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Abstract: A vast range of fields, such as civil, mechanical and aerospace 

engineering, have been employing structural health monitoring (SHM) 

units to enable a safer and more efficient operation of assets. These units 

rely on algorithms to process the acquired data from the structure of the 

system to perform damage detection, localization and/or quantification in 

real time. To do so, within many types of possible data, vibrational signals 

have been widely and successfully employed, since vibrational properties 

such as natural frequencies, modal damping and mode shapes of a system 

depend on its structural properties, which may be subjected to damage-

induced changes. More specifically, transmissibility functions (TFs) have 

created a lot of interest due to the possibility of using them for output-only 

damage diagnosis algorithms, which simplifies the diagnosis procedure 

by sparing the need of measuring the input signal. Recently, this kind of 

structural data used by SHM systems has become more accessible and in 

very large quantities due to significant technology advancements and cost 

reduction of sensors, creating a very conducive environment for the 

application of deep learning models in the SHM field. Although those 

models have been showing very promising results in terms of prediction 

accuracy, these usually come at a cost of model interpretability due to their 

increasing complexity. Indeed, models who lack interpretability are more 

difficult to be trusted, which is a fundamental characteristic in practical 

engineering applications such as SHM systems. In order to increase the 

interpretability of such models, many explainable artificial intelligence 

(XAI) methods have been proposed, such as the layer-wise relevance 

propagation (LRP) algorithm. In this work, a convolutional neural 

network (CNN), a specific type of deep learning model, exploited to 

process TF data to perform damage detection, localization, and 

quantification, is interpreted through the use of the LRP algorithm. By 

considering a numerical case study with different damage scenarios, the 

relevance values returned by the XAI algorithm were investigated 

through a statistical analysis. It was observed that the majority of the most 
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relevant features for the CNN are the most damage sensible and important 

TFs features, agreeing with the existing physical knowledge. 

Keywords: Explainable AI, Structural Health Monitoring, Convolutional neural networks, 

Transmissibility Functions, Layer-wise Relevance Propagation 

1.  Introduction 

From civil to aeronautical engineering applications, structural components suffer from degradation 

during their lifecycle. In order to assure the safe operation of a given asset, be it a bridge, a car, or 

an aircraft, it must be subjected to maintenance during its service life. However, there are different 

maintenance approaches that can be considered. One of the most common strategies is the 

preventive or scheduled maintenance, in which the asset is subjected to periodic maintenances. This 

approach is considered of lower risk because the maintenances are planned to be executed before 

the end of the designed service life of the maintained components. However, since the components 

degradation may vary from what is expected from design and the asset is maintained independently 

from its real condition, components may be repaired or replaced when they potentially still have 

remaining service life or worse, they may not be repaired in time before they fail, leading to a sub-

optimal usage of system parts and a lower availability of it, or even to a catastrophic failure [1]. In 

order to deal with these issues, a Structural Health Monitoring (SHM) system can be exploited to 

allow the implementation of a condition-based maintenance strategy [2]. 

A SHM system is designed by implementing a network of sensors in the monitored structure to 

continuously acquire data that can then be processed by algorithms to perform damage detection, 

localization, and/or quantification in real-time. Many SHM methods have been developed, such as 

the use of electrical resistance-based strain gauges and fiber Bragg grating sensors to indirectly 

measure damage, but, in particular, vibration-based methods are one of the most widely adopted, 

since vibrational properties of the structures are known to be damage sensitive. More specifically, 

these methods rely on the fact that the vibrational properties such as natural frequencies, modal 

damping and mode shapes of a system depend on its structural properties, which may be subjected 

to damage-induced changes [3]–[5]. Therefore, by detecting changes in the vibrational characteristics 

of the structure, algorithms can be used to identify the modifications in the physical parameters and 

so, perform a structural diagnosis. 

Within vibration-based SHM methods, approaches in the frequency domain and time domain have 

been considered. One of the advantages of the frequency domain methods is that they can be used 

in more different situations, since the structural dynamic properties, such as mode shapes, modal 

frequencies and modal damping, are only dependant on the structure itself [4]. With this aim, 

Frequency Response Functions (FRFs) have shown to be advantageous, due to the fact that they 

carry a large amount of information over their frequency range [6]–[8]. Despite that, FRFs present a 

major drawback which is the requirement to not only measure the response of the structure, but also 

the excitation magnitude, which significantly hampers its computation for applications in which the 

excitation cannot be easily measured. Hence, one of the possibilities to overcome this is the use of 

Transmissibility Functions (TFs), defined as the ratio between two spectra outputs (e.g., acceleration 

or displacement) evaluated at different system degrees of freedom due to an excitation at a given 

system location. Indeed, in addition to their significant sensitivity to damage, their computation 
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does not require to perform the measurement of the excitation magnitude, but only the knowledge 

of the excitation location [9]. 

In addition to the progresses in the research of damage diagnosis methods, in the recent years, the 

sensors cost reduction and their technology advancement have made the implementation of 

complex sensor networks more accessible, enabling the acquisition of a large amount of data that 

can then be used by SHM systems to continuously monitor the structure condition with an adequate 

damage diagnosis algorithm. However, in order to make the best use of this big amount of available 

data, usually a time costly process of signal pre-processing is needed before the data can be used as 

input by a predictive model. This process requires prior expert knowledge of the data so that the 

most suited features are selected [10], [11]. Besides the extent work that has been done into this topic, 

in some cases (e.g., when considering complex and perturbed signals) there is still no unanimity by 

the research community on what are the best features to be considered to perform damage 

assessment [11]. Within this context, deep learning has attracted attention due to its capability of 

tackling this issue by learning complex nonlinear representations, i.e., features, of the raw input data 

without previous pre-processing [10], [12]. This characteristic has been exploited for several different 

applications, such as image and speech recognition, object detection, drug discovery and genomics 

[12]. Following this trend, it has also been applied to SHM systems.  

Indeed, with the advancement of deep learning research, mainly fuelled by increasing access to large 

datasets, powerful computers and development of more efficient learning algorithms, deep learning 

has achieved fantastic results in different fields, even surpassing human capabilities in some cases. 

However, such a high performance comes with larger and more complex models. Such complexity 

ultimately leads to less interpretable models, in which it is difficult to understand the reasoning 

behind why the model returns an output 𝑦 for a given input 𝑥. Models whose rationale is not easily 

comprehended by their users are usually harder to be trusted, especially in critical fields such as 

medicine and autonomous vehicles [13]. Indeed, in addition to sheer accuracy, the ability to enhance 

human knowledge in the decision-making process and to shed light on correlations present in the 

data are valuable characteristics of deep learning algorithms applied to practical engineering 

situations [14]. Inspired by this, the explainable artificial intelligence (XAI) field has seen a 

significant advance in the recent years. Indeed, it has as objective the development of methods to 

enhance interpretability of artificial intelligence algorithms, especially deep neural networks. 

