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Abstract

In the context of urban mobility and electric aircraft technology, recent develop-

ments have supported the use of distributed propulsion and/or ducted fans, due

to a growing interest in UAV/MAV and PAV. Within this frame of reference, the

ability to rapidly assess the performance of these design concepts with sufficient

fidelity and with relatively low computational cost is key for the current industry.

In this way, this paper presents an implementation of an aerodynamic panel code

to be integrated with a structural solver, and a viscous Vortex Particle Method

(VPM) which has been demonstrated to be a a valuable tool to assess the aerody-

namic performance of complex configurations.

The elements of the vortex particle method are summarized, while presenting the

theoretical aspects related to the coupling with a classical unsteady panel solver. In

order to speed up calculations and control the method accuracy, the development

of an octree structure suitable to implement a Cartesian Fast Multipole Method

(FMM) is presented, together with FMM technical aspects and convergence tests.

Preliminary validation results carried on for open hovering helicopter rotors are

given, comparing VPM results with wind-tunnel measurements. Finally, introduc-

tory investigations for a ducted fan configuration are presented.

Keywords: Vortex Particle Method, Shrouded fan configuration, Helicopter wake,

Fast Multipole Algorithm, Octree data structure.



Acknowledgments

First of all, I would like to express all my gratitude to professor P. Masarati,

not only for being a very passionate teacher but also for offering me the unique

opportunity to join a company at the forefront of cutting edge technology and in-

novation. Hence, it goes without saying that I wish to acknowledge with gratitude

Leonardo Helicopters and all the people I have met during this journey.

Specifically, I cannot express enough thanks to Davide and Fabrizio for their con-

tinued support and invaluable help. In particular, rather than just my company

supervisor, I have considered Fabrizio a mentor, not only for his patient guidance

but also for the enthusiastic encouragement and useful critiques: his willingness

to give his time so generously has been very much appreciated.

Special thanks to my girlfriend Debora, for all her love, support and patience from

the distance, especially during the hardest study times.

Finally, my deepest and sincere gratitude to my family for their continuous and

unparalleled support: without them, I would have never had the chance to even

start this path. Hence, I dedicate my last academic work to them, together with

my master’s degree.



List of Figures

2.1 Kernels behavior comparison in the vicinity of zero . . . . . . . . . 23

3.1 Nomenclature convention of the cells for cell C at level l . . . . . . 35

3.2 FMM algorithm 1D visual representation . . . . . . . . . . . . . . . 37

3.3 FMM upward pass step of the algorithm . . . . . . . . . . . . . . . 38

4.1 A simple four layers octree visual representation . . . . . . . . . . . 41

4.2 Node data structures architecture . . . . . . . . . . . . . . . . . . . 44

4.3 Hash map data structure . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Example of an octree with morton keys of each node . . . . . . . . 47

5.1 AeroX objects hierarchy conceptual diagram . . . . . . . . . . . . . 54

5.2 Empty cell multipole data computation workflow . . . . . . . . . . 61

5.3 Inverted flow regime in a retreating blade . . . . . . . . . . . . . . . 63

5.4 AeroX main simulation workflow . . . . . . . . . . . . . . . . . . . 66

5.5 AeroX body part solve loop . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Gaussian vorticity distribution test results . . . . . . . . . . . . . . 71

6.2 Rolling up vortex sheet, 5 layers full octree, 6-order expansions.

σ = 0.1, t = 1, dt = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Rolling up vortex sheet, 5 layers full octree, 0-order expansions.

σ = 0.1, t = 1, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Vortex sheet section view at t = 1, dt = 0.05: comparison increasing

the order of expansions . . . . . . . . . . . . . . . . . . . . . . . . . 78



List of Figures

6.5 Vortex sheet section view at t = 1, dt = 0.05: comparison increasing

the order of expansions - magnification in the vicinity of the tip region 78

6.6 Vortex sheet section view at t = 1, dt = 0.05: comparison with

different time integration schemes available . . . . . . . . . . . . . . 80

6.7 Vortex sheet section view at t = 1: comparison between 4° order

Runge-Kutta scheme and the 4° order Adam-Bashforth one . . . . 80

6.8 CT convergence time history. Comparative validation test . . . . . . 84

6.9 Vortex lattice wake visualizations, exhibiting the classical hovering

shape. For clearness, one wake only is visualized . . . . . . . . . . . 85

6.10 Half DLR-F4 aircraft model panel mesh. Top view . . . . . . . . . 86

6.11 DLR-F4 particle wake development . . . . . . . . . . . . . . . . . . 87

6.12 CM coefficients of DLR-F4 as a function of the angle of attack α . . 88

6.13 Cp cross-sectional distribution for three different wing sections . . . 89

6.14 CL and CD coefficients of DLR-F4 as a function of the angle of

attack α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.15 Computed CT and CP compared with the experimental measure-

ments - R1 configuration . . . . . . . . . . . . . . . . . . . . . . . . 91

6.16 Computed CT and CP compared with the experimental measure-

ments - R2 configuration . . . . . . . . . . . . . . . . . . . . . . . . 92

6.17 CT convergence history - R2, 4° collective pitch . . . . . . . . . . . 93

6.18 2D projection and isometric view of the particle wake development

for the R2 rotor in hover . . . . . . . . . . . . . . . . . . . . . . . . 93

6.19 Grunwald model AeroX mesh . . . . . . . . . . . . . . . . . . . . . 97

6.20 Grunwald shoruded propeller results from AeroX, HMB3 and wind-

tunnel experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.21 Wake development behind the shrouded rotor. Advance ratio µ =

0.191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



List of Tables

6.1 Maximum point position difference refining FMM order expansions

t = 1, σ = 0.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Maximum point position difference refining the time step t = 1,

σ = 0.10 4th order Adam-Bashforth scheme . . . . . . . . . . . . . 79

6.3 Comparative validation test - mesh sets parameters . . . . . . . . . 84

6.4 DLR-F4 wing cross-sections position. . . . . . . . . . . . . . . . . 88



Contents

1 Introduction 1

1.1 A brief work report . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Problem formulation 4

2.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Laplace problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Dirichlet boundary condition . . . . . . . . . . . . . . . . . . 10

2.2.2 Neumann boundary condition . . . . . . . . . . . . . . . . . 13

2.2.3 Aerodynamic forces . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Vortex particle method . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Vorticity equations . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Singular vortex particles . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Regularized vortex particles . . . . . . . . . . . . . . . . . . 21

2.3.5 Viscous diffusion modeling . . . . . . . . . . . . . . . . . . . 25

2.3.6 Particles injection . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Fast methods for particle simulations 29

3.1 Treecodes algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 The Fast Multipole Method (FMM) . . . . . . . . . . . . . . . . . 34

3.2.1 Hierarchical subdivisions . . . . . . . . . . . . . . . . . . . . 35

3.2.2 FMM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Coefficients computation . . . . . . . . . . . . . . . . . . . . 38



Contents

4 Hierarchical data structures 41

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Node data allocation . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Pointer-based node representations . . . . . . . . . . . . . . . . . . 44

4.3 Pointer-less representations . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Morton encoding . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Code description 51

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Aerodynamic objects . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 Wakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.3 Vortex lattice wake . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.4 Particles wake . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Solution cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.1 Body solve loop . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Test cases 70

6.1 Induction tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1.1 Gaussian vorticity distribution . . . . . . . . . . . . . . . . . 71

6.1.2 Vortex sheet evolution . . . . . . . . . . . . . . . . . . . . . 74

6.2 Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.1 Older release comparison . . . . . . . . . . . . . . . . . . . . 83

6.2.2 AIAA DLR-F4 workshop . . . . . . . . . . . . . . . . . . . . 86

6.2.3 Wind-tunnel hovering rotors . . . . . . . . . . . . . . . . . . 90

6.3 Ducted fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.1 Axial flight configuration . . . . . . . . . . . . . . . . . . . . 97



Contents

7 Future developments 102

7.0.1 Parallel enhancement and GPU porting . . . . . . . . . . . . 103

7.0.2 Particles releasing strategies . . . . . . . . . . . . . . . . . . 104

Bibliography 105



Chapter 1

Introduction

This paper is the result of a six months internship at Leonardo Helicopters, where

this thesis work was developed. In this chapter, the aim of this project is presented,

along with a brief summary of contributions and activities carried out at Leonardo.

As a matter of fact, the company is launching a preliminary investigation on

ducted fan propellers, which may be one of the major design concepts for aero-

nautical urban mobility vehicles. Within this frame of reference, a vortex particle

method was developed from scratch as part of this thesis work and then employed

on such configurations. As it will be underlined later, it has been previously shown

that this method, when coupled with a fast summation algorithm, can provide

mid-fidelity accuracy results with a relatively low computational cost. Moreover,

it has been proven to be robust enough in simulations involving wake mixing and

wake-body interactions.

In Chapter 2, the aerodynamic problem is formulated, summarizing on one

hand the principles of potential theory and on the other hand the main models

adopted for the simulation code. Furthermore, the modeling methodology of a

vortex particle method is also briefly presented. The Fast Multipole Method is

applied for accelerating the computation of particle to particle interaction: hence,

theoretical aspects and practical considerations upon such algorithms are outlined

in Chapter 3.
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To integrate such dissertation, a literature review on hierarchical data structure

is given in Chapter 4, while pointing out the choices that were made for the present

work. Therefore, in Chapter 5 the main architecture and the new features of the

code are presented.

Finally, some of the tests that were carried out during the code development are

presented in Chapter 6, together with preliminary validation tests, to be further

examined in the future.

Hence, in closing, the results of simulations made on a ducted fan configuration

are reported and discussed.

1.1 A brief work report

Over the last seven months I joined a Leonardo Helicopters developer team. They

are in charge of the Leonardo aeroelastic proprietary-software, named GyroX.

As an intern, I took part in a recently launched project of code renovation,

features extension and performance enhancement of the old software.

My work focused on the aerodynamic library of the main source code (AeroX ),

which was completely rewritten. AeroX is designed to handle three-dimensional

unsteady aerodynamic simulations around complex configurations exploiting po-

tential methods, that is currently mainly used for helicopter simulations. It can

work as a library linked to the structural solver or as a stand-alone program. In

this context the new version of the code will also allow to perform a performance

assessment of multibody configurations such as the ducted fan rotor.

As the older version it is written in Fortran, but now finally exploiting all the

wherewithal of the object oriented paradigms (OOP) available in the latest stan-

dards.

In this way, I had the opportunity to help designing the new AeroX software

architecture while personally taking care of the mathematical and aerodynamic

technical aspects of the implementation.

In the first part of my internship I developed the source code of a modern
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particle wake that so far was missing from AeroX wakes models. At the same

time, I implemented an algorithm for particle fast induction (the so called Fast

Multipole Method) while designing a hierarchical data structure upon which the

algorithm itself is built. Apart form simple tests, two literature test cases were

carried on, whose results are reported later in this paper.

In order to help the debugging work and to ease the user experience I designed

a graphical output framework to visualize results in the binary VTK format. As

far as output is concerned I gave a minor contribution to a new Graphical User

Interface (GUI) written in Visual Basic, that is currently under development.

The second period was dedicated to writing all those classes which manage solid

bodies, following three different aerodynamic modeling approaches. To do so, an

aerodynamic meshing tool were written from scratch. Then, the whole implemen-

tation was finally tested with a porting of a vortex lattice wake. Furthermore,

aerodynamic semi-empirical corrections and the solution set-up were built.

Over the last month the first parallel implementations and related tests were

carried on, while setting up more complex simulations that will be reported at the

end of this paper.



Chapter 2

Problem formulation

In this chapter, the theoretical aspects and methodologies used by the aerodynamic

solver are reviewed and explained step by step. As the vast majority of helicopter

aerodynamic solvers, AeroX is built upon a Boundary Element Method (BEM).

Generally speaking this is a numerical framework for solving boundary-value or

initial-value problems formulated by the use of Boundary Integral Equations. As

will be underlined later, in order to solve the problem, alongside this formulation,

only domain boundaries need to be discretized.

While this is undeniably a key advantage of the method, it still suffer form its

intrinsic limits, due to the fact that it is only applicable to low speed aerodynamics.

Moreover, although the BEM has enjoyed the reputation of easy meshing com-

plicated geometries, its efficiency in solutions has been a problem for analyzing

large-scale models. Generally speaking, it requires O(N2) operations to compute

the coefficients.

Recently, BEM solvers have been coupled with a Fast Multipole Method

(FMM), originally developed by Rokhlin and Greengard [23] in the mid-1980s. The

FMM can be used to accelerate the solutions of BEM solvers, in order to reduce

the CPU time in a FMM-accelerated BEM to O(N). Some of the early research

on the fast multipole BEM in applied mechanics can be found in [22] and [19].

Moreover, a comprehensive review of the fast multipole accelerated BEM and the
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research work status up to 2002 can be found in [45], while a more recent textbook

covering theoretical and practical aspect is given by Yijun [39].

In the first part of this chapter, the boundary integral basics for the Laplace

equation will be reported, while in the second part the Vortex Particle Method is

introduced. An in-depth presentation of the FMM will be given in Chapter 3.

2.1 Preamble

The differential equations that are generally used in the solution of problems rele-

vant to low-speed aerodynamics are a simplified version of the governing equations

of fluid dynamics, which are based upon conservation principles. As a matter of

fact, taking advantage of the constant density hypothesis, one could reduce the

problem to the solution of a simpler differential equation, known as the Laplace

problem.

By the Helmholtz Decomposition Theorem, any rapidly decaying and suffi-

ciently smooth vector field in three dimensions can be expressed as the sum of an

irrotational (curl-free) vector field and a solenoidal (divergence-free) one. Hence,

Helmholtz decomposition of the velocity field reads

U(x, t) = U∞(t) + uφ(x, t) + uψ(x, t) (2.1)

where

� U∞ is the free stream velocity, in general it can be associated with a part

independent from the spatial coordinate x

� uφ is the irrotational part of the velocity field (∇× uφ = 0), hence

uφ = ∇φ (2.2)

� uψ is the solenoidal component of the velocity field (∇ · uψ = 0), hence

uψ = ∇× ψ (2.3)
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2.2 Laplace problem

The incompressibility constraint ∇ · U = 0 reduces to ∇ · uφ = 0. Thus, the

Laplace equation for the scalar velocity potential is formulated:

∇2φ(x, t) = 0 x ∈ Ω (2.4)

which clearly must be supplied with the proper boundary conditions. Since this is

an elliptic equation, one must provide them on all boundaries. For a submerged

body in a fluid, the velocity component normal to the body’s surface δΩb and to

other solid boundaries must be zero U · n̂|δΩb
= 0. It can be written in terms of

the velocity potential φ as:

n̂ ·∇φ =
∂φ

∂n̂
= n̂ · uφ = n̂ · (ub −U∞ − uψ) = 0 (2.5)

where n̂ is a vector normal to the body’s surface and ub is the velocity of the body.

Moreover, the disturbance created by the motion should decay far from the body

(x→∞):

lim
x→∞

(∇φ− urel) = 0 (2.6)

where urel is the velocity seen by an observer moving with the body. In this frame

of reference, the irrotational component of the velocity field is the main unknown

that must be sought as a solution of the Laplace problem (2.4).

To do so, a generic approach known as Morino formulation [41] is provided, sup-

plied with practical considerations.

The main advantage of this operation is to convert the original differential

problem on the overall fluid volume into an integral equation over analytically

defined surfaces or (more likely) numerically defined ones, i.e. a BEM frame of
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reference.

Exploiting a convolution with the Laplace operator and the Green’s function1

for the Laplace problem over the overall fluid domain Ω, one will easily get the

following integral equation. In principle, this process could be extended to a generic

differential problem, so that once the Green function for that specific equation is

known, one must exploit the boundary conditions only.

0 =

∫
Ω

G(x;x0)∇2φ(x, t)

=

∫
Ω

∇ · [G(x;x0)∇φ(x, t)− φ(x, t)∇G(x;x0)] +

∫
Ω

∇2G(x;x0)φ(x, t)

=

∮
δΩ

G(x;x0)∇φ(x, t) · n̂−
∮
δΩ

φ(x, t)∇G(x;x0) · n̂+

∫
Ω

∇2G(x;x0)φ(x, t)

(2.8)

The boundary δΩ of the domain is the union of the body surface δΩb, the irro-

tational part of the wake δΩb and the surface at infinity S∞. The latter has no

contribution, because of the asymptotic behavior of the perturbation potential for

x → ∞. To be more specific, as outlined above, the wake will be described as

a combination of vortex lattices and vortex particles. The former represent the

irrotational part of the wake, since they are a solution of the Laplace problem,the

latter corresponds to the rotational part of the wake, whose influence determine

the component of the velocity field associated with uψ.

