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Sommario

Ottenere in modo rapido e accurato la soluzione di un problema differenziale dipendente
da parametri è lo scopo delle tecniche di riduzione computazionale, o modelli di ordine ri-
dotto (ROMs). Per fare ciò, le caratteristiche essenziali del comportamento della soluzione
di un problema vengono descritte mediante la soluzione di un problema ridotto, le cui di-
mensioni sono notevolmente inferiori a quelle di un problema discretizzato con un classico
metodo di tipo high-fidelity (o full order), come ad esempio quelli ottenuti mediante il metodo
di Galerkin-elementi finiti o con l’Analisi Isogeometrica. Tali tecniche di discretizzazione
conducono a un sistema di grandi dimensioni da risolvere per raggiungere una determinata
accuratezza e risultano dunque impraticabili ogni qualvolta occorra calcolare tale soluzione
ripetutamente, al variare di un insieme di parametri di ingresso.

L’idea che costituisce il nucleo delle tecniche di riduzione computazionale, come i metodi a
basi ridotte, è l’assunzione - spesso verificata nella realtà - che il comportamento di un sistema
anche complesso possa essere ben descritto da una combinazione lineare di un numero esiguo
di modi dominanti, come nel caso della proper orthogonal decomposition (POD). Tali modelli,
tuttavia, possono rivelarsi inefficienti nella risoluzione di equazioni a derivate parziali (PDEs)
non lineari tempo-dipendenti parametrizzate, in particolare nel caso di problemi caratter-
izzati da strutture coerenti che si propagano nel tempo, come accade per l’elettrofisiologia
(EP) cardiaca sia in scenari fisiologici che patologici. Questi sistemi difficilmente possono
essere ricondotti a problemi a bassa dimensionalità la cui soluzione risulti sufficientemente
accurata mediante ROMs convenzionali come, ad esempio, i metodi a basi ridotte per PDEs
parametrizzate (POD-Galerkin ROMs). Ciò è principalmente dovuto alla grande variabilità
che caratterizza l’insieme delle soluzioni al variare dei parametri del problema e alla natura
non lineare della mappa input-output che si intende ricostruire numericamente. Puntando
all’efficienza dei modelli di ordine ridotto, in questa Tesi viene proposta una nuova gener-
azione di ROMs non intrusivi e non lineari, basati su algoritmi di deep learning (DL), come
le reti neurali feedforward, convoluzionali e autoencoder.

In tali modelli di ordine ridotto, o DL-ROMs, sia lo spazio in cui cercare le candidate
soluzioni, che la dinamica ridotta, vengono descritti mediante reti neurali, e costruiti in
modo non intrusivo attraverso algoritmi di DL. Tali algoritmi prevedono l’allenamento delle
reti su un insieme di snapshots, ovvero di soluzioni ottenute mediante il modello ad alta
fedeltà per differenti valori dei parametri e diversi istanti di tempo. I risultati numerici
mostrano che la tecnica DL-ROM permette di catturare accuratamente complessi processi
di propagazione di fronti nell’ambito dell’EP fisiologica e patologica. Inoltre, effettuando
una riduzione dimensionale preliminare sull’insieme di snapshots, tramite randomized POD,
e utilizzando un opportuno addestramento preliminare delle reti (o pretraining) è possibile
accelerare i tempi di addestramento delle reti, e dunque di costruzione dei modelli ridotti,
oltre che ridurre notevolmente la complessità della rete. L’accuratezza e l’efficienza di questa
strategia, che prende il nome di POD DL-ROM, sono state valutate su numerosi problemi a
derivate parziali parametrizzati (comprese le equazioni dell’elastodinamica non lineare per la
meccanica dei solidi e le equazioni di Navier-Stokes non stazionarie per la fluidodinamica).
L’interesse primario di questa Tesi è rivolto all’EP cardiaca, il cui scopo è la descrizione
dell’attività bioelettrica del cuore e delle sue disfunzioni. Considerando sia casi test prototi-
pali che geometrie realistiche, condizioni fisiologiche e patologiche come la tachicardia e la
fibrillazione atriale, oltre che tecniche ad alta fedeltà differenti (quali ad esempio il metodo
degli elementi finiti o l’Analisi Isogeometrica), le tecniche introdotte in questa Tesi hanno
dimostrato di poter risolvere tali problemi, una volta addestrate le reti neurali, per ciascun
nuovo scenario in tempo reale, anche in contesti complessi quali la descrizione dei fenomeni
di rientro e di rottura dei fronti, che modellizzano i principali meccanismi scatenanti delle
aritmie cardiache.
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Abstract

Conventional reduced order models (ROMs) relying on the assumption of modal linear super-
imposition, such as proper orthogonal decomposition (POD), might reveal inefficient when
dealing with nonlinear time-dependent parametrized PDEs, especially for problems featuring
coherent structures propagating over time, such as physiological and pathological cardiac
electrophysiology (EP). Indeed, these systems can hardly be reduced to accurate but lower
dimensional problems by conventional ROMs such as, e.g., POD-Galerkin ROMs in the frame-
work of reduced basis methods for parametrized PDEs. This is primarily due to the strong
variability characterizing the solution manifold (with respect to the problem parameters) as
well as to the nonlinear nature of the input-output maps that we intend to reconstruct numer-
ically. To enhance ROM efficiency, we propose a new generation of non-intrusive, nonlinear
ROMs, based on deep learning (DL) algorithms, such as convolutional, feedforward and au-
toencoder neural networks. In the proposed DL-ROM, both the nonlinear trial manifold and
the nonlinear reduced dynamics are learnt in a non-intrusive way by relying on DL algorithms
trained on a set of full order model (FOM) snapshots, obtained for different parameter val-
ues at different time instants. Numerical results show that the resulting DL-ROM technique
allows to accurately capture complex fronts propagation processes, both in physiological and
pathological scenarios in cardiac EP. Performing then a prior dimensionality reduction on
FOM snapshots through randomized POD, and using a suitable multi-fidelity pretraining,
enable, when dealing with large-scale FOMs, to speed up training times, and decrease the
network complexity, substantially. Accuracy and efficiency of this strategy, which we refer to
as POD DL-ROM, are assessed on different parametrized PDE problems (including nonlin-
ear structural mechanics and fluid dynamics). The main focus of this Thesis is cardiac EP,
that is the description of the electrical activity of the heart and its dysfunctions. Ranging
from benchmark cases to realistic geometries both in physiological and pathological condi-
tions such as atrial tachycardia and fibrillation, and considering snapshots arising from both
finite element method and NURBS-based Isogeometric Analysis discretizations, DL-ROMs
and POD DL-ROMs are shown to be able to solve, after the training stage, these problems
for any new scenario in real-time, even in extremely challenging contexts such as re-entry
and re-entry break-up problems, modeling those triggering phenomena related with cardiac
arrhythmias.
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Introduction

Computational cardiac electrophysiology (EP) studies the electrical activity of the heart with
the aim of modeling and numerically approximating physiological and pathological conditions,
such as cardiac arrhythmias, standing as the focus of several efforts by the scientific commu-
nity, see, e.g., [Prakosa et al., 2018, Vigmond et al., 2002, Trayanova, 2011, Vigmond et al.,
2008, Niederer et al., 2009, Niederer et al., 2011, Strocchi et al., 2020]. Simulating the elec-
trical behavior of the heart, from the cellular scale to the tissue level, relies on the numerical
approximation of coupled nonlinear dynamical systems, such as, e.g. the Monodomain or
the Bidomain equations, see, e.g., [Colli Franzone et al., 2005, Colli Franzone et al., 2006],
coupled with suitable ionic models, such as the FitzHugh-Nagumo [FitzHugh, 1961, Nagumo
et al., 1962], the Aliev-Panfilov [Aliev and Panfilov, 1996, Nash and Panfilov, 2004], the
Roger-McCulloch [Rogers and McCulloch, 1994], the ten Tusscher-Panfilov [ten Tusscher and
Panfilov, 2006] or the Mitchell and Schaeffer models [Mitchell and Schaeffer, 2003]. The
formulation and the numerical approximation of mathematical models for describing both
cellular phenomena and tissue-scale behaviors represent nowadays an extremely active field,
see, e.g., the reaction-Eikonal model [Neic et al., 2017], the Bueno-Orovio [Bueno-Orovio
et al., 2008], the Courtemanche-Ramirez-Nattel [Courtemanche et al., 1998] and the ToR-
ORd [Tomek et al., 2019] ionic models. These systems describe the propagation of the
electrical signal in the heart and the cardiac action potential (AP), that is the polariza-
tion/depolarization cycle occurring at every heartbeat that models the time evolution of the
electrical potential across the cell membrane, as well as a set of ionic variables. The solution
of cardiac EP systems entails mathematical, i.e. nonlinearity and coupling of the equations,
and numerical, i.e. high computational costs related to small time-step sizes, unless the sys-
tem might be unstable, and mesh sizes, in order to capture the steep fronts, critical issues.

Multiple solutions of these systems, corresponding to different model inputs parameters
and data, as conductivities, ionic model parameters, applied currents, are required to eval-
uate outputs of clinical interest, such as activation maps, AP duration and electrograms,
computed starting from the solution of numerical models. Cardiac EP models are unavoid-
ably hampered by several uncertainties, due to the several model assumptions, the intrinsic
(or physiological) variability, that is the natural differences among individuals, and the obser-
vational uncertainty, the measurements error in experimental data or the lack of information.
The latter two sources of uncertainty result in parameters, boundary/initial conditions and
geometry uncertainties. In this setting, sensitivity analysis and uncertainty quantification
(UQ) provide essential tools to account for inter- and intra-subject variability [Mirams et al.,
2016, Johnstone et al., 2016, Hurtado et al., 2017, Clayton et al., 2020]. Moreover, model
personalization is achievable through the solution of data-assimilation and inverse problems,
wherein some unknown quantities characterizing the mathematical model must be estimated
from measurements [Dhamala et al., 2018, Quaglino et al., 2018, Johnston et al., 2018, Path-
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manathan et al., 2019, Levrero-Florencio et al., 2020].

All these instances can be cast either in a multi-query or real-time context. In the former
case, the input-output map is repetitively evaluated in order to perform multi-scenario anal-
ysis, to deal with uncertainties and with inter- and intra-subject variability and to consider
specific pathological scenarios; in the latter one, outputs of interest must be computed in a
very limited amount of time, in view of the integration in the clinical setting. Performing the
numerical approximation of cardiac EP problems in a multi-query context or solving them in
real-time, is unaffordable by means of traditional high-fidelity techniques, or full order mod-
els (FOMs), such as the Galerkin-finite element (FE) method [Quarteroni and Valli, 1994]
and Isogeometric Analysis (IGA) [Cottrell et al., 2009]. To achieve computational efficiency,
multi-query analysis and real-time problems must rely on suitable surrogate models which
can be built according to different strategies (see, e.g., [Niederer et al., 2020] for a recent
review on the topic). In [Coveney et al., 2020, Longobardi et al., 2020, Lei et al., 2020, Ayed
et al., 2019] model emulators, aiming at approximating an input-output map by fitting a set
of training data, are obtained by means of Polynomial Chaos Expansions, Gaussian Process
(GP) regression or artificial neural networks (ANNs), possibly including physical laws in their
definition [Sahli Costabal et al., 2020]. Surrogate models may also consist in lower-fidelity
models, such as, for instance, the Eikonal [Colli Franzone et al., 2014] and the reaction-
Eikonal models [Neic et al., 2017], and reduced order models (ROMs) which potentially are
capable of more accurate approximations than data fitting techniques, yielding more signifi-
cant computational savings than lower-fidelity models.