Among the many, one of the promising XAI algorithms is the Layer-wise Relevance Propagation 

(LRP), which works by propagating the deep neural network prediction backwards and obtaining 

the relevance (i.e., the importance) of each one of the input features. The LRP algorithm has been 

successfully applied to several applications, helping to increase the interpretability of models and 

even identifying model biases [15]. 

Motivated by this, given that trustworthiness is a key aspect for SHM systems, the present work 

intends to enhance the interpretability of a deep learning-based algorithm applied to perform 

damage diagnosis for a SHM system. More specifically, considering a similar case study as proposed 

in [11], a convolutional neural network (CNN) is considered to detect, locate, and quantify damage 

of an aluminium structural beam, represented by a numerical model, by using as inputs TFs spectra. 

Subsequently, the LRP algorithm is applied to better understand the rationale behind the CNN. With 

this, it was aimed to investigate if the CNN performs the damage characterization based on existing 

physical intuition and/or if it gives new physical insights into how transmissibility functions can be 

used to perform the structural diagnosis task.  
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This thesis is organized as follows: initially, a bibliographic review is presented in Section 2.  

Subsequently, the methodology, the case study and the results sections are detailed in Section 3. , 

Section 4. and Section 5. , respectively. Finally, some concluding remarks are reported in Section 6. . 

2.  Literature review 

2.1 Structural Health Monitoring with Transmissibility Functions 

Several Structural Health Monitoring (SHM) methods based on different types of sensors, such as 

electrical resistance-based strain gauges, fiber Bragg grating, or piezoelectric smart layers have been 

adopted [2], [16]. Within these, vibrational-based methods, which rely on the structure vibration 

characteristics, to characterize damage [4], have been widely investigated. For example, in [17], a 

damage detection method using modal frequencies and mode shapes is proposed and tested in a 

structural beam. In [18], a damage assessment technique by using mode shape sensitivities is 

proposed and tested with a beam-like structure in laboratory conditions and with data from a 

highway bridge. In [19], damage identification is performed in a composite beam by using curvature 

mode shapes and four different methods: absolute difference of curvature mode shape, curvature 

damage factor, damage index and frequency response function curvature method. Instead of 

employing specific modal parameters such as modal frequencies, mode shapes and modal damping, 

other proposed methods have been employing frequency response functions (FRFs), which are 

preferred due to the fact that they carry information over large frequency ranges [6]–[8]. However, 

a significant disadvantage of the utilization of FRFs is that they require the measurement of the input 

excitation, which can be considerably difficult in uncontrolled scenarios.  

In view of that fact, output-only methods have sought by the SHM community. Within this context, 

transmissibility functions (TFs) have shown to be very promising, since they are not function of the 

input signal magnitude [9]. Moreover, due to their mathematical formulation, TFs are composed by 

the FRFs zeroes. This aspect has been investigated by [20], being demonstrated that TFs are better 

indicators of the presence of damage due to the higher damage sensibility of zeroes when compared 

to poles. By exploiting these positive aspects of TFs, several researches have been accomplished to 

develop response-only damage diagnosis systems. In [21], a neural network is employed to process 

TFs magnitude and phase values to perform damage diagnosis. The proposed approach is applied 

to two different case studies: a physical steel framework and a finite element model of a sandwich 

beam. The results obtained showed that the neural network was able to perform the structural 

diagnosis task by identifying the damage induced differences in the TFs. In [22], an auto-associative 

network is exploited to perform damage detection by using TFs as feature. The main idea was to 

identify the damage existence through the computation of a novelty index with the output of the 

auto-associative network, which is trained to reproduce the input data corresponding to the 

undamaged scenarios seen during its training. The method is demonstrated by using a simulated 

three degrees of freedom system, in which damage is simulated by reducing the stiffness of one of 

its elements. 

In [23], damage detection is performed by performing outlier analysis with TF data, being 

considered four case studies. The first case study considers a simulated three degrees-of-freedom 

system, with damaged conditions being simulated by introducing a stiffness reduction, the second 

case considered experimental and simulated vibration data from a gearbox with local damage in a 

spur gear, the third considered experimental and simulated lamb-wave data from two damaged 

composite plates and the last one considered experimental data from a ball-bearing with different 
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fault conditions. One important aspect noted is that the features related to the peaks of the TFs in 

the considered frequency range are the ones that render the greatest contribution to the discordancy 

of the outlier. In [24] a damage detection procedure is developed by identifying the difference 

between healthy and unhealthy conditions through the use of an integral damage indicator based 

on the difference between healthy and damaged TFs. 

In [25] it is performed the experimental validation of a SHM system whose damage detection 

algorithm exploits TFs. In fact, three approaches are considered for this task: outlier analysis, density 

estimation and an auto-associative neural network. The experimental validation is performed in 

plate with stiffeners, simulating an aircraft wingbox. Subsequently, in [26], [27], the authors 

experimentally validated the outlier analysis approach presented in [25] in a real aircraft wing. In 

[28], TFs computed from data obtained from wired piezoelectric arrays of accelerometers are used 

to perform damage detection and localization through an approach named structural diagnostics 

using non-linear analysis (sDNA). In [29], TFs are used to detect and locate damage on a section of 

a wind turbine blade made of fiberglass through the use of an integral damage indicator that 

considers the difference between the healthy and damaged TFs. In [30], a damage indicator based 

on the correlation between healthy and damaged TFs is used to perform damage detection and 

quantification and it is compared to a similar damage indicator based on FRFs, which is shown to 

be significantly less sensitive than the TF-based one. In [31], it is investigated how operational, 

sensing, environmental and computational variabilities influence a TF-based damage indicator. 

Then, improvements, such as limiting the frequency ranges or compensation routines, are proposed 

to make the SHM system more robust with respect to these variabilities. In [32], it is proposed to 

feed TF data to an artificial neural network to detect, locate and quantify damage in a bridge 

structure. 

2.2 Deep Learning and Explainable Artificial Intelligence 

As mentioned in previous paragraphs, a wide range of algorithms have been considered to perform 

damage characterization. Within this context, deep learning models have recently been standing out, 

driven by an increase of available data and computational power. In fact, due to an advancement of 

sensors’ technology and their cost reduction, structural sensing has become more accessible and 

with a greater amount of available data, making deep learning models strong candidates for SHM 

applications. 

Deep learning models are basically composed of an input layer, hidden layers, and an output layer. 

As the model receives data through the input layer, it is consecutively transformed as it passes 

through the hidden layers. Each hidden layer uses as input data the output from the previous layer. 