Following the very same original approach and introducing the function E(x0):

1The Green’s function is defined as the solution of the corresponding adjoint impulse response

process of the given original problem. For the present case, it means that G will be the solution

of ∇2G(x;x0) = −δ(x − x0). Taking advantage of the homogeneity of space, G for the three-

dimensional Laplace problem will be:

G(x,x0) =
1

4π

1

|x− x0|
(2.7)

which is also known as the infinite-space Green function.
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E(x0) =


1 x0 ∈ Ω

1/2 x0 ∈ δΩ

0 x0 /∈ Ω ∪ δΩ

(2.9)

such that

∫
Ω

∇2G(x;x0)φ(x) = −
∫

Ω

∇2δ(x−x0)φ(x) = −E(x0)φ(x0) (2.10)

equation 2.8 becomes:

E(x0)φ(x0) = −
∮
δΩ

G(x;x0)
∂φ(x, t)

∂n̂
+

∮
δΩ

φ(x, t)
∂G(x,x0)

∂n̂
(2.11)

The latter is the conventional Boundary Integral Equation used in BEM solver,

valid for a Laplace problem. If the Laplace equation is provided with a forcing

term f (i.e. a Poisson equation), an additional integral term must be introduced.

In this context we are interested in a homogeneous equation, so we will concentrate

on the above-mentioned formulation.

Equation 2.11 can be rearranged through a sum of a source distribution σ and

a doublet distribution µ placed on the boundaries δΩ.

As for the source terms, it is defined by the following relation:

σ(x, t) = n̂(x, t) ·∇φ(x, t) (2.12)

Moreover, the gradient of the Green’s function with respect to the space variable

x measures the potential induced in x0 by a unit-value point doublet placed in x:

∇G(x;x0) = − 1

4π

x0 − x
|x0 − x|3

(2.13)
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With this in mind, equation 2.11 can be expressed explicitly as a function of σ

and µ:

E(x0)φ(x0, t) = − 1

4π

∮
δΩ

1

|x0 − x|
σ(x, t) +

1

4π

∮
δΩ

n̂ · x0 − x
|x0 − x|3

µ(x, t) (2.14)

In view of Equation 2.14, it is possible to establish a fairly general approach to the

solution of incompressible potential flow problems. As a matter of fact, the solution

of ∇2φ = 0 can be obtained by distributing elementary solutions (sources and

doublets) on the problem boundaries. These elementary solutions automatically

fulfill the boundary condition of Equation 2.6 by providing velocity fields that

decay as x → ∞. However, at the point were x = x0 the velocity becomes

singular, therefore the basic elements are called singular solutions. For practical

applications, basic solutions must be provided with a smoothing radius.

Hence, the solution of a fluid dynamic problem is now reduced of finding the

appropriate singularity element distribution over some known boundaries, so that

the boundary condition (2.5) will be fulfilled.

To uniquely define the solution of this problem, specifying the boundary conditions

is not enough: first, a specific combination of sources and doublets distribution

should be made, then the amount of circulation around the surface of the body

should be fixed by means of some criterion. These considerations deal mainly

with the modeling of the wake but also with the fixing of the wake shedding lines

(i.e. their initial orientation and geometry). After the releasing locus is fixed, the

three-dimensional equivalent of the Kutta condition must be implemented.

Explicit formulations for point or surface singularities can be found in Katz

and Plotkin (2001) [33].

The boundary condition for Equation 2.4 can directly specify a zero normal

velocity component ∂φ/∂n = 0 on the surface δΩb, in which case the formulation

will be a Neumann problem. On the other hand, the potential φ can be directly
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specified on the boundary , so that indirectly the zero normal flow condition will

be met: this approach constitutes a Dirichlet problem.

2.2.1 Dirichlet boundary condition

For an enclosed boundary, such as the one described by the body, if the condi-

tion expressed in Equation 2.5 holds, then the potential inside the body (without

internal singularities) will not change ([35]), i.e.

φ |inner = const (2.15)

that constant is usually set to zero.

Hence, the potential has to be specified anywhere on δΩb: for this purposes,

Equation 2.14 will come in useful by distributing the singularity elements on the

surface, while placing the point x0 inside the surface.

Before doing so, one must retrieve the source distribution. Given the far-field

velocity, the motion of the bodies and the rotational part of the velocity field uψ,

the source intensity distribution can be easily get by means of its definition. As

for uψ, it is part of the unknowns of the problem, but in this context is a given

datum, since that field is the result of the rotational part of the problem, solved

at the previous iteration. In other words, the two velocity fields (uφ and uψ) can

be solved alternatively using the known field to compute the other.

In this way, the intensity of the source distribution reads:

σ(x, t) = n̂ ·∇φ = n̂ · (ub −U∞ − uψ − uwφ ) (2.16)

where uwφ is the velocity contribution coming from the whole vortex lattice wake.

To define the problem uniquely, the wake doublet distribution (no sources contri-

bution are present, i.e. the wake is always modeled as a thin sheet of doublets)

should be known or related to the unknown doublets of the body (here it comes in
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to play the Kutta condition and the releasing algorithm). Here, uwφ stands for the

velocity contribution of all those inductive elements released in the field, linked

with the irrotational part of the velocity field.

At this point, the doublet distribution must be sought as the solution of a

numerical system.

To simplify the notation, two convolution kernels S and G are introduced, re-

spectively for the source and doublet contributions. Hence, the expression of the

potential 2.14, when condition 2.15 is applied on the body, will read

(
[
Eδ + G + GKutta

]
? µ)(x, t) = (S ? µ)(x, t) (2.17)

where the kernel GKutta gives the potential contribution of the wake at the current

timestep (i.e. an implicit contribution), written as a function of the unknowns on

the body, by means of the Kutta condition. The explicit contribution of the wake

(i.e. the one coming from the previous timesteps) is taken into account with the

term uwφ that builds the right-hand side of the equation.

This integral equation can be solved with a collocation method. First, the surface

of the body δΩb is divided into two-dimensional panels Sk and the equation 2.17

is recast, extending the integrals over the surface of each panel element (generally

a quadrilateral or a triangle). Then, the resulting equation is split and rearranged

as a linear system of equations, by evaluating it in suitable collocation points.

The choice of the singularity distribution on the panels deserve a more detailed

aside. The general practice is to consider a low-order approach (especially for

aeroelastic problems), introducing constant intensity distribution for the panels,

both for the sources and for the doublets. With this choice, flat panels can be

built. This is the path followed by this thesis work.

On the other hand, higher-order methods must take into account not only higher

derivatives of surface singularity density, but also higher geometric derivatives. In

this manner, a so called higher order panels method can be implemented, [28].
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The accuracy benefits of such methods are enhanced when the mesh is refined

with curved panels. In this way, the governing equations will be the same, but

the expressions of induced velocities become more complex to handle, requiring

numerical integration on the induced panel. Specifically, such expressions will

depend on the geometric derivatives of the body and the singularity distribution

derivatives. To save computational time, multipole expansions based on those

singularities can be used too.

In this context, constant distributions will be used, i.e. µ(x, t)|Sk
= µk(t) and

σ(x, t)|Sk
= σk(t) . Hence, in light of what has been said above, the following

equation will hold:

Eiφi =
N∑
k=1

[
−
∫
Sk

1

4π

1

xi − xk

]
σk −

N∑
k=1

[
−
∫
Sk

1

4π

xi − xk
|xi − xk|3

· n̂
]
µk

=
N∑
k=1

Sikσk −
N∑
k=1

Gikµk i = 1 : N

(2.18)

where k runs over all the N body panels and Sik and Gik are the aerodynamic

influence coefficients of the k-th panel on the i-th panel, associated with source

and doublet distributions with unit-valued intensity. Finally, exploiting the Kutta

condition, Equation 2.17 can be arranged into a linear system of N equations in N

unknowns:

N∑
k=1

(Eiδik +Dik +DKutta
ik )µk =

N∑
k=1

Sikσk (2.19)

which, together with the discrete counterpart of Equation 2.16, closes he problem.

The formulation outlined in this section is implemented in the code, and it is

suitable for modeling thick bodies, e.g. wings or fuselages. Generally speaking

it requires higher computer time compared to a lifting surface approach, that

will be described below, in the next section. However, generally speaking, the

main bottleneck of the whole method is the induction performed by the wake.



Chapter 2. Problem formulation 13

Specifically, the computational cost increases with the number of vortical elements

released in the field at each timestep.

2.2.2 Neumann boundary condition

In this case it is required that ∂φ/∂n will be specified on the solid boundary δΩb

(Equation 2.5), hence

n̂ ·U = n̂ · ub (2.20)

Substituting the velocity decomposition introduced at the beginning (Equation

2.1), one will get:

n̂ · uφ = n̂ · (ub −U∞ − uψ − uwφ ) (2.21)

where uφ contains both the contributions from the body and from the wake dou-

blets linked to the body by the Kutta condition, while uwφ is the velocity con-

tribution coming from released vortical wake elements. Exploiting this velocity

formulation, the sources contributions are nullified, so that a zero-thickness body

can be modeled. As previously done, the body surface is divided into N panels

Sk and each panel will be assigned an unknown constant-strength distribution of

doublets.

Remark. The velocity contribution given by a constant-strength doublet dis-

tribution on a panel is equivalent to a vortex ring (proof in [33]). Hence, the

contribution coming from this term can be indifferently computed with a doublet

or with a vortex ring (e.g. the right-hand side of Equation 2.21)

In our code, we use doublet induction for the body and vortex rings for the

vortex lattice wake. In the latter case, the induction influence coefficient can be

computed by means of the Biot-Savart law.
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Writing the expression 2.21 in an abstract form and exploiting the domain

decomposition we will get

n̂i ·
N∑
k=1

Λikµk = n̂i · (ub,i −U∞ − uψ,i − uwφ,i) i = 1 : N (2.22)

where Λik is the velocity influence coefficient upon panel i generated by panel k.

2.2.3 Aerodynamic forces

In this section, the algorithm involved in the aerodynamic force computations is

outlined. It goes without saying that a numerical potential scheme experiences

the so called D’Alambert paradox, hence there is no way to evaluate profile or drag

resistance except by means of semi-empirical corrections.

Thick bodies

The mean pressure acting on a panel k of a body modeled with sources and doublets

can be calculated using the unsteady Bernoulli equation:

Cp,k =
pk − p∞
1
2
ρ|U∞|2

= 1−
(
|U k|
|U∞|

)2

− 2

|U∞|2
∂φk
∂t

(2.23)

where Cp,k is the pressure coefficient and U k is the total induced and free stream

velocity related to panel k; φk is the potential induced on the panel centroid by

all bodies and wakes in the field. For forces computation purposes, the potential

contributions coming form wakes and bodies is neglected, hence the self-induced

potential only will be considered.

In light of the Dirichlet boundary condition and of the definition of the doublet

singularity, which can be seen as the discontinuity in the potential between upper

and lower side of the panel, the following will hold:
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φk = ∆φk + φ−k = µk (2.24)

or, due to the equivalence between a doublet panel singularity and a vortex ring, µk

is equivalent to the total circulation on the vortex ring itself. Hence, the unsteady

term in Equation 2.23 can be rewritten in terms of the doublet intensity on each

panel k.

Moreover, the velocity U k calculated on the panel centroid reads:

U k = U∞ + uφ,k + uψ,k (2.25)

Once the pressure coefficient is calculated, the aerodynamic actions can be com-

puted easily with the following:

F aero = −1

2
ρ|U∞ + ub,k|2

N∑
k=1

Cp,kSk · n̂k

M aero = −1

2
ρ|U∞ + ub,k|2

N∑
k=1

Cp,kSk · n̂k × (Oref −Ok)

(2.26)

where Sk is directed as the panel k normal vector and its magnitude equals the

panel k surface area, and Oref is a suitable reduction pole, while Ok is the panel

centroid.

Lifting surface

For bodies modeled with lifting surfaces the aerodynamic forces and moments

are easily obtained by means of the Kutta-Joukowski theorem, which gives the

expression of the aerodynamic force on a vortical element as:

F aero,k = ρU(Ok)× Γk∆lk (2.27)
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where ∆l is the length of the vortical edge and U(Ok) is the total velocity com-

puted on Ok, the edge middle point. Inside U(Ok) there is the free stream velocity

and the induced velocity contribution form other bodies and wakes. Γk is the vor-

tical element circulation intensity.

Once the aerodynamic force is known, the torque given by that force will be

trivially

M aero,k = ρ(Ok −Oref )× F aero,k (2.28)

A further contribution to the aerodynamic force comes form the unsteady com-

portment of the vortical circulation, which adds a force contribution proportional

to the time evolution of the circulation itself:

F us
aero,k = ρ

dΓk
dt
n̂k (2.29)

the time derivative can be approximated by means of a finite difference of arbitrary

order.



Chapter 2. Problem formulation 17

2.3 Vortex particle method

2.3.1 Introduction

One promising mid-fidelity approach for modeling complex wake interactions is

the viscous Vortex Particle Method (VPM). Multiple vortex panel or filaments

methods have been proposed for the modeling of free wakes, but experience in this

field reveals that these methods are sometimes ill-conditioned for the modeling

of complex dynamics, such as wakes mixing, body-wake interactions and viscous

effects. Specifically, the latter often require a careful parameter tuning to get

reliable results. One major source of instabilities is the requirement of preserving

connectivity, which make classical vortex lattice wakes unable to model complex

flow fields.

On the other hand, the vortex particle method discretizes the vorticity field

into free particles, solving the vorticity form of Navier-Stokes equations in a La-

grangian framework. In the past, mid/high-fidelity simulations have been attained

through VPM at a relatively low computational cost. For instance, Calabretta [10]

used particles to model the interaction between an actuator-disk propeller and a

paneled wing. He et al [27] [64] [26] implemented a VPM scheme to study the

interactions between coaxial rotors, coupling a lifting-line wing with an hybrid

VPM-CFD solver to characterize rotor-on-fuselage interaction of a full rotor-craft.

Among other applications, VPM has also been used to model rotor-craft forward

flight [5], [55].

A complete mathematical formulation of vortex particles method is presented by

Winckelmans (1989) [61], while a Cottet and P.D.Koumoitsakos (2001) [13] pre-

sented a literature review on particles schemes proposed during the years.

2.3.2 Vorticity equations

From the Stokes’ assumptions for a Newtonian, incompressible fluid with constant

viscosity, the conservation of momentum is governed by the well-known Navier-
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Stokes equations:

∂u

∂t
+ (u ·∇)u = −1

ρ
∇p+ ν∇2u (2.30)

where u(x, t) is the velocity field, p(x, t) is the pressure field, ρ the fluid density

and ν the kinematic viscosity of the fluid.

Using the identity (u ·∇)u = 1
2
∇(u ·u) + (∇×u)×u, this relation can also be

written as:

∂u

∂t
+ ω × u = −∇

(
p

ρ
+
|u|2

2

)
+ ν∇2u (2.31)

where ω(x, t) = ∇ × u(x, t) is the vorticity field. Taking the curl of Equation

2.31, the momentum equation is then transformed into its vorticity form

∂u

∂t
+ ∇× (ω × u) = ν∇2ω (2.32)

With some manipulations and from the continuity equation for an incompressible

fluid (∇ · u = 0), both u and ω are found to be divergence-free fields, so that

Equation 2.32 becomes

Dω

Dt
= (ω ·∇)u+ ν∇2ω (2.33)

which describes the Lagrangian evolution of the vorticity field, a non-linear trans-

port equation that can be solved using a particle method.

In this section,we are interested in determining the vortex particle induced ve-

locity uψ induced by the vorticity field ω. So both scalar potential and uniform

components will be ignored, in order to develop an expression for the vector po-

tential field ψ.
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Starting from the vorticity field definition

ω = ∇× (∇×ψ)

= ∇(∇ ·ψ)−∇2ψ
(2.34)

The first term will be nullified due to a gauge transform, so that finally a Poisson

equation for ψ is obtained:

∇2ψ(x, t) = −ω(x, t) (2.35)

2.3.3 Singular vortex particles

In the singular vortex particle method, also called method of point vortices or

vortex sticks or vortons [61], the vorticity field is discretized through a point-wise

representation, the so called particle representation of vorticity field :

ω(x, t) =
∑
p

ωpvolpδ(x− xp(t))

=
∑
p

αp(t)δ(x− xp(t))
(2.36)

where ωp is the vorticity associated to the p-th particle of volume volp and αp =∫
volp
ωpdV is its vectorial circulation or vectorial vortex strength.

We may now substitute Equation 2.36 into Equation 2.35 while solving Poisson

equation with the Green’s function. Hence, recalling that the Green’s function for

−∇2 in unbounded domain is G(x) = 1/(4π|x|), we will get

ψ(x, t) = (G ? ω)(x, t)

=
∑
p

G(x− xp(t))

=
1

4π

∑
p

αp(t)

|x− xp(t)|

(2.37)
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where ? is the convolution operator. Then, the rotational part of the velocity field

will be easily obtained as

u(x, t) = ∇×ψ(x, t)

=
∑
p

 ∇(G(x− xp(t)) +G(x− xp(t))
= 0︷ ︸︸ ︷

∇×αp(t)


= − 1

4π

∑
p

1

|x− xp(t)|3
(x− xp(t))×αp(t)

(2.38)

Hence, we will get the following expression

u(x, t) =
∑
p

K(x− xp(t))×αp(t) (2.39)

where the kernel K is the Biot-Savart kernel for a three-dimensional vortex

K(x− xp(t)) = − 1

4π

x− xp(t)
|x− xp(t)|3

(2.40)

Evaluating Equation 2.39 directly per each particle in the field require a compu-

tational effort proportional to O(N2), where N is the total number of particles.

