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1. Introduction
The application of robotics from industry to the
human environment is constantly growing and
has led to the development of human-robot in-
teraction (HRI). In particular, when the interac-
tion is physical, we refer to the physical human-
robot interaction (pHRI) [5].
In this context, new and possibly adaptive con-
trollers are needed to assist human operators in
performing shared tasks.
Among the possible control schema, Game-
Theory (GT) based controllers are widely used
to model the interaction between different users
[4]. GT offers a solution to the problem of a
multi-agent system adopting a cooperative sce-
nario [1] focused on how to maximize the inter-
ests of the participants in the game.
One of the assumptions underlying the GT prob-
lem is that each player knows the opponent’s
goal. Therefore, in pHRI, the knowledge of hu-
man intention assumes a lot of importance. In
this work, human intention is defined as the hu-
man’s desire to move an object from a starting
to a target point, with the assistance of a robot,
following a trajectory, over a finite rolling pre-
diction horizon. The method used for human

intention estimation is based on recurrent neu-
ral networks (RNNs), which are very effective
when dealing with sequence-to-sequence learn-
ing applications, [3]. In particular, the struc-
ture is composed of cascaded Long-Short-Term
Memory (LSTM), used to solve various problems
where the sequential data and Fully Connected
(FC) layers (RNN+FC). The prediction of the
RNN+FC is planned to use information about
a portion of the trajectory before the current
state to predict a future portion of the trajec-
tory. Iterative training is proposed to adapt the
model, but it is time-consuming. To resolve this
and to adapt to new users/objects, a Transfer
Learning (TL) approach has been proposed to
transfer knowledge from a related task that has
already been learned.
Real experiments are carried out on a UR5
robotic arm, in two dimensions (x–y plain)
with a force sensor installed. The behavior of
the dMPC framework proposed is analyzed to
tune parameters. After adapting the model to
a different trajectory, users, and a large ob-
ject, an application scenario is proposed for co-
manipulating two different objects and compar-
ing the obtained results with other controllers.
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2. Cooperative Game Theoretic
formulation of the dMPC

The robot motion at the end effector is modeled
as a Cartesian impedance, and can be described
by the equation of mechanic impedance imple-
mented in the Cartesian space:

Mi a(t) +Di v(t) +Ki∆x(t) = uh(t) + ur(t)

(1)
where Mi, Di and Ki ∈ R6×6 are the desired
inertia, damping, and stiffness matrices, respec-
tively; a(t), v(t) and ∆x(t) ∈ R6 are the Carte-
sian accelerations, velocities and delta positions
at the end-effector, with ∆x(t) = x(t) − x0(t)
with x0(t) the equilibrium position of the virtual
spring, and uh(t) ∈ R6 and ur(t) ∈ R6 represent
the measured human and virtual robot effort ap-
plied to the system.
We now describe the structure and the formula-
tion of the dMPC, as expressed in [2], using the
cooperative scenario.

zgt(k + 1) = Agtzgt(k) +Bh,gtuh +Br,gtur

ygt(k) = Cgt zgt(k)
(2)

with zgt =

[
z
z

]
, with z = [∆xT vT ]T contain-

ing the state of the system, the matrix Agt =[
Ad 012×12

012×12 Ad

]
containing the state matrix A,

the matrices Bh,gt =

[
Bh

Bh

]
, Br,gt =

[
Br

Br

]
con-

taining the input matrices Bh and Br and the
output matrix, and Cgt ∈ Rm×24 is defined ac-
cording to the desired output.
Defining with Np the time instants considered
in the prediction horizon and with Nc the time
instants considered for the control horizon, the
future steps can be computed as:

y(k + 1) =CgtAgtx(k)+

CgtBhuh(k) + CgtBrur(k)

...

y(k +Np) =CgtA
Np

gt x(k) + · · ·+

CgtA
Np−Nc

gt Bhuh(k +Nc − 1)+

CgtA
Np−Nc

gt Brur(k +Nc − 1)

Now we formulate the equations of MPC in a co-
operative control case. In the cooperative game,

players communicate with each other and share
a common objective expressed by a parameter
α ∈ (0, 1). Define Qgt = α Q̃h + (1 − α) Q̃r,
Rgt,h = R̃h and Rgt,r = R̃r, with Q̃h =
blkdiag(Qh...Qh) and Q̃r = blkdiag(Qr...Qr).
Qh and Qr, define the weight that the human
assigns to their own and the robot’s reference
tracking.
The cost functions that the two players aim at
minimizing in the CGT are:

Ji(k) = Egt(k)
T Q̃iEgt(k) + Ui(k)

