid also for the re-

sulting upper bounds on C1.

4.3.2 Low SNR Regime

In Remark 9, we already mentioned that the Theorem 4.3.1 is loose in

the low SNR regime. Indeed, unless the Mi’s are scalar matrices (see

Remark 10), C1 never goes to zero as the SNR decreases. Like for the

P-SP bound in Section 4.2.4, we derive in an equivalent fashion an up-

per bound based on a Gaussian maximum entropy argument. Com-

pared to the P-SP approach, in this case we do not adopt a piecewise

approach. We either consider all the MIMO dimensions to be at high

SNR and, therefore, rely on Theorem 4.3.1, or we consider the noise to

be dominant for all MIMO dimensions and use the following Gaussian
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maximum entropy argument.

Given the singular value decomposition of the channel matrix H,

i.e., H = UΛVT , consider the following equivalent definition.

Λ−1Ȳ = X̄+ Λ−1Z̄ (4.54)

= X̄+ Z̄D̄, (4.55)

where Ȳ = U−1Y, the input is X̄ = VTX, and the noise vector is Z̄D̄ =

Λ−1Z̄ = Λ−1U−1Z. Once more, since Z is isotropically distributed, it

holds Z̄ ∼ N (02N, σ
2
z I2N) and Z̄D̄ ∼ N

(
02N, D̄

)
with D̄ = σ2

zΛ
−1Λ−T .

Theorem 4.3.2

Given the constraint region X defined in (2.12), we derive the fol-

lowing upper bound via a Gaussian maximum entropy argument

C ≤ C2 ≜

(
2N∑

i=1

1

2
log(Pi + λi(D))

)
− 1

2
log det(D), (4.56)

where Pi is the power allocation obtained via the water-filling prin-

ciple, for a total available power Pav = (rmax(X ))2 and for the noise

variances λi(D)’s, with λi(D) being the ith singular value of D.

Proof. Notice that the proof is mostly the same of that devised in Sec-

tion 4.4.3. Given the input constraintX in (2.12) and the looser average

power constraint E
[
XTX

]
≤ Pav, an upper bound on the channel ca-

pacity is given by

C = max
fX:X∈X

I(X ;HX+ Z) (4.57)
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= max
fX:X∈X ,

E[XTX]≤Pav

I(X ;HX+ Z) (4.58)

≤ max
fX: E[XTX]≤Pav

I(X ;HX+ Z) (4.59)

= max
fX̄: E[X̄T X̄]≤Pav

I
(
X̄ ; X̄+ Z̄D̄

)
(4.60)

= max
fX̄: E[X̄T X̄]≤Pav

h
(
Λ−1Ȳ

)
− h

(
Z̄D̄

)
(4.61)

≤ max
fX̄: E[X̄T X̄]≤Pav

h
(
Ỹ
)
− h

(
Z̄D̄

)
(4.62)

≤ max
fX̄: E[X̄T X̄]≤Pav

2N∑

i=1

1

2
log
(
2πe
(
E
[∣∣X̄i

∣∣2
]
+ λi

(
D̄
)))

− 1

2
log det

(
2πeD̄

)
(4.63)

=

(
2N∑

i=1

1

2
log(Pi + λi(D))

)
− 1

2
log det(D), (4.64)

where the upper bound in (4.59) is obtained by removing the con-

straint X and in (4.60) we introduced an equivalent formulation based

on the model in (4.55). Notice that VT is a unitary matrix, therefore

E
[
XTX

]
= E

[
X̄T X̄

]
. Let Ỹ ∼ N (02N,Σ) be a Gaussian-distributed

vector, with Σ = E
[
X̄X̄T

]
+ D̄. By the Gaussian maximum entropy

bound h
(
Λ−1Ȳ

)
≤ h(Ỹ), we obtain (4.62), while (4.63) holds by notic-

ing that h(Ỹ) ≤∑i h(Ỹi). Finally, (4.64) is obtained thanks to λi

(
D̄
)
=

λi(D) for each i and by applying the water-filling principle.

Remark 12. It is easy to show that the upper bound C2 is vanishing for

σ2
z →∞, i.e.,

lim
σ2
z→∞

C2 = 0. (4.65)
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Indeed, since the λi(D) are proportional to σ2
z , as σ2

z → ∞ the power

allocation terms Pi disappear in the limit. Therefore,

lim
σ2
z→∞

C2 = lim
σ2
z→∞

(
2N∑

i=1

1

2
log(λi(D))

)
− 1

2
log det(D) = 0. (4.66)

4.4 Appendix

4.4.1 Proof of Theorem 4.2.1

Given an arbitrarily large number, M, of independent channel uses,

for M→∞ and by [94, Theorem 3], it holds

C ≤ lim sup
M→∞

1

M
log

Voln
(
[HX ]×M ⊕ Bn

δ

)

Voln(Bn
δ )

(4.67)

= lim sup
M→∞

1

M
log Voln

(
[HX ]×M ⊕ Bn

δ

)
− lim

M→∞

1

M
log Voln(Bn

δ ) (4.68)

= lim sup
M→∞

1

M
log Voln

(
[HX ]×M ⊕ Bn

δ

)
−N log

(
2πeσ2

z

)
, (4.69)

where n = 2NM and δ =
√
nσ2

z . Notice that [HX ]×M ⊕ Bn
δ in (4.69)

is a convolution. Then, it useful to define the limiting normalized

generating function of Vj(HX ). Let us ease the notation and define

K = [HX ]×M. Then, the corresponding generating function is defined

as

f(t) ≜ lim
M→∞

1

2NM
GK(t) (4.70)

= lim
M→∞

1

2NM
G[HX ]×M(t) (4.71)

(4.14)
= lim

M→∞

M

2NM
GHX (t) (4.72)
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=
1

2N
log




2N∑

j=0

Vj(HX )ejt

, (4.73)

where (4.72) holds thanks to (4.14). Note that HX is a bounded and

convex constraint region and, therefore, its intrinsic volumes exist and

are finite. As a consequence, the limit in (4.70) exists as well. By (4.12),

we also show that

Voln
(
[HX ]×M ⊕ Bn

δ

)
=

n∑

j=0

Vj(K)Voln−j

(
Bn−j
δ

)
. (4.74)

Furthermore, notice that, as done in [94], the Steiner’s formula can

be decomposed as a sum of exponentials. Let us define the functions

an(θ) and bn(θ) with support θ ∈ [0, 1]. The first function, an(θ), is

given by the linear interpolation of

an(j/n) =
1

n
log Vj(K), j = 0, . . . , n. (4.75)

Then, we can also define the sequence of measures

Ṽn(θ) ≜ enan(θ), θ ∈ [0, 1]. (4.76)

On the other hand, the second function, bn(θ), is

bn(θ) =
1

n
log

πn(1−θ)/2

Γ(n(1− θ)/2 + 1)
δn(1−θ), θ ∈ [0, 1]. (4.77)

These two functions account for each of the two terms in the

Minkowski sum of (4.74). Specifically, an(θ) is related to the in-

trinsic volumes of HX , while bn(θ) to the volume of the noise ball

90



4.4. Appendix

Voln−j

(
Bn−j
δ

)
. Let us consider the function vn : [0, 1]→ R defined as

vn(θ) ≜ an(θ) + bn(θ). (4.78)

Then, the Steiner’s formula in (4.74) is equivalent to

Voln
(
[HX ]×M ⊕ Bn

δ

)
=

n∑

j=0

envn(j/n). (4.79)

Let us verify that vn converges as M goes to infinity. Notice that to

guarantee the convergence of vn we just need to prove that both an and

bn converge. Let use denote by f ∗ the convex conjugate of f in (4.70),

defined according to (4.15). Given a closed set I ⊆ R and an open

set F ⊆ R, by [94, Lemma 14] the authors prove the following large

deviation bounds. The upper bound

lim sup
n→∞

1

n
log Ṽn(I) = lim sup

n→∞
an(I) ≤ − inf

t∈I
f ∗(t), (4.80)

and the lower bound

lim sup
n→∞

1

n
log Ṽn(F ) = lim sup

n→∞
an(F ) ≥ − inf

t∈F
f ∗(t). (4.81)

