
Politecnico di Milano
Department of Aerospace Science and Technology

Doctoral Programme in Aerospace Engineering

Multidisciplinary Guidance and Control
Synthesis Methods for Small Satellites

Doctoral Dissertation of:
Jacopo Prinetto

Supervisor:
Prof. Michèle Lavagna
Tutor:
Prof. Giuseppe Sala
Coordinator:
Prof. Pierangelo Masarati

Year 2022 – Cycle XXXV





To my parents.





Copyright © 2019-2022, Jacopo Prinetto

All Rights Reserved





Abstract

The interest in small-sat and CubeSat missions is constantly increasing
during the lasts years, as well as the complexity of the scenarios in which such
class of satellites is employed and the performances that they shall guarantee
in term of both attitude and orbital control. This growing interest is motivated
on one side by the fact that small-sat can potentially reduce the costs and
development time of a mission when compared with larger satellites, and on the
other side by the fact that small-sat open the possibility to exploit innovative
mission concepts with fractionated of repeated payload, increasing the scientific
or economic return while minimizing the single-point-failures that can affect
large monolithic satellites.

The research work presented here focuses on the development and testing of
multidisciplinary guidance and control synthesis methods for small satellites.
The multidisciplinary approach, that will be extensively recalled in this work,
become almost essential when small-sat guidance and control problems are
addressed, indeed the hardware performance of such satellites are limited by
their size and the reduced heritage. In particular, the performance of these
satellites are typically limited by some critical elements, namely the propulsive
units, the available power and energy and the computational performances.

In this research work, two novel semi-analytical guidance algorithms for the
center of mass and attitude motion are developed, presented and tested in
mission scenarios of different complexity to prove their validity. In particular,
the guidance algorithm for the center of mass motion is focused on the solution of
the continuous control problem of a thrusting spacecraft, to be suitable for both
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electrical thrusters and low thrust-to-weight ratio chemical propulsive units.
The algorithm is also employed in a small-sat multi injection mission scenario,
adopting a novel routing problem approach. The attitude guidance algorithm
is focused on the optimization of highly constrained attitude maneuvers. The
constrains implemented arise both from hardware limitations and from the
imposition of forbidden/desired pointing directions thought the exploitation
of keep-in and keep-out cones. These last constraints are representative of
scenarios in which some pointing directions are desired, such as the antenna
to ground visibility during the maneuver, or the maximization of solar panels
exposition to the sun, or in which some pointing directions are forbidden, such
as payload and/or navigation instrument Sun/Earth/Moon avoidance. The
algorithm is then coupled with a controller suitable for small-sat on-board
implementation and tested in some realistic scenarios. As last step, the effect
of flexible behavior of small-sat on the pointing performances is investigated
through the adoption of a proper multi-body formulation of the equation of
motion of the flexible small-sat.
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CHAPTER1
Introduction

The interest in small-sat and CubeSat[1] missions is constantly increasing
during the lasts years. They evolved from being mere teaching tools to
true spacecraft capable of carrying out important scientific and technological
demonstration missions[2, 3]. The continuous improvements in the hardware
miniaturization leads to small satellites with potential performances that some
years ago were only prerogatives of larger platforms, dramatically reducing the
costs and the risks related to space exploration. Moreover small-spacecrafts
open the possibility to exploit a fractionated or repeated payload architecture,
mitigating the consequences of a failure of a single element in the constellation
and increasing the scientific and/or commercial return of the whole mission.
The use of Commercial-Off-The-Shelf (COTS) components and a standardized
approach to the system design pose advantages in terms of development time
and costs if compared with respect to larger satellites. Moreover, the possibility
of launching several tens of small-sat with a single launch, makes it possible
radically new mission scenarios and architectures consisting of very large
constellations or clusters of small-sat for both scientific and commercial missions.
At the same time the low-thrust based technologies, such as ion and Hall



Chapter 1. Introduction

effect thrusters, have become sufficiently mature to be installed on that kind
of platforms for both orbital maneuvers and fine pointing purposes. These
technologies are able to reduce the amount of fuel required, to extend the
lifetime of the platform and to increase the pointing performances and the
mission flexibility. Unfortunately, from one side the commercial small-sat and
CubeSat hardware, especially for the Attitude Determination and Control
System (ADCS) and On-board Data Handling (OBDH) subsystem, is not
mature enough to follow the rapid increase in performances required, from the
other side the low-thrust based technologies strongly affect the design of the
whole platforms on which they are installed, requiring an elevate amount of
power and a continuous thrusters fine pointing and making difficult to separate
the mission analysis from the design of the platform itself: a multi-disciplinary
approach is required in order to quickly converge to an optimal design [4].
For these reasons it is necessary to further investigate guidance and control
techniques for both the orbital and attitude dynamics. In particular, differently
from most of the algorithms available in literature, they should keep into
account practical technical and mission constraint.

1.1 The Research Problem

The objective of the research is to investigate fast, robust and effective semi-
analytical algorithms to support multidisciplinary-based guidance synthesis
and on-board control. More in detail, four main goals have been identified as
crucial. They are summarized as follows:

1. To derive a fast semi-analytical guidance algorithm for the Center of
Mass (CoM) motion that is suitable to deal with the peculiarities of the
small-sat and their mission scenarios as indicated in the introduction,
that is able to overcome some of the typical limitation of the in-literature
available algorithms. The method should be able to quickly identify near-
optimal trajectories even in presence of very complex mission scenarios.

2. To derive a semi-analytical guidance algorithm for the attitude motion
of the spacecraft, that is able to manage practical and mission related
constraints, such as actuation limitation and attitude keep-out cones. A
multi-disciplinary approach should be carried on to tailor the algorithm
on small-sat and CubeSat needs and capabilities.

3. To identify the most suitable control schemes and algorithms that can fly
on small-sat hardwares with very limited computational performances
but able to follow the developed guidance in an high fidelity simulated
environment. Within this framework, the developed guidance algorithms
could be also tested.

2



1.2. Dissertation Overview

4. To explore new multi-body modeling techniques tailored for small-sat and
CubeSat, with the aim of investigate the flexible effect on the attitude
performances.

1.2 Dissertation Overview

This research work focuses on analyses, methods, techniques and tools for small-
sat guidance and control, with the purpose of enhance the attitude and orbital
performances of such class of satellites. To do that, novel approaches and
algorithms are proposed, in support of actual methodologies. The discussion of
the developed techniques is accompanied by the presentation of some practical
example, with the double aim of further clarification and comparison with the
literature.

Chapter 2 deals with the background knowledge. In particular, the attention
is focused on the state of the art for the attitude and orbital semi-analytical
guidance algorithm, as well as the methodologies adopted for the multi-body
modeling of small-sat, and in particular CubeSats.

Chapter 3 presents the advancements achieved on the semi-analytical CoM
guidance. In particular, Sec. 3.1 is devoted to the analysis of a novel shape-
based algorithm working on a non-linear interpolation between consecutive
orbits developed by the author. In Sec. 3.2.1 the developed algorithm is
generalized in more complex scenarios, such as orbital transfers with the help
of J2 drift and multi-deployment missions, with the introduction of a novel
simple but effective approach to solve large vehicle routing problem through a
branch and bound approach based on the exploitation of partial permutations.

Chapter 4 proposes a semi-analytical algorithm to design attitude maneuvers
in presence of strong attitude and platforms constraints. In particular the
algorithm, thanks to its inherent speed of execution, is able to locate near-
optimal attitude trajectories even in presence of complex search-spaces. The
algorithm follows a multi-disciplinary approach, keeping into account real
hardware models and practical objectives and constraints related to the platform
limitations and necessities .

Chapter 5 present a comparison between low computational cost control al-
gorithms, that can be easily implemented on actual CubeSat hardware, with
the double aim of test the guidance developed in Chapter 4 and to investigate
the possibility to reach good performances in steady state error rejection and
reference tracking with simple controllers.

Chapter 6 presents a novel multi-body model for the spacecraft motion specifi-
cally tailored for CubeSat. More in details, the developed model takes into

3
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account flexible effects coming from booms-like structures, such as UHF/VHF
antennas, and large bi-dimensional structures, such as multi-panel solar arrays.

Final comments and a possible road-map for future research and devel opment,
are stated in Chapter 7

1.3 Bibliographic Disclaimer

During the years of my Philosophiae Doctor (Ph.D.), I presented updates of my
work in many conferences and I also had the possibility to publish part of them
in peer reviewed journals. Therefore, some of the work in this dissertation has
already been presented in different articles. The most significant are listed
below.

• Prinetto, J., & Lavagna, M. (2021). Elliptical shape-based model for
multi-revolution planeto-centric mission scenarios. Celestial Mechanics
and Dynamical Astronomy, 133(1), 1-24.

• Salvato, V. M., Prinetto, J., & Lavagna, M. (2021). Low Thrust Multi-
Injection Approach for Constellation and Multi-Mission Deployment. In
SpaceOps 2021 Virtual Edition-16th International Conference on Space
Operations (pp. 1-18).

• Prinetto, J., Lunghi, P., & Lavagna, M. (2021). Fast and Accurate
Re-Planning Tool Under Multidisciplinary Constraints Set. In SpaceOps
2021 Virtual Edition-16th International Conference on Space Operations
(pp. 1-10).

• Silvestrini, S., Prinetto, J., Zanotti, G., & Lavagna, M. (2020). Design of
robust passively safe relative trajectories for uncooperative debris imaging
in preparation to removal. In 2020 AAS/AIAA Astrodynamics Specialist
Conference (Vol. 175, pp. 4205-4222). Univelt.

• Colagrossi, A., Prinetto, J., Silvestrini, S., Orfano, M., Lavagna, M., Fiore,
F., ... & Pirrotta, S. (2019). Semi-analytical approach to fasten complex
and flexible pointing strategies definition for nanosatellite clusters: The
HERMES mission case from design to flight. In 70th International
Astronautical Congress (IAC 2019) (pp. 1-8).

• Colagrossi, A., Prinetto, J., Silvestrini, S., & Lavagna, M. R. (2020). Sky
visibility analysis for astrophysical data return maximization in HERMES
constellation. Journal of Astronomical Telescopes, Instruments, and
Systems, 6(4), 048001.
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CHAPTER2
Background & State of Art

This section shows the background and the current level of development of the
main pillars of the dissertation.

2.1 Absolute Orbital Dynamics

In this section the Absolute Orbital Dynamics is introduced, with a focus on
the state of the art of the semi-analytical guidance algorithms.

2.1.1 The gravitational model and the environment

The framework within the Absolute Orbital guidance in this work is developed
is the perturbed Two Body Problem (TBP). In particular, the motion of a
controlled spacecraft around a primary object, defined as Attractor, is governed
by the system of seven coupled non-linear equations presented in Eq. 2.1 [5]


ṙ = v

v̇ = − µ
r3 r + fpert

m + fcontrol
m

ṁ = −fcontrol
ISg0

(2.1)
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in which the first six equation describe the physical state of the spacecraft
during the motion, wile the last describe the variation of the mass in time
due to the presence of thrusters. The natural motion of the spacecraft if
forced not only by the presence of actuators but also by natural perturbations.
The perturbations, that are time and state dependent, arise from different
natural phenomena [6], namely the third body effects, the Atmospheric forces
(considered as drag only, in most of the cases), the Solar radiation Pressure
and the Non-uniformity in the gravity field of the attractor. Even if from a
purely theoretical point of view the selection of a specific Reference Frame (RF)
doesn’t affect the solution of the motion, if numerical methods are employed
the choice of the correct RF becomes of primary importance. In most of the
cases the Equation of Motion (EoM) are written in one of the following four
set of coordinates: the Cartesian coordinates, the polar coordinates, the KP
and the Modified Equinoctial Elements (MEE). The Cartesian coordinates are
the simplest to be used, but unfortunately they are not optimal to describe the
motion of a thrusting spacecraft, indeed a fast and periodic variation of the
states and the control variables in such coordinate requires an high number of
computational nodes to have an accurate trajectory. Polar coordinates partially
solve this problem [5], since the variation of the variables is smoother, but un
fortunately they suffer of a singularity for the out of plane motion [7] that can
be avoided only by selecting a proper reference plane, variable for each scenario,
as will be seen in Chapter 3. Also the KP, even if they are good in therm
of smoothness variation of the state and control variables, shows important
singularities for circular and equatorial orbits, that cannot be avoided, and
therefore typically they are not used in numerical implementations. The MEE,
introduced in 1972 by Cefola [8] are able to avoid any kind of singularity, while
maintaining an extremely smooth variation of the state and control variables
with the double drawback of the lack of physical meaning of those parameters
and the complicated formulation of the equations. Within this work, polar
coordinates and MEE are employed as needed, and in particular, the first are
used to parametrize the EoM in Chapter 3, and the second are used both in
Chapter 3 for the non-linear orbital interpolation and in Chapter 5 for the
coupled attitude/orbital high fidelity simulator.

2.1.2 The Low Thrust Problem

In the last decades, Solar Electric Propulsion (SEP) has became of primary
interest both for long and complex interplanetary missions (e.g.ESA Bepi-
Colombo, NASA Dawn) and for Earth-centered satellite station keeping (e.g.
ESA-Artemis, AlphaSat). The continuous progress in SEP related technologies
and the flexibility they would offer the mission can extend the applicable
domain of these thrusters to the main propulsion system of planeto-centric
missions as well, such as tug vehicles and launchers’ upper stages. Still, the
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low thrust trajectory design and optimization represent a challenge. The
low thrust trajectory optimisation entails solving quite a complex continuous
optimal control problem [5], as the dynamics are formalised by a set of seven
coupled non-linear differential equations: in turn, they are built up by the
evolution of six state-vector components plus mass rate consumption. The
modeling problem grows further in complexity whenever perturbations must
be considered and realistic events are to be taken into account (e.g.vehicle sep-
aration, gravity assists, eclipses). Perturbations are time and state dependent,
while realistic events are formalised as discontinuities. Analytical solutions
exist but for simplified, and therefore unrealistic, cases [9] [10]. It is worth
noting also that the structure of the solution is typically not a-priori known
[4] [5], which makes the powerful direct and indirect optimization methods
inapplicable. Moreover, they typically require a good first guess to properly
converge as well as having a high computational burden that makes them
unsuitable for large search spaces [5][11][12]. Shape-based algorithms aim at
coping with the aforementioned limitations. They approach the core strategy
and revert the continuous optimal control problem by imposing kinematic
constraints to the dynamics: the trajectory shape is selected, with proper
degrees of freedom exploited to tune the dynamics compliance. Typically some
assumptions, such as the tangential direction of the thrust, are assumed to
obtain faster analytical solutions[13][7]. These methods, working on a subspace
of the problem, are only capable of giving a sub-optimal solution and are
extremely fast if compared with others [14][4][13]. They are well suited for
fast detection of sub-optimal solutions in wide search domains using heuristic
algorithms, with the possibility to exploit multiple/multidisciplinary objectives
[4]. These solutions can either be adopted as initial guesses for direct or indirect
optimizations or to obtain independent results during the preliminary phases
of a space mission design [4][14]. The first developed shape-based techniques
could only solve simple planar problems without the possibility of imposing
neither exact boundary conditions on positions and velocities or the time of
flight [14]. These algorithms were only used to obtain a quick estimation of the
low-thrust trajectory cost and to generate initial trajectories. Improvement in
the flexibility of the trajectory and in the precision of the solution was proposed
in [15]; the possibility to exactly impose the boundary conditions also provides
the opportunity to include gravity assist maneuvers[16]. Conway and Wall
developed a simple but effective shape for both 2D problems and approximated
3D problems with small displacements from the plane[7][13]. Recently, Xie
et al. [17] and Zeng et al. [18] proposed full 3D shapes for interplanetary
trajectory design. Novak and Vasile presented a new coupling between the
analytic solution and a LQR controller [19]. Some authors apply Fourier
series to tune more effective shapes in finding solutions closer to the optimum
[20][21][22]. Gondelach and Noomen [23] developed a shape-based algorithm
based on velocity shaping instead of the trajectory that showed good results

7



Chapter 2. Background & State of the Art

in interplanetary low thrust trajectory definition. All the above-mentioned
shapes, and some other variations proposed by other authors, give very good
results in interplanetary trajectory design: the flexibility of the approaches
and the reduced computational burden allow designing and optimizing com-
plex mission scenarios, with mixed integer and continuous variables, therefore
settling multidisciplinary objectives [4]. Algorithms developed by Taheri and
Abdelkhalik [21][24] can efficiently solve Earth-Centered mission scenarios,
including rendezvous and phasing, for spacecraft with thrust acceleration in
the order of 10−1m/s2. Indeed, in this peculiar environment the proximity of
the attractor makes the dynamics much more constrained: hundreds or even
thousands of revolutions are typically needed to move the satellite between
two different orbits, and during the single revolution the osculating elements
remain almost unchanged. Purely geometrical shapes cannot fit this behav-
ior, especially whenever eccentric orbits are considered [7][13][14]. Moreover,
eclipses introduce a high number of discontinuities, definitely unmanageable
with the algorithms mentioned so far.

2.1.3 Vehicle Routing Problem

Finding the optimal hopping path between different orbits means solving
a variant of the Travelling Salesman Problem (TSP), which is a particular
formulation of the Vehicle Routing Problem (VRP). The latter belongs to the
class of the NP-hard problems, meaning that the computational time required
to solve them dramatically increases with the size of the problem. Most of
the VRP applications to space have been about on-orbit servicing [25], Active
Debris Removal (ADR) [26], [27] or Multiple Gravity Assists (MGA) problem
[28]. This variant of the TSP can be formulated as a problem that includes
two different kinds of variables: continuous-valued variables, such as the ones
describing the state of the spacecraft in time, and binary variables, such as the
ones defining the visiting order of the hopping trajectory. In particular, this
problem belongs to the Mixed-Integer Nonlinear Programming (MINLP), the
area of optimization which deals with non-linear problems with continuous and
integer variables. Alternatively, to solve the problem a two-layer optimization
scheme can be adopted, as suggested by Conway and Wall [29]. These different
options were investigated in the work by Zhang et al. [30], who showed that
the two-level optimization presented the worst performance. In light of such
results, this work focuses on finding a solution to the MINLP. Differently from
previous works, a new way to approach the VRP will is proposed, that will
be specifically applied to multi-deployment mission scenarios. Moreover, the
transfers will not be modeled as solutions to the Lambert problem, like in most
of the previous solutions of the VRP in space, but they will be continuous-
thrust transfers computed through the adoption of a shape-based approach
[31].
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2.2 Attitude dynamics

The section briefly present the background and state of the art for the fast
semi-analytical guidance algorithm for the attitude motion.

2.2.1 The attitude motion and the environment

The attitude motion of a rigid body in the 3D space is described by the Euler
equation, as in Eq. 2.2

ISCω̇ + ω × ISCω = Mpert + Mcontrol (2.2)

in which the two forcing terms are the control torque Mcontrol, that can be
applied using different types of actuators and the perturbation torque Mpert,
that is dependent of the spacecraft state and properties, as well as the epoch. In
particular, the perturbation that act on the angular motion of the spacecraft are
provoked by different phenomena [41], namely the gravity gradient, the residual
atmosphere, the magnetic field, the solar pressure and any internal source of
disturbances, such as flexible motion or sloshing. An important element in the
attitude motion is the kinematic that is selected to describe the trajectory [41].
The first possibility is to use the Direction Cosine Matrix (DCM), that uniquely
define the attitude of the spacecraft, and that is free from any kind of singularity.
The drawback is that the DCM is composed by nine element, among which
only 3 of them are independent, therefore the representation is not optimal
from a computational point of view. The second possibility is to represent
attitude using Euler angles, that unfortunately are only locally defined, limiting
therefore the possible with of the maneuvering. The third possibility, that
avoids singularity and that is globally defined are the quaternions. Even if
quaternions are the most widely used methods to represent the kinematic of
the attitude motion, they are not unique, and therefore each physical attitude
state can be defined by different quaternions, leading to possible ambiguity
in the definition of the attitude trajectory. The Rodrigues parameters could
be used to represent the attitude kinematics[32], but lead to a undesirable
complex formulation. In this work, quaternions will be extensively adopted in
the formulation of the attitude guidance algorithm presented in Chapter 4 for
the kinematic representation, and in Chapter 5 for the implementation of the
6 Degrees of Freedom (DoF) simulator. Anyway, the attitude constraint are
implemented considering directly the DCM, to avoid ambiguity.

2.2.2 Attitude guidance and attitude motion planning

The definition of a proper attitude motion planning or a refined attitude
guidance is necessary in some mission scenarios where the spacecraft, that
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shall perform large slew maneuvers, has some requirement in terms of attitude
constraint. These attitude constraints, that in literature and within this work
are defined by keep-out cones, can be a consequences of the embarked payload,
such as telescopes or optical/thermal payloads, or navigation instruments, such
as star tracker or sun sensors. Moreover, practical constraints, such as the
one coming from actuators limitation, shall be kept into account. Most of the
existing methods for attitude motion planning that are capable to keep into
account keep-out cones are classified into four main categories, listed below.
The first group is based on potential functions having a minimum at the desired
attitude and large values around the exclusion cones. These functions are
adopted to design a control laws that are based on Lyapunov theory [32, 33].
The advantage of these family of algorithms is that they are computationally
light, but the convergence on global minimum depends on the initial guess. The
second group uses path planning strategies to look for a path given the initial
and final attitude while avoiding the forbidden pointing regions. The path
planning is achieved through a discretization of the trajectory, and then by
looking for a feasible path [34, 35, 36]. The third group consists of algorithms
that take advantages of geometric relations to design the trajectories that are
able to avoid the keep-out cones [37, 38]. These methods are quite simple and
benefit from a fast execution time. The drawback, in most cases, is that they
are able to avoid only one keep-out cone. The last class includes algorithms in
which the constrained attitude motion problem is written as an optimal control
problem, obtaining a non-convex optimization problem to be solved using a
global optimization approach, an indirect method or a gradient based one [39,
40]. Within this work, a novel semi-analytical guidance method for motion
planning with attitude and practical constraints is presented in Chapter 4.

2.3 Flexible Dynamics

Even if CubeSat are typically considered as rigid body, the increase of the
pointing performances combined with the growing size of potentially flexible
elements, such as solar panels and antennas, the effect of flexibility on the
attitude performance for this class of objects could become an interesting
research field in the incoming years. Looking at the components that are
generally investigated in the flexible motion of a large spacecraft, it is possible to
identify some common structural elements, such as booms, plates, concentrated
spring-mass systems and eventually partially filled tanks [41]. These elements,
using a proper discretization model, are typically combined to derive the EoM
of the flexible model of the spacecraft, following a multi-body approach [42, 43].
A key element in the inclusion of the flexible effect in the EoM of the spacecraft,
that define the complexity and the fidelity of the model, is the discretization
approach followed in the modeling of the structural elements. The different
approaches that can be followed to modeling the structural elements above-
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mentioned can be summarized in three major categories, based on the way in
which the mass, stiffness and dumping parameter are considered, that are here
reported in ascending order of model fidelity [44, 45]:

• LMM. Following this approach, lumped masses are connected to the
rigid structure of the spacecraft using massless springs, to replicate the
real dynamics of a pseudo vibrational mode. This method, which in
general is simple to implement, unfortunately lacks of theoretical rigor,
and can often lead to results that are not faithful to reality. Moreover,
the selection of the stiffness of the springs, the value of the masses and
the position/direction in which the oscillators are mounted is not straight-
forward except in the simples cases, since the real vibrational modes of
the structure should be respected, as well as the forces exchanged. Even
in this last case in which the vibrational modes and the torques/forces
induced by the flexible motion are well approximated, the LMM approach
is not able to recover the flexible displacement of the structures, that is
of fundamental interest for some applications (e.g. payloads mounted
on booms). Figure 2.1 shows an example of LMM modeling of a rigid
hub with a cantilever flexible appendage, in which, given the number of
modes that is desired to replicate, it is important to underline the lack
of rigor in the definition of the position x where the spring is mounted
as well as the value of the mass mi and the elastic constant ki.