By exploiting consecutive non-linear transformations, deep learning models are able to learn 

complex functions and extract high-dimensional features, which is the reason why this kind of 

model thrives in conditions in which very large datasets are available. Since the extraction of these 

features is learned by the model during its learning stage, there is no need to perform feature 

engineering, which requires domain expertise, being one of main advantages of deep learning 

models over conventional machine-learning techniques [12]. 

Exploiting these aspects, deep learning models have been applied in several fields, such as speech 

recognition [33]–[36], image recognition [37], [38] and autonomous driving [39]. Indeed, they have 

also been exploited in the SHM field, as highlighted in the state-of-the-art reviews presented in [40] 

and [41].  
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In addition to that, some researches have exploited a specific type of deep neural network 

architecture called convolutional neural networks (CNN). When compared to common fully 

connected layers, CNNs have the capability of learning local feature representations, require a 

smaller quantity of learnable parameters and converge faster [12], [42]–[44]. 

Taking advantage of these aspects, in [45] a framework called DeepSHM is presented, which 

considers a CNN to process ultrasonic guided waves data to perform damage identification, 

localization and quantification. Also, in [46], a CNN is used to identify and locate damage by 

processing acceleration time responses of a beam structure. In order to train the CNN, a finite 

element model, tuned according to experimental data, is used to generate the training data. In 

addition to that, in [47] a CNN is also used to perform damage identification and localization 

through the analysis of raw vibration measurements. In this case, model order reduction techniques 

are applied to generate the training data through physics-based models with lower computational 

cost.  

Exploiting the TFs characteristics detailed in the previous subsection, in [11] a deep CNN-based 

approach for damage detection, localization and quantification is proposed. Through the 

employment of a CNN, raw TFs data is processed, thus not requiring a previous feature engineering 

step to extract spectral lines or antiresonant frequencies as in other previous works. More 

specifically, it is used as input data grey scale images which translate the TFs logarithmic magnitude 

across the considered frequency range, in this case 0 Hz – 2000 Hz. The approach is applied to two 

different case studies: a mass-spring system with eight degrees of freedom and a structural beam. In 

order to simulate damage, the structures’ elements have their stiffnesses reduced. For both case 

studies the proposed approach rendered satisfactory results. 

In fact, one of the reasons that made possible to obtain remarkable results in several fields was the 

increase of the deep learning models complexity. However, this increase of complexity came at a 

cost of models with reduced capabilities of returning interpretable outputs. Indeed, machine 

learning models can be classified in two groups. First, there are white-box models or glass-box 

models, such as linear models and decision trees, which are able to produce results that are more 

easily interpreted but are not able to attain prime performance. Then, there are the black-box models, 

such as deep learning models, that present state-of-the-art performance at the expense of prediction 

interpretability [48]. Due to the lack of clarity in its decision-making process, black-box models are 

more difficult to be trusted, which is a critical aspect for fields such as healthcare, autonomous 

vehicles, and SHM. In this sense, interpretable models are extremely valuable, since they make easier 

to comprehend its decision-making reasoning and cause-and-effect relationships between outputs 

and inputs, increasing the model trustworthiness and also presenting the ability to enhance human 

expertise in the decision-making process and revealing the correlations it perceives in the data, 

which are important features sought when applying artificial intelligence to practical engineering of 

systems [14]. 

In view of that, a great effort has been made in the field of explainable artificial intelligence (XAI), 

which aims to enhance the comprehension of the rationale of artificial intelligence models. An 

example is DARPA’s XAI program, which is motivated by the critical need of explainable models 

for the United States Department of Defense [49]. In order to achieve explainable AI systems, many 

methods have been considered, each of them with their specific characteristics. For instance, it is 

possible to implement intrinsically interpretable models (i.e., white-box models) or to choose to 

explain a black-box model after it has been already built, defined as post-hoc explanation. Moreover, 
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it can be chosen between local methods, which explain a single prediction at time, or global methods, 

which explain the whole model. In addition to that, interpretability methods can be divided between 

model specific, when they can only be applied to a single model or group of models, and model 

agnostic, when they can be applied to any model. Finally, the interpretability methods also depend 

on the data type considered (e.g. image, tabular, text,) [48], [50]. 

A well-known post-hoc model agnostic XAI method is the Shapley Additive explanations (SHAP), 

which is inspired in game-theory. It proposes SHAP values, which evaluates the features’ 

importance based on how each feature contributes to the model achieving the analyzed output from 

the expected model prediction [51]. For instance, SHAP has been applied to explain AI models used 

in different applications, such as accident detection [52], metallurgical processes [53], power systems 

control [54], and credit risk assessment [55], [56]. LIME, local interpretable model-agnostic 

explanations, is another popular model agnostic XAI method. LIME approach consists in creating a 

glass-box model, such as a decision tree, that is able to locally approximate the analyzed black-box 

model for the interpreted prediction [57]. LIME has been applied to interpret solar photovoltaic 

power generation forecasting models [58], healthcare [59], and credit risk assessment [60].  Within 

the post-hoc model specific algorithms, it is possible to divide between methods that follow an 

approach based on sensitivity analysis and those that opt for a decomposition approach. Sensitivity-

based approaches seek to explain the prediction based on the effect of infinitesimal perturbances in 

the input, leading to an explanation of a local variation of the function that represents the model. On 

the other hand, decomposition approaches explain a given prediction by redistributing the value of 

the prediction of the model back to the input variables, in such a way that the prediction function 

value is conserved, i.e., the sum of the redistributed terms are equal to the prediction value. By doing 

this, the decomposition approach is able to explain the whole function that represents the model 

[61]. Among the methods that follow a decomposition approach, the Layer-wise Relevance 

Propagation (LRP) is one that has shown to be promising. By considering specific local propagation 

rules, the LRP, which can be applied to deep neural networks with different inputs such as text, 

images, and videos, works by propagating the model prediction backwards in the neural network 

in order to obtain the relevance of each input feature for the explained prediction [15]. For instance, 

the result of the application of the LRP algorithm to explain the prediction made by a CNN used to 

classify images as “dogs” or “cats” is a vector with the relevance score of each pixel of the input 

image, which indicates how much each pixel contributed to the prediction. 

