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Abstract

Salt segmentation in seismic images is crucial to identify the correct velocity model that
has to be used at migration time to ensure a correct image production. Up to now mi-
grated images with incorrect velocity models are interpreted by an expert that has to pick
salt bodies by hand, resulting in a slow and costly process. Salt segmentation process can
be sped up using segmentation Convolutional neural networks (CNNs) to automate (at
least partly) the process of salt picking. This thesis tackles the problem of automatic
salt segmentation using deep learning. We first propose a salt segmentation CNN. In
particular, we perform an extensive testing of different loss functions on a same baseline
architecture. We analyze losses using multiple evaluation metrics to have different per-
spectives on how effective losses are. Then, we focus on the application of two eXplainable
AI (XAI) techniques to inspect how salt segmentation CNN interpret different classes of
horizon artifacts. In particular, we apply Activation maximization (AM) and Network
inversion (NI) methods to previously trained segmentation CNNs, producing synthetic
images that shows how trained CNNs interpret salt bodies, background and other seismic
artifacts. AM technique has been mainly used to produce class level images, finding the
input images that activates class neurons the most. NI on the other hand shows how an
input image is processed by the CNN layer by layer. This technique can be used to find
out what part of information is lost and what is kept from one layer to another.

Keywords: CNN, Salt segmentation, Geophysics, XAI,





Abstract in lingua italiana

L’identificazione del sale nelle immagini sismiche è un passo cruciale per la valutazione del
corretto modello di velocità da applicare durante il processo di migrazione, assicurando
così una corretta produzione delle immagini migrate. Allo stato attuale la correzione del
modello di velocità dei migrati è affidata ad un esperto che ha il compito di identificare
i corpi salini manualmente, risultando in un processo lungo e costoso. Il processo di
segmentazione del sale può essere velocizzato considerevolmente usando delle reti neurali
convoluzionali per automatizzare, almeno parzialmente, il l’iter di identificazione del sale.
Questa tesi affronta il problema di segmentazione automatica dei corpi salini tramite deep
learning. Per prima cosa proponiamo un’architettura di rete neurale convoluzionale da
utilizzare per la segmentazione, in particolare focalizziamo l’attenzione sul testing e la
valutazione di diverse funzioni di loss (a parità di modello) utilizzando svariate metriche,
per avere prospettive differenti sull’efficacia di ciascuna di esse. Nella sezione successiva
analizziamo in che modo le reti neurali convoluzionali precedentemente allenate interpre-
tano le diverse classi di fenomeni sismici presenti nelle immagini tramite l’utilizzo di due
diversi metodi di XAI. In particolare applichiamo le tecniche di AM e NI alle reti allenate,
producendo immagini artificiali che permettono di comprendere (almeno in parte) come le
reti interpretano le diverse classi sismiche, fra cui i corpi salini. Nello specifico la tecnica
di AM è stata prevalentemente utilizzata per produrre immagini interpretabili delle classi
finali: la tecnica consiste nel trovare l’immagine in input che massimizza l’attivazione
di uno specifico neurone di output. La tecnica di NI al contrario mostra come una rete
neurale convoluzionale processa l’immagine in input layer per layer, può essere dunque
usata per comprendere quale parte di informazione viene scartata e quale ritenuta da un
layer al successivo.

Parole chiave: Rete neurale convoluzionale, Segmentazione del sale, Geofisica, XAI
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1| Introduction

With the increasing need of hydrocarbons worldwide, oil and gas industries are collecting
several hundreds of gigabytes of seismic data to find possible oil and gas reservoirs. Up to
now, to find possible locations of underground hydrocarbons, the collected data needed to
be processed by field domain experts, such as geologists and geophysicists. This manual
process of analyzing huge amount of data is extremely costly and time consuming for
gas industries, but that is not the only problem. Indeed, it has been known for quite a
while that gas and oil reservoirs are often located near underground salt basins, which are
notoriously difficult to image correctly due to their elastic properties. In order to correct
the seismic images and generate decent sub-salt migrates, salt bodies position should be
known a priori.
The problem of locating oil from seismic images is characterized by three time-consuming
steps: identify salt basins in poorly migrated images by hands; correct those images with
the previously gathered information of the salt position; interpret the newly generated
images by hand to find reservoirs.
The need of a helping hand to classify and process a large amount of seismic data led
oil industries to start researching on deep learning as an alternative and faster way to
recognize salt basins in seismic images. Deep learning approaches offer the possibility of
analyzing a large amount of data in almost no time, especially compared to human experts.
The task of picking salt bodies in seismic images can in fact be considered a segmentation
problem, and can be efficiently solved by deep learning algorithms (like CNNs) efficiently.
CNNs are widely used in automatic image processing and can be very efficient in terms of
training and test time. They have been proven to be able to outperform humans in image
classification tasks, setting themselves as the perfect substitute to perform this kind of
time consuming problems.
However seismic images can be very different from natural images and can vary a lot from
one another depending of the subsurface lithology and acquisition method used. This
unpredictable behaviour makes trained CNNs to be highly inefficient on new data. For
these reasons the research procedure on salt bodies identification is still very far from
perfection and cannot still substitute fully human experts in the field. However, CNNs
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can still assist geologists and geophysicists in their work, substantially speeding up their
work.
This thesis tackles the problem of salt segmentation in seismic images by means of deep
CNNs. In particular, we first propose the use of CNNs to identify salt bodies. Then,
we focus on interpreting the cognitive process of the used CNNs by means of XAI. In
particular our contributions are:

• We propose our solution of salt segmentation problem using CNNs, investigating in
particular on the impact of different loss functions on segmentation performances.
Proposed results on the salt segmentation problem aim to improve a baseline pro-
vided by us by ENI.

• We discuss about how trained CNNs recognize salt bodies using two different XAI
techniques. By comparing results obtained on classification and segmentation CNNs
we reason about how differently those two CNNs interprets images.

The document is structured as follows. In Chapter 2 we provide an introduction to deep
learning and geophysical imaging, explaining how the seismic images are formed. In
Chapter 3 we go through a brief review of the state of the art review, both in terms
of XAI and salt segmentation; in this chapter problems related to salt segmentation are
introduced for the first time. In Chapter 4 we propose our own salt segmentation pipeline:
first we formally introduce the problem of salt segmentation, then we describe in detail
every step made from input preprocessing to metric evaluation, motivating made decisions.
In the last part of Chapter 4 a description of all tested losses is provided, along with their
graph and mathematical intuition. In Chapter 5 we explain in detail the chosen XAI
techniques used to perform inspection on trained CNNs. Chapter 6 is perhaps the most
important of the thesis: we begin with an overview of the two datasets used, followed by
a description of all metrics used for segmentation performance evaluation. Then we will
explain how experiments have been carried out, talking about the experimental set up
for segmentation, classification, and CNN inspection. The last part of Chapter 6 reports
obtained results, from segmentation performances using the above defined metrics to XAI
generated images. In the last chapter we make some final consideration on the work
done, adding some interesting suggestions on future works to improve both segmentation
performances and CNN inspection.
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2| Background

This chapter introduces some background concepts needed to understand the rest of the
work. In particular, we first introduce the main concepts behind seismic imaging. Then,
we introduce the main ideas behind deep learning.

2.1. Geophysical imaging

To understand the relevance of the proposed work it is important to understand how
geophysical data is collected and how images are formed. In this section we first go through
a brief recap about how data is gathered with the help of geophones, then we introduce
some techniques which transform the geophysical data into migrated images, introducing
the problem of correct velocity model identification and how salt bodies interfere with
this process. An interested reader that wants to dig deeper into this concepts can refer
to Etienne Robein book on Seismic imaging [33].

Reflectors and Diffractors
The underling idea below Geophysical Imaging is pretty simple: known the velocity model
of the media, one can reconstruct the underground structure by looking at how reflected
and diffracted waves propagate in the subsurface.

First thing to do is to define the two main geophysical events present in the underground:
reflectors and diffractors. Reflectors are the interface with two geological layers with dif-
ferent elastic properties. Since the two materials have different impedances, an incoming
wave traveling from the surface will be partially reflected and partially refracted. Since
reflectors usually have some kind of lateral continuity, the resulting reflected wave will
have a straight shape in seismic images. Diffractors are usually small-sized objects with
respect to the wavelength or points that correspond to the limit of reflectors. Diffrac-
tors reflect incoming waves with a hyperbolic-like shape. Figure 2.1 shows an example of
reflector and diffractor.
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Figure 2.1: In blue, reflectors with their characteristic lateral continuity. In red, Diffrac-
tors points.

Knowing how reflected and diffracted waves prapagate theorugh the media, one can exploit
this knowledge to map the subsurface morghology by generating incoming waves from the
surface and recording the reflected wavefronts over time.

Data gathering

A typical setup used to obtain seismic data is the following: an source is placed in a
specific position on the ground, followed by a set of receivers according to a pre-designed
acquisition geometry.
When a signal is released from the source, the receivers (usully geophones) capture the
pressure coming from the subsurface, creating a sequence of traces of the pressure level
over the surface for a period of time t. The resulting raw data obtained from this process
is a series of reflected waves recorded by each geophone at every instant t.
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Figure 2.2: Typical data collected by a geophone. The first recorded signal is the direct
arrival of the shot, followed by the underground reflections. Note how reflections arrive
with a small delay from one another, giving us an information about the reflection event
depth. All the noise recorded before the shot is muted.

Figure 2.2 shows how different types of waves are registered at the receiver. Since we
are interested only in reflected waves, pre-shot noise and direct arrivals are muted. Note
also the definition of the axis: the y axis represents the elapsed time while the x axis
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represents the offset, that is the distance between the source and the receiver. Note that
the elapsed time gives us the information about reflection depth: at same offset, the more
time has passed the deeper the reflection has occurred.

Data migration

If the velocity model of the media is known, waves propagation through the media has
a predictable behavior: known the distance between the emitter and receiver, the angle
with the vertical (group angle) and the total elapsed time between the shot and the
detection, one can compute the reflection depth. The process of reconstructing the correct
reflector position given the set of wavefields at the surface is called migration. Knowing the
velocity model of the medium is crucial to perform a correct migration: the velocity model
provides information about the propagation speed and direction of the reflected waves.
Furthermore, the medium is usually anisotropic and heterogeneous (wave propagation
velocity depends on its location and direction), .
Migration can be performed using several different moethods, in this chapter we briefly
discuss about two of them: Kirchhoff migration and Reverse Time Migration (RTM). The
common migration technique known as Kirchhoff Migration is based on the hypothesis
that all seismic points can be considered as diffractors. Diffractor points, for constant
propagation velocity, reflect seismic waves in all direction. Those waves are recorded by
geophones with different delays, causing the seismic profile to be hyperbola-shaped, as
shown in Figure 2.3.

Figure 2.3: Hyperbolic seismic profile of a diffractor point. The image on the right
shows how a diffracted waves propagates through the media reaching the geophones with
different delays.
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This process now have to be reverted using migration, that is, finding the location of the
diffractor point by looking at his hyperbolic seismic profile.
For each diffractor point the hyperbolic profile is computed and summed with those of all
other points in the image.
Reflectors, which can be considered as multiple diffractor points close to each other,
appear as multiple overlapping hyperbolas that sum up generating an horizontal line in
the reflector position. On that line all points sums thanks to constructive interference,
hyperbolas tails on the other hand sums in noisy ways.
RTM technique directly solves acoustic wave equations to simulate down-going and up-
going wavefield propagation, constructing in this way the so called "Wavefield Movie".
To find reflectors locations, RTM exploits the famous Imaging principle [10]: "Reflector
exists at points in the ground where the first arrival of down-going wave is coincident
with an up-going wave". This means that if we manage to reconstruct down-going and
up-going waves, we can find the position of reflectors by finding points in time where the
two waves coincide. The workflow for each shot is the following:

• Simulate the down-going wavefield: knowing the velocity model of the media, one
can compute the down-going wavefield by simply solving the wave equation of the
shot recursively from shot time. While solving down-going wave equations, up going
waves disturbance is neglected.