Reduced order modeling techniques aim at replacing the FOM by a reduced order model
(ROM), featuring a much lower dimension, yet capable to express the physical features of
the problem at hand. Projection-based methods are a widespread family of ROM tech-
niques, among which the reduced basis (RB) method (relying, e.g., on proper orthogonal
decomposition (POD) [Chatterjee, 2000]), under the form of either POD-Galerkin or POD-
Petrov-Galerkin methods, represents one of the most popular options [Quarteroni et al.,
2016]. The basic assumption underlying projection-based methods is that the solution of a
parameter-dependent PDE lies on a low-dimensional manifold, which can be approximated
by a linear trial manifold spanned by a set of basis functions [Benner et al., 2017, Benner
et al., 2015], built from a set of FOM snapshots employing, e.g., POD. In this case, the ROM
approximation is given by the linear superimposition of POD modes, whose degrees of free-
dom (depending both on time and parameters) result from the solution of a low-dimensional
(nonlinear, dynamical) system, obtained through a (Petrov-)Galerkin projection onto a lin-
ear test subspace, which might coincide with the trial subspace. Being able to assemble
such a ROM efficiently, for any new parameter instance, is granted at the price of a further
hyper-reduction stage on the FOM arrays, usually exploiting techniques like the (discrete)
empirical interpolation method (DEIM) [Chaturantabut and Sorensen, 2010] or the gappy
POD [Willcox, 2006].

ROMs for parametrized PDEs rely on a suitable offline-online computational splitting:
computationally expensive tasks required to build the low-dimensional subspace, and assem-
ble all the ROM arrays, are performed once for all during the so-called offline (or ROM
training) stage, then allowing to compute – ideally – in an extremely efficient way the ROM
approximation for any new parameter value, during the so-called online (or ROM testing)
stage. This computational strategy, however, breaks down if (i) the dimension of the linear
trial subspace becomes very large (compared to the intrinsic dimension of the solution mani-
fold being approximated), or (ii) the hyper-reduction stage, used to approximate parameter-
dependent nonlinear terms, requires linear subspaces whose dimension becomes very large,
too, in order to provide an approximation to FOM arrays sufficiently accurate. These can be
recurrent issues when dealing with nonlinear, time-dependent parametrized PDEs, and (i)
we aim at building a ROM able to provide problem approximations uniformly accurate over
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the whole parameter space, (ii) the parametrized problem features coherent structures (e.g.,
transport or wave phenomena) that propagate over time and strongly depends on parameters.
Last, but not least, ensuring ROM stability might require additional care, e.g., when dealing
with fluid flows using a mixed formulation (e.g., a velocity-pressure formulation for Navier-
Stokes equations) [Dal Santo et al., 2019, Ballarin et al., 2015, Rozza and Veroy, 2007, Rozza
et al., 2013]. A possible way to overcome the limitations shown by ROMs relying on a global
linear trial manifold consists in using local reduced bases, built through POD after the set
of snapshots has been split into clusters, according to suitable clustering (or unsupervised
learning) algorithms [Amsallem et al., 2012, Amsallem et al., 2015].

Cardiac EP represents an extremely challenging test bed for traditional reduced order
modeling techniques. This is primarily due to the high variability characterizing the solution
manifold (with respect to the problem parameters), as well as to the nonlinear nature of
the input-output maps that we intend to reconstruct numerically; indeed, cardiac EP mod-
els feature coherent structures that propagate over time. In particular, as soon as re-entry
and re-entry break-up, the most recognized cellular mechanisms sustaining atrial tachycardia
(AT) and atrial fibrillation (AF) [Nattel, 2002], are considered, wavefronts show an abnormal
but still regular, in the former case, and chaotic and disorganized, in the latter one, activation
patterns. These systems can hardly be reduced to lower dimensional problems by conven-
tional ROMs such as, the RB method. At the best of our knowledge, a reliable, efficient
and accurate ROM for parametrized physiological and pathological problems in cardiac EP
is still lacking. An example is provided in [Pagani et al., 2018] where a local POD-Galerkin
ROM has been proposed to handle physiological cardiac EP. Moreover, no attempt to con-
struct a comprehensive reduced order modeling framework to efficiently deal with Bidomain
equations or pathological scenarios, such as re-entry and re-entry break-up solutions, has
been made yet. There are instead examples in which chaotic dynamical systems have been
solved by means of deep learning algorithms. For instance, in [Pathak et al., 2018a, Pathak
et al., 2018b], a hybrid forecasting scheme, based on reservoir computing in conjunction with
knowledge-based models, is successfully applied to prototype spatiotemporal chaotic prob-
lems, as the Kuramoto-Sivashinsky equation in a chaotic regime. Moreover, a DL model for
a model-free forecast of a chaotic dynamical system from noisy observations is developed in
[Yeo, 2017].

In this Thesis, we propose a new generation of non-intrusive, nonlinear ROM techniques
based on deep learning (DL) algorithms, which we refer to as DL-ROM, to deal with the con-
struction of efficient ROMs in order to tackle parameter-dependent PDEs; in particular, we
focus on PDEs featuring wave phenomena, such as, cardiac EP equations both in physiologi-
cal and pathological scenarios, although several other scenarios dealing with different models
are considered for the numerical assessment of the proposed techniques. Several recent works
have shown possible applications of DL algorithms for solving PDEs – thanks to their abil-
ity of effectively approximating nonlinear maps, and by their ability to learn from data and
generalize to unseen data – both from a theoretical [Kutyniok et al., 2019, Opschoor et al.,
2020, Laakmann and Petersen, 2020, Petersen and Voigtlaender, 2018] and a computational
standpoint. For example, Karniadakis and coauthors replace the FOMs by physics-informed
neural networks (PINNs) [Raissi and Karniadakis, 2018, Raissi et al., 2017a, Raissi et al.,
2017b, Raissi et al., 2019] trained by minimizing the residual of the PDEs, computed by
means of automatic differentiation [Baydin et al., 2018]. In particular, in [Raissi, 2018] this
framework is applied to the Kuramoto-Sivashinsky equation, in a chaotic regime, however, the
algorithm leads to unsatisfactory approximations. A similar approach to PINNs can be found
in [Han et al., 2017] and [Yang and Perdikaris, 2018] where physics-informed deep generative
models, that is generative models based on DL algorithms, aiming at computing the solution
of PDEs, are presented. DL techniques for parametrized PDEs have also been proposed in
various recent works. In [Guo and Hesthaven, 2018, Guo and Hesthaven, 2019, Hesthaven
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and Ubbiali, 2018, Kast et al., 2020] feedforward neural networks have been employed to
model the reduced dynamics in a less intrusive way, that is, avoiding the costs entailed by
projection-based ROMs, but still relying on a linear trial manifold built, e.g., through POD.
In [Kani and Elsheikh, 2017, Mohan and Gaitonde, 2018, Wan et al., 2018, Pulch and Youssef,
2020, Bērzinš et al., 2020] the construction of ROMs for nonlinear, time-dependent problems
has been replaced by the evaluation of regression models based on ANNs. A similar ap-
proach can be found in [Regazzoni et al., 2019], where ANNs, such as feedforward neural
networks, have been employed to model the reduced dynamics in a data-driven way, starting
from input-output pairs generated through the FOM. In [San and Maulik, 2018, Wang et al.,
2020] the authors address closure problems by means of feedforward and recurrent neural
networks, that is the effects of POD truncated modes are modeled by DL models. In [Dal
Santo et al., 2020] a neural network embedding a RB solver is presented and applied to steady
parametrized problems. A first effort to include governing equations in the formulation of
the ROM is presented in [Chen et al., 2020] where the linear ROM degrees of freedom are
approximated by means of a feedforward neural network trained by minimizing the mean
squared residual error. Similar results can be found in [Kani and Elsheikh, 2018] where
residual neural networks are employed, having them the same definition of the forward Euler
time scheme, to solve subsurface multi-phase flow. In [González and Balajewicz, 2018, Lee
and Carlberg, 2020, Kim et al., 2020] the reduced trial manifold where the approximation is
sought is modeled through ANNs, thus avoiding the linear superimposition of POD modes,
on a minimum residual formulation to derive the ROM [Lee and Carlberg, 2020, Kim et al.,
2020], or without considering an explicit parameter dependence in the differential problem
[González and Balajewicz, 2018]. In all these works, coupled problems have never been con-
sidered. Moreover, very often DL techniques have been exploited to address problems which
require only a moderate dimension of linear subspaces when dealing with projection-based
ROMs.

To overcome the limitations of projection-based ROMs, we propose a strategy to construct
DL-ROMs for nonlinear time-dependent parametrized PDEs in a non-intrusive way, exploiting
deep neural networks as main building block, and a set of FOM snapshots. The proposed DL-
ROM technique merges data-driven and physics-based models. Indeed, it exploits snapshots
taken from a set of FOM solutions (for selected parameter values and time instances) and
deep neural network architectures to learn, in a non-intrusive way, both (i) the nonlinear
trial manifold where the ROM solution is sought, and (ii) the nonlinear reduced dynamics.
In a linear ROM built, e.g., through POD, the former quantity is nothing but a set of basis
functions, while the latter task corresponds to the projection stage in the subspace spanned by
these basis functions. The nonlinear trial manifold is learnt by means of the decoder function
of a convolutional autoencoder (AE) neural network, whereas the reduced dynamics through
a (deep) feedforward neural network (DFNN), and the encoder function of the convolutional
AE.

In this Thesis, we show that DL-ROMs outperform POD-Galerkin ROMs – even involving
local reduced bases – regarding both numerical accuracy (for the same ROM dimension) and
computational efficiency during the online (or testing) stage, when applied to problems that
are typically challenging for the RB method (such as, e.g., linear transport equation, nonlinear
diffusion-reaction equations whose solution develops moving fronts depending on parameters)
or problems featuring reduced bases with usually large dimension. Moreover, a key aspect,
yet not addressed by DL-ROMs and investigated in the second part of this work, deals with
the enhancement of the computational efficiency of DL-ROMs during the offline (or training)
stage, which is also strongly related with the curse of dimensionality. In particular, a strategy
is proposed to enhance DL-ROMs in order to make the offline training stage dramatically
faster, allowing for much larger FOM dimensions, without affecting the number of networks
parameters to be estimated and, ultimately, network complexity. This strategy exploits (i)
dimensionality reduction of FOM snapshots through randomized POD (rPOD) [Szlam et al.,
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2014], to be considered as the action of the first layer of the convolutional AE, rather than the
way to generate the linear trial manifold, as done instead in traditional POD-Galerkin ROMs,
and (ii) a suitable multi-fidelity pretraining stage [Goodfellow et al., 2016], where different
models (built, e.g., by considering coarser discretizations or simplified physical models) can
be efficiently combined, to iteratively initialize the network parameters. These substantial
enhancements of the DL-ROM technique provide a new way to build DL-based ROMs, which
we refer to POD DL-ROM.