The LRP algorithm has been successfully employed in several applications. In [62], LRP is used to 

explain 1D-CNNs in two difference case studies: credit card fraud detection and telecom customer 

churn prediction. In [63], a Long-Short Term Memory (LSTM) model, a specific architecture of 

recurrent neural network, is used to perform therapy prediction. Subsequently, LRP is used to 

explain the model in order to obtain the most relevant features. It is shown that the highlighted 

features by the LRP are agree to clinical knowledge and guidelines. Moreover, LRP has been 

considered to explain deep learning models used to perform diseases diagnosis. For instance, in [64], 

LRP is used to explain predictions performed by a CNN to process structural magnetic resonance 

imaging data to detect Alzheimer’s disease. It is shown that the relevance heatmaps produced by 

the LRP algorithm correlate well with scientific knowledge.  In addition to that, in [65] LRP is 

exploited to explain the predictions of a CNN used for diagnosing multiple sclerosis. Moreover, LRP 

has been used in [66] to distinguish schizophrenia patients from healthy individuals. LRP has also 

been exploited to explain a deep learning model used to investigate intermolecular noncovalent 

interactions [67]. Another example of LRP application appears in [68], where it was used to explain 
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a deep learning model used for speech recognition. Within the SHM field, instead, the LRP has been 

employed in [69] to interpret the predictions performed by a CNN exploited to process time-

frequency spectra images of vibration signals to perform fault diagnosis on an induction motor. In 

addition to that, in [70] LRP is used to interpret a CNN used in a vibration-based damage detection 

system for machines with variable rotation speed. LRP is also applied in [71] to interpret a deep 

neural network used to detect and quantify damage in buildings subject to earthquakes. Moreover, 

in [72] LRP is exploited to interpret CNNs used to detect and locate damages by processing 

ultrasonic guided waves. 

3.  Methodology 

3.1 Transmissibility Functions 

Given a stable dynamic system subject to a single input, the relationship between the response 𝑥𝑖
𝑘 at 

degree of freedom 𝑖 due to an excitation 𝑓𝑘 applied in a generical degree of freedom 𝑘 is given by 

Equation (1)Error! Reference source not found.: 

 𝑥𝑖
𝑘(𝜔) = 𝐻𝑖𝑘(𝜔)𝑓𝑘(𝜔) (1) 

where 𝐻𝑖𝑘(𝜔) is the FRF between degrees of freedom 𝑖 and 𝑘. 

A TF 𝑇𝑖,𝑗
𝑘  which relates the responses of degrees of freedom 𝑖 and 𝑗 due to an excitation at degree of 

freedom 𝑘 is defined as shown in Equation (2) 

 𝑇𝑖,𝑗
𝑘 (𝜔) =

𝑥𝑖
𝑘(𝜔)

𝑥𝑗
𝑘(𝜔)

 (2) 

in which 𝑥𝑖
𝑘 and 𝑥𝑗

𝑘 are the responses of degrees of freedom 𝑖 and 𝑗 due to an excitation at degree of 

freedom 𝑘, respectively. It should be noticed that the outputs here considered can be either the 

displacements, velocities, or accelerations. 

By substituting Equation (1) into Equation (2), the TF can be rewritten as shown in Equation 

(3).Error! Reference source not found. 

 𝑇𝑖,𝑗
𝑘 (𝜔) =

𝐻𝑖𝑘(𝜔)𝑓𝑘(𝜔)

𝐻𝑗𝑘(𝜔)𝑓𝑘(𝜔)
=

𝐻𝑖𝑘(𝜔)

𝐻𝑗𝑘(𝜔)
 (3) 

Which highlights the fact that the TFs are not function of the input signal magnitude, but only on 

the excitation location. 

A generic FRF between two points 𝑥 and 𝑦 can be written as show in Equation (4). 

 𝐻𝑥𝑦(𝜔) =
𝑛𝑥𝑦(𝜔)

𝑑(𝜔)
 (4) 

Where 𝑛𝑥𝑦(𝜔) characterizes the FRF zeroes and 𝑑(𝜔) characterizes the system poles. By substituting 

Equation (4) into Equation (3), Equation (5) is obtained, which shows that TFs are the ratio of the 
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FRFs numerators, meaning they are only function of the FRFs zeroes, giving them a higher damage 

sensibility, as investigated in [20]. 

 𝑇𝑖,𝑗
𝑘 (𝜔) =

𝑛𝑖𝑘(𝜔)

𝑛𝑗𝑘(𝜔)
 (5) 

In the considered case study, in which a structural beam is analyzed, TFs considering different nodes 

are collected in a matrix form which is then processed by a CNN without any previous feature 

extraction to perform the damage diagnosis.  

3.2 Convolutional Neural Networks 

A CNN, whose scheme can be seen in Figure 1, is normally composed of three main types of hidden 

layers (i.e., the layers between the input and the output): convolutional layers, pooling layers and 

fully-connected layers.  

 

 

Figure 1: Typical CNN scheme. 

 

As defined in [44], the convolution operation can be mathematically described as in Equation (6): 

 𝑧𝑖,𝑗,𝑘
𝑙 = 𝑤𝑘

𝑙 𝑇
𝑥𝑖,𝑗

𝑙−1 + 𝑏𝑘
𝑙  (6) 

where 𝑧𝑖,𝑗,𝑘
𝑙  is the feature value at location (𝑖, 𝑗), 𝑥𝑖,𝑗

𝑙  the input patch also centered at (𝑖, 𝑗), and 𝑤𝑘
𝑙  and 

𝑏𝑘
𝑙  are the convolution kernel and bias term of the 𝑘-th feature map, respectively, all of them for the 

considered generical  𝑙-th layer. After performing the convolution, the 𝑧𝑖,𝑗,𝑘
𝑙  term passes through an 

activation function, resulting in Equation (7): 

 𝑎𝑖,𝑗,𝑘
𝑙 = 𝑎(𝑧𝑖,𝑗,𝑘

𝑙 ) (7) 
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For instance, considering a ReLU, it is obtained Equation (8): 

 𝑎𝑖,𝑗,𝑘
𝑙 = max(0, 𝑧𝑖,𝑗,𝑘

𝑙 ) (8) 

The pooling operation is defined as in Equation (9): 

 𝑦𝑖,𝑗,𝑘
𝑙 = pool(𝑎𝑖,𝑗,𝑘

𝑙 ), ∀(𝑖, 𝑗) ∈ 𝑅𝑖𝑗 (9) 

where 𝑅𝑖𝑗 is a local region around location (𝑖, 𝑗) where the pooling operation is performed and pool() 

denotes the pooling operation. Two main types of pooling operations can be considered: max 

pooling and mean pooling. 

Finally, the fully connected layers are defined mathematically as in Equations (10) and (11). 

 𝑧𝑗
𝑙 = ∑ 𝑎𝑖

𝑙−1𝑤𝑖𝑗
𝑙

𝑖

+ 𝑏𝑗
𝑙 (10) 

 𝑎𝑗
𝑙 = 𝑎(𝑧𝑗

𝑙) (11) 

where 𝑎𝑖
𝑙−1 is the activation of neuron 𝑖 of the 𝑙 − 1-th layer, 𝑤𝑖𝑗

𝑙  is the weight of this activation to the 

neuron 𝑗 of the 𝑙-th layer, 𝑏𝑗
𝑙 is the bias term for neuron 𝑗 of the 𝑙-th layer,  𝑧𝑗

𝑙 is the linear combination 

of the activations of the neurons of the 𝑙-th layer and 𝑎𝑗
𝑙 is the activation of neuron 𝑗 of the 𝑙-th layer. 