• Reconstruct the up-going wavefield: Given a shot gather, that is the trend of the
up-going wavefield pressure over time (Example in Figure 2.2), the process of up-
going wavefield reconstruction runs in reverse time. Starting from the maximum
recording time and going backwards, wave equations are solved iteratively imposing
shot gather amplitudes as boundary conditions for the problem. The wavefield that
we extrapolate in this way is the up-going wavefield that generated the shot gather.

• Compare the two reconstructed wavefields imposing the imaging principle to find
reflectors position.

RTM migration results to be more precise when compared to Kirchhoff migration, at the
cost of computational complexity. As mentioned, the underling assumption that has been
made is that the subsurface velocity model is known. Only in this way it is possible to com-
pute diffraction curves for every point and sum them up correctly. For non-homogeneous
media the diffraction curves of seismic points are not perfect hyperbolas but complex
shaped curves. How is it possible to know if a velocity model fits the seismic problem or
not?
To check if the chosen velocity model at a specific point is correct, one can use multiple
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measurements performed with different offsets and compare them together: the set of
traces collected using different offset ranges is called Common Image Gather (CIG). CIG
represent the image obtained at a specific points with different offsets using the same
velocity function.

Figure 2.4: A) Series of shots taken with different offsets that form a CIG.
B) Signals belonging tho the same reflection event captured at different offset (the reflec-
tion event detection is represented as a dashed line). The vertical time is different for
each offset. C) CIG stack after Normal move out (NMO) correction. Note how vertical
time coincide for every offset, resulting in a flat CIG (flat dashed line).
Image courtesy of [17].

Since all measurements taken are the result of the same geophysical event, all CIG traces
must migrate to the same point (Figure 2.4 A)). Once the velocity model is applied to
all the CIG traces, a resulting reflector should appear at the same "vertical time" for all
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offsets used. After correcting the vertical times using the selected velocity model (NMO
correction [1]) all the obtained reflection signals are horizontally juxtaposed: if the veloc-
ity model is correct, signals belonging to the same reflection event should arrive at the
same time for all offsets, causing CIG to generate a flat line (image 2.4 C). A CIG made
only of flat lines is ideal, and tells us that the velocity model used is universally correct
for all offset, thus the migrated image is reliable. Salt bodies introduce a sudden variation
in the subsurface velocity model, this happens because elastic properties of the salt are
usually very different from all the other geological materials. If the salt velocity model
is not correctly associated with salt bodies at migration time, everything below salt is
wrongly migrated.

To cope with this problem, one can first produce migrated images without considering salt
at all. In this way the migrated image will be correct only up to the top salt perimeter.
Once the upper perimeter is known, salt velocity model is assigned from the upper perime-
ter to the end of the image. Following the same principle, the migrated image will now
be correct up to the bottom salt perimeter.
Now that the whole salt body has been identified one last migrated image is produced,
assigning the correct velocity model to the whole image.

2.2. Deep learning

Machine learning (ML) is the field of study that gives machines the ability to solve complex
problems without having to code them [36].
In standard ML algorithms, the features of the dataset are usually extracted by humans
and then fed to a learned classifier to compute the output. This approach not only
requires time-consuming handcrafted feature extraction, but there is another problem:
optimal features for humans are not necessarily optimal algorithms. Deep learning differs
from standard ML algorithms because feature extraction is performed by the machine
itself (2.5).
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Figure 2.5: Top and bottom pipeline show respectively the common ML and Deep learning
approach. What differentiate the two pipelines is the feature extraction step: standard
supervised ML requires external feature extraction while Deep learning algorithms learn
features from the data.

2.2.1. Artificial Neural Networks

Artificial neural networks (ANNs) are Deep learning algorithm inspired to human brain:
the building block of ANNs is the perceptron, a binary classifier that, given an input,
outputs a binary output. [35]. More specifically, a weight vector w is multiplied by scalar
product with an input vector x. The result is then fed into an activation function f that
provides the perceptron output (equation 2.1). Formally, the output of a perceptron is
defined as

P (x|w, b) = f(wTx+ b), (2.1)

where x is the input vector, w the weight vector, b the bias vector, and f is known as
activation function,

The so called Activation function f is usually a threshold function that either set the
output to zero or not depending on the input value, moreover f must be differentiable
to correctly perform gradient descend at learning time. Perceptrons (neurons) are the
building blocks of ANNs, enabling complex processing by stacking them together. ANNs
networks are organized in layers that process the input sequentially: in dense networks,
each neuron output is an input for all the next layer neurons, processing the input and
extracting more and more complex feature up to the last decision layer.
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Figure 2.6: General ANN architecture [7], composed of one input and output layer with
many hidden layers in between.

How can ANNs produce a meaningful output?
At the beginning all ANN parameters, namely weight vectors w and bias vectors b, are
randomly initialized. With random initialization the computed output will probably be
meaningless, but through learning the ANN gets better and better by tuning weights and
biases until good enough performances are reached. Learning is the process of updating
weight and biases iteratively by minimizing or maximizing a specific cost function.
Cost function can be chosen depending on the problem that has to be solved, and affect
ANN performances greatly. In general we can separate an ANN task in two categories,
regression and classification, depending on the desired output: classification tasks expect
discrete outputs while regression tasks expects continuous ones. Once the loss function
is computed, ANN parameters are updated using gradient descend technique. If the cost
function is differentiable, one can compute partial derivatives of the cost function with
respect to all weights and biases and update them iteratively. Given a loss function L

with input xk
i and target value tki the iterative update is called backpropagation and is

computed using gradient descend formula as [41]:

wk+1
i = wk

i +∆w = wk
i + η

∂L(xk
i , t

k
i )

∂wi

(2.2)

Equation 2.2 represents backpropagation at time k with learning rate η.
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2.2.2. Convolutional Neural Networks

Although ANNs allow us to process a vast diversity of data more complex computations
requires bigger and deeper networks, this phenomenon greatly impact ANN performances
both in terms of training time and performances: for example, processing an image with
a standard ANN would require an input neuron for every pixel, causing the number of
trainable parameter to grow bigger and bigger.
CNNs cope with this problem introducing the concept of convolutional layers, trainable
filters that perform image convolution on the input image, and pooling layers.

• Convolutional layer: A convolutional layer is a stack of n trainable filters of
dimension d×k1×k2×n, where d is the depth of the input and k1×k2 is the filter
kernel size [3]. The filtering operation performed by convolutional layers project an
input (typically an image) of size d× l1× l2 onto a feature map of size n× k1× k2.
Each filter of the convolutional layer learns to extract a specific feature from the
input; intermediate states between convolutional layers are in fact called feature
maps since each processing stage extracts more and more complex features from the
previous one. The advantage of convolutional layers over dense layers is the number
of trainable parameters: convolutional layers only require n×k1×k2+n parameters
to process an input image of arbitrary dimension.

• Pooling layer: Pooling layers are used to reduce the spatial dimensionality of the
input by summarizing features extracted in previous convolutional layers using a
variety of methods. Max Pooling layers [26] for example substitute portion of non
overlapping region of the input image of size (K1×K2) with their maximum value.
Pooling layers effectively reduce the spatial dimensionality of the input without
requiring any trainable parameters.
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Figure 2.7: CNN architecture, including an encoder and a classification head. Convolu-
tions with different kernel size are stacked with pooling layers. The last convolutional
layer is then flattened and connected to a dense classification layer.

Figure 2.7 is an example of a CNN used for classification purposes. By alternating con-
volutional and pooling layers the CNN can extract more and more complex features from
the input image while at the same time reduce its spatial dimensionality. The convolu-
tional and pooling part of a CNN is called Encoder, which outputs a highly compressed
and information dense stack of images that can now be processed using standard dense
layers by applying a flattening or Global Average Pooling (GAP) operation.
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3| State of the art

This chapter contains an overview of state-of-the-art techniques for salt segmentation and
the main XAI tools used in this work.

3.1. State of the art for salt segmentation

The identification of salt basins in migrated images is a crucial step to determine the
correct velocity model to be applied at migration time.
Currently a field expert has to pick salt manually on incorrectly migrated images, as
the process has not yet been fully automated. Deep learning can be used to automate
the process of salt identification in images, consistently speeding up the process of salt
identification. Fist, let us differentiate the three different steps of salt segmentation both
with human and CNNs approach.
As stated in Chapter 2, salt segmentation is composed of two different salt picking phases,
after each of them the mask salt is provided to the migration algorithm that adjust the
velocity model of the migrated image taking into account the salt perimeter.

• Top salt body recognition: top salt perimeter is picked on wrongly migrated images.
Then, a new velocity model is built considering as salt all the pixels below the top
perimeter. Once the new velocity model is available, a new migrated image is
produced.

• Base salt body recognition: bottom salt is picked from new migrated images. Now
that the whole salt body has been identified, a last correctly migrated image is
produced using the salt velocity model only in salt bodies positions.

CNNs for salt segmentation can achieve human level accuracy in some specific situations
but greatly suffer dataset domain shifting [18], meaning that to effectively use CNNs for
salt segmentation, humans must first interpret a portion of the data set to create an ad
hoc training set for fine tuning. This preliminary salt picking process is greatly time
consuming and severely decrease the utility of CNNs for salt picking, since heavy human
intervention is still required.
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Domain shifting is already a known enemy for CNN generalization, but in the case of
Salt segmentation this problem is even more pronounced. For example, seismic images
generated with different migration techniques (or that differ greatly in noise distribution
and contrast) can lead to very different segmentation results. Figure 3.1 [37] shows salt
segmentation on images migrated with two different migration techniques.

Figure 3.1: Example of the same salt body migrated with two different migration algo-
rithms, respectively RTM (a) and KDM (b). Images (c, d) shows how the same CNN
performs on the two different images. The orange arrows on the right show portions of
the salt body that have been classified differently when using the two different migration
techniques. Arrows on the left highlight the seismic image composition: white arrows
represent the background, the yellow and the blue arrow delineate the top and bottom
perimeter of the salt body.

Note how texture in images (a) and (b) differ due to different contrast and noise dis-
tribution. To tackle the problem of domain shift a full learning pipeline called SaltNet
[37] have been proposed. SaltNet copes with the absence of unlabeled data from the new
dataset by generating proxy labels for CNN training using semisupervised learning: an
ensemble of five pretrained CNNs with different architectures is used to generate an initial
prediction on the new, unlabeled dataset. Using CNNs ensembles usually provides better
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performances than single a single CNN, in this case different architectures have been used
to provide different views on the target dataset.
Once proxy labels are available, better performing CNNs are selected and retrained on
the new augmented dataset. To add diversity during re-training the selected CNN archi-
tecture is slightly modified, to introduce novelty in the predictions and improve domain
shifting performances. The idea of self training was at first introduced by Babakhin ed
al. [4], presenting a semi-supervised training approach and winning the TSG Salt identifi-
cation challenge. The proposed self training procedure is divided into K iterative rounds
divided in tree steps:

• CNNs training: Train an ensemble of CNNs using the available labels. During the
first round only ground truth labels will be available.

• Pseudo-label prediction: Predict a set of pseudo-labels using previously trained
CNNs in an ensemble fashion by averaging. A confidence level is computed for each
pseudo-label in order to discard those that are too unreliable.

• Dataset extension: Extend the previous labeled dataset with the new pseudolabels.



18 3| State of the art

Figure 3.2: Self training pipeline for salt segmentation CNN. [4] Every round is made of
two steps: first the model is trained on the labelled part of the dataset, then the trained
CNN predicts new data generating pseudo labels.

On the architectural side, Sen et al. [37] performs an extensive test of multiple architec-
ture during ensemble predictions. The best resulting CNN architecture comes up to be
ResNet34 [19], the same architectural choice was made by Babakhin ed al. [4], that used
U-ResNet34 and U-ResNet50 to perform self-training.