T R̃i Ui(k)

= Egt(k)
T QgtEgt(k) + Ui(k)

T Rgt,i Ui(k)

(3)

with i = {h, r}. The two vectors Ui ∈ R6 are the
input vectors along the horizon, Egt(k) = y(k+
N−1)−yref,i(k+N) , ϕ ∈ RmNp×6Nc the matrix
representing the forced response, F ∈ RmNp×24

is the free response matrix.
So the dMPC problem for the CGT pHRI can
then be summarized by minimizing the two cost
functions (3) in ur and uh. In particular, the
solution to this can be computed as:

U∗ =

[
U∗
h

U∗
r

]
=

[
I Kh

Kr I

]−1 [
Lh 0
0 Lr

] [
Zh

Zr

]
with Ki = ((ΦT

i QgtΦi + Rgt,i)
−1ΦT

i Qgt)Φi and

Zi =


zgt(k)

yref,i(k + 1)
...

yref,i(k +N)

 with i = {h, r}

The two matrices Li depends on ΦT
i , that is the

typical forced response matrix, Qgt and Rgt,i.

3. Learning human intention
for trajectory prediction

Davide Cassinelli, STIIMA CNR

Schema a Blocchi

Figure 1: Representation of RNN+FC inside the
control scheme
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In order to develop a suitable controller, it is
very important to know the desired trajectory
of the human. The solution adopted is to use
the RNN cascaded with a fully connected(FC)
part that learns human behavior and provides
the robot with the necessary information to as-
sist the human. To tune the parameters of the
RNN, the machine learning approach requires
training the model on real data. So before using
the model we have to acquire the data needed.
The procedure is done not using any predictive
model and assuming that the human-predicted
trajectory is equal to the robot one. The dataset
we create is called D0(the "0" indicate that it is
the iteration done with no model loaded) and
it is done assuming that this equation applies
x̂ref,h = xref,r. where x̂ref,h stands for the pre-
dicted trajectory of the human and xref,r the
actual trajectory done by the robot.
With this data collected, we can train the model
we called M0 that depends on the first data set
only M0 = M0(D0). This new model is used for
collecting new data and the robot can predict
x̂ref,h and can assist better the human during
its task.
The process that is being created follows an
iterative procedure where the first step is the
one already explained and so the next step is
to collect a new dataset D1, and train a sec-
ond model on this data. M1 = M1(M0, D0)
This procedure is done to find the best model
possible and this process can be done K times:
MK = MK(Mk−1, Dk−1)
The iteration process can be stopped by a stop
criterion i.e. the law that indicates at which
iteration the model doesn’t improve itself. An
example of this could be the average of the Root
Mean Square Error (RMS), computed as

eRMS =
1

L

L∑
T=1

√√√√ 1

N

T+N∑
K=T

(∥x̂ref,h − xk∥2) (4)

where x̂ref,h is the predicted human intention,
xk the measured poses, L is the length of the
trajectory, and N is the prediction horizon. The
stopping criterion can be expressed with this as-
sumption ∥ek+1

RMS − ekRMS∥ < toll
To make the model as general as possible and
reduce the processing time, we use the theory
of transfer learning, through a model, based on
RNN+FC for the new user/object. This pro-

cedure allows a considerable reduction in pro-
cess time. This is because we only perform a
single iteration, due to the fact that we start
from a model that has already been trained
and fewer data are required. Specifically, in
our case, we freeze the part of RNN, and the
part we consider the FC is the part we train
again. So using the transfer learning approach,
we define the MTL model equation as follows:
MTL = MTL(Mk, Dk)
The full control schema including the various
modules is visible in figure 1.

4. Experimental Results
The presented method is evaluated with simula-
tions and real experiments. The robotic plat-
form is a UR5 robot from Universal Robots,
with 6 dof, equipped with a Robotiq FT300 sen-
sor mounted at the tip for measuring the hu-
man interaction force. A gripper allows being
grasped by the human directly and a suction cap
is used explicitly for carrying large/heavy ob-
jects. The robot’s nominal trajectory, defined by
a motion planner, is defined offline by an exter-
nal computer at 125 Hz. The RNN+FC model
experiments are performed on the x–y plane, in-
volving only two dimensions. The impedance
control parameters in (1) are set as follows:
Mi = diag([10, 10]), Ci = diag([100, 100]) and
Ki = diag([0, 0]). The two cost functions
parameters in (3) of the two players are set
as: Qh,h = Qr,r = diag([1, 1, 0.0001, 0.0001]),
Qh,r = Qr,h = 02×2, and Rh = diag(0.0005) In
particular, the human cost function parameters
Qh,h,Qh,r andRh are recovered via Inverse Opti-
mal Control (IOC) and an average value is used.
The robot parameters Qr,r and Qr,h are set equal
to the human’s to mimic a person except for Rr,
which together with α and Prediction Horizon
H, are designed through experiments.