(POD) DL-ROMs are then shown to be able to effectively handle parametrized problems
in cardiac EP, accounting for both physiological and pathological conditions, in order to pro-
vide fast and accurate solutions. Whether DL-ROM is computationally efficient during the
testing stage, that is for any new scenario unseen during the training stage, POD DL-ROM
also enables fast training stages, that is it improves the weakest aspect and still takes advan-
tage of the key properties of DL-ROM. Firstly, we demonstrate that our (POD) DL-ROM
provides accurate results by constructing ROMs with extremely low-dimension in prototypi-
cal test cases. These tests all exhibit the relevant physical features which make the numerical
approximation of parametrized problems in cardiac EP a challenging task. In particular,
we consider snapshots arising from both a FE method and IGA [Cottrell et al., 2009] spa-
tial approximations. IGA has been successfully applied to cardiac EP, modeled through the
Monodomain or the Bidomain equations, in [Patelli et al., 2017, Pegolotti et al., 2019, Bucelli
et al., 2020] where basis functions with high polynomial degree and global high order conti-
nuity in the computational domain have been considered. The authors show that the use of
such basis functions is beneficial to the accurate approximation of the solution of cardiac EP
problems. It is also worthy to highlight that so far only few works provide a combination of
IGA with reduced order modeling. For example, in [Garotta et al., 2020, Salmoiraghi et al.,
2016] IGA is embedded as FOM option in a ROM, where this latter is built by means of POD,
and a pipeline integrated with free-from deformation, used for geometrical parametrization,
is proposed. RB-IGA ROMs have been presented in [Manzoni et al., 2015, Rinaldi et al.,
2015] and applied to steady potential flows and shell structural problems, respectively. In
[Zhu et al., 2017a, Zhu et al., 2017b] IGA is used in combination with POD for reduced or-
der modeling of linear parabolic PDEs and the time-dependent parameterized acoustic wave
equation. Moreover, IGA snapshots are employed in [Haghighat et al., 2020] to train PINNs
in order to solve the linear elasticity equation. Our interest in IGA is related to the ability
of high order polynomials, with high order global continuity, to control and limit numerical
dispersion thus accurately capturing wavefronts [Dedè et al., 2015, Pegolotti et al., 2019] and
the smothness in the representation of the computational domain [Cottrell et al., 2009].

Finally, the performance of the POD DL-ROM technique is assessed on relevant test cases
in cardiac EP on realistic geometries, both in physiological and pathological scenarios. These
examples demonstate to be remarkable challenging tasks for reduced order modeling due to
the steep wavefronts, the complex activation patterns associated to pathological scenarios,
the high FOM dimension and the complexity of the geometries. (POD) DL-ROMs show to
yield accurate and extremely efficient numerical approximations. This is particularly useful in
view of the evaluation of patient-specific features to enable the integration of computational
methods in current clinical practice; indeed outputs of clinical interest, such as activation
maps, APs, electrograms and ablation targets can be more efficiently evaluated by the POD
DL-ROM than by a FOM, while maintaining a high level of accuracy.

Original contributions

This Thesis presents several original contributions from both a methodological and an ap-
plicative standpoints. The original methodological contribution consists in the development
of a new generation of non-intrusive, nonlinear techniques to build ROMs for parametrized
PDEs, based on pioneering DL algorithms, which we refer to as DL-ROM. The aim is to effi-
ciently and accurately handle nonlinear time-dependent parametrized PDEs featuring coher-
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ent structures which propagate over time, such as transport, wave, or convection-dominated
phenomena. The strategy we propose to enhance DL-ROMs, in order to make the offline
training stage faster, which we refer to as POD DL-ROM, yield efficient numerical approx-
imations to nonlinear time-dependent parametrized (vectorial) PDEs, by means of a prior
dimensionality reduction, obtained through rSVD, and a suitable multi-fidelity pretraining,
leading to the possibility to solve in real-time, during the online testing stage, parametrized
PDEs modeling physical phenomena whose time scale is less than a second. From an ap-
plicative standpoint, (POD) DL-ROM has been successfully applied to different problems,
with a particular emphasis on physiological and pathological cardiac EP, modeled through
the Monodomain or the Bidomain equations coupled with suitable ionic models, and to dif-
ferent spatial discretization, such as the FE method and IGA. The proposed POD DL-ROM
framework can efficiently perform the training and testing phases and provide real-time so-
lutions to parametrized EP problems, thus enabling multi-scenario analysis in physiological
and pathological cases. At the best of our knowledge, there have not been efforts in triyng
to reduce the computational complexity associated to the re-entry and the re-entry break-up
problems, which then represents a further innovation feature of this Thesis.

Thesis organization

The thesis is organized as follows:

• Chapter 1. We provide a brief introduction on cardiac electrophysiology and the most
relevant related pathologies, such as atrial tachycardia and atrial fibrillation. We review
the most relevant mathematical models for cardiac electrophysiology and the complete
derivation of the spatial (and temporal) discretization of the models we use to describe
the electrical activity of the heart. We perform several numerical tests, which, at the
best of our knowledge, are an example of the most advanced and complex problems
tackled by means of Isogeometric Analysis in the cardiac electrophysiology context, in
order to highlight the strong variability of the solution of these systems with respect to
input parameters, such as conductivities, ionic models parameters and applied currents,
motivating in this way the need of suitable reduced order models.

• Chapter 2. For the sake of computational efficiency, we show how to design nonlinear
reduced order models by reinterpreting the classical ideas behind linear reduced order
models for parametrized PDEs. Moreover, we review useful facts about deep learning
and provide an overview of the models we rely on, to construct our new reduced order
models, namely deep feedforward, convolutional and autoencoder neural networks.

• Chapter 3. We detail the construction of DL-ROMs, whose accuracy is numerically
assessed by considering three different test cases of increasing complexity (with respect
to the parametric dependence and the nature of the PDE) and by setting up nonlinear
reduced order models whose dimension is nearly equal (if not equal) to the intrinsic
dimension of the solution manifold that we aim at approximating.

• Chapter 4. We assess the computational performances of the proposed DL-ROM
strategy on five relevant test cases in cardiac electrophysiology. This choice of numer-
ical tests is aimed at highlighting the computational performance of the DL-ROMs in
challenging electrophysiology problems, namely pathological cases in portion of cardiac
tissues, such as the presence of an ischemic region and the figure of eight re-entry, or
physiological scenarios on realistic left ventricle geometries.

• Chapter 5. We extend the DL-ROM to the POD-enhanced version, which we refer to
as POD DL-ROM, to make the offline training stage dramatically faster, by means of
prior dimensionality reduction, achieved through randomized singular value decomposi-
tion, and multi-fidelity pretraining, and we assess the numerical accuracy and efficiency
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on three different test cases, namely advection-diffusion-reaction, elastodynamics and
Navier-Stokes equations, in order to highlight the robstuness of the approach.

• Chapter 6. We test the proposed POD DL-ROM strategy on benchmark test cases
in cardiac electrophysiology, by highlighting the improvements introduced by the tech-
nique. We investigate the use of pretraining in three different scenarios: increasing the
dimension of the full order model, enlarging the dimension of the parameter space and
varying the geometry of the problem.

• Chapter 7. We assess the POD DL-ROM on challenging large-scale physiological and
pathological examples on realisitic geometries, that is the three-dimensional Zygote left
ventricle and the idealized NURBS left atrium surface geometries, by providing to POD
DL-ROM snapshots arising from both finite-element method and Isogeometric Analysis
discretizations, and by efficiently carrying out the training phase and providing real-
time approximations at the testing stage.
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Chapter 1
Cardiac electrophysiology:
mathematical and numerical modeling

This Chapter aims at providing a brief introduction on the mathematical and numerical
models describing cardiac electrophysiology (EP). We introduce the basic principles of the
heart phyisiology and function, and its electrical activity, as well as the main arrhythmias
related to the propagation of the electrical signal in the atria, atrial tachycardia (AT) and
fibrillation (AF). We review the most relevant mathematical models for cardiac EP depending
on the scale at hand: at the microscopic level, systems of ordinary differential equations
(ODEs) describe the cellular action potential generated by ionic currents through the cellular
membrane, while at the macroscopic level, PDEs characterize the propagation of the action
potential on the cardiac tissue. We recall the basic numerical techniques for the approximation
of cardiac EP equations. Finally, we perform several numerical tests showing the strong
dependence of the solution of cardiac EP equations on problems parameters and the need to
perform multi-query analysis in order to account for different scenarios.

1.1 Overview of cardiac physiology

The heart is a double pump comprised of four chambers: two atria, the left atrium (LA)
and the right atrium (RA), and two ventricles, the left ventricle (LV) and the right ventricle
(RV). The atrioventricular septum separates the atria from the ventricles and let blood flows
from the former to the latter through the tricuspid valve in the right part and through the
mitral valve in the left part of the heart [Jarvik, 2004]. Non-oxygenated blood enters the RA
through the superior and inferior venae cavae and gets pumped first into the right ventricle,
then through the pulmonary valve and into the pulmonary circulation, where it is oxygenated
by the lungs. The pulmonary veins let the flow coming from the lungs enter the left part of the
heart, from which the blood is pumped again into the aorta and to the systemic circulation
of the body [Altman and Dittmer, 1971, Opie, 2004]. The scheme of the heart anatomy is
shown in Figure 1.1.

Muscle contraction and relaxation drive the pump function of the heart. In particular,
tissue contraction is triggered by electrical signals self-generated in the heart and propagated
through the myocardium thanks to the excitability of the cardiac cells, the cardiomyocites,
see, e.g., [Colli Franzone et al., 2014, Klabunde, 2011]. When suitably stimulated, cardiomy-
ocites produce a variation of the potential across the cellular membrane, called transmembrane
potential. Its evolution in time is usually referred to as action potential (AP), involving a
depolarization and a polarization in the early stage of every heartbeat. The action potential
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Figure 1.1: Anatomy of the anterior view of a frontal section of the heart.

is generated by several ion channels (e.g., calcium, sodium, potassium) that open and close,
and by the resulting ionic currents crossing the membrane. Five phases of the AP are identi-
fied (see Figure 1.2) [Colli Franzone et al., 2014]. During phase 0 (depolarization), the Na+

ionic channels of the sarcolemma, the lipid membrane that encloses cardiomyocytes, open,
allowing a free flow of positive ions into the cell. Consequently, the transmembrane potential
passes from a negative resting value of −84 mV to positive values. We denote with phase 1
the rapid decrease of potential due to an outward flow of K+ and Cl− ions, occurring after
the inactivation of the Na+ channels. Phase 2 is characterized by both an inward current –
caused by the transit of Ca2+ – and an outward current – caused by the transit of K+. This
balance maintains the potential almost constant; usually, we refer to this phase with the term
“plateau”. The repolarization of the cell – phase 3 – is a consequence of the closing of the
Ca2+ channels. At this stage, the outward current is still due to the flow of K+ that causes
the potential to return to negative values of −80/−85 mV. During phase 4 the potential is
kept at a constant value of −84 mV. Some of the K+ ionic channels remain open, in order to
guarantee the correct concentrations of ions outside and inside the cell. The cardiomyocyte
stays in the resting phase until the next electric stimulation. The electrical signal propagates
from one cardiomyocite to the surrounding ones because of the gap junctions located at the
binding sites of adjacent cells.