3.2. XAI state of the art

The reason why Deep learning is so widely used is that it does not require direct coding
of hand-crafted features. Trained algorithms are therefore often considered "black boxes"
since developers do not need to explicitly code the the solution of a problem but just need
to take care of the training procedure. This black box approach is for sure convenient
since it enables flexible solutions for complex problems but makes it hard to interpret and
understand why and how CNNs work. The field of XAI studies methods and techniques
to shed some light on those black boxes, making them more reasonable and interpretable
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to human eyes.
XAI comprehends various kind of techniques, each of one providing a human friendly
way to visualize how CNNs learns. It can be used in CNNs to understand how layers
and features are linked: network visualization is the XAI process of translating internal
CNN features into human understandable images. The further an input image is digested
through a CNN, the more complex the extracted features will be. The convolutional part
of a CNN extracts low level features (like edges and colours) in shallow layers and high
level features (objects, motions) in deep layers, as shown in Figure 3.3.

Figure 3.3: Hierarchical feature representation of a CNN. Images on the left show example
of features extracted by progressively deeper layers. [31]

Multiple methods are available to inspect CNNs working principles, but reviewing all of
them is beyond the scope of this section. We rather focus on a significant example to
showcase XAI capabilities. We leave a deeper description of the techniques we will use in
our analysis to Chapter 5.

CAM and Grad-CAM
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Class Activation Mapping (CAM) [44] was the first XAI technique to introduce the concept
of saliency maps: a saliency map is a heat map built over the original image that highlight
what part of the image contributed most to the final prediction. CAM algorithm uses
the property of the GAP layer to address which feature map influences the most the final
decision.
The GAP layer projects every channel of the CNN latent representation onto a dense
layer by performing an average on each channel. If a dense layer is built over the GAP
layer, the resulting value of the output neurons will be a weighted average of all the GAP
layer neurons: each weight states in some way the importance of a specific feature map
on the final prediction. The class score for every output neuron is in fact computed as:

Sk =
∑
k

wk

∑
x,y

fk(x, y), (3.1)

where wk is the weight associated to the kth GAP layer neuron, and fk(x, y) is the kth

feature map of the latent representation. The saliency map is obtained by simply weighing
the feature maps fk(x, y) with their weight value wk as

C(x, y) =
∑
k

wkfk(x, y) (3.2)

The weighted sum obtained, a linear combination of all feature maps, is then upsampled
to match the input image shape. Figure 3.4 shows an example of saliency map obtained
using CAM algorithm.

CAM present one big limitation: the target CNN architecture must have a GAP layer
between the last dense layer and the latent representation. Grad-CAM overcomes this
problem by generalizing CAM to any kind of network architecture. A weight is computed
by applying GAP to the gradient of each feature map with respect to the target class
score. In this way one can assign a weights for each feature map, and by upsampling and
averaging them together the saliency map is computed.
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Figure 3.4: Example of how CAM works [44]: every feature map generate a saliency map,
combining them together by weighting provides the Class Activation Map of the input
image.
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4| Salt Segmentation

In this chapter we tackle all the theoretical work addressed for salt segmentation purposes.
The segmentation task is the result of the ensemble of many operations both regarding
training and dataset manipulation. In this section, we first introduce the the problem
of salt segmentation, specifying why it is a challenging one. Then we will go through
all details regarding different steps that have been followed to reach our solution. The
last part of the chapter contains an overview on the proposed loss functions, including a
mathematical intuition for each of them.

4.1. Problem Formulation

Salt recognition task can be considered a binary segmentation problem: performing binary
segmentation on an image means assigning a binary label to each pixel depending on his
content. In the case of salt segmentation, we can define our two labels as background and
salt. To be more specific, given two labels (S,B) representing class salt and background,
performing segmentation on in image I means assigning to each of his pixel I(x, y) one of
the two labels producing a binary mask M with the same dimension of I. Formally, we
can define the mask as

M(x, y) = f(I(x, y)) ,∀(x, y) ∈ I (4.1)

f(x, y) =

0, if I(x, y) ∈ B

1, if px,y ∈ S
(4.2)

where the function f(x, y) associate a pixel to the corresponding label.

Segmentation task can be performed by training a CNN to produce a mask M using a
labelled dataset. A segmentation dataset associates each sample image with a binary
ground truth mask; in the case of salt segmentation, the sample image is a seismic image
obtained with migration techniques as in Chapter 2 and the ground truth mask is a {0, 1}
mask that states the real position of salt domes in the target image.
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Figure 4.1: The 3D volume needs to be sliced in order to be used. Example of a 2D slice
of SEAM dataset.

Figure 4.2: Corresponding mask of the 2D slice reported in Figure 4.1.

The produced CNN should be able, given an input image I, to produce a mask M as close
as possible to the ground truth mask.
The dataset used for segmentation is called SEAM dataset, it is the result of a huge 3D
migration of seismic images. Since CNNs can perform segmentation on 2D images the
original dataset cannot be used as a whole 3D volume, for this reason training and testing
operation are performed on 2D slices along the width dimension. Figures 4.1 and 4.2 show
an example of 2D image and mask sliced from the original 3D volume.
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4.2. Proposed Salt Segmentation Method

Our proposed method to effectively perform salt segmentation is made of different steps
linked together, each taking care of a different aspect of data preprocessing, training, and
evaluation. First, the 3D dataset is sliced in multiple 2D images and masks, some used
for training and validation, and others for testing. The produced 2D images undergo a
preprocessing step that comprise patch extraction and normalization. After preprocessing
the training and validation step is performed, which provides a trained CNN ready for
testing. At test time, the trained CNN is fed with testing patches and is required to
produce a binary mask for each of them: once all masks have been computed, those
are stitched together forming a complete 2D mask. The last step is metric evaluation,
the process of comparing ground truth masks and CNN produced masks to compute
performance scores for the tested CNN.
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Figure 4.3: Segmentation process pipeline. Blocks coloured in blue are the core part of
the segmentation process.

Figure 4.3 shows the complete segmentation pipeline, follows the detailed description of
each block:

• Dataset Loading & Holdout: This is the very first phase of dataset preprocessing.
The 3D volume is loaded into the memory as a whole and then split into several 2D
slices. Follows the holdout process, which group 2D images into three categories for
training, validation, and testing steps.

• Patches generation: Training, validation, and test images undergo patch extrac-
tion, along with training and validation ground truth masks. Patching is necessary
for both memory performance (using whole 2D images would require too much
RAM) and to reduce CNNs input spatial dimensionality.
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• Input preprocessing: Input preprocessing is crucial to achieve good performances
at training time. Preprocessing step include normalization and augmentations, all
details about this step are reported in Section 4.2.1.

• Training & Validation: Training operations are performed, alternating training
and validation steps multiple times. All operations related to this phase (such as
training performance metrics, Learning rate (LR) and loss values) are logged for
future inspection.

• Testing: During testing the CNN is asked to evaluate multiple unseen image
patches and produce a binary mask for each of them. At testing time, only im-
age patches are provided to trained CNN, avoiding masks that will be used for
metric evaluation.

• Volume reconstruction: Once all mask patches are available, it is time to put
them back together forming 2D images. Note that only the testing and validation
masks have been split into patches. The produced 2D masks are then paired with
the corresponding images an stacked together forming a 3D volume.

• Metric Evaluation: To compute CNN performances the previously predicted
masks are compared with ground truth masks from the testing set, producing sev-
eral scores (see Section 6.2). Scores are divided into 3 categories: 3D scores are
computed considering masks as 3D volumes, Inline scores are computed considering
masks as 2D images, Mean scores are computed by averaging all the obtained Inline
scores scores together.

4.2.1. Input Pre-Processing

Input pre-processing is the first step for CNN training. The main objective of training
CNNs is to teach them how to generalize the training dataset to be used in other contexts:
input preprocessing helps to achieve this objective by standardizing the input distribution
to fixed values.
The first step of input preprocessing is patch extraction, 2D images are in fact too big to
be used directly for training for mainly one reason: too big images require huge memory
space, since images are loaded in batches. To overcome this problem, a tunable patch
extraction has been implemented; in this way one can decide how big a patch should
be and how close patches overlap (namely patch shape and stride). The last thing that
needs to be taken care of is the padding: extracting patches at the border of the image can
lead to border trespassing. To cope with this problem, the exceeding parts of the image
have been filled with the mean value of the valid part, leading to a full-shaped patch
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(Figures 4.4 and 4.5 show an example of an extracted patch with the relative ground
truth mask). The second part of the pre-processing is the z-score normalization step.
Z-score normalization improves CNNs learning capabilities by standardizing the input to
fixed range values: given an image patch I with mean value E[I] and standard deviation
σI , the whitened version of I is given by:

Iw =
I − E[I]

σI

(4.3)

The result of the normalization step is an image with mean value equal to zero and
standard deviation equal to one. Since this process is applied to all patches separately,
every patch will be processed with his own mean and standard deviation.

4.2.2. Segmentation CNN

The proposed segmentation CNN has the role of performing segmentation, that is provide
an output mask given an input seismic patch. The output mask is a 0, 1 image that
associate salt pixels with label 1 and background pixels with label 0.

Figure 4.4: Example of extracted patch for
CNN training

Figure 4.5: Ground truth mask of the image
patch on the left.
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The input patch, after being whitened, is fed to the CNN input layer and processed
through an encoder and decoder. The chosen network backbone is Unet [34].

Figure 4.6: Unet network architecture, characterized by its typical "U" shape.

Unet architecture is widely known to be very effective for segmentation tasks. Unet archi-
tecture is made on an encoder and decoder part: the encoder contracts the input image,
reducing its dimensionality to a small latent representation, while the decoder upsamples
the compressed data to match the input image dimension, generating a mask. At the end
of the decoder a sigmoid function can be present or not depending on what output values
are needed. The sigmoid function squeezes all values to the range [0, 1], without using it
the output mask will be made of raw logits.
The contracting path (encoder) follows the standard architecture of any desired CNN,
stacking convolutional layers, ReLu functions and pooling layers. The expanding path
(decoder) performs up-convolutions to halve the number of feature channels at each step,
concatenating also the corresponding feature map of the encoder part of the network.
The concatenation between encoder and decoder at every step is the key to Unet perfor-
mances. By using the same CNN architecture in both encoder and decoder each feature
map have the same number of channels and image dimensionality in both paths. This
enables horizontal feature map concatenation granting a huge gain in performances, the
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concatenation in fact propagate fine details of the input image to the decoder, granting
the output mask a detail level precision.

On the encoder and decoder architectural side, the selected model is ResNet34 [19]. Rea-
sons that led to this decision are mainly two: ResNet34 has already been shown to be
optimal for salt segmentation problems in the literature [4][37], also the same CNN ar-
chitecture has been selected by our reference baseline, ensuring a faithful comparison of
results.

Figure 4.7: ResNet34 encoder architecture. For simplicity skip connection have been
added only on the first block. Coloured layers at the end of each blocks are concatenated
to create the final latent representation. The first green coloured block is the "merger".
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Figure 4.7 shows the ResNet34 encoder architecture. ResNet34 is made of four convolu-
tional blocks connected together, at the end of each block the number of channels doubles
and a pooling layer halves the image dimensionality. In order to use ResNet34 with mono-
channel images like ours, two options are available: replicate three times the input image
to fit the three channels of ResNet architecture or add a learnable convolutional layer
that expands dimensions of the input image form one to three. We decided to follow the
second option by adding a convolutional layer called "merger" made of three 1x1 convolu-
tions. The main point of strength of ResNet34 are skip connections, that connect directly
previous convolutional layer to prevent vanishing gradient during training (for clarity pur-
poses in Figure 4.7 skip connections were added only on the first block). Thanks to skip
connections ResNet architecture can be extended by concatenating blocks to form CNNs
with arbitrary depth.
Every block of ResNet architecture outputs a stack of channels with different dimension-
ality: shallow blocks produces images with less channels and bigger image size (e.g. block
1 produces 64 images of dimension 256× 256) while deep blocks outputs smaller images
with many channels (e.g. block 4 produces 512 images of dimension 32× 32 ). The final
latent representation, gray in Figure 4.7, is formed by concatenating the final output of
all four blocks, encapsulating information in four different processing stages.
The chosen decoder architecture is still ResNet34, following Unet principle, stacking up-
sampling and transposed convolution layers instead of pooling and convolutional layers.