The weights and biases are determined through the use of gradient descent and the backpropagation 

algorithm. More specifically, in order to reduce the computation cost, the Stochastic Gradient 

Descent (SGD) algorithm is usually considered instead of the gradient descent. The SGD algorithm 

works by computing the gradient only considering a mini-batch of the training data, instead of 

considering the whole dataset [44]. Moreover, many algorithms have been proposed to improve 

SGD, such as Stochastic Gradient Descent with momentum (SGDm) Root Mean Square Propagation 

(RMSProp), Adaptative Gradient (AdaGrad) and many others [73]. Finally, with respect to the loss 

function to be optimized, several options are also available. For instance, for regression tasks, a 

common loss function is the mean squared error (MSE).  

For the considered case study, the TFs are collected into images that are used as input for a CNN, 

which process it and then returns an output vector which states the damage percentage of each of 

the element of the structural beam. 

3.3 Layer-wise Relevance Propagation 

The LRP algorithm works by propagating the neural network prediction backwards through its 

layers. In order to do so, a propagation rule defined as in Equation (12) is applied. 

 𝑅𝑥 = ∑
𝑧𝑥𝑦

∑ 𝑧𝑥𝑦𝑥
𝑅𝑦

𝑦

 (12) 

where 𝑅𝑥 is the relevance score of neuron 𝑥 in the layer 𝑙, 𝑅𝑦 is the relevance score of neuron 𝑦 in the 

layer 𝑙 + 1 and 𝑧𝑥𝑦 quantifies how much neuron 𝑥 contributes to make neuron 𝑦 relevant. For 
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instance, for a deep neural network with fully connected layers as defined in the previous Section 

(i.e., Equations (10) and (11)), the LRP propagation rule becomes 

 𝑅𝑥 = ∑
𝑎𝑥

∑ 𝑎𝑥𝑥
𝑅𝑦

𝑦

 (13) 

The presence of the denominator factor enforces a conservation property in the layers to the 

propagation rule given by Equation (14). 

 ∑ 𝑅𝑥

𝑥

= ∑ 𝑅𝑖

𝑖

 (14) 

This conservation property can be extended to a global conservation property, as shown in Equation 

(15) 

 ∑ 𝑅𝑖

𝑖

= 𝑓(𝑥) (15) 

which states that the sum of the relevance of the nodes of the input layer (i.e., ∑ 𝑅𝑖𝑖 ) is equal to the 

output of the neural network (i.e., 𝑓(𝑥)). A scheme of the LRP procedure can be seen in Figure 2. 

 

 

Figure 2 – LRP Scheme highlighting how the relevance is propagated from the output to preceding 

neurons in a generic neural network. 

Many propagation rules have been proposed as improvement of the rule described by Equation (12). 

One of these is the Epsilon propagation rule, which is given by Equation (16). 

 𝑅𝑥 = ∑
𝑧𝑥𝑦

𝜖 + ∑ 𝑧𝑥𝑦𝑥
𝑅𝑦

𝑦

 (16) 

Through the addition of a small positive term 𝜖 in the denominator, this propagation rule is able to 

filter the contributions from neuron 𝑦 that are weak, leading to explanations that are less noisy and 

sparser with respect to the input features [15]. 
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In the proposed case study, the LRP is used to interpret the output of the CNN used to perform the 

damage localization and quantification, highlighting the most relevance features from the input. 

4.  Case study 

A case study similar to the one presented in [11], [74] is considered, in which a CNN is exploited to 

diagnose damage (i.e., damage detection, localization, and quantification) of a structural beam by 

processing TFs. Then, the LRP algorithm is employed to interpret how the CNN is making its 

predictions. 

The structural beam considered is an aluminum beam with a length of 1 m and a rectangular cross 

section of width 25 mm and height 10 mm. In particular, it is modelled with 20 Timoshenko beam 

elements with equal length of 50 mm.  

Under free-free conditions, the beam response is simulated as subjected to a shaker exciting its left 

tip. The computation is performed with a frequency resolution of 1 Hz in the frequency range from 

0 Hz to 2000 Hz.  Then, in order to compute the TFs, the response of the translational degrees of 

freedom of the flexural vibration response is considered. More specifically, 10 TFs are computed. 

Each TF is computed by taking into consideration the response of node 1, which is the node that is 

excited by the shaker and chosen as reference one, and an additional node. For instance, TF 1 is 

computed by considering the responses of node 1 and 3, i.e. 𝑇3,1
1 , TF 2 the responses of node 1 and 5, 

i.e. 𝑇5,1
1  and so on, with TF 10 considering the responses of node 1 and 21, i.e.,  𝑇21,1

1 . For a more 

concise notation, the TFs will be called by their respective index as explained. Both damaged and 

undamaged scenarios are simulated in order to create the dataset used to train the CNN. The 

approach used to simulate damage in one element is the reduction of a percentage (𝑑%) of its 

stiffness. In particular, all damage scenarios considered that only one element of the beam is 

damaged. 

In order to process the 10 TFs data with the CNN and since they are computed with frequency 

resolution of 1 Hz between 0 Hz and 2000 Hz, the logarithmic magnitudes of the 10 TFs are grouped 

in a matrix 𝑇 with dimensions 10x2000, in which the first line of the matrix contains the logarithmic 

magnitude of the TF 1, the second line the logarithmic magnitude of TF 2, and so on. Subsequently, 

this matrix 𝑇 can be represented as a gray-scale image, which can then be processed by the CNN. In 

Figure 3 all 10 TFs for an undamaged scenario are plotted and in Figure 4 a gray scale image 

originated by the same TFs is shown. Note that this gray scale image is originated by an expanded 

matrix 𝑇𝑒𝑥𝑝 of dimension 2000x2000, in which logarithmic magnitude of TF 1 are contained from 

lines 1 to 200, the logarithmic magnitude of TF 2 from lines 201 to 400, and so on. Such approach is 

considered just to enhance the visualization of the image that is being used as input by the CNN.   
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Figure 3 – Healthy TFs plot. 

 

Figure 4 – Gray scale image representing the healthy TFs. 
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The described gray scale image with the collected TFs is then the input of a CNN, whose 

architecture’s scheme is seen in Figure 5, used to provide the structural health state of the beam. In 

particular, its architecture consists of two convolutional layers and two fully connected layers. More 

specifically, the first convolutional layer has a kernel of dimensions (10,1) with 32 filters, mainly 

responsible to process features across all TFs. The second convolutional layer has a kernel of 

dimensions (1,5) with 64 filters and its role is that of processing the features across the frequencies. 