Governing equations

Substituting Equation 2.36 into Equation 2.33, the governing equations for the

evolution of vorticity-governed flow in a Lagrangian framework are obtained. The

following formulation can be found in the literature under the name Classical

Scheme:


d

dt
xp(t) = up(xp(t), t)

d

dt
αp(t) = (αp(t) ·∇)up(xp(t), t)

(2.41)
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In addition to that, there are two more numerical schemes that can be found in

literature, each of them having different numerical properties. The code devel-

oped in this theses implemented the so called Transport scheme, which has been

demonstrated to conserve the total vorticity. More specific mathematical aspects

can be found in [61].

Moreover, the viscous diffusion ν∇2ω can be recovered by means of a proper

numerical scheme (§ 2.3.5).

2.3.4 Regularized vortex particles

In this section, the regularized version of the method of vortex particles is consid-

ered. More specifically, the vorticity field is now represented as follows:

ωσ(x, t) = ζσ(x) ? ω(x, t) =
∑
p

αp(t)ζσ(x− xp(t)) (2.42)

where ζσ is an appropriate regularization function (i.e. an approximation to the

δ-function) which is usually taken as radially symmetric while σ is a smoothing

radius (i.e. a cutoff length core size) :

ζσ(x) =
1

σ3
ζσ

(
|x|
σ

)
(2.43)

An asymptotic behavior for |x|→ ∞ that mimics the Biot-Savart law is granted

through the following

4π

∫ ∞
0

ζ(ρ)ρ2dρ = 1 (2.44)

Hence, the function ζσ defines the vorticity distribution within the core of the

vortex particle. This means that a particle can be seen as a vectorial element

built upon a position vector, an intensity vector and a cut-off length. By doing so,
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the numerical scheme moves from singular particles (linked to the vorticity field

through a δ-function) to regularized particles (linked through the ζσ-function),

sometimes termed blobs.

Equation 2.39 can be easily extended to the present case

u(x, t) =
∑
p

Kσ(x− xp(t))×αp(t) (2.45)

Hence, the regularized form of the Biot-Savart kernel can be expressed as

Kσ(x) = −qσ(x)

|x|3
x (2.46)

where

qσ(x) = q

(
|x|
σ

)
= q(ρ) =

∫ ρ

0

ζ(t)t2dt (2.47)

Moreover, the following holds:

q′(ρ)

ρ2
= ζ(ρ) (2.48)

In this way, the regularized kernel is equivalent to the Biot-Savart one at far

distances with respect to the smoothing radius σ. On the other hand, as x → 0

the induced velocity tends to zero.

Desingularization

Vortex particles methods convergence has been first investigated by Beale [6].

As pointed out by Winklemans ([61], [60]) the solution converges to the three-

dimensional vorticity equation for a finite time if the number of particles grows

and the cut-off radius σ decreases (i.e. σ/d > 1, where d is a measure of neighbor

particles mean distance).
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Figure 2.1: Comparison of the singular Biot-Savart kernel (2.40) and non-singular

kernels with fixed smoothing radius

The error norm for the vorticity is composed of two terms: the first one is

O(σr), while the second goes as O(σ(h/σ)m). The exponent m is related to the

number of derivatives of ζ(ρ). For the majorities of practical cases, m is large so

that it is essential that cores do overlap for the second error terms to vanish. On

the other hand, the exponent r is related to the moment properties of ζ(ρ) : it

must first satisfy the normalization constraint 2.44, together with

∫ ∞
0

ζ(ρ)ρ2+sdρ = 0 2 ≤ s ≤ r − 1 (s even)∫ ∞
0

|ζ(ρ)|ρ2+rdρ <∞
(2.49)

This means that non-singlular particles and singular ones shares the very same

moments: total vorticity, linear impulse and so on until r − 1.

Among various alternatives, the most used and cited in literature are the fol-

lowing, [61] (3D case) :

� Gaussian smoothing
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ζ(ρ) =
e−ρ

2/2

(2π)3/2
→ q(ρ) =

1

4π

(
erf
( ρ

21/2

)
−
(

2

π

)1/2

ρe−ρ
2/2

)
(2.50)

which corresponds to m =∞ and r = 2

� Low order algebraic smoothing

ζ(ρ) =
3

4π

1

(1 + ρ2)5/2
→ Kσ(x,y) = − 1

4π

x− y
(|x− y|2+σ2)3/2

(2.51)

which corresponds to m =∞ and r = 0

� High order algebraic smoothing

ζ(ρ) =
15

8π

1

(1 + ρ2)7/2
→ Kσ(x,y) = − 1

4π

|x− y|2+5
2
σ2

(|x− y|2+σ2)5/2
(2.52)

which corresponds to m =∞ and r = 2

In order to obtain an expression for the induced velocity for each smoothing

function it is necessary to exploit Equation 2.46 through the function q(ρ) provided

by the relation 2.48.

In Figure 2.1 the induced velocity provided by those kernles defined above is plotted

and compared with the singular evolution of the Biot-Savart kernel.

The low-order algebraic kernel, (proposed by Rosenhead in the context of vor-

tex filaments) is believed to provide convergence in all cases practical interest.

However, it has been warned that the kernel does not satisfy the second inequality

reported in 2.49 required in the classical proof of convergence [61]. Moreover, even

if it does lead to convergence, the convergence rate is expected to be lower than

that of the transcendental kernel based on the Gaussian core function (the kernel
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is constructed form a low-order core function). To address these issues , Winkle-

mans and Leonard [60] introduced the high-order algebraic kernel specified above

(Equation 2.52).

First of all, this kernel satisfies all the requirements in the classical convergence

analysis of vortex methods: moreover, it is expected to be more numerically con-

venient than those kernels involving transcendental functions.

Second, it has convergence properties equal to those of the Gaussian smoothing and

as for vortex particles this smoothing is a case for which closed form expressions

for all quadratic diagnostics can be obtained (kinetic energy, elicity and enstro-

phy, [61]). Other than that, in order to implement a fast induction algorithm, an

explicit recurrence relation suitable to compute Taylor coefficients of the kernel is

required (ref Chapter 3), which is also available for the high-order kernel (as it is

for the low-order one).

Hence, bot algebraic kernels are implemented in the code. A convergence compar-

ison based on numerical analysis of these two kernel is reported in [59].

2.3.5 Viscous diffusion modeling

Despite the weaknesses of a vortex particle scheme (technical aspects can be found

in [61]), a key point that that draws the attention on this kind of methods is the

ability to model the viscous diffusion term (ν∇2ω). Neglecting the diffusion effect

in specific applications could lead to unreliable results.

In this way, when using vortical edges methods which do not model diffusion at

all, one must carry on a careful tuning of empirical viscus coefficients, which are

directly related to the induction stability when vortical elements approach each

other. Furthermore, in the three-dimensional case the energy transfer from higher

to lower scales could lead to complex arrangements of vortical lines2, increasing

2In the context of the vorticity form of the Navier-Stokes equations this effect is directly

linked to the vortex stretching term, present in the three-dimensional case only ((ω ·∇)u)
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complexity and possibly leading to instabilities.

Within this frame of reference, the importance of the Laplacian term arises,

since this is the one that smooths out and redistribute particles vorticity strengths,

resulting in a energy dissipating effect.

In the leftover part of this section, two method for modeling the Laplacian term

are reported. The second one is actually implemented in the code.

Viscous splitting methods

This class of methods inherits the idea to split the viscous contribution from the

original equations (2.53): in the first phase the non-viscous equations are solved,

i.e. the particle are convected while the vorticity evolves according to the vor-

tex stretching term. Then, the vorticity is corrected with the Laplacian term,

adequately approximated:


Dω

Dt
= (ω ·∇)u ¬

∂ω

∂t
= ν∇2ω 

(2.53)

There are many ways one can represent the second equation in 2.53. One of the

most famous is the so called Random walk method proposed by Chorin in 1973

[12]. In this context, particles are subjected to a Brownian-like motion in order

to mimic a viscous effect. The inviscid equation is solved and then the particle

positions are evolved in time according to the following

d

dt
xp(t) = uσ(xp(t), t) +W p (2.54)

where W p models a Wiener process with prescribed parameters.

A modern class of methods that opened the way to PSE schemes are the Re-

sampling methods, developed by Raviart [51]. Within this framework, the viscous

contribution modifies the particle strength. The diffusion equation is solved though
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a diffusion kernel built with intial conditions given by particles strength at time

tn.

Particle strength exchange scheme (PSE)

Soon after, starting from the idea of redistributing particles intensities rather than

position, a class of new methods based on the integral approximation of the diffu-

sion term, rather than the vortex intensity redistribution has been developed. This

is the scheme which is implemented in the code. In 1983 Degond and Mas-Gallic

[14] showed that the Laplacian form ν∇2ω can be approximated as an integral

operator, which is more suitable for a particle method:

ν∇2ω ≈ 2ν

σ2

∫
(ω(y)− ω(x)) ησ(x− y)dy (2.55)

with ζ a smoothing function of radial symmetry, σ the cut-off radius and

ησ(x) =
1

σ3

(
|x|
σ

)
η(ρ) =

ζ ′(ρ)

ρ
(2.56)

Discretizing space into particles of volume volp and position xp, the integral in

Equation 2.55 can be approximated by means of a quadrature formula. Then,

evaluating the viscous diffusion term at a particle position xp we will get the

following:

ν∇2ω(xp) ≈ 2ν

σ2

∑
q

(volqωq − volqωp) ησ(xp − xq) (2.57)

Therefore, multiplying Equation 2.57 by volp and applying the vortex particle

discretization , viscous diffusion effects are then approximated as

ν∇2ω(xp) ≈ 2ν

σ2

∑
q

(volpαq − volqαp) ησ(xp − xq) (2.58)
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Winckelmans provides some examples of kernel functions with spherical symmetry,

some of them are listed in the following:

ζ(ρ) =
e−ρ

2/2

(2π)3/2
→ η(ρ) =

e−ρ
2/2

(2π)3/2
(Gaussian)

ζ(ρ) =
3

4π

1

(1 + ρ2)5/2
→ η(ρ) =

15

4π

1

(1 + ρ2)7/2
(Low-order algebraic)

ζ(ρ) =
15

8π

1

(1 + ρ2)7/2
→ η(ρ) =

105

8π

1

(1 + ρ2)9/2
(High-order algebraic)

(2.59)

2.3.6 Particles injection

A critical part of the whole method is the injection of particles in the field, starting

from a releasing object of arbitrary characteristics. There are many contributions

on this topic, depending on the application, but the main constraint is the conser-

vation of the vorticity momentum of order zero and one:

αp(t) =

∫
V

ω(x, t) dV

αp(t)× xp(t) =

∫
V

ω(x, t)× xp dV
(2.60)

If the particles are released from a panel interface this means that one must gather

the vorticity distributed on vortical edges into discrete point. For instance Hu

(2015) [29] places integration volumes in the middle of longitudinal segments per-

pendicular to the releasing wing, while S.G.Voutsinas (2005) [58] puts new particles

onto the vortex lattice nodes.

A very interesting application can be found in [47]: the authors developed a

vorticity release strategy at solid surface of three-dimensional bodies. A number

of nascent vortices are introduced in the flow field according to the diffusion and

the convection of the vorticity near the solid surface. In this way, they attempted

to simulate unsteady flow around three dimensional bluff bodies with a vortex

particle method.
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Fast methods for particle

simulations

As stated in the previous chapter, evaluating the sums reported in Equation 2.39

by direct summation could be very resource demanding, especially when an aero-

dynamic code has to be complemented with a structural solver.

As the number of particles grows, performing a complete simulation could be un-

feasible, specifically form an industrial point of view, since the time required to

perform these operation is excessively large. As a matter of fact, the code de-

scribed in the present thesis is supposed to be exploited especially during design

phases, in which a substantial number of runs must be executed.

This problem, termed the N-body problem, is well-known across all fields of

research, where the computation of pairwise interactions is required (for instance,

in celestial motion, electrically charged particles and molecular dynamics). Gener-

ally speaking, its computational complexity has an asymptotic behavior, requiring

O(N2) operations for each time step, where N is the number of particles.

As a matter of fact, the computation of velocity at an arbitrary position is car-

ried out by summing all particles contribution, and the velocity at each particle is

required to advance in time the simulation.

During the last decades, in order to address time (but also accuracy) require-
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ments, alternative approaches to the direct interactions between well-separated

particles have been proposed.

3.1 Treecodes algorithms

The first viable fast algorithms for N body problems combined two main ideas:

� Approximating the effect (in its general meaning) of a group of distant ob-

jects, termed clusters (charges, masses, blobs) by their first moments.

� Organizing the space in a hierarchical fashion to get a measure of distance

for these approximations. In other words, a nested subdivision of space is

used to construct the object clusters.

In our context ,the objects are particles and the interaction corresponds to the in-

duction phase. In this way, a particle-cluster interaction is used to rapidly compute

the influence of a particle cluster on a single target particle, reducing the amount

of computational effort. This is accomplished by approximating the cumulative

effect of the particles in the cluster on the target particle with a simplified expres-

sion. The latter can be evaluated for multiple target particles with an operation

count independent on the number of particles within the cluster.

Moreover, the particle-cluster interactions are only performed for particles and

clusters which are separated from each other, i.e. it is performed if the distance

from the particle is such that D/L > ε, where D in the cluster average dimension,

L is the distance and ε is a fixed accuracy parameter.

Thus, this approximation is termed far-field approximation.

Moreover, the nested subdivision, which is used to build the clusters, is the tool

that generates particle-cluster interactions in which the particle is far from the

cluster, relative to the cluster’s size. Two early examples of such algorithms are

due to Appel [2] and Barnes and Hut [4], who implemented this approach for

astrophysics simulations.



Chapter 3. Fast methods for particle simulations 31

The combination of all these ingredients lead to an algorithm whose asymptotic

operation count is O(N logN).

In the past decades, many alternatives were exploited: the one presented by

Lindsay is worth being reported [38]. Lindsay’s treecode was used to simulate the

roll-up of a circular-disk vortex sheet into a vortex ring. For each particle-cluster

interaction, the order of approximation is chosen adaptability, and a run-time

choice is made between Taylor approximation and direct summation based on

empirical estimates of the necessary CPU time. If the approximation is slower

with respect to the direct summation and the current cell is not at the bottom of

the tree, then the code descends to the next layer of the tree, recursively calling

the compute-velocity routine. The rationale for descending the tree is that the

children cells have smaller radii and fewer particles, so it is more likely that the

accuracy criterion will be satisfied.

Kernel expansion

Lindsay’s results related to the approximation for a particle-cluster interaction are

summarized here but they are key for the fast multipole method too.

Once the tree is build, the velocity induced at point x0 by the vorticity within

a cluster c can be evaluated as

u(x0) =
∑
j ∈ c

Kδ(x0,yj)×αj (3.1)

where yj are particles inside that cluster.

Clearly, summing over all clusters and using this expression directly results in a

computational cost that is O(N2). The cost of the computation can be reduced

to O(N logN) by expanding Kδ(x0,yj) in a Taylor series in the second argument

about the center of the source cluster yc.
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By using multi-index notation1:

∑
j ∈ c

Kδ(x0,yj)×αj =
∑
j ∈ c

Kδ(x0,yc + (yj − yc)) × αj

=
∞∑
k

1

k!
Dk
yKδ(x0,yc) ×

(∑
j ∈ c

(yj − yc)kαj

)

=
∞∑
k

ak(x0,yc) × mk(c)

(3.2)

where

mk(c) =
∑
j ∈ c

(yj − yc)kαj (3.3)

The ak(x0,yc) are the Taylor coefficients of the non-singular kernel with respect

to y about y = yc, and they are independent of the particles yj in the cluster c.

On the other hand, the mk(c) describe the distribution of particles in cluster

c and so they are termed particle moments ; moreover, they do not depend on the

target point x0. Thus, once the particle moments are computed for one particle-

cluster interaction, they can be stored and used for subsequent particle-cluster

interactions with different target particles.

Clearly, the coefficients must be approximated by truncating the infinite series

in Equation 3.2, yielding:

1k = (k1, k2, k3) is the third order multi-index, where the subscripts 1-3 refer to the Cartesian

directions. Moreover, when ki > 0 the following will hold:

� k! = k1!k2!k3!

� xk = xk1
1 x

k2
2 x

k3
3

� Dk
y = ∂/∂yk1

1 ∂/∂y
k2
2 ∂/∂y

k3
3

� |k| = k1 + k2 + k3



Chapter 3. Fast methods for particle simulations 33

u(x0) ∼
∑
|k|<p

ak(x0,yc) × mk(c) (3.4)

This truncation is referred to as a pth order expansion for a particle cluster

interaction. The error analysis can be found in [38].