4.2.3. Selected loss functions

The main focus of the proposed study on salt segmentation is loss testing. Many different
losses are available for segmentation tasks, each of one leads the optimization process
to a different minimum. Now follows an overview of chosen loss functions, with their
mathematical definition and a brief intuition on how they works. When is possible a
pixel-wise graph of the loss function is reported, plotting loss function values for a single
pixel input y when the ground truth ŷ is fixed to 1.

Binary Crossentropy (BCE) Loss Cross entropy loss is a widely known loss used
mainly for classification purposes. Given two probability distributions (y, ŷ) and sup-
posing that y is an approximation of ŷ, the cross-entropy is the additional information
needed to represent an event drawn from the distribution ŷ using the distribution y. For
the binary case, cross-entropy is defined as [42]:
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BCE(y, ŷ) = −(ylog(ŷ) + (1− y)log(1− ŷ)) (4.4)

Where y, ŷ ∈ 0, 1. If the two distributions are identical no excessive information is needed
to encode an event coming from one distribution using the other, hence their cross-entropy
is zero.

Figure 4.8: BCE loss function values for ground truth equal to 1.

Figure 4.4 shows the trend of BCE loss for a single pixel when the ground truth value is
set to 1.

Contour Loss Contour loss offers a fresh point of view of image segmentation. In image
segmentation the most important and difficult pixels to identify are boundaries: for salt
segmentation, the main goal of the segmentation process is to find the perimeter of the
salt domes. Contour loss gives greater importance to border pixels during training by
weighting. Contour loss is defined as [9]:

C(y, ŷ) = −My(ylog(ŷ) + (1− y)log(1− ŷ)) (4.5)

Contour loss is the weighted version of BCE loss (BCE loss equation 4.4) using a weighting
parameter My). My is obtained as the difference of an erosion (y, S)+ and a dilation (y, S)+
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operation on the predicted mask y using a structuring element S:

My = K((y, S)+ − (y, S)−) + 1 (4.6)

Equation 4.6 states that all pixels that are not set to zero by the previously defined
morphological operations will be weighted by a value K, all the others will be weighted
as 1 (with K > 1).
A "single pixel" loss graph is not available for contour loss since to be applied it requires
complex masks with boundaries.

Dice Loss Dice loss originates from Sørensen–Dice coefficient[8], a score used to com-
pute the similarity between two samples. Dice score is computed as:

D =
2
∑

yiŷ∑
y2i +

∑
ŷ2i

(4.7)

yi and ŷi represent a prediction and ground truth pixel that can assume values of 0, 1.
The denominator represent the set of all pixels, while the numerator is the sum of the
correctly predicted ones. Dice coefficient (DIC) score can reach a maximum value of 1
when the two sets overlap, and can be used as a minimization function by simply setting
the loss function as 1−D.

Figure 4.9: Dice loss function values for ground truth equal to 1.

Figure 4.9 shows the trend of DIC loss function for different input values. The graph has
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been obtained in on pixel keeping the ground truth value equal to 1 and iterating the
prediction pixel over the range [0, 1]. Coherently with what just said, the loss function
value 1−D is equal to one when the prediction and the ground truth matches.

Focal Loss Focal loss has been created to solve the problem of class imbalance in
segmentation datasets: in binary segmentation problems usually the background class
represents the vast majority of pixels; one other remark that must be made in binary
classification is that the difficulty of classifying a background pixel is not the same for
all pixels; in fact, some background pixels (usually those that are close to the object of
interest) are harder to classify and should weight more on gradient calculation. Focal loss
is defined as [22]:

F (y, ŷ) = −(yγlog(ŷ) + (1− y)γlog(1− ŷ)) (4.8)

Focal loss uses a gamma factor γ to further increase the probability distribution weights
of BCE loss. For γ = 1 Focal loss coincides with BCE loss, for γ = 0 focal loss can be
considered a non-weighted version of BCE loss.

Figure 4.10: Focal loss function values for ground truth equal to 1 and γ = 2.

Figure 4.10 shows the trend of focal loss function for increasing values of y when ŷ = 1.
Lin et al.[22] performed an extensive test on different values of γ, finding the best results
for γ = 2 .



4| Salt Segmentation 35

Hausdorff Loss Hausdorff loss is yet another geometric loss function, based on the
concept of Hausdorff distance. Hausdorff distance is not "commutative", given two sets
Y, Ŷ , the Hausdorff distance from Y to Ŷ is defined as [20]:

hd(Y, Ŷ ) = max
y∈Y

min
ŷ∈Ŷ
||y − ŷ|| (4.9)

The bidirectional version of Hausdorff distance is defined as:

HD(Y, Ŷ ) = max(hd(Y, Ŷ ), hd(Ŷ , Y )) (4.10)

Hausdorff loss aims to minimize the bidirectional Hausdorff distance between two distri-
butions to achieve optimality. A possible problem with Hausdorff distance is that it does
not aim to minimize the pixel-wise distance of the whole image but only looks at the
maximum values.
For this reason Hausdorff optimized CNNs might have overall great performances on the
whole image except for few isolated locations, where segmentation error is high.

Figure 4.11: Hausdorff distance based loss function values for ground truth equal to 1.
Hausdorff loss is defined over the whole real axis.

Figure 4.11 shows the trend of Hausdorff distance loss function for different prediction
values. Note that Hausdorff distance is not only defined in the interval [0, 1] but spans
over the whole real axis. For this reason one can either use Hausdorff loss function with
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both probability input (y ∈ (0, 1)) or logits (y ∈ (− inf,+ inf)).

Jaccard Loss Jaccard loss function [13] is a geometric based loss function, hence assume
his value depending on the Jaccard distance between to sets. For discrete sets Jaccard
distance coincide with Intersection over Union (IoU) (check equation 6.2), if the two
sets are identical their Jaccard distance is equal to zero. For continuous sets (prediction
y ∈ [0, 1], ground truth ŷ = {0, 1}) Jaccard loss is defined as:

Jd(y, ŷ) = 1− y · ŷ + ϵ

(y + ŷ − y · ŷ) + ϵ
(4.11)

The numerator part of Jaccard loss computes the intersection between the two sets, while
the denominator computes the union as cardinally−intersection. The ϵ therm is tunable,
his main role is to avoid getting infinite values when the two sets y, ŷ are empty.

Figure 4.12: Jaccard loss function values for ground truth equal to 1.

Jaccard loss function is defined for only probability input values, Figure 4.12 shows the
trend of Jaccard loss value for a single pixel value.

Kullback-Leibler (KL) - divergence Loss Given two probability distributions (p(y), p(ŷ))
their KL - divergence is defined as [38]:

KL(Y, Ŷ ) =
∑
y,ŷ

p(ŷ) · logp(ŷ)
p(y)

(4.12)
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Intuitively, KL divergence can be considered as a "distance" between the two distribu-
tions: it measures how similar the distributions p(y), p(ŷ) are in therms of bits needed to
encode one when the other is given. When the two random variables (RVs) are identically
distributed, their KL divergence is equal to zero.
An important remark to make is how KL divergence and Mutual information (MI) are
related. Mutual information is defined as the KL divergence between the joint and the
product of two distributions:

MI(Y, Ŷ ) = KL(p(y, ŷ), p(y)p(ŷ)) =
∑
y,ŷ

p(y, ŷ) · log p(y, ŷ)

p(y)p(y, ŷ)
(4.13)

MI measures reduction of uncertainty of one RV once we know the other, the minimum
value of MI (zero) is obtained when two RVs are independent, hence knowing one does
not give any information about the other [11]. When two RVs are independent their joint
and product distributions coincide, which means that their KL is zero, since there is no
"distance" between the two distributions:

p(y, ŷ) ∼ p(y)p(y, ŷ) =⇒ KL(p(y, ŷ), p(y)p(ŷ)) = MI(Y, Ŷ ) = 0 (4.14)

For this reason, KL divergence can be seen as a sort of "inverse" of mutual information:
if two RVs are independent then their KL divergence is high (the "distance" between two
probability distributions is big) while their MI is zero (since 4.14 holds). On the other
hand, if the two RVs have the same distribution their KL divergence will be zero (no
distance between the two RVs distributions) while their MI will be maximum (knowing
one RV gives us full information about the other).
Plotting the pixel-wise loss function of KL - divergence, as we have done with previous
losses, will output only values equal to zero:
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Figure 4.13: Pixel wise KL - divergence loss function values for ground truth equal to
1. Since the two pixels represent the same distribution their KL - divergence is zero for
every input value.

KL - divergence loss does not take into account single pixel values but looks at the entire
pixel image distribution. If the two images are made by one pixel each they will for sure
have the same distribution, meaning that KL - divergence loss will output zero for all
values of y.

Lovasz Loss Lovasz loss have been created to optimize the already present Jaccard
loss to increase performances and speed up training [6]. As we said in Jaccard paragraph,
Jaccard loss is basically a continuous version of IoU score, used as a loss function in CNNs.
Lovasz loss exploits Jaccard loss submodularity property to optimize a surrogate version
of it, making the new loss function (the Lovasz loss) convex with polynomial convergence
time.

Mean square error (MSE) Loss MSE loss (also called L2 loss) is simply defined as
the Mean Squared Error between ground truth and predicted pixels. Given two images
Y, Ŷ the MSE loss between the two is defined as:

MSE(Y, Ŷ ) =
1

n

∑
i,j

(Y 2
i,j − Ŷ 2

i,j) (4.15)

MSE loss is fairly intuitive and widely used in many applications for regression problems.
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An example of MSE loss function trend for probability input y is reported in Figure 4.14:

Figure 4.14: MSE loss function values for ground truth equal to 1.

Wing Loss Wing loss has been created to overcome some optimization problem related
to the standard L1 and L2 losses. Wing loss is defined as [16]:

Wing(y, ŷ) =

ωln(1 + |y−ŷ
ϵ
|), if |y − ŷ| < ω

|y − ŷ| − C, if |y − ŷ| ≥ ω
(4.16)

Where ω is a set of points (−ω, ω) where we want our function to behave logarithmically
and C is a constant factor used to smooth the connection between the linear and nonlinear
parts. With respect to standard L1 and L2 loss, wing loss function can assume two
different behaviour depending on the error magnitude |y−ŷ|: if the error is small |y−ŷ| < ϵ

the wing loss behaves like a logarithm (with a gradient equal to 1
|y−ŷ|) outputting large

gradient values for lower errors. For larger errors, on the other hand, the gradient is
constant. This adaptive behavior increases the weight of small errors on the gradient: L1
and L2 losses work well with large errors, but struggle to fine-tune for smaller ones; Wing
loss can enforce decent gradient magnitude in both cases.
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Figure 4.15: Wing loss function values for ground truth equal to 1.

Figure 4.15 clearly shows the different wing loss behaviour for small and large error values.
In the reported graph ω assumes a value of 2: note how for larger error values wing loss
switches behaviour, shifting from a logarithmic-like function to a linear function.
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5| CNN Interpretation

XAI comprehend a set of techniques that can be used to shed a light into the black box of
a CNN. Every technique has its pros and cons, and the results it produces can sometimes
be misleading (or hard to interpret) for the human eye. This chapter dives into the details
of two different techniques, AM and NI: each one has a different scope and tries to inspect
how a CNN works under a different perspectives.

5.1. Activation Maximization

Activation maximization technique is based on a very simple yet powerful idea: to under-
stand the meaning of a specific neuron of a CNN, look for the input image that maximizes
the activation of that neuron; the resulting image could be a good representation of what
that neuron is doing. Since CNN are differentiable with respect to their input, it is
possible to find a target input image by tuning it iteratively [14].

Given a neuron hij of a neural network with parameters θ, the input image x we are
looking for will be[14]:

argmax
x

hij(θ, x) (5.1)

Figure 5.1: Figure shows how the AM target image is formed. At step zero the generated
image is random noise, by progressing in the optimization procedure clearer images are
formed.
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To perform the optimization, perform a training operation on the input image. Choose a
number of epochs and then iterate.