The electric excitation of the heart starts in the RA at the sinoatrial node [Brooks and Lu,
1972], the natural pacemaker of the heart because of the ability of its cells to autonomously
excite themselves, and travels across the atrial cardiac tissue. The signal travels from the RA
to the LA through four muscular bundles [Sakamoto et al., 2005]: the Bachmann’s bundle,
the anterior septum, the posterior septum and the coronary sinus musculature. When the
excitation front reaches the atrioventricular node, located at the basis of the RA, the signal
is transmitted from the atria to the ventricles after a delay of about 100 ms, due to the
slow conduction characterizing the cells in this area, as it travels along the bundle of His
and Purkinje fibers [Dzialowski and Crossley, 2015]. Such delay is important to establish the
synchronized contraction of atria and ventricles and to determine the right cardiac rhythm.

1.1.1 Atrial tachycardia and atrial fibrillation

Heart rhythm alterations (arrhythmias) affect millions of people [Alonso and Bengtson, 2014]
and consist in conditions in which the heartbeat is irregular. There are two major types
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Figure 1.2: Evolution of the transmembrane potential vs. time during the AP [Colli Franzone
et al., 2014].

of arrhytmias involving the upper chambers (atria) of the heart: atrial tachycardia and
fibrillation. Atrial tachycardia (AT) occurs when the atria beat too quickly, in a fast but
usually regular way, at rate higher than 100 beats per minute. ATs may be classified into
two broad categories: focal and macro-re-entrant ATs [Garćıa-Cośıo et al., 2012]. Focal
ATs are defined as arrhythmias that arise from a circumscribed site of early activation and
propagate to the atria in a centrifugal pattern. In macro-re-entrant ATs, atrial activation
occurs in a continuous, uninterrupted manner because of a wavefront rotating around an
obstacle consisting in anatomical structures (venous or valvular orifices), scars, or areas of
functional block. In general, in these cases, the diameter of the circuit is greater than or
equal to 2 cm [Garćıa-Cośıo et al., 2012]. Atrial Fibrillation (AF) is the most common
type of cardiac arrhythmia, affecting the 2% of world population [Morillo et al., 2017], and
verifies when the heart electrical signal propagates in a rapid and irregular way throughout
the atria [Nishida and Nattel, 2014]. During AF, atrial cells fire at rates up to 200-600
times per minute with respect to 60-80 beats per minute in healthy conditions at rest. Three
clinical type of AF can be distinguished [Ogawa et al., 2018]: paroxysmal AF (episodes of
arrhythmia that terminate spontaneously), persistent AF (episodes that continue for more
than 7 days and are not self-terminating), and permanent AF (ongoing long-term episodes).
Paroxysmal forms of AF show a predominance of local triggers/drivers, particularly from
pulmonary veins (PVs). As AF becomes more persistent and eventually permanent, reentry
substrates (initially functional and then structural) predominate [Iwasaki et al., 2011] (see
Figure 1.3). AF is the major cause of heart failure and stroke [Kannel et al., 1982]. Indeed,
it may lead to heart failure because the heart contraction is no longer effective. Moreover, it
increases the risk of blood clots formation inside the atria and, if those clots travel through
the bloodstream, it might ultimately lead to stroke. AF is the single most important cause
of ischemic stroke in people older than 75-years old.

The mechanisms sustaining AT and AF have not been clearly identified, however macro-
re-entry and re-entry break-up can be seen as cellular mechanisms undergoing the pathologies
[Nattel, 2002]. Re-entry is a cellular mechanism where the electric signal does not complete
the normal circuit, but rather follows an alternative path looping back upon itself and de-
veloping a self-perpetuating rapid and abnormal activation. Re-entries can be divided into
two major types: anatomical and functional re-entry [Colli Franzone et al., 2014]. In the
first case, re-entries develop around an anatomical obstacle, such as fibrosis, scar or slow
conduction regions [Boyle et al., 2018, Saha et al., 2018]. In the following, we will focus on
functional re-entries and to understand this mechanism we consider two zones of tissue, I
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Figure 1.3: Clinical AF forms and relation to mechanisms [Iwasaki et al., 2011].

and II, which are connected as in Figure 1.4, an ectopic complex arising in zone II during
the refractory period (RP) of zone I (the period in which the cells in zone I do not respond
to a stimulus) will initially fail to activate zone I. The stimulus may propagate through an
alternative path to return to zone I when its RP is over causing reactivation at this site. At
this point, the signal leaves zone I and, if the time to return to zone II is sufficiently long,
zone II will be reactived and the process can continue indefinitely. AT may be maintained by

Figure 1.4: Re-entry occurring between two tissue zones, I and II [Nattel, 2002].

stable macro re-entry whereas, during an AF episode, multiple coexisting unstable re-entries
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can be observed, that is a single spiral wave is fragmented into a spatiotemporally chaotic
pattern comprising many wavelets of various sizes, the so-called re-entry break-up. The major
determinant of re-entry behavior, break-up or not, is the action potential duration (APD)
restitution [Clayton and Taggart, 2005]. It refers to the curve relating APD to the previous
diastolic interval (DI), the time between the end of the previous AP and the start of the next
one (a sketch is reported in Figure 1.5 (left)). A way to measure the APD restitution curve is
shown in Figure 1.5 (right) where the interval between the two stimuli, S1 and S2, is reduced
until a wavefront can be elicited. The slope of the APD restitution curve is a measure of the
recovery processes of all the ion channels. Numerical studies of alternans instability in two
dimensions show that instability due to a steep restitution curve can cause spiral break-up
[Panfilov and Holden, 1990, Karma, 1993]. In particular, in [Qu et al., 2010] the authors
show that a steep APD restitution curve, that is the restitution relation has a slope steeper
than 1, causes a dynamical instability of the system relating the APD to the DI, that is the
equilibrium point becomes unstable.

Figure 1.5: Left: APD restitution curve [Qu et al., 2010]. Right: S1-S2 protocol for deter-
mining APD restitution [Qu et al., 2010].

Several treatment options of AT and AF are available, including drug therapy, but the
available drugs are not specific for atrial electrical activity and can have profound effects on
ventricular EP, cardioversion and catheter ablation [Narayan et al., 2012a]. The latter is a
procedure used to destroy the arrhytmia driving tissue [Narayan et al., 2012b]. A series of
catheters are put into a blood vessel in the arm, groin or neck. The wires are guided into the
heart and a special system sends radiofrequency energy which destroys small areas of heart
tissue. Catheter ablation normally consists in isolating the PVs and destroying rotors cores
but it is still to be proved that ablating the tips is useful [Allessie and de Groot, 2014, Narayan
and Jalife, 2014]. Identifying the optimal target of ablation is far from being trivial, and the
issue remains open and stands as the focus of several efforts by the scientific community.

1.2 Mathematical models for cardiac electrophysiology

The electrical activation of the heart, which drives its contraction, is the result of two processes
[Quarteroni et al., 2017, Quarteroni et al., 2019, Colli Franzone et al., 2014]: the generation of
ionic currents through the cellular membrane producing a local AP, at the microscopic scale;
and the propagation of the AP from cell to cell in the form of a transmembrane potential,
at the macroscopic scale. This latter process can be described by means of PDEs, suitably
coupled with systems of ODEs modeling the ionic currents in the cells.

In order to model the propagation of the electric signal in the heart, we may consider the
so-called Bidomain equations [Colli Franzone et al., 2014, Geselowitz and Miller III, 1983]
in a domain Ω ⊂ Rd, with d = 2, 3, representing a portion of the myocardium, considered
as a continuum composed by two interpenetrating domains, the intra- and the extracellular
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spaces. Each point x ∈ Ω is associated with the intracellular potential ui, the extracellular
potential ue, and the transmembrane potential u = ui − ue.

Coupling the parabolic-elliptic formulation of the Bidomain model for the transmembrane
potential u = u(x, t) and the extracellular potential ue = ue(x, t) with a phenomenological1

model for the ionic currents – involving a single gating variable w = w(x, t) – results in the
following nonlinear time-dependent system





∂u

∂t
− div(Di∇u)− div(Di∇ue) + Iion(u,w) = Iiapp (x, t) ∈ Ω× (0, T ),

−div(Di∇u)− div((Di + De)∇ue) = Iiapp + Ieapp (x, t) ∈ Ω× (0, T ),

∂w

∂t
+ g(u,w) = 0 (x, t) ∈ Ω× (0, T ),

Di∇(u+ ue) · n = 0 (x, t) ∈ ∂Ω× (0, T ),

(Di + De)∇ue · n + Di∇u · n = 0 (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0, w(x, 0) = w0 x ∈ Ω.

(1.1)

Here t and u may denote a rescaled and dimensionless time and trasmembrane potential,
depending on the ionic model considered2, n denotes the outward directed unit vector normal
to the boundary ∂Ω of Ω, whereas Iiapp = Iiapp(x, t) and Ieapp = Ieapp(x, t) are the intra-
and the extracellular applied currents representing, e.g., the initial activation of the tissue.
The parabolic nonlinear diffusion-reaction equation for u is two-way coupled with the ODE
system, which must be in principle solved at any point x ∈ Ω; indeed, the reaction term
Iion and the function g depend on both u and w. The most common choices for the two
functions Iion and g in order to efficiently reproduce the AP are, e.g., the FitzHugh-Nagumo
[FitzHugh, 1961, Nagumo et al., 1962], the Aliev-Panfilov [Aliev and Panfilov, 1996, Nash
and Panfilov, 2004], the Roger-McCulloch [Rogers and McCulloch, 1994] or the Mitchell
and Schaeffer models [Mitchell and Schaeffer, 2003]. The diffusivity tensor Di,De usually
depends on the fibers-sheet structure of the tissue, affecting directional conduction velocities
and directions. In particular, by assuming an axisymmetric distribution of the fibers, the
intra- and extracellular conductivity tensors take the form

Di(x) = σit I + (σil − σit) f0 ⊗ f0,

De(x) = σet I + (σel − σet ) f0 ⊗ f0,
(1.2)

where σil , σ
e
l and σit, σ

e
t are the conductivities in the fibers and the transversal directions, for

the intra- and extracellular conductivity tensors.