Recurrence relations

For the algorithm to be computationally efficient, it is mandatory to rapidly com-

pute the ak(x0,yc) defined in Equation 3.2. To do so, Lindsay suggests a method

for doing this, based on a polynomial representation of the Plummer potential and

the Rosenhead-Moore kernel, [38]. As he pointed out at the end of his paper, the

whole method can be applied to a variety of other kernels; the main prerequisite

is that the Taylor coefficients of the kernel should satisfy a recurrence relation: as

a matter of fact he applied this approach to problems involving screened electro-

statics and in general power-law interactions in molecular dynamics.

It is worth noticing further recent developments proposed by Wee et al [59], in

which convergence characteristics of the Rosenhead-Moore kernel are questioned,

presenting a recurrence relation for the Taylor coefficients of an higher order kernel,

the Winckelmans-Leonard one (Equation 2.52).

In this way, both kernel are implemented in our code, leaving the choice to the

user. To get an insight on the relations and to have further technicalities on their

convergence studies , one my refer to their paper.
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3.2 The Fast Multipole Method (FMM)

An even more efficient implementation of the concept presented in the previous

section is the Fast Multipole Method (FMM) introduced for the first time by L.

Greengard and V. Rokhlin (1987) [23].

The critical new idea introduced here is the local expansion. This mathematical

tool allows groups of distant objects to interact with groups of targets.

Selected as one of the top ten algorithms of the XX century, FMM reduces the

original N-body problem O(N2) to a linear problem O(N), when N is high enough.

Moreover, the error can be controlled through an appropriate choice of the order of

expansion. Indeed, one key difference between treecodes and FMM is the method

of achieving a desired accuracy in the approximations. While treecodes ensure

an arbitrary accuracy by restricting the acceptable distances for group-to-target

interactions, FMM acts on the series expansions and chooses a proper truncation

for specified accuracy.

As a matter of fact, FMM approximates the induction by far-field point sources

through an expansion performed with spherical harmonic functions, the so called

multipole expansion. In this way, particle-cluster interactions are approximated to

any specified tolerance.

As outlined above, they also introduced cluster-cluster interactions by expanding

the far-field approximation into a local near-field expansion for rapid evaluation

at multiple target points.

All of these expansions and approximations are appropriate when the inter-

action kernel is harmonic, such as the Newtonian potential of gravitational and

electrostatic interactions, but they are unsuitable for non-harmonic kernels, such

as the Rosenhead-Moore and the Winckelmans-Leonard ones. This is because the

method relies on the harmonicity of the kernel to ensure convergence.

An expansion using Cartesian Taylor series can be used to overcome this con-

straint: this idea was first proposed by Zhao[63], who used Taylor series for com-

putations with the Newtonian potential in three dimensions. The main purpose
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was to generalize the original two-dimensional complex series expansion to the

three-dimensional setting.

In this context, a Cartesian multipole expansion method is implemented: the

steps required to built the method are the same one would use for the classical

implementation exploiting harmonic expansions; the only difference is related to

the operator kernels expressions. We will report those needed for a Cartesian

implementation.

3.2.1 Hierarchical subdivisions

Figure 3.1: Nomenclature convention of the cells for cell C at level l; 2D case, 2

layers

Before going into more detail, a brief presentation on the data structure needed

to exploit the method will be given. As sketched above, FMM groups objects

hierarchically to apply expansions: in this way, it is necessary to subdivide the

computational domain in smaller and smaller regions, like a treecode structure.

Therefore, at the highest level, at the layer 0, the whole computational domain

is enclosed. Then, successive layers are added in a recursive manner subdividing
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the volume into 8 cells or boxes, which are constrained to have the same volume.

The layer l+1 will hold the so called children of all the cells in the upper layer l.

Moreover, objects will be stored in the lowest level in the corresponding cell,

where the object geometrically belongs to. This are the basics of very interesting

data structure that is described in detail in Chapter 4.

In the following, some definitions are given. In order to ease the visualization,

a 2D structure is presented in Figure 3.1. Of course, the following definitions are

valid also for the 3D case.

� A cell having no child cells that holds at least one object is termed leaf. In

this context, an object is considered to be within a cell if the center of the

element is inside that cell. If the structure is full (i.e. every internal cell has

eight children and the structure is built until a predefined level) then leaves

can only exists at the lower level.

� Two cells placed at level l are said to be adjacent cells at level l or neighbors,

if they have at least one common vertex.

� Two cells are said to be well separated at level l if they are not adjacent at

level l but their parent cells are adjacent at level l - 1.

The list of all the well-separated cells at a level l from a cells C is called the

interaction list of C.

� Given a cell, if its parent cell is not a neighbor to the parent of cell C, then

this cell is termed far cell of C.

3.2.2 FMM Algorithm

In this section, some results of the mathematical treatment are summarized, for

more details and technical aspects one may refer to Liu [39] and Brown[7] while

in [17] a practical Cartesian FMM implementation is available: their multipole

transnational operator are reported for convenience. Here, the terms cell, cluster

and node may be used interchangeably.
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Figure 3.2: FMM algorithm 1D visual representation

The results on the Taylor expansions summarized in the previous section will

be still used here, starting from Equation 3.4.

To achieve the O(N) cost of the FMM calculation the so called local multipole

coefficients (L) must be computed for each cluster. This is done by differentiating

Equation 3.4 with respect to x0 (i.e. by calculating the spatial derivatives of u at

x0), which results in

Lk(x0) = (−1)k
∑
|n|≤k

k! + n!

k!n!
ak+n(x0,yc)×mn(c) (3.5)

Moreover, the velocities derivatives computed above can be shifted to some other

nearby point x by expanding Equation 3.5 as a Taylor series expansion about x0

so that

Lk(x) =
∑
|n|≤k

(
n

k

)
(x− x0)n−k Ln(x0) (3.6)
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Figure 3.3: FMM upward pass step of the algorithm

3.2.3 Coefficients computation

In Figure 3.2 the main operations involved in the FMM algorithm are outlined for

a 1D case, which is easier to visualize, but this diagram extends easily to three

dimensions. In this section, each step will be described in details.

Initialization

First, the octree must be created, or, if already present, it must be cleaned from

previous computations. It can be built as a full octree (in that case each cell would

have 8 children) until the maximum layer is reached. If so, the particles could then

be added at the lowest layer. The second option is to fix the maximum number of

particles per cell. In this case, the tree would be built recursively, automatically

refining those volumes where the particle density is higher.
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Upward pass

This stage is further subdivided into two steps. In Figure 3.3 a 2D example is

represented.

� First, moments on all leaves must be computed according to Equation 3.3.

In other words, the vorticity of the particles is aggregated into the multipole

expansions at the center of all cells (P2M operation).

� Then, the rest of this phase involves an upward sweep to the octree: multipole

expansions are further clustered by translating the center of each expansion

to a larger cell and adding their contributions at that level (M2M operation),

according to the following relation:

mk(c) =
∑
ĉ ∈ c

∑
|n|≤k

(
k

n

)
(xĉ − xc)k−n mn(ĉ) (3.7)

where c refers to the parent cluster, while with the symbol ·̂ we denote child

clusters. In this way, xĉ denotes the child cluster’s center and xc denotes

the parent’s center. Moreover, the symbol ∈ when applied to cluster labels,

discriminates if a cell is a child of the parent or not.

Downward pass

The downward pass involves a sweep back down the tree. This sweep will generate

and refine the velocity filed on each level of the tree. In this stage, the local

expansion coefficients on all cells will be computed, starting from the second level,

tracing the tree structure downward to all the leaves.

On each layer l, the local expansion associated with cell c is the sum from two

contributions:

� The first one comes from the interaction list of cell c and it is termed middle-

field component. This contribution is evaluated through the so called M2L
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translation, applying Equation 3.5 to each of the clusters, located at layer l,

within cell c’s interaction list.

� The second one is the so called far field contribution: on each layer l the far

field component is inherited from cell c’s parent cluster, located at the upper

layer. This step is known as L2L translation from the parent center. This

operations consists on shifting the expansion point from the parent center to

that of c, by applying Equation 3.6.

Both contributions are summed together and saved in the cell c, then they are

translated to cell c’s children on the subsequent level l - 1 of the octree, except

if cell c is on the lowest level of the octree. This process of inheritance and

expansion evaluation is performed on all clusters on a given level of the octree

before descending into the next one and repeating the entire process. To speed

up calculations, all computations are performed only on those cells whose children

nodes contains particles.

Velocity evaluation on particles

Once the downward sweep is completed, the velocity on each particle p inside cell

c is evaluated adding two contributions:

� The first contribution is build upon the local expansion coefficients just com-

puted, using the following relation (L2P procedure):

ul(x0) =

p∑
|k|=0

(x0 − xc)kLc (3.8)

� The second contribution on p located in x0 comes from the direct induction

by all those particles inside cell c and all those particles located in the cell

c’s neighbor clusters (P2P procedure).

ud(x0) =
∑
j

Kδ(x0,yj) × αj (3.9)
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Hierarchical data structures

Figure 4.1: A simple four layers octree visual representation

In the previous chapter, the need of a hierarchical data structure suitable to

implement the fast multipole method has been stressed.

In this chapter, a brief literature review of these kind of data types (termed Octree

or Quadtree) will be given, alongside possible creation, storage and manipulation

strategies [53]. Then, the choices made for our application will be pointed out.
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4.1 Preliminaries

An octree is a recursive, spacial isotropic partitioning data structure commonly

used in computer graphics to optimize collision detection, neighbor search and

frustum culling (a selection process meant to prevent objects not visible on the

screen to be rendered real-time).

An octree hierarchically subdivides a finite 3D volume into eight octants, termed

nodes in the context of data structure or cells in the context of geometry (Figure

4.1). The starting volume (the so called root) encloses the entire domain of in-

terest. Generally speaking there is no need to force the root cell size to have the

shape of a cube, nor to subdivide it into cubic cells. However, following the latter

approach, one would slightly reduce memory consumption, since the cell size can

be stored as just one value per node instead of three.

Following the same reasoning, a quadtree is the octree equivalent in two dimen-

sional space: in this case it is meant to subdivide a two-dimensional space in four

quadrants.

For now on, we will focus on octrees only, since are the ones needed to represent

a 3D physical space.

An octree is built by recursively subdividing space into eight cells. Every cell

is subdivided by three axis-aligned planes, which are placed in the middle of the

parent node. Thus, each node can have up to eight children. Generally speaking

every cell must have some sort of dictionary to save objects (in an abstract sense:

they could be points or any geometric shape).

All those cells in the last layer which contains an object are called leaves of the

tree. In our case, they will hold all the particles until the next simulation step.

The octree creation strategy depends on the specific purpose the octree is designed

for. Generally, there are two neat strategies:

� Maximum items per cell : The space is recursively subdivided until the re-

maining number of objects in each cell is equal or below an assigned thresh-

old.
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� Maximum three dept : The tree is build until a pre-defined level is reached.

In this case the tree is called full octree.

In a full or complete octree, every internal node has eight children and all

leaf nodes have the very same tree depth D. Thus, it is equivalent to a

regular 3D grid given by 2D × 2D × 2D. The total number of leaf nodes is

8D, whereas the total number of nodes can be easily calculated as

Nnodes =
D∑
i=o

8i =
8D+1 − 1

7
(4.1)

Thanks to the regularity of this object, one could store only a pointer to the

object inside every cell. Clearly, if most of the nodes are empty, memory

savings due to the small node structure are lost by the huge amount of

nodes that are to be allocated. Hence, the memory required to store the

octree raises exponentially. For instance, a full tree with 10 layers consists

of more than 1.2 billion nodes.

The octree implemented for GyroX can be built with both strategies, since it is

planned to exploit it for other application beyond particle inductions, for instance

collision detection calculations.

4.1.1 Node data allocation

Each node must be provided with a structure to access data associated with it

whenever needed. As for the implementation presented in this work, each node is

linked with a dictionary structure that can host different data types both primitives

or user defined, Figure 4.2. Moreover, activity labels are used to assess if a specific

node contains a specific data type.
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Figure 4.2: Node data structures architecture

4.2 Pointer-based node representations

A pointer-based node representation has been one of the early approaches in octree

generation, [16]. In the following, three major alternatives are reported. In all

cases, every node can store a pointer to the parent node to accelerate bottom-up

traversals.

Parent-child representation

Generally speaking the simplest implementation consists of eight pointers to each

of the eight child nodes. The main advantage is the ability to support nodes

allocation when strictly needed only.

Block representation

A second option is to store a single pointer to a block of eigh children, instead of

eight pointers. Even if a considerable amount of memory could be saved, on de-
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mand child allocation is not possible anymore, all eight children must be allocated.

Sibling-child representation

In this last scenario, each node stores a pointer to its first child and to the next

child of its parent. This option uses on average a fourth of the memory compared to

the parent-child representation, but requires more pointer dereferencing to access

a given node, since direct access is lost.

4.3 Pointer-less representations

Figure 4.3: Hash map data structure: each key is mapped to an index by means

of a function. Each index corresponds to a pointer stored in bucket

A more compact representation has been proposed for the first time by Gar-

gantini [20], who originally developed it for quadtrees.

Linear or hashed trees combine the advantage of pointer based and pointer-less

representation, replacing pointers by indexes manipulation.

In the general scenario, nodes are stored in a hash table or dictionary-like

structure, which allow direct access to any node or any whole layer of nodes.

Following this approach, each node is assigned a key, then a suitable hash function

is used to identify the node inside the table. This key may represent the position

of the node in the hierachical structure or the geometry of the associated cell in
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order to correctly identify the cell itself. The hash function must be chosen with

care, since it must satisfy two basic properties:

� It should be fast to compute

� It should strongly minimize duplication of output addresses (named colli-

sions)

A hash table potentially provides O(1) access time, removal, insertion and search

to any of its elements, but this is guaranteed as long as there are no collisions in

the hash table (termed perfect hashing).

For further details on this topic one may check [34].

In efficient schemes, the key cumulates both significations: it is used to identify

the node but it is also interpreted as an address in the hash table. This double aim

is very advantageous: as a matter of fact, it allows at the same time to identify the

children of a node by the octant orientation for traversal algorithm and to directly

access a node, with no recursions at all, for fast search procedures.

There are several efficient strategies for generating such keys [57], the most

useful and cited being Morton codes [42].

As a matter of fact, Morton encoding is equivalent to linearly index

multi-dimensional data, preserving at the same time data locality upon multiple

levels, which is key to superior memory performance. In other words, morton

encoding is a mapping from a multidimensional space to one dimension. In this

way neighbor search would be faster since memory addresses are closer in memory.

The way this is accomplished is by storing data using space-filling curves, known

also as Z-order curves [57]. The state-of-the-art in linear octree generation is to

use a hash table with Morton codes.

An interesting development has been given by Hasbestan et Al., [25] in the field

of adaptive mesh refinement. They built a tree storing leaves in a special kind of

binary tree in place of the hash table.
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4.3.1 Morton encoding

Figure 4.4: Example of an octree with morton keys of each node. The code of the

hidden block is specified outside of the cube

The morton key kn of a node n can be obtained either recursively from the tree

hierarchy or from the geometry of the associated cube, thanks to an interleaving

procedure that will be discussed later.

Following the first approach each octant get a 3-bit number between 0 and 7

assigned, depending on the specfic node’s relative position to it’s parent center

(Figure 4.4).

The key of any child node n will be the concatenation of the octant numbers of

all the nodes from the root down to the node in question.

Layer extraction

It is possible to automatically get the node’s layer knowing only its locational code.

To do so one must set to 1 the key of the root node, or, in other words, a 1 bit

must be used as a flag to mark the end of the sequence. Without such flag, it

would not be possible to distinguish between certain nodes, e.g. 000 and 000000
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or 001 and 000001.

So, using 1 bit for the root node and 3 bits for each tree level, a 32-bit morton

code can represent at maximum 10 layers, while a 64-bit morton code can hold up

to 21 layers. Given kn, its depth can be computed as d = 1
3

log2(kn).

It is always recommended to avoid using explicitly a logarithm for real time calcu-

lation: depending on the language adopted there can be many alternatives using

bit scanning intrinsics.

For instance, it suffices to retrieve the most significant bit out of the key, and

divide the result by 3, once the 1 flag as been removed. To do so without any

looping, a bit masking procedure has been used in our implementation.

Interleaving

An interleave sequence is a mathematical object obtained by merging two se-

quences via a so called in shuffle. As outlined above, the key can also be computed

from the depth d of node n and the position of its center (x, y, z), or the relative

position of the cell inside the given layer, [54], [3]. This feature is really useful

since it can be exploited for at least the following purposes:

� In a full tree, it speeds up dramatically tree insertion procedures of point

objects.

� It can be exploited to compute a list of both neighbor and interaction list

(see Chapter 3) of a given node.

To convert a certain set of integer coordinates (tree coordinates) to a Morton

code, first decimal values must be converted into binary and then interleave the

bits of each coordinate:

1. (x,y,z) = (3,9,1) = (0011,1001,0001)

2. Interleaving bits :010000001111 = 1039th cell along the Z-curve
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Similarly, a decoding procedure exits to convert a morton code into integer

coordinates. More technicalities can be found in [3] and a C++ encoding/decoding

library is available in [30].