• Initialize an image x0 as random noise for all pixel values

• Compute the gradient on the input image using backpropagation as

∂hij

∂x
(5.2)

• Update each pixel of the image to maximize neuron activation by moving on the
previously computed gradient: the update iteration is known as gradient ascent of
step η for each step k

xk ← xk−1 + η
∂hij

∂xk−1

(5.3)

Iterate this process for all the previously defined epochs. Figure 5.1 shows how, by
performing more and more optimization iterations, a synthetic image evolves form pure
noise to a clear image.
A shortcoming of the standard AM method is that in this way it is possible to inspect
only one neuron at the time.
Looking at only one neuron activation might be enough when inspecting a specific class
neuron, but will not be able to capture how intermediate layers work. CNNs layers are
made by a large number of neurons that interact with each other in a complex manner:
it is impossible to inspect how an entire layer activates by looking at each of his neuron
because they usually are way too much.
A solution could be tweaking our objective function to maximize an entire layer or channel
of the CNN, instead of a neuron only. To inspect how a classification network interprets a
specific class, one can set as objective function the specific output neuron that represents
the class of interest and apply AM to that neuron. To do that, the neuron value can be
taken before or after the softmax.
It has been proved that [39] that optimizing post-softmax probabilities rather than logits
might lead to worse results: this happens because the optimization, instead of maximizing
the output probability for that specific class, finds easier to push down the probability of
all other classes.

Transformation Robustness
The optimization process of AM, even if it looks easy in theory, can be quite hard.
The objective function to be optimized has many local minimum, some shallower than
others. Without introducing any constrictions or parametrizations, the optimal input
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image that activates a neuron might be covered with random noise.
This happens because, for some still not sure reasons [28], the target neuron strongly
respond to this high-frequency patterns that covers the image. To cope with this problem,
the first thing that comes to mind could be introducing a penalization over high frequencies
during the optimization process.
This method surely reduce the noise that affect the image, but might also dump high
frequencies that might be valid and useful information for the optimization process. By
adding some sort of regularization, the objective function to be optimized becomes:

argmax
x

(hij(θ, x)− λ(x)), (5.4)

where λ(x) is the regularization therm.
A number of different λ() functions have been proposed in literature, with their pros and
cons. Some examples are l2 decay [39] and gaussian blur [43].

Regularized Activation Maximization
Transformation robustness substantially increases the quality of target images without
penalizing high frequencies components [29].
The intuition behind transformation robustness is that, since the CNN is usually trained
to identify targets at different scales and positions, if an image maximizes activation of
a neuron also a slightly transformed version of it does. This statement usually does
not hold for the high frequency noise that might affect the image, that is not robust
to transformations: by adding transformations to the noisy image, the new transformed
noise will not activate the neuron anymore but will probably do the opposite.

In Figure 5.2 the first row has been obtained by performing optimization with no trans-
formation robustness. Note how high frequency noise dominates the image.
The second row shows images obtained by imposing jitter and scale transformation ro-
bustness on the target image.

5.2. Network Inversion

NI shares some similarities with AM method, the objective though is totally different. AM
mainly focus on a specific neuron or channel, sometimes lacking a general prospective.
Even though AM can be very effective on logits class neurons, it is not that useful when
looking at internal convolutional layers, made of hundreds of channels stacked together. NI
can be used to effectively inspect a layer as a whole, both convolutional or fully connected
[24].
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Figure 5.2: Images generated without imposing transformation robustness (top) com-
pared with same images generated imposing transformation robustness. Note how high
frequency noise disappear when transformations are introduced.

To do so a sample image x is fed to the CNN, and his representation is computed up to
the layer A to be inspected obtaining the so called "feature map" A(x). The algorithm
goal is to find an input image x∗ whose feature maps A(x∗) is close to A(x), adding also
a regularization therm such that x∗ resembles in some ways the dataset sample x.
The optimal image x∗ is obtained iteratively by optimizing an input image x such that
[14, 39]:

x∗ = argmin
x

(||A(x)− A(x∗)||2 − λ(x)) (5.5)

The find x∗ again perform a training operation over a starting image x0:

• Initialize the input image x0 as noise.

• Compute the feature maps A(x0) and A(x) of respectively the image to be optimized
and the target image.

• Compute the gradient L(A(x0),A(x))
∂x

and update x0 by gradient descend.

The algorithm tweak iteratively the input noise x0 until the minimum distance between
feature maps A(x0) and A(x) is reached.
The main goal of NI is to find out what part of input image information is lost and what
is kept at a specific network layer. CNNs learn to generalize by encoding an input image,
transforming it and removing useless details the more the image is processed: first layers
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elaborate the input and extract low level features, deeper layers combine already processed
inputs together to extract features of higher level. With NI is possible to inspect CNN
layers one by one, and find out what features are preserved and what have been discarded
the more we go deep into the network; the similarity with the input image is imposed by
the regularization therm λ(x).
As shown in the Figure 5.3, the input image gets more and more processed the deeper we

Figure 5.3: Reconstruction of an image using NI. From left to right, NI is computed on
deeper layers. Shallow layer representations retain several details of the natural input
image, last convolutional and dense layers are much harder to interpret.

inspect into the network. NI applied on the first convolutional layers result in very similar
images with respect to the original; deeper layers tends to discard fine details of the input
image, leaving only generic, high-level generic features. In the last fully connected layer
the synthesized image is almost impossible to associate with the input image, representing
only a generic idea of a baboon. One last aspect to consider network invariance: CNNs are
usually trained to be robust with respect to rotations, translations, scales and many more
transformations. Network invariance is visible in NI generated images, in deeper layers
synthesized images might present replicas of the input with different scales or rotations
at different positions.
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6| Results

This chapter reports all the details of the experimental validation we carried out. First,
we describe the used datasets. Then, we explain how the selected evaluation metrics
work. It follows the the experimental setup used to validate the proposed segmentation
solution as well as the used XAI techniques. Finally, we report numerical results and
visual examples.

6.1. Datasets

In this thesis two datasets have been used in total. One, the SEAM dataset [15], has
first been used to train CNNs for segmentation purposes. SEAM dataset has then been
processed to perform classification on segmentation networks for the purpose of CNN
explainability.
The second dataset used is called LANDMASS [2], a classification dataset that contains
images belonging to four different types of seismic artifacts.

SEAM Dataset
The first dataset we describe is the used segmentation dataset called SEAM [15].
A peculiarity of this dataset is that it is not flooded; this means that the velocity model
used to obtain all dataset samples does not take into account salt bodies.
For this reason only the top part of salt bodies will be easy to visualize. This happens
because the velocity model is correct up to the beginning of salt blocks, so clearly revealing
the discontinuity between standard reflectors and salt.
The bottom perimeter of the salt will be much harder to exploit: since the velocity model
is incorrect from the top of the salt down to the end of the image, all the information that
comes to us is somewhat distorted.
This dataset is made of two parts: migrated images and associated masks. Migrated
images and masks are organized in huge 3D volumes of 1751 Inlines (ILs), 2001 Xlines,
751 Depth. The IL direction is usually parallel to the direction of the data acquisition
process. The crossline is perpendicular to the IL direction. Depth (or time) in the end is
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the axis that goes downward into the ground. To obtain 2D images from the 3D volume,
the dataset has been processed as IL "slices". The first thing to do is to separate the
dataset in training, validation and testing set along the IL direction.
The first 735 ILs have been used for training and validation, the rest are for testing. To

Figure 6.1: Th above figure shows how the 3D block of SEAM dataset has been divided
for training, validation and test set along the IL axis

be fair in the separation of training and validation, the validation set has been obtained
by picking ILs fairly at the beginning, middle and end of the first 735 ILs as shown in
Figure 6.1. Slicing the SEAM dataset along ILs results in the creation of multiple images
with a dimension of 2001× 751, clearly too much to be fed in a segmentation CNN. For
this reason, smaller patches have been extracted from ILs, used for training, validation,
and testing. For details, see Section 6.3.

LANDMASS Dataset
LANDMASS (LArge North-Sea Dataset of Migrated Aggregated Seismic Structures)
dataset [2] is a classification dataset made of 4000 images of size 150 × 300 with val-
ues in the range range [0, 1].
This dataset contains 4 classes, each one of 1000 images, labelled as follows:

• Reflectors: Smooth horizontal formations (Example in Figure 6.2a).

• Chaotic Horizons: Horizons with noisy, chaotic-like appearance. All the artifacts
that the interpreter could not classify with confidence belong here. For this reason,
chaotic class might be the harder to classify since all sorts of different horizons
belong to this class. An example of class Chaotic is reported in Figure 6.2b
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• Faults: Images with one or more faults in them. As shown in figure 6.2c Faults have
the shape of vertical lines, they can hard to pick up for non expert eyes.

• Salt Domes: Images that include parts of salt domes in them. Since the dataset is
flooded, the salt shape should be much more easy to recognize compared to SEAM
dataset (example in Figure 6.2d).

(a) Reflector class example (b) Chaotic class example

(c) Fault class example (d) Salt class example

Figure 6.2: Example of the four classes of LANDMASS dataset

6.2. Metrics

CNN salt recognition is a segmentation problem made of two classes: salt domes and
background.
An ideal way to evaluate the performances of a model would be to consult an expert
who can tell us which is, among all trained CNNs, the best network for salt segmentation
purposes. Obviously this is infeasible due to both the large amount of data to be examined
and the large amount of CNNs that have been trained.
Metrics can greatly help coping with this problem: even if none of them is perfect, each
one can provide a different prospective on how effective the trained CNN is at performing
segmentation. All the proposed metrics refer to a binary classification mask detection,
where the two classes are divided in salt (class 1) and background (class 0). The available
data is obviously made of two sets: the ground truth Sg and the CNN prediction Sp.
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Lastly, some few metrics for classification problems will be reported: they have been used
to train classification networks for the purpose of CNN inspection.

6.2.1. Confusion metrics

This paragraph will go through basic metrics that will than be used to compute more
complex ones in next sections.
The four building blocks are:

• TP - True positives : Salt pixels in Sp correctly identified by the CNN

• TN - True negatives : Background pixels in Sp correctly identified by the CNN

• FP - False positives : Background pixels in Sg that have been classified as salt in Sp

• FN - False positives : Salt pixels in Sg that have been classified as background in
Sp

6.2.2. Segmentation metrics

Segmentation metrics are many, each one tries to explain performances of our trained
CNN in a different way. They take as input Sg and Sp and compute a score through
confusion metrics.

DIC DIC[12] is an index that reveals how much two sets overlaps. it can range from 0

(no overlapping) to 1 (complete overlapping). It is computed as:

DIC =
2TP

2TP + FP + FN
=

2
∣∣S1

g ∩ S1
p

∣∣∣∣S1
g

∣∣+ ∣∣S1
p

∣∣ (6.1)

In fact, the second equality of the above equation computes how much intersection between
Sg and Sp of class 1 is present in their sum.

Jaccard index (JAC) The Jaccard index [21] computes IoU on the two sets.

JAC =
TP

TP + FP + FN
=

∣∣S1
g ∩ S1

p

∣∣∣∣S1
g ∪ S1

p

∣∣ (6.2)

JAC and DIC fundamentally computes the same quantity, in fact they are related through
the following formula:

JAC =
DIC

2−DIC
(6.3)
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Hence DIC, JAC and IoU are strongly related to each other.

True positive rate (TPR) and True negative rate (TNR) TPR is also called
Sensitivity or Recall and computes what portion of positive samples in the ground truth
has been identified as same during prediction. It is computed as:

TPR =
TP

TP + FN
(6.4)

TNR on the other hand measures the same aspect but on the negative class. It is also
called Specificity, and is computed as:

TNR =
TN

TN + FP
(6.5)

Global Consistency error (GCE) GCE [25] considers one of the two segmentations
as a refinement of the other. To reach a high GCE score, the two segmentation masks do
not need to coincide: for each pixel p extract two subsets of both masks R(Sg,p), R(Sp, p)

whose elements belong to a neighborhood of p. If a set is a proper subset of the other
then one set can be seen as a refinement of the other, granting GCE equal to zero. On
the other hand, if the two set overlapping is inconsistent GCE will be close to one. This
process has to be repeated for each pixel p, taking a final average[40]:

GCE =
1

n
min(

n∑
i

E(Sg, Sp, p),
n∑
i

E(Sp, Sg, p)) (6.6)

Where E(Sg, Sp, p) is the error computed considering R(Sg, p) as a subset of R(Sp, p).
This value is different from E(Sp, Sg, p) where instead the subset relationship between the
two subsets is inverted. E(Sg, Sp, p) is computed as:

E(Sp, Sg, p) =
|R(Sg, p)/R(Sp, p)|
|R(Sg, p)|

(6.7)

Volumetric similarity (VS) VS Computes how similar two volumes of segmentations
are. Is defined as 1−V D were V D measures the volumetric distances between masks[32].
VS can be computed as:

V S = 1− V D = 1− |FN − FP |
2TP + FP + FN

(6.8)
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Perimetric similarity (PS) PS is simply defined as VS computed only on the perime-
ter of salt bodies.