Figure 2.1: Example of a LMM modeling of a flexible appendages undergoing
large planar motion

• LPM. This family of discretization procedures includes a quite large
number of methods, sharing the fact of having a clear spatial separation
between the elastic and inertial elements. One of the most commonly used
method [44] relies on a representation of the system with discrete lumped
masses interconnected by continuous and massless elastic elements. Once
the discretization is defined, the equation of motion can be easily written
using the Principle of Virtual Work (PVW), or the Lagrange equations.
Figure 2.2 shows an example of LPM modeling of a rigid hub with a
cantilever flexible appendage. Also this method lacks of a systematical
and rigorous approach, due to the strong subjectivity in the positioning
of the concentrated masses, that could lead to poor results.
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Figure 2.2: Example of a LPM modeling of a flexible appendages undergoing
large planar motion

• DPM. Following this approach, the inertial and flexible properties are
distributed along the structure, leading to a continuous problem governed
by a system of Partial Differential Equations (PDE). Figure 2.3 shows
an example of DPM modeling of a rigid hub with a cantilever flexible
appendage.

Figure 2.3: Example of a DPM modeling of a flexible appendages undergoing
large planar motion

By their own nature, such systems posses infinite degrees of freedom
(namely the elastic displacement and elastic displacement rate as function
of the position x and time). A wide number of methods can be successfully
applied in the discretization of DPM, among which the most famous
are surely the RG discretization and the Finite Element Method (FEM).
The first method relies on the approximation of the unknown elastic
displacement field by means of a finite linear combination of appropriate
spatial functions, typically stacked into the matrix of functions N(x).
The coefficients of the linear combination u(t), that are time dependent,
are the new set of coordinates describing the dynamics of the problem,
as in Eq. 2.3 [44].

s(x, t)LocalRFflex =


u(x, t)
v(x, t)
w(x, t)

 = N(x)u(t) (2.3)

The EoM are then derived adopting the PVW or the Lagrange equation,
as will be largely discussed in Chapter 6. The real advantages of this
method are the complete theoretical rigors, and its capability to obtain,
in most of the cases and selecting the appropriate trials functions, a good
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approximation of the reals dynamics, at least for the lower frequencies,
using a reduced number of degrees of freedom. Following this approach,
the refinement of the solution can be achieved increasing the number
of trials functions, and consequently also the number of coordinates,
used in the linear combination to approximate the spatial displacement
field. If only one term is employed, it is known also as Ritz-Rayleigh
method. The biggest disadvantage of the RG method is the difficulty
to find appropriate trials functions for complex geometrical shape. To
overcome this shortcut, the FEM is employed. Quite the contrary, the
FEM abandons the wish discterize the structure with a linear combination
of spatial functions covering the entire domain, preferring to divide it in
portion sufficiently small to be suitable for piecewise continuous functions,
that are only locally non-null. Therefore FEM can be seen as a particular
application of the RG method [45]. The refinement of the solution, in this
case, passes through a refinement of the geometrical mesh that drives the
discretization of the displacements field. It turns out in a higher number
of degrees of freedom with respect to the classical RG method, with an
increased computational cost. Even if it is beyond the aim of this work, it
is important to recall that the particular band structure of the resulting
mass and stiffness matrices, combined with a wide number of methods
that can be employed to reduce the computational load of FEM [46],
make it nowadays the gold standard for structural analysis. Since the aim
of the flexible modeling of this work is more related with the guidance
and control, rather than the structural analysis, the RG discretization
was selected for the flexible elements, as discussed in Chapter 6.

2.4 Heuristic Optimization

The implemented models and the scenarios that will be discussed within this
work are, in general, very complex from a computational point of view. For
example, a mission scenario with numerous satellites to release, as the one
discussed in Chapter 3, or the optimization of a highly constrained maneuver,
as the one presented in Chapter 4 would lead to problems with a really large
and non mono-convex solution space in a not simply connected domain. The
deterministic solution of such problems requires the knowledge of an initial
guess that is in the small basin of the global optimum, that is typically unknown
a-priori. This typically leads to the impossibility to converge on the optimal
solution even in extremely large computational time. For these reasons, it is
necessary to take optimization methods that trade optimality for speed into
account, and that are able to efficiently look for optimal regions in such complex
domains. Heuristic methods [47] do not grant to find the optimal solutions
to the problem but the low computational effort required to achieve this
near-optimal solution makes them very attractive for the purpose of the work.
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Most complex problems like this variant of the VRP require the evaluation
of an immense number of possibilities to determine an exact solution, with
a consequent increase of the computational time. In addition to this, some
problems may require to be solved much more than one time, depending on their
use and goal. For this reason, it is useful to have an algorithm whose solution
can be found in a relatively short amount of time. Heuristics play an effective
role in such problems by finding a way to reach solutions with reasonable
computational effort. In particular problem-independent algorithms are often
referred to as "metaheuristic" algorithms. There is a relatively wide number
of metaheuristic algorithms that could be adopted to solve the here proposed
problems and it is important to select a performing one. Each algorithm is
characterized by a particular set of tuning parameters that could be optimally
set to maximize its efficiency. In the last years, several metaheuristic methods
have been developed and they can be classified in many ways. One of the most
significant classification [48] is the following:

• Trajectory methods: these algorithms work on one single solution at a
time, describing a trajectory in the search space during the search process.
They encompass local search-based metaheuristics.

• Population-based methods: these algorithms, on the contrary, deal in
every iteration with a set of solutions, therefore providing a way to
efficiently explore the search space.

While the first class is suitable for a more refined exploration of a promising
area, the second ones are preferred to find near-optimal areas in the search
space [48]. Due to the high dimension of the solution space of some of the
problems treated in this work, population-based methods will be preferred
to the trajectory ones for this application; among all the possible algorithms,
the Genetic Algorithm (GA) and the Particle Swarm Optimization (PSO) are
surely the most famous. The research on such family of algorithms starts
in 1975 by Holland [49] and due to the promising results it was successfully
addressed towards optimization problems. GAs take their inspiration from the
biological evolution of species inside an environment. The natural environment
is replaced by the problem itself and the individuals (also called chromosomes)
represent the candidate solutions. At each iterations, new individuals are
generated through recombination and mutation of previous ones, imitating
Darwin’s theory of natural selection. The individuals with higher fitness have
more probability to survive to the next generation. Differently from GA, PSO
does not rely on probability but on social behavior, implementing rules such as
neighbor velocity matching and acceleration by distance [50]. PSO was indeed
inspired by the movement of birds in flocks [51]. Even though being classified
as an evolutionary algorithm at the beginning, its theoretical background
along with its great potential gave origin to a new category of algorithms
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known as Swarm Intelligence (SI). Among the population-based methods,
the PSO was extensively adopted within this work. A multi-objective version
of PSO, known as Multi-Objective Particle Swarm Optimization (MOPSO),
opportunely modified to take into account integer variables, is adopted for the
solution of multi-objective scenarios.
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CHAPTER3
Orbital Guidance

In this chapter a novel approach to the CubeSat CoM guidance is presented.
More in detail, Section 3.1 is devoted to the presentation and analysis of the
developed algorithm, with the help of some practical example. Section 3.2
is devoted to the application of the developed algorithm to the problem of
multi-injection SmallSat constellations and multi mission.

3.1 Guidance algorithm

Within this chapter a novel shape-based algorithm applicable to Earth-centered
trajectory optimization problems is proposed. The working principle of the
algorithm is to map the complex multi-revolution problem into a high number
of simpler single revolution trajectories, efficiently solved thanks to a new 3D
shape-based method. To this end, a proper number of intermediate orbits is
introduced and accurately located in order to not to exceed a threshold settled
on the required thrust. The analysis of the proposed algorithm is structured as
follows: in section 3.1.1 the developed single revolution algorithm is discussed; in
section 3.1.2 the multi-revolution planeto-centric and interplanetary extensions
are presented, while section 3.1.3 is devoted to the analysis of some test cases.
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3.1.1 Single Revolution Algorithm

The section presents the developed single-revolution shape-based algorithm.
The mathematical formulation is derived in both fixed and free Time Of
Flight (TOF) formulations, starting from the equation of motion of a thrusting
spacecraft via a nonlinear interpolation between departure and target orbits.
The working principle of the algorithm lies in setting the spacecraft-to-attractor
distance and the declination above the reference plane of the trajectory (respec-
tively s and δ) by applying a non-linear interpolation between their values at
the departure and target orbits. The kinematic and the dynamics are then re-
covered through a semi-analytic procedure. The discussion is organized so that,
after analyzing the requirements, the equations of motion are parametrized, the
non-linear interpolation is introduced, and the architecture of the algorithm
is explained. Some kinematic relations, even if important in the numerical
implementation, are not fundamental for the comprehension of the work. For
sake of simplicity these equations are reported only in Appendix A.

3.1.1.1 Requirements

To drive the design of an algorithm which handles highly constrained dynamics,
a peculiarity of the planeto-centric orbits whenever low thrust is selected, some
requirements have been set. The most relevant are as follows:

1. The algorithm shall link two different states ( expressed as MEE [8] or
KP) with the possibility to impose the TOF.

2. The algorithm shall work with any couple of orbits that can be physically
connected with zero radial thrust [13], including polar and retrograde
orbits.

3. The thrust acceleration shall be exactly computed via an analytical
procedure.

4. The thrust and mass profiles shall be computed via numerical integration
of Tsiolkovsky equation [52].

5. The required thrust shall tend to zero as the distance between initial
and final orbits decreases, regardless of the eccentricity and departure or
arrival anomaly:

lim
∆KP→0

max
( |T |
m

)
= 0 ∀ e, i, θ1, θ2. (3.1)

The last requirement is mandatory to obtain feasible solutions in planeto-
centered mission scenarios: whenever not satisfied, the maximum thrust cannot
be arbitrarily fixed .
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3.1.1.2 Low thrust equations parametrization
This section formalizes the parametrization of the 3D EoM for a thrusting
spacecraft in cylindrical coordinates. The assumption on small displacements
for the out of plane motion, imposed by Wall in [13], is here removed. The
exact EoM for a thrusting spacecraft [5] [6] can be written as

Figure 3.1: Spacecraft position


r̈ − rθ̇2 = − µ

s3 r + TIN
m sinα

rθ̈ + 2ṙθ̇ = TIN
m cosα

z̈ = − µ
s3 z + TOUT

m .

(3.2)

The working principle that lies behind the proposed algorithm is to parametrize
every quantity involved in Eq. 3.2 as a function of the non-dimensional anomaly
x, defined as

x(t) = θ(t)
ψ
, (3.3)

and to then compute the thrust and mass time history, adopting a reverse
dynamic approach [7]. Physically, x(t) is the angle between the initial position
vector and the projection of the spacecraft position vector on the reference
plane, normalized by the total transfer angle ψ, as reported in Figure 3.1.

The spacecraft 3D motion is defined by the parametrization of the in-plane
projection of the radius r and the out-of-plane displacement z, as in{

r = r(x)
z = z(x).

(3.4)
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This parametrization, which is not unique, is presented later on in this section.
To parametrize the EoM the first and second-time derivatives for the in-plane
angular displacement, the in-plane radius and the out-of-plane displacement
are first computed, as reported in

{
θ̇ = dθ

dt = ψẋ

θ̈ = d2θ
dt2 = ψẍ

(3.5)

and



ṙ = dr
dt = dr

dx
dx
dt = r′ẋ

r̈ = d2r
dt2 = d

dt (r′ẋ) = r′′ẋ2 + r′ẍ

ż = dz
dt = dz

dx
dx
dt = z′ẋ

z̈ = d2z
dt2 = d

dt (z′ẋ) = z′′ẋ2 + z′ẍ.

(3.6)

Then, all kinematic quantities can be substituted into Eq. 3.2, giving as result


r′′ẋ2 + r′ẍ− rψ2ẋ2 = − µ

s3 r + TIN
m sinα

2ψr′ẋ2 + rψẍ = TIN
m cosα

z′′ẋ2 + z′ẍ = − µ
s3 z + TOUT

m .

(3.7)

According to the first two equations listed in Eq. 3.7, the formulation for the
second time derivative of the non-dimensional anomaly is extracted as follows

 ẍ = 1
r′

[
− µ
s3 r + TIN

m sinα− r′′ẋ2 + rψ2ẋ2
]

ẍ = 1
rψ

[
−2ψr′ẋ2 + TIN

m cosα
]
.

(3.8)

To analytically compute the x time derivative, the dependency from the thrust
per unit mass in Eq. 3.8 must be removed: to this end, the in-plane thrust
should be imposed as tangential only [7]. Indeed, in this last case, the thrust
angle equals the flight path angle that can be easily computed using

tanα = tan γ = vr
vθ

= ṙ

rθ̇
= r′

rψ
. (3.9)

By merging Eq. 3.9 and Eq. 3.8 and removing the thrust dependence, the
square of x time derivative is made explicit, as follows

ẋ2 = µr

s3
(
rψ2 − r′′ + 2 r′2

r

) = Nu

De
. (3.10)
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From Eq. 3.10, the second time derivative for the non-dimensional anomaly
can be obtained as


ẍ = 1

2

(
Nu′−ẋ2De′

De

)
Nu′ = µr′

De′ = 3 s′

sDe+ s3
(
r′ψ2 − r′′′ + 2rr′r′′−r′3

r2

)
.

(3.11)

By inserting the newly derived time-dependent quantity relationships into
Eq. 3.7, the thrust per unit mass can be computed as

{
TIN
m = 1

cos γ
(
2ψr′ẋ2 + rψẍ

)
TOUT
m = z′′ẋ2 + z′ẍ+ µ

s3 z.
(3.12)

The mass time history comes from numerically integrating the Tsiolkovsky
equation, as [53]


∣∣∣ Tm ∣∣∣ = 2

√(
TIN
m

)2
+

(
TOUT
m

)2

dm
dt = −| T

m |m
Ispg0

.

(3.13)

Moreover, as highlighted in Eq. 3.14, the integral on the variation of the
non-dimensional anomaly, which is numerically solved, leads to the time vector
[7]

t =
∫ t

0
dτ =

∫ 1

0

1
ẋ

dx. (3.14)

It is important to underline that, differently from Wall [13], the here proposed
parametrization allows representing the exact motion of a thrusting spacecraft,
removing any assumption on small displacements from the reference plane
assumption.

3.1.1.3 Non-Linear Interpolation

The EoM parametrization discussed so far needs a parametric representation
of the trajectory in cylindrical coordinates, as in Eq. 3.4. In the here presented
algorithm the parametrization is obtained via a nonlinear interpolation between
the departure and arrival orbits. This interpolation is set in spherical coordi-
nates (s(x), δ(x), ψx, see Figure 3.2) by means of an interpolating function
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χ(x), as shown in  s(x) =
(
s2(x) − s1(x)

)
χ(x) + s1(x)

δ(x) =
(
δ2(x) − δ1(x)

)
χ(x) + δ1(x);

(3.15)

it is then mapped into cylindrical coordinates using

Figure 3.2: Non-linear interpolation

{
r = s cos δ
z = s sin δ. (3.16)

To solve the parametrized equation of motion, the first, second and third
derivatives of r(x) and the first two derivatives of z(x) shall be calculated using

r′ = −sδ′ sin δ + s′ cos δ
r′′ = − (2s′δ′ + sδ′′) sin δ +

(
s′′ − sδ′2)

cos δ
r′′′ = −

[
3 (s′′δ′ + s′δ′′) + s

(
δ′′′ − δ′3)]

sin δ+
+ [s′′′ − 3δ′ (s′δ′ + sδ′′)] cos δ

(3.17)

and {
z′ = sδ′ cos δ + s′ sin δ
z′′ = (2s′δ′ + sδ′′) cos δ +

(
s′′ − sδ′2)

sin δ. (3.18)

The computation of
s′ = ∆s′χ+ χ′∆s+ s′

1

s′′ = ∆s′′χ+ χ′′∆s+ 2∆s′χ′ + s′′
1

s′′′ = ∆s′′′χ+ χ′′′∆s+ 3∆s′′χ′ + 3∆s′χ′′ + s′′′
1

(3.19)
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and 
δ′ = ∆δ′χ+ χ′∆δ + δ′

1

δ′′ = ∆δ′′χ+ χ′′∆δ + 2∆δ′χ′ + δ′′
1

δ′′′ = ∆δ′′′χ+ χ′′′∆δ + 3∆δ′′χ′ + 3∆δ′χ′′ + δ′′′
1

(3.20)

enables the evaluation of the derivatives of the spherical coordinates included
in Eq. 3.17 and Eq. 3.18.

The full set of equations needed to compute the geometrical quantities of the
initial and final orbits required to solve Eq. 3.19 and Eq. 3.20 are reported in
Appendix A.

3.1.1.4 the algorithm architecture

Figure 3.3 depicts the implemented algorithm architecture, made up of five
main blocks plus two optional, activated whenever requested by the specific
mission scenario.

Figure 3.3: Architecture

A short description of each block is here reported:

• Transfer definition: This block takes as inputs the departure and
arrival orbital states; it computes the reference frame and the transfer
angle. The selected reference frame is composed by:

– First axis: normalized initial position of the satellite.

– Third axis: normalized cross product between the initial and final
positions.

– Second axis: Orthogonal to the first and third axis, to get a
right-handed RF
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• Departure/Target orbit analysis: These blocks take as input the data
coming from the Transfer definition one. They compute some important
geometrical quantities exploited for the shape interpolation. The output
includes all geometric quantities of the initial and final orbits.

• TOF solver: This block manages the time of flight. It activates only
whenever a TOF constrained mission scenario is considered: to this end,
the shape itself shall contain a further degree of freedom. To force the
imposed time of flight to be respected it is necessary to numerically solve

TOF −
∫ 1

0

1
ẋ(a) dx = 0, (3.21)

through a Newton algorithm, initialized with a = 0.

At each step of the Newton solver, adopted for integration of Eq. 3.21,
a Cavalieri-Simpson integration scheme is adopted to preserve both a
good precision and a limited Central Processing Unit (CPU) time. This
block outputs the interpolating function, that is passed to the trajectory
shaping block.

• Trajectory shaping: This block takes as input the geometry of depar-
ture and target orbits and the interpolating function. It computes the
exact geometry of the transfer using the non-linear interpolation between
departure and target orbits explained here-above. The output includes
the kinematics of the trajectory.

• Control Law: This block takes as input the kinematics of the trajec-
tory. The control law, as well as the time, are computed via a mixed
numerical-analytical procedure. To compute the time vector, Eq. 3.14
is integrated using an high order multi-step predictor-corrector scheme
(Adams-Bashford-3 Adams-Multon-4). The same integration scheme is
adopted to integrate Tsiolkovsky equation [52] (Eq. 3.13) to get the mass
history. It is here highlighted that both forward and backward integration
schemes are supported, making the algorithm suitable to solve scenarios
either with dry or wet mass imposed. The block is the most demanding
in terms of computational time, as it includes two Ordinary Differenzial
Equation (ODE) to be solved. In any case, it is important to underline
that while typically an ODE solver spends most of the time evaluating
the function to be integrated, in the framework of the proposed approach
those information are directly fed into the solver (please refer to Eq. 3.14
and Eq. 3.13), being already computed by previous blocks; that helps
in reducing the computational burden of the block itself. Moreover,
the selection of an accurate integration scheme reduces the number of
computation nodes while keeping the numerical errors as low as possible.
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3.1.1.5 The interpolating functions
A key element of the developed algorithm lies in the ability of the interpolating
function χ to respect the boundary conditions; to this end, the interpolating
function χ(x) must be continuous with its derivatives up to the third order
in the domain [0; 1]. Moreover, the interpolating function must satisfy the
following requirements:

• Position: from Eq. 3.16 and Eq. 3.15 the initial and final conditions on
position (in plane radius r(x) and out-of-plane displacement z(x)) are
automatically satisfied if the interpolating function satisfies:

{
χ(0) = 0
χ(1) = 1. (3.22)

• Velocity: given the definition of the radial velocity (ṙ) and the out-
of-plane velocity (ż) in Eq. 3.6, r′, z′, ẋ must match the corresponding
quantities of the initial state for x = 0 and final state for x = 1. If the
previous conditions are verified, the boundary conditions on transverse
velocity are automatically satisfied, being this velocity defined as vr =
rψẋ. The requirements on r′ and z′ at the initial and final point can
be directly derived from Eq. 3.17 and Eq. 3.18, and are summarized as
follows: {

χ′(0) = 0
χ′(1) = 0. (3.23)

For the initial and final conditions on ẋ, Eq. 3.10 must be considered:
it contains the second derivatives of r as well. Therefore, boundary
conditions on r′′ must be imposed too. From Eq. 3.17 it is easy to derive
the following constraints:

{
χ′′(0) = 0
χ′′(1) = 0. (3.24)

Even if an extremely wide number of functions could satisfy those requirements,
this work adopts the seventh order polynomial function

χ(x) = −20x7 + 70x6 − 84x5 + 35x4, (3.25)

and the eight-order polynomial

χ(x, as) = asx
8 − (20 + 4as)x7 + (70 + 6as)x6+
−(84 + 4as)x5 + (35 + as)x4 (3.26)
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to solve the free TOF and the constrained TOF problems respectively.

Figure 3.4: Interp. function comparison

It is easy to prove that these functions satisfy the above-mentioned boundary
conditions. For sake of completeness they are plotted in Figure 3.4 for different
values of the parameter as. Moreover, it is here remarked that those interpola-
tion functions lead to solutions with null initial and final thrust, avoiding the
typical undesired peaks at the beginning and the end of the transfer arc (see
the thrust profile obtained in [13] and [7]).

The algorithm proposed runs in MATLAB R2020 on a laptop equipped with
a sixth generation Intel i7 processor at 2.6 GHz, can evaluate more than
20 thousand revolution per second for free TOF scenarios and more than 8
thousand for imposed TOF problems.

3.1.2 Multi-revolution Approaches
The section discusses two possible solutions to extend the above-mentioned
algorithm to the multi-revolutions trajectories. The first solves interplanetary
transfers, and it is applicable whenever the number of revolutions is limited (no
more than 2 or 3); the second, suitable for planeto-centric mission scenarios,
increases in complexity: in fact, it manages thousands of revolutions, including
also discontinuities such as eclipses.