Notice that, moreover, a requirement to ensure that these bounds

are valid is to guarantee that the limit f(t) exists for any t ∈ R

and that f(0) < ∞. In our case these conditions are always satis-

fied thanks to (4.73). Furthermore, the concavity of an(·) for each

n [94, Lemma 13], (4.80), and (4.81) ensure that

lim
n→∞

an(θ) = −f ∗(θ). (4.82)
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See [94, Lemma 15] for a more detailed proof. Notice that the conver-

gence of bn can be easily proven as follows

lim
n→∞

bn(θ) =
1− θ

2
log

2πeσ2
z

1− θ
. (4.83)

Therefore, putting everything together we can show that vn converges

v(θ) ≜ lim
n→∞

vn(θ) = −f ∗(θ) +
1− θ

2
log

2πeσ2
z

1− θ
. (4.84)

Let us define the value of θ for which vn(θ) is maximized as

θ̂n = argmax
θ

vn(θ). (4.85)

Thanks to (4.79) and to the monotonicity of logarithmic functions, we

define the following inequalities

log
(
envn(θ̂n)

)

M
≤ log Voln

(
[HX ]×M ⊕ Bn

δ

)

M
≤

log
(
(n+ 1)envn(θ̂n)

)

M
.

(4.86)

Notice that, by [94, Lemma 17], it holds that

lim
n→∞

vn

(
θ̂n

)
= sup

θ
v(θ). (4.87)

Therefore, given the fact that

lim
M→∞

1

M
log
(
envn(θ̂n)

)
= lim

n
2N

→∞
2Nvn

(
θ̂n

)
(4.88)

= 2N lim
n→∞

vn

(
θ̂n

)
, (4.89)
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the limit for M→∞ of (4.86) is bounded on both sides by

2N sup
θ

v(θ) ≤ lim
M→∞

1

M
log Voln

(
[HX ]×M ⊕ Bn

δ

)
≤ 2N sup

θ
v(θ). (4.90)

Finally, for σ2
z > 0 and by (4.90), the limit superior in (4.69) is given by

ℓ(σ2
z) ≜ lim sup

M→∞

1

M
log Voln

(
[HX ]×M ⊕ Bn

δ

)
(4.91)

(4.90)
= sup

θ∈[0,1]
2N · v(θ) (4.92)

(4.84)
= sup

θ∈[0,1]

{
−2Nf ∗(θ) + (1− θ)N log

2πeσ2
z

1− θ

}
(4.93)

(4.15)
= sup

θ∈[0,1]



− 2N sup

t
{θt− f(t)}+ (1− θ)N log

2πeσ2
z

1− θ



 (4.94)

(4.73)
= sup

θ∈[0,1]



− 2N sup

t



θt− 1

2N
log




2N∑

j=0

Vj(HX )ejt






+ (1− θ)N log
2πeσ2

z

1− θ



.

(4.95)

This concludes the proof.

4.4.2 Proof of Proposition 1

Let us define the value of θ maximizing v(θ)2 as

θ∗(σ2
z) = argmax

θ
v(θ). (4.96)

By [94, Lemma 18], it holds that

lim sup
σ2
z→0

θ∗(σ2
z) = 1. (4.97)

2Note that the notation used in this work is different to that of [94] and θ of [94] is equivalent to 1− θ.
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Therefore, we also have that

lim
σ2
z→0

ℓ(σ2
z) = −2Nf ∗(1) (4.98)

= −2N sup
t

{
t− 1

2N
log

(
2N∑

j=0

Vj(HX )ejt
)}

(4.99)

= inf
t

{
log

(
2N∑

j=0

Vj(HX )e(j−2N)t

)}
(4.100)

= log

(
inf
t

{
2N∑

j=0

Vj(HX )e(j−2N)t

})
(4.101)

= log

(
V2N(HX ) + inf

t

{
2N−1∑

j=0

Vj(HX )e(j−2N)t

})
(4.102)

= log(Vol2N(HX )), (4.103)

where: i) (4.99) derives from (4.15) and (4.73); ii) (4.101) is due to the

monotonicity of logarithmic functions; iii) (4.102) holds thanks to the

fact that Vj(HX )e(j−2N)t is independent of t for j = 2N; iv) as for

(4.103), since the argument of the infimum in (4.102) is a sum of ex-

ponentials and since each exponential is scaled by nonnegative coef-

ficients, the infimum is zero and it is given by t → ∞. Finally, we

conclude the proof by showing that, therefore, the asymptotic gap is

gSP = lim
σ2
z→0

CSP − CEPI (4.104)

= lim
σ2
z→0

ℓ(σ2
z)−N log

(
(Vol2N(HX ))

1
N

)
= 0. (4.105)
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4.4.3 Proof of Lemma 4

It is convenient to decompose the MIMO channel into two indepen-

dent subchannels. Let us upper-bound the capacity of the one sub-

channel by the SP upper bound and the other subchannel by a Gaus-

sian maximum entropy argument. Let H = UΛVT be the singular value

decomposition of H and let Ỹ = U−1Y, X̃ = VTX, and Z̃ = U−1Z with

Z̃ ∼ N (02N, σ
2
z I2N). Notice that the entropy in (2.6) is upper-bounded

by

sup
FX:X∈X

{h(Y)} = sup
FX:X∈X

{
h
(
Ỹ
)}

(4.106)

= sup
FX:X∈X

{h(YU ,YL)} (4.107)

≤ sup
FX:X∈X

{h(YU) + h(YL)}, (4.108)

where Ỹ =
(
YU
YL

)
, with

YU =




Ỹ1

...

Ỹu


 ∈ Ru, YL =




Ỹu+1

...

Ỹu+l


 ∈ Rl, u+ l = 2N. (4.109)

Moreover, it holds X̃ =
(
XU
XL

)
, with XU and XL defined analogously to

YU and YL. We want to separate the contributions of h(YU) and h(YL)

and apply tailored bounding techniques to each of them. By (4.24) and

since

Vj(HX ) = Vj(ΛX ), ∀j, (4.110)
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the subchannel of YU is characterized by larger singular values and

perceives a higher SNR. On the other hand, the relative singular values

for the subchannel of the vector YL are smaller and the noise is more

predominant. Therefore, SP upper bound is a suitable bounding tech-

nique for h(YU), while the Gaussian maximum entropy argument pro-

vides a better bound for h(YL). Let us start with the subchannel where

the noise is the dominant component and define YL ∼ N (0l,ΣL), with

ΣL = ΛLE
[
XLX

T
L

]
ΛL + σ2

z Il and with ΛL being the l × l submatrix of

Λ of diagonal elements λu+1, . . . , λ2N. Furthermore, let us reformulate

the input constraint in such a way that the two differential entropy

in (4.108) can be maximized independently. For now, let us assume X
to be a ball and let r = rmax(X ) be its radius. It holds that

∥X∥2 = ∥XU∥2 + ∥XL∥2 ≤ r2. (4.111)

Let us decompose r2 in the sum of two terms as r2(1− α2) + r2α2 with

α ∈ [0, 1]. Then, the constraint ∥X∥ ≤ r is equivalent to

⋃

α∈[0,1]

{
FX : ∥XU∥ ≤ r

√
1− α2, ∥XL∥ ≤ rα

}
. (4.112)

By plugging (4.112) into (4.108), we have that

sup
FX:X∈X

{h(YU) + h(YL)} (4.113)

= sup
α∈[0,1]



 sup

FX:


∥XU∥ ≤ r

√
1 − α2

∥XL∥ ≤ rα

{h(YU) + h(YL)}



 (4.114)
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= sup
α∈[0,1]



 sup

FXU
: ∥XU∥≤r

√
1−α2

{h(YU)}+ sup
FXL

: ∥XL∥≤rα

{h(YL)}



.