A simplified model, compared to the Bidomain model, is given by the Monodomain equa-
tion [Colli Franzone et al., 2014], written only in terms of the transmembrane potential u.
Indeed, by assuming that the intra- and the extracellular conductivity tensors are such that
Di = λDe, it is possible to simplify the Bidomain equations (1.1). By setting

D =
1

1 + λ
Di and Iapp =

λ

1 + λ
Iiapp +

1

1 + λ
Ieapp,

1Ionic models may be divided into three categories [Sundnes et al., 2006]: phenomenological, first gener-
ation, and second generation models. Phenomenological models describe the AP from the perspective of an
external observer, without accounting for the underlying physiology. On the contrary, first and second gen-
eration models attempt to include a description of the mechanisms of the cell; while the former are based on
simplified formulations to approximate the electrical behavior, the latter use instead sophisticated techniques
allowing to represent sub-cellular processes. In the following, we will focus only on phenomenological models.

2In the A-P ionic model, dimensional times and potentials are given by t̃ = 12.9t [ms] and ũ = (100u −
80) [mV ]. The transmembrane potential ranges from the resting state of −80 mV to the excited state of +20
mV.
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the resulting coupled Monodomain system reads




∂u

∂t
− div(D∇u) + Iion(u,w) = Iapp(x, t) (x, t) ∈ Ω× (0, T ),

∂w

∂t
+ g(u,w) = 0 (x, t) ∈ Ω× (0, T ),

∇u · n = 0 (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0, w(x, 0) = w0 x ∈ Ω,

(1.3)

where the conductivity tensor is defined as

D(x) = σt I + (σl − σt) f0 ⊗ f0. (1.4)

When a simple phenomenological ionic model is considered, such as the FitzHugh-Nagumo,
the Aliev-Panfilov (A-P) [Aliev and Panfilov, 1996] or the Roger-McCulloch (R-M) [Rogers
and McCulloch, 1994] model, the ionic current takes the form of a cubic nonlinear function of
u and a single (dimensionless) gating variable plays the role of a recovery function, allowing
to model refractoriness of cells. In this work, we focus on the simple phenomenological A-P
and R-M ionic models in order to decrease the computational costs associated to the solution
of (1.1) and (1.3). The first consists in taking

Iion(u,w) = Ku(u− a)(u− 1) + uw,

g(u,w) =
(
ε0 +

c1w

c2 + u

)
(−w −Ku(u− b− 1)),

(1.5)

where the parameters K, a, b, ε0, c1, c2 are related to the cell. Here a represents an oscillation
threshold, whereas the weighting factor ε0 + c1w

c2+u was introduced in [Aliev and Panfilov,
1996] to tune the restitution curve to experimental observations by adjusting the parameters
c1 and c2; see, e.g., [Clayton et al., 2011, Quarteroni et al., 2017, Quarteroni et al., 2019,
Colli Franzone et al., 2014] for a detailed review.

For the R-M ionic model we rely on the following variant provided in [Rogers and McCul-
loch, 1994]

Iion(u,w) = Gu
(

1− u

uth

)(
1− u

up

)
+ η1uw,

g(u,w) = η2

( u
up
− η3w

)
,

(1.6)

where G, η1, η2, η3 are positive coefficients, vth is a threshold potential, and vp is the peak
potential.

The coupled systems (1.1) and (1.3) depend on several parameters representing either
functional or geometric data such as, e.g., material properties, initial and boundary con-
ditions, or the shape of the domain. Relevant physical situations are those in which input
parameters affect the diffusivity matrix D (through the conduction velocities) and the applied
current Iapp; for previous analyses focused instead on the gating variable dynamics (through
g) and the ionic current Iion, see, e.g., [Pagani et al., 2018].

1.3 Numerical approximation of Monodomain and Bido-
main equations

In this Section we provide the algebraic formulation arising from the spatial and time dis-
cretization of systems (1.3) and (1.1). Regarding the spatial discretization, we consider either
the Galerkin-finite element (FE) method [Quarteroni and Valli, 1994] or NURBS-based Iso-
geometric Analysis (IGA) in the formulation of the Galerkin method [Quarteroni, 2013]. As
for example, we present the discretization of the Monodomain equation (1.3) by means of the
FE method and the Bidomain equations (1.1) by means of IGA. We will briefly discuss the
pros & cons of the methods at the beginning of the next Section.
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1.3.1 Discretization of the Monodomain equation: Galerkin-FE
method

Here we provide the complete derivation of the spatial (and temporal) discretization of system
(1.3). Hereon, whenever clear, we omit the dependence on the spatial variables x.

We first state the weak formulation of problem (1.3), which stands at the basis of the
numerical approximation of the problem, obtained with the Galerkin-FE method. The weak
formulation of problem (1.3) reads: given Iapp(t) ∈ L2(Ω), find, for all t ∈ (0, T ), u(t) ∈ X =
H1(Ω) and w(t) ∈ L2(Ω) such that

∫

Ω

(
∂u

∂t
+ Iion(u,w)

)
ψdx +

∫

Ω

D∇u · ∇ψdx =

∫

Ω

Iapp(t)ψdx ∀ψ ∈ H1(Ω),

∫

Ω

∂w

∂t
ηdx =

∫

Ω

g(u,w)ηdx ∀η ∈ L2(Ω),

u(0) = u0, w(0) = w0,

where Ω is a Lipschitz domain of Rd, d = 2, 3.
By introducing a triangulation Th, such that Ω = int( ∪K∈ThK ) (we are assuming, for

the sake of simplicity, that the domain Ω and the computational domain Ωh correspond),
we apply the Galerkin-FE method on a finite-dimensional space Xh ⊂ X(Ω), where Xh =
Xr
h = {vh ∈ C0(Ω) : vh|K ∈ Pr,∀K ∈ Th}, that is the space of globally continuous functions

which are polynomials of order r on each triangle of Th, of (usually very large) dimension
dim(Xh) = Nh; here by h we denote a parameter related to the mesh size of the computational
grid. By denoting with {ϕi}Nhi=1 a set of Lagrangian basis functions of the FE space Xh (see
Figure 1.6 for an example of basis function), we express the discrete approximation of u(x, t)
and w(x, t) by

uh(x, t) =

Nh∑

i=1

ui(t)ϕi(x), wh(x, t) =

Nh∑

i=1

wi(t)ϕi(x),

where the vectors uh = [u1, . . . , uNh ]T and wh = [w1, . . . , wNh ]T are obtained by solving the
following discrete system: find uh = uh(t) and wh = wh(t) such that





M
∂uh
∂t

+ Auh + Iion(t,uh,wh) = Iapp(t) t ∈ (0, T ),

∂wh

∂t
= g(uh,wh) t ∈ (0, T ),

uh(0) = u0, wh(0) = w0.

Here we denote the mass matrix, the stiffness matrix and the activation term by

(M)ij =

∫

Ω

ϕiϕjdx, (A)ij =

∫

Ω

D∇ϕi · ∇ϕjdx, (Iapp(t))j =

∫

Ω

Iapp(t)ϕjdx,

respectively; the vectors accounting for the ionic terms are instead given by

(Iion(uh,wh))j =

∫

Ω

Iion(uh,wh)ϕjdx, (g(uh,wh))j =

∫

Ω

g(uh,wh)ϕjdx.

Concerning the treatment of nonlinear terms and time discretization, we rely on a semi-
implicit, first order, one-step scheme [Colli Franzone and Pavarino, 2004]. Given a partition
(tk, tk+1), with k = 0, . . . , Nt − 1, of (0, T ) into Nt subintervals of length ∆t, at each time-
step tk+1 the nonlinear vector Iion is evaluated around the solution already computed at
time tk. In this way, we can decouple the PDE from the ODE, thus obtaining a linear
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a = x1 xi−1 xi xi+1 xN+1 = b x

y

1

ϕi(x)

Figure 1.6: Basis function of X1
h related to node xi over the interval (a, b) [Quarteroni, 2013].

system to be solved at each time step. Moreover, a ionic current interpolation strategy is
used to evaluate the ionic current term, so that only the nodal values are used to build a
(piecewise linear) interpolant of the ionic current. This is one of the two most common ways
to deal with the evaluation of the ionic current at the quadrature nodes, and ultimately with
the numerical integration of the ionic term Iion, which go under the name of state variable
interpolation (SVI) and ionic current interpolation (ICI), see, e.g., [Pathmanathan et al.,
2010, Pathmanathan et al., 2012]:

• When using SVI, the variables vh, wh are evaluated at the quadrature nodes x̄q, q =
1, . . . , NQ, so that

∫

Ω

Iion(uh,wh)ϕjdx ≈
NQ∑

q=1

Iion

(
Nh∑

i=1

uiϕi(xq),

Nh∑

i=1

wiϕi(xq)

)
ωqϕj(xq),

where {ωq}NQq=1 denote the corresponding quadrature weights. This approach corre-
sponds to the standard Galerkin-FE method.

• When relying on ICI [Pathmanathan et al., 2010], the currents are first evaluated in
the degrees of freedom, and then interpolated at the quadrature nodes, so that

∫

Ω

Iion(uh,wh)ϕjdx ≈
NQ∑

q=1

( Nh∑

i=1

Iion (ui, wi)ϕi(xq)
)
ωqϕj(xq),

in order to reduce the computational cost associated to the assembly of the ionic currents
term, compared to the SVI case.

Moreover, we also remark that since the ionic currents (zero order term) dominates the
diffusion (second order term), a known numerical issue [Burman and Ern, 2003] might occur,
ultimately causing numerical instabilities; to avoid them, we replace the mass matrix with a
lumped mass matrix.

In conclusion, the fully discrete version of the (1.3) reads as: find uk+1
h = uh(tk+1) and

wk+1
h = wh(tk+1) such that u

(0)
h = u0, w

(0)
h = w0 and, for k = 0, . . . , Nt − 1,





wk+1
h −wk

h

∆t
− g(ukh,w

k+1
h ) = 0,

M
uk+1
h − ukh

∆t
+ Auk+1

h + Iion(ukh,w
k+1
h )− Ik+1

app = 0.

(1.7)

All the numerical simulations related to the solution of (1.7) are performed using the FE
MATLAB library IHeart.
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1.3.2 Discretization of the Bidomain equations: Galerkin-NURBS-
IGA method

In FE methods differential problems are solved on polygonal or polyhedral meshes. However,
there are many examples of practical applications, for example in computational mechanics,
in which the domain of interest can not be exactly or smoothly represented by means of
polygons or polyhedra. In such cases mesh generation is the typical intermediate step linking
the geometry design to a suitable solution of the PDE defined on such geometry, i.e. the
computational domain. Mesh generation usually constitutes the most critical aspect of the
workflow for two reasons. The first and most important problem is that meshing the geom-
etry often introduces a level of approximation [Cottrell et al., 2009] (see Figure 1.7). This
is a particularly delicate matter when the geometry presents specific features (e.g. curved
surfaces) that are hardly preserved by the discretization. Secondly, the accuracy of the ap-
proximate solution heavily depends on the quality of the mesh. IGA offers a valid alternative
to methods requiring mesh generation. The smoothness in the representation of the com-
putational domain, which has proved to be relevant in cardiac EP (see, e.g, [Patelli et al.,
2017, Pegolotti et al., 2019]), makes the employment of B-splines and non-uniform rational
B-splines (NURBS) basis functions extremely suited for the spatial approximation of several
families of PDEs, also in virtue of the regularity of these basis functions. In Figure 1.8 we
compare a three-dimensional idealized LA geometry meshed with tetrahedra, with a two-
dimensional NURBS surface of the idealized LA built starting from B-spline basis functions
of degree p = 2, together with control polyhedra.