3.1.2.1 Interplanetary scenario
Due to the low number of complete revolutions that are typically involved
in low thrust interplanetary transfers, a simple but effective strategy lies in
considering an ’augmented’ transfer angle as given in[7][13]

ψ = ψ + 2πNrev. (3.27)

The solution is well suited for N limited to either 2 or 3, otherwise the shape
of the interpolating function generates solutions with a bad distribution of the
thrust peaks. This solution is extremely fast since it requires the evaluation of
only one trajectory.
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Interplanetary trajectory design and optimization introduces some other issues
and constraints/objectives to identify and formalize. Regardless of the technol-
ogy adopted, the thrust is linearly related with the electric power available on
board: most of the thrusters on the market show a specific power consumption
between 15 W

mN and 40 W
mN . During an interplanetary transfer, the distance

from Sun varies significantly and, in most cases, it drives the time history of
the generated electric power, if photovoltaic technology is adopted on board as
the primary power source [54].

Moreover, solar panels are affected by aging effects that reduce the amount of
power produced during the mission. These effects can be merged together to
formalize a unique constraint that, to speed up the optimizer convergence and
its flexibility in the mission design, is included in the cost functions vector and
is to be minimized. The solar panel area needed to accomplish the mission is
the physical quantity that synthesizes all above-mentioned aspects, which is
sized thanks to [54]

ASA(x) = kT + Pss

ηtot cosϕ (1 − β)t ϕEarth
s2

, (3.28)

at each computational node.

The sun-angle can be either a-priori imposed or computed point-by-point from
the control law, if the geometry of the spacecraft is known. Eq. 3.28 can be
simpler as

obj = MAX

[
T (x)s(x)2

(1 − β)t(x)

]
, (3.29)

to generate an objective function less dependent on the spacecraft specific
sizing.

This objective function can be successfully included in a multi-objective multi-
disciplinary heuristic optimization together with the fuel mass minimisation.
Moreover, the admissible maximum thrust [4] can be included, formulated
either as a constraint or as a further element of the objective functions vector,
and is to be minimized. If the latter scheme is adopted, the Pareto front
allows directly selecting the solution that fits at the best both the mission
requirements and the platform constraints.

3.1.2.2 Planeto-centric scenario

The basic strategy proposed to solve the planeto-centric scenarios consists of
introducing a set of intermediate keplerian orbits. That scheme opens the
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possibility to formalize the actual operational case of switching off thrusters
during eclipses. The problem is formalized first: the initial and final states are
imposed as MEE:

{
MEEi = [pi, fi, gi, hi, ki, Li]
MEEf = [pf , ff , gf , hf , kf , Lf ]. (3.30)

Since the algorithm can work both forwards and backwards in time, two
different but similar formulations are available: for sake of brevity only the
forward algorithm is deeply analyzed. The steps are the following:

1. Problem initialization: at the first algorithmic step the spacecraft
is assumed to be in its initial state, while the final state represents the
desired condition, therefore



MEE1 = MEEi

MEE2 = MEEf

mk(0) = Minitial

tk(0) = 0.

(3.31)

with k = 1, as the first trajectory has still to be sized.

2. k-th intermediate orbit setting: the spacecraft holds in position
described by MEE1 with mass mk(0) at time after departure mapped in
tk(0). The goal stays in localizing the kth intermediate orbit such that
the required maximum thrust equals the maximum actually available.
According to 

pk = (p2 − p1) ηk + p1

fk = (f2 − f1) ηk + f1

gk = (g2 − g1) ηk + g1

hk = (h2 − h1) ηk + h1

kk = (k2 − k1) ηk + k1,

(3.32)

the intermediate orbit positioning depends on the ηk parameter: the
higher the ηk, the higher the gap between the current and the intermediate
orbit, entailing the required thrust to be higher as well.

By numerically solving

max (T (ηk)) − Tavailable = 0, (3.33)
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ηk is quantified. The term max (T (ηk)) in Eq. 3.33 refers to the maximum
thrust required during the kth trajectory, computed through the TOF
free algorithm presented in 3.1.1.

Generally speaking, Eq. 3.33 numerical solution is not straightforward
since continuity and solution existence is not guaranteed. An especially
developed hybrid Newton-Bisection algorithm is here adopted: the algo-
rithm tries solving the equation with the Newton method first; whenever
that fails, it switches to the Bisection method; if a predefined tolerance
cannot be satisfied within a given number of iterations, the equality turns
into the following inequality:

max (T (ηk)) − Tavailable < 0. (3.34)

This last inequality can always be solved since the developed shape-based
algorithm fulfills the constraints expressed by

lim
∆MEE→0

max
( |T |
m

)
= lim

ηk→0
max

( |T |
m

)
= 0. (3.35)

A computed ηk either equal or larger than one, means that the available
on-board thrust suffices to reach the final position MEE2, as per Eq. 3.32:
therefore, ηk is automatically switched to one and the kth trajectory is
re-computed; the algorithm then stops. A computed ηk between 0 and 1
asks to set an iterative loop. The new starting position is represented
by the exit from the eclipse of the kth intermediate orbit, and the initial
mass of the spacecraft on the k + 1 trajectory equals the final mass of
the k trajectory, namely:

MEE1 = MEEk

MEE2 = MEEf

mk+1(0) = mk(1)
tk+1(0) = tk(1) + ∆teclipse.

(3.36)

The time after departure at the beginning of the k+1 trajectory equals the
arrival time of the k trajectory plus the time spent in shadow (∆teclipse).

k is then increased and the algorithm loops up to point 2. The cycle
stops as soon as ηk either equals or gets larger than one.

3. Trajectory analysis: to preserve computational speed, the previous
block limits outputs to the initial/final mass and the TOF. If more
information is needed once the intermediate orbits are placed, the trajec-
tory analysis block is activated to compute all kinematic and dynamic
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quantities related to the trajectory. The rough order of magnitude for
the algorithm computational time is 50%, increased whenever the current
block takes place; therefore, while complex mission scenarios optimization
holds, it should run on a limited number of solutions.

The backward version of the algorithm involves the same steps, with some
important differences:

• The initial state is represented by the arrival. The departure state plays
the role of the desired conditions. Therefore



MEE1 = MEEf

MEE2 = MEEi

mk(1) = Mfinal

tk(1) = 0,

(3.37)

is adopted instead of Eq. 3.31.

• Using Eq. 3.37, Mfinal is the final mass, and tk(x) now means ’time before
arrival’ instead of ’time after departure’ and it is a negative quantity.

• The kth intermediate orbit is integrated itself backward in time, therefore
states are updated according to



MEE1 = MEEi

MEE2 = MEEk

mk+1(1) = mk(0)
tk+1(1) = tk(0) − ∆teclipse,

(3.38)

which is adopted instead of Eq. 3.36.

The final mass to be imposed to the kth + 1 single revolution trajectory
corresponds to the initial mass computed for the kth revolution, as done
to manage the time variable.

To include both forward and backward directions into the trajectory design,
the algorithm broadens applicability to a wider set of scenarios. The algorithm
block diagram and flow is offered in Figure 3.6. Figure 3.5 sketches how the
algorithm works for a multi-revolutionary geocentric trajectory with a high
thrust to weight ratio.

3.1.3 Test Cases
The section discusses some test cases. All runs are accomplished with the
MATLAB R2017b coded algorithm on a laptop equipped with a sixth generation
Intel i7 processor working at 2.6 GHz with no parallelization.
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Figure 3.5: Example of multi-revolution application

3.1.3.1 Very low thrust LEO-GEO transfer

To perform a comparison between the proposed algorithm verification and
literature results, a very low thrust acceleration ( 2 · 10−4m/s2) planar Low
Earth Orbit (LEO) to GEO transfer scenario has been implemented [55].
Parameters are tuned according to Sreesawet et al. [55], and are reported in
Table 3.1.

Table 3.1: Simulation parameters

Parameter Value
Initial Mass [kg] 5000
Thrust [N] 1,16
Departure orbit elevation [km] 2000
Specific impulse [s] 1788

The comparison between the solution found by the presented shape-based
algorithm and the trajectories sized by Sreesawet et al. [55] is summarized
in table 3.2. The shape-based algorithm converges to very similar results in
terms of fuel consumption ( 1% better than the solution found by Sreesawet et
al.) with a computational time that is two orders of magnitude lower. A gap
between 10% and 20% exists on TOF. This undesired gap is mainly due to
the limitation imposed by the continuity of the thrust profile.

3.1.3.2 Orbital Raising to GEO

The scenario explores the case of raising a satellite to GEO exploiting electric
propulsion for energy increase. A satellite dry mass of 800 [kg], equipped with
a propulsion unit with 3800 [s] specific impulse and 0.5 [N] thrust, departs from
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Figure 3.6: Multi-revolution algorithm architecture

a parking orbit gained by the European VEGA launcher [56], to move to GEO
with low thrust. The inclination of the parking orbit is fixed at 5.4 [deg], the
minimum reachable from Kourou without a plane change, and the standard
parking orbit plane for VEGA [56]. The apocenter and pericenter radii are
degrees of freedom for the optimization process. Their values can range from
1.03 [DU ] to 6.6108 [DU ], including therefore any possible intermediate orbit
between LEO and GEO. Due to the Earth rotation axis inclination, eclipses
encountered by a satellite above LEO orbits are strongly affected by the period
of the year: a satellite in GEO goes in Earth shadow only nearby the equinoxes
[6]. Since in this example the spacecraft is supposed to thrust only in sunlight,
the solution depends on the season at GEO arrival too, therefore the two
opposite cases (arrival at the equinoxes or at the solstices) have been analyzed.
To better highlight the relevant effect the eclipses insertion has on the final
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Table 3.2: Comparison of results

Prinetto et al. Sreesawet et al.
Eclipses on off on off
Final mass [kg] 4026 4025 3980 3993
ToF [days] 267 220 216 202
CPU time [s] 0.37 0.18 15.2 12.5

solution, comparison is offered with results with the shadowing constraint
removed.

Figure 3.7: Orbit rising to GEO

Figure 3.7 depicts the most significant scenario: the GEO injection epoch occurs
in the Solstice proximity, and an impulsive disposal maneuver is included in
the optimization process to take into account the mandatory reenter of the
upper stage ’AVUM’ in atmosphere, according to debris mitigation guidelines
[57]. Red lines represent the launchable mass with VEGA launcher: since a
complete set of information for the launcher is not available, data is extrapolated
applying the Tsiolkovsky equation to the launcher upper stage (AVUM) from
the reference orbit available on the user-manual [56]. The time-optimal problem
is solved for all the above-mentioned cases adopting a Nelder-Mead simplex
algorithm [58] modified with a penalty method to force the solution detecting
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an initial mass lower than the launchable mass on the same orbit. Being the
number of revolutions discrete, the time of flight is not continuous: therefore
the adoption of a derivative free algorithm is mandatory.

Table 3.3: Time-optimal constrained solutions

Eclipse Yes Yes No
De-orbiting No No Yes No
Epoch Equinox Solstice Solstice —-
Fuel Mass [kg] 62.30 61.72 71.5 61.59
TOF [days] 83.89 79.84 98.47 66.5
Revolutions [-] 280 279 425 214
rp park. [DU] 1.8994 1.9019 1.6517 1.8816
ra park. [DU] 1.9030 1.9029 1.6524 1.9207
CPU time [s] 23 31 41 12

Table 3.3 compares solutions obtained for similar scenarios by slightly changing
the framework in terms of arrival epoch, eclipse and disposal maneuver con-
straints activation. The fuel consumption is similar for scenarios in the table,
while the TOF increases between 20% and 25% whenever the no-thrust in
shadow constraint is active. Sensitivity to the injection season is contained: the
reason why is that, even if nearby equinox eclipses occur at any distance from
ground, the fraction of time spent in shadow decreases with the radius. The
reported CPU time highlights the algorithm to very quickly find sub-optimal
solutions for multi-revolutions discontinuous trajectories: as far as table 3.3
scenarios are considered, 50 computational nodes per revolution have been used
for the optimization processes and 100 for plotting the final trajectory. The
different CPU times reflect the different number of required revolutions to get
to GEO, depending on the no-thrust in shadow constraint activation: in fact, it
increases the solver complexity and asks for longer thrusting arcs to recover for
time lost during the shadowed ballistic arcs. All optimization processes have
been initialized with the reference VEGA parking orbit (200 [km] x 1500 [km]
height LEO orbits). Literature offers no database with time-optimal solu-
tions of LEO-GEO raising problems including eclipses in the model, therefore
bench-marking is feasible with the no-thrust in shadow constraint disabled.

While the computed optimal solution is slightly more expensive than those
from literature, as will be shown in the section dedicated to the test cases, the
CPU time is orders of magnitude lower[59]. Figure 3.8 shows the attainable 3D
trajectory, with a quasi-circular switching orbit with a radius of 2 [DU], with
no-thrust in shadow and disposal maneuver constraints active; that indeed,
represents the most challenging scenario among those listed in Table 3.3. It
is worth noting the intermediate orbits higher density in Earth proximity.
Moreover, the shadow region (in green) is distorted because of the Earth
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Figure 3.8: Time optimal trajectory

revolution and, less significant, because of the plane changes; the no-thrust
region shrinking with altitude, can also be appreciated.

3.1.3.3 Earth-Mars Rendezvous

The Earth-Mars rendezvous problem is a classical scenario for the validation
of low thrust algorithms [15].

Figure 3.9: Launch opportunities
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A spacecraft dry mass of 1000 [kg], a specific impulse of 3000 [s] and a maximum
thrust of 0.22 [N] are settled. The requested thrust and the fuel mass fraction
over the whole search domain are reported in Figure 3.9; regions where either
the thrust exceeds 1 [N ] or the fuel mass fraction exceeds 0.5 [−] are white
coloured. The optimal thrust and fuel mass fraction are also reported, marked
in red: it clearly appears that the search domain proposed by Vasile [19] must
be enlarged, being the found optima located at its borders. Anyway, staying
stuck on that search domain, two convenient regions exist, in which thrust and
fuel mass fraction, together with TOF, keep low. The computed fuel optimal
solution approaches Vasile and De Pascale results, with the same fuel mass
fraction of 0.177 [-] and a 1000 days TOF, slightly higher than the reference;
the departure date is the 8th of May 2030. The CPU time, exploiting the
standard MATLAB genetic algorithm library with a 100 individuals population
for the optimization and a stopping criteria tuned on the average change of
the cost function, is lower than 10 seconds.

3.1.3.4 Earth-Nereus Rendezvous
The asteroid scenario was selected to underline the ability of the shape-based
algorithm to find near optimal solution when high elliptical orbits are considered.
Nereus is a Near Earth Object (NEO) with an highly elliptical orbit on a plane
slightly above the ecliptic. Its pericenter is located near the Earth’s pericenter,
while the apocenter is at 1.5 [AU]; therefore, a quasi-ballistic solution with a
non-zero escape velocity is expected whenever either the spacecraft fuel mass
fraction or the requested thrust level is selected as a cost function. To facilitate
the best trajectory finding, an extremely wide search space is considered: the
degrees of freedom and their ranges are reported in Table 3.4.

Table 3.4: Search domain

Range Optimum
Dep. Date [dd/mm/yyyy] 2030 to 2050 09/02/2042
Time of Flight [days] 500 to 1500 690.5
Number of revolutions [-] 0 to 2 1
vinf departure [km/s] 0 to 6 5.93
vinf in-plane angle [d] -90 to +90 -8.07
vinf out-plane angle [d] -90 to +90 44.79

The optimization is accomplished through the MATLAB GA, with a population
of 1000 individuals; the optimal trajectory, according to the stop criterion
already introduced, is obtained in 5 minutes with 100 computational nodes.

As can be seen from the output trajectory reported in Figure 3.10, the launcher
directly inserts the spacecraft in a quasi-ballistic orbit, as expected from
theory: thrusters are exploited only on arrival at Nereus; slightly more than
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Figure 3.10: Earth-Nereus trajectory

10 mN suffice, and only 0.0052 fuel mass fraction is requested. This example
shows that the proposed algorithm can manage also highly elliptical orbits in
interplanetary trajectories: that is enabled by the the shape to be a non-linear
interpolation between arrival and departure orbits.
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3.2 Low thrust multi-injection approach for constellation and multi-
mission deployment

With the advent of CubeSats and SmallSats, which range from 0.01 to 180 kg
[60], the need for new techniques to launch in space these classes of satellites
is arising. In the incoming years, a substantial increment in the number
of small satellites to be launched has been forecasted [61]. Studies suggest
that the number of satellites launched in the decade 2019-2028 will have a
x4 growth rate compared to the previous decade and that satellites with a
launch mass < 500 kg will account for 87% of such number. In addition to
this, it was found that "despite a growing number of operational dedicated
launch vehicles, the majority of nano/microsatellites in 2019 chose to leverage
rideshare alternatives" [62]. The drawback of piggyback launches is in the fact
that usually the small satellites are released on the target orbit of the main
payload or in its proximity. Consequently, these satellites would need their
propulsive system to be capable to allocate themselves on the correct orbit and
with the desired phasing. Also, they would need to wait for a launch whose
main payload has a target orbit as similar as possible to their final one. Being
such satellites the largest market share, new ways to facilitate their access to
space are being investigated. A possible solution to overcome the drawbacks
of piggyback payload launches is to develop the last stages of launchers or
dedicated vehicles able to carry the small satellites directly on their operational
orbit. The objective of the work is to develop an algorithm that, given a set of
N satellites to release in different positions around Earth with a vehicle with a
a low-thrust control authority, is capable to define the optimal releasing order
and transfer strategy. In Section 3.2.1 the algorithm developed to solve the
VRP and the transfer strategy selected are presented, while in Section 3.2.2,
the optimization approach adopted to solve the problem is reported. The most
relevant results are discussed in Section 3.2.3.

3.2.1 Multi-deployment algorithm

First, in Section 3.2.1.1, the main structure of the routing solving algorithm
is presented. Even though it is here used to find the releasing order of the
multi-deployment mission, this routing algorithm is suitable to any routing
problem. Afterward, in Section 3.2.1.2, the transfer strategy selected for the
multi-deployment scenario is described.

3.2.1.1 Routing

Routing architecture The main workflow of the algorithm is shown in
Fig. 3.11.
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Figure 3.11: Routing algorithm main workflow.

Input. The main inputs of the algorithm are the initial wet mass of the vehicle
M0, the initial time JD0, the specific impulse Isp, the initial state KP0 and the
two matrices K and P. The former is a matrix of dimensions 6 × N , where
N is the number of orbits onto which to deploy the satellites, or generically
the number of destinations of the routing problem. Each column of the matrix
contains the KP of each orbit. Matrix P is presented in the next item.

Routing Initialization. In this block, the releasing order is defined. Given
N orbits onto which to release the satellites, the optimal path will be one of the
possible permutations of the vector [1, 2, ..., N ], where each number identifies
one of the columns of K. The matrix P is built outside the algorithm through
the operator in Eq. (3.39), where x = [1, 2, 3, .., N − 1, N ]. The operator builds
the matrix P such to contain all the possible permutations of x and its size
will be N ×N !.

P = perms(x) (3.39)
Once the matrix P is built, only one discrete variable identifying one of the
columns of P is enough to define the releasing order. The selected column will
be referred to as p. Arithmetic overflow might occur when building the matrix
P. Such issue and more details about the choice and advantages of introducing
P to solve the VRP are discussed in Section 3.2.1.1.

Single Transfer Initialization. Once the releasing order is fixed by select-
ing a column of P, the first of the N transfers must be initialized. In this block,
the initial mass, current date and target state position are updated. The latter,
due to the presence of environmental perturbations, depends on the epoch.
In particular, only the J2 secular contribution of the Earth’s gravitational
assimetry is taken into account. The target state Right Ascension of the
Ascending Node (RAAN) is updated according to Eq. (3.40).

Ω̇sec = −
3nR2

⊕J2
2p2 cos(i) (3.40)

Low-Thrust Transfer. In this block, the transfer between the current state
and the next one in the releasing order is computed.
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Index Check. In this block, a check about the progress of the releasing
mission takes place. If the last released satellite does not correspond with the
last element of p, the next transfer is initialized. Otherwise, the mission is
completed and the final output can be computed.

Output Once the last element of p has been reached, the total propellant
consumption and duration of the transfer can be computed. In particular, the
total values are the sum of the partial contributions of each transfer.

VRP solution As aforementioned, the problem belongs to the MINLP
family, presenting both discrete and continuous variables. The latter are the
ones optimizing the transfers, while the discrete variables are needed to define
the route of the releasing vehicle. Since the multi-deployment algorithm must
run inside an optimizer in order to find the optimal or near-optimal solutions, it
was necessary to find a way to help the optimizer to efficiently evaluate different
releasing orders. To speed up the algorithm and guarantee convergence onto
a feasible solution, the introduction of the matrix P was considered. This
solution resulted to be particularly efficient (see Section 3.2.1.1) since thanks to
this choice only one discrete variable identifying the column of P is sufficient to
define the visiting order of the orbits, allowing to drastically reduce the search
space. This variable will be the only discrete variable of the optimization and
shall adopt values from 1 to N!, which is the number of columns of matrix P.

On the one hand, the introduction of P speeds up the convergence of the
algorithm with respect to considering N discrete variables to define the visiting
order. On the other hand, the building of P can require large storage space
with increasing values of N. For these reasons the matrix P is built only once
outside the multi-deployment algorithm and this approach proves ineffective
for values of N larger than 11 (e.g. the storage of matrix P for N = 12 would
require 42.8 GB of space). To overcome this limitation, a hybrid optimization
approach between a branch and bound method and a heuristic method was
implemented, explained in Section 3.2.2.

Routing validation It was interesting to compare the results obtained
applying the routing algorithm to a problem whose solution was known in
order to validate it and also to assess the algorithm quality and efficiency.
The algorithm validation was carried on by solving the problem faced in the
5th Global Trajectories Optimization Competition (GTOC), that was already
used for validation in several papers [30] [63]. The scenario of this problem
is different from the multi-deployment mission which is the main focus of the
algorithm developed in this thesis. However, the two problems share similar
features and therefore by applying only really little changes to the algorithm it
was possible to apply it to this different problem. The problem deals with three
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versions of a multiple asteroids rendezvous task, respectively with 4, 8 and 16
targets. The optimization approach explained in Section 3.2.2.1 to enlarge the
capabilities of the algorithm only suits multi-objective optimization (due to the
branching and bounding criteria chosen). For this reason, the algorithm will
only be tested on the 4 and 8 targets cases. The details of the GTOC problem
are reported in the work by Zhang et al [30] and are not here reported for the
sake of brevity.

The workflow of the algorithm stays the one of the routing algorithm repre-
sented in Fig. 3.11, but the transfers will be computed as a single Lambert
transfers. PSO was chosen as computational method for the single-objective
optimization to minimize the total ∆v of the hopping journey. In particular,
the particleswarm function of Matlab Global Optimization Toolbox [64]
was used. The default tuning parameters of the algorithm were adopted in this
case; a research of the optimal ones might further increase the performances
reported in the next paragraphs.

For both the 4 and the 8 targets cases, respectively identified as Case 1 and
Case 2, the problem was solved 10 times and the results are shown in Table 3.6.
The results of the routing algorithm (M1) here proposed are compared to the
ones found by solving it through two different methods (M2 and M3). The
three methods are summarized in Table 3.5.