4.1. dMPC performance analysis
We first discuss the choice of the dMPC
parameters, analyzing its performances vary-
ing α, Rr, and H. The test is conducted
assuming a sinusoidal signal as a reference
(xref,h = sin(t) and xref,r = 0.5 sin(t)) and
we evaluated the model on α = {0.2, 0.5, 0.9},
Rr = {0.01, 0.0005, 0.0001} and with H =
{0.04, 0.16, 0.4} seconds. Low values of α corre-
spond to the case where the shared cost approx-
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imates the robot’s cost and high values corre-
spond to the case where the shared cost approx-
imates the human cost. In the case of Rr, the
lower it is, the higher the robot’s assistance is.
With α = 0.9 the curve follows the human refer-
ence more, so we have a more assistive controller
that follows the human intention. With α = 0.2,
according to GT, it should be the human who
puts much effort into helping the robot track its
reference. This case is not applicable to the pre-
sented method because human does not know
the reference of the robot and it is unnatural for
a human to assist the robot. The difference be-
tween the Rr = 0.0001 and Rr = 0.0005 is that
the lower it is, the more responsive the robot be-
havior becomes. Varying the prediction horizon,
we see better results when we can predict as far
ahead as possible in time. The analysis is done
on all the parameters and to give a representa-
tion of this, figure 2 shows an example of two
specific cases.

(a) Rr = 0.0001 . (b) Rr = 0.0005.

Figure 2: The α variation seen in just two cases
with H = 0.4

4.2. Human Intention prediction
evaluation

All the datasets contain data on the robot’s ac-
tual poses, velocities, reference robot’s trajec-
tory, and interactive force. The human force
is measured at the robot tip via the FT sen-
sor. The robot’s nominal trajectory defined by
the motion planner is defined offline and com-
manded in real-time. The data collected are
sampled at 0.008 seconds, as this is the sam-
pling time of the robot’s controller. A single
trial consists of following a given trajectory that
appears on a monitor, and conducting the robot
from an initial point to an endpoint, avoiding a
virtual obstacle. The trajectory are represented
in figure 3a, 3b, and 3c, respectively. A complete
dataset, for the iterative phase, is composed of
60 trials, 20 for each of the three trajectories,

and is performed 4 times by the author.

(a) Linear. (b) Curve. (c) Sine.

Figure 3: Trajectories used in the training phase

The LSTM model used is composed of 3 lay-
ers with 250 hidden nodes, and the FC is com-
posed of two connected layers. The model is
trained for 25 epochs with a batch size of 64 and
a learning rate initially set at 0.001. The neu-
ral network used works with 125 times instant
precedent step as input. The model predicts 50
instant steps ahead of the current state. To eval-
uate the prediction model, we set the parameters
with α = 0, 8 to allow sufficient assistance and
Rr = diag(0.0005), set equal to the human’s to
mimic collaboration with another person. For
the training phase, we decide to dedicate 20%
to the test part and the remaining 80% to the
training part. Define the first model train as
M0, and with D0 the dataset collected. With
the subscript 0 we denote the model trained and
the dataset collected with no model loaded. The
following takes the name of the iteration we pro-
ceeded. The new dataset collects DN+1 are cre-
ated with the model MN loaded. The collection
procedure is done in the same way as described
in the first case. Unlike the first data collection,
the assumption xref = xh does not hold any-
more, but the RNN+FC model now predicts the
xh reference. From now the train will be based
on the model created in the previous step.
Despite this, the iteration is done only by the
same user and on three trajectories. To adapt
the model quickly, TL performances are evalu-
ated. The procedure of TL is done on different
users and adapts to a co-manipulated object and
new trajectory. In all cases, the first data are
collected based on the last model trained by the
author, which here we called Mprev The differ-
ence is that only 15 trials are performed in total,
5 for each trajectory.

4



Executive summary Davide Cassinelli

5. Results
The performances are measured on eRMS , al-
ready define in (4) and eMAX defined as:

eMAX,i = max
i∈L

{∥x̂ref,h − xk∥} (5)

where x̂ref,h is the predicted human intention
and xk the measured poses. L is the length
of the trajectory. We evaluated this value by
comparing it with different time horizons to
see its dependency and in particular with H =
{0.04, 0.08, 0.16, 0.4}.