(4.115)

Then, by applying the SP upper bound in (4.18) to the subchannel of

YU we obtain the following upper bound

sup
FXU

: ∥XU∥≤r
√
1−α2

{h(YU)} ≤ ℓU(α). (4.116)

As for the differential entropy of YL, we have that

sup
FXL

: ∥XL∥≤rα

h(YL) (4.117)

≤ sup
FXL

: ∥XL∥≤rα

h
(
YL

)
(4.118)

(a)

≤ sup
FXL

: E[∥XL∥2]≤r2α2

h
(
YL

)
(4.119)

(b)

≤ sup
FXL

: E[∥XL∥2]≤r2α2

l∑

k=1

1

2
log
(
2πe
(
λ2
u+kE

[
|XL,k|2

]
+ σ2

z

))
(4.120)

=
l∑

k=1

1

2
log
(
2πe
(
λ2
u+kPk(α) + σ2

z

))
, (4.121)

where in (a) we introduced the looser average power constraint

E[∥XL∥2] ≤ r2α2 and where (b) holds thanks to h
(
YL

)
≤ ∑k h

(
Y L,k

)
,

with Y L,k being the kth component of the vector YL. As for Y L,k, let

XL,k denote the kth component of the vector XL. Then, given the

constraint E[∥XL∥2] ≤ r2α2, we define Pk(α) as the power allocation

obtained to maximize (4.120) by applying the water-filling principle.

Notice that, even if we assumed X to be a ball, we can extend the same

technique to any input constraint region. Indeed, one can trivially
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consider the enlarged constraint B2N
rmax(X ) ⊃ X instead of X and still

obtain a valid upper bound.
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Chapter 5

Applications to

Common Case Studies

In this chapter, the SP and the QPC upper bounds are applied to the

case studies defined in Section 2.3.

5.1 Total Amplitude Constraint

Let us evaluate the SP upper bound of Theorem 4.2.1 for the TA con-

straint defined in Definition 2.3.1. Notice that, to compute the bound

CSP, we first need to evaluate the intrinsic volumes Vj(HX ), for j =

0, . . . , 2N. Since the TA constraint region X is a (2N)-dimensional ball,

by (4.110) in Appendix 4.4.3 it holds

Vj(HX ) = Vj(ΛX ), ∀j. (5.1)

Notice that ΛX is an ellipsoid and [96] provides the following formu-

lation, that is useful to numerically evaluate the intrinsic volumes of
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an ellipsoid. Let us define the ellipsoid as

E =
{
x = (x1, . . . , x2N)

T ∈ R2N : xTΣ−1x ≤ 1
}
. (5.2)

Let Q1, . . . ,Qj ∼ N (02N,Σ) be j independent and identically dis-

tributed random vectors and let Q = (Q1, . . . ,Qj) be the random

matrix with columns equal to the Qi’s. Then, the jth intrinsic volume

of the ellipsoid E defined in (5.2) is

Vj(E) =
(2π)j/2

j!
E
[√

det(QT · Q)
]
. (5.3)

Let us consider vectors Qi’s such that their covariance matrix is Σ = Λ2.

Then, the intrinsic volumes Vj(HX ) are given by

Vj(HX ) (4.9)
= Vj(E)Rj, j = 0, . . . , 2N. (5.4)

Thanks to (5.4), it is possible to numerically evaluate the intrinsic vol-

umes of the ellipsoid HX . Therefore, the TA constraint is one of the

few special cases for which the intrinsic volumes of HX are known.

Notice also that the resulting X , for the TA constraint, is a ball and,

therefore, the P-SP upper bound outperforms the standard SP bound

at each SNR level, see Remark 6.

5.1.1 Capacity Gap and Performance

Let us derive some numerical results on the capacity for the TA con-

straint. To determine the tightness of the SP bound, let us evaluate the

associated capacity gap defined as

gTA ≜ CTA − CTA, (5.5)
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5.1. Total Amplitude Constraint

where CTA is given by the P-SP upper bound in Lemma 4, applied

to the TA constraint and CTA is the P-EPI lower bound in (4.6). The

gap gTA is evaluated numerically by Monte Carlo simulation for

N = 2, . . . , 10 and over random realizations of the channel matrix.

The entries of H′ in (2.2) are complex Gaussian-distributed, i.e.,

H′
i,j ∼ CN (0, 2), ∀i, j.

The numerical results for the capacity gap in (5.5) are shown in

Figs. 5.1–5.3. Fig. 5.1a shows a scatter plot of the gap over the ran-

dom channel realizations and, with solid curves, the resulting average

gap. The gap realizations and the resulting averages are shown versus

SNR and each color corresponds to a different MIMO dimension N.

Fig. 5.1b shows the associated standard deviation. Thanks to the P-SP

approach, as the SNR decreases the gap goes to zero. Indeed, in the

low SNR regime, the P-SP upper bound is minimized by u = 0, i.e., the

noise is the dominant component for all MIMO dimensions. Then, in

this regime the upper bound depends just on the term ℓL(α) of (4.25),

which is the one based on a Gaussian maximum entropy argument

and gives accurate results at low SNR. Moreover, also at high SNR

the gap decreases and eventually reaches zero, as stated in Remark 6,

via Proposition 1. Fig. 5.2 shows that the average ratio between the

capacity gap and the P-SP upper bound improves as both N and the

SNR increase. In Fig. 5.3, it is shown the average gap per complex di-

mension N, solid curves, and the one resulting from the duality upper

bounds of [39], dashed curves, defined in (4.1) and (4.2). Notice that,

given CD,TA ≜ min
(
CD,1,CD,2

)
, the capacity gap for the duality upper
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bounds is defined as

gD,TA ≜ CD,TA − CTA. (5.6)

Therefore, the dashed lines in Fig. 5.3 are given by E[gD,TA]/N averaged

over random channel realizations. Notice that the E[gD,TA]/N is looser

than E[gTA]/N for any N and at any SNR level. Finally, Fig. 5.4 shows

the bounds resulting from a random channel realization for N = 10

and shows that the P-SP bound is a substantial improvement com-

pared to duality bounds of [39].
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Figure 5.1: a) Numerical evaluation of the capacity gap gTA, defined in (5.5), in bit per
channel use (bpcu) versus SNR, for N = 2, . . . , 10. For all values of N, each filled circle
shows the gap resulting from a random channel realization. The solid curves show the
averaged behavior. b) Numerical evaluation of the standard deviation of gTA in bpcu
versus SNR, for N = 2, . . . , 10.
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Figure 5.2: Numerical evaluation of the average ratio between the capacity gap gTA, defined
in (5.5), and the upper bound CTA, derived from (4.25). The average ratio is plotted versus
the SNR and for N = 2, . . . , 10.
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Figure 5.3: Numerical evaluation of the average capacity gap per complex dimension in bit
per channel use (bpcu) versus SNR, for N = 2, . . . , 10. The solid curves are E[gTA]/N,
where gTA is defined in (5.5). The dashed curves are E[gD,TA]/N, where gD,TA is defined
in (5.6).
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Figure 5.4: Capacity bounds in bit per channel use (bpcu) versus SNR, for N = 10 and for
a random realization of H′.
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5.2. Per-Antenna Constraint

5.2 Per-Antenna Constraint

Let us now focus on the PA constraint characterized in Definition 2.3.2.

Thanks to Remark 1, we will assume Ri = R, ∀i without loss of gen-

erality. In the case of PA constraints, both the SP and the QPC can

be applied. While the definition of the QPC is almost immediate, the

derivation of the SP upper bound for the PA constraint requires some

additional steps.

5.2.1 Sphere Packing Approach

Let us start with the SP approach. Notice that the intrinsic volumes

Vj(X ) can be evaluated in closed form. Nonetheless, the channel ma-

trix H distorts X and, unfortunately, the intrinsic volumes of the re-

sulting input constraint region HX are not easy to evaluate. Thanks

to the G-SP approach it is still possible to derive an upper bound. To

do so, we need to find suitable enlarged regions that can be used to

upper-bound the Vj(HX )’s, as in (4.20).

Given the PA constraint and Remark 1, it holds Xk = B2
R, for any

k. Then, let us consider the squares Rk = {x : |xi| ≤ R, i = 1, 2},
for k = 1, . . . ,N. Notice that Rk ⊃ Xk, therefore a constraint region R
such thatR ⊃ X is given by

R = R1 × · · · × RN = {x : |xi| ≤ R, i = 1, . . . , 2N}. (5.7)

The intrinsic volumes of HR are still unknown, but an upper bound

can be derived as follows. Let us denote by P a (2N)-dimensional

polytope and by Fj(P) the set of all j-dimensional faces of P .
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From [98], the intrinsic volumes of a polytope are given by

Vj(P) =
∑

F∈Fj(P)

γ(F ,P)Volj(F), j = 1, . . . , 2N, (5.8)

where γ(F ,P) is the normalized external angle of P at its face F .