M1 Routing algorithm

M2 GA with search enhancement

M3 Two Phase Algorithm (TPA)

Table 3.5: Methods for routing algorithm validation.

The results are compared to the ones found by Zhang et al [30], who tried
different computational methods to solve the problem. Only the method
which provided the best results is here reported, which are the ones found
by performing the minimization through the adoption of a GA with search
enhancement (M2). The proposed method will be compared also to the one
proposed by Bang and Ahn [63] which consists in a TPA (M3) characterized
by a first phase in which some elementary solutions are found which are later
used as starting point to solve the TSP.

The results are shown in Table 3.6, which confirms the validity of the algorithm
and also proves its quality in performances. Only the information about the
best results found by adopting M3 was available.

It is interesting to compare not only the results but also the rapidity with which
the algorithm finds its final solution. The computation procedure presented
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Method Case 1 [km/s] Case 2 [km/s]

Best Mean STD Best Mean STD

M1 6.068 7.558 0.779 17.350 20.989 1.921

M2 6.397 7.307 0.570 19.153 22.978 3.044

M3 6.360 - - 16.400 - -

Table 3.6: Results comparison for algorithm validation.

in this report ran on a personal computer with an Intel(R) Core(TM) i7-
7500 (2.7 GHz) processor and a 16 GB RAM. However, the rapidity of the
codes is measured through the evaluation of how many times the Lambert
functions are called to find the final solution and therefore independently on
the computing machine. For the proposed method M1 the averages of the 10
runs are reported in Table 3.7 and compared to the number of Lambert calls of
the other methods [63]. The results indicate that the computational resource
spent by the proposed method is about one order of magnitude smaller than
adopting M2 and two than the M3, even though the latter was capable to find
a better solution for Case 2.

Method Number of Lambert routine calls
Case 1 Case 2

M1 88,000 348,320

M2 960,000 7,680,000

M3 3,526,933 25,392,677

Table 3.7: Number of Lambert routine calls comparison.

All things considered, it is possible to deduce that the algorithm works and
finds reliable solutions to the problem. Also, it is competitive with respect to
similar algorithms in terms of solutions found and especially of computational
cost.

3.2.1.2 Low-thrust transfer
Single transfer The 3-dimensional shape-based algorithm described in
Sec. 3.1 [31] was selected for the single transfers since particularly suited
to planetocentric mission scenarios. The shape of the transfer is proposed
a priori as a non-linear interpolation of similar and consecutive orbits. A
completely analytical shape based approach was necessary due to its really low
computational complexity, which makes it possible to evaluate several different
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trajectories in few seconds. This is of paramount importance for the scope
of the multi-deployment algorithm since a really large number of transfers
have to be computed as fast as possible. When dealing with orbits in the
LEO region, environmental perturbations have an important role, especially
in low-thrust since the order of magnitude of the perturbing accelerations are
sometimes the same as (if not higher than) the thrust acceleration [65]. For
this reason, the impact of the perturbations on the spacecraft trajectories,
especially the J2 effect which is the main contribution, must be taken into
account when planning the transfers, since it cannot be simply counteracted
and canceled by the spacecraft. The shape-based algorithm is then modified
to take into account the J2 perturbation disturbances. The most accurate way
to consider this perturbation would be considering its punctual effect on each
revolution around the main attractor. However, this approach would need
the integration of the equations of motion which would dramatically increase
the computational load. For this reason, only the integral of the effects of
the J2 perturbation are considered in the trajectory computation. After each
revolution around the Earth the current state is corrected with the secular
effect of the perturbation over that revolution. While correcting the current
state with the secular effect of the perturbation introduces some discontinuities
in the trajectory and control low, it provides a good estimation of the propellant
consumption and transfer duration with a really low computational load, which
is the main driver of the algorithm development.

Transfer strategy To perform the transfers in the most efficient way, a
transfer strategy exploiting the secular effect of the J2 perturbation was planned
and is here explained. The main idea behind this approach is to change the
RAAN of the spacecraft not by thrusting the spacecraft but only exploiting
the gravitational perturbation due to the not spherically symmetric mass
distribution of the central attractor [66]. The RAAN of a spacecraft on a given
orbit can be changed for free by waiting the necessary amount of time without
counteracting the J2 perturbation. By doing so, the rate of change of the
RAAN would be the one in Eq. (3.40). Alternatively, the spacecraft can also
move to another orbit in order to make the desired change of RAAN happen
faster at a cost of a little propellant consumption. This two-legs transfer option
turns the transfer problem into an optimization problem whose variables are
the KP of the intermediate orbit onto which to stationary for the change of
RAAN. The workflow of the transfer strategy is reported in Fig. 3.12 and
structured in the blocks described below:

Inputs. The starting orbit KP1 and the target orbit KP2 are the two main
inputs to the function.
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Define KPd

KP1 KP2

First 
Low-Thrust

Transfer

Compute
Drifting Time

Second 
Low-Thrust

Transfer

Mprop TOF

Figure 3.12: Single low-thrust J2-exploiting transfer scheme.

Drifting Orbit Definition. The drifting orbit is defined by the six KP
reported in Table 3.8. As it can be seen from Eq. (3.40), the three parameters

ad ed id Ωd ωd θd

var 0 var free 1
2(ω1 + ω2) free

Table 3.8: KP of the drifting orbit for low-thrust J2-exploiting transfer
strategy.

which affect the RAAN variation are the semi-major axis a, the eccentricity e
and the inclination i. For this reason, not all the KP are considered as variables
in order to reduce the size of the optimization problem:

• The semi-major axis is the one which has the greatest impact on the
RAAN variation and it is also an element whose value is relatively cheap
to control and change, making it the main variable of the optimization.

• Eccentricity affects the RAAN change since a high value means an orbit
perigee at a lower altitude and therefore more subject to the gravitational
asymmetries of the central planet. However, it is preferred to have a
uniform influence of such asymmetry on the spacecraft over the revolutions
and therefore this value is chosen to be 0.

• The inclination is a parameter that also greatly affects the RAAN varia-
tion but also extremely expensive to change. Therefore, it is considered as
variable but only when a change of inclination is necessary from original
to target orbit. In that case, the value of the inclination of the drifting
orbit is selected between i1 and i2. In the case in which i1 and i2 have
the same value, the inclination is kept the same as the ones of the two
orbits unless polar orbits are dealt with. Polar orbits do not experience
the RAAN secular variation and, for this reason, it is necessary to depart
from 90◦ inclination to shift the orbital plane.

• Saying that Ωd is left free means that no control is considered on the
final value of the RAAN when moving to the drifting orbit. The RAAN
of the spacecraft is left to vary according to the J2 effect. There would

44



3.2. Low thrust multi-injection approach for constellation and
multi-mission deployment

be no point or convenience in controlling the RAAN since the goal itself
of reaching the drifting orbit is to change such parameter by exploiting
the natural perturbations instead of the propellant.

• The argument of perigee ω of an orbit does not affect the secular variation
of the RAAN. For this reason, ωd was not taken as variable of the problem
and was arbitrarily set to have a halfway value between ω1 and ω2.

• θd is left free since it affects neither the secular RAAN variation nor the
cost or duration of the multi-revolution low-thrust transfer.

First Transfer. Once the drifting orbit is defined, the cost and duration of
the first low-thrust transfer are computed.

Drifting Time Computation. Once the target orbit has been reached,
it is necessary to compute the amount of time necessary to close the RAAN
gap. Generally speaking, knowing the elements of the drifting orbit KPd and
the ones of the target orbit KP2 it is possible to compute the RAAN gap
(Eq. (3.41a)) at the moment of the arrival on the drifting orbit and the relative
drift rate (Eq. (3.41b)). Once these two quantities are known, it is possible to
compute the waiting time (Eq. (3.41c)) necessary to have Ω2 = Ωd, at a value
different from the two original ones.

∆Ω = Ω2 − Ωd (3.41a)

∆Ω̇ = Ω̇d − Ω̇2 (3.41b)

twait = ∆Ω
∆Ω̇

(3.41c)

While this is true for impulsive maneuvers, when dealing with low-thrust
transfers the computation of the exact Ωd at which to depart from the drifting
orbit is slightly more complicated. Since low-thrust transfers between the
orbits have large times of flight, an amount of relative RAAN shift happens
also during the transfer from the drifting to the target orbit. For this reason,
departing when the two values of the RAAN are already equal would require
some degree of control on such parameter during the transfer to the target
orbit to keep such values equal. The most efficient and less expensive way
to perform the transfer would be to estimate the relative drift which takes
place during the transfer from the drifting to the target orbit and to take it
into account when computing the drifting time. To adopt this approach the
following steps must be taken:

• A fictitious target orbit is defined with the same parameters as the true
target orbit KP2 apart from the RAAN which is left free, to estimate
the amount of shift that would take place during the transfer. Such shift
is referred to as ∆Ωt,1.
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• Once computed the transfer to the fictitious target orbit, knowing the
TOF of the transfer it is possible to estimate also how much the target
orbit shifts during the duration of the transfer. This amount of RAAN
shift is defined as ∆Ωt,2.

• From these two quantities it is possible to compute the amount of rel-
ative shift ∆Ωt (Eq. (3.42a)) and use it to correct the RAAN gap to
close (Eq. (3.42b)). The time necessary is then computed according to
Eq. (3.41c) and with Eq. (3.40) the new values of the RAAN at the end
of the waiting time are updated.

∆Ωt = ∆Ωt,1 − ∆Ωt,2 (3.42a)

∆Ω = Ω2 − Ωd + ∆Ωt (3.42b)

Shortly, this correction on ∆Ω allows finding the correct Ωd at which to depart
from the drifting orbit, which does not coincide with Ω2 unless the two orbits
are so close or so high in altitude that the J2 effect during the transfer can
be considered negligible. Thanks to this estimation, no propellant has to be
consumed to control the RAAN because the transfer is planned in such a way
to meet the target orbit at the correct value of this parameter.

Second Transfer. Once the RAAN of current and target orbits have been
updated after the stationing onto the drifting orbit, the second low-thrust
transfer to the target orbit can effectively be computed.

Outputs. At the end, the whole cost of the two-legs transfer is computed. In
terms of propellant, the total amount needed to reach the target orbit is the
sum of the propellant consumed in the two legs of the transfer. In terms of
time, the total duration of the transfer is the sum of the TOFs of the two legs
and also the waiting time onto the drifting orbit.

3.2.2 Optimization
First, the optimization approach adopted is presented in Section 3.2.2.1. Later,
more details about how some solutions are discarded and about the introduction
of constraints are discussed in Section 3.2.2.2 and Section 3.2.2.3.

3.2.2.1 Optimization approach
A multi-objective optimizations was preferred to minimize the propellant
consumption and time duration of the mission. A heuristic optimization
method was necessary due to the large search space of the problem. Heuristic
methods [67] do not grant to find the optimal solutions to the problem but the
low computational effort required to achieve this near-optimal solution makes
them very valuable. In particular, population-based methods are more suitable
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to find promising areas in a large search space [68]. For these reasons, the
MOPSO [69] method, specially modified to work with discrete variables, will
be used to perform all the multi-objective optimizations. The two main tuning
parameters of the method are Np and Mgen.

However, while the optimization method selected was the MOPSO, a particular
approach to deal with the optimization of the problem was developed and
is presented in this section. This approach was at first developed to deal
with problem with N> 11, which was a problem after the introduction of P.
However, it proved to provide better results even when applied to cases of
smaller dimension (see Section 3.2.3.1).

Instead of dealing with the whole hopping trajectory at once, the problem is
broken up into smaller and consequential subproblems. A parameter r which
defines the dimension of the subproblem is chosen, defining also the number
of iterations necessary to solve the problem of reaching the N orbits. The
number of iterations Niter needed to solve the problem can be computed by
Eq. (3.43), where the operator rounds the result of the fraction to the nearest
integer greater than or equal to it. In the case in which the remainder after the
division of N by r is different from zero, the last iteration is performed with a
subset of size r equal to the remainder.

Niter = ceil
(
N

r

)
(3.43)

When adopting this hybrid approach, the matrix P to give as input to the
routing algorithm is built through the use of a different operator than Eq. (3.39).
The new operator is shown in Eq. (3.44) and builds a matrix which, given a set
of N orbits to reach, only contains the permutations of a subset of r elements
of the vector x.

P = subperms(x, r) (3.44)

The number of possible permutations Nperms, in this case, is not anymore
N! but can be found through Eq. (3.45). The size of the matrix P will be
r ×Nperms.

Nperms = N !
(N − r)! (3.45)

The pseudo code of the optimization approach is presented in Algorithm 1,
whose steps are described below, and is represented by the scheme in Fig. 3.13.
In the latter, each circle represents a single solution. The grey solutions
actually represent several solutions, whose number is unknown a priori due to
the heuristic nature of the optimization.
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Figure 3.13: Branch and bound based heuristic approach scheme.

Algorithm 1: Branch and bound based heuristic approach
Data: x0, i0, h0, Niter, r
Result: FNiter , HNiter

begin
[F1, H1] = branching(x0, i0, h0, r)
for j = 2 to Niter do

Nj−1 = length(Hj−1(:, 1))
for k = 1 to Nj−1 do

hj−1,k = Hj−1(k, :))
xj−1,k = exclude(x0, hj−1,k)
ij−1,k = Fj−1(k, :))
[Fj,k, Hj,k] = branching(xj−1,k, ij−1,k, hj−1,k, r)

end
Hj = [Hj,1; Hj,2; ... ; Hj,Nj−1 ]
Fj = [Fj,1; Fj,2; ... ; Fj,Nj−1 ]
[Fj , Hj ] = bounding(Fj , Hj)

end
[Fj , Hj ] = boundingpareto(Fj , Hj)

end

• The inputs to the algorithm are the vector of all the elements still to
be reached x, the vector of initial conditions i, the vector containing
the indices of the destinations already reached h. At the first iteration
x0 = [1, 2, .., N ] and h0 is initialized as an empty vector. In addition to
these, the number of iterations Niter computed in Eq. (3.43) and the
sub-search dimension r are also given as input to the algorithm.
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• The first iteration is performed outside the for loop. The operator
branching, starting from one initial condition, runs the heuristic opti-
mizer and finds a set of partial solutions which make the first branches
of the algorithm. The matrix P at this iteration is computed through
Eq. (3.44), with x0 as input. The heuristic algorithm only gives as
output the solution which respect the bounding criteria, explained in Sec-
tion 3.2.2.2. Each solution is characterised by fj,1, hj,1 and xj,1 vectors.
The survived solutions are stored in two matrices:

– Fj = [fj,1; fj,2; ... ; fj,Nj ] is the matrix containing the final condi-
tions of each solution, including the values of the objectives.

– Each row of Hj = [hj,1; hj,2; ... ; hj,Nj ] contains the indices of the
elements reached by the respective partial solution.

• Now the first for loop begins. At each iteration, Nj−1 is computed, which
is the number of the branches coming from the previous iteration. The
operator length computes the number of elements of the vector of input.
Each of the branches represents a solution that must be expanded in the
following for loop.

• One branch at a time, the iteration is initialized defining hj−1,k, ij−1,k
and xj−1,k. The latter in particular is defined by the operator exclude.
This operator cancels from x0 all the elements already reached by that
partial solution, identified by hj−1,k. The new vector xj−1,k will have
dimension N − r · j.

• From each branch, a new set of branches is found again through the
operator branching. At each iteration a different P is given as input to
the routing algorithm, again computed through Eq. (3.44), each time
with xj−1,k as input. The branches are stored in Fj,k and Hj,k.

• Once all the branches have been expanded, the solutions are stored in
the matrices Fj and Hj , which include all the branches born from the
current iteration.

• Before starting the next iteration, the bounding criteria must be applied
to Fj and Hj . While it is true that each Fj,k is composed by solutions
which survived the bounding inside the single optimization, now they
must be compared to the all the other set of solutions of the iteration.
The bounding criteria are applied by the operator bounding and the new
Fj and Hj , containing only the survived solutions, are given as output.
In Fig. 3.13 the solutions which do not survive the bounding criteria are
indicated with the symbol ⊥.

• The solutions of the iteration j−1 which survived the bounding operator,
are now expanded themselves.
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• After the last iteration, if necessary, a more stringent bounding criterion
is applied to the final set of solutions. In particular, through the use
of the operator boundingpareto only the non-dominated solutions are
kept.

3.2.2.2 Bounding criteria

The operator bounding, given a set of solutions and some bounding criteria,
only keeps the solutions that respect the latter while discarding all the others.
Choosing to discard all the solutions not belonging to the Pareto front of the
sub-problem would lead to the risk of discarding some partial solutions really
close to the Pareto front, which might eventually become optimal solutions
when extending them. Therefore, a region of solutions must be selected: all
the solutions belonging to the Pareto front or within a certain percentage
range from one of the solutions in the front can be kept and then extended.
These solutions outside the Pareto front but which survive the bounding
criterion are referred to as "partially dominated solutions", even though they
are actually fully dominated according to the definition of dominated solutions.
The value rperc, chosen between 0 and 1, sets the percentage range within
which a dominated solution is considered to be only partially dominated. A
schematic representation of such solutions is reported in Fig. 3.14. Indicating

f1(x)

f2(x)

Non-dominated solutions
Dominated solutions

Partially Dominated Solutions

Figure 3.14: Pareto front and partially dominated solutions.

with f1,D and f2,D the objectives of a dominated solutions and with f1,P and
f2,P the ones of the closest non-dominated solution, a dominated solutions is
considered to be partially dominated if both the criteria in Eq. (3.46) are met.

f1,D − f1,P
f1,P

< rperc (3.46a)
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f2,D − f2,P
f2,P

< rperc (3.46b)

Graphically, each Pareto solution has a rectangle with sides of length rperc ·f1,P
and rperc · f2,P which defines the range into which a dominated solution is
considered to be partially dominated.

3.2.2.3 Constraints

When dealing with engineering problems, it is of paramount importance that
an algorithm allows the introduction of constraints to some of the variables. In
the routing algorithm, the constraints were introduced by the use of penalty
functions.

Penalty functions allow treating of constrained problems as unconstrained
problems, introducing an artificial penalty when the constraint is violated, but
may create severe slope changes or discontinuities in the solution space, which
could interfere with a heuristic optimization algorithm. To help the latter
converge onto feasible solutions, it was chosen to introduce a penalty function
whose penalty is proportional to the amount of violation of the constraint.
For instance, considering a generic objective f1 and an upper limit L1, the
objective function is modified adding the quadratic loss function λ(f1, L1) in
Eq. (3.47).

λ(f1, L1) = max(0, f1 − L1)2 (3.47)

The new formulation of the objective is presented in Eq. (3.48),

f1 = f1 + F · λ(f1, L1) (3.48)

where F is the penalty factor, a scalar greater than 0 and arbitrarily chosen
depending on the order of magnitude of f1.

3.2.3 Results and Discussion

In Section 3.2.3.1 an example of multi-deployment is reported, solved with
both a traditional pure heuristic approach and the branch and bound based
heuristic one. Afterward, in Section 3.2.3.2, a case of deployment of an existing
constellation is dealt with. Due to the relatively high mass of the satellites
belonging to existing constellations around Earth, the deployment of only one
portion of the constellation is considered.

3.2.3.1 Heuristic-hybrid approaches comparison

A generic set of 6 satellites to deploy in LEO was considered. The KP of the
orbits into which to insert each of them are reported in Table 3.9, together
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ID a [DU] e [-] i [deg] Ω [deg] ω [deg]

0 1.05 0.02 66 0 0
1 1.06 0.01 67 10 5
2 1.07 0.02 66 8 0
3 1.08 0.01 67 328 3
4 1.09 0.03 66 161 0
5 1.10 0 68 22 0
6 1.11 0.05 66 159 20

Table 3.9: Initial states for multi-deployment mission example.

with the starting orbit, indicated by the index 0, from which the vehicle starts
the journey. DU is equal to the radius of the Earth, which was used to non-
dimensionalize the semi-major axes. All the KP reported are the ones at the
time of the departure from orbit KP0. The lower and upper bounds of the
optimization for this example are the ones in Table 3.10. The inclinations of
the drifting orbits are allowed to vary between the minimum and maximum
value of the inclinations of the sets of orbits into which to release the satellites.

Parameter lb ub

ad [DU] 1.0314 1.300

id [deg] 66 68

Table 3.10: Optimization tuning parameters for multi-deployment mission
example.

The characteristics of the deploying vehicle chosen for this example are presented
in Table 3.11. All the 6 satellites to be released were considered to be nano-
satellites of 5 kg mass each.

M0 [kg] T [N] Isp [s]

100 0.5 3500

Table 3.11: Spacecraft characteristics for multi-deployment mission example.

First, the problem was solved with a pure heurstic approach addressing the
N = 6 problem directly. Np = 20 and Mgen = 20 were chosen for the only
iteration of the optimization. Afterward, the hybrid approach was carried on
with r = 3, meaning that two iterations were needed to find the final solutions.
Two different values of Np and Mgen were chosen for the first and second
iteration, reported in Table 3.12. This was done since the second iteration has
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Iter 1 Iter 2

Np 10 5

Mgen 20 10

Table 3.12: Optimization tuning parameters of hybrid approach for
optimization approaches comparison.

a solutions space smaller than the first iteration. While the first iteration has
120 possible permutations according to Eq. (3.45), the second iteration only
has 6, since the matrix P in this case only has N! possible columns (Eq. (3.39)),
with this time N = r = 3.

Since the final result of a heuristic optimization method strongly depends
on the initial solution, comparing only one optimization run to compare the
results would not be really significant. For this reason, in order to truly assess
whether or not one approach is better than the other, more than one run per
each must be considered. For both of them, 10 runs were performed and the
10 Pareto fronts have been merged into one, where only the non-dominated
solutions survived. The two Pareto fronts are shown in Fig. 3.15, while the

Figure 3.15: Comparison of optimization approaches results (M0 = 100 kg;
Isp = 3500 s).

transparent markers represent the clouds of solutions found by the 10 runs of
the optimization for both the approaches. It is clear how the Pareto front found
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from the hybrid optimization approach is composed by far better solutions
with respect to the pure heuristic one. Indeed, the blue Pareto front dominates
the red one in all its solutions found.

It is important when comparing the two optimization approaches to compare not
only the final results but also the computational effort necessary to achieve them.
The tuning parameters Np and Mgen were chosen to have a similar duration
of the runs between the two approaches. The time is indeed proportional to
the function evaluations necessary to find the solution. The average duration
of the 10 runs of the hybrid approach was 225.5 s, while the heuristic one
needed an average of 282.3 s per run. It is possible to conclude that the hybrid
approach outperforms the pure heuristic one both in terms of results and
computing effort. In light of such results, the hybrid optimization approach
will be chosen as the standard to perform the minimization of the objectives,
also when dealing with problems characterized by N < 11.