Figure 1.7: Example of meshing a non polygonal domain [Quarteroni, 2013].

Figure 1.8: Three-dimensional LA computational domain meshed with tetrahedra (left) and
two-dimensional NURBS LA computational domain (right).

NURBS-based IGA [Cottrell et al., 2009] is a concept in which the same NURBS ba-
sis functions employed for the design of the computational domain are used to construct
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the finite-dimensional space in which the numerical approximated solution of the PDE lays.
Globally high order continuous polynomials have proved to control and limit numerical dis-
persion [Dedè et al., 2015], which may lead to artificial fractionated potential fronts, when
dealing with regular solutions, as the sharp but smooth fronts arising in cardiac EP [Pegolotti
et al., 2019]. As our interest is tackle pathological EP, we deem correctly capture these fronts
to be very important. We believe IGA can play a role in accurately representing pathological
EP as tachycardia and fibrillation. Moreover, by considering, for instance, [Pegolotti et al.,
2019] where the authors consider NURBS basis functions with high polynomial degree, p,
and global high order continuity, Cp−1, in the computational domain, it has been proved
that the use of such IGA basis functions is beneficial, in terms of accuracy/efficiency, for the
approximation of the solution of the Bidomain equations, and it also limits dispersion effects
typical of traveling wave phenomena. The same conclusions are drawn in [Patelli et al., 2017]
for the solution of the Monodomain equation. The smoothness of the computational domain,
together with the regularity of the NURBS basis functions, make IGA particularly suited for
surface problems requiring high order polynomials to be used [Pegolotti et al., 2019].

Here we provide the fully discrete version of (1.1). Again, whenever clear, we omit the
dependence on the spatial variables x.

Provided a knot vector Ξ = {ξ1, . . . , ξN}, we denote {R̂pj}nj=1 the set of univariate B-spline
piecewise polynomials of degree p built by means of the Cox-de Boor recursion formula [de
Boor, 1972]; it holds that N = n+ p+ 1, where n is the number of basis functions composing
the B-spline basis. We remark that we rely only on open knot vectors, i.e knot vectors in
which the first and last elements have the same multiplicity p+1. In this way, the knot vector
Ξ determines the polynomial degree p. It also determines the regularity, i.e. the number of
continuous derivatives, of the basis functions over the knots through the multiplicity of the
internal knots. More precisely, given an internal knot ξi, with multiplicity mi, the resulting
basis functions are Cp−mi continuous over ξi. The univariate NURBS basis functions are
generated from B-splines by considering a set of weights {ωj}nj=1 and the weighting function

W =
∑n
i=1 R̂

p
i ωi, and by using the definition

N̂p
j =

R̂pjωj

W
,

where ωj ∈ R and ωj ≥ 0 for j = 1, . . . , n (see Figure 1.9 for an example of univariate NURBS
basis functions). The use of NURBS basis functions is motivated by geometrical needs; indeed
since B-splines are piecewise polynomials, they can not exactly represent common geometries
such as circles, cylinders, and conic sections in general, which can be instead represented by
choosing appropriate weights to be associated with the B-splines. Multivariate B-splines and
NURBS are built by means of the tensor product rule among univariate basis functions.

The weak formulation of problem (1.1) reads: given Iapp(t) ∈ L2(Ω), find u(t) ∈ X =
H1(Ω), ue(t) ∈ X \ R, the latter being the space of functions of X with zero mean value on
Ω, and w(t) ∈ L2(Ω) such that, for all t ∈ (0, T ),

∫

Ω

(
∂u

∂t
+ Iion(u,w)

)
ψdx +

∫

Ω

Di∇(u+ ue) · ∇ψdx =

∫

Ω

Iiapp(t)ψdx ∀ψ ∈ H1(Ω),

∫

Ω

Di∇u · ∇ψdx +

∫

Ω

(Di + De)∇ue · ∇ψdx =

∫

Ω

(Iiapp(t) + Ieapp(t))ψdx ∀ψ ∈ H1(Ω),

∫

Ω

∂w

∂t
ηdx =

∫

Ω

g(u,w)ηdx ∀η ∈ L2(Ω),

u(0) = u0, w(0) = w0,

where Ω is a surface in R3.

Let us consider the multivariate NURBS basis functions {N̂j}nj=1 and the invertible map-

19



Figure 1.9: Examples of univariate NURBS basis functions with knot vector Ξ =
{{0}3, 1/4, 1/2, 3/4, {1}3}, degree p = 2, number of elements nel = 4, number of basis func-
tions n = 6, globally C1 continuous and NURBS weights ω = (1, 1, 1, ω4, 1, 1) with ω4 = 0.1
(left) and ω4 = 0.1 (right).

ping x : Ω̂→ Ω ⊂ R3 defined as

x(s) =

n∑

j=1

N̂j(s)Bj ,

where Bj ∈ R3 is the so-called control points vector. We then apply Galerkin NURBS-based
IGA on a finite-dimensional space Xh ⊂ X(Ω) spanned by the functions {Nj}nj=1, where

Nj = N̂j ◦ x−1, i.e. Xh = X ∩ {Nj}nj=1, of (usually very large) dimension dim(Xh) = n. We
express the discrete approximation of u(x, t), ue(x, t) and w(x, t) by

uh(x, t) =

n∑

j=1

uj(t)Nj(x), ue,h(x, t) =

n∑

j=1

ue,j(t)Nj(x), wh(x, t) =

n∑

j=1

wj(t)Nj(x),

where the vectors uh = [u1, . . . , un]T , ue,h = [ue,1, . . . , ue,n]T and wh = [w1, . . . , wn]T are
obtained by solving the following discrete system: find uh = uh(t), ue,h = ue,h(t) and
wh = wh(t) such that





M
∂uh
∂t

+ Aiuh + Aiue,h + Iion(t,uh,wh) = Iiapp(t) t ∈ (0, T ),

Aiuh + Aue,h = Iiapp(t) + Ieapp(t) t ∈ (0, T ),

∂wh

∂t
= g(uh,wh) t ∈ (0, T ),

uh(0) = u0, wh(0) = w0.

Here we denote the mass matrix, the stiffness matrices and the activation term by

(M)ij =

∫

Ω

NiNjdx, (Ai)ij =

∫

Ω

Di∇Ni · ∇Njdx,

(A)ij =

∫

Ω

(Di + De)∇Ni · ∇Njdx, (Iapp(t))j =

∫

Ω

Iapp(t)Njdx,

respectively; the vectors accounting for the ionic terms are instead given by

(Iion(uh,wh))j =

∫

Ω

Iion(uh,wh)Njdx, (g(uh,wh))j =

∫

Ω

g(uh,wh)Njdx.

The null mean condition on the extracellular potential is given by BTue,h(t) = 0.
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Concerning the treatment of the nonlinear term, by considering Ω = ∪neli=1Ei, that is the
domain is composed by elements Ei, with i = 1, . . . , nel, and by means of the Gauss-Legendre
quadrature formula with s = (p+ 1)(q+ 1) quadrature nodes (p and q being the order of the
piecewise polynomials in the two parametric directions) the integral is numerically computed
as follow. Let Φi : (−1, 1)2 → Ei be the transformation from the reference element to the
ith element for the Gauss-Legendre quadrature formula, and {x̂jq}sj=1 with {ωjq}sj=1 be the
corresponding quadrature nodes and weights, the nonlinear term is computed by following
the SVI approach

∫

Ω

Iion(uh,wh)Nldx ≈
nel∑

i=1

s∑

q=1

Iion
(
uh(xi,jq ), wh(xi,jq )

)
Nl(x

i,j
q ) ωjq|det(Ji)|,

where Ji = ∂Φi/∂x̂ is the Jacobian matrix of Φi with respect to the reference spatial variable
and xi,jq = Φ−1

i (x̂jq).
In order to derive the fully discrete version of the (1.1), we consider a first order splitting

scheme with semi-implicit treatment of the nonlinear term obtained by means of the Backward
Differentation Formulas (BDF) of order 2 [Quarteroni et al., 2008]. In particular, in order
to decrease the computational complexity of implicit time discretization, we employ the
extrapoleted values of uh(t) and wh(t) obtained by linear combination of the solutions at
previous time instants (see [Pegolotti et al., 2019] for further details). Given a partition
(tk, tk+1), with k = 0, . . . , Nt− 1, of (0, T ) into Nt subintervals of length ∆t, by means of the
first order splitting scheme, we solve the problem find: uk+1

h = uh(tk+1), uk+1
e,h = ue,h(tk+1)

and wk+1
h = wh(tk+1) such that u

(0)
h = u0, w

(0)
h = w0 and, for k = 0, . . . , Nt − 1,





wk+1
h −wk+1

h,BDF

∆t
− 1

α0
g(uk+1

h,∗ ,w
k+1
h,∗ ) = 0,

M
uk+1
h − uk+1

h,BDF

∆t
+ Aiu

k+1
h + Aiu

k+1
e,h + Iion(uk+1

h,∗ ,w
k+1
h )− Ii,k+1

app = 0,

Aiu
k+1
h + Auk+1

e,h − Ii,k+1
app − Ie,k+1

app = 0,

BTuk+1
e,h = 0,

(1.8)

where uk+1
h,∗ and wk+1

h,∗ are the extrapolated values of uk+1
h and wk+1

h .
All the numerical simulations related to the solution of (1.8) are performed using the IGA

C++ library isoGlib [Bartezzaghi, 2014].

1.4 Numerical results on atrial tachycardia and atrial
fibrillation

In this work we want to handle parametrized problems arising in cardiac EP. In particular,
we are interested in setting up a computational strategy to understand, study and perform
multi-scenario analysis in the pathological context. In this Section, after a brief discussion
about the pros & cons of the two numerical methods employed in the previous Section, i.e.
the FE and IGA methods, we provide the numerical results, obtained by solving the Bidomain
equations by means of NURBS-based IGA, both on a square slab of cardiac tissue and on
idealized LA surface geometry, related to abnormal conditions of propagation of the electrical
signal, such as re-entry and re-entry break-up, cellular mechanisms introduced in Subsection
1.1.1.