γ̄(F1, C)

γ̄(F0, C)

C

Figure 5.9: Graphical representation of the external angles of a vertex F0 and an edge F1 for
a cube C.

LetF be a j-dimensional face of P . Then, the external angle γ̄(F ,P)
is defined as the fraction of the unit hypersphere Sn−j = Sn−j

1 covered

by the cone of outward normals to the supporting hyperplanes of P at

the faceF [99,100]. Therefore, the normalized external angle is defined

as γ(F ,P) = γ̄(F ,P)/Vol(Sn−j). In Fig. 5.9, it is shown a graphical

representation of the external angles of a cube C for a vertex F0, the

red point, and for an edge F1, the blue segment. Notice that vertices

are 0-dimensional faces, edges are 1-dimensional faces, and so on. The

normalized external angle is not trivial to evaluate for an arbitrary P .

Therefore, since γ(F ,P) ≤ 1, let us upper-bound the intrinsic volumes

108



5.2. Per-Antenna Constraint

of P as follows

Vj(P) ≤
∑

F∈Fj(P)

Volj(F), j = 1, . . . , 2N. (5.9)

Furthermore, let us consider the following results from exterior alge-

bra. In [101], the authors prove that, by a set of j vectors r1, . . . , rj ∈
R2N and by a base point p ∈ R2N, one can equivalently determine a

j-dimensional parallelepiped, with j ≤ 2N. Let us consider p to be a

vertex of a given parallelepiped. Moreover, let us define the vectors

r1, . . . , rj in such a way that their magnitude and direction is equal to

that of the j edges of the parallelepiped originating from the vertex in

p. Then, each point in the parallelepiped can be defined as

p + t1r1 + · · ·+ tjrj, 0 ≤ t1, . . . , tj ≤ 1. (5.10)

The linear combinations given by the vectors r1, r2, and r3 with base

point p span the parallelepiped. Fig. 5.10 shows a graphical example

for a 3-dimensional parallelepiped. Volume is invariant with respect to

translations, therefore, we can neglect the base point p and represent

the geometric region R via the corresponding matrix R thanks to the

following concepts of exterior algebra from [101].

r1

r2

r3

p

Figure 5.10: Parallelepiped spanned by r1, r2, and r3 from the point p.
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Let us define the matrix R as

R ≜ (r1, r2, . . . , r2N) = 2R · I2N. (5.11)

For now, let us focus on R and ignore the matrix H. Since R is a par-

allelepiped, it is also a polytope. By (5.8), we have that the jth in-

trinsic volumes Vj(R) depends on its j-dimensional faces. Notice that

j column vectors from R span one of the faces in Fj(R). Therefore,

by taking all possible combinations of j columns from the matrix R,

counting also all the repetitions due to parallel identical faces, we are

able to evaluate each Volj(F) for all F ∈ Fj(R). Let Rj,i be the j-

dimensional face spanned by the ith combination of j columns from

R, out of
(
2N
j

)
. For example, letRj,1 be the face spanned by the vectors

r1, . . . , rj . Then, like it was done for R and R, we can represent Rj,1

with a (2N) × j matrix defined as Rj,1 = (r1, r2, . . . , rj). Thanks to the

results in [101], the j-dimensional volume ofRj,1 can be evaluated as

Volj(Rj,1) =
√∣∣det

(
RT
j,1 · Rj,1

)∣∣. (5.12)

The same can be done for any of theRj,i’s. Moreover, notice that HR is

still a polytope and, therefore, the volume of its faces can be evaluated

similarly to those of R. To ease the notation let us denote by S =

HR ⊃ HX the distorted polytope and by S = (s1, s2, . . . , s2N) = H · R
the associated (2N)× (2N) matrix. Notice that, given (5.8), to evaluate

the intrinsic volumes of S we would still need to evaluate the external

angles γ(F ,S), withF ∈ Fj(S). Let us denote by SA a constraint region

with the same faces of S and with γ(F ,SA) = 1. By (5.9), the jth
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intrinsic volume of SA upper-bounds Vj(S), i.e.,

Vj(HX ) < Vj(S) (5.13)

≤ Vj(SA) = 22N−j

(2Nj )∑

i=1

√∣∣det
(
ST
j,i · Sj,i

)∣∣. (5.14)

Notice that 22N−j is the multiplicity of each j-dimensional parallel face

in a parallelepiped. The intrinsic volumes Vj(SA) in (5.14) are, in turn,

upper bounds on Vj(HX ). Therefore, the Vj(SA)’s can be used, as

in (4.20), to evaluate the G-SP upper bound for the PA constraint.

Another set of upper bounds on the Vj(HX )’s can be derived by

considering the smallest ball containing X . Given the maximum ra-

dius of the input constraint region rmax(X ) = R
√
N, it holds B2N

R
√
N
⊃ X .

Then, let us define the set SB ≜ HB2N
R
√
N
⊃ HX . Notice that SB is an

ellipsoid and, therefore, its intrinsic volumes can be evaluated as

Vj(SB) = Vj(E)
(
R
√
N
)j
, (5.15)

where Vj(E) is given by (5.3), with Σ = Λ2 from H = UΛVT . Both the

intrinsic volumes of SB and those of SA are valid upper bounds on

Vj(HX ). Then, for each j, let us consider the following upper bounds

Vj =





1, j = 0,

min(Vj(SA),Vj(SB)), j = 1, . . . , 2N− 1,

det(H)Vol2N(X ), j = 2N.

(5.16)

The G-SP upper bound in Lemma 3 for the PA constraint can be, there-

fore, evaluated by plugging (5.16) into (4.20). Let us denote the result-
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ing capacity upper bound by CPA,1.

Moreover, a more accurate bound in the low SNR regime can be

derived via the P-SP approach. Specifically, by considering once more

the ball B2N
R
√
N
⊃ X , another upper bound is obtained via Lemma 4.

The resulting bound is denoted by CPA,2.

Let us now evaluate the performance of the SP approach for the PA

constraint. The resulting capacity gap is defined as

gPA ≜ CPA − CPA, (5.17)

where CPA is the P-EPI lower bound defined in (4.6) and CPA is defined

as

CPA = min
(
CPA,1,CPA,2

)
. (5.18)

Like we did for the TA constraint, we show the numerical results pro-

vided by the evaluation of the gap for random channel matrix real-

izations. The entries of the channel matrix H′ of Definition 2.1.2 are

again drawn independently as H′
i,j ∼ CN (0, 2), ∀i, j. Fig. 5.5a shows a

scatter plot of the capacity gaps obtained for each random matrix real-

ization. In the same figure, with solid lines, we also show the averaged

behavior. Both are derived for a wide SNR range and for N = 2, . . . , 10.