MI MI measures how much information of one mask is retained in the other [5]. MI
is measured in terms of Entropy E(S), an estimate on how "unexpected" mask pixel
values are, and joint mutual information H(Sp, Sg) that measures how much one mask is
predictable knowing the other. In equations:

H(S) = −
∑
i

p(Si)log[p(Si)] (6.9)

H(Sg, Sp) = −
∑
i

p(Si
t , S

i
p)log[p(S

i
t , S

i
p)] (6.10)

I(Sg, Sp) = H(Sg) +H(Sp)−H(Sg, Sp) (6.11)

Where p(Si) and p(Si
t , S

i
p) can be computed in therms of confusion metrics. I(Sg, Sp) is

an estimate of how much uncertainty is lost over Sg if Sp known and vice versa.

Area under Curve (AUC) AUC means Area Under the ROC Curve. The ROC curve
is usually defined in classification as the curve plot of TPR vs. TNR once a threshold is
set. In case of Segmentation, is defined as [30]:

AUC = 1− 1

2

(
FP

FP + TN
+

FN

FN + TP

)
(6.12)

6.2.3. Classification metrics

Classification metrics still use the same confusion metrics defined above, with the differ-
ence that they are now computed on binary labels instead of pixels [23].

Precision In binary classification tasks, the Precision metric determines how well CNN
identify True positives over all predicted positives. It is a good metric to trust when it is
vital to avoid False positives, and is computed as:

Precision =
TP

TP + FP
(6.13)

Recall Recall follows the same principles of Precision: it evaluate how well the CNN
identify true positives over all the real positives. A high recall score ensures resistance to
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False negatives:

Recall =
TP

TP + FN
(6.14)

F1 Score F1 Score is computed as a function of Precision and Recall. It can be seen
as as sort of balance between them, very usefull if the dataset is unbalanced.

F1 = 2 ∗ PrecisionRecall

Precision+Recall
=

TP

2TP + FN + FP
(6.15)

By substituting Precision and Recall with confusion metrics, F1 Score formula ends up
being the same as DIC score for segmentation. They are indeed the same score.

Accuracy Accuracy metric computes how often the prediction is equal to the ground
truth at test time. It is defined as the fraction between the number of correct predictions
and the number of total predictions. In formulas:

Accuracy =
TP + TN

TP + TN + FP + FN
(6.16)

Accuracy (rather than F1 score) does not take into account how data are distributed and
therefore is not reliable for unbalanced classification problems.

6.3. Experimental setup: Segmentation

In this section we go through all the details about how CNNs have been trained for
segmentation purpose.
All experiments have been coded in Python using Pytorch library. Pytorch provides great
freedom for parameter selection and allows the user to customize training and validation
steps as desired. All trainigs have been performed over GPU to speed up the process,
only one GPU has been used at the time.
The process of CNN training can be divided into four parts: Training and validation,
testing, metrics evaluation. The first thing to do is splitting the dataset into 3 parts for
training, validation and testing. As stated in dataset section, the first 735 ILs have been
used for training and validation, the rest for testing. Furthermore, 20% of the first ILs
stack have been used for validation, bringing us to the following partition :

• 588 ILs for Training - 34%

• 147 ILs for Validation - 8%

• 1016 ILs for Testing - 58%
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Since ILs slices are too large to be fed directly into CNNs, smaller patches have been
extracted from every IL. The selected patch dimension is 512 × 512, with a stride of
512 × 512. Note that, since patch shape and stride have the same value, there is no
overlapping between adjacent patches. This decision, applied to both stack images and
masks, has been made to avoid excessive GPU memory usage during training and testing,
since only one GPU has been used at the time. If a patch exceed a border of the IL
a padding is applied, filling missing values with the mean value of the selected IL: the
relative mask is filled with zero values. After extracting patches augmentations have been
applied to both masks and patches. Among all possible augmentations only Horizontal
flip and label smoothing have been applied to the newly generated patch dataset, with a
probability of 0.5.
This choice have been made for two reasons:

• Training set is already sufficiently big to ensure quality CNN training, flipping
patches with a probability of 0.5 provides even more data.

• Adding other augmentations could be dangerous since they could denature the
meaning of some patches. Horizons rotation, brightness, and contrast are all funda-
mental clues for salt recognition. Applying random perturbation to those features
could hence invalidate CNN decision.

All segmentation networks trained have some common hyperparameters: training process
have been performed over 100 epochs with a LR of 0.01, using Adam as optimizer and a
batch size of 8. What differentiate all CNNs is the different loss function (for details see
Chapter 4) and the last activation layer, that have to be chosen accordingly: if the loss
required it CNN have been trained with a final Sigmoid layer, otherwise raw logits are
directly passed to the loss function (Figure 6.3).
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Figure 6.3: If CNN architecture do not include a final sigmoid layer but loss function
requires it, sigmoid function is applied externally before passing output values to the loss
function. Note that this process is not needed if CNN architecture already include a
sigmoid activation, but in this case it is not possible to use losses that requires raw logits
as input.

6.4. Experimental setup: Classification

CNN Inversion techniques discussed in Chapter 5 investigate on how a CNN interprets
different classes: to apply AM for example, we need some specific target to optimize
that embodies how our CNN sees one class or another. It is impossible to apply those
techniques directly to segmentation networks since it maps 2D inputs in 2D outputs, there
is no specific objective that resembles one class or another. Even if we can’t inspect the
whole segmentation network, we can still try to understand how networks manipulate the
input by looking at its latent representation, extracting meaningful features on seismic
images for segmentation purposes. There are two possible ways to inspect segmentation
models with CNN inspection techniques:

• Remove the decoder from a pre-trained segmentation CNN, attach a classification
head, and train the new CNN by lowering the encoder LR to 5% of the chosen LR.

• Remove the decoder from a segmentation CNN architecture, append a classification
head and train the whole network from scratch.
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Figure 6.4: Starting from a segmentation CNN model, the decoder has been discarded
and a classification head has been attached at the end, with a final sigmoid layer for
binary classification purposes.

Figure 6.4 shows the selected classification CNN architecture, made of an encoder followed
by a GAP layer and a final dense classification layer. In the first case, we are effectively
inspecting a CNN trained for segmentation purposes by keeping the encoder almost the
same. One could still argue that since the objective of CNN changed from regression to
classification, keeping the same encoder should not be the best choice to get the best
performance in a classification problem. This is probably true, but remember that our
goal is not building an efficient classification network but inspecting how a segmentation
CNN works.

SEAM Dataset for classification
Next problem to address is how to use SEAM segmentation dataset for classification: first,
compute the percentage S% of salt pixels in each patch, then assign a label to that patch
depending on a predefined threshold. Two policies have been applied:

• Extract patches of dimension 512×512, set only one threshold to 20% such that for
every patch if S% < 20% the patch is labeled as background, else it will be labeled
as salt.

• Extract patches of dimension 128× 128, label a patch as background if S% < 5% or
as salt if S% > 50%. Discard the patch for all middle values.

The first policy has been applied for pre-trained segmentation networks re-adapted for
classification. Patch shape is the same for both classification and segmentation training,
ensuring that the encoder works on the same input dimensions for both tasks. To get



6| Results 57

a big enough dataset patches have been labelled with a 20% salt threshold with no gap
between the two classes: in this way no patches are discarded but the definition of salt
and background is ambiguous. In both cases, the result is a newly generated dataset
containing patches labeled as salt or background depending on the salt percent present.
Figure 6.5 shows an example of a patch classified as background in both cases, having
S% < 20%. Figure 6.6 has a percentage of salt such that 20% < S% < 50%, meaning that
will be classifiead as salt if the first policy is applied, otherwise it will be discarded.

Figure 6.5: Patch and mask of a sample labelled as background

The second policy have been applied from CNNs trained from scratch: by setting a patch
shape of 128 × 128 much more patches are produced. In this way, it is feasible to set
distinct thresholds for the two classes without loosing too many dataset samples. In total
4 CNNs have been trained for classification with the purpose of CNN inspection, keeping
the same architecture described in Chapter 4, as shown in the figure 6.1.

6.5. Experimental setup: CNN inspection

CNN inspection is not an easy job since used techniques are optimization based. This
means that finding the right parameters to ensure a decent image quality is a process that
requires many attempts. In this chapter we will go through some implementation choices
that have been made to make selected CNN inspection techniques work, bearing in mind
that there could be better and more elegant ways to do so.
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Figure 6.6: Patch and mask of a sample labelled as salt

Dataset Patch shape Loss function Lower threshold Upper threshold

SEAM 512 x 512 BinaryCrossEntropy 20% 20%

SEAM 512 x 512 Dice 20% 20%

SEAM 128 x 128 BinaryCrossEntropy 5% 50%

LANDMASS 150 x 300 BinaryCrossEntropy - -

Table 6.1: Summary of CNNs trained for XAI purposes.

6.5.1. Activation Maximization setup

The first thing to consider when implementing AM is what layers and channels we are
interested in inspecting.
The networks to be inspected are made of a convolutional encoder, a GAP layer and a
final dense layer whose number of neurons depends on the dataset number of classes (2
for SEAM, 4 for LANDMASS dataset). For sure we are interested in understanding how
CNNs understand classes just before outputting a result, this translates to performing
AM on the last dense layer, maximizing the activation of one neuron at the time. What
else can we do with this technique? Since we can look at one channel or neuron at the
time, sadly not much.
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If we want to inspect what the encoder part of the network has learned we should optimize
every channel for every layer one by one, but then we will end up with a bunch of
AM generated images that are somehow related to each other in an unknown manner.
Visualizing deep layers of a CNN, even if only some channels will be selected, can still be
interesting for academic purposes.
For this reason AM have been applied only the last dense layer, on each class neuron
separately. Note that class neurons have been optimized pre-activation. This choice
have been made since it is known that applying AM on after-softmax neurons might
lead (not always) to misleading results. This happens (as stated in Section 5) because,
for post-softmax AM, optimization process might prefer pushing other class activation
down instead of maximizing the activation of the desired class: for this reason post-
activation AM might result in poorly understandable images. Sometimes, on the other
hand, optimization process could go well for post-softmax activation as well.

(a) Pre-softmax AM on class Reflec-
tor

(b) Post-softmax AM on class Reflec-
tor

Figure 6.7: Example of how optimization can go wrong when applying AM method on
pre or post softmax activation on last dense layer. Note how in this case post-softmax
optimization leads to noisy results.

Figure 6.7 shows how optimization post softmax could be difficult to interpret. On the
other hand, Figure 6.8 shows how the optimization procedure can get nice results for both
the pre- and post-softmax layer. Probably the optimization process in Figure 6.8 landed
on the same minimum in both cases, there are some small differences between images
probably due to the difference in initialization. AM optimization has been carried out
optimizing images of size 150 × 150, initialized as white noise, with a LR of 5 · 10−3 for
2048 steps. For every neuron or channel, different combinations of transformations and
parametrizations have been applied:
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(a) Pre-softmax AM Background
class

(b) Post-softmax AM on Background
class

Figure 6.8: Another example of pre and post softmax application of AM. In this example
both pre or post softmax optimization procedure produces good results.

• Case 1; No parametrization - No transformation

• Case 2: No parametrization - jitter only transformation of 8 pixel width and height.