1.4.1 Comparison between FE and NURBS-based IGA methods

In the previous Section, we provide the full discretizion of systems (1.3) and (1.1) by means
of the FE and NURBS-based IGA methods, respectively. In Table 1.1 we compare the
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properties of the two numerical methods considered. NURBS-based IGA smoothly represents
the computational domain, starting from, for example, medical images, due to the use of
NURBS basis functions with high polynomial degree and high order global continuity, with
respect to the FE method, which instead exploit polyhedra elements. In addition to the
smooth representation of the geometry, high order polynomials with high order continuity
require a lower number of DOFs, when dealing with smooth solutions, with respect to the
number required by the FE method, fixed the polynomials degree and a certain level of
accuracy. The latter features make NURBS-based IGA highly suitable for surface problem
which must be solved by means of high polynomials degree, such as the wave equation. Each
univariate NURBS basis function has support in p+ 1 knot spans whereas a one-dimensional
Lagrangian basis function has support in 2 mesh elements. That is, high order NURBS basis
functions have a larger support than Lagrangian basis functions (this holds also for d > 1),
thus resulting in higher computational times needed for the assembly of matrices and vectors
appearing in systems (1.3) and (1.1) and higher memory consumption.

FE method NURBS-based IGA method
polynomials order r → Nh = (rnel + 1)d p→ n = (nel + p)d

global continuity C0 Cp−m
geometry representation Ωh = int( ∪K∈ThK ) NURBS

with K polyhedra
surface problems not suitable suitable

basis functions support (d = 1) 2 p+ 1

Table 1.1: Comparison between the properties of FE and IGA methods.

In virtue of the previous analysis, NURBS-based IGA represents a valid option to the
Lagrangian FE method. In particular, we decided to handle pathological cardiac EP by means
of IGA in order to take advantage of the properties of high order, with high global continuity,
NURBS basis functions in controlling and limiting numerical dispersion, and in achieving
higher accurracies, by means of a lower number of DOFs, if compared to high order Lagrangian
basis functions, and to employ the NURBS surface representation of the LA. The moderate
number of DOFs employed by NURBS-based IGA, for a prescribed degree of accuracy, make
them amenable to the solution of the Bidomain equations, a more complete and larger system,
being both u and ue unknowns of the problem, with respect to the Modomain equation. We
will solve the Monodomain equation, which usually requires a lower computational time to be
solved with respect to the Bidomain equations, by means of the FE method, with piecewise
linear polynomials, that is r = 1, for the development of the methodologies presented in the
following Chapters. Indeed, in the former stage, we prefer to deal with a first order time
scheme and spatial discretization method to decrease the computational costs associated to
the solution of system (1.3). Moreover, we do not neglect that P1 finite elements have been
extensively and successfully used for the numeriacal approximation of cardiac EP problems
[Prakosa et al., 2018, Vigmond et al., 2002, Trayanova, 2011, Vigmond et al., 2008, Niederer
et al., 2009, Niederer et al., 2011, Strocchi et al., 2020].

1.4.2 Numerical simulation of re-entry

We now consider the two-dimensional coupled PDE-ODE nonlinear system consisting of the
Bidomain equation (1.1) coupled with the R-M ionic model (1.6) in a square slab of cardiac
tissue Ω = (0, 2 cm)2. The tissue is composed by fibers laid parallel to the longitudinal
direction, i.e. f0 = (1, 0)T . The intra- and extracellular conductivities are set equal to
σil = 2 × 10−3 Ω−1cm−1, σit = 3.1 × 10−4 Ω−1cm−1, σel = 2 × 10−3 Ω−1cm−1 and σet =
1.3× 10−3 Ω−1cm−1 [Nagaiah et al., 2013].
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Figure 1.10: Figure of eight re-entry induced by S1-S2 protocol in a square slab of cardiac
tissue at t = 360, 370, 380, 390, 400, 410 ms.
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The parameters of the R-M ionic model are given by uth = 13 mV, vp = 100 mV, G = 1.5
ms−1, η1 = 4.4 ms−1, η2 = 1.2 × 10−2 and η3 = 1 [Gerardo-Giorda, 2007]. The equations
have been discretized in space through P2/C1 IGA by considering n = 130 × 130 = 16900
NURBS basis functions, and in time by means of the explicit BDF of order 2 over the interval
(0, T ), with T = 600 ms and a time-step ∆t = 0.1 ms. In order to induce the re-entry we
apply the S1-S2 stimulation protocol [Nagaiah et al., 2013, Colli Franzone et al., 2014]. In
particular, a first stimulus (S1) is applied at the bottom edge of the domain, i.e.

Ii,1app(x, t) = C1Ω1(x)1[ti1,t
f
1 ](t), (1.9)

where C = 100 mA, Ω1 = {x ∈ Ω : y ≤ 0.002}, ti1 = 0 ms and tf1 = 5 ms. A second stimulus
(S2) under the form

Ii,2app(x, t) = C1Ω2
(x)1[ti2,t

f
2 ](t), (1.10)

with C = 100 mA, Ω2 = {x ∈ Ω : (x−1)2 + (y−1)2 ≤ (0.3)2}, ti2 = 183 ms and tf2 = 188 ms,
is then applied. The stimulus S1 induces a wavefront travelling towards the top edge of the
domain. Then, S2 is applied at the center of the domain at a particular time in which the
cells below are excitable whereas the tissue above is still refractory. The extracellular applied
current Ieapp is set instead equal to 0.

The solution consists in a rapid, periodic and self-sustained activation pattern composed
by two stable spiral waves, called rotors, as shown in Figure 1.10. This particular kind of
re-entry is called figure of eight re-entry.

Through the numerical solution of (1.1) it is possible to compute outputs of clinical
interest such as activation maps (ACs), electrograms (EGMs) and rotors cores trajectories.
For example, given the electric potential u = u(x, t), the (unipolar) activation map at a point
x ∈ Ω is evaluated as the minimum time at which the AP peak reaches x [Stella et al., 2020],
that is

AC(x) = arg min
t∈(0,T )

(
u(x, t) = max

t∈(0,T )
u(x, t)

)
.

The resulting activation map is shown in Figure 1.11 (left). By exploiting the extracellular
potential, solution of the (1.1), it possible to directly compute (unipolar) EGMs. In particular,
we compute the average of the extracellular potential over the elctrode surface and, to take
into account dispersion effects due to the measurement process, we employ a Gaussian kernel
as follow [Plonsey and Barr, 1988]

EGM(x̄, t) =

∫
ue(x, t) exp

( ||x− x̄||2
σ

)
dx,

where σ = 2 × (0.06)2 is chosen such that the support of the Gaussian kernel matches the
dimension of the electrode, i.e. 4 mm. It is still to be proved that ablating rotors tips is useful;
however, the position, at each time instant, of the cores may be an important insight to be
used by clinicians during ablation intervention. For this reason, we compute the trajectories
of the tips which are determined, over a period of 300 ms, by tracking the positions of the
points laying on the contourline of the transmembrane potential v = 50 mV which possess
maximum and minimum curvatures (with sign), as in [Patelli et al., 2017]. In Figure 1.12
(left) we show the tips position at t = 550 ms and in Figure 1.12 (right) the trajectory of the
left tip with minimum curvature.

Finally, we investigate the use of an alternative stimulation protocol to induce the re-
entry: the cross-field one [Hu et al., 2013]. It consists in applying the S1 stimulus as in (1.9)
whereas the S2 is provided by

Ii,2app(x, t) = C1Ω2
(x)1[ti2,t

f
2 ](t),

where C = 100 mA, Ω2 = {x ∈ Ω : x ≤ 1}, ti2 = 160 ms and tf2 = 165 ms.
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Figure 1.11: Left: Activation map for the figure of eight re-entry. Right: EGM computed at
x̄ = (1.5, 1.5) cm.

Figure 1.12: Left: Tips position at t = 550 ms. Right: Trajectory of the left spiral wave tip
over 300 ms.

In Figure 1.13 we show the solution at t = 345 ms and t = 495 ms. This time, the
solution consists in a single spiral wave, or rotor, surrounding a core, which is a zone of tissue
unexcited but excitable.

1.4.3 Numerical simulation of re-entry break-up

In order to reproduce the re-entry break-up we consider the Bidomain equations (1.1) coupled
with the A-P ionic model (1.5) in a square slab of cardiac tissue Ω = (0, 200 mm)2. The
tissue is composed by fibers laid parallel to the longitudinal direction, i.e. f0 = (1, 0)T . The
intra- and extracellular conductivities are all set equal to 1 Ω−1cm−1 and the parameters of
the A-P ionic model are given by K = 8, a = 0.1, ε0 = 0.01, b = 0.1, c2 = 0.3 and c1 = 0.05
[ten Tusscher, 2004]. The time and the transmembrane potential are in dimensionless units
according to the original formulation of the A-P ionic model. The equations have been
discretized in space through P2/C1 IGA by considering n = 202 × 202 = 40804 DOFs and
in time by means of the explicit BDF of order 2 over the interval (0, T ), with T = 1500 and
a time-step ∆t = 0.2. In the case of the A-P model the most relevant dynamical change
(for spiral wave stability) as c1 is varied is the steepness of the APD restitution curve, where
maximum slope increases as c1 is decreased [ten Tusscher, 2004]. We choose a value of c1
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Figure 1.13: Spiral wave induced by the cross-field protocol in a square slab of cardiac tissue
at t = 345 ms (left) and t = 495 ms (right).

for which the re-entry break-up is observed and in order to induce the re-entry we apply
the cross-field stimulation protocol. In particular, the two stimuli are provided by (1.9) and
(1.10) where C = 1 mA, Ω1 = {x ∈ Ω : y ≤ 1}, Ω2 = {x ∈ Ω : x ≤ 100}, ti1 = 0, ti2 = 143,

tf1 = 5 and tf2 = 148.

In Figure 1.14 we show the solution at t = 1100 and t = 1300. At the beginning, the spiral
wave is stable but, due to its high rotation frequency, the DI becomes shorter with respect to
normal conditions. In this way the cells are characterized by a steep APD restitution curve
(see Figure 1.5), meaning that for little changes in the DI there is a great variability in the
APD (see Subsection 1.1.1). Therefore, cells close to each other have different responses to
excitation. This causes conduction blocks and the subsequent spiral breaking. Indeed, almost
at t = 500, the spiral wave starts to break-up and the activation pattern becomes completely
chaotic over the time.

1.4.4 Numerical simulations on an idealized left atrium

We are interested in reproducing the previous behaviors (see Subsections 1.4.2 and 1.4.3) on
an idealized LA geometry. We rely on a surface representation of the LA motivated by the fact
that the cardiac tissue in the atria is thin and the transmural activation differences along the
thickness can be assumed to be negligible. The LA is built as a single NURBS patch starting
from B-splines basis functions of degree p = 2, for further information on its construction
we refer the reader to [Patelli et al., 2017]. The intra- and extracellular conductivities are
set equal to σil = 3.1 × 10−4 Ω−1cm−1, σit = 2 × 10−2 Ω−1cm−1, σel = 1.3 × 10−4 Ω−1cm−1

and σet = 2× 10−3 Ω−1cm−1. The direction of the cardiac fibers is determined by following
the same strategy adopted in [Patelli et al., 2017, Rossi et al., 2014]. The equations have
been discretized in space by means of P2 NURBS basis functions, the majority with a global
C1 continuity, with n = 61732. We apply again the S1-S2 protocol in order to induce the
re-entry.