Fig. 5.5b shows the corresponding standard deviation of gPA. Like al-

ready observed for the TA constraint, the gap is vanishing at low SNR

thanks to the P-SP approach. Moreover, the gap tends to decrease also

at high SNR but the convergence to zero is slower than that of the TA

constraint. Nonetheless, thanks to the G-SP approach and Proposi-

tion 2 we know that, as the SNR increases, the gap eventually goes to
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zero. The performance of the proposed bounds for the PA constraint

are worse than those obtained for the TA constraint. This is due to

difficulty in the evaluation of the intrinsic volumes of HX for the PA

constraint and the consequent need to upper-bound them. Neverthe-

less, Fig. 5.6 shows that the average ratio between gPA and CPA tends to

zero as the SNR increases. Furthermore, in Fig. 5.7 and Fig. 5.8 the im-

provement obtained by the proposed bounds, compared to duality up-

per bounds of [39], is significant. The upper bounds CD,1 and CD,2 are

those presented in [39, Theorem 10] and, in this work, defined in (4.1)

and (4.2) respectively. Notice that the exact definition of (4.2) would

require us to evaluate the box, among those containing the region HX ,

which has the smallest volume. Unfortunately, this is not a simple task

and, therefore, we derive CD,2 for the PA constraint by considering the

small box containing the enlarged constraint region HB2N
R
√
N
⊃ HX . Fi-

nally, we choose the minimum between the considered upper bounds,

i.e., CD,PA ≜ min
(
CD,1,CD,2

)
and we define the capacity gap for the

duality upper bounds as

gD,PA ≜ CD,PA − CPA. (5.19)

Fig. 5.7 shows that the average gap per complex dimension given by

the G-SP and the P-SP approach is always smaller than the gap result-

ing from the duality bounds in [39]. Furthermore, Fig. 5.8 shows the

capacity bounds for a random realization of H′, given N = 10. Again,

the upper bound CPA is significantly tighter than the upper bounds

CD,1 and CD,2 of [39].
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Figure 5.5: a) Numerical evaluation of the capacity gap gPA, defined in (5.17), in bit per
channel use (bpcu) versus SNR, for N = 2, . . . , 10. For all values of N, each filled
circle shows the gap resulting from a random channel realization. The solid curves show
the averaged behavior. b) Numerical evaluation of the standard deviation of gPA in bpcu
versus SNR, for N = 2, . . . , 10.
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Figure 5.6: Numerical evaluation of the average ratio between the capacity gap gPA, defined
in (5.17), and the upper bound CPA, derived from (5.18). The average ratio is plotted
versus the SNR and for N = 2, . . . , 10.
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Figure 5.7: Numerical evaluation of the average capacity gap per complex dimension in bit
per channel use (bpcu) versus SNR, for N = 2, . . . , 10. The solid lines are E[gPA]/N,
with gPA defined in (5.17). The dashed lines are E[gD,PA]/N, with gD,PA defined in (5.19).
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Figure 5.8: Capacity bounds in bit per channel use (bpcu) versus SNR, for N = 10 and for
a random realization of H′.
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5.2.2 Quasi Parallel Channels Approach

The QPC approach is another viable solution to obtain upper bounds

that can be applied to the PA constraint.

Let Ci be the capacity of the ith subchannel defined in the proof of

Lemma 5, i.e.,

Ci = max
fXi

:Xi∈Xi

h(MiXi)− h(Zi). (5.20)

Since the channel matrix H is obtained by the vectorization of the

complex-valued H′ in Definition 2.1.1, we can assume the singular val-

ues of H to be equal 2-by-2, specifically, λ2i(H) = λ2i−1(H), i = 1, . . . ,N.

Notice that, therefore, the same holds for the covariance matrix D, for

the Di’s, and also for the Mi’s. Let us ease the notation by defining

λ(Mi) ≜ λ1(Mi) = λ2(Mi), i = 1, . . . ,N. (5.21)

As mentioned in Remark 7, when the Mi’s are scalar matrices, suitable

upper bounds on the Ci’s can be derived either through the bounds

from [34] in Section 4.1. Notice that, for the considered case, the

McKellips-Type upper bound from (3.61) becomes

Ci ≤ CMcK,i ≜ log

(
1 +

√
π

2

λ(Mi)R

σz

+
(λ(Mi)R)

2

2eσ2
z

)
, (5.22)

for i = 1, . . . ,N.

Then, the QPC upper bound for the high SNR regime is given
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by (5.22) is

C1 ≤ CPA,3 ≜

(
N∑

i=1

CMcK,i

)
+

1

2
log

∏T
j=1 det(Dj)

det(D)
. (5.23)

Moreover, let CRef,i ≥ Ci denote the Refined upper bound introduced

in Section 4.1. Then, by Theorem 4.3.1, we define

C1 ≤ CPA,4 ≜

(
N∑

i=1

CRef,i

)
+

1

2
log

∏T
j=1 det(Dj)

det(D)
. (5.24)

Since CRef,i and CMcK,i converge to the subchannel capacities Ci, we

have that thanks to Remark 11, Lemma 5 holds for both CPA,3 and CPA,4.

Therefore, both upper bounds are asymptotically tight at high SNR.

Notice that estimates of the Ci’s could be evaluated via the numerical

procedure devised in Algorithm 1. While providing a more accurate

result than CRef,i, in Section 3.4.2 it was shown that the refined upper

bound CRef,i from [34] is already accurate and faster to evaluate. Fur-

thermore, one of the main advantage provided by Algorithm 1, i.e., the

evaluation of the PMF estimate, does not have particular significance

in this case. Indeed, the optimal input PDFs for the quasi parallel sub-

channels, do not relate to that of the overall fading channel, aside from

the special case described in Remark 10. Therefore, since i) CRef,i is

computationally less heavy; ii) it provides a fairly tight capacity upper

bound; and iii) the optimal PMFs of the subchannels are generally not

related to the capacity-achieving distribution of the actual channel, we

do not employ Algorithm 1 in this particular case.

Finally, as for the low SNR regime, notice that the QPC bound for

the low SNR regime defined in Theorem 4.3.2, can be applied as it is
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Figure 5.11: Capacity bounds in bit per channel use (bpcu) versus SNR, for 2N = 4,
λ(M1) = 0.52, and λ(M2) = 0.37.

and does not need further derivations.

Let us provide some numerical results for the QPC approach. Con-

sider a random realization of H and N = 2. Fig. 5.11 shows the QPC

capacity bounds for both the high, with CPA,3 and CPA,4, and low SNR

regime, with C2. Furthermore, it shows the upper bound obtained via

the SP approach and the P-EPI lower bound. Notice that, in the con-

sidered case, the QPC compound bound min
(
CPA,4,C2

)
outperforms

the SP bound min
(
CPA,1,CPA,2

)
at any SNR level.
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Figure 5.12: Numerical evaluation of the average capacity gap per complex dimension in bit
per channel use (bpcu) versus SNR, for N = 2, . . . , 10. The solid curves are E[gPA]/N,
with gPA is defined in (5.17), and show the performance of the SP bound. The dashed
curves are E[gQPC]/N, with gQPC is defined in (5.25), and show the performance of the
QPC bound.

Let us define the capacity gap provided by the QPC bounds as

gQPC ≜ min
(
CPA,4,C2

)
− CPA. (5.25)

In Fig. 5.12 it is shown a comparison between the average gap per com-

plex dimension provided by the SP bound, i.e., E[gPA]/N, and by the

QPC bound, i.e., E[gQPC]/N. Both are averaged over random realiza-

tion of the channel matrix H′. As in the previous cases, the entries of

H′ are drawn independently as H′
i,j ∼ CN (0, 2), ∀i, j. Notice that, in
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average the QPC is tighter than the SP bound at almost any SNR level.

Moreover, the average QPC gap convergence to zero at high SNR is

significantly faster than that of the average SP gap.
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Conclusion

The pursuit of higher rates in wireless communication systems has

made power consumption and the related environmental impact of

such systems a growing concern. A better characterization of the prob-

lem from an information theoretic viewpoint can contribute to im-

prove the overall energy efficiency of wireless communications sys-

tems. In this work, the capacity and the optimal input distribution

has been investigated, for both nonfading and fading channels, under

different configurations of input power constraints.

In the case of nonfading channels, a numerical procedure to esti-

mate the capacity-achieving distribution has been derived, together

with new insights on its properties. Furthermore, in the case of

2-dimensional real-valued channels, it is proposed a discrete approx-

imate input distribution that can be practically implemented and

achieves information rates extremely close to the capacity. The results

on the optimal input distribution are extended to the case of vector

Gaussian wiretap channels.

For the fading case, bounds on the channel capacity were derived.
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Chapter 6. Conclusion

The presented upper bounds are, currently, the best in the existing lit-

erature and asymptotically converge to the capacity as the Signal-to-

Noise Ratio (SNR) increases. One family of upper bounds is based on a

sphere packing argument and can be applied to any convex input con-

straint and for any full rank fading channel matrix. The second family

specifically targets transmitter configurations employing multiple and

parallel input constraints. For such constraints, the proposed bound

further improves the performance obtained via the sphere packing up-

per bounds, by achieving an even faster convergence to the capacity at

high SNR.