• Case 3: No parametrization - padding, jitter, random rotation around 10 deg, ran-
dom scaling from 80% to 120% with respect to original image size.

No regularization therm has been used during AM optimization. As stated previously in
Chapter 5 regularization can help reduce high-frequency noise that may affect generated
images, but may also discourage high frequencies that should naturally belong to the
synthetic image. Transformation robustness can provide high random noise resistance
without imposing frequency restrictions, enabling the image to reach high frequency peaks
if needed.

6.5.2. Network Inversion setup

NI setup is overall similar to AM as they are based on a similar optimization process but
with different loss function.
NI requires an input image as a target, since both the synthetic image and the input image
must be coherent with CNN pre-processing, the first step is to apply z-score normalization
to the input. Next thing to consider is what layers should we inspect with NI techniques:
to give a comprehensive view on how the image is processed through the network, both
shallow and deep layers have been selected.

Figure 6.9 shows what layers have been selected for NI visualization, one layer has been
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Figure 6.9: Simplified ResNet34 architecture with highlighted in yellow selected layers for
NI. The Merger layer is in green because is not a proper part of ResNet34.
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selected for every ResNet block, layer decision making has been made by testing.
The optimization process has been carried out using the loss function defined in equation
5.5. The regularization has been performed using cosine similarity as distance metric,
elevated to a power that determine how similar the synthetic image have to be with
respect to the input image:

λ(x) =
x · x∗

∥x∥ ∥x∗∥

p

(6.17)

For p = 0 x and x∗ only have similar activation maps. By increasing p one can enforce
similarity also on the two images.
The optimization process have been carried out with the following parameters:

• LR = 10−3

• Adam optimizer.

• 1500 optimization steps.

• Transformation robustness including padding, jitter, random rotation around 10
degrees, random scaling from 80% to 120%.

Using a too high LR or training for a too small number of epochs might result in images
with scattered blurred patches.

6.6. Segmentation results

Here results on the segmentation tass will be discussed, showing how trained CNNs per-
form with different loss functions with the addition of some predicted masks of best or
worst inlines. Average metrics can be computed in two ways:

• First compute scores for each IL, then perform an average. In this way the error
distribution along the IL influences the final average scores.

• Compute scores on all the IL as a volume. This method provides a more general
information on segmentation performances.

The last raw of the table represents the "baseline", that is a CNN trained with the same
Unet-Resnet34 architecture but with combined loss function. The baseline loss is a linear
combination of BCE and DIC loss functions, with weights equal to one. Baseline details
have been given to us by ENI, the purpose of this testing session is to see if some other,
less common losses can perform better.
Note that best performances for mean metrics (Table 6.2) have been reached with JAC
loss, even though JAC does not perform the best on all scores. Performances on mean
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Loss DICE JAC TPR TNR GCE VS PS MI AUC

BCE 0.812638 0.721974 0.949435 0.975198 0.046727 0.846757 0.690128 0.237378 0.962317

Contour 0.848063 0.758775 0.948355 0.981226 0.042707 0.884685 0.733327 0.235857 0.96479

Dice 0.871489 0.802302 0.956411 0.986096 0.032658 0.896936 0.858734 0.251895 0.971254

Focal 0.803855 0.706648 0.952539 0.975561 0.047399 0.83405 0.665581 0.236086 0.96405

Hausdorff 0.83674 0.749267 0.868182 0.9806 0.046255 0.910073 0.900011 0.227698 0.924391

Jaccard 0.888863 0.816848 0.933841 0.987378 0.03564 0.927317 0.781028 0.242153 0.96061

KL 0.85725 0.777592 0.951931 0.980296 0.040149 0.892909 0.767319 0.243421 0.966113

Lovasz 0.861183 0.780118 0.946661 0.983673 0.039956 0.893133 0.876121 0.239472 0.965167

MSE 0.708325 0.598997 0.949385 0.950032 0.076974 0.736457 0.643612 0.213206 0.949708

Wing 0.867064 0.790348 0.947193 0.980141 0.041123 0.903478 0.907862 0.240946 0.963667

BCE + Dice 0.865285 0.787707 0.942216 0.980308 0.041086 0.90311 0.849794 0.241284 0.961262

Table 6.2: Summary of the mean scores obtained from segmentation experiments with
different losses. The last raw represent the baseline to improve.

scores are usually lower than volumetric scores: mean score metrics are heavily influenced
by the distribution of scores along IL. If the performance gap among ILs is large, mean
scores will probably be lower, on the other hand if the error distribution is close to
uniform mean scores, it will be similar to 3D scores. Another important metric is PS, as
it determines how well CNN is able to recognize the salt body perimeter: The best loss
for both volumetric and mean scores resulted to be Hausdorff. Generally good performing
losses have high scores on more or less all scores, with some exceptions. Since there are
plenty of different scores to reason how good a CNN is, we will take into consideration
just two of them for now and show how different CNNs perform in best and worst case
scenario. Scores taken into account are:

• DIC: Dice score is the most common score used for segmentation purposes, and it
can provide a good all around view of how a CNN performs.

• PS: Perimeter score is particularly important in this application. The reason behind
salt segmentation is identifying with as much accuracy as possible where the salt
body begins and ends. PS focuses on this aspect by computing the score function
only on the salt perimeter.

Now, for the best performing losses in DIC and PS score reported in Table 6.3, the best
and worst IL prediction will be reported, along with the true salt mask. The following
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Loss DICE JAC TPR TNR GCE VS PS MI AUC

BCE 0.8914 0.8041 0.9513 0.975834 0.050586 0.937081 0.748591 0.267418 0.963542

Contour 0.902134 0.821717 0.934523 0.981874 0.04518 0.965342 0.773261 0.26849 0.958199

Dice 0.923534 0.857931 0.944873 0.98662 0.035307 0.977416 0.88268 0.283316 0.965746

Focal 0.890961 0.803364 0.947971 0.976235 0.050733 0.939862 0.727423 0.2662 0.962103

Hausdorff 0.893505 0.80751 0.919971 0.981612 0.04892 0.971232 0.936658 0.260388 0.950791

Jaccard 0.917728 0.847964 0.924482 0.988086 0.037641 0.992694 0.784634 0.275303 0.956284

KL 0.907488 0.830644 0.949337 0.981134 0.04293 0.955918 0.798635 0.2753 0.965236

Lovasz 0.907314 0.830352 0.92867 0.984367 0.042619 0.977004 0.903268 0.270009 0.956518

MSE 0.824938 0.702038 0.960891 0.951318 0.083183 0.858514 0.692863 0.240208 0.956105

Wing 0.90502 0.826518 0.945128 0.981053 0.044022 0.957564 0.923319 0.272822 0.96309

BCE + Dice 0.905626 0.827529 0.94467 0.98131 0.043728 0.958669 0.862574 0.273016 0.96299

Table 6.3: Summary of 3D scores obtained from segmentation experiments with different
losses

figures (example in 6.10a) show the predicted mask and the ground truth superimposed.
Green pixels means that the prediction is correct (prediction and ground truth overlap),
Blue pixels means false positives (FP) (background identified as salt), Red pixels means
false negatives (FN) (Salt identified as background).
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Dice loss CNN : best and worst Dice score

(a) Best DIC score obtained at IL 494

(b) Worst DIC score obtained at IL 995

Figure 6.10: Best and worst DIC score obtained by a CNN trained with Dice loss.
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Dice loss CNN : best and worst Perimeter score

(a) Best PS score obtained at IL 345

(b) Worst PS score obtained ad IL 1011

Figure 6.11: Best and worst PS score obtained by a CNN trained with Dice loss
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Hausdorff loss CNN : best and worst Dice score

(a) Best DIC obtained at IL 503

(b) Worst DIC score obtained at IL 1009

Figure 6.12: Best and worst DIC score obtained by CNN trained with Hausdorff loss.
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Hausdorff loss CNN : best and worst Perimeter score

(a) Best PS score obtained at IL 30

(b) Worst PS score obtained at IL 1011

Figure 6.13: Best and worst PS score obtained by CNN trained with Hausdorff loss.
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Among all the losses tested, only the two best performing are reported: Dice loss, which
resulted in having the best DIC score, and Hausdorff loss, which reached the maximum
PS score.

Both CNNs (as shoin in Figures 6.10 and 6.12) achieve the lowest and highest value of DIC
score for about the same ILs. Those specific IL ranges (around 500 and around 1000)
resulted to be respectively very easy and hard to segment for almost all the proposed
losses. Note how around IL 1000 both Dice and Hausdorff CNNs have plenty of false
positives that bring down both perimeter and dice score.
It is interesting to see how IL 345 (Figure 6.11a) has the best PS score of the whole test
set. The CNN prediction is filled with false positives, but since these pixels are not on
the salt perimeter, they do not contribute to PS computation. The prediction on the salt
perimeter is, on the other hand, overall accurate.
Figure 6.13a is another example of high PS; the CNN trained with Hausdorff loss was
able to recognize with great precision the general border of the large salt body present,
missing only the bottom lobe. Note how the two losses behave differently for IL around
1010: Dice CNN correctly recognized the salt body but added some false positives (figure
6.11b), Hausdorff CNN on the other hand missed completely the salt body (figure 6.13b).

6.7. Interpretation results

In this section, all results regarding XAI will be reported. First we will go through SEAM
dataset CNNs, with and without pretrainig, and see how segmentation networks inter-
pret classes salt and background using AM technique imposing different transformation
robustness and parametrization, also some images obtained with NI will be provided, to
show how the encoder part of CNN elaborates the input image. Then we will go through
LANDMASS dataset CNNs, showing how those techniques work with CNNs trained di-
rectly for multi-class classification.

SEAM Dataset CNNs

The first CNN to be inspected uses an encoder trained for segmentation purposes, the
classification head is then trained on a new classification task splitting salt patches with
a threshold of 20%. Note that there is no gap between background and salt class, so
definition of salt and background can be ambiguous at times. Summary training details
can be found in 6.4
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Patch shape Encoder loss function Pretraining Upper threshold Lower threshold Encoder LR

512 x 512 BinaryCrossEntropy True 20% 20% 5%

Table 6.4: CNNs training for XAI purposes.

By keeping the encoder LR low, we should be able to inspect in the most faithfully way
possible how the segmentation encoder interprets the two output classes.

Figure 6.14: No transforma-
tion robustness

Figure 6.15: Jitter only
Figure 6.16: Padding, jitter,
rotation, scaling robustness

Figure 6.17: Class Background interpretation for BCE pretrained CNN

Figure 6.17 is the result of AM application on last dense neuron representing class back-
ground of CNN trained as stated in Table 6.4: 6.14 shows unparametrized AM with no
transformation robustness applied, the result is a little more noisy image with respect to
the other two. In all three images horizontal reflectors are easy to spot; they faithfully
retain features of reflectors usually found in seismic images. We will see later that this fact
does not hold for non-pretrained networks, where resulting images will be much harder
to interpret.
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Figure 6.18: No transforma-
tion robustness

Figure 6.19: Jitter only
Figure 6.20: Padding, jitter,
rotation, scaling robustness

Figure 6.21: Class Salt interpretation for BCE pretrained CNN

Figure 6.21 shows the interpretation of class Salt instead. Note that, especially in the
last two images, salt body discontinuity is sharp and stands out with respect to the rest
of the image: this tells that the CNN has effectively learned to recognize salt bodies by
looking at the surface discontinuity between background and salt. The first Figure (6.18)
is clearly more noisy than the other two due to the lack of transformation robustness.
To inspect how the encoder elaborated the input image as a whole, an example of NI is
provided for some selected layers (yellow boxes in diagram 6.9)

Figure 6.22: NI with no constraints applied to a pretrained CNN. The image on the left
represent the input image.

Figure 6.22 shows NI with no regularization therm. Note how the deeper layer we inspect,
the more the input image gets modified by the encoder. Since the regularization therm is
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absent, contrast in different layers can vary a lot.