3.2.3.2 Constellation insertion

Here, a possible real application is dealt with: the deployment of a portion
of the satellites belonging to the Starlink [70] constellation was considered.
The satellites of this constellation have a mass of 260 kg each. The Starlink
spacecraft constellation will be spread into 24 orbital planes with an inclination
of 53◦, on circular orbits with an altitude of 550 km. A possible case may be
the replacement of 6 satellites of the constellation, each on a different orbital
plane. Supposing that the multi-deployment vehicle is already released on one
of the orbital planes of the constellation (the one referred to with ID 0), the
planes onto which to release the satellites are reported in Table 3.13.

ID a [DU] e [-] i [deg] Ω [deg]

0 1.0862 0 53 0
1 1.0862 0 53 15
2 1.0862 0 53 30
3 1.0862 0 53 45
4 1.0862 0 53 60
5 1.0862 0 53 90
6 1.0862 0 53 105

Table 3.13: Initial states for Starlink replacement mission.

The initial wet mass M0 of the releasing vehicle was considered to be 2000
kg, according to mass estimating statistical relationships [71]. The vehicle is
considered to be provided with ten RIT 2X Series [72] thrusters, each with a
nominal thrust of 171 mN and constant specific impulse of 3500 s.
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3.2. Low thrust multi-injection approach for constellation and
multi-mission deployment

The optimization of the multi-deployment mission was carried on through the
use of the branch and bound based heuristic approach. With the size of the
problem N = 6 and the size of the subsearch r = 3, two iterations were needed
to find the final solutions. The tuning parameters of the optimization are
reported in Table 3.14, while the lower and upper bounds of the research are
shown in Table 3.15.

Iter 1 Iter 2

Np 15 10

Mgen 30 20

Table 3.14: Optimization tuning parameters for Starlink replacement mission.

Parameter lb ub

ad [DU] 1.0314 1.250

id [deg] 53 53

Table 3.15: Lower and upper bounds for Starlink replacement mission.

The results of one run of the algorithm are presented in the top Pareto front
in Fig. 3.16. A constraint on a maximum mission time of 2 years was imposed,
reason why all the results do not exceed 700 d of duration. The bottom
subfigure in Fig. 3.16 represents a focus on the fastest solutions of the complete
Pareto front of the top one.

It can be interesting to focus on one solutions to go deeper in detail on the
releasing strategy. For instance, the fastest solution is considered. As it could
be expected from Table 3.13, the fastest solutions are characterized by the
releasing order p = [1, 2, 3, 4, 5, 6]. The releasing details of this solution are
reported in Table 3.16.

Some considerations arise by analyzing the results:

• In four out of the six transfers, the value of ad was set equal to the
upper bound of the solutions space. This suggests that faster solutions,
if desired, can be achieved by setting a higher upper bound.

• It can be noticed how the propellant mass required for the last transfers
is smaller in magnitude than the one of the initial transfers. This is
due to the lightening of the vehicle, whose main contribution is given by
the release of the satellites rather than by the propellant consumption.
Together with the propellant mass, also the times of flight of the transfers

55



Chapter 3. Orbital Guidance

Figure 3.16: Top: Pareto front for Starlink replacement mission. Bottom:
focus on fastest solutions (M0 = 2000 kg; Isp = 3500 s).

R1 R2 R3 R4 R5 R6

ad [DU] 1.2136 1.2500 1.1898 1.2500 1.2500 1.2500

id [deg] 53.00 53.00 53.00 53.00 53.00 53.00

Mprop,1 [kg] 23.44 24.91 13.40 16.14 11.86 7.68

TOF1 [d] 7.1962 7.7478 4.2896 5.0999 3.7778 2.5871

twait [d] 2.8250 0.3743 7.7710 3.1846 13.1871 5.8489

Mprop,2 [kg] 23.16 24.54 13.27 15.92 11.67 7.57

TOF2 [d] 7.1659 7.6668 4.2363 5.0745 3.7877 2.4532

Table 3.16: Release details of the fastest solution for Starlink replacement
mission.

decrease due to the higher acceleration peaks that can be achieved, being
the maximum available thrust constant.

• Finally, it is possible to notice how the waiting times twait on the drifting
orbits grow bigger with the going on of the mission. Due to the smaller
times of flight, a smaller portion of the RAAN gap is covered during the
two legs of the transfers. For this reason, more time must be spent on
the drifting orbit to obtain the desired RAAN shift.
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3.2. Low thrust multi-injection approach for constellation and
multi-mission deployment

Due to the really high initial mass of the vehicle, an extreme case with 10
thrusters simultaneously firing was considered to get the previous results. It is
interesting to study the behaviour of the solutions when changing the number
of thrusters the vehicle is provided with. A run of the optimization with the
same tuning parameters as before has been performed with 7, 5 and 2 thrusters.
The resulting Pareto fronts are plotted in the same figure in Fig. 3.17, where

Figure 3.17: Pareto fronts with different number of thrusters for Starlink
replacement mission (M0 = 2000 kg; Isp = 3500 s).

the numbers in the legend represent the number of thrusters that can be fired
simultaneously. Respectively, the three configurations lead to a maximum
thrust available of 1.1970 N , 0.8550 N and 0.3420 N . As expected, there is
no difference in the slow solutions, even due to the maximum mission time
duration set to 2 years. The solutions with low propellant consumption and
high mission duration are characterized by the choice of a ad really similar to
the semi-major axis of the orbits of the constellation, solutions that can be
carried out with each propulsive configuration. The real difference is in the
fastest solutions, since the higher the maximum thrust available the faster an
orbit with different ad can be reached. Ten thrusters allow the deployment of
the whole set of satellites in about 100 days, while two thrusters configuration
requires at least about 250 days to release the six of them.

This comparison is important to understand how the thrust authority does not
deeply impact the time duration of the missions, since the greatest contribution
to it is given by the amount of time to wait on the drifting orbits to change
the RAAN.
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CHAPTER4
Attitude Guidance

In this section a novel approach to the definition of the attitude guidance
trough an innovative shape-based method is proposed. In particular the
algorithm, that solve the exact EoM in an inverse formulation described below
in this section,can be successfully adopted to generate attitude guidance of a
wide range of maneuvers, even in presence of attitude or actuation practical
constraints.

4.1 Analytical derivation of the equation of motion

The aim of this section is to write an analytical parametrization of the attitude
motion for a rigid spacecraft, equipped with a certain number of momentum
exchange devices. In this case, the angular momentum of the spacecraft can
be written using a barycentric Body-Fixed (BF) RF as reported in Eq. 4.1

Γ = ΓSC + ΓRWs = ISCω + ARWshRWs (4.1)

In which ISC is the inertia tensor of the rigid spacecraft, including the Reaction
Wheels (RWs) at rest, hr is the vector containing the scalar value of the angular
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momentum of each inertia exchange device and ARWs is the assembly matrix
in which each column of the matrix contains the mounting direction of the
corresponding momentum exchange device. The EoM of the spacecraft can be
computed using the second cardinal equation of the dynamics as in Eq. 4.2.

dΓ
dt

+ ω × Γ = Mpert (4.2)

which, considering a generic set of inertia exchange actuators ( RWs, Control
Moment Gyroscope (CGM) or Inertia Wheel (IW)) lead to the EoM reported
in Eq. 4.3

ISCω̇ + ω × ISCω + Ȧmhr + ARWsḣr + ω × ARWshr = Mpert (4.3)

If the analysis is restricted to the classical architecture consisting of RWs only,
in which their directions of the angular momentum with respect to the BF RF
is constant in time, the EoM can be rewritten as presented in Eq. 4.4, in which
the dynamics of the control devices is grouped in the variable Mcontrol for sake
of simplicity.

 ISCω̇ + ω × ISCω = Mpert + Mcontrol

Mcontrol = −
(
ARWsḣr + ω × ARWshr

) (4.4)

The system of attitude EoM for the rigid spacecraft equipped with RWs can be
rewritten as in Eq. 4.5, in which A−1

RWs is the Moore-Penrose Pseudo-inverse
matrix of the RWs assembly matrix ARWs, to find out the dynamics of the
actuators.

ḣr = −A−1
RWs [− (ISCω̇ + ω × ISCω − Mpert) + ω × ARWshr] (4.5)

In particular, it is important point out that, while it is possible to have a
complete analytical representation for the control torque Mcontrol, to find out
the exact guidance for the RWs, it is necessary to numerically integrate the
dynamical system as presented in Eq. 4.5.

In order to pursue the objective of creating an analytical representation of
the dynamics of the satellite’s attitude using a quaternion shaping approach,
it is important to analytically derive the angular velocity ω and the angular
acceleration ω̇ starting from the quaternion themselves.

In particular, the angular velocity is linked with the quaternions by the quater-
nions derivative law, as in Eq. 4.6, in which Ω is defined as in Eq. 4.7
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4.1. Analytical derivation of the equation of motion

dq

dt
= 1

2Ωq (4.6)

Ω =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 (4.7)

that can be rewritten in an explicit form as in Eq. 4.8.


q̇1 = 1

2 (q2ωz − q3ωy + q4ωx)
q̇2 = 1

2 (−q1ωz + q3ωx + q4ωy)
q̇3 = 1

2 (q1ωy − q2ωx + q4ωz)
q̇4 = 1

2 (−q1ωx − q2ωy − q3ωz)

(4.8)

The system of equation presented in Equation 4.8 can be solved to find out
the relation between the angular velocity of a rigid body and the values of
its quaternions and quaternions time derivative, as reported in Eq. 4.9. It is
important to point out that, since the system consist of four scalar equation
among which only three are linearly independent, and there are three unknowns,
it is possible to consider only three of the four equation to solve the system in
the angular velocity unknowns, as reported in Eq. 4.9


ωx = 1

q4

(
q̇1(q2

1 + q2
4) + q̇2(q1q2 + q3q4) + q̇3(q1q3 − q2q4)

)
ωy = 1

q4

(
q̇1(q1q2 − q3q4) + q̇2(q2

2 + q2
4) + q̇3(q1q4 + q2q3)

)
ωz = 1

q4

(
q̇1(q1q3 + q2q4) + q̇2(q2q3 − q1q4) + q̇3(q2

2 + q2
4)

) (4.9)

to find out the relation between quaternions and angular velocities, is sufficient
to make the time derivative of Eq. 4.9, leading to Eq. 4.10
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˙omegax = 1
q4

(q̈1(q2
1 + q2

4) + q̈2(q1q2 + q3q4) + q̈3(q1q3 − q2q4)+

+2q̇1(q1q̇1 + q4q̇4) + q̇2(q̇1q2 + q1q̇2 + q̇3q4 + q3q̇4)+

+q̇3(q̇1q3 + q1q̇3 − q̇2q4 − q2q̇4) − q̇4ωx)

˙omegay = 1
q4

(q̈1(q1q2 − q3q4) + q̈2(q2
2 + q2

4) + q̈3(q1q4 + q2q3)+

+q̇1(q1q2 + q1q2 − q3q4 − q3q4) + 2q̇2(q2q2 + q4q4)+

+q̇3(q1q4 + q1q4 + q2q3 + q2q3) − q̇4ωy))

˙omegaz = 1
q4

(q̈1(q1q3 + q2q4) + q̈2(q2q3 − q1q4) + q̈3(q2
2 + q2

4)+

+q̇1(q̇1q3 + q1q̇3 + q̇2q4 + q2q̇4) + q̇2(q̇2q3 + q2q̇3 − q̇1q4 − q1q̇4)+

+2q̇3(q2q̇2 + q4q̇4) − q̇4ωz)
(4.10)

Now that all the kinematic relations have been obtained, it is possible to notice
that in order to have a completely analytical formulation of the guidance, it is
necessary to impose on the quaternions a shape that possesses the following
requirements:

• The shaping function for the quaternions qi = qi(t) shall be continuous
and differentiable up to the second derivative in the domain 0 ≤ t ≤ tfin.

• The shaping function for the quaternions shall posses an analytical
representation up to the second derivative in the domain 0 ≤ t ≤ tfin.

• The shaping function for the quaternions shall posses a sufficiently wide
number of degrees of freedom to impose initial and final conditions on the
quaternions value, as in Eq. 4.11, in which q̄i,ini and q̄i,fin are respectively
the initial and final prescribed quaternions.{

qi(0) = q̄i,ini

qi(tf ) = q̄i,fin
(4.11)

• The shaping function for the quaternions shall posses a sufficiently wide
number of degrees of freedom to impose initial and final conditions on
the first time derivative of the quaternions value, as in Eq. 4.12, in
which ¯̇qi,ini and ¯̇qi,fin are respectively the initial and final prescribed time
derivative of the quaternions, that can be easily computed starting from
the prescribed initial and final angular velocities using Eq. 4.8.

{
q̇i(0) = ¯̇qi,ini
q̇i(tf ) = ¯̇qi,fin

(4.12)
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4.2. Quaternion shaping

Section 4.2 describes the quaternion shaping strategy developed to match the
requirements here-above described.

4.2 Quaternion shaping

The aim of this section is to describe the developed shaping strategy for the
quaternions, to be inserted in the reverted dynamics presented in Section 4.1.
The kinematic, expressed using the quaternions, is parametrized with respect
to the non-dimensional time, defined as in Eq. 4.13

x = t

T
→ df(t)

dt
= 1
T

df(t)
dx

with 0 ≤ x ≤ 1 (4.13)

In this section, for sake of simplicity, the derivative with respected to time and
non-dimensional time are marked as in Eq. 4.14

{
df
dt = ḟ
df
dx = f ′ (4.14)

The quaternion shaping is based on a non-linear interpolation between the
natural evolution of the initial and final quaternions, qinii (t) and qfini (t) re-
spectively. The natural evolution of the initial and final attitude is computed
outside the optimization loop, to increase the computational efficiency of the
algorithm, and can include the natural perturbations more relevant in a LEO
environment [41]:

• Gravity gradient

• Solar pressure torque

• Magnetic torque

• Atmospheric drag torque

The non-linear interpolation adopted to shape each quaternion component is
performed following Eq. 4.15, as shown in Fig. 4.1.

qi,nn(x) = ∆qiχ(x) + qinii with ∆qi =
(
qfini (t) − qinii (t)

)
(4.15)

Following this approach, it is important to point out that, for a general set of
interpolating functions χ(x) the norm of the interpolated quaternion qnn(x) is
not unitary, and therefore a dedicated normalization step will be needed, as
described later in this Section.
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Figure 4.1: Quaternions shaping

To compute the full kinematic of the rigid body attitude motion, the first and
second time derivative of the quaternion shall be computed, as in Eq. 4.16 and
Eq. 4.17 respectively

q̇i,nn(x) =d
(
∆qiχ(x) + qinii

)
dt

= ∆q̇iχ(x) + ∆qi
T
χ(x)′ + q̇inii

with ∆q̇i =
(
q̇fini − q̇inii

)
(4.16)

q̈i,nn(x) =d (q̇i,nn(x))
dt

= ∆q̈iχ(x) + 2∆q̇i
T
χ(x)′ + ∆qi

T 2 χ(x)′′ + q̈inii

with ∆q̈i =
(
q̈fini − q̈inii

)
(4.17)

The boundary conditions to be satisfied are listed in Eq (4.18)


qi(0) = q̄i,ini

qi(1) = q̄i,fin

q̇i(0) = ¯̇qi,ini
q̇i(1) = ¯̇qi,fin

(4.18)
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in which the initial and final values of quaternions can be computed starting
from the initial and final cosine matrix, as in Eq. 4.19


q1 = 1

4q4
(A2,3 −A3,2)

q2 = 1
4q4

(A3,1 −A1,3)
q3 = 1

4q4
(A1,2 −A2,1)

q4 = ±1
2
√

1 +A1,1 +A2,2 +A3,3

(4.19)

while the derivative of quaternions at the initial and final instant can be
computed using Eq. 4.8. To compute the time evolution of the second derivative
of the quaternions, that are required to compute the variation of angular
velocity, as shown in Eq. 4.10, it is necessary to compute the second order
time derivative of the initial and final quaternions, as can be seen looking at
Eq. 4.17. These values can be computed taking the time derivative of Eq. 4.8,
as shown in Eq. 4.20


q̈1 = q̇2ωz + q2ω̇z + q̇3ωy + q3ω̇y + q̇4ωx + q4ω̇x

q̈2 = −q̇1ωz − q1ω̇z + q̇3ωx + q3ω̇x + q̇4ωy + q4ω̇y

q̈3 = q̇1ωy + q1ω̇y + q̇2ωx + q2ω̇x + q̇4ωz + q4ω̇z

q̈4 = −q̇1ωx − q1ω̇x + q̇2ωy + q2ω̇y + q̇3ωz + q3ω̇z

(4.20)

One of the advantages of the proposed method to parameterize the equation
of motion is that the boundary conditions can be applied directly on the χ(x)
function, and are identical for all the attitude maneuvers, with a substantial
beneficial effect on the CPU time. In particular, the boundary conditions
identified in Eq. 4.18 turns into the χ(x) function behavior as in Eq. 4.21


χ(0) = 0
χ(1) = 1
χ′(0) = 0
χ′(1) = 0

(4.21)

An extremely wide number of function could be used to parameterize the
quaternions, the most important requirement is that, in order to impose the
four boundary conditions expressed in Eq. 4.21, at least four parameters are
needed. For sake of simplicity and to include a degree of freedom in the
maneuver design, a fourth order polynomial is selected, as in Eq. 4.22,

{
χ(x) = a+ bx+ cx2 + dx3 + ex4

χ′(x) = b+ 2cx+ 3dx2 + 4ex3 (4.22)
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in which the ei parameters are the degrees of freedom, while the parameter
ai, bi, ci, di, belong to the imposition of the boundary conditions stated in
Eq.4.21, as in Eq. 4.23


ai = 0
bi = 0

ci = 3 + ei

di = −2(1 + ei)

(4.23)

therefore the shaping function and its derivatives reads as in Eq. 4.24. The
behavior of the function itself, spanning the ei from −10 to +10 is presented
in Fig.4.2.


χi(x) = 3x2 − 2x3 + ei(x2 − 2x3 + x4)
χ′
i(x) = 6x− 6x2 + ei(2x− 6x2 + 4x3)
χ′′
i (x) = 6 − 12x+ ei(2 − 12x+ 12x2)

(4.24)

It is easy to verify that the boundary conditions on the quaternions and the
time derivative of the quaternions are always respected adopting this family of
shaping functions regardless of the specific maneuver.
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Figure 4.2: Shaping function behavior with ei ranging from −10 to +10.

Since each component of quaternion is shaped independently with respect to
the others, as described in Eq.4.15 , the norm of the shaped quaternion is
not unitary. For this reason a dedicated normalization shall be applied to the
shaped quaternions and to their derivatives, as described in Eq. 4.25
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4.3. Test Cases


q(i) = qnn(i)

|qnn|

q̇(i) = q̇nn(i)−q(i)|q̇nn|
|qnn|

q̈(i) = q̈nn(i)−2q̇(i)|q̇nn|−q(i)|q̈nn|
|qnn|

(4.25)

in which the norm of the quaternions and the first and second derivative of
the norm are reported in Eq. 4.26.


|qnn| =

√
qnn(1)2 + qnn(2)2 + qnn(3)2 + qnn(4)2

˙|qnn| = 1
|qnn|

(∑4
i=1 qi,nnq̇i,nn

)
¨|qnn| = 1

|qnn|

(∑4
i=1

(
qi,nnq̈i,nn + qi,nnq̇

2
i,nn

)
− ˙|qnn|2

) (4.26)

The parametrization here presented respect the exact kinematic and dynamic
of the attitude motion of a rigid spacecraft for any type of maneuver. The
analytical nature of the method is beneficial for the computational effort,
making the algorithm suitable for solving even complex problems in a reduced
amount of time. In the following, some relevant test cases are investigated to
test the algorithm.

4.3 Test Cases

In this section some relevant test cases are presented and discussed. In partic-
ular, two different scenarios are investigated:

• Unconstrained slew maneuver with final and initial non-null angular
velocity. In this scenario, a CubeSat shall perform a large slew maneu-
ver starting and targeting a non null angular velocity. The CubeSat
implements realistic actuator

• Time-Optimal Spacecraft Reorientation with Keep-Out Cones. A large
spacecraft shall perform a slew maneuver, avoiding some forbidden point-
ing directions. This is a classical test case that can be found in literature
[73].

4.3.1 Case 1: Unconstrained slew maneuver with final and initial
non-null angular velocity

In this scenario, a CubeSat shall perform a large slew maneuver starting and
targeting a non null angular velocity. In particular the CubeSat has an inertia
matrix as reported in Eq. 4.27
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Iglobalrigid =


0, 065 0 0

0 0, 055 0
0 0 0, 012

 kg m2 (4.27)

and is actuated by four RWs with a maximum torque ḣr = 2 mN m, and
a maximum sortable angular momentum hr = 0.0019 N m s. The mounting
direction of the RWs in the BF RF is reported is Eq. 4.28.

Aassembly
RWs =


1 0 0 1√

3
0 1 0 1√

3
0 0 1 1√

3

 (4.28)

Moreover, the spacecraft is equipped with body-mounted and wings solar
panels, that will be considered in some of the objective of the optimization.
These solar panels are mounted in the following configuration:

• 0.12 m2 along the normal direction iN,1 = [−1,−1, 0]T

• 0.02 m2 along the normal direction iN,2 = [−1, 0, 0]T

• 0.02 m2 along the normal direction iN,3 = [0,−1, 0]T

The maneuver itself consist of a slew of 230◦ around the axis irot = [−1,−0.5, 1]T .
At the initial instant, the body-fixed reference frame coincides with the in-
ertial one, and therefore the DCM is Aini = diag(1, 1, 1). The maneuvering
time is in the range 10–110 s. The initial and final angular velocities are
respectively ωini = [−0.06,−0.04, 0.04] rad s−1 and ωfin = [−0.04, 0.01, 0.02]
rad s−1. This scenario, that is implemented in MATLAB 2021b, was opti-
mized using three different algorithms: Interior Points (I-P) [74][75], PSO [76]
and Nelder-Mead (N-M) [77], and run on a single core of a 2.6 GHz Intel i-7
processor.

The problem was optimized for three different Objective, namely:

• Obj A: Minimum torque. The aim of this objective is to minimize the
peak of torque required to the RWs, namely J = max(ḣRWs(t)).

• Obj B: Maximum Sun energy. The aim of this objective is to maximize
the integral flux received by the solar panels,
namely J = −

∑3
j=1

(∫ tf
0 ψnSun · AT (t)iN,jdt

)
.