6.1 Future Avenues

Nonfading Vector Gaussian Channels:

The nonfading case has been thoroughly investigated. Nonetheless,

an interesting line of research could be the derivation of tight bounds

on the number of amplitude mass points in the capacity-achieving

distribution. Another interesting topic could be the investigation

of discrete and approximate input distributions for n-dimensional

real-valued Multiple-Input Multiple-Output (MIMO) channels, with

n > 2.

Fading Vector Gaussian Channels:

Notice that, in the nonfading case and at finite SNR, the gap between

the presented capacity estimate and the Entropy Power Inequal-

ity (EPI) lower bound is far from zero, proving that the EPI approach

does not provide a particularly tight lower bound. It is reasonable to

expect the same shortcomings also for the EPI approach in the fading
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case. Therefore, one interesting line of work could be the derivation

of tighter lower bounds. Moreover, in the fading case not much is

known about the capacity-achieving input distribution.

Another relevant research line could aim to derive insights on

the structure of the optimal input distribution. For instance, for

2-dimensional real-valued channels, in which the most general input

constraint region is an ellipse, it is not even clear if the support of the

optimal input distribution is composed of points, curves or a mixture

of both. Therefore, there is the need to develop numerical algorithms

to estimate the capacity-achieving input distribution.

The presented upper bounds assume a static channel matrix. It

would be interesting to extend the proposed upper bounds to the rel-

evant case of block fading MIMO channels.

Finally, in this work the number of transmitting antennas was as-

sumed equal to that of receiving antennas. While it is possible to di-

rectly apply the proposed bounds to some special cases with uneven

number of transmitting and receiving antennas, it would be interest-

ing to investigate a possible generalization of the proposed bounds to

any MIMO channels, with arbitrary number of antennas both at the

transmit and receive side.

125





Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical

Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948.

[2] J. Winters, “On the capacity of radio communication systems with diversity in a

Rayleigh fading environment,” IEEE Journal on Selected Areas in Communications, vol. 5,

no. 5, pp. 871–878, 1987.

[3] G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless communication,”

IEEE Transactions on Communications, vol. 46, no. 3, pp. 357–366, 1998.

[4] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading envi-

ronment when using multiple antennas,” Wireless Personal Communications, vol. 6, no. 3,

pp. 311–335, Mar. 1998.

[5] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Transactions on

Telecommunications, vol. 10, no. 6, pp. 585–595, Nov./Dec. 1999.

[6] G. Caire and S. Shamai, “On the achievable throughput of a multiantenna Gaussian

broadcast channel,” IEEE Transactions on Information Theory, vol. 49, no. 7, pp. 1691–

1706, 2003.

[7] P. Viswanath and D. N. C. Tse, “Sum capacity of the vector Gaussian broadcast channel

and uplink–downlink duality,” IEEE Transactions on Information Theory, vol. 49, no. 8,

pp. 1912–1921, 2003.

[8] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates, and sum-rate ca-

pacity of Gaussian MIMO broadcast channels,” IEEE Transactions on Information Theory,

vol. 49, no. 10, pp. 2658–2668, 2003.

[9] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO chan-

nels,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 5, pp. 684–702, 2003.

127



Bibliography

[10] S. Verdù, “Multiple-access channels with memory with and without frame synchro-

nism,” IEEE Transactions on Information Theory, vol. 35, no. 3, pp. 605–619, 1989.

[11] D. Gesbert, M. Kountouris, R. W. Heath, C.-B. Chae, and T. Salzer, “Shifting the MIMO

paradigm,” IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 36–46, 2007.

[12] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base sta-

tion antennas,” IEEE Transactions on Wireless Communications, vol. 9, no. 11, pp. 3590–

3600, 2010.

[13] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson,

“Scaling up MIMO: Opportunities and challenges with very large arrays,” IEEE Signal

Processing Magazine, vol. 30, no. 1, pp. 40–60, 2012.

[14] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very

large multiuser MIMO systems,” IEEE Transactions on Communications, vol. 61, no. 4, pp.

1436–1449, 2013.

[15] J. Hoydis, S. Ten Brink, and M. Debbah, “Massive MIMO in the UL/DL of cellular

networks: How many antennas do we need?” IEEE Journal on Selected Areas in Commu-

nications, vol. 31, no. 2, pp. 160–171, 2013.

[16] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next

generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186–

195, 2014.

[17] Y. Kim, H. Ji, J. Lee, Y.-H. Nam, B. L. Ng, I. Tzanidis, Y. Li, and J. Zhang, “Full dimen-

sion MIMO (FD-MIMO): The next evolution of MIMO in LTE systems,” IEEE Wireless

Communications, vol. 21, no. 2, pp. 26–33, 2014.

[18] M. Kamel, W. Hamouda, and A. Youssef, “Ultra-dense networks: A survey,” IEEE Com-

munications Surveys & Tutorials, vol. 18, no. 4, pp. 2522–2545, 2016.

[19] Y. Chen, S. Zhang, S. Xu, and G. Y. Li, “Fundamental trade-offs on green wireless net-

works,” IEEE Communications Magazine, vol. 49, no. 6, pp. 30–37, 2011.

[20] G. Chopra, R. K. Jha, and S. Jain, “A survey on ultra-dense network and emerging tech-

nologies: Security challenges and possible solutions,” Journal of Network and Computer

Applications, vol. 95, pp. 54–78, 2017.

[21] C. Freitag, M. Berners-Lee, K. Widdicks, B. Knowles, G. S. Blair, and A. Friday, “The real

climate and transformative impact of ICT: A critique of estimates, trends, and regula-

tions,” Patterns, vol. 2, no. 9, p. 100340, 2021.

128



Bibliography

[22] J. Malmodin and D. Lundén, “The energy and carbon footprint of the global ICT and

E&M sectors 2010–2015,” Sustainability, vol. 10, no. 9, p. 3027, 2018.

[23] Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “Green cellular networks: A survey,

some research issues and challenges,” IEEE Communications Surveys & Tutorials, vol. 13,

no. 4, pp. 524–540, 2011.

[24] C. Han, T. Harrold, S. Armour, I. Krikidis, S. Videv, P. M. Grant, H. Haas, J. S. Thomp-

son, I. Ku, C.-X. Wang et al., “Green radio: radio techniques to enable energy-efficient

wireless networks,” IEEE Communications Magazine, vol. 49, no. 6, pp. 46–54, 2011.

[25] L. M. Correia, D. Zeller, O. Blume, D. Ferling, Y. Jading, I. Gódor, G. Auer, and L. Van

Der Perre, “Challenges and enabling technologies for energy aware mobile radio net-

works,” IEEE Communications Magazine, vol. 48, no. 11, pp. 66–72, 2010.

[26] J. G. Smith, “The information capacity of amplitude- and variance-constrained scalar

Gaussian channels,” Information and Control, vol. 18, no. 3, pp. 203–219, Apr. 1971.

[27] S. Shamai and I. Bar-David, “The capacity of average and peak-power-limited quadra-

ture Gaussian channels,” IEEE Transactions on Information Theory, vol. 41, no. 4, pp. 1060–

1071, Jul. 1995.

[28] B. Rassouli and B. Clerckx, “On the capacity of vector Gaussian channels with bounded

inputs,” IEEE Transactions on Information Theory, vol. 62, no. 12, pp. 6884–6903, Dec. 2016.

[29] A. Dytso, S. Yagli, H. V. Poor, and S. Shamai, “The capacity achieving distribution for

the amplitude constrained additive Gaussian channel: An upper bound on the number

of mass points,” IEEE Transactions on Information Theory, vol. 66, no. 4, pp. 2006–2022,

April 2020.

[30] A. Tchamkerten, “On the discreteness of capacity-achieving distributions,” IEEE Trans-

actions on Information Theory, vol. 50, no. 11, pp. 2773–2778, Nov. 2004.

[31] T. Chan, S. Hranilovic, and F. Kschischang, “Capacity-achieving probability measure for

conditionally Gaussian channels with bounded inputs,” IEEE Transactions on Information

Theory, vol. 51, no. 6, pp. 2073–2088, Jun. 2005.

[32] B. Mamandipoor, K. Moshksar, and A. K. Khandani, “Capacity-achieving distributions

in Gaussian multiple access channel with peak power constraints,” IEEE Transactions on

Information Theory, vol. 60, no. 10, pp. 6080–6092, Oct. 2014.