4.3.2 Manipulation

As for AeroX aerodynamic simulations, a full octree built with morton codes is

allocated. Even if more memory is required, the advantages of this approach with

respect to cells manipulation are unquestionable.

Especially for a full octree, the characteristics of a pointer-less tree can be

exploited to manipulate neighbor and interaction list search, while a whole layer

can be extracted with just a O(N) instruction. Layer extraction is very important

for a FMM algorithm:as a matter of fact, the upward and downward swipes that

must be performed in order to calculate coefficients involve a cycle onto each cell

in the layer. In our case, an array of cells representing the Z-curve is allocated, so

that in order to access a layer of cells, one must just return a pointer corresponding

to the beginning of the layer in the array.

In principle, for each cell one can compute run-time both the neighbors and

the interaction list. This, in itself, is not an expensive operation thanks to morton

code bit-wise manipulations. However, since such searches must be performed for

each cell hosting at least one particle, a data structure storing morton codes of

both neighbors and cells in the interaction list is allocated at the beginning of the

simulation, consuming in this way a small amount of extra memory.

Neighbors

Given a cell c it is natural to retrieve a list of neighbors keys. First the morton

code of c must be decoded to retrieve the cell’s relative position in its layer. Then,

those coordinates must be incremented by one unit for each direction. Clearly, a

check must be performed in order to verify if c is on the boundary of the tree or

not. Once neighbors’ coordinates are available, they will be encoded to get their



addresses in the tree.

Interaction list

Given a cellc the procedure to calculate the cell interaction list is the following:

1. Get cell c parent address clearing the first three bits starting from the right

from cell c morton code.

2. Compute the parent’s neighbors with the procedure described above.

3. For each neighbor, get its children morton codes concatenating the bit rep-

resentation from 0 to 7.

50



Chapter 5

Code description

5.1 Preliminaries

In this chapter, the structure of the solution algorithm implemented in the new

AeroX release will be presented.

As briefly reported in the introduction, AeroX is a multibody unsteady aerody-

namics potential solver, which can be run as a stand-alone program or it can be

liked to a structural solver to provide aerodynamic forcing terms. In addition to

that, steady 2D viscous effects can be recovered by means of empirical aerodynamic

tables, known as C81 tables.

Within this section, the aerodynamic mesher is introduced. Moreover, few

mentions are made on the parallel implementation of the source code.

Further on, aerodynamic objects are introduced, while giving an overview of how

the program manage their methods and data within the simulation. At the end of

the chapter, the simulation workflow is summarized and details on the implemen-

tation are given.

Aerodynamic mesher

AeroX can be used as a stand alone aerodynamic mesher tool to mainly discretize

wings and blades. It is possible to generate thick wings or lifting surface meshes,
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starting from a given mean-line locus. As for the former case, the user input

consists of:

� a list of airfoils locii

� a span-wise airfoil distribution

� a reference line geometry in the three-dimensional space

� the kind of panel discretization and the total number of elements both for

the span-wise and chord-wise directions.

The same applies if one asks for an axysimmetric mesh built with a prescribed

aerodynamic profile (e.g. the shroud simulated in this work).

Once the mesh is built, it can e saved as an AeroX mesh or as standard Nastran

mesh. At the same time a mesh generated with Nastran can be imported in AeroX

to handle more complex geometries as fuselages, hubs and so on.

External libraries

Numerical operations (for instance matrix factorization and matrix-vector multi-

plication) are performed using the parallel implementation of the Math Kernel

Library (Intel MKL) to speed up calculations.

Nevertheless, as it will be described in the next section, AeroX supports solid

bodies unknowns decomposition to reduce to dimensions of linear problems, i.e.

a solid body can be split into multiple parts, that will be solved independently

from each other. For instance, a four bladed rotor can be split into four linear

systems, or an aircraft can be decomposed into lifting surfaces and fuselage to be

solved separately. The mutual aerodynamic influence of each part consists in the

mutual induced velocity, which can be taken into account or not depending on the

user input, so that further control on simulation time and accuracy is available.

However, further investigations are required in order to assess, given the modern

computing resources, if and how a single larger system performs batter (in terms

of simulation time) compared to multiple smaller systems.
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Parallel architecture

The software architecture has been arranged to support a future implementation

of an hybrid MPI + OpenMP approach. As a matter of fact, one of the major

requirements was to make a worthwhile implementation both for the execution on

a single machine, but also for cluster computing.

Due to the limited time available, the code was tested in multi-threaded en-

vironment only with the aid of the OpenMP library. The following steps were

involved:

� Linear system coefficients computation

� Linear system factorization

� Inducing procedures, from any kind of object to any kind of target object

� Multipole coefficients computation

� Forces retrieval

� Position and velocity update, both for bodies and wakes

In this frame of reference, a future study of parallel octrees will be undoubtedly

useful to enhance performance.

5.2 Aerodynamic objects

Exploiting an object oriented strategy, AeroX itself is built as a class that interacts

with aerodynamic object like bodies, body parts and wakes, as well as an input

interpreter and an output manager (Figure 5.1). The solid objects can be grouped

in the so called bodies, so that each body is made up of a set of body parts.

Each body is linked to a given set of wakes, depending on the user input,

through an object termed Wake Interface, which is supposed to specify the releas-
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Figure 5.1: AeroX objects hierarchy conceptual diagram

ing law of vorticity, and to share such vorticity with the attached wake1.

The quantities associated with a wake interface are the unknowns of the prob-

lem and so they take part to into the linear system. Once wakes and bodies are

defined, the user is also asked to input a so called Inductivity Table that defines

the overall induction rules. This means that one can easily enable or disable the

induction of an object A upon an object B (body or wake) and vice-versa. The

inductive properties of each body directly affects the solution cycle (Figure 5.4).

Hence, depending on the problem, one can make a sensitivity assessment on the

induction. This has been proven to be very useful to speed up calculations at the

first stages of a new simulation. Moreover, given an arbitrary table, each body is

1A wake interface is an abstract object. It can be instantiated either as a standard panel

interface or as a wake buffer releasing particles, or any kind of wake object (e.g. a constant

vorticity contour (CVC) wake). For instance, a wake interface linked to a wing will prescribe

the Kutta condition. In a way, the wake interface can be considered an exchange buffer meant

to make a body part and its wake independent form each other.
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given one of the following attributes:

� Non-isolated : at least one object except from the current body is inducing

upon the current body. Hence, the non-isolated body will be solved inside a

multibody loop.

� Isolated : The current body is not a target of any induction by any object in

the field. This body will be solved at each time-step outside the multibody

loop.

� Isolated and fixed : The current body is isolated but also fixed, i.e. it is not

moving or deforming for the entire simulation. This body will be solved only

once at the first time-step. For instance, as a first order approximation, a

fuselage can be modeled as an isolated and fixed object, so that its aerody-

namic influence on the rotor will be only computed at the beginning of the

simulation.

5.2.1 Bodies

An AeroX body encapsulates a set of body parts, Figure 5.1. A part is an abstract

class: a different part type can be cast in order to represent a different aerodynamic

model (lifting lines, lifting surfaces or 3D bodies (i.e. thick panel surfaces)).

As stated in the previous section, each body is organized in parts in order

to split the computational effort upon separated systems. Moreover, each body

which is defined as non-isolated takes part in a multibody cycle (§ 5.4). Inside such

loop, the objects configuration is frozen and the parts solution is called iteratively,

updating the unknowns and hence the body mutual induction until convergence.

As long as the body part is rigid, the matrix gathering influence coefficient is

computed only once, at the beginning of the simulation. Then the influence of the

wake interface is added to the above-mentioned matrix and the system is factored.

This is done at each time-step if the body is non-isolated (i.e. the wake shape

evolves each time-step), otherwise the factorization is performed only once.
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Clearly, if the body under exam is also deformable (i.e. its displacements are the

results of an elastic solver) the influence coefficient matrix will be computed at

hence factored each time-step.

Motion objects

Each body must be linked with at least with one part. Every body is provided

with a local reference frame and, if specified, it can be associated with a so called

motion object, which is created to manage rigid displacement.

In the input file, an arbitrary number of moving terns can be specified, or in other

words, a set of motion laws. By doing so, every time the body movement is called,

each point P will be updated building the motion chain dependency. Additionally,

kinematic velocity is computed by means of a specified finite differences scheme.

After that, geometric quantities associated with panels are updated (normal vector,

centroids, geometric surface area and so on).

Motion objects can be also associated with body parts, so that complex pre-

scribed motions can be easily achieved. For instance, an helicopter rotor is built

as a single body, and each blade is an independent body part, so that one could

assign rotation to the whole rotor, while prescribing for example a cyclic stick

motion.

Aerodynamic inductive elements

Starting from a mesh object, body points are allocated. Then, by means of the

mesh connectivity table the following two inductive entities are generated:

� Panels. For a lifting surface model, panels host a constant doublet distri-

bution while for thick bodies panels host both a constant doublet and a

constant source distribution. In those cases, they are employed as inductive

elements suitable to compute induced velocity and/or induced potential (§

2.2.3).
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� Vortical Edges store the appropriate circulation depending on the surround-

ing panels. For the lifting line and surface models, they are employed to

compute aerodynamic forces on the body (§ 2.2.3).

Both are allocated for any kind of part type, with the exception of the lifting line

model, in which only edges are present. Since a mesh for a thick body could in

principle be very large, edges connections are reconstructed by means of a hash

table, that stores the connectivity of all edges, which are recovered by means of a

hash function that returns the edge address.

5.2.2 Wakes

As far as this thesis work is concerned, vortex lattice wakes and particles were

implemented and tested, nonetheless other kind of wakes can be easily added to

the source code. Each wake can be linked by the user to any of the specified part

through a wake interface, that was briefly introduced above.

In this section, both kind of wakes are briefly described, underlining critical aspects

that were accounted for during the implementation.

5.2.3 Vortex lattice wake

The inductive elements of a vortex lattice wake are vortical edges shaping a con-

nected frame.

Points and the inductive data structure (intensities, connectivity and cut-off

radii) are managed inside a data structure resembling a circular list. This means

that all the resources needed are allocated at the beginning of the simulation:

then, once the buffer is full, the new released quantities will override the oldest

elements present in the field. The user is asked to input the magnitude of this

buffer, depending on the case study.

Within this frame of reference, the stack is filled sequentially: when it is filled

completely, new elements are added without the need to move data in memory.
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One one hand this precaution can save memory, on the other hand it reduces

real-time pointers dereferencing.

Even though vortex lattice wakes has been used for years with profit, an in-

trinsic weakness is related to the fact that this wake misses a viscous model, that

for practical applications is essential.

To address this point, the induction expression for vortical edges takes into ac-

count a cut-off radius, that smooths out the induced velocity for points close to

the edge itself. Hence, this allows to define a empirical viscous model based on the

release age of the inductive element. In this manner, the cut-off radius will evolve

separately for each edge according to a semi-empirical law of growth, so that it

changes the way the induction affects elements in the vicinity of the wake. A well

known viscous model is the one obtained from the Lamb-Oseen vortex model [35].

The latter is a solution to the one-dimensional laminar Navier-Sokes equations,

i.e. an axisymmetric solution for the swirl velocity with the assumption that the

axial and radial velocities are zero:

Uθ =
Γ

2πr

[
1− exp

(
− r2

4νt

)]
(5.1)

where Γ is the vortex circulation, r the radial distance and ν the kinematic viscosity

of the fluid. The viscous core radius is defined as the radial location where the

swirl velocity is maximum:

rc(t) =
√

4ανt (5.2)

in which α = 1.25643 is termed the Oseen parameter. Therefore, within this frame

of reference, the following expression that evolves the core vortex radius in time is

implemented:

ric =
√

4ηανr2
c(i−1)t

i (5.3)
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where ti is the simulation time elapsed from the release step of the element, and η

is an empirical parameter used to tune the rate of diffusion.

Remark. it is worth noticing that where a vortex lattice wake needs an empirical

viscous model, the particles one already embeds viscosity in its system equations.

This bring a remarkable difference in practical computation, since sometimes the

vortex lattice wake viscous model needs to be tuned to retrieve reliable results.

5.2.4 Particles wake

Particles wakes can be allocated either as free wakes or as bounded wakes. In

the former case one can simulate a fluid dynamic object such as a vortex sheet or

vortex ring alone. In this case, that wake will be associated with a FMM solver

and an octree. In the latter case the wake will be bounded to the solution of a

body, and the FMM management duty will be given to the AeroX class, since

both objects must be treated inside a standard simulation. This means that the

body will be solved and then the vorticity will be released into the wake according

to a specified criterion, depending on the wake interface.

Hybrid wakes (i.e. starting with a vortex lattice buffer) can also be instantiated,

taking advantage of OOP inheritance features.

Multiple wakes management

As mentioned before, AeroX aerodynamic objects have been designed to be in-

dependent, so that one can manipulate their characteristics unilaterally (such as

the ability to induce or not upon another object). As for particles wakes, if the

vorticity transport equations are going to be solved without the FMM (i.e. in

direct manner) this is still the case.

Unfortunately, due to the intrinsic nature of the FMM itself, when multiple par-

ticles wakes are present, they must be considered as a single entity. As a matter

of fact, all particles must participate in multipole coefficients computation. Dif-
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ferently, it would not be possible to consider the influence on a group of particles

onto the other. Moreover, making and managing more the one octree would not

be feasible.

To address this issue, the solver collects all the particles wakes, linking them to

the FMM manager and octree. Hence, at each time-step the multipole coefficients

are computed taking into account all particles; moreover, the induction is also

performed by the FMM manager.

Each wake still stores a pointer to the list of its particles, using it for position

update, velocity update and graphical output.

As for hybrid wakes, the induction performed by the vortex lattice and the ex-

change buffer is managed by the wake itself, while the particles management is

still given to the FMM solver.

FMM architecture

As mentioned before, the FMM algorithm is applied only on those cells whose

children host particles (those cells are then termed active cells2).

Thus, it is quite natural to compute particles self induced velocity since each

particle will surely be inside a cell whose multipole expansions has been computed.

Hence, in this scenario, the self-induced velocity will be easily computed applying

the induction algorithm explained in Chapter 3.

Clearly, it can happen that the induced velocity on a point not belonging to a

cell where multipole data has been calculated is requested (e.g. a point belonging

to a different wake or on a solid body).

On the other hand, in order to compute the approximated quantities also on

those points, local expansions coefficients are needed, so that far and middle field

2Each cell can host up to n different data types, which can be optionally specified at the

beginning of the simulation. Every time a datum is stored in the tree, the cell is flagged as active

for that specific data type, and so its parents (in a recursive manner), exploiting the O(1) access

time provided by a hash search.
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Figure 5.2: Empty cell multipole data computation workflow

contributions can be taken into account. As a remark, multipole coefficients are

not calculated in all cells for obvious reasons: clearly, there are cases in which the

vast majority of cells could be occupied by particles. However, it would be useless

and inefficient to pursue such path, since the algorithm must be adopted for a

variety of cases.

In order to counter this need, a simple algorithm was developed, and its sim-

plified form is illustrated in Figure 5.2.

Each time a point is located in a cell with no multipole data available, two main

actions are initialized, one after the other. For details on cells manipulation, one

may refer to Chapter 4.

� A recursive search is made by sweeping the tree upwards starting from the

cell were the target point is located
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� Once an active parent cell is found3, a downward sweep through the tree is

performed, until the target cell is reached. In this manner, local expansion

coefficients are efficiently pushed where needed. As a matter of fact, only the

minimum number of operations is performed (i.e. the multipole downward

pass is restricted to the path traveled by the upward search).

If the highest layer is reached (the second layer in this context), without

finding any active cell, first local expansions coefficients are computed, and

then the actual downward sweep is initialized.

The actual implementation takes also into account that multipole data is never

deallocated from memory nor reset, to save computational time. Hence, further

checks are made in order to assess if the data stored in the cell can be used in the

current timestep, or if it is just a deprecated data that must be calculated again.

5.3 Sections

AeroX take advantage of a structured mesh, typical of an wing mesh, to build a

class, termed Aerodynamic Section, whenever the user asks for it. In this way, a

section object is a class encapsulated in wings or blades. A group of sections is

built starting from a wing span-wise distribution of panels.

The section consists of:

� a local reference frame

� a link to all the panels enclosed in the section

� a data structure for force retrieval

� the section trailing and leading edge locus

3Each time the tree is asked to find an active cell, it will perform a search according to the

specific data type of the object that is asking this search. In this context, a cell is active if a

multipole datum is allocated inside it.
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Figure 5.3: Inverted flow regime in a retreating blade (three-bladed rotor), top

view. Cyan sections are disabled in this configuration. Flow coming from the left.

� a link to the section’s releasing objects in the wake

� a C81 table, created form an input file or interpolated from two different

input tables.