• Obj C: Minimum Time. The aim of this objective is to minimize the
maneuvering time, namely J = tf .
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The actuator limitations, namely the maximum torque ḣr and the maximum
stored momentum hr, are imposed by means of penalty functions directly on
the objective functions, as in Eq. 4.29

Jconstr = J + f ḣr
penalty(ḣr) + fhr

penalty(hr) (4.29)

Among all the possible penalty functions, parabolic ones have been selected to
ensure faster convergence to feasible solution in a reduced number of iterations,
as in Eq. 4.30

fxpenalty(x) =

 0 if |x| − xmax ≤ 0

a
(

|x|−xmax

xmax

)2
+ b

(
|x|−xmax

xmax

)
+ c if |x| − xmax > 0

(4.30)

with a,b and c positive constants to be tuned accordingly to the specific problem.
In particular, for the test cases under analysis the value of the constants are
selected based on the value of the initial guess function Jguess as in Eq. 4.31


a = 100Jguess
b = 10Jguess
c = Jguess

(4.31)

The PSO run with a population of 50 elements, with a randomly defined initial
population, while the I-P and the N-M Simplex Method are initialized with
ei = 0 and Tman = 60s. The maneuvering time Tman is constrained to be in
the range 10–110 s. The results are compare in Table 4.1. The solution found
with the PSO algorithm, that in all the scenarios are the best, are compared in
Fig. 4.4. In particular, it is possible to point out that the Minimum Torque and
Maximum Sun Energy optimal solutions both try to maximize the maneuvering
time, that results equal to the upper boundary. The Maximum Sun Energy
optimal solution shows two peak of torque at the end and at the beginning of
the maneuver, trying to spend as much time as possible in a quasi-sun-pointing
condition, as can be seen from the right picture of Fig. 4.4, in which it is
possible to see that the surface normal to the sun is close to the maximum
value (0.148 m2) for a large portion of the slew; quite the opposite,the Minimum
Torque optimal solution, try to avoid peaks in the control action, preferring to
distribute torque as uniformly as possible throughout the maneuver.

From Table 4.1, it is possible to see that the PSO algorithm is able to fin
better solutions with respect to the N-M and to the I-P algorithms for all the
analyzed cases. The reason of this fact is that the PSO algorithm, differently
from the others, doesn’t require a guess solution that is in the basin radius
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alg. optimal
value

fun.
eval. n° iter CPU

time

Obj A
J(x0) = 0.26mNm

I-P 0.142 mN m 216 5 1.86 s
PSO 0.0475 mN m 1900 37 15.26 s
N-M 0.0594 mN m 178 99 1.73 s

Obj B
J(x0) = 1.18m2s

I-P 7.32 m2 s 438 5 3.78 s
PSO 10.63 m2 s 6250 124 50.53 s
N-M 5.00 m2 s 208 108 1.92 s

Obj C
J(x0) = 60s

I-P 20.58 s 468 1 3.65 s
PSO 15.09 s 12300 245 100.55 s
N-M 19.58 s 211 110 1.69 s

Table 4.1: Result Comparison. Case 1.

of the global minimum to converge on it. On the other hand, the CPU time
required by the PSO is one to two order of magnitude higher with respect to
the other, at least for the swarm size and stopping criteria here adopted, due
to the higher number of function evaluation required. A complete analysis
on the influence of these parameter to the optimality of the solution is still
missing, and therefore the CPU time could be lowered, as can be appreciate by
the convergence plot in Fig. 4.3 , but the computational cost will still remain
higher if compared with I-P and N-M algorithms.

Figure 4.3: PSO convergence for case 1.

The I-P algorithm in particular, stops after a very limited number of iterations,
with a cost function value that is sensibly higher with respect to the PSO.
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Looking at the slew trajectories depicted in Fig. 4.4 and comparing the optimal
solutions in Table 4.1 with the guesses solutions, it is possible to understand
the flexibility of the developed shape-based algorithm, and its ability to locate
near-optimal solutions. However, the control action computed, that is exact and
that can be easily constrained, as can be seen in the Time-Optimal solution of
Fig. 4.4, is forced to be continuous by the nature of the kinematic and the shape
selected for the quaternion parametrization. Since optimal solutions typically
shows bang-bang structures, the developed algorithm isn’t able to locate the
real optimal one. Anyway, the shape selected for the quaternion interpolation
is sufficiently flexible to be able to ’simulate’ the peak of control action, as
can be seen in the Minimum-Time and Maximum-Sun-Energy examples in
Fig. 4.4.
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Figure 4.4: Optimal slew maneuvers considering different objectives compared with the first guess solution (ei = 0 and
Tman = 55s)
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4.3.2 Time-Optimal Spacecraft Reorientation with Keep-Out Cones

This case study has been presented in [78] and [73]; it includes an Earth
observation satellite in LEO. The satellite shall perform a roll rotation to
switch the pointing direction on the other side of its track. Namely, the
satellite, whose initial BF principal of inertia RF is aligned with the inertial
one ( Aini = diag(1, 1, 1)), shall perform a rotation of 135◦ around the inertial
direction irot = [1, 0, 0]T . The attitude determination during the slew is ensured
by a star tracker, with mounting direction in the BF RF coincident with the y
axis, namely iST,BF = [0, 1, 0]T . The start tracker, to work properly, needs
to avoid the Sun and the Moon, with conical keep-out zones, as reported in
Table 4.2.

Keep-out cone Direction half angle

Sun iSun = [−0.180.560.81]T θ̂Sun = 47◦

Moon iMoon = [0.9500.31]T θ̂Moon = 36◦

Table 4.2: keep-out cones definition

The satellites inertia matrix is ISC = diag[3000, 4500, 6000]kgm2. In this sce-
nario it is supposed to have on-board ideal actuators able to ensure a maximum
torque along each BF axis of 0.25 N m. The objetive of the optimization is
to minimize the maneuver time (J = tf ), while respecting the attitude con-
straints (initial attitude, final attitude, and keep-out cones) and the actuators
limitations. In this scenario, the constraints are expressed by means of penalty
functions as in Eq. 4.32

Jconstr = J + fMmax
penalty(M) + fkocpenalty(θ) (4.32)

In which θ is the angle between the pointing direction of the instrument and
the central direction of the keep-out cone. In particular, the unfeasible pointing
direction that violates the keep-out cones are defined as in Fig. 4.5

Among all the possible penalty functions, parabolic ones have been selected to
ensure faster convergence to feasible solution in a reduced number of iterations,
as in Eq. 4.33

fxpenalty(x) =

 0 if |x| − xmax ≤ 0

a
(

|x|−xmax

xmax

)2
+ b

(
|x|−xmax

xmax

)
+ c if |x| − xmax > 0

(4.33)

the values of the constants a,b and c are defined as in the text case 1 and
reported in Eq. 4.31.
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Figure 4.5: keep-out cones definition.

The test case under discussion is interesting to point out an important singular-
ity that could reduce the effectiveness of the developed method, and a possible
solution to mitigate it. As first, it is important to underline that the maneuver
here described, being a rotation around the inertial x direction starting from
the identity DCM, is characterized by the fact that the second and the third
component of the initial and final quaternions are null. Moreover, the starting
and desired angular velocities are zero, being a rest to rest maneuver. Since the
trajectory is shaped via an interpolation between the initial and final quater-
nions propagation, the interpolated quaternion that describe the kinematic of
the slew will surely present a second and third null components at any time of
the maneuver. It turns into an undesired reduction of the search space, with a
consequently possible reduction of the optimality of the solution and/or the
impossibility to satisfy the attitude constraints. To prevent this effect, it is
sufficient to solve the problem with a support inertial reference frame that is
rotated about an axis different from the canonical base. Indeed, in such RF the
rotation is no more aligned with an axis of the RF itself, with the consequence
that all the components of the initial and final quaternions will change. In
the here-presented solution, the support reference frame Asup is rotated with
respect to the eci of 10◦ around the axis isup,eci = [0, 2,−1]T .

The time-optimal problem was implemented in MATLAB 2021b and solved
using a PSO algorithm running on a single core of a 2.6 GHz Intel i-7 processor.
The PSO has been set with a swarm composed by 100 elements, and converges
after 166 iterations and 107 s to a feasible solution (i.e. the keep-out cones are
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avoided and the control action is within the thresholds) with a maneuvering
time tf = 553.27s. The convergence history of the PSO is reported in Fig. 4.6.

Figure 4.6: PSO convergence for case 1.

It is interesting to point out that the selected penalty functions approach is able
to reach feasible trajectories in a very limited number of iterations: in the test
here reported the first feasible solution appears after 7 iterations of unfeasible
trajectories even in presence of a very complex and non mono-connected search
domain. In the resulting optimal trajectory presented in Fig. 4.7 it is possible
to appreciate the large slew required to pass through the narrow alley between
the two keep-out cones.

A comparisons of the designed slew with the literature is presented in Table 4.3.

Algorithm Optimal value
(tf) Computational Time

Spiller et al. [78] 404 s 1523 s
( 324 s with a best guess )

Celani et al. [73] 755 s 8160 s
Prinetto 553 s 107 s

Table 4.3: literature comparison
.

The resulting optimal maneuvering time of tf = 553.27s found here is sig-
nificantly lower with respect to the optimal value of tf = 755s found with
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Figure 4.7: Optimal maneuver. Case 2

the shape-based algorithm presented in [73], but remains far from the real
optimal value of tf = 404s found in [78]. Unfortunately in [78] the control
action and angular velocity profile, as well as the trajectory representation, are
missing since only the value of the optimal result is reported, therefore it is
not possible to have a complete comparison between the two maneuvers. The
small computational cost of the here reported algorithm turns out in a strong
reduction of the CPU time required to run on similar processors.

The quaternion shaping approach here presented is able to generate trajectories
that match exactly the initial and final attitude states, as can be seen from
the quaternions evolution reported in Fig. 4.9. The resulting control action,
reported in Fig. 4.8 is continuous and derivable, and shows a smooth variation,
that is beneficial for the real actuators dynamics. It is easy also to include
a constraint on the torque rate by means of a dedicated penalty function.
Differently from the control action found in [73], in the work here presented the
starting value is not null, since there are no contraints on the initial and final
value of the second derivative of quaternions (see Sec. 4.2 for further details).
To include this further constraint, it is sufficient to implement an interpolating
function χ(x) with a null second derivative with respect to the non-dimensional
time x at the beginning and at the end of the maneuver. To do that, it is
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Figure 4.8: Optimal control torque (left) and angular velocity (right). Case 2

sufficient to use a proper sixth order polynomial instead of the fourth order
used for this maneuver.
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Figure 4.9: Time evolution of the quaternions and their derivatives for the optimal slew of case 2.
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CHAPTER5
Attitude Control Techniques

The aim of this chapter is to describe the on-board control strategies inves-
tigated to use the attitude guidance developed in Sec. 4. In particular, the
control strategies and algorithm investigated are tailored on CubeSat Hardware
and Software capabilities, therefore advanced and optimal but computation-
ally heavy controllers, such as Linear Quadratic Regulator (LQR) or Model
Predictive Control (MPC) are not considered within this dissertation, since
they require an on-line optimization, as discussed in Sec. 2, that is beyond the
real capabilities of actual CubeSat Hardware.

5.1 6 DoF simulator

The Attitude Control System (ACS) design is supported by a 6 DoF simulator,
developed and validated by the author. It allows to simulate the coupled
attitude and orbital dynamics of a spacecraft, including a high-fidelity rep-
resentation of the environment [79][80]. The environment model takes into
account the following perturbing forces:

• Earth geopotential based on EGM96 model.
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• Solar gravitational perturbation (based on DE431 Ephemeris model).

• Lunar gravitational perturbation (based on DE431 Ephemeris model)

• Atmospheric drag perturbation based on Jacchia-Roberts model (F107-
AP index 2020 update).

• Solar Radiation Pressure (SRP) (F107-AP index 2020 update).

• Gravity Gradient based on EGM96 mode.

• Magnetic torque based on IGRF.

The spacecraft is geometrically modeled by means of an assembly of planar
surfaces representing its faces and solar arrays (if deployed). The simulator is
implemented in the Simulink environment, The simulator does not implement
any navigation algorithms, but a proper random error is added to the full state
determination to replicate the navigation performances. On the other hands,
it implements a wide set of actuators, including:

• A generic ideal actuator, capable to generate a control action Mcontrol, on
which virtually any type of constraint (magnitude, rate, control frequency,
state and time dependent constraints, etc..) can be added by means of
non-linear control functions.

• Reaction wheels, with customizable assembly defined by the matrix
Aassembly
RWs , and with constraints on the momentum exchange magnitude

ḣr (as function of the stored momentum hr ), saturation, and control
frequency. A control error on the full-scale torque is added to replicate
the behavior of the internal reaction wheels control errors.

• A customizable set of Thrusters can be added, with user defined body-
fixed thrusting direction. The thruster has constant thrust, tunable in
Pulse Width Mode, with a customizable minimum impulse duration and
control frequency. A Gaussian error is added on the control action.

• Magneto-torquers. The torque produced is a function of the current (the
control variable) and the position of the spacecraft. A Gaussian error
and a control frequency are implemented to replicate the real behavior
of the actuators.

The environment and the dynamic of the simulator was validated during the
develpement comparing the obtained results with literature [79, 80, 81]

5.2 Control Techniques

In the following sections, the three developed control technique are presented
and discussed, with also the help of a test case. In particular the maneuver
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consists of a rest-to-rest slew maneuver of 170◦ around the axis irot = [1, 1, 2],
knowing that at the initial time t = 0 the body-fixed reference frame is aligned
with the eci. The initial orbital state of the spacecraft is reported in Table 5.1.

Parameter Value
Semi-major axis (a) 7328 km
Eccentricity (e) 0.0409
Inclination (i) 30◦

Right ascension of the ascending node (RAAN) 100◦

Argument of perigee (ω) 20◦

True Anomaly (θ) 75◦

Epoch 21/03/2023
Time (UTC) 0 h 0 min 0 s

Table 5.1: Spacecraft orbital initial state at t = 0

The maneuver is optimized with the attitude guidance algorithm described
in Chapter 4, with the objective of minimizing the slew time. The maneuver
is performed by the HERMES 3U CubeSat [82, 83, 84] depicted in Fig. 5.1.,
whose inertia properties Iglobalrigid , expressed in the principal axis of inertia, are
reported in Eq. 5.1

Figure 5.1: HERMES 3U CubeSat configuration

Iglobalrigid =


0, 065 0 0

0 0, 055 0
0 0 0, 012

 kg m2 (5.1)
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HERMES is actuated by four RWs, three of them are mounted along the
principal axis of inertia and the fourth is along the diagonal, leading to an
assembly matrix Aassembly

RWs as in Eq. 5.2.

Aassembly
RWs =


1 0 0 1√

3
0 1 0 1√

3
0 0 1 1√

3

 (5.2)

The specification of the ADCS performances are reported in Table 5.2. The
errors, as well as the ADCS frequency, are considered only for the Control, while
for the Guidance definition only ideal actuators are employed. In particular,
due to the fastness of the maneuver, a relatively high ADCS frequency range
was considered.

ADCS
Frequency 5–20 Hz

Control system
Max. torque 2 mN m for each RW
Momentum Storage 19 mN m s for each RW
Control accuracy 0,015 % full-scale

Determination system
Error on position 5 m 3σ on each axis
Error on velocity 1 cm s−1 3σ on each axis
Error on attitude 0.5◦ 3σ around each axis
Error on angular velocity 0.5 ◦ s−1 3σ around each axis

Table 5.2: Determination and Control system specifications

The above mentioned scenario, from a mathematical point of view, includes
five degrees of freedom: the four ei parameters of the quaternions shape
and the maneuvering time tf . It was solved using the attitude guidance
illustrated in Chapter 4 with three standard MATLAB optimization algorithms,
representative of different families. The simulations run in MATLAB 2021b,
on a machine equipped with a 2.6 GHz Intel i7 processor using a single core.
The PSO converges after 120 iteration with a population of 25 elements, with a
randomly defined initial population, while the I-P and the N-M are initialized
with ei = 0 and Tman = 17.5s. The results are compare in Table 5.3

Generally speaking the solution found with the PSO algorithm shows better
results in term of optimality, especially for highly non mono convex domains
and/or when the maneuvering time is left free to be optimized, being able

82



5.2. Control Techniques

Algorithm Optimal slew time CPU time
interior-points [74][75] 11.8527 2.617
particleswarm [76] 10.3218 18.716
Nelder-Mead Simplex Method [77] 10.8524 1.046

Table 5.3: Optimization algorithms comparison - fast slew maneuver

to reach easily the global optimum, but with a substantial increase in the
computational time if compared with the others algorithms. The resulting
optimal slew maneuver is presented in Fig. 5.2.

Figure 5.2: 3-D representation of the minimum-time optimal solution

Looking at the control action reported in Fig. 5.3 it is possible to see how
the quaternion shaping strategy, with the shape selected, is able to generate a
control law that is someway similar to the typical bang-bang structure of the
real time-optimal control laws [39, 85]. The graph shows also that the reaction
wheels never reach the saturation condition during this maneuver.

The quaternion and angular velocity behaviors are shown in Fig. 5.4 for sake
of completeness.
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Figure 5.3: RWs control and status behavior of the minimum-time optimal
solution

Figure 5.4: Quaternions and angular velocity behavior of the minimum-time
optimal solution

The presented rest-to-rest slew maneuver is employed as support during the
exposition and comparison of the developed control techniques, described in
the following sections.
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5.2.1 Feed-Forward open loop control

The simplest control law developed to test the attitude guidance algorithm
described in Chapter 4 was an open loop control, as in presented in Fig. 5.5.

Actuators
System

(Guidance
Modeled)

System
(Guidance

Non-Modeled)

Figure 5.5: Open Loop control scheme

Practically speaking, the control action, defined and optimized on ground to
satisfy all the requirements, and developed within a mid-fidelity environment
with the algorithm described in Chapter 4, is updated directly to the platform.
The CubeSat, then, apply the control law in an open loop cycle. Even if
open loop control for attitude maneuvers is of very little (almost null) interest
[86], it was decided to analyze this case to evaluate the performance of the
developed guidance algorithm, once it is inserted in a perturbed high-fidelity
environment with discrete time state determination and control. Figure 5.6
shows the behavior of the angular error with respect to the quaternion guidance,
for different values of controller frequencies.

In particular can be noticed that, for controller frequencies much higher with
respect to the slew one (the case of infinite or 10 Hz frequencies in Fig.5.6)
the errors remain contained during the maneuver itself, even in absence of a
closed loop control. It proves that the control action provided by the guidance
described in Chapter 4 is very faithful to the real dynamics. On the other
hands, over long periods it is impossible to control the system in open loop
control due to the non-modeled dynamics, indeed in the guidance algorithm
the actuators are ideal, with infinite frequency and null error. Moreover, as
expected from theory, unpredicted disturbances and the finite time controller
induce an uncontrolled drift after the end of the nominal slew that in few tens
of seconds causes the satellite to completely lose attitude.
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Figure 5.6: Angular error during Feed-Forward Open Loop controlled slew
considering different control frequencies

5.2.2 Classical PID controller

The second control scheme developed is a classical closed loop control scheme
that implements a Proportional Integral Derivative (PID) controller: the
standard in almost every CubeSat flown. The success of this control scheme in
the CubeSat world is due to many causes, among which the most important
are surely the reliability, the reduced computational cost, the effectiveness, the
stability and the TRL.

The high-level block scheme of the implemented control scheme is show in
Fig. 5.7. Practically speaking, the control action is computed on-board con-
sidering the error between the measured attitude, determined on-board and
affected by navigation errors, and the desired attitude, uploaded from ground
in the form quaternion profiles, as shown in Sec. 5.2.

In particular, given these two informations, the matrix of the attitude errors
Ae can be computed as in Eq. 5.3

Ae = AmAT
d (5.3)

in which Am and Ad are the measured and desired attitude matrix respectively.
Moreover, the derivative portion of the controller can be seen as a proportional
control with respect to the angular velocity error ωe computed as in Eq. 5.4,
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Actuators
System

(Guidance
Modeled)

System
(Guidance

Non-Modeled)

Sensors

Controller

Figure 5.7: PID control scheme

in which ωm and ωd are the measured and desired angular velocities expressed
in the body-fixed reference frame.

ωe = ωm − ωd (5.4)

The aim of the control is to make the attitude error matrix Ae as close as
possible to the identity I, while drive to zero the error on the angular velocity
ωe, to minimize the pointing error. It is possible to demonstrate that, for
linearized motion, the torque to apply to the CubeSat can be computed as
reported in Eq. 5.5


Mc,x = Kp,x

2 (Ae(2, 3) − Ae(3, 2)) +Kd,xωe(1)
Mc,y = Kp,y

2 (Ae(3, 1) − Ae(1, 3)) +Kd,yωe(2)
Mc,z = Kp,z

2 (Ae(1, 2) − Ae(2, 1)) +Kd,zωe(3)
(5.5)

In which Kp,i and Kd,i are the proportional and derivative gains of the controller
along the ith axis. In the implementation of the controller, to make the
dynamical response along each axis as similar as possible, independently from
the related inertia, the controller gains were tuned accordingly to Eq. 5.6


Kp,x

Kp,y

Kp,z

 = αp


Ix,x

Iy,y

Iz,z

 ;


Kd,x

Kd,y

Kd,z

 = αd


Ix,x

Iy,y

Iz,z

 (5.6)
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In this way, the angular acceleration around one axis produced by the controller
consequently to a small angular error around the same axis is independent from
the selection of the axis itself. The integral term of the controller was removed
for at least three reason [87]; first of all, the need to numerically integrate the
error requires computational resources that, as mentioned before, for CubeSat
hardwares are very limited. The integral term is subjected to wind-up and
control saturation, that can affect the performances. Even if anti wind-up and
anti-saturation techniques are available, they requires computational resources
that for CubeSat hardware can be non negligible. Moreover, the beneficial effect
of the integral term on the steady-state error reduction is almost completely
vanished by the poor performances of CubeSat navigation algorithms and
sensors, that lead to a relevant Attitude Knowledge Error (AKE). To obtain a
trajectory as close as possible to the reference, the tuning parameters of the
gains, αp and αd are optimized using a PSO algorithm with the objective of
minimizing the mean quadratic angular error with respect to the reference. The
resulting controller, as can be appreciate in Fig. 5.10 is extremely aggressive,
even if stable, leading to a strong control action. The value of the obtained
gains tuning parameters are αp = 0.1257 and αd = 0.6850. Although the
designed control is extremely aggressive, the spacecraft accumulates a large
error during the slew, due to the behavior of the PD controller itself, as can be
appreciated looking at the 3D trajectory of the real slew maneuver presented
in Fig. 5.8, in comparison with the shape-based reference.

Figure 5.8: Trajectory of the PD controlled slew - control frequency = 10 Hz
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In particular, Fig. 5.9 shows the angular error on each axis with respect to the
reference trajectory.

Figure 5.9: Angular error during PD controlled slew considering different
control frequencies

From the graph it is possible to quantify the error that the PD controller needs
to accumulate during the slew, and this quantity is a function of the control
frequency. In particular, the lower is the control frequency, the higher is the
error during the slew maneuver, as predicted from theory [88]. Moreover, the
peak of the error is located nearby the end of the nominal maneuver, leading
to a total effective maneuvering time that is three time higher with respect to
the expected value. Another interesting element that can be pointed out from
Fig.5.9 is the similar behavior the steady-state pointing error along the three
axis, direct consequence of the selection of the inertia-scaled gains.