[33] A. McKellips, “Simple tight bounds on capacity for the peak-limited discrete-time chan-

nel,” in International Symposium on Information Theory, 2004. ISIT 2004. Proceedings., Jun./

Jul. 2004, pp. 348–348.

129



Bibliography

[34] A. Thangaraj, G. Kramer, and G. Böcherer, “Capacity bounds for discrete-time,

amplitude-constrained, additive white Gaussian noise channels,” IEEE Transactions on

Information Theory, vol. 63, no. 7, pp. 4172–4182, Jul. 2017.

[35] B. Rassouli and B. Clerckx, “An upper bound for the capacity of amplitude-constrained

scalar AWGN channel,” IEEE Communications Letters, vol. 20, no. 10, pp. 1924–1926,

2016.

[36] J. Huang and S. Meyn, “Characterization and computation of optimal distributions for

channel coding,” IEEE Transactions on Information Theory, vol. 51, no. 7, pp. 2336–2351,

2005.

[37] I. Abou-Faycal, M. Trott, and S. Shamai, “The capacity of discrete-time memoryless

Rayleigh-fading channels,” IEEE Transactions on Information Theory, vol. 47, no. 4, pp.

1290–1301, 2001.

[38] A. ElMoslimany and T. M. Duman, “On the capacity of multiple-antenna systems and

parallel Gaussian channels with amplitude-limited inputs,” IEEE Transactions on Com-

munications, vol. 64, no. 7, pp. 2888–2899, Jul. 2016.

[39] A. Dytso, M. Goldenbaum, H. V. Poor et al., “Amplitude constrained MIMO channels:

Properties of optimal input distributions and bounds on the capacity,” Entropy, vol. 21,

no. 2, p. 200, Feb. 2019.

[40] A. Chaaban, J.-M. Morvan, and M.-S. Alouini, “Free-space optical communications: Ca-

pacity bounds, approximations, and a new sphere-packing perspective,” IEEE Transac-

tions on Communications, vol. 64, no. 3, pp. 1176–1191, Feb. 2016.

[41] L. Li, S. M. Moser, L. Wang, and M. Wigger, “On the capacity of MIMO optical wireless

channels,” IEEE Transactions on Information Theory, vol. 66, no. 9, pp. 5660–5682, Mar.

2020.

[42] S. M. Moser, L. Wang, and M. Wigger, “Capacity results on multiple-input single-output

wireless optical channels,” IEEE Transactions on Information Theory, vol. 64, no. 11, pp.

6954–6966, 2018.

[43] A. Lapidoth, S. M. Moser, and M. A. Wigger, “On the capacity of free-space optical

intensity channels,” IEEE Transactions on Information Theory, vol. 55, no. 10, pp. 4449–

4461, Sep. 2009.

[44] N. Sharma and S. Shamai, “Transition points in the capacity-achieving distribution for

the peak-power limited AWGN and free-space optical intensity channels,” Problems of

Information Transmission, vol. 46, no. 4, pp. 283–299, Dec. 2010.

130



Bibliography

[45] S. M. Moser, M. Mylonakis, L. Wang, and M. Wigger, “Asymptotic capacity results for

MIMO wireless optical communication,” in 2017 IEEE International Symposium on Infor-

mation Theory (ISIT), Jun. 2017, pp. 536–540.

[46] S. Hranilovic and F. R. Kschischang, “Capacity bounds for power-and band-limited op-

tical intensity channels corrupted by Gaussian noise,” IEEE Transactions on Information

Theory, vol. 50, no. 5, pp. 784–795, 2004.

[47] A. Favano, M. Ferrari, M. Magarini, and L. Barletta, “The capacity of the amplitude-

constrained vector Gaussian channel,” in 2021 IEEE International Symposium on Informa-

tion Theory (ISIT), Jul. 2021, pp. 426–431.

[48] A. Favano, L. Barletta, and A. Dytso, “On the capacity achieving input of amplitude

constrained vector Gaussian wiretap channel,” in 2022 IEEE International Symposium on

Information Theory (ISIT), 2022, pp. 850–855.

[49] A. Favano, M. Ferrari, M. Magarini, and L. Barletta, “Capacity bounds for amplitude-

constrained AWGN MIMO channels with fading,” in 2020 IEEE International Symposium

on Information Theory (ISIT), Jun. 2020, pp. 2032–2037.

[50] A. Favano, M. Ferrari, M. Magarini, and L. Barletta, “A sphere packing bound for

AWGN MIMO fading channels under peak amplitude constraints,” in 2020 IEEE In-

formation Theory Workshop (ITW), Apr. 2021, pp. 1–5.

[51] ——, “A sphere packing bound for vector Gaussian fading channels under peak ampli-

tude constraints,” IEEE Transactions on Information Theory, pp. 1–1, 2022.

[52] ——, “The capacity of fading vector Gaussian channels under amplitude constraints on

antenna subsets,” arXiv preprint arXiv:2207.01266, 2022.

[53] R. Dobrushin, “General formulation of Shannon’s main theorem in information theory,”

American Mathematical Society Translations, vol. 33, pp. 323–438, 1963.

[54] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink with per-

antenna power constraints,” IEEE Transactions on Signal Processing, vol. 55, no. 6, pp.

2646–2660, 2007.

[55] S. Loyka, “The capacity of Gaussian MIMO channels under total and per-antenna power

constraints,” IEEE Transactions on Communications, vol. 65, no. 3, pp. 1035–1043, 2017.

[56] M. Vu, “MISO capacity with per-antenna power constraint,” IEEE Transactions on Com-

munications, vol. 59, no. 5, pp. 1268–1274, 2011.

131



Bibliography

[57] A. Lapidoth and S. M. Moser, “Capacity bounds via duality with applications to

multiple-antenna systems on flat-fading channels,” IEEE Transactions on Information The-

ory, vol. 49, no. 10, pp. 2426–2467, October 2003.

[58] L. Barletta and S. Rini, “On the capacity of the oversampled Wiener phase noise chan-

nel,” arXiv preprint arXiv:2001.07485, January 2020.

[59] Y. Yu, “On log-concavity of the generalized Marcum Q function,” arXiv preprint

arXiv:1105.5762, May 2011.

[60] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables. US Government printing office, December 1965, vol. 55.

[61] D. E. Amos, “Computation of modified Bessel functions and their ratios,” Mathematics

of Computation, vol. 28, no. 125, pp. 239–251, January 1974.

[62] R. Blahut, “Computation of channel capacity and rate-distortion functions,” IEEE Trans-

actions on Information Theory, vol. 18, no. 4, pp. 460–473, 1972.

[63] S. Arimoto, “An algorithm for computing the capacity of arbitrary discrete memoryless

channels,” IEEE Transactions on Information Theory, vol. 18, no. 1, pp. 14–20, 1972.

[64] Y. Wu and S. Verdù, “Functional properties of minimum mean-square error and mu-

tual information,” IEEE Transactions on Information Theory, vol. 58, no. 3, pp. 1289–1301,

March 2012.

[65] J. Dauwels, “Numerical computation of the capacity of continuous memoryless chan-

nels,” in Proceedings of the 26th Symposium on Information Theory in the BENELUX, 2005,

pp. 221–228.

[66] A. Dytso, M. Al, H. V. Poor, and S. Shamai, “On the capacity of the peak power con-

strained vector Gaussian channel: An estimation theoretic perspective,” IEEE Transac-

tions on Information Theory, vol. 65, no. 6, pp. 3907–3921, January 2019.

[67] H. S. M. Coxeter, Regular polytopes. Courier Corporation, 1973.

[68] J. J. Thomson, “XXIV. On the structure of the atom: an investigation of the stability and

periods of oscillation of a number of corpuscles arranged at equal intervals around the

circumference of a circle; with application of the results to the theory of atomic struc-

ture,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

vol. 7, no. 39, pp. 237–265, 1904.

132



Bibliography

[69] J. Batle, A. Bagdasaryan, M. Abdel-Aty, and S. Abdalla, “Generalized Thomson problem

in arbitrary dimensions and non-euclidean geometries,” Physica A: Statistical Mechanics

and its Applications, vol. 451, pp. 237–250, 2016.