Both convolutional layers, as well as the first fully connected layer, whose size is (1024,1), use ReLU 

as activation function. Finally, the last fully connected layer, which is the output layer, does not have 

any activation function and it returns a vector of size (20,1) with the predicted damage percentage 

𝑑𝑛
𝐶𝑁𝑁% of each 𝑛-th beam element, in which element 𝑛 = 1 is the element composed by nodes 1 and 

2, element 𝑛 = 2 is the element composed by nodes 2 and 3, and so on. The MSE is used as loss 

function. 

 

Figure 5 – CNN architecture scheme. 
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To train the CNN, a dataset of 15000 gray scale image is considered. In particular, 30% of the dataset 

consists of undamaged scenarios, whereas the rest consists of damaged scenarios. The latter are 

obtained by changing the location of the damaged element 𝑝, which is sampled from the uniform 

probability mass distribution 𝑈(1,20) with unitary step, and the damage extent 𝑑% introduced, that 

is sampled from the uniform probability mass distribution 𝑈(5,40) (%), in this case with a 5% step. 

In addition to that, a numerical noise is introduced in the computed responses in order to add 

variability to the dataset and also simulate sensors noise. At each frequency, the noise percentage 𝛿 

is sampled from the uniform probability mass distribution 𝑈(0,30) (%) with a 10% step. 

Subsequently, the CNN performance is assessed through a validation dataset of 3000 gray scale 

images, of which approximately 20% are undamaged scenarios. In a similar way of the training 

dataset, the location of the damaged element 𝑝 is sampled from the uniform probability mass 

distribution 𝑈(1,20) with unitary step, but the damage extent 𝑑% introduced is sampled from the 

uniform probability mass distribution 𝑈(7.5, 37.5) (%), with a 5% step. Moreover, the noise is 

applied to the data in a similar way as done for the training dataset. In Figure 6, a gray scale image 

representing the TFs of a scenario in which element 12 presents 12.5% of damage (noise with  𝛿 =

30%) is shown. 

 

Figure 6 – Gray scale image representing the TFs for the damage scenario in which the element 12 

presents 𝑑% = 12.5% and noise is applied with 𝛿 = 30%. 
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The training and validation losses are shown in Figure 7, which show that the CNN has converged. 

Moreover, the optimal number of epochs, i.e., the number of epochs that lead to the best evaluation 

metric for the validation dataset, is identified to be 21. 

 

Figure 7 – Training and validation losses. 

For the sake of brevity, even if a different CNN architecture is exploited, the interested reader is 

referred to [74] for more details about the CNN prediction capabilities related to the proposed case 

study. As an example, the CNN prediction for six damage scenarios are presented. In particular, the 

first damage scenario considers the element 12 with damage 𝑑% = 12.5% and noise 𝛿 = 30%. The 

respective gray scale image is shown in Figure 6. In Figure 8 the absolute value of the predicted 

damage percentage for each one of the beam elements is reported. In this example, the CNN 

diagnosed the element 12 with 𝑑𝐶𝑁𝑁% = 12.64%, only 0.14 percentage points higher than the true 

damage condition. In addition to that, the CNN does not indicate any significant damage to other 

elements. In fact, the second largest 𝑑𝑛
𝐶𝑁𝑁% value is the one with respect to element 20, in which 

𝑑𝐶𝑁𝑁% = 0.98%.  



Master thesis in Aeronautical Engineering  P. Silva 

 

17 

 

Figure 8 – CNN damage prediction for the damage scenario in which the element 12 is damaged 

with 𝑑% = 12.5% and noise is applied with 𝛿 = 30%. 

The second damage scenario considers element 7 with damage index 𝑑% = 22.5% and the TFs 

corrupted with a noise given by 𝛿 = 30%. In particular, the predicted damage percentages are seen 

in Figure 9. In this scenario, the CNN predicted 𝑑7
𝐶𝑁𝑁% = 23.15% and no other element is shown to 

be damaged, since 𝑑𝑛
𝐶𝑁𝑁 < 0.5% for all other elements.  

 

Figure 9 - Damage prediction for the damage scenario in which the element 7 is damaged with 

𝑑% = 22.5% and noise is applied with 𝛿 = 30%. 

In Figure 10 it is possible to see the predicted damage values for the other four different damage 

scenarios, highlighting the CNN capabilities of predicting the damage at different conditions. 
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Figure 10 – CNN predictions for different damage scenarios. (a) Element 1 with 𝑑% = 7.5% and 

𝛿% = 30%(b) element 5 with 𝑑% = 37.5% and 𝛿% = 10%; (c) element 16 with 𝑑% = 17.5% and 

𝛿% = 20%; (d) element 20 with 𝑑% = 27.5% and 𝛿% = 30%. 

5.  XAI results: LRP algorithm 

After analysing the damage diagnosis capabilities of the CNN, the LRP algorithm is exploited to 

interpret the CNN and understand how it is able to characterize damages. In order to do so, the 

iNNvestigate toolbox is utilized [75]. The Epsilon propagation rule is considered with 𝜖 = 3.0. By 

applying the LRP algorithm, a relevance matrix 𝑅 with dimensions 10x2000 which contains the 

relevance of each of the pixels of the gray scale input image is obtained, and, thus, the relevance for 

each one of the data points of the 10 considered TFs over the entire frequency window (i.e, 0-2000 

Hz). Indeed, the relevance values contained in the first row of 𝑅 are the relevances of TF 1, whereas 

the relevance values in the second row are related to TF 2, and so on. Such relevance matrix is turned 

into an expanded matrix 𝑅𝑒𝑥𝑝 of dimension 2000x2000 for visualization purposes, as done with 

matrix 𝑇. Finally, this expanded matrix can be plotted as a relevance heatmap. In Figure 11 a 

relevance heatmap is shown. In particular, it is originated for a damage scenario in which the 

element 12 is damaged by 𝑑% = 12.5% and with a noise characterized by 𝛿 = 30% applied. The 

CNN prediction for this scenario can be seen in the previous Section, in Figure 8.  
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Figure 11 - Relevance heatmap for the damaged scenario in which the element 12 is damaged with 

𝑑% = 12.5% and noise is applied with 𝛿 = 30%. 