While the code automatically checks for span-wise panel stripes, the user is re-

quested to provide a set of span-wise non-dimensional nodes where aerodynamic

properties of a 2D section should be placed. Aerodynamic properties are given,

as mentioned before, by C81 empirical tables. Then, the program will automati-

cally interpolate the given tables whenever a cross section is placed in a position

between two different aerodynamic table nodes.

Aerodynamic sections are a tool used mainly for the following purposes:

� Wing sections can be used to retrieve and eventually correct the 2D aerody-

namic behavior of a portion of the wing or blade. Hence, 2D viscous effects

can be introduced in the potential solver. This is done by means of the

above-mentioned tables, which are text files that list drag, lift and pitching

moment coefficients of a given airfoil as a function of the angle of attack

and Mach number, usually obtained from wind-tunnel measurements. If this
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correction is enabled, the steady actions projected in wing axes are corrected

based on the empirical C81 coefficients.

� Non-lifting sections can be created by specifying bluff body-like C81 tables.

If this happens, all the panels associated to those sections will still take

part in the solution process, but no wake will be released from the section’s

trailing edge locus. In this manner, the non-lifting behavior can be modeled,

preventing that portion of the wing from releasing vorticity. At the same

time, the drag effect can be taken into account by means of the aerodynamic

empirical tables, as described in the previous point.

� Sections can enable or disable panels induction and nullify vorticity released

in the wake.

For instance, sections are flagged as disabled whenever a retreating blade

of a rotor in a forward flight maneuver experiences an inverted flow regime.

This can happen when the kinematic velocity associated with the rotation

is smaller compared to the free stream velocity (Figure 5.3). When this

happens, the portion of the wake circulation (releasing from the involved

sections) is nullified, since that body chunk is not in a lifting condition.

This is done until the blade section moves to a region where the flow is

not inverted. Moreover, all the panels associated with disabled sections are

prevented from inducing on any object until section activity is restored.

However, their drag effect won’t be neglected.

This process can be also triggered when the local section aerodynamic angle

of attack exceeds given bounds, so that stalled conditions can be somehow

modeled.

� Sections comes in handy for post-processing purposes, while providing an

input object to the structural solver. Pressure coefficient distributions can

be easily plotted and force retrieval can provide aerodynamic forcing terms

in section axis, wing axis or in the absolute frame of reference.
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5.4 Solution cycle

In this section, a global overview of the aerodynamic solution algorithm is pre-

sented (Figure 5.4).

After all objects has been correctly initialized from the input manager, the

solution cycle is triggered. It consists of multiple internal steps and subroutines,

which can be split in a part related with the solution of linear systems and in a

second one related with induction, release and objects update.

Outer loop

Each time the multibody loop reaches convergence, the time step is advanced

and every wake in the field releases new vortical elements based on the solution

computed at the previous time step (wake release step).

Clearly, those elements depends on the type of the wake under analysis. For

instance, vortical edges will be created for a vortex lattice wake; vortical filaments

will be allocated for a constant vorticity contour wake.

As for the particle wake, the release phase is subordinated on the type of wake

interface the wake is linked to. If a panel interface is present, vortical edges are

released and stored inside an exchange buffer, which can perform the induction

and move like any other object in the fluid field. As we will see later on, the

particle transformation is not managed in this phase.

If the particle wake is hybrid (i.e. vortex lattice and particles coexists, and particles

are generated form wake edges after a buffer is filled), then the release duty is given

to the vortex lattice component of the wake.

Once the release phase is completed, the Inductivity Table (§ 5.2) is examined,

and according to the induction rules, velocity induction is performed upon each

wake, potentially from any other object in the field (Wake induction phase).

In the Wake evolution phase, wakes position is integrated in time according

to the time integration scheme selected. Wake interfaces are also updated in this

step.
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Figure 5.4: AeroX main simulation workflow
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If particle wakes are present, the Particle injection phase is initialized. How

the release is performed depends again on the wake interface. For instance, if

the wake is hybrid or if it is a full particle wake with a panel interface, particles

are initialized according to the scheme described in [58]. The particle injection

step was separated from the the wake release due to the FMM algorithm. As a

matter of fact, if the particles velocity field is going to be solved with a direct

approach, there is no need to split these two operations: vorticity can be released

and transformed into particles simultaneously. On the other hand, using an octree

structure, new wake elements are generated, every fluid object is updated, hence

particles are ready to be released. Finally, the octree can be updated. Without

doing so, one would be compelled to update the tree twice a timestep, prior to the

wake release phase, in order to compute the induction on bodies and wakes, and

then after new particles are released, since in the meantime the wake were evolved.

Clearly, updating the octree more the once a timestep would not be feasible, since

it is the most expensive operation (in terms of computational time) of the whole

FMM method.

Therefore, it comes the Octree update phase. This step involves three stages:

� The tree is emptied from particles and the leaves list is cleaned

� All the particles, whose position were just integrated in time, are then in-

serted again in the hierarchical structure. The phase is relatively fast if the

tree is a full tree and particles are added in the last layer only.

� Finally, multipole coefficients are computed with the procedure described in

§ 3.2.3: This is the most expensive stage.

Once the octree is fully updated, all the bodies are moved according to the assigned

rigid kinematics if any, or structural displacements are applied after the structural

solver is called (Body motion phase).
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Body loop

Once that all bodies motions and displacements are applied, an induction routine

is called, so that all bodies becomes the target of an induction process from all

wakes.

The next step is the one related with the computation of the linear system’s

coefficients (Body pre-processing), according to the body type and of the body

inductive attributes (§ 5.2.1).

When this step is completed, the solution process for isolated and isolated and

fixed bodies is initiated.

If non-isolated bodies are present, the execution flows into the multibody loop.

Inside the multibody loop, each non-isolated body is solved iteratively. If the con-

vergence condition is not satisfied, then an induction routine is called, so that the

body mutual induction is computed with the updated values of the unknowns.

Hence, the body solution subroutine is called once again. The process is repeated

until convergence. In order to assess the multibody convergence, the norm of the

solution difference between iteration k and iteration k − 1 is computed.

This is done for each body inside the multibody loop. Then, the resulting arrays

are normalized with respect to the highest unknown value found in the body. Fi-

nally, the maximum value among all the bodies is compared with a given accuracy

threshold.

5.4.1 Body solve loop

The inner body-solve loop declared in Figure 5.4 is an additional cycle meant to

manage the solution of the whole body. Specifically, the body-solve loop cycles

onto each body part calling the algorithm sketched in Figure 5.5.

The body part solution loop builds the system right-hand side. In turn, the

right-hand side expression depends on the type of the aerodynamic model selected

for the current part (Chapter 2). Then, the LU decomposition of the system matrix

is used to solve the linear system. Once this task is completed, the part self-induced
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Figure 5.5: AeroX body part solve loop

velocity is calculated. Once again, the way this task is accomplished depends on

the aerodynamic model. The lifting surface model exploits the influence coefficients

already calculated for the system assembly, while the thick body model builds the

self induced velocity differentiating the potential on the body surface.

At this point, if sections are present, the induced aerodynamic angle of attack is

computed for each section. This value is used to assess sections activity congruence,

by comparing that angle of attack with a given activity threshold (§ 5.3). If, prior

to the system solution, a section was active, its status must be active after the

new unknowns were computed. If this not happens, the section is disabled and

the algorithm is restarted with a new iteration. As soon as the part is found to be

congruent, forces and moments are computed.



Chapter 6

Test cases

In this chapter, a set of interesting case studies were selected and reported. In

the first section, specific tests concerning the FMM implementation are outlined,

and the results are shown. Then, in the second part of this chapter, simulations

involving the aerodynamic solution cycle are discussed. Finally, the last part of

the work covers a preliminary survey of the code performance simulating a ducted

rotor.

6.1 Induction tests

In this section, the particle wake alone is examined and the results of two literature

test on particle induction will be reported. There are many interesting studies on

this topic: first of all, how the multipole order affects the result, but also the

influence of the tree itself. Second, the parallel scalability of the whole method.

As far as the current work is concerned, two literature test were selected in order

to assess the implementation of the FMM inside the code.

The first one involves the calculation of the induced velocity by a Gaussian

vorticity distribution, which is very convenient for this kind of test. As a matter

of fact, first it provides an analytic expression for the exact induced velocity, and

second the Gaussian distribution rapidly decays at infinity, so that a representative

finite volume can be easily discretized.
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As far as the second test is concerned, it involves the evolution of a vortex

sheet, i.e. a material surface across which the tangential component of the fluid

velocity experiences a jump discontinuity.

6.1.1 Gaussian vorticity distribution
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Figure 6.1: L∞ error of u3 versus ∆x

This test has been performed by Wee et Al. [59] to assess the convergence rate

of two algebraic kernels, that were discussed in Chapter 2. It is important to stress

that that two well separated kinds of error arise in this context. First of all, there

is the so called desingularization error, which is strictly related with the kernel

being used. Trivially, it measure the difference between the singular kernel and

the algebraic one. Then, other sources of error are the discretization error and the

one related to the multipole algorithm. As stressed in the same paper, the error

due to desingularization becomes a meaningful estimate of the overall error for the

case where the error due to desingularization is small.

An in-depth analysis on this topic goes beyond the practical implementation

reported in this thesis, bu this case study has successfully been used to test if the
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algorithm were correctly implemented.

The main relations are reported here for convenience. Given the following

Gaussian vorticity distribution,

ω(x) =
ê2

(2π)3/2
e−|x|

2/2 (6.1)

the exact induced velocity field using a singular kernel reads:

u(x) = (K ? ω)(x) = −x× ê2

4π|x|3

(
erf

(
|x|√

2

)
−
√

2

π
|x|e−|x|2/2

)
(6.2)

As pointed out by Wee et al., exploiting azimuthal symmetry of the vorticity

field, a meaningful estimate of the error should be found along the line x2 = 0,

x3 = 0. Furthermore, they found that the maximum error actually occurs near

x1 = 1. Moreover, among three components of the velocity field, i.e. u1, u2 and u3,

only u3 is non-trivial, hence we will follow the same approach: the third component

only will be reported here.

Numerical discretization of the vorticity field reported in Equation 6.1 is made

only for −4 ≤ xi ≤ 4 which provides a reasonable cut-off distance. Within the

domain of discretization, a uniform grid of particles is generated, whose vorticity

strength has the following shape:

α(x) =
∑
p

ω(xp)∆x
3δ(x− xp) (6.3)

where the index p runs over the grid points. The overall convergence rate is

estimated by refining ∆x (keeping fixed the ratio σ/∆x = 2), while performing

u(x) = (Kσ ?α)(x) (6.4)
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with Kσ being an appropriate non-singular kernel. The computation is performed

with the FMM algorithm discussed in Chapter 3.

In the work by Wee et al calculations were performed from ∆x = 10−1 to

∆x = 2.0 · 10−3, using the original tree code algorithm developed by Lindsay [38].

Details on the precision related parameters for the tree code can be found in [59].

For the purposes of this work, induction tests were carried on for ∆x = 10−1, 8.0 ·

10−2 and 5.0 ·10−2, the latter case corresponds to more than 4.17 million particles.

Wee results has been digitalised from the original image and reported into the

same plot for our range of interest.

In Figure 6.1 the results of the investigation are shown, where the error is plot-

ted against ∆x. The low-order kernel referenced in Figure 6.1 is also known as

Rosenhead-Moore kernel, while the high-order one is sometimes termed

Winckelmans-Leonard kernel. Both kernel expressions can be found in Chapter 2,

respectively in Equation 2.51 and 2.52.

The results, obtained with a 5-layers full octree shows a good agreement with

the ones computed with a different approximation method. As expected, the

absolute velocity error is much smaller with the high-order kernel than with the

low-order one. Moreover, increasing the multipole order of expansion the error

norm decreases, preserving the same trend reported by Wee et al.
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6.1.2 Vortex sheet evolution

Figure 6.2: Rolling up vortex sheet, 5 layers full octree, 6-order expansions. σ =

0.1, t = 1, dt = 0.05

In this section, the results of a particles evolution simulation will be presented.

On one hand, the induction provided by the fast multipole algorithm was tested

once again; on the other hand this was a benchmark to assess the functionality of

the time evolution management of the whole particles wake and octree.

This case study was presented by Lindsay [37] in his PhD thesis, in which

he discussed a tree-code algorithm implementation for the rapid computation of

three-dimensional vortex sheet motion.

A vortex sheet is a material surface in the fluid across which the tangential compo-

nent of the fluid velocity experiences a jump discontinuity. Away from the surface,

the fluid is assumed to be irrotational: however, since the velocity has such discon-
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tinuity, the vorticity must be a δ-function there. In his work, Lindsay studied the

evolution of such structures to model the formation process and the interaction of

vortex rings.

Parametrization

Following a Lagrangian parametrization presented by Caflish [9] and Kaneda [32],

the sheet’s position is denoted by y(λ1, λ2, t), where λ1 and λ2 are Lagrangian

parameters.

λ1 measures the circulation across the vortex lines and 0 ≤ λ2 ≤ 2π parametrizes

along the vortex lines. In other words, each λ1 value corresponds to a vortex line.

The latter is then discretized in λ2 with a grid that is uniform with respect to

arc-length, for t = 0.

Following Chorin and Bernard’s desingularization procedure [11], one will get

the following expression for the induced velocity, as a function of our Lagrangian

parameters.

u(x, t) =

∫∫
Kσ(x,y(λ1, λ2, t))×

∂y

∂λ2

(λ1, λ2, t)dλ1dλ2 (6.5)

Kσ is a non-singular kernel. In this context the Rosenhead-Moore kernel (Equation

2.51) will be used, since that is the one exploited by Lindsay in his paper.

Now, the Biot-Savart integral 6.5 is then discretized in λ1 and then in λ2 with the

trapezoid rule. Moreover, the ∂y
∂λ2

term in the integrand is approximated with a

2nd order centered difference. Of course, this results in the very same system of

ordinary differential equations reported in Chapter 2:

dxi
dt

=
N∑
j=1

Kδ(xi,xj)×αj (6.6)

where xi and xj are points on the sheet and

αj = Dλ2∆λ1∆λ2 (6.7)
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is the product of the finite difference Dλ2 along a vortex line and the integration

weights.

The initial condition is a flat circular disk of unit radius with circulation distribu-

tion λ1 =
√

1− r2. In order to have a smooth distribution, the following change

of variables could be employed:

λ1 = cosα 0 ≤ α ≤ π/2 (6.8)

The core vortex cut-off radius is fixed and set to σ = 0.1. Each vortex line

is discretized with 128(1 + r) particles where r is the radius of the vortex line,

rounding the number of particles up to the nearest multiple of 8. In this manner,

the total number of particles discretizing the sheet is 13444.

Time evolution

The original test this thesis is referring to were carried on with direct velocity

induction and a 4th order Runge-Kutta method. As for the latter, it will be hardly

used for complete aero-structural simulations. Thus, an explicit Adam-Bashforth

scheme up to the 7th order has been implemented and tested here. However,

most of the time, due to the overall complexity of a full simulation, an explicit

Euler scheme will be used. However, Euler stepping precision is not enough for

satisfactory results for this kind of test.

Different orders of the Adam-Bashforth scheme were tested, but in all cases

the end of the simulation was fixed at t = 1. As a matter of fact, as the sheet

evolves, the vortex lines can individually stretch and eventually separate from each

other. This causes a loss of discretization resolution which must be overcame by

inserting new particles along the lines and by inserting new lines. Lindsay suggest

particle insertion algorithm [37], but since this goes beyond the scope of the our

code all simulations were stopped prior to reaching critical conditions. However, as

it will be underlined later, our results will be compared with the exact induction

computation performed by Lindsay, that were carried on until t = 1 without

particles insertion.
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Figure 6.3: Rolling up vortex sheet, 5 layers full octree, 0-order expansions. σ =

0.1, t = 1,

Results

Figure 6.2 presents a 3D rendering of the vortex sheet at time t = 1, computed

with a 5 layers full octree and 6° order multipole expansions. For reference, the

same case with a zero order expansion is shown in Figure 6.3. The borders between

two adjacent octree cells are clearly visible.

FMM order error

2 2.13 · 10−2

3 1.22 · 10−2

4 2.20 · 10−3

5 3.98 · 10−4

6 8.14 · 10−5

Table 6.1: Maximum point position difference refining FMM order expansions

t = 1, σ = 0.10
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Figure 6.4: Vortex sheet section view at t = 1, dt = 0.05: comparison increasing

the order of expansions
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Figure 6.5: Vortex sheet section view at t = 1, dt = 0.05: comparison increasing

the order of expansions - magnification in the vicinity of the tip region
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In Figure 6.4 and Figure 6.5 a cross-sectional view of half of the sheet is given.

The particle position is enhanced by a marker, and the locus is obtained with a

simple interpolation. While the max depth of the tree is kept constant, the sheet

shape converges increasing the degree of multipole expansion.

In Table 6.1 the particle position difference were computed for runs made with

consecutive FMM multipole expansion degree, according to the following:

ei = maxj
∥∥xj|orderi − xj|orderi+1

∥∥ (6.9)

A sensitivity assessment onto the time integration scheme is presented in Figure

6.6. The octree max depth, the degree of multipole expansion and the time step

are kept constant while the time integration scheme was changed.