The analysis of the RWs status during the maneuver, depicted in Fig. 5.10,
reveals the other weaknesses of this control strategy: the need to have an
aggressive control action leads to the saturation of the actuator, in term of
torque, and the persistence of oscillations, caused mainly by the delay induced
bu the navigation frequency. From the same graph, it is possible to appreciate
also the strong difference between the control action derived with the guidance
algorithm, the one imposed by the on-board PD controller, and the actuated
one, leading to a consistent difference in the optimality of the maneuver with
respect to the shape-based one. This last effect, together with the large errors
occurring during the maneuver, it is considered a very great disadvantage,
which in some cases of practical interest, can be decisive [37].
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Figure 5.10: Comparison of nominal, ideal and real control actions during the
slew maneuver

5.2.3 Feed-forward PID controller with Gain-Scheduling
The improvement of the pointing precision during the slew maneuver can be
of primary importance for some application, such as the case in which the
payload or some navigation instruments have forbidden pointing directions
(e.g. payload Sun avoidance) [73] [38]. In such cases, as shown in Chapter 4,
with the quaternion shaping technique it is possible to generate near-optimal
guidance trajectories with keep-out cones. The problem now turns into the
definition of a control scheme that is able to avoid the necessity of storing a
non-negligible pointing error during the slew itself, as happens in the simple
closed loop PD control scheme presented in Sec. 5.2.2, while maintaining the
steady-state disturbance rejection and the moderation of the control that are
typical of a well tuned PD controller. The working principle of the proposed
control scheme is to take advantage of the control action calculated during
the on-ground guidance definition to improve the performances of the PD
controller shown in Sec. 5.2.2.

In particular, the control action is computed on-board starting from the error
measurement and from the control action uploaded from ground, in a FFPD
configuration, as shown in Eq. 5.7

uideal(e, t) = uPID(e) + uGuidance(t) (5.7)

The PD action is calculated in the same way as in Sec. 5.2.2, but in this case, to
maximize the benefits from the fed-forward help, a gain scheduling is proposed.
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Figure 5.11: Feed-forward PID control scheme

In particular, the value of the parameters αP and αD that affect the gains
are different for the windows in which the Feed-Forward (FF) contribution is
non-null (namely, for the nominal maneuver time) and the rest of the time.
This gain scheduling prevent the undesired effect of the partial neutralization of
the FF caused by a too-strong control action coming from the derivative part of
the PD, that is instead required in the steady-state fast disturbance rejection.
The gains are optimized using a PSO algorithm, with the objective to minimize
the mean quadratic error during the maneuver and in the steady-state inertial
pointing. The optimal value of the parameters αP and αD are reported in
Table 5.4.

Nominal Slew Steady State
αP 0.8087 0.0781
αD 0.0483 0.4419

Table 5.4: Feed-Forward PD optimized gains

From the 3D representation of the simulated trajectory, compared with the
guidance in Fig. 5.12, and from the analysis of the pointing error depicted in
Fig. 5.13 it is possible to find out the ability of the designed control strategy to
track the reference trajectory and to counteract the unpredicted disturbances
and non-modeled dynamics.

More in detail, Fig. 5.13 shows the effect of the ADCS frequency on the pointing
error: it is evident that this parameter is fundamental to contains the error
especially in the feed-forward aided slew. The control action, reported in
Fig. 5.14, shows a good fidelity of the actuated RWs status with respect to the
one predicted by the guidance.
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Figure 5.12: Trajectory of the FFPD controlled slew - control frequency =
10 Hz
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Figure 5.13: Angular error during Feed-Forward PD controlled slew
considering different control frequencies

Figure 5.14: Comparison of nominal, ideal and real control actions during the
slew maneuver - Feed Forward PD
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5.2.4 Control Techniques Comparison

To compare the performances of the three developed control strategies, the
time responses have been analyzed looking at four different parameters:

• Mean Quadratic Error during the Nominal Maneuver. This phase, high-
lighted in red in Fig. 5.15, lasts exactly as predicted from the guidance.

• Mean Quadratic Error during the Transient Phase. This phase, high-
lighted in purple in Fig. 5.15, starts at the end of the nominal phase,
and lasts until the error decrease below the Mean Quadratic Error of the
steady-state phase.

• Mean Quadratic Error during the Steady-State Phase.This phase, high-
lighted in green in Fig. 5.15, starts at the end of the complete (nominal
and transient) maneuver.

• Transient phase duration

Figure 5.15: Identification of the phases during the time response: Nominal
maneuver (red), Transient Phase (purple), Steady-State (green)

From the analysis of the results it is evident that the usage of a simple PD
controller is sufficient to guarantee a small steady-state error, with respect to
the determination uncertainties reported in Table 5.2. On the other hand, it
is not possible to ensure an effective reference tracking, with a small pointing
error during both the nominal and transient maneuver phases with the PD
controller only, an this could be a critical element in some missions. The
inclusion of a FF action is able to dramatically decrease the pointing error in
both phases, with a small increase of the on-board ADCS workload. In this last
case, the higher is the ratio between the scale frequency of the maneuver and
the ADCS frequency, the lower is the error accumulated during the nominal
maneuver and transient phase, due to the smaller amount of delay in the FF
action.
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Pointing Error
ADCS
Freq.

Nominal
Maneuver

Transient
Phase Steady-State Transient

Duration

OL
20 Hz 1.67◦ N/A up to 180◦ N/A
10 Hz 2.94◦ N/A up to 180◦ N/A
5 Hz 5.54◦ N/A up to 180◦ N/A

PD
20 Hz 29.66◦ 11.78◦ 0.39◦ 19.2 s
10 Hz 27.88◦ 12.72◦ 0.38◦ 20.3 s
5 Hz 28.40◦ 13.36◦ 0.38◦ 19.7 s

FFPD
20 Hz 1.45◦ 1.04◦ 0.41◦ 17.1 s
10 Hz 2.35◦ 1.47◦ 0.39◦ 17.3 s
5 Hz 4.97◦ 3.04◦ 0.40◦ 18.1 s

Table 5.5: Control technique comparison: Mean Quadratic Errors and
transient phases duration

5.2.5 Effect of model uncertainties on the control techniques

In this section the effect of uncertainties in the spacecraft inertia properties
on the pointing error is investigated. In particular, each component of the
inertia matrix Iunc is affected by a normally distributed uncertainty with a
given variance that is scaled with the maximum component of the nominal
inertia matrix, as in Eq. 5.8

Iunc = Iglobalrigid + δI = Iglobalrigid + σmax
(
Iglobalrigid

)
R (5.8)

in which R is a three by three matrix of normally distributed random number
with a unitary variance. In the example here presented, three cases have been
considered:

• Nominal Scenario. In this scenario the inertia of the spacecraft is exactly
known.

• Precise Inertia model. In this scenario the Inertia of the spacecraft
considered for the guidance is the ideal one, while in the control loop an
uncertainty of 1% is considered, according to the error model described
in Eq. 5.8.

• Rough Inertia model. In this scenario the Inertia of the spacecraft
considered for the guidance is the ideal one, while in the control loop
an uncertainty of 5% is included, adopting the error model described in
Eq. 5.8.
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For the nominal scenario, only one run is considered, while a reduced size
Montecarlo analysis with 50 runs per scenario is performed for the other two
cases. For all the scenarios the ADCS frequency is 10 Hz.

Figure 5.16: Pointing error evaluation via Montecarlo analysis for the PD
controller (upper picture) and the FFPD controller (lower picture)

Pointing Error
Error
(3 σ)

Nominal
Maneuver

Transient
Phase Steady-State

PD
0 27.88◦ 12.72◦ 0.38◦

1% 28.01◦ 12.26◦ 0.38◦

5% 27.89◦ 11.92◦ 0.39◦

FFPD
0 2.35◦ 1.47◦ 0.39◦

1% 2.54◦ 1.59◦ 0.39◦

5% 3.74◦ 3.70◦ 0.39◦

Table 5.6: Mean quadratic pointing error variation adopting an uncertainty in
the inertia model

The results of the Montecarlo analysis are summarized in Table 5.6, while the
pointing error behavior is depicted in Fig. 5.16; from the analysis of these
results it is possible to point out some important conclusion, in particular:
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• As predicted from theory the PD controller is less influenced by the model
uncertainties, indeed the only remarkable effect on the pointing error is
that the higher is the uncertainty on the inertia tensor, the higher is the
dispersion of the curves, as can be seen in Fig. 5.16. This effect is due
to the fact that the gains of the controller are tuned using the nominal
inertia, and therefore once they are applied to the real system, with its
uncertainties, the time response is different, even if the steady-state error
is almost unchanged.

• The effect of the model uncertainty on the FFPD controller is higher and
more complex; it can be conceptually divided in two phases:

1. During the nominal maneuver phase (namely for t ≤ 10.32s), the FF
part of the controller, being based on an ideal model of the spacecraft
with no uncertainties, induces an higher error with respect to the
reference, that the PD part of the controller is only partially able
to counteract. this fact is evident both in Fig. 5.16 and looking at
the mean quadratic pointing error during the nominal maneuver
reported in Table. 5.6, which grows by about 8% for an uncertainty
of 1% (at 3σ) and by about 59% for an uncertainty of 5% (at 3σ)

2. As consequence, the pointing error, as well as the difference between
the actual angular velocity and the reference one, at the end of the
nominal maneuver are higher with respect to the case with the ideal
model . This fact leads to a longer transient phase, characterized
by a considerably higher mean quadratic pointing error.

As for the simple PD controller, the steady state pointing error is almost
unchanged with respect to the ideal case.

Even if, looking at the mean quadratic values, the developed FFPD controller
shows an acceptable robustness for practical purposes, it is important to under-
line that there are few exceptions with high errors at the end of the nominal
maneuver that can lead to relevant violations of the pointing constraints.
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CHAPTER6
Flexible Dynamics

The aim of this section is to describe the developed multi-body model [42]
suitable for CubeSat. In particular, the modeling aims to simulate the dynam-
ics of a CubeSat including the motion of the most relevant flexible element
embarked on such class of satellites.

6.1 multi-body modeling

Looking at typical CubeSat configurations [1], it is possible to identify three
different main elements:

• Central Body. The central body of a CubeSat is a compact element
with a regular cuboid shape. The size of the cuboid define the class of
the CubeSat, and in general it is a multiple of the so-called 1U element:
a 10cm by 10cm cube. The most common form factors range from 1U to
12U , as shown in Fig.6.1. The structure of the central body is typically
very rigid, with natural frequency larger than 100 Hz [1], extremely higher
with respect to the ones exited by attitude and orbital motion, as well as
natural perturbations, and therefore it will be considered as a rigid body
in the here presented modeling.
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Figure 6.1: Typical CubeSat form factors - Credits of Cal Poly – San Luis
Obispo, CA .

Among all the subsystems and components contained in the central
body, only two are of interest for the multi-body modeling of the whole
CubeSat, namely the the thrusters and momentum exchange devices. The
thrusters embarked by CubeSats use solid of gaseous propellant, therefore
the motion of this class of satellites is not affected by the sloshing effects,
that are of primary importance in larger satellites equipped with liquid
propellant thrusters [89]. Concerning the momentum exchange devices,
CubeSats are typically equipped with RWs, and the dynamics of these
elements shall be included in the modeling of the central body.

• Solar Panels. Even if CubeSat can be equipped with body mounted solar
panels, in most of the cases the power budget of the platforms exceeds the
capability of these units, indeed the available external surface, already
limited by the small size of the satellites, it is further reduced by the
necessary presence of payloads and sensors that need to be mounted
on these surfaces. Furthermore, the positioning of the panels on the
external surfaces is not optimal, indeed it is impossible to orient all
the panels at the same time towards the Sun. For these reasons the
simpler CubeSats are equipped with body mounted solar panels only:
the most of the platforms are equipped with deployable solar arrays.
The size of these element is highly variable, and can reach remarkably
large values, if compared to the size of the central body, especially in the
presence of electric thrusters or payloads that are particularly demanding
in terms of power, leading to designs with multiple folded panels. In
this last case, the most common technical solution consists of a sequence
of panels (typically two or three on each side) connected by hinges and
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rotational springs. This design, that is necessary to contains the size of
the CubeSat in the folded configuration within the stringent requirements
of the commercial CubeSat deployers, can be source of vibration in the
low frequency spectrum, that can affect the pointing performances of the
CubeSats.

• Antennas. To ensure the communication with ground and between
satellites, three possible solutions are adopted:

– Patch antennas: typically used for directional S-band or X-band
communications. These elements, that are patched on the external
surfaces of the spacecraft, are not source of vibrations in the low
spectrum, and therefore can be considered as a part of the central
rigid hub.

– Deployable ’wire’ antennas: typically used for UHF/VHF omni-
directional communication. These elements are folded in the central
hub during the launch, and are deployed at the commissioning of
the satellite. These elements are extremely flexible, and even if their
masses are small with respect to the total mass of the spacecraft, it
is interesting to investigate the flexible dynamics of such element
since their natural frequencies, that are very low, fall in the band
exited by the spacecraft dynamics and control.

– Deployable High Gain Antennas: this is the solution used for the
first interplanetary CubeSat, MarCO from NASA [90]. It works the
X-band and it is characterized by a considerably higher gain ( 29
dB vs 6-7 dB of typical S-band pathed antennas) with respect to
the other solution, enabling interplanetary communications. Future
CubeSats that will fly outside the LEO environment will surely
implement this solution for the high gain communications. From a
structural point of view, it is extremely similar to the solar panels,
being composed by rigid plates interconnected by hinges and springs.

In the following sections, the mathematical model of each element is
presented and the EoM for the multi-body model of the CubeSat are
derived using a Lagrangian approach [45, 91].

6.1.1 Central body

The central body of a CubeSat, as introduced before, is considered as a rigid
body, subjected by the external perturbation torques

∑
Mexternal(q,ω, t), that

depend on the state of the spacecraft and on the epoch, and to the control
torque Mcontrol, that for a RWs assembly is given by Eq. 6.1 , as reported in
Sec. 4.2.
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Mcontrol = −
(
Aassembly
RWs ḣr + ω ×AassemblyRWs hr

)
(6.1)

The kinetic energy for the rigid body, considering the attitude of motion only,
body reads as in Eq. 6.2, and no source of potential energy is present.

T = 1
2ωT Ibω = 1

2
[
p q r

] 
Ix,x Ix,y Ix,z

Iy,x Iy,y Iy,z

Iz,x Iz,y Iz,z



p

q

r

 (6.2)

6.1.2 Booms

The antenna booms are modeled with the Eulero-Bermoulli beam theory [44],
and the peculiar structure of the antenna booms requires a DPM in order to
develop a more faithful model, that is able to replicate the real dynamics of
these elements. Figure 6.2 shows the modeling of each boom, with its local RF,
and in particular u(x, t) , v(x, t) and w(x, t) are the elastic displacement of each
point of the boom with respect to the x, y and z axis. The developed flexible
model of the booms considers only small decoupled elastic displacements but
large overall rigid motion.

(a) Typical UHF/VHF for CubeSat.
Credits: ISISpace.

(b) displacements in Local Reference
Frame.

Figure 6.2: Antenna booms modeling

The kinetic energy of the system composed by nant antennas is the sum of the
kinetic energy of each boom, as in Eq. 6.3 and Eq. 6.4, in which vp(x, t) is the
velocity of each point of the boom.

Tant =
nant∑
i=1

Tant,i (6.3)
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Tant,i = 1
2

∫ l

0
mv2

pdx (6.4)

By definition, the velocity of each point can be computed taking the first
time derivative of the position of the point, as in Eq. 6.5, in which xrigid is
the position pf the generic point P in the BF RF, and sflex is the flexible
displacement with respect to the undeformed configuration.

vp = d

dt
xp = d

dt
(xrigid + sflex) = ṡflex + ω × (xrigid + sflex) (6.5)

following the hypothesis of small elastic displacement, namely sflex ≪ xrigid,
and neglecting the velocity of the origin of the BF RF, Eq. 6.5 can be simplified
as shown in Eq . 6.6

vp = ṡflex + ω × (xrigid) = ω × (P −G) + ṡflex (6.6)

Since the elastic displacement sflex(x, t) is a continuous function of space and
time, a spatial discretization is needed to reduce the infinite degrees of freedom
of the resulting EoM to a finite, and possibly small, number. To do that, a
RG approach is adopted in the discretization of the elastic behavior of the
structure, as shown in eq. 6.7, in which the matrix of the trials function N(x)
is used to discretize in space the motion of the beams with respect to the
temporal coordinates u(t). It is important to underline that, since the elastic
displacements and the consequent elastic deformations are small, the flexible
motion in the x and y directions are fully decoupled, leading to a diagonal
matrix of the trials function N(x).

s(x, t)LocalRFflex =


u(x, t)
v(x, t)
w(x, t)

 = N(x)u(t) =


0 0 0
0 Ny(x) 0
0 0 Nz(x)

 =


ux(t)
uy(t)
uz(t)


(6.7)

Given the RG discretization, it is possible to write the velocity and the defor-
mation of the Eulero-Bermoully beam as function of the temporal coordinates
u(t) as shown in Eq. 6.8.

{
ṡ(x, t)flex = Ab,iN(x)u̇(t)

∂
∂x(s(x, t)flex) = Ab,i

∂N(x)
∂x u(t) = Ab,iN(x)/xu(t)

(6.8)
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The RG discretization shall be applied to the kinetic energy of the antennas,
as in Eq. 6.9.

Tant,i = 1
2

∫ l

0
m(ω × (P −G) + ṡflex)2dx

= 1
2

∫ l

0
m(ω × (P −G) + Ab,iN(x)u̇(t))2dx (6.9)

The kinetic energy can be reorganized in order to highlight the dependence of
the function on the free coordinates, as reported in 6.10.

Tant,i = 1
2

∫ l

0
m (ω × (P −G))2 dx+ 1

2 u̇(t)T
∫ l

0
mNT (x)N(x)dxu̇(t)+

+
∫ l

0
mω × (P −G) · Ab,iN(x)dxu̇(t) (6.10)

In which it is possible to recognize and isolate the rigid contribution to the
motion, as reported in 6.11 and the contribution due to the free coordinates
introduced with the discretization, that includes two different therms, the first
depending only on u(t) and the second that couples the flexible small motion
with the rigid overall one.

Trigid = 1
2

∫ l

0
m (ω × (P −G))2 dx = 1

2ωT Iboomrigid ω (6.11)

The two terms that depends on the flexible free coordinates u(t) can be
conveniently rewritten in a more compact matrix formulation, as shown in
Eq. 6.12

 M boom
u,u =

∫ l
0 mNT (x)N(x)dx

ωTM boom
w,u =

∫ l
0 mω × (P −G) · Ab,iN(x)dx

(6.12)

Equation 6.13 summarize the matrix formulation of the kinetic energy for the
general RG discretization of the booms.

Tant,i = 1
2ωT Iboomrigid ω + 1

2 u̇T (t)M boom
u,u u̇(t) + ωTM boom

w,u u̇(t). (6.13)

To compute the elastic potential energy of the antennas, it is necessary to rely
on a proper structural model. As mentioned before, due to the assumption of
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small decoupled elastic motion the Eulero-Bermoulli model is adopted, therefore
the potential energy of the beam can be expressed as in 6.14.

V booms
elastic = 1

2

∫ l

0
sT/xxEJs/xxdx = 1

2uT
∫ l

0
NT
/xxEJN/xxdxu (6.14)

In order to build up the mass, coupling and stiffness matrices it is necessary to
specify the trial functions N(x) to be used for the spatial RG discretization. The
selection of the functions will be driven by the essential boundary conditions,
namely null displacements and slopes along x and y directions in the joint, as
reported in Eq. 6.15.

{
v(0, t) = w(0, t) = 0

v/x(0, t) = w/x(0, t) = 0 (6.15)

while the natural boundary conditions are null bending moment and null shear
force at the tip, as reported in Eq. 6.16.

{
v/xx(l, t) = w/xx(l, t) = 0
v/xxx(l, t) = w/xxx(l, t) = 0 (6.16)

The essential boundary conditions shall be applied to the trials functions,
N(x), otherwise the constraints shall not be respected at any instant t, while
the natural boundary conditions are optionals, and can be imposed in order
to have a more precise representation of the dynamics. Within this work, a
fourth-order polynomial comparison trial function able to satisfy both essential
and natural boundary conditions is adopted, as reported in 6.17 and Fig. 6.3


Ny(x) = Nz(x) = − 1

24
(
x
l

)4 + 1
6

(
x
l

)3 − 1
4

(
x
l

)2

Ny/x(x) = Nz/x(x) = −1
6
x3

l4 + 1
2
x2

l3 − 1
2
x
l2

Ny/xx(x) = Nz/xx(x) = −1
2
x2

l4 + x
l3 − 1

2
1
l2

(6.17)

6.1.3 solar panels

The developed multi-body model for the solar panels, that could be used also
for the deployable High Gain Antennas, is depicted in Fig. 6.4. In particular,
the solar panels are considered as rigid plates (two for each array in the here
presented example); the first plate is connected to the central rigid body with
an ideal hinge and a rotational spring, and the second panel is linked to the
first one with the same type of constraint. The hinges are characterized by
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Figure 6.3: Selected RG trial function.

a rotation axis ihinge and the rotational springs are characterized by a linear
behavior and elastic constant kspring. The relative angular displacement of
each panel is αi.

(a) Example of realistic solar
panels. Credits: ISISpace. (b) Multi-body model - Local RF.

Figure 6.4: Solar panels modeling

The kinetic energy of the solar arrays is the sum of the kinetic energy of each
solar array, as in Eq. 6.18
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TSA =
nSA∑
i=1

TSA,i (6.18)

in which the kinetic energy is the sum of the kinetic energy of each single panel,
considered as a rigid body with barycentric velocity vC,j and angular velocity
relative to the rigid central hub α̇mihinge, in which ihinge is the direction of
the hinge in the BF RF.

TSA,i =
npanels∑
j=1

1
2mv2

C,j + 1
2

ω +
j∑

m=1
α̇mihinge

T

ISP,j

ω +
j∑

m=1
α̇mihinge




(6.19)

The barycentric velocity of each panels can be computed by means of consecutive
rigid motion act, as in Eq. 6.20.

vC,j = ω × (H1 −G) +

ω +
j−1∑
m=1

α̇mihinge

 × (Hj −Hj−1)+

+

ω +
j∑

m=1
α̇mihinge

 × (Cj −Hj) (6.20)

If only small elastic displacement are considered for the rotational springs,
the kinetic energy of the solar arrays can be rewritten in a more compact
matrix formulation, as in Eq. 6.21, in which Iαα is the inertia term related
with the small elastic angular displacement, ISArigid is the inertia term due to
the contribution of the rigid motion of the hub and Iωα is the coupling term
between the rigid motion and the elastic angular displacement.

TSA,i = 1
2ωT ISArigidω + 1

2α̇T Iααα̇ + 1
2ωT Iωαα̇ (6.21)

The potential energy stored in the rotational springs can be written as in
Eq. 6.22.

V SA
elastic =

npanels∑
j=1

(1
2kspringα

2
i

)
(6.22)
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6.1.4 EoM
The EoM can be computed by means of the equation of Lagrange. In particular,
due to the conservative behavior of the elastic elements, the Lagrangian function
reads as in Eq. 6.23.

L = T − V (6.23)

In which the kinetic energy is the sum of the kinetic energy of each component
modeled: the central rigid hub with the contribution of the RWs, the solar
arrays, and the antennas, as in Eq. 6.24

T = Tcentralbody +
nRW s∑
i=1

TRWs,i +
nSA∑
i=1

TSA,i +
nant∑
i=1

Tant,i (6.24)

and the potential energy of the system includes only the elastic contribution of
the antenna booms and the rotational springs of the hinges of the solar panels,
a per Eq. 6.25.