By analysing the relevance heatmap, it is noticed that the relevance distribution is very sparse, i.e., 

some specific points concentrate the positive relevances. Indeed, most of the image is white, which 

stands for null relevance. It is also noticed that some specific frequency intervals appear to have 

higher relevance, even across multiple TFs. Moreover, all TFs present some positive relevance 

values, but in this case, these are more concentrated in TFs 1, 4, 5, 7 and 8. In order to better analyze 

the relevance values with the TFs features, the TFs are plotted with a colormap referring to their 

respective relevance value. In Figure 12 TFs 1, 4, 5 and 7 are reported. By analysing these plots, it is 

possible to verify that the peaks of the TFs are regions with positive relevance values. Indeed, as it 

was observed in [23], the peaks of the TFs are regions that present high sensibility to stiffness 

reduction, thus damaged elements. Therefore, it is reasonable to expect that the CNN would give 

them a higher relevance in order to perform the damage diagnosis.  
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Figure 12 – TF 1 (a), TF 4 (b), TF 5 (c) and TF 7 (d) colored with respect to their corresponding 

relevance values for a damage scenario in which the element 12 is damaged with 𝑑% = 12.5% and 

noise is applied with 𝛿 = 30%. 
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In order to further investigate the reasoning employed by the CNN, it is useful to introduce a 

damage index 𝐷𝐼𝑖(𝜔), defined by the following Equation (17): 

 𝐷𝐼𝑖(𝜔) = 𝑇𝐹𝑑𝑖 − 𝑇𝐹ℎ𝑖 (17) 

where 𝑇𝐹𝑑𝑖 refers the TF 𝑖 evaluated for a generical damaged scenario, while 𝑇𝐹ℎ𝑖 denotes the same 

TF 𝑖  but considering an undamaged structure (i.e., healthy scenario). 

In particular, it is useful to investigate how it relates to the relevance values obtained for each TF. 

Therefore, considering the same scenario of Figure 9 in Section 4.  (i.e., element 7 is damaged with 

𝑑% = 22.5% and noise is applied with 𝛿 = 30%.), in Figure 13 (a) TF 5 is shown, as well as its damage 

index, whereas, in Figure 14 (b) the TF 5 coloured in correspondence of its relevance values is 

reported and finally, in Figure 14 (c), the damage index computed for TF 5 also coloured in 

correspondence to its relevance values is shown.  
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Figure 13 – (a) TF 5 and its respective damage index 𝐷𝐼5 considering the case in which the element 

7 presents a damage 𝑑% = 22.5% and with noise 𝛿 = 30%; (b) TF 5 colored with respect to its 

relevance values; (c) damage index computed for TF 5 colored with respect to the TF relevance 

values. Both considering the case in which the element 7 presents a damage 𝑑% = 22.5% and with 

noise 𝛿 = 30%. 

In particular, by analysing these three figures, the following points are observed: (i) the damage 

index achieves its highest values in correspondence of the TFs peaks. However, it is not every peak 

that present a significant damage index value. For instance, the peak at 883 Hz has a very small 

damage index when compared to other peaks, such as the one at 620 Hz; (ii) the points of highest 
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relevance values, which from now on will be referred as relevance peaks, occur mostly in 

correspondence of the TFs peaks, both the peaks that present high damage index value, e.g., the one 

near 620 Hz, and the ones that present low damage index value, e.g., the one at approximately 883 

Hz; (iii) there are some relevance peaks, such as the one at 1378 Hz that are not in correspondence 

of any TF peak. These relevance peaks are classified as spurious relevance peaks and will be further 

investigated. 

In order to understand why the CNN would give high relevance to a peak of a TF in a damaged 

scenario that does not present significant difference to its healthy counterpart, the damage index for 

other damaged scenarios is investigated. Considering the case in which the element 5 is damaged 

with 𝑑% = 22.5% and a noise characterized by 𝛿 = 30% applied, (CNN prediction 𝑑5
𝐶𝑁𝑁% = 22.4%), 

in Figure 14 (a) the TF 5 and its damage index are shown, in Figure 14 (b) the TF 5 colored in 

correspondence of its relevance values is reported and finally, in Figure 14 (c) the damage index 

computed for TF 5 also colored in correspondence to its relevance values is shown. It is possible to 

see that the majority of the relevance peaks are again in correspondence of the TFs peaks, but with 

some spurious relevance peaks also present. However, what should be noticed is that for this 

damaged scenario, the TF peak at frequency 865 Hz also has a relevance peak associated to it, but 

this time it presents a very high damage index. Therefore, for instance, the fact that, the TF peak 

localized at frequency 865 Hz does not change significantly for the damaged scenario with damaged 

element 7 but changes significantly for the damaged scenario with damaged element 5, could be 

used to locate the damaged element. Thus, for the case in which the element 7 is damaged, the TF 

peak at frequency 865 Hz is relevant for the CNN to predict that the damage is located at element 7 

and not in element 5, for instance, justifying the relevance peak in correspondence of a TF peak with 

low damage index. 
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Figure 14 – (a) TF 5 and its respective damage index considering the case in which element 5 

presents a damage 𝑑% = 22.5% and with noise 𝛿% = 30%; (b) TF 5 colored with respect to its 

relevance values; (c) Damage index computed for TF 5 colored with respect to the TF relevance 

values. Both considering the case in which element 5 presents a damage 𝑑% = 22.5% and with 

noise 𝛿 = 30%. 

 

In order to investigate spurious relevance peaks, the plot of the TFs should be analyzed. In Figure 

15 the TFs for the damaged scenario with the damaged element 7 that was previous discussed is 

shown. It is possible to see in the image that all TFs have peaks in the same frequencies. However, 

the TFs also present dips that are not common for all of them. In particular, in the frequency window 

between 1200 Hz and 1400 Hz, the TF 2 presents a dip at 1378 Hz, which is in the same frequency of 
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the spurious relevance peak previously identified. Therefore, it seems that the spurious peaks of TF 

5 is related to the dips of TFs 2, 3 and 7. This relationship between different TFs could be justified by 

the kernel of the first convolutional layer of the CNN. Indeed, this kernel’s dimension is (10,1), which 

indicates that it processes all TFs data together for each frequency. 

 

 

Figure 15 – Transmissibility functions for the case in which element 7 presents a damage 𝑑% =

22.5% and with noise 𝛿% = 30%. 

In order to confirm the relevance peaks and spurious relevance peaks patters previously observed, 

a statistical analysis is proposed. First, correlated relevance peaks are defined: a relevance peak 

correspondent to the 𝑖-th TF is considered a correlated peak if it occurs in a frequency window of 

width 18 Hz centred at any peak or dip of the 𝑖-th TF, otherwise it is considered a spurious relevance 

peak. A spurious relevance peak correspondent to the 𝑖-th TF is considered a justified spurious 

relevance peak if it occurs in a frequency window of width 18 Hz centred at any dip in any of the 

others 𝑗-th TFs (𝑖 ≠ 𝑗). For instance, taking into consideration the damaged scenario investigated in 

Figure 13, the relevance peak of TF 5 at 620 Hz is a correlated relevance peak because TF 5 presents 

a peak at 620 Hz. However, the relevance peak at 1378 Hz is considered a spurious relevance peak, 

since there are no peaks from TF 5 that are close enough to it. Furthermore, this spurious peak is 

considered justified by the TF 2 dip at 1378 Hz. 