[70] A. D. Wyner, “The wire-tap channel,” Bell System Technical Journal, vol. 54, no. 8, pp.

1355–1387, 1975.

[71] S. Leung-Yan-Cheong and M. Hellman, “The Gaussian wire-tap channel,” IEEE Trans-

actions on Information Theory, vol. 24, no. 4, pp. 451–456, 1978.

[72] S. Shafiee, N. Liu, and S. Ulukus, “Towards the secrecy capacity of the Gaussian MIMO

wire-tap channel: The 2-2-1 channel,” IEEE Transactions on Information Theory, vol. 55,

no. 9, pp. 4033–4039, 2009.

[73] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas–Part II: The

MIMOME wiretap channel,” IEEE Transactions on Information Theory, vol. 56, no. 11, pp.

5515–5532, 2010.

[74] F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE

Transactions on Information Theory, vol. 57, no. 8, pp. 4961–4972, 2011.

[75] T. Liu and S. Shamai, “A note on the secrecy capacity of the multiple-antenna wiretap

channel,” IEEE Transactions on Information Theory, vol. 55, no. 6, pp. 2547–2553, 2009.

[76] S. Loyka and C. D. Charalambous, “An algorithm for global maximization of se-

crecy rates in Gaussian MIMO wiretap channels,” IEEE Transactions on Communications,

vol. 63, no. 6, pp. 2288–2299, 2015.

[77] ——, “Optimal signaling for secure communications over Gaussian MIMO wiretap

channels,” IEEE Transactions on Information Theory, vol. 62, no. 12, pp. 7207–7215, 2016.

[78] M. Bloch and J. Barros, Physical-Layer Security:From Information Theory to Security Engi-

neering. Cambridge University Press, 2011.

[79] F. Oggier and B. Hassibi, “A perspective on the MIMO wiretap channel,” Proceedings of

the IEEE, vol. 103, no. 10, pp. 1874–1882, Oct 2015.

[80] Y. Liang, H. V. Poor, and S. Shamai, “Information theoretic security,” Foundations and

Trends in Communications and Information Theory, vol. 5, no. 4–5, pp. 355–580, 2009.

[81] H. V. Poor and R. F. Schaefer, “Wireless physical layer security,” Proceedings of the Na-

tional Academy of Sciences, vol. 114, no. 1, pp. 19–26, 2017.

133



Bibliography

[82] A. Mukherjee, S. A. A. Fakoorian, J. Huang, and A. L. Swindlehurst, “Principles of

physical layer security in multiuser wireless networks: A survey,” IEEE Communications

Surveys & Tutorials, vol. 16, no. 3, pp. 1550–1573, 2014.

[83] P. K. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading channels,”

IEEE Transactions on Information Theory, vol. 54, no. 10, pp. 4687–4698, 2008.

[84] M. Bloch, J. Barros, M. R. Rodrigues, and S. W. McLaughlin, “Wireless information-

theoretic security,” IEEE Transactions on Information Theory, vol. 54, no. 6, pp. 2515–2534,

2008.

[85] A. Khisti, A. Tchamkerten, and G. W. Wornell, “Secure broadcasting over fading chan-

nels,” IEEE Transactions on Information Theory, vol. 54, no. 6, pp. 2453–2469, 2008.

[86] Y. Liang, H. V. Poor, and S. Shamai, “Secure communication over fading channels,” IEEE

Transactions on Information Theory, vol. 54, no. 6, pp. 2470–2492, 2008.

[87] O. Ozel, E. Ekrem, and S. Ulukus, “Gaussian wiretap channel with amplitude and vari-

ance constraints,” IEEE Transactions on Information Theory, vol. 61, no. 10, pp. 5553–5563,

2015.

[88] M. Soltani and Z. Rezki, “The degraded discrete-time Poisson wiretap channel,” arXiv

preprint arXiv:2101.03650, 2021.

[89] S.-H. Nam and S.-H. Lee, “Secrecy capacity of a Gaussian wiretap channel with one-bit

ADCs is always positive,” in 2019 IEEE Information Theory Workshop (ITW). IEEE, 2019,

pp. 1–5.

[90] A. Dytso, M. Egan, S. M. Perlaza, H. V. Poor, and S. Shamai, “Optimal inputs for some

classes of degraded wiretap channels,” in 2018 IEEE Information Theory Workshop (ITW),

2018, pp. 1–5.

[91] M. Lotz, M. B. McCoy, I. Nourdin, G. Peccati, and J. A. Tropp, “Concentration of the in-

trinsic volumes of a convex body,” in Geometric Aspects of Functional Analysis. Springer,

Jul. 2020, pp. 139–167.

[92] J. B. Conway, A course in functional analysis. Springer, 2019, vol. 96.

[93] M. Henk and M. A. H. Cifre, “Intrinsic volumes and successive radii,” Journal of Mathe-

matical Analysis and Applications, vol. 343, no. 2, pp. 733–742, 2008.

[94] V. Jog and V. Anantharam, “A geometric analysis of the AWGN channel with a (σ, ρ)-

power constraint,” IEEE Transactions on Information Theory, vol. 62, no. 8, pp. 4413–4438,

Aug. 2016.

134



Bibliography

[95] R. T. Rockafellar, Convex Analysis. Princeton University Press, Jan. 1997, vol. 36.

[96] D. Zaporozhets and Z. Kabluchko, “Random determinants, mixed volumes of ellip-

soids, and zeros of Gaussian random fields,” Journal of Mathematical Sciences, vol. 199,

no. 2, pp. 168–173, May 2014.

[97] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, 2012.

[98] P. McMullen, “Non-linear angle-sum relations for polyhedral cones and polytopes,” in

Mathematical Proceedings of the Cambridge Philosophical Society, vol. 78, no. 2. Cambridge

University Press, Oct. 1975, pp. 247–261.

[99] B. Grünbaum, “Grassmann angles of convex polytopes,” Acta Mathematica, vol. 121,

no. 1, pp. 293–302, Dec. 1968.

[100] W. Xu and B. Hassibi, “Compressed sensing over the Grassmann manifold: A unified

analytical framework,” in 2008 46th Annual Allerton Conference on Communication, Con-

trol, and Computing, 2008, pp. 562–567.

[101] M. Khosravi and M. D. Taylor, “The wedge product and analytic geometry,” The Ameri-

can Mathematical Monthly, vol. 115, no. 7, pp. 623–644, Aug./Sep. 2008.

135


	Contents
	List of Figures
	List of Acronyms
	Notation
	Introduction
	Contributions
	Structure of the Thesis

	Amplitude-Constrained Channel Capacity
	Channel Model
	Input Amplitude Constraints
	Amplitude Constraints of Practical Interest
	Total Amplitude Constraint
	Per-Antenna Constraint
	Antenna Subsets Constraint


	I Nonfading Channels
	The Capacity-Achieving Input Distribution
	Equivalent Channel Capacity Definition
	Insights on the Input Distribution
	Estimation of the Input Distribution
	Gradient-Ascent Function
	Blahut-Arimoto Function
	KKT-Validation Function
	Add-Point Function

	Numerical Results
	Bounds on the Channel Capacity
	Optimal Input Distribution and Channel Capacity Estimates

	Other Constraints
	Approximate Discrete Input Distribution
	Single Hypersphere Regime
	Multiple Hyperspheres Regime

	Application to Wireless Wiretap Channels
	Appendix
	Proof of Lemma 1
	Partial Derivatives of the Secrecy Information



	II Fading Channels
	Capacity Bounds
	Literature Review
	Sphere Packing Upper Bound
	Convex Geometry Preliminaries
	Main Upper Bound Definition
	Generalized Sphere Packing
	Piecewise Sphere Packing

	Quasi Parallel Channels Upper Bound
	High SNR Regime
	Low SNR Regime

	Appendix
	Proof of Theorem 4.2.1
	Proof of Proposition 1
	Proof of Lemma 4


	Applications to Common Case Studies
	Total Amplitude Constraint
	Capacity Gap and Performance

	Per-Antenna Constraint
	Sphere Packing Approach
	Quasi Parallel Channels Approach



	Conclusion
	Future Avenues

	Bibliography