V =
nSA∑
i=1

Velastic,SA,i +
nant∑
i=1

Velastic,ant,i (6.25)

The Lagrange equation in the pseudo-coordinates ω, reported in Eq. 6.26, leads
to the EoM that describes the rigid motion of the spacecraft, as in Eq. 6.27.

d

dt

[
∂

∂ω
T

]
+ ω × ∂

∂ω
T =

∑
Mexternal + Mcontrol (6.26)

Iglobalrigid ω̇ + ω × Iglobalrigid ω =
∑

Mexternal + Mcontrol + Mbooms + MSA (6.27)

In this EoM, the external torques provoked by the environmental perturbation
and by any other external attitude control device able to exchange momentum
with the surrounding environment, such as magnetic actuators or thrusters,
are included in the vector of the external actions

∑
Mexternal. On the other

hands, the control action imposed by internal momentum exchange device
(namely the RWs) is grouped in the control vector Mcontrol for the sake of
convenience and clarity. The definition of the internal control torque, that
belong directly from the Lagrange equation in the pseudo-coordinate 1ω, is
reported in Eq.6.28, in which the term Aassembly

RWs is the assembly matrix of
the RWs, specifying the BF mounting direction of each reaction wheel, as in
Eq. 6.29.
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Mcontrol = −
(
Aassembly
RWs ḣr + ω ×AassemblyRWs hr

)
(6.28)

Aassembly
RWs hr =

nRW s∑
i=1

hRW,i =
nRW s∑
i=1

IRW,iωRW,i (6.29)

The other terms present in the right-hand side of Eq. 6.27, namely Mbooms

and MSA, represent the influence of the flexible elements on the overall rigid
motion, and are defined in Eq.6.30.

Mbooms = −
(
M booms

u,u ü + ω × M booms
ω,u u̇

)
MSA = −

(
ISAα,αα̈ + ω × Iboomsω,α α̇

) (6.30)

As can be seen from Eq..6.30, to compute the torques provoked by the flexible
behavior of antennas and solar panels, it is necessary to know the dynamics
of these disturbances. The most practical and effective way to write the EoM
for the disturbances is to take advantage of the Lagrange equation in the
coordinates u and α, as in Eq.6.31


d
dt

[
∂
∂u̇L

]
− ∂

∂uL = 0
d
dt

[
∂
∂α̇L

]
− ∂

∂αL = 0
(6.31)

The solution of the Lagrangian equation leads to the dynamic EoM of the
flexible disturbances up to solar panels and antennas, as in Eq. 6.32

{
M booms

u,u ü + Cbooms
u,u u̇ + Kbooms

u,u u = −Mu,ωω̇

ISAα,αα̈ + CSA
α,αα̇ + KSA

α,αu = −Iα,ωω̇
(6.32)

In which u(t) are the temporal degrees of freedom related to the RG discretiza-
tion of the flexible booms and α are the relative angular displacements of the
solar panels. Therefore Mu,u and ISAα,α are the mass and inertia matix related
to these degrees of freedom, KSA

α,α and Kbooms
u,u are the stiffness matrix and

Mu,ω and Iα,ω are the coupling matrices between flexible and rigid motion,
as stated in Sec. 6.1.3 and Sec. 6.1.2 respectively. In order to replicate the
behavior of real structures, in which a damping effect is always present, even
if very often of modest entity, the damping matrices Cbooms

u,u and CSA
α,α have

been added to the EoM of the booms and solar panels flexible disturbances.
Damping in distributed parameter structures is never easy to be identified,
and therefore it was decided to use a proportional damping model [44], as in
Eq.6.33, calibrating the proportionality parameters with respect to the mass
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and stiffness matrices appropriately, as will be explained in more detail in
Sec. 6.2

{
Cbooms

u,u = ϵ1,uM booms
u,u + ϵ2,uKbooms

u,u

CSA
α,α = ϵ1,αISAα,α + ϵ2,αKSA

α,α

(6.33)

6.2 Test Cases

The multi-body model developed is implemented in MATLAB-Simulink 2021b,
and tested in this section following the maneuver described in Sec. 5.2.

6.2.1 Rest-to-rest fast slew

In this section the fast rest-to-rest maneuver described in Sec. 5.2 consisting
of a time-optimal slew of 170◦ around the axis irot = [1, 1, 2] is adopted to
test the multi-body model of the HERMES CubeSat. The CubeSat, that is
depicted in Fig. 5.1, has properties identical to the rigid one, summarized in
Eq. 5.1, Eq. 5.2 and Table 5.2 and discussed in Sec. 5.2, with the exception
of the antenna booms and the flexible solar panels. In particular, the Solar
Panels are modeled with the multi-body approach presented in Sec. 6.1.3 with
the mass, stiffness and damping parameters reported in Table 6.1.

Configuration 2 solar arrays composed by 2 panel (Fig. 6.4)
solar panel size 0,3m x 0,1m each panel
Mass 0,150 kg per panel (uniformly distributed)
Torsional Stiffness 0.0975 Nmm/deg
Damping Mass
proportional coef. 0.07

Damping Stiffness
proportional coef. 0.001

Table 6.1: Solar arrays flexible model parameters

The antenna booms are modeled with the RG approach described in Section
6.1.2, using the physical parameter reported in Tab. 6.2.

The values of the mass and stiffness proportional damping coefficient for both
the solar panels and booms come from the analysis of the free time response
of the systems, in particular those values are selected to ensure a settling
time of 5 s, quite representative of real structures. With the above mentioned
parameter, it is easy to verify that the discretized dynamical system presented
in Eq. 6.32 leads to a natural frequency for the free oscillation for the booms
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6.2. Test Cases

Configuration four booms (Fig. 6.2)
Length 50 cm
Mass per unit length 0.0047 kg m−1

Material Ni-Ti alloy: E = 85 GPa
Cross Section Circular: d = 1 mm
Damping Mass
Proportional coefficient 0.05

Damping Stiffness
Proportional coefficient 0.03

Table 6.2: Booms flexible model parameters

equal to fBooms = 2.04Hz and for the solar panels equal to fSA,1 = 3.22Hz,
while the second frequency of the solar panels is fSA,21 = 10.8Hz

Figure 6.5: Comparison of rigid and flexible configuration during the slew
(t = 3s). Elastic displacement enlarged for sake of visibility

The dynamical response of the system can be better appreciate in Fig. 6.6, in
which the displacement of the booms tips and the angular displacement of the
solar panels during the maneuver and in the steady-state inertial pointing are
reported.

In particular, comparing the deflection with the angular acceleration and
velocity behaviors in Fig. 6.7 it is possible to appreciate the static deflection
due to the angular acceleration and the dynamic response.
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Chapter 6. Flexible Dynamics

Figure 6.6: Solar panel angular displacements (left) and booms tip
displacements (right).

Figure 6.7: Angular velocity(upper), angular acceleration (middle) and
flexible disturbance (bottom)

The fact that the flexible torque is almost aligned with the zBF axis is due to
the fact that the main contribution arises from the flexible dynamics of the
solar panels, that are hinged in that direction. Moreover, it is possible to see
that the flexible disturbance of the solar panels during the slew is order of
magnitude higher with respect to the external disturbances, but due to its
periodic behavior it has a limited effect on the pointing error, as depicted in
Fig. 6.8

Looking at the frequency analysis of the flexible disturbance Mflex reported in
Fig. 6.9 it is possible to see that the fundamental frequencies of the solar panels
and of the booms predicted from theory match with a good approximation the
peak of the Fast Fourier transform of the flexible disturbance torque.
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Figure 6.8: Pointing error - FFPD controller

Figure 6.9: Frequency analysis of the flexible disturbance
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Figure 6.10: Comparison of nominal, ideal and real control actions during the slew maneuver - Feed Forward PD with
flexible model
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CHAPTER7
Conclusions

This Chapter states the tentative conclusions of this work in relation to the
objective of the research presented in Chapter 1. In particular, Section 7.1
shows the major results achieved, while Section 7.2 tries to pave the way for
possible future works.

7.1 Major Results

The presentation of the future results follows the order of the research objective
presented in Chapter 1.

Objective 1: To derive a fast semi-analytical guidance algorithm for the
CoM motion that is suitable to deal with the peculiarities of the small-sat
and their mission scenarios as indicated in the introduction, that is able
to overcome some of the typical limitation of the in-literature available
algorithms. The method should be able to quickly identify near-optimal
trajectories even in presence of very complex mission scenarios.



Chapter 7. Conclusions

The task was addressed in Chapter 3 with the development and testing o a
shape-based algorithm for the CoM motion. The algorithm can be successfully
employed, as shown in the related test cases and comparison with literature
reported in sec. 3.1.3, both as ground-based guidance for small-sat equipped
with low thrust, or to look for near-optimal trajectories in very complex
mission scenarios, to be further optimized using, for example, a direct or
indirect approach. Moreover, it shows also good performances when employed
in the multiple injection planning. The algorithm shows a good convergence and
it is extremely fast and sufficiently flexible to insert operational and platform
sizing constraints which affect the trajectory definition. In particular, the
implemented strategy to take into account no-thrust in shadow requirements is
fast and efficient and works with any class of orbits without singularities. The
algorithm converges for any value of the maximum thrust if purely keplerian
motion is considered. The speed of the algorithm is guaranteed by the fact
that, even if an large number of expressions have to be evaluated, they are all
composed by the same block of repeated terms that can be computed only once.
Moreover, most of the trigonometrical expressions are not directly evaluated
by MATLAB functions, but exploiting trigonometrical relations. The main
drawback of the developed method, that is also a common problem of almost
all shape based algorithms available in literature, is that the solution can be
only near-optimal due to the continuous nature of the shaping functions. The
goodness of the solution, as pointed out with the test cases reported in Sec. 3.1.3,
strongly depends on the specific problem to be solved. The routing algorithm
developed and tested in Sec. 3.2 extends the field of applicability to scenarios
that are very interesting for future small-sat and CubeSat missions [66], such
as the multi-mission injection and the orbital change in Sun-Synchronous
Orbit (SSO) environment taking advantage from natural perturbation to the
RAAN drift, saving a considerable fraction of fuel mass and reducing the
overall cost of the mission allowing the possibility to share the launch with
satellites that are released in different orbits. Thanks to the introduction of the
matrix containing the possible permutations as input to the problem, proved
extremely effective and fast. Moreover, the branch and bound based heuristic
approach increases the performances of the heuristic algorithm by allowing to
focus only on the most promising releasing orders of the large search space.

Objective 2: To derive a semi-analytical guidance algorithm for the
attitude motion of the spacecraft, that is able to manage practical and
mission related constraints, such as actuation limitation and attitude
keep-out cones. A multi-disciplinary approach should be carried on to
tailor the algorithm on small-sat and CubeSat needs and capabilities.

The task was addressed in Chapter 4, in which the novel shape-based algorithm
developed for the attitude guidance and planning is presented. The algorithm,
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7.1. Major Results

that takes advantage of a semi-analytical implementation based on a non-
linear interpolation between the initial and desired propagated attitudes, has
proven to be able to find near-optimal slew trajectory even in presence of
keep-out cones, as shown from the test cases and literature comparison in
Sec. 4.3. In particular the semi-analytical nature of the algorithm ensure a fast
convergence and a reduced CPU time, if compared with literature [73, 78]. The
possibility to include the actuators dynamics and the perturbation directly into
the EoM turns out into a higher fidelity model with respect to the literature.
Moreover, the objectives and constraints that are included, as well as the
spacecraft configuration (e.g. solar panels size and orientation, antennas LOS
direction) make the algorithm particularly suitable for the guidance definition
and attitude maneuver planning of small-sat. In principle it could be used also
in an hypothetical on-board implementation, at least in two cases. The first is
if there are no strong attitude constraints, indeed in such case the heuristic
approach could be avoided in favor of a less demanding deterministic one. The
second is if there is no real interest in the optimization of the slew itself: in this
case the heuristic approach can be used with a reduced population, and for a
reduced number of iteration to find only a feasible , not optimal and not even
necessary close to the global optimum, solution that can be then optimized
with a deterministic algorithm. The drawback is that the algorithm find easily
feasible solutions only if the number of keep-out cones is reduced (e.g. two or
three), but if this number grows the flexibility of the shape is no more sufficient
to follow the twisted trajectory. A possible mitigation, to be investigated, is
the adoption of an interpolating shape χ(x) with more degrees of freedom, such
as an higher order polynomial or a linear combination of period functions.

Objective 3: To identify the most suitable control schemes and algorithms
that can fly on CubeSat hardwares with very limited computational
performances but able to follow the developed guidance in an high fidelity
simulated environment. Within this framework, the developed guidance
algorithms could be also tested.

Chapter 5 highlighted the necessity to have a FF effect in order to contain the
pointing error during the slew if attitude constraints are active. Indeed the
only presence of a feedback controller is not able to achieve a small error in
this phase, while maintaining a moderation in the control. In particular, the
FFPD control scheme employed with a Gain-Scheduling technique ensured the
best performance in the pointing error control during the slew and natural
perturbation rejection during the steady-state phase. More advanced control
technique could be in principle used, such as MPC or LQR, but the extremely
reduced performances of the CubeSat ADCS boards are not able, at the current
state, to perform on-line optimizations, and in any case it appears useless to
waste on-board CPU time and memory to reach certain performances, if the
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same can be reached with simpler methods, with proved stability, reliability
and effectiveness.

Objective 4: To explore new multi-body modeling techniques tailored for
CubeSat, with the aim of investigate the flexible effect of small-sat on
the attitude performances.

Chapter 6 presents a novel approach to the CubeSat multi-body modeling.
The model developed is able to takes into account the flexible effect of large
deployable solar arrays and booms, such as the UHF/VHF antennas. The
model uses a LPM for the discretization of the solar arrays, considering rigid
plates and rotational springs, and a DPM approach for the booms, based on a
single function RG spatial discretization. It proved to be able to correctly catch
the natural frequencies of the CubeSat with a simple but effective approach.
The analysis of the flexible motion of a representative 3U CubeSat shows
that the elastic disturbances of the solar panels in very fast slew can be order
of magnitude higher with respect to the natural perturbations, but due to
its period behavior, the pointing error is only slightly affected. One strong
limitation of the developed algorithm, that could be overcome in future, is that
the bending dynamics of the booms are elastically decoupled, and no torsion
is considered. This can be a good approximation, is small displacement are
considered, for boom with circular or squared sections, but for more non axial
symmetric sections this assumption is no more valid.

7.2 Future Works

One Ph.D thesis is surely not sufficient to cover the extremely wide research
field of Guidance and Control for CubeSat, and therefore a relevant number of
next steps are foreseen.

• It would be interesting to extend the field of application of the shape-based
algorithm for CoM motion to other dynamics, such as the Circular Re-
stricted Three-Body Problem (CR3BP), in which a continuously growing
interest is manifested.

• A fully coupled 6 DoF semi-analytical guidance could be found starting
from the methods developed in this work

• The multi-body modeling of the spacecraft could be improved by intro-
ducing the coupling therms in the RG discretization. Moreover, a DPM
approach could be effective to model extremely large and flexible plates,
such as the steerable High Gain Antennas and Solar Panels with higher
fidelity.
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7.2. Future Works

• The chain of the Guidance and Control here developed and tested on
a personal laptop should be tested with relevant hardware. Therefore
a porting of the algorithm will be necessary to start a Processor In the
Loop (PIL) test campaign. It would be interesting to close the loop with
existent Navigation algorithms.

The points here reported are only a small subset implications directly related
to the work performed in this thesis, but the list of possible improvement in
the Guidance Navigation and Control for small-sat and CubeSat is virtually
endless.

119





Appendices

121





APPENDIXA
List of derivatives

The appendix reports the equations fundamental to the geometrical interpola-
tion of the trajectory. The subscript ’1’ indicates the departure orbit, while
the subscript ’2’ indicates the arrival orbit.

A.1 Departure orbit

The inclination of the initial orbit with respect to the reference plane can be
computed as in Eq. A.1.



cosα1 = ĥ1 · ĥREF
sinα1 = ξ1

√
1 − cosα12 ξ1 = 1 if vi · ĥREF > 0

ξ1 = −1 if vi · ĥREF < 0

(A.1)

The declination (δ(x)1) of the initial orbit over the reference plane can be
computed using Eq. A.2, while its derivatives can be computed using Eq. A.3,
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Eq. A.4 and Eq. A.5.
sin δ1 = sinα1

sin(ψx)
sin β1

(A.2)

δ′
1 = ψ sinα1 cos (ψx) − β′

1 cosβ1 sin δ1
cos δ1 sin β1

(A.3)

δ′′
1 = −ψ2 sinα1 sin (ψx) + sin β1 sin δ1

(
δ′2

1 + β′2
1

)
cos δ1 sin β1

+

− 2δ′
1β

′
1 cos δ1 cosβ1 + β′′

1 sin δ1 cosβ1
cos δ1 sin β1

(A.4)

δ′′′
1 = −ψ3 sinα1 cos (ψx) + sin β1 sin δ1 (3δ′

1δ
′′
1 + 3β′

1β
′′
1 )

cos δ1 sin β1
+

cosβ1
− cos δ1 (3δ′

1δ
′′
1 + 3β′

1β
′′
1 ) + sin δ1

(
3δ′2

1 β
′
1 + β′3

1 − β′′′
1

)
cos δ1 sin β1

+ sin β1 cos δ1
(
3β′2

1 δ
′
1 + δ′3

1
)

cos δ1 sin β1
(A.5)

In the previous equations another spherical angle (β(x)1 in Figure 3.2) is
introduced together with its derivatives. They can be computed using Eq. A.6.



β1 = arccos (sinα1 cos(ψx))
β′

1 = ψ sinα1
sin (ψx)
sinβ1

β′′
1 = ψ2 sinα1 cos (ψx)−cosβ1β′2

1
sinβ1

β′′′
1 = −ψ3 sinα1 sin (ψx)−3β′

1β
′′
1 cosβ1+β′3

1 sinβ1
sinβ1

(A.6)

∆L1(x) is fundamental to compute the Longitude (6thMEE) on the initial
orbit at each x and, as a consequence, the attractor distance from the attractor
on the departure orbit as function of x; it can be computed with Eq. A.7 and
Eq. A.8.

{ sin (∆L1) = 1
sinα1

sin δ1

cos (∆L1) = cos (ψx) cos δ1
(A.7)


∆L′

1 = δ′
1

sinα1 cos (ψx)

∆L′′
1 = δ′′

1 +ψ sinα1 sin (ψx)∆L′
1

sinα1 cos (ψx)

∆L′′′
1 = δ′′′

1 +2ψ sinα1 sin (ψx)∆L′′
1 +ψ2 sinα1 cos (ψx)∆L′

1
sinα1 cos (ψx)

(A.8)
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A.2 Target orbit

The inclination of the arrival orbit with respect to the reference plane can be
computed as in Eq. A.9.



cosα2 = ĥ2 · ĥREF
sinα2 = ξ2

√
1 − cosα22

ξ2 = 1 if vf · ĥREF < 0
ξ2 = −1 if vf · ĥREF > 0

(A.9)

The declination (δ(x)2) of the arrival orbit over the reference plane can be
computed using Eq. A.10, while its derivatives can be computed using Eq. A.11,
Eq. A.12 and Eq. A.13

sin δ2 = sinα2
sin(ψ(1 − x))

sin β2
(A.10)

δ′
2 = −ψ sinα2 cos (ψ(1 − x)) − β′

2 cosβ2 sin δ2
cos δ2 sin β2

(A.11)

δ′′
2 = −ψ2 sinα2 sin (ψ(1 − x)) + sin β2 sin δ2

(
δ′2

2 + β′2
2

)
cos δ2 sin β2

+

− 2δ′
2β

′
2 cos δ2 cosβ2 + β′′

2 sin δ2 cosβ2
cos δ2 sin β2

(A.12)

δ′′′
2 = ψ3 sinα2 cos (ψ(1 − x) + sin β2 sin δ2 (3δ′

2δ
′′
2 + 3β′

2β
′′
2 )

cos δ2 sin β2
+

cosβ2
cos δ2 (3δ′

2δ
′′
2 + 3β′

2β
′′
2 ) + sin δ2

(
3δ′2

2 β
′
2 + β′3

2 − β′′′
2

)
cos δ2 sin β2

+ sin β2 cos δ2
(
3β′2

2 δ
′
2 + δ′3

2
)

cos δ2 sin β2
(A.13)

In the previous equations another spherical angle (β(x)2 in Figure 3.2) is
introduced together with its derivatives. They can be computed using Eq. A.14.



β2 = arccos (sinα2 cos(ψ(1 − x)))
β′

2 = −ψ sinα2
sin (ψ(1−x))

sinβ2

β′′
2 = −ψ2 sinα2 cos (ψ(1−x))−cosβ2β′2

2
sinβ2

β′′′
2 = ψ3 sinα2 sin (ψ(1−x))−3β′

2β
′′
2 cosβ2+β′3

2 sinβ2
sinβ2

(A.14)
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The angle ∆L2(x) is fundamental to compute the Longitude (6thMEE) on
the arrival orbit at each x and so the attractor distance of the arrival orbit as
function of x; it can be computed with Eq. A.15 and Eq. A.16.

{ sin (∆L2) = 1
sinα2

sin δ2

cos (∆L2) = cos (ψ(1 − x)) cos δ2
(A.15)


∆L′

2 = δ′
2

sinα2 cos (ψ(1−x))

∆L′′
2 = δ′′

2 −ψ sinα2 sin (ψ(1−x))∆L′
2

sinα2 cos (ψ(1−x))

∆L′′′
2 = δ′′′

2 +2ψ sinα2 sin (ψ(1−x))∆L′′
2 +ψ2 sinα2 cos (ψ(1−x))∆L′

2
sinα2 cos (ψ(1−x))

(A.16)

A.3 Attractor distances

To compute the attractor distance the Longitude at each position x on the
initial and final orbits using Eq. A.17 and Eq. A.18 has to be computed first.

{
l1(x) = L1 + ∆L1(x)
l′1(x) = ∆L′

1(x) (A.17)

{
l2(x) = L2 − ∆L2(x)
l′2(x) = −∆L′

2(x) (A.18)

The attractor distance on the initial and final orbits can be computed using
Eq. A.19.



si(x) = pi

qi(x)

si(x)′ = −piq
′
i

q2
i

si(x)′′ = 2piq
′2
i

q3
i

− piq
′′
i

q2
i

si(x)′′′ = −6piq
′3
i

q4
i

+ 6piq
′
iq

′′
i

q3
i

− piq
′′′
i

q2
i

(A.19)

the q term appears with its derivatives; it can be computed using Eq. A.20



qi(x) = 1 + fi cos li(x) + gi sin li(x)
qi(x)′ = (−fi sin li + gi cos li) ∆L′

i

qi(x)′′ = (1 − qi)∆L′2
i + q′

i
∆L′′

i

∆L′2
i

qi(x)′′′ = −q′
i∆L′2

i + 3(1 − qi)∆L′
i∆L′′

i + q′
i

∆L′′′
i

∆L′
i

(A.20)
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