The statistical analysis proposed consists in counting all relevance peaks and classifying them into 

correlated and spurious ones for different scenarios. Then, the spurious relevance peaks are divided 

between justified and non-justified ones. In order to perform this analysis, a dataset made of 1750 

samples for each one of the damage elements (from element 1 to 20) is considered. For each of the 

damaged element, 7 groups of 250 samples corresponding to 7 different values of 𝑑% are considered, 

ranging from 7.5% to 37.5% with a 5% step. Each sample is corrupted by a numerical noise in the 

same way described for the training and testing datasets. In order to count the relevance peaks, the 

local maxima are compared with simple comparison with neighbouring values. However, for a local 

maxima to be considered a relevance peak, its height should be higher than a required height defined 

as  ℎ𝑟𝑒𝑞 = 0.1 ∗ max(𝑅𝑖𝑗) ; 𝑅𝑖𝑗 ∈ 𝑅, i.e., for a given value, in order to be considered as a peak, it should 

be greater than 10% of the maximum relevance value in the relevance matrix 𝑅. 
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In Figure 16 it is plotted the normalized quantity of relevance peaks 𝑄𝑝, given by Equation (18): 

 𝑄𝑝 =
𝑁𝑝

max (𝑁𝑝)
 (18) 

where 𝑁𝑝 is the sum of the number of relevance peaks of all the 1750 samples related to the damaged 

element position 𝑝. In addition, in Figure 17 the percentage of correlated and justified spurious peaks 

is reported. It is possible to see that percentage of correlated relevance peaks is always greater than 

50%. Moreover, from the spurious peaks, more than 90% of them are classified as justified spurious 

peaks for all damage scenarios, except for the case in which the element 1 is damaged that the 

percentage of justified spurious peaks is lower than 90%. Thus, it is possible to confirm that for the 

observed scenarios, the relevance peaks are related to either TFs peaks or dips, showing that the 

CNN agrees with the physical intuition and by giving higher importance to the TF features that are 

highly damage sensible, as highlighted from the literature. 

 

 

Figure 16 – Normalized quantity 𝑄𝑝 of relevance peaks for each damage scenario. 
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Figure 17 – Percentage of correlated peaks and justified spurious peaks for each damage scenario. 

6.  Conclusions 

In order to increase the interpretability and, thus, the trustworthiness of a damage diagnosis 

algorithm based on a CNN which exploits transmissibility function (TF) data to perform damage 

detection, localization, and quantification in an output-only method, the layer-wise relevance 

propagation (LRP) algorithm was exploited to interpret the neural network. A numerical case study 

considering a structural beam was considered to implement the damage diagnosis method, which 

returned an output vector with the damage percentage of each element of the beam. Subsequently, 

the LRP was employed to obtain the relevance values for the input in order to understand the most 

important features for the CNN for a specific input-output pair. It was observed that the relevance 

values had some prominent values, i.e., relevance peaks, and that the majority of those was in 

correspondence of the TFs’ peaks, therefore named correlated relevance peaks, which present a very 

high damage sensitivity. Moreover, it was noticed that from those that were not in correspondence 

of a TFs’ peak, i.e., spurious relevance peaks, were justified by other TFs’ dips. Such behavior is 

explained by the first convolutional layer, that processed all TFs together due to its kernel’s 

dimensions. Therefore, it is identified that CNN is giving high importance to the most damage 

sensitive and important features of the TFs, which are their peaks and dips, agreeing with the 

existing physical knowledge. Finally, it is concluded that the proposed interpretability method was 

able to shed light on the reasoning behind the CNN exploited to perform the damage diagnosis task, 

enhancing its trustworthiness. For future works, the proposed explainability method could be 

employed in different non-simulated case studies. 

For due purposes, I inform that the content of the work presented here will be fully presented at 

Escola Politécnica da Universidade de São Paulo as a final course work. Moreover, as a remark, I 

state that part of the work developed here was presented in the 8th World Conference on Structural 

Control and Monitoring in [76], which is yet to be published. 
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Abstract in lingua italiana 

Una vasta gamma di settori, come l'ingegneria civile, meccanica e aerospaziale, ha impiegato unità 

di monitoraggio, o structural health monitoring (SHM), per consentire un funzionamento più sicuro 

ed efficiente dei dispositivi e strutture. Queste unità si basano su algoritmi per elaborare i dati 

acquisiti dalla struttura del sistema per eseguire il rilevamento, la localizzazione e/o la 

quantificazione dei danni in tempo reale. Per fare ciò, tra le diverse tipologie di segnali 

acquisibiliquelli  vibrazionali sono stati ampiamente e con successo impiegati, poiché alcune 

proprietà ,come le frequenze naturali, lo smorzamento modale e le forme modali di un sistema, 

dipendono dalle sue proprietà strutturali, che possono essere soggette a cambiamenti indotti dai 

danni. In particolare, le funzioni di trasmissibilità, o transmissibility functions (TFs), hanno suscitato 

molto interesse poiché non dipendono dal modulo della forzante di input (solo dal suo punto di 

applicazione), semplificando quindi fortemente il processo di acquisizione e quindi poi di diagnosi. 

Recentemente, questo tipo di dati strutturali utilizzati dai sistemi SHM sono diventati sempre più 

accessibili grazie ai significativi progressi tecnologici e alla riduzione dei costi dei sensori, creando 

così un ambiente molto favorevole per l'applicazione di modelli di deep learning nel campo SHM. 

Sebbene questi modelli abbiano mostrato risultati molto promettenti in termini di accuratezza della 

previsione, questi di solito hanno un costo in termini di interpretabilità del modello a causa della 

loro crescente complessità. In effetti, è più difficile fidarsi di algoritmi che mancano di 

interpretabilità, che è una caratteristica fondamentale nelle applicazioni ingegneristiche pratiche 

come i sistemi SHM. Al fine di aumentare l'interpretabilità di tali modelli, sono stati proposti molti 

metodi di intelligenza artificiale spiegabile, o Explainable AI (XAI), come l'algoritmo di layer-wise 

relevance propagation (LRP). Dunque, in questo lavoro, una convolutional neural network (CNN), un 

tipo specifico di modello di deep learning, è stata utilizzata per elaborare delle TFs al fine di eseguire 

il rilevamento, la localizzazione e la quantificazione dei danni, e successivamente interpretata 

attraverso l'uso dell'algoritmo LRP. Considerando un caso studio numerico di una trave strutturale 

con diversi scenari di danno, i valori di rilevanza restituiti dall'algoritmo XAI sono stati indagati 

attraverso un'analisi statistica. Si è osservato che la maggior parte delle caratteristiche più rilevanti 

per la CNN sono quelle in cui le TFs risultano essere più sensibili al danno, in accordo con quanto 

evidenziato dalla lettura e, quindi, dalle conoscenze fisiche riguardanti le TFs. 

Keywords: Explainable AI, Structural Health Monitoring, Convolutional neural networks, 

Transmissibility Functions, Layer-wise Relevance Propagation 

 

 