Figure 6.23: NI with constraints applied to a pretrained CNN

Figure 6.23 shows NI, respectively, with a strong regularization therm. The biggest im-
pact in regularization is always the contrast: strongly regularized images usually have a
contrast similar to the original image. Also here, like in the previous case, it is clear how
the input image almost remains the same through the first layer while is heavily distorted
in the last layer.
The most important point to make with NI for this CNN is that details of input images
gets distorted but not discarded. This fact is crucial for segmentation CNN: one possible
explanation for why it happens is that segmentation CNNs have to retain some sort of
spatial cognition of where different parts of the image are located in order to perform
segmentation correctly. We will see that for classification CNNs this does not hold, since
their job is just to classify the input image without caring about where details are spa-
tially located.
For this CNN only we will show a more complete view of encoder part of the network by
applying NI to five convolutional layers per block (4 blocks in total, see Figure 6.9 for
details).
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(a) Block 1. First image on the left shows the input image.

(b) Block 2

(c) Block 3

(d) Block 4

Figure 6.24: NI applied to all four blocks of the encoder.

Note how the input image is processed more and more from left to right and from up
to down; Figure 6.24 shows how gentle the transformation of the input image is. For all
future CNNs we will avoid applying NI to the whole encoder.

Next CNN to be inspected has been trained from scratch for classification purposes using
smaller patches (128 x 128) in order to obtain classes with less ambiguity, with a threshold
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of < 5% for background and > 50% for salt. For training summary see Table 6.5.

Patch shape Encoder loss function Pretraining Upper threshold Lower threshold

128 x 128 BinaryCrossEntropy False 50% 5%

Table 6.5: CNNs training for XAI purposes.

In this CNN the encoder has also been trained for classification purposes, this will lead
to very different result with respect to segmentation - pre-trained CNN.

Figure 6.25: No transforma-
tion robustness

Figure 6.26: Jitter only
Figure 6.27: Padding, jitter,
rotation, scaling robustness

Figure 6.28: Class Background interpretation for BCE non - pretrained CNN

All three images in Figure 6.28 are very different from those in Figure 6.17. In this case
reflectors are still visible but much more distorted, also each image contains much more
replicas of reflector class, this could be due to smaller patch size. Lastly, Figure 6.25 is
extremely noisy, transformation robustness is in this case crucial to obtain decent results.
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Figure 6.29: No transforma-
tion robustness

Figure 6.30: Jitter only
Figure 6.31: Padding, jitter,
rotation, scaling robustness

Figure 6.32: Class Salt interpretation for BCE non - pretrained CNN

Also for salt class one can do the same reasoning that have been done for background
class. In Figure 6.32 the only information retained by class salt is the contrast gap be-
tween different parts of the image. Now is not possible anymore to recognize salt borders
as in Figure 6.21.
Why does the two CNNs described in Tables 6.4 and 6.5 have such a different interpreta-
tion of the two classes? The CNN trained for scratch is only for classification purposes and
classification task resulted to be much easier than segmentation, in fact training process
ended up in about 20 epochs with very high scores. Probably the CNN trained appositely
for classification does not need to "understand" salt bodies in such a detailed manner since
the classification resulted to be very easy. On the other hand, segmentation training took
about 100 epochs, resulting in a much harder process. Also the segmentation CNN has
to retain information about spatial location of salt perimeter to perform segmentation,
probably resulting in a more "sharp" interpretation of classes salt and background.
NI applied on this CNN could confirm this hypotheses, showing how differently input
images are processed with respect to the previous case.
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Figure 6.33: NI of a class background image for non pretrained CNN, the input image is
the first on the left.

Figure 6.33 shows regularized NI on background class image. Note how details about the
position and shape of the horizons get lost quickly as we go deeper into CNN. Last image
on the right shows class neuron NI: in this layer the position and features of horizons is
totally lost, substituted by the general interpretation of class background. Note in fact
the similarity with Figure 6.28.

Figure 6.34: NI of a class salt image for non pretrained CNN.

Also, for NI of class salt (Figure 6.34) features of salt bodies present on the original image
on the left quickly fades the deeper we go into the network. NI applied on the last dense
layer (image on the right) only shows the general understanding of class salt, as in Figure
6.32.

LANDMASS Dataset CNNs

LANDMASS dataset has the only purpose of classification, for this reason we can’t make
a comparisons between segmentation and classification encoders, since only classification
CNNs were trained.
On the other hand, since LANDMASS dataset were created for classification, there is
neither ambiguity or class imbalance in the dataset. LANDMASS dataset labels images
with four classes, which means that classification CNNs will have four output neurons.
The CNN to be inspected was trained with BCE loss over images of size 150× 150, note
that LANDMASS dataset contains already split images, while SEAM dataset required
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patching with arbitrary shape. A confusion matrix is provided to show classification
performance on a test set, made of 15% of the total dataset samples (4000 samples):

Figure 6.35: Confusion matrix of LANDMASS classification CNN

The confusion matrix in Figure 6.35 clearly shows how classification task was performed
successfully with great results, with only one incorrect classification on chaotic class.
Now an example of AM of every class will be provided:
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Figure 6.36: No transforma-
tion robustness

Figure 6.37: Jitter only
Figure 6.38: Padding, jitter,
rotation, scaling robustness

Figure 6.39: Class Reflector Interpretation of CNN trained on LANDMASS dataset

Reflector class represent the "general" reflector in seismic images. AM representation on
class reflector (Figure 6.39) clearly captures the regular horizontal pattern that charac-
terizes this class.

Figure 6.40: No transforma-
tion robustness

Figure 6.41: Jitter only
Figure 6.42: Padding, jitter,
rotation, scaling robustness

Figure 6.43: Class Chaotic Interpretation of CNN trained on LANDMASS dataset

Chaotic is not a well defined class per se: it contains all types of artifacts that the exert
could not really classify, resulting in a class with a large number of very different images.
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The AM process, as show in Figure 6.43 somehow captured a contrast discontinuity with
the background, that resembles the class reflector.

Figure 6.44: No transforma-
tion robustness

Figure 6.45: Jitter only
Figure 6.46: Padding, jitter,
rotation, scaling robustness

Figure 6.47: Class Fault interpretation of a CNN trained on LANDMASS dataset

Fault class if perhaps the most interesting: AM generate images in Figure 6.47 shows how
the CNN interpret fault class as vertical cuts. A fault is indeed a vertical fracture that
propagates vertically through the whole image. Note how in this case imposing fewer
transformation robustness resulted in more clear images. Another interesting detail is
that the background present resembles a lot the AM interpretation on class chaotic in
Figure 6.43
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Figure 6.48: No transforma-
tion robustness

Figure 6.49: Jitter only
Figure 6.50: Padding, jitter,
rotation, scaling robustness

Figure 6.51: Class Salt Interpretation of CNN trained using LANDMASS dataset

Lastly, salt class (Figure 6.51 is represented as triangular shaped artifacts across the image
with different contrasts with respect to the background. This could in some way capture
the general shape of salt bodies, which are usually jagged in shape with great discontinuity
with the rest of the image.
The same consideration done for NI applied SEAM classification CNN (detains in Table
6.5) are valid here. Also in this case spatial details about the input images get rapidly
lost leaving only a general representation of the input image. This loss of precision is
unacceptable for the segmentation CNN, where details are preserved through the encoder.
Let now see how encoder process images using NI:

Figure 6.52: NI of a class Reflector on LANDMASS dataset

NI on reflector class in Figure 6.52 simply shows how, stating from the original image,
details get lost more and more until the last dense layer, where only the general represen-
tation of class reflector remain (as in Figure 6.39).
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Figure 6.53: NI of a class Chaotic on LANDMASS dataset

Figure 6.53 shows how this chaotic class input image is processed through the network by
"enhancing" the middle horizon that dominates the image. As always, the last dense layer
retains almost no details about the original image, but why? This happens also because
the last dense dense layer is made of only four neurons, each one giving a score on the
probability of a class. When NI is applied on this layer, the feature map of the optimized
image has to resemble as much as possible that of one of the input image (see Chapter
5 for NI details), but the dense layer feature map only contains four values indicating
the probability of each class. In this case, since the input image is (and was classified
as) chaotic, the four values composing the feature map will be three low values (those
representing the other three other classes) and one high value (representing class chaotic).
Only four neurons cannot incorporate too much information about the input image, for
this reason NI process ends up obtaining images very similar to AM: in fact, what the
NI algorithm is doing is effectively finding an input image that has a high score on the
class chaotic and low scores on other classes. Similarly AM on class chaotic will find the
input image that activates most the neuron of class chaotic. What differentiate the two
optimization process is the regularization: AM is not bounded to any image, while NI
forces a similarity between the generated image and the input image.

Figure 6.54: NI of a class Fault on LANDMASS dataset

Fault class NI (Figure 6.54) is probably the most interesting among the four.
The last image, that represent NI over the dense layer, shows clearly vertical lines that
resembles fault formations over the image. Note that the input image only has one fault
in it, while NI generated image has more in different positions: the presence of these
replicas suggests that the CNN learned how to generalize the recognition of faults with
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different shapes and sizes, placed in different parts of the image.

Figure 6.55: NI of a class Salt on LANDMASS dataset

Lastly, NI over the Salt class simply shows how the salt body input image is processed,
highlighting the salt formations the deeper we go into the network. An example of NI on
class Salt is reported in Figure 6.55
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7| Conclusions and future works

In this thesis we tackled the problem of salt segmentation in two different ways: In the first
part, we proposed a baseline segmentation CNN and took care of all the steps, from data
preparation to testing and metric evaluation. In the second part we inspected network
behaviours using two XAI techniques called Network Inversion and Activation Maximiza-
tion.
During the segmentation process multiple loss functions have been implemented and tested
equally under the same architecture and training parameter, to give a general and fair
overview of their performances for salt segmentation task. By comparing the obtained
results with the provided baseline, a significant improvement has been obtained by simply
selecting the best performing loss function.
Now that all losses have been successfully implemented, the next step to make to reach
even higher segmentation performances is hyperparameter tuning: the fact that one loss
performs better than another with the proposed baseline does not mean that by changing
parameters like batch size, patch shape and size or LR the same will hold. To reach
optimal results one should try different hyperparameter combination and find the more
suitable for ResNet34 architecture. One further step to make to reach state of the art
performances could be implementing ensemble-based predictions using multiple architec-
tures. Now that all losses have been implemented and tested, performing hyperparameter
tuning on different architectures can lead to an ensemble of highly performing CNNs that
can be used for joint segmentation.

On the side of CNN inspection we successfully implemented AM and NI techniques to
ResNet34 architecture achieving highly interpretable results. CNNs are still highly com-
plex and hard to understand structures, implemented XAI techniques help understanding
what a CNN has learned and how images are progressively processed the deeper we go
into the network. With the help of this newly implemented methods we managed to shed
a light into the black box of CNNs, potentially opening new strategies for training and
evaluation. AM and NI techniques showed how different a classification and segmenta-
tion encoder interpret the world. By looking ad AM produced images we explained how a
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segmentation encoder interprets class salt and background: the produced images contain
usually only one very detailed replica of the selected class, embodying the concept of
salt or background label. To reach decent segmentation performances the segmentation
encoder must retain as much information as possible to produce a precise mask. On the
other hand AM generated images on classification encoders show how different the under-
standing of the two labels can be. In this case, since the spatial location of details is not
important, the learned meaning of the two classes is much more simple and details-free,
with multiple replicas of class background and salt scattered all over the image.
NI technique confirmed the made hypotheses by showing how differently the two encoders
process the input image: the segmentation encoder barely modify the image shape and
size, retaining as much details as possible and enhancing those that are more important
for segmentation purposes (such as salt perimeter). Classification encoders modify the
input dramatically already from from shallower layers, progressively loosing image details
leaving behind only its general concept.
One possible future step to make could be implementing grad-CAM based techniques
and apply them to AM produced images to see what part of the synthetic images are
considerate as highly informative for the CNN. One bigger step could be implementing
a generator network using Generative adversarial network (GAN) training: as stated in
Nyugen et al. article [27] AM generated images can be used as preferred initialization to
train a generator network using GAN training, resulting in impressively realistic images.
By reducing the number of optimization steps of the already implemented AM algorithm
one can produce perfect starting images for generator networks.
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