Moreover, the time integration scheme convergence was also tested and the results

are reported in Table 6.2. Those were obtained with the 4th order Adam - Bash-

forth scheme, changing the time step and keeping all the other parameters fixed

(5 layers and 6th order multipole expansions). The error values are obtained with

the same expression reported in Equation 6.9

∆t[s] e(∆t)

0.2 1.72 · 10−3

0.1 9.82 · 10−4

0.05 1.02 · 10−4

0.025 7.21 · 10−6

Table 6.2: Maximum point position difference refining the time step t = 1, σ = 0.10

4th order Adam-Bashforth scheme

Finally, the sheet solution at time t=1 computed with the 4th order Adam-

Bashforth scheme and a 4th order multipole expansion is compared with the Lind-

say’s sheet. The latter was computed with an all-pairs induction process and the

4th order Runge-Kutta numerical scheme.
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Figure 6.6: Vortex sheet section view at t = 1, dt = 0.05: comparison with different

time integration schemes available
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Figure 6.7: Vortex sheet section view at t = 1: comparison between 4° order

Runge-Kutta scheme and the 4° order Adam-Bashforth one
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The Lindsay’s particle cross-sectional view displayed in Figure 6.7 was obtained

by digitalizing the original image reported in the paper [37]. Unfortunately, the

exact particles position was not reported.

In light of all the tests shown above, the differences visible in Figure 6.7 may be

linked first to the different time integration scheme. On the other hand, there could

have been some minor differences during the vorticity discretization procedure.
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6.2 Validations

In the previous section, specific test were performed on the particle wake and on

the FMM algorithm, so that the velocity induction on the wake on itself and the

time evolution algorithm performances could be assessed.

In this section, more complex runs were made so that the whole solver was involved.

First of all, the new version of AeroX was compared with the older one though

a hovering rotor test. The old code computed a lifting surface solution while with

new version of the software a full panel solution was obtained (i.e. blades are

modeled as thick bodies).

In the second part of this paragraph, the performance of the aerodynamic solver

is directly compared with experimental data available in open literature, looking

at integral quantities such as forces and pressure coefficients.
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6.2.1 Older release comparison

In this section, the results of a preliminary validation test on a three-bladed hover-

ing rotor are reported. The body cycle for a middle-level complexity case is tested,

comparing both the CT time history and the wake shape with the oldest release

of the code, modeling the blades as thick bodies. The old release was capable to

model rotors with lifting lines or lifting surfaces only. However, it is known from

experience that a lifting surface solution exhibits a similar behavior with respect

to a solution exploiting thick bodies. Hence, such comparison is considered fair

enough, both from the wake shape standpoint and form integral quantities such

as the thrust coefficient. Clearly, a vortex lattice wake was used for both cases,

with the very same characteristics.

One major critical aspect when one wants to represent the thickness of a wing

or blade, is how the discretization is performed near the leading edge. As a matter

of fact, in the vicinity of that region large gradients in the pressure coefficient

distribution can occur: the way this gradient is captured is trivially related to the

calculated numerical force. Sometimes it is preferred to enhance the number of

panels in that region only, for example by means of a Multhopp approach [43]. In

this context, since a comparison with a lifting surface model was made, a uniform

spacing for both chord-wise and span-wise direction is chosen. Calculations were

performed with both codes changing the mesh parameters according to Table 6.3.

All the global parameters were kept equal for both implementations.

Each revolution was discretized with 50 azimuth angles, and the computations

were carried on for 11 revolutions, resulting in 550 steps. On the eleventh rev-

olution, the wake released during the first blade rotation is deleted, in order to

pertain a wake closer to convergence.

The convergence time history for the thrust coefficient is reported in Figure 6.8.

Solid lines are related with the thick body solution computed with the new release,

while dashed ones report the results obtained with the lifting surface model. As

meshes are refined, solutions appear to converge to the same value. Interestingly
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Blade mesh Lifting surf. Panel method

Mesh A chord 5 chord 10

span 10 span 10

Mesh B chord 20 chord 40

span 10 span 10

Mesh C chord 30 chord 60

span 20 span 20

Table 6.3: Number of panels for the chord-wise and span-wise direction for each

tested mesh.

enough, it is clear that a solution built with the lifting surface model underesti-

mates the thrust coefficient, while the opposite happens for the thick body model.

With the finest mesh tested, the difference in CT was less than 4%, showing a very

good agreement.
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Figure 6.8: CT convergence time history. Mesh details are referenced in Table

6.3. Dashed lines are referred to the old release, while continuous lines report data

obtained with the new solver. 2D label refers to the lifting surface model, while

3D refers to a panel method
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Figure 6.9: Vortex lattice wake visualizations, exhibiting the classical hovering

shape. For clearness, one wake only is visualized

In Figure 6.9, a 3D and 2D rendering of the wake released by one blade at

the final timestep are shown. As expected, the shape is neat with no sign of

instabilities, proving the correct implementation of the vortex lattice diffusion

model.
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6.2.2 AIAA DLR-F4 workshop

A validation test was performed using the well-known DLR-F4 wing-body config-

uration, which is representative of transport aircraft designed for transonic flight.

The results obtained with AeroX will be compared with those reported by the first

AIAA CFD drag prediction workshop [36]. The latter was designed specifically to

assess the state-of-the-art of computational fluid dynamics methods for force and

moment prediction.

Figure 6.10: Half DLR-F4 aircraft model panel mesh. Top view

Mesh and simulation parameters

The airframe surface visualized in Figure 6.10 was generated with the aid of an

external software with the total number of elements counting 9908 panels. The

model was subdivided into three pieces: two wings and the fuselage. Hence, the

whole body was solved with three smaller linear systems. Moreover, the fuselage

wake was not taken into account and wing particle wakes only were released in

this test.

In this way, the fuselage linear system was built and factored only once at the

beginning of the simulation, hence reducing the computational effort. Moreover,

the hybrid particle wake was used with a buffer of four panels (Figure 6.11), and
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Figure 6.11: DLR-F4 particle wake development. Pressure coefficient distribution

on the aircraft is shown

the particle cut-off radius length was 1/8 of the mean wing chord, taken in the

stream-wise direction (0.1454 m).

The results shown here were obtained setting Mach number Ma = 0.60. The

Reynolds number reported in the workshop for this case was Re = 3.0 · 106.

The timestep was 1.224 · 10−4, so that the wake panels area was comparable to

the body panels located in the proximity of the trailing edges of the wing. The

simulation was carried on until the wake was convected downstream covering a

distance proportional to 15 times the mean chord, so that a steady condition

could eventually be reached.

Results

In Figure 6.11 a 3D rendering of the model and the attached wake is presented;

the snapshot was taken in the early stages of the simulation and the starting

vortex is visible, convected away by the free-stream, while the wake edges roll up

as expected, at least for this speed order of magnitude. Clearly, as the free-stream

increases the roll-up effect will decrease since the convective characteristic time

will shorten. In those circumstances, the wake could be prescribed with a reduced

loss in precision, but with a consistent reduction of computational time.
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AIAA label y/b

003 0.24

015 0.52

033 0.85

Table 6.4: DLR-F4 wing cross-sections position.

In Figure 6.13 the Cp distribution plotted for three cross-sectional positions is

presented, comparing AeroX results with the ones obtained with DRA, NLR and

ONERA codes (α = 0). Table 6.4 reports the wing cross section labels and the

corresponding span-wise position.

Further runs were made changing the angle of attack. Hence CL, CD and CM

are reported respectively in Figure 6.14 and 6.12, for α = -2, 0, 1.35 and 4 degrees.

The lift contribution was accurate but, as expected, drag results are very poor,

due to the intrinsic nature of a potential code. The resistance contribution result

would be enhanced by using empirical tables to correct viscous steady forces, as

outlined in Chapter 5.
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Figure 6.12: CM coefficients of DLR-F4 as a function of the angle of attack α
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6.2.3 Wind-tunnel hovering rotors

In this section two separated tests are presented.

Both involves the simulation of a rotor in hovering modeled with thick blades, a

configuration that sometimes can be critical from the stability standpoint, when

dealing with panel methods. As a matter of fact, since the free stream velocity

is zero, at the first stages of the computation aerodynamic elements will linger in

the vicinity of the blades, and generally speaking this can compromise the results.

Indeed, helicopter and tiltrotor aerodynamics is challenging because the flow field

generated by the rotor is very complex and unsteady.

For both cases, the wind-tunnel models are not equipped with a swashplate, hence

no cyclic control is made on the blades, so a constant collective pitch is applied.

A preliminary mesh sensitivity assessment is made for both cases, varying the

number of panels along the chord and along the span of the blade and comparing

the thrust coefficient. A good compromise is found with 50 panels along the chord

and 25/30 panels along the span. Results with the finest mesh only are shown.

Each test was carried on both with the vortex lattice wake and with the particles

one. As the vortex lattice wake is concerned, the wake viscous model was tuned

to get reliable results. On the other hand, the particle wake did not require any

attempt, thanks to the intrinsic viscous term in the equations. The only critical

parameter to be set is the particle core vortex radius.

Usually, core vortex radii are set to be on the order of magnitude of 10% of the

chord or 1% of the rotor diameter [49]. The latter approach was chosen for both

tests.

Rotor configuration R1

The first rotor to be tested corresponds to a wind-tunnel model used by Gibertini et

al [21] to assess aerodynamic performances of blades equipped with active control

devices, specifically Gurney flaps. Hence, we will compare the four blade rotor

model without such devices, in the configuration used as a reference condition.
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The blades has a constant 90 mm chord and a constant NACA0012 section, with a

8° linear twist. The results reported in Figure 6.15 were obtained with a panel mesh

made with the built-in mesher, using 50 panels along the chord and 25 uniform

placed panels along the blade span.

The computation was performed setting the collective pitch angle to 4, 8 and 12

degrees. The rotational speet of the rotor was set to 1600 RPM, which corresponds

to Mtip = 0.54. Results are reported in Figure 6.15, together with the experimental

measurements.
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Figure 6.15: Computed CT and CP compared with the experimental measurements

provided by [21]. Both results obtained with a vortex lattice and a particle wake

are shown

Rotor configuration R2

In this section, numerical results will be compared with the experimental campaign

described by Droandi in [15] and lead in the Dipartimento di Scienze e Tecnologie

Aerospaziali of Politecnico di Milano. In his paper, Droandi presented two rotor

blade sets, the first one being a fairly simple helicopter blade while the second one

belongs to the innovative typology of high performance tiltwing tiltrotor aircraft.
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Figure 6.16: Computed CT and CP compared with the experimental measurements

provided by [15]. Both results obtained with a vortex lattice and a particle wake

are shown

The results of the latter configuration will be reported here. The four bladed rotor

has swept blades with nonlinear twist and chord distributions; the external rotor

radius is 0.925 m (this set-up is called B2 by Droandi). In our simulation the

nacelle present in the experimental test rig was not modeled. Moreover, the mach

number at the tip wing was Mtip = 0.32.

Geometrical parameters can be found in details in [15]: the paneled blade was

generated with the new built-in mesher. The results reported here were obtained

with 50 panels along the chord and 25 panels along the span.

Specifically, due to the complex wing geometry, 12 panels equally distributed along

the span were placed from 0 to 75% of the blade, while 13 panels were prescribed

from 75% up to the tip of the blade. This meshing strategy has been found to better

discretize the circulation on the wing tip, were larger gradients are expected.

The computation was performed for three collective pitch angles, 4, 8 and 12

degrees: CT and CP are reported in Figure 6.16 as a function of the collective

pitch angle. For each revolution, 50 azimuth angles were discretized , and the
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computation was carried on for 8 complete revolutions.

Non-dimensional coefficients reported in Figure 6.16 were obtained as the mean

value calculated for the last 150 azimuth angles.

The typical convergence history for this test is reported in Figure 6.17, which

shows a relatively fast convergence rate once two complete revolutions were com-

pleted.
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Figure 6.17: CT convergence history - R2, 4° collective pitch

Figure 6.18: 2D projection and isometric view of the particle wake development

for the R2 rotor in hover
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In Figure 6.18 the particle rotor wake is represented in a graphical render. As

we can see, the so called fountain effect is clearly visible, even though it is rela-

tively circumscribed.

This phenomenon can occur in hovering rotors and it is a numerical effect that

sometimes is related to a relatively low angle of attack in the proximity of the

blade root, which results in an upward motion of the aerodynamic elements gen-

erated near the rotor hub (due to a reduced suction effect). Indeed, this is not

related to particles only, since it can happen also when dealing with low diffu-

sive vortex lattice wakes. The main drawback of the fountain effect is related

to the rate of convergence of the numerical scheme. As a matter of fact, un-

der certain circumstances, the starting vortex may roll up on itself without being

pushed downwards, while wake elements will linger above the blades, resulting in

potentially non-negligible oscillations of integral quantities, leading to a very slow

convergence rate or even divergence.

To counter or alleviate the fountain effect, one may prescribe the wake behavior

as the rotor completes the first one or two revolutions. To do so, it suffices to

overlap the particle velocities with an artificial downward velocity field, whose

intensity gradually decays (i.e. through an exponential function).

Alternatively, the actuator disk theory can be exploited to formulate an expression

for the intensity of the starting velocity field. At each timestep, until one complete

revolutions is completed, the velocity field to be added is proportional to the thrust

coefficient obtained at the previous timestep, according to the following expression:

|U ad,s|= ΩR

√
Cs−1
T

2
(6.10)

where Ω is the rotor rotational speed an the subscript ’ad’ refers to the actuator

disk theory.

However, sometimes those precautions are not enough. In that case one may resort

to inserting a paneled hub. If the timestep is small enough, the hub’s sources will
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prevent particles form escaping the suction region.

Despite being present, the fountain effect did not compromise the results in this

test case, and the convergence curve was smooth enough. A possible explanation is

related to the particles vorticity intensity decay due to the viscous term. Without

the viscous contribution, the induction effect of the particles lingering above the

rotor would have been much higher, resulting in sharpened oscillations.
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6.3 Ducted fan

The ducted fan, or shrouded propeller concept, was first examined experimentally

by Stipa [56] in the 1930s. An overview of most early studies, before 1962, was

presented by Sacks et Al. (1962) [52], while reviews on most recent studies can be

found in the dissertation of Pereira [50] and Akturk [1], although those research

were focused on UAV applications.

Research on large-scale ducted fans for propulsion purposes mostly emerged be-

tween the 1950s and 1970s.

The ducted fan is a propeller inside a circular duct. Specifically, the duct is usually

considered as an annular wing [18]. As confirmed by many early-stage experiments

(for instance [24]), the duct can bring superior static performance over its free pro-

peller counterpart given the same power, at least in a specific speed range. The

performance gains are mainly attributed to the combined effect of suction on the

curved duct inlet lip and larger static pressure around the diffuser outlet. A the-

oretical analysis for an ideal hover case, carried on with the momentum theory

[50], shows that the thrust improvement is proportional to 3
√

2Er were Er is the

duct expansion ratio. Hence, as long as the expansion ratio is greater than 1/2 a

performance enhancement could be expected. In goes without saying that as Er

grows, the adverse pressure gradient in the duct also increases, which may lead to

flow separation, that would inevitably deteriorate performances.

Recently, Leonardo is developing a numerical study on a specific configuration

in partnership with the University of Glasgow, that is performing RANS calcula-

tions for a specific configuration, studied by Grunwald in the 1960s by means of

wind-tunnel experiments [24]. Hence, the simulations performed with AeroX are

based upon the same case study, so that a direct comparison between experimental

and new CFD results will be made.
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Figure 6.19: Grunwald model AeroX mesh

6.3.1 Axial flight configuration

In this section, the results of a brief investigation on the ducted fan model studied

by Grunwald [24] are reported, comparing them with those obtained with the CFD

investigation cited above. The numerical tool used to assess the ducted fan perfor-

mances was HMB3, developed in the University of Glasgow. The Helicopter Multi

Block CFD solver is based on the control volume method, and here it performed

URANS calculations on the model geometry. Unfortunately, specific details of the

turbulence model adopted were not available.

In the original work, the whole powered model (supported by a shielded sting

support) was tested with a constant propeller rotational speed of n = 8000 rpm,

that corresponds to Mach ∼ 0.470 on the blade tip. Measurements were taken at

various wind tunnel speeds required to cover the desired range of advance ratio

µ = V/nD, where V is the free-stream velocity and D is the propeller diame-

ter. At each selected advance ratio, the angle of attack was varied inside a range

that could potentially include steady level flight, climb and descent for a tilt-duct

VTOL configuration.

The results were nondimensionalized using the free steam dynamic pressure.

However, for low advance ratios, data have been nondimensionalized by means of
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Figure 6.20: Grunwald shoruded propeller results from AeroX, HMB3 and wind-

tunnel experiments. AeroX results are obtained with particles wakes

Figure 6.21: Wake development behind the shrouded rotor. Advance ratio µ =

0.191
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the static thrust in hovering.