5.1. Model Evaluation
To evaluate the model we compare the four dif-
ferent iterations, and figure 4 give an exam-
ple of this showing the two index with just
H = {0.04, 0.4}.

(a) eRMS with H of
0.04s.

(b) eRMS with H of 0.4s

(c) eMAX with H of
0.04s.

(d) eMAX with H of 0.4s

Figure 4: Comparison of the eRMS and eMAX

for the four iterations with different H.

In eRMS the improvement is clear between the
first iteration M0 and the subsequent one. In
particular, between the first and the second,
the difference is huge while from the third, and
fourth, it’s stabilized. The eMAX index, instead,
gives us more information. We can notice that it
reduces only after 3/4 iteration and not only just
after one. So, this value said that iterating the
process multiple times can improve the model.
Regarding the different time horizons, we can see
that it is more complex to predict long predic-
tion horizons as the value of the error increases

when we augment the prediction horizon. This
is mainly because it is very complex to predict
human deviations from the nominal trajectory
in advance.

5.2. TL Evaluation
The same indices are used to analyze the im-
provements done using transfer learning. The
TL is done in the new trajectory, 5 different
users, and with a co-manipulated object.
Fig 5 represents the comparison between the
model based on the iteration process and the
one result after TL. We can see that we have an
improvement in every three TL.

(a) eRMS on
trajectory

(b) eRMS on
user.

(c) eRMS on
object.

(d) eMAX on
trajectory.

(e) eMAX on
user.

(f) eMAX on
object.

Figure 5: Comparison based on eRMS and eMAX

based on TL approach with H as 0.4sec

It is interesting because we can see that by us-
ing transfer learning we only need one training
iteration and fewer data to reach performances
comparable to the results obtained using the full
iterative training procedure.
Another advantage is shown in the next ta-
ble 1, where we can see the time for adapting
the model to new users/objects dramatically de-
crease compare to the iterative training phase.

Iterations TL

data collection 60 ± 10 min 5 ± 2 min

training 45 ± 5 min 4 ± 1 min

Table 1: Time required at various steps

5.3. Application scenario and other
controller comparisons

We can see the improvement also apply to a
real case application The task was to conduct
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two different objects, a wooden board, and a
lumped heavy object, from a starting point to
a target point. We compare it between a Man-
ual Guidance (MG) control and an Impedance
control (IMP). First of all, we compare the force
applied to the robot as the Root Mean Square,
computed as

fRMS =
√
(f2

x + f2
y ) (6)

. with fx and fy, the force along x and y. Then,
we measure the precision to reach the target
point with the object, expressed with σ, that
gives the deviation from the point, measured as:

σi = ∥xcurrent − xfinal∥ i ∈ L (7)

with xcurrent the current value, xfinal the final
point, and L the length of the trajectory from
starting point to the endpoint.

(a) fRMS on
wooden board.

(b) fRMS on
lumped object.

(c) σ on wooden
board.

(d) σ on lumped
object.

Figure 6: Comparison between MG, IMP and
MTL, through two objects by fRMS and σ

In figure 6a and 6b is shown that the MTL needs
less force than the other two and so the robot is
assistive. In figure 6c and 6d is evaluate the
σ index expresses in (7). It is calculated for 3
seconds starting from the point where the σ is
around ± ε, arbitrarily decided, and equal to
0.025cm. The figures show how the MTL stays
and reaches the end-point better than the other.

6. Conclusions
This work presents an assistive controller for
pHRI, described by Differential Cooperative
Game Theory, and a learning method for pre-
dicting the desired human trajectory over a fi-
nite time horizon. The model is simulated to

tune the different parameters and is validated
with real-world experiments done by the author
on the UR5 robotic arm. It needs an iterative
training procedure, done 4 times, to adapt the
model and to reduce the prediction error. To im-
prove the time-consuming problem and to adapt
to new situations and users, Transfer Learning
is applied. The results obtained are satisfac-
tory as starting from a model trained, after just
three iterations, on a single subject, and on a
specific task, it is possible to quickly adapt the
model to new users and tasks with comparable
performances. This method allows to dramati-
cally reduce the time necessary for data collec-
tion and training the model compared to the it-
erative procedure. Finally, the superiority of the
assistive controller enhanced by the RNN+FC
model, compared to standard controllers typi-
cally used in pHRI is shown by measuring the
average interaction force, and the precision to
reach a target point. Future works will focus
on implementing the model with cameras that
detect the position of the human and impart a
fictitious force to the robot, allowing flexible ma-
terial co-manipulation. The possibility of vary-
ing online assistance will be addressed by feeding
the RNN+FC with this additional time-varying
parameter.
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