In this paper, results obtained from an axial configuration (i.e. AoA = 0° refer-

ring to Grunwald’s frame of reference) will be shown and discussed. As a matter of

fact, at the time of writing this thesis, integral quantities from CFD applied at high

angle of attack configurations were not available. However, calculations performed

increasing the angle of attack have shown the need of a rubust non-interference

method to prevent particles from being convected inside the shroud. As an alter-

native, the timestep could be further decreased, so that the time integration step

would feel the effect of panel sources on the bodies. This latter approach, however,

was neither convenient nor feasible, in light of the purposes of this study.

This problem was tackled creating three bodies: the rotor, the shroud and the cen-

ter body. The whole configuration was tested by means of a moltibody solution

(Chapter 5).

Hence, results obtained with AoA = 0 and increasing the advance ratio, are

reported in Figure 6.20. The same notation adopted in [24] is used: hence, the

CFx is the longitudinal force coefficient, defined as Fx/qS where in this case Fx

corresponds to the thrust force, q is the dynamic pressure and S is the projected

shroud area (shroud chord by the exit diameter).

CFD results were obtained only for a limited set of advanced ratios: those

points are highlighted in the plot with red circles, and interpolated with solid and

dashed lines to capture the trend.

CFx calculations are made according to three different configuration: the open

propeller case, i.e. the isolated fan; the shroud and the center body case; the rotor

influenced by the presence of the duct and finally the full multibody case. All

those configurations are then labeled with a different marker. Unfortunately, the

open propeller experimental measurements were not available.

As the open propeller case is concerned, AeroX results show a good agreement

with the CFD computation, although the former slightly overestimates the thrust.

However, the blade-angle setting at 75% of the radius was 24°, which may be too
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high for a potential solver without specific corrections.

Focusing the region where µ ≥ 0.05, more pronounced differences are clearly visi-

ble for the duct and the center body case. As a matter of fact, the absolute value

of the force coefficient predicted by AeroX is smaller compared to the CFD simu-

lation.

The same configuration was tested also with the vortex lattice wake: by conve-

niently tuning the vorticity diffusion we managed to replicate the vortex particle

wake results, however without getting any closer to the CFD results. Unfortu-

nately, aerodynamic C81 tables of the shroud profile were not available: it might

be worthwhile to test the viscous correction on this case.

Examining this point is key, since the difference in the total thrust for the whole

model is probably linked to this issue.

As for the low advance ratio region, our implementation gave very poor re-

sults, as it is clearly visible form the plot. The isolated propeller converged in

hover conditions, but the method was unstable when the whole configuration was

considered. Specifically, as soon as the particles reached the exit of the duct, they

also started to be summoned back upstream. This event caused eventually a di-

vergence condition.

On the other hand, the vortex lattice wake could converge to a result by setting up

a very high viscous coefficient in the wake model. Unfortunately, results obtained

in this manner were absolutely unreliable.

As reported by Grunwald, those conditions correspond to a low Reynolds num-

ber regime for the duct, possibly causing a separated flow regime. It is possible

that a low Reynolds condition on the duct pushes the panel method to its intrinsic

limits, leading to instabilities, but further investigations should be carried on.

Hence, this case is further form being clearly understood, therefore more tests

should be made. To address this needs, the following steps could be:

� Making the whole method more robust. One way to pursue this may be pre-

scribing the shroud wake interface, preventing it to behave in an unexpected
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way.

� Changing the particle releasing strategy. This aspect is covered in the last

chapter.

� Setting up a non-penetration algorithm to prevent particles ingestion inside

the shroud. The octree hierarchical structure could be used to pursue this

goal.

Finally, in Figure 6.21 the wake development behind the model is visualized.

In this case, the advance ratio was high enough to provide reasonable results,

compared with the CFD survey.



Chapter 7

Future developments

In the previous chapters, the capabilities of the new aerodynamic solver was pre-

sented, together with its present limits and weaknesses. Specifically, the vortex

particle method convergenge condition could be approached increasing the number

of particles in the field, with only a proportional increase of computational effort

thanks to the fast summation algorithm.

Future developments will focus on diversified aspects on the implementation.

First of all, the aerodynamic solver will be fully coupled with the structural

one, which is currently under development. Hence, the capabilities of the vortex

particles method could be tested and exploited in the more complex aeroelastic

frame of reference.

Second, the fast multipole scheme could be further improved, acting from the

parallel computation standpoint. As a matter of fact, the parallel approach im-

plemented during this thesis work was neither complete nor optimized (as the

multipole calculus is concerned). As a matter of fact, the multipole coefficients

computation only was parallelized by means of the OpenMP library. Hence, the

activity will follow a twofold path.
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7.0.1 Parallel enhancement and GPU porting

One one hand, the parallel architecture will be complemented by means of the

MPI package, which can be used to speed-up bottle neck processes such as matrix

computations and induction operations by means of an hybrid approach with the

OpenMP library.

On the other hand, one promising filed of research related with the solution of

N-body problems by means of a numerical approach is the exploitation of GPU

architectures. In this frame of reference, the steps of the multipole algorithm de-

scribed in Chapter 3 could be transformed into separated GPU kernels, sending

raw data to the chip, while preserving the OOP framework on the CPU. There are

many interesting works on this topic in open literature.

For instance, Nyland et al (2007) [46] presented an approach for acceleration of

the all-pairs computation on GPUs for the case of gravitational potential of N

masses, which can be an interesting starting benchmark. On those basis, Yokota

and Barba [62] addressed the more involved task of implementing the O(N logN)

treecode and the O(N) fast multipole method. Their results showed that the

cross-over point where fast N-body algorithm become advantageous over direct,

all-pairs calculations is in the orther of 103 for the CPU and in the order of 104

for the GPU.

However, about 15x speedup is obtained from the fast algorithm on the GPU for a

million particles. For N=107 the fast algorithms provide 150x speedup over direct

methods on the GPU.

Another interesting contribution is given Burtscher and Pingali (2011) [8], where

they described a CUDA implementation of the classical Barnes-Hut [4] N-body

algorithm entirely run on a GPU architecture, with an irregular tree-based data

structure and six GPU kernels. The CUDA implementation was 74 times faster

compared to an optimized (but serial) implementation running on a CPU, when

manipulating 5 million bodies. Remaining within the GPU framework, another

interesting development is related with octrees creation an and management. Even
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though octrees searches are mainly sequential processes and so not suited for GPU

implementation, several strategies have been proposed for GPU octree data struc-

tures, especially related for optimized search [40].

7.0.2 Particles releasing strategies

In the present implementation, particles can be released only from a vortex lattice

interface. That interface could be the last stripe of panels in a vortex lattice wake

or it could consist of a wake buffer directly attached to the body. Hence, the vor-

ticity intensity concentrated into particles is the result of the integration of linear

vortical edges.

This approach could be a limiting factor when one is trying to solve aerodynamic

problems where the releasing point do not consist in a marked line, or when a

releasing line locus could not be easily given. In this way, it might be worth as-

sessing the performance of different vortex element introduction methods.

For instance, Kamemoto [31] (1994), proposed a scheme in which the continuous

distribution of vorticity on the body surface is replaced with a number of vortex

elements and the vortical field is naturally represented by their convective mo-

tions. Hence, Nakanishi and Kamemoto [44] applied successfully this scheme to

the simulation of the flow around a sphere and showed its applicability to the flow

around three-dimensional bodies.

A more recent contribution on this topic is given by Ojima and Kamemoto (2000)

[48]. They presented a new scheme for the vorticity creation at a solid surface of

a three-dimensional body, in which a number of nascent vortices are introduced

in the flow field according to the diffusion and the convection of the vorticity near

the solid surface.
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[22] J.E. Gómez and H. Powert. “A multipole direct and indirect BEM for 2D cavity

flow at low Reynolds number”. In: Engineering Analysis with Boundary Elements

19.1 (1997). High Performance Computing, pp. 17 –31.

[23] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations.

Tech. rep. Yale University New Haven, 1986.

[24] Kalman J. Grunwald, Kenneth W. Goodson, and United States. Aerodynamic loads

on an isolated shrouded-propeller configuration of angles of attack from -10 degrees

to 110 degrees. NASA technical note. Washington, D.C.: National Aeronautics and

Space Administration, 1962, 29 p.

[25] Jaber J. Hasbestan and Inanc Senocak. “Binarized-octree generation for Cartesian

adaptive mesh refinement around immersed geometries”. In: Journal of Computa-

tional Physics 368 (2018), pp. 179 –195.

[26] Chengjian He and Nischint Rajmohan. “Modeling the Aerodynamic Interaction of

Multiple Rotor Vehicles and Compound Rotorcraft with Viscous Vortex Particle

Method”. In: AHS 72nd Annual Forum (May 2016).

[27] Chengjian He and Jinggen Zhao. “Modeling Rotor Wake Dynamics with Viscous

Vortex Particle Method”. In: AIAA Journal 47.4 (2009), pp. 902–915.

[28] John L Hess et al. “A higher order panel method for three-dimensional potential

flow”. In: 7th Australasian Conference on Hydraulics and Fluid Mechanics 1980:

Preprints of Papers. Institution of Engineers, Australia. 1980, p. 517.

[29] Hao Hu et al. “Hybrid Vortex Method for the Aerodynamic Analysis of Wind

Turbine”. In: International Journal of Aerospace Engineering 2015 (Mar. 2015),

pp. 1–8.

[30] Baert Jeroen. Libmorton: C++ Morton Encoding/Decoding Library. 2018. url:

https://github.com/Forceflow/libmorton.

[31] Kyoji Kamemoto. “Development of the Vortex MEthods for grid-free Lagrangian

Direct Numerical Simulation”. In: JSME/KSME Fluids engineering Conference

(1994), pp. 542–547.

https://github.com/Forceflow/libmorton


Bibliography 108

[32] Yukio Kaneda. “A representation of the motion of a vortex sheet in a three-

dimensional flow”. In: Physics of Fluids A: Fluid Dynamics 2.3 (1990), pp. 458–

461.

[33] Joseph Katz and Allen Plotkin. Low-Speed Aerodynamics. 2nd ed. Cambridge

Aerospace Series. Cambridge University Press, 2001.

[34] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sort-

ing and Searching. Addison Wesley Longman Publishing Co., Inc., 1998.

[35] Horace Lamb. Hydrodynamics. Cambridge University Press, 1932.

[36] D Levy et al. “Summary of data from the first AIAA CFD drag prediction work-

shop”. In: 40th AIAA Aerospace Sciences Meeting & Exhibit. 2002, p. 841.

[37] Keith Lindsay. “A three-dimensional Cartesian tree-code and applications to vor-

tex sheet roll-up”. PhD thesis. University of Michigan, Jan. 1997.

[38] Keith Lindsay and Robert Krasny. “A Particle Method and Adaptive Treecode for

Vortex Sheet Motion in Three-Dimensional Flow”. In: Journal of Computational

Physics 172.2 (2001), pp. 879 –907.

[39] Yijun Liu. Fast Multipole Boundary Element Method: Theory and Applications in

Engineering. Cambridge University Press, 2009.

[40] Daniel Madeira et al. “GPU Octrees and Optimized Search”. In: 2011.

[41] Luigi Morino and Ching-Chiang Kuo. “Subsonic Potential Aerodynamics for Com-

plex Configurations : A General Theory”. In: AIAA Journal 12.2 (1974), pp. 191–

197.

[42] Guy Morton. “A Computer Oriented Geodetic Data Base and a New Technique

in File Sequencing”. In: Technical Report (Jan. 1966).

[43] H Multhopp. Methods for calculating the lift distribution of wings (subsonic lifting-

surface theory). Aeronautical Research Council London, 1950.

[44] Y Nakanishi and K Kamemoto. “Numerical simulation of flow around a sphere with

vortex blobs”. In: Computational Wind Engineering 1. Elsevier, 1993, pp. 363–369.

[45] N Nishimura. “Fast multipole accelerated boundary integral equation methods”.

In: Applied Mechanics Reviews 55 (July 2002), p. 299.



Bibliography 109

[46] Lars Nyland, M. Harris, and Jan Prins. “Fast N-body simulation with CUDA”.

In: GPU Gem, Vol. 3 (Jan. 2009), pp. 677–695.

[47] Akira Ojima and Kyoji Kamemoto. “Numerical Simulation of Unsteady Flow

around Three Dimensional Bluff Bodies by an Advanced Vortex Method”. In:

JSME International Journal Series B 43.2 (2000), pp. 127–135.

[48] Akira Ojima and Kyoji Kamemoto. “Numerical simulation of unsteady flow around

three dimensional bluff bodies by an advanced vortex method”. In: JSME Inter-

national Journal Series B Fluids and Thermal Engineering 43.2 (2000), pp. 127–

135.

[49] Raghuveera Padakannaya. “The vortex lattice method for the rotor-vortex inter-

action problem”. In: (1974).

[50] Jason L Pereira. “Hover and wind-tunnel testing of shrouded rotors for improved

micro air vehicle design”. PhD thesis. University of Maryland, College Park, 2008.

[51] Pierre-Arnaud Raviart. “An analysis of particle methods”. In: Numerical methods

in fluid dynamics. Springer, 1985, pp. 243–324.

[52] AH Sacks and JA Burnell. “Ducted propellers—a critical review of the state of

the art”. In: Progress in Aeronautical sciences. Vol. 3. Elsevier, 1962, pp. 85–135.

[53] H. Samet. “The Design and Analysis of Spatial Data Structure”. In: Addison

Wesley, 1990 50255 (Jan. 1990).

[54] Günther Schrack. “Finding Neighbors of Equal Size in Linear Quadtrees and Oc-

trees in Constant Time”. In: CVGIP: Image Underst. 55.3 (May 1991), 221–230.

[55] Yongjie Shi, Guohua Xu, and Peng Wei. “Rotor wake and flow analysis using a

coupled Eulerian–Lagrangian method”. In: Engineering Applications of Computa-

tional Fluid Mechanics 10 (Jan. 2016), pp. 386–404.

[56] L Stipa. Experiments with intubed propellers. Tech. rep. National Aeronautics and

Space Administration, 1932.

[57] Leo Stocco and Guenther Schrack. “On Spatial Orders and Location Codes”. In:

IEEE Transactions on Computers 58 (Jan. 2008), pp. 424–432.



Bibliography 110

[58] Spyros Voutsinas. “Vortex methods in aeronautics: How to make things work”. In:

International Journal of Computational Fluid Dynamics 20 (Jan. 2006), pp. 3–18.

[59] Daehyun Wee et al. “Convergence Characteristics and Computational Cost of Two

Algebraic Kernels in Vortex Methods with a Tree-Code Algorithm”. In: SIAM J.

Scientific Computing 31 (Jan. 2009), pp. 2510–2527.

[60] G S Winckelmans and A Leonard. “Contributions to vortex particle methods for

the computation of three-dimensional incompressible unsteady flows”. In: Journal

of Computational Physics; (United States) 109:2 (Dec. 1993). issn: 0021-9991.

[61] Gregoire Stephane Winckelmans. “Topics in vortex methods for the computation of

three- and two-dimensional incompressible unsteady flows”. PhD thesis. California

Institute of Technology, 1989.

[62] Rio Yokota and Lorena Barba. “Treecode and Fast Multipole Method for N-Body

Simulation with CUDA”. In: GPU Computing Gems Emerald Edition (Oct. 2010).

[63] Feng Zhao. An O(N) Algorithm for Three-dimensional N-body Simulations. Tech.

rep. Massachusetts Institute of Technology, 1987.

[64] Jinggen Zhao and Chengjian He. “A Finite State Dynamic Wake Model Enhanced

with Vortex Particle Method–Derived Modeling Parameters for Coaxial Rotor Sim-

ulation and Analysis”. In: Journal of the American Helicopter Society 61 (Apr.

2016).


	Introduction
	A brief work report

	Problem formulation
	Preamble
	Laplace problem
	Dirichlet boundary condition
	Neumann boundary condition
	Aerodynamic forces

	Vortex particle method
	Introduction
	Vorticity equations
	Singular vortex particles
	Regularized vortex particles
	Viscous diffusion modeling
	Particles injection


	Fast methods for particle simulations
	Treecodes algorithms
	The Fast Multipole Method (FMM) 
	Hierarchical subdivisions
	FMM Algorithm
	Coefficients computation


	Hierarchical data structures
	Preliminaries
	Node data allocation

	Pointer-based node representations
	Pointer-less representations
	Morton encoding
	Manipulation


	Code description
	Preliminaries
	Aerodynamic objects
	Bodies
	Wakes
	Vortex lattice wake
	Particles wake

	Sections
	Solution cycle
	Body solve loop


	Test cases
	Induction tests
	Gaussian vorticity distribution
	Vortex sheet evolution

	Validations
	Older release comparison
	AIAA DLR-F4 workshop
	Wind-tunnel hovering rotors

	Ducted fan
	Axial flight configuration


	Future developments
	Parallel enhancement and GPU porting
	Particles releasing strategies


	Bibliography