For the figure of eight re-entry test case, the S1 stimulus is applied in correspondence of
one pulmonary vein and takes the form

Ii,1app(x, t) = C1Ω1
(x)1[ti1,t

f
1 ](t),

26



Figure 1.14: Re-entry break-up in a square slab of cardiac tissue at t = 500, 700, 900, 1100.

where C = 100 mA, Ω1 = {x ∈ Ω : x ≥ 0, z ≥ 2.7}, ti1 = 0 ms and tf1 = 5 ms. Provided
the position of the posterior septum x̄ = (x̄, ȳ, z̄)T = (1.40,−0.66,−1.61)T , one of the four
points at which the interatrial conduction is believed to happen, the S2 is given by

Ii,2app(x, t) = C1Ω2
(x)1[ti2,t

f
2 ](t),

with C = 100 mA, Ω2 = {x ∈ Ω : (x− x̄)2 + (y − ȳ)2 + (z − z̄)2 ≤ (0.5)2}, ti2 = 230 ms and

tf2 = 235 ms. In Figure 1.15 we show the figure of eight re-entry solution on the idealized LA
at t = 1000, 1100 and 1200 ms.

For the simulation of re-entry break-up, the location of the two stimuli is the same used in
the previous example. The only difference regards the stimulation times of the S2 which are
ti2 = 145 and tf2 = 150. The solution is reported in Figure 1.16 together with the activation
map in Figure 1.17.
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Figure 1.15: Figure of eight re-entry on an idealized LA geometry at t = 1000, 1100, 1200 ms.
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Figure 1.16: Re-entry break-up on an idealized LA geometry at t = 400, 800, 1200.
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Figure 1.17: Re-entry break-up activation map.

1.5 Variability of the solution with respect to problem
parameters

The solution of cardiac EP problems usually requires small time-step sizes, unless the system
might be unstable, and mesh sizes, in order to capture the steep fronts (see, e.g., [Trayanova,
2011, Plank et al., 2008] where the mesh size h required to solve, by means of linear finite
elements, the Monodomain equation coupled with the ten Tusscher-Panfilov ionic model [ten
Tusscher and Panfilov, 2006] on a three-dimensional slab geometry, both in physiological
and pathological conditions, is provided). Consequently, solving equations (1.3) and (1.1) by
means of the FE and the NURBS-based IGA methods can easily entails prohibitive computa-
tional costs, especially if, due our interest, parameters have a determinant role in developing
pathological conditions and then the equations must be solved for several parameters values.
The goal of this Section is to model and simulate scenarios of clinical interest, such as, for
example, arrhytmogenic properties of the cardiac tissue or different stimulation locations, by
highlighting the strong variability of the solution of equations (1.1) with respect to the prob-
lem parameters and then the need to develop suitable computational strategies to efficiently
solve these parametrized problems in cardiac EP.

In Table 1.2 we report the numerical experiments presented down in this Section together
with the properties and the parameters under investigation.

1. Longitudinal intracellular conductivity σil : we set the value of this parameter to σil =
2×10−2 Ω−1cm−1 (left) and σil = 2×10−4 Ω−1cm−1 (right) starting from the reference
one, equal to σil = 2×10−3 Ω−1cm−1. By modifying this parameter we are changing the
conductivity properties of the tissue in the fibers direction, as shown in Figure 1.18. We
remark that, in order to make sure that the particular shape of the re-entry associated
to σil = 2 × 10−4 Ω−1cm−1 is not related to numerical instabilities, due to a coarse
mesh, we increase n by setting it equal to 258× 258 = 66564.

2. Transversal intracellular conductivity σit: we set the value of this parameter to σit =
1 × 10−3 Ω−1cm−1 (left) and σit = 3.1 × 10−5 Ω−1cm−1 (right) starting from the
reference one, equal to σit = 3.1× 10−4 Ω−1cm−1. By modifying this parameter we are
changing the conductivity properties of the tissue in the transversal direction to the
fibers, as shown in Figure 1.19.
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test number property parameter
1. longitudinal intracellular conductivity σil
2. transversal intracellular conductivity σit
3. magnitude of the S2 intracellular applied current Ii,2app
4. different restitution properties η2

5. dispersion of refractoriness η2

6. S1-S2-S3 cross-field protocol Ii,3app
7. APD restitution properties c1
8. fibrosis Di

9. S1-S2 locations inverted Ii,1app, I
i,2
app

10. S1-S2 locations on PVs Ii,1app, I
i,2
app

11. ionic properties c1
12. sustainment on long time T

Table 1.2: Numerical tests gallery.

Figure 1.18: Figure of eight re-entry for σil = 2 × 10−2 Ω−1cm−1 (left) and σil = 2 ×
10−4 Ω−1cm−1 (right) at t = 430 ms.

3. Magnitude of the S2 intracellular applied current Ii,2app: we change the value of C in
(1.10) from 100 mA to C = 10 mA (left) and C = 1000 mA (right). In the first case,
the magnitude of the applied current is too low in order to excitate the tissue, the
applied stimulus is not able to start an AP, and the re-entry is not elicited, as shown
in Figure 1.20.

4. Different restitution properties in the domain: we modify the η2 coefficient in the R-M
ionic model in the square subdomain in Figure 1.21 (left) by changing it to 6 × 10−3

from the reference value η2 = 1.2× 10−2 [Clayton and Taggart, 2005]. By varying this
parameter we modify the restitution properties of the tissue, i.e. the APD and the
RP. In particular, increasing the value of η2 reflects in a larger APD (see Figure 1.21
(right)). The presence of the square region with a different RP modify the shape and
the re-entry direction of propagation, as shown in Figure 1.22.

5. Dispersion of refractoriness: this is a property of the myocardium for which the RP
is spatially heterogeneous. Dispersion of refractoriness improves the arrhytmogenic
propensity of the tissue, that is it favors the initiation and sustainment of re-entries.
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Figure 1.19: Figure of eight re-entry for σtl = 1 × 10−3 Ω−1cm−1 (left) and σit = 3.1 ×
10−5 Ω−1cm−1 (right) at t = 400 ms.

In normal cardiac tissue, the size of the S2 needs to be larger than the one needed in
diseased tissue in order to create rotors. Therefore, a healthy heart is highly protected,
whereas a diseased heart is susceptible to re-entrant arrhythmias. The classic explana-
tion for this difference is that re-entry initiation is greatly facilitated if an excitation
wave propagates into an arrhythmogenic tissue characterized by dispersion of refrac-
toriness [Karma, 2013]. In the R-M ionic model, the parameter responsible for RP is
η2 and, in order to model dispersion of refractoriness, we set it equal to

η2(x) = 0.006(1 + | sin(1πx) + cos(10πy)|), (1.11)

with mean almost equal to 0.012, that is the physiological value of this parameter.
We apply the S1-S2 stimulation protocol by setting Ω2 = {x ∈ Ω : (x − 1)2 + (y −
1)2 ≤ (0.15)2} and compare the results obtained by considering healthy tissue and
myocardium with dispersion of refractoriness. By referring to Figures 1.23, 1.24 and
1.25 and by considering the healthy tissue, it happens that the distance between the
two tips is too small and after one rotation the spirals collapse whereas, in the other
case, due to the presence of cells with a shorter RP, the re-entry is sustained.

6. S1-S2-S3 cross-field stimulation protocol : we apply a second S2 and a third S3 stimuli
of the form

Ii,japp(x, t) = C1Ωj (x)1[tij ,t
f
j ](t),

where C = 100 mA, Ω2 = {x ∈ Ω : x ≤ 0.75} and Ω3 = {x ∈ Ω : x ≥ 1.5}, ti2 = 140

ms, tf2 = 145 ms, ti3 = 165 ms and tf3 = 170 ms. We show the solution obtained by
applying the S1-S2-S3 stimulation protocol in Figure 1.26.

7. APD restitution properties in the domain: we consider the Bidomain equations (1.1)
coupled with A-P ionic model (1.5). As highlighted in Section 1.1.1, as c1 is decreased
the restitution properties of the tissue changes and re-entry break-up happens. We set
the parameter c1 equal to 0.5 in a circular subregion of the domain, in order to assist to
break-up, and elsewhere to c1 = 0.12. The resulting solution is depicted in Figure 1.27
(left). The presence of the steep APD restitution curve region (shaded circular region)
introduces disorder also in the part of the domain where we impose c1 = 0.12, as
confirmed by Figure 1.27 (right) in which we show the spectrum of the AP, computed
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Figure 1.20: Figure of eight re-entry for C = 10 mA (left) and C = 1000 mA (right) at
t = 184 ms (above) and t = 204 ms (bottom).

through FFT, at different points. In particular, we consider a point in the circular
region, one close and one far from the subdomain. We also report the spectrum of the
AP associated to a normal beat and to a stable spiral wave. The spectrum of the AP
associated to the stable spiral wave shows a unique dominant frequency and the one
related to the normal beat different dominant frequency of decreasing intensity. The
results concerning the presence of different APD restitution properties in the domain
show the same chaotic behavior, meaning that a subregion with a steep APD restitution
curve is able to induce an irregular pattern in the remaining part of the tissue, that is
to spread the disorder to the remaining part of the domain.

8. Fibrosis: we focus on equations (1.3) coupled with (1.5) and set c1 = 0.12. We modify
the intracellular conductivity tensor, by multiplying it with random numbers in the
range (0, 1) [Nagaiah et al., 2013], in order to model structural heterogeneities associated
to fibrosis. As observed in [ten Tusscher, 2004], the presence of fibrosis suppresses spiral
wave break-up, as shown in Figure 1.28. In presence of fibrosis, the spiral waves have
a longer DI and lie on the part of the restitution curve that has a slope smaller than
1 and the spiral waves stay stable. Moreover, the presence of fibrosis increases the
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Figure 1.21: Left: Transmembrane potential at t = 150 ms. Right: APs for P1 = (0.49, 1.18)
cm (green) and P2 = (1.61, 1.18) cm (red).

Figure 1.22: Figure of eight re-entry in a domain with different restitution properties at
t = 270 ms (left) and t = 310 ms (right).

arrhytmogenic propensity of the tissue. Re-entries occur when their wavelength WL
(WL = conduction velocity (CV) × RP [Qu et al., 1999]) is smaller than the length
of the circuit. By setting c1 equal to 0.14 and considering a healthy portion of tissue
the re-entry extinguishes. The presence of fibrosis reduces both CV and RP and the
re-entry is maintained, as shown in Figure 1.29.

9. Inverted stimuli on LA: we invert the two stimuli S1-S2. We first apply a physiological
stimulus in correspondence of the posterior septum and then an ectopic complex arises
in correspondence of one PV. It is clear that the location of the figure of eight re-entry
is related to the location of the stimulus S2 and changes from the one in Section 1.4, as
shown in Figure 1.30.
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Figure 1.23: Figure of eight re-entry with dispersion of refractoriness (left) and in healthy
tissue (right) at t = 220 ms.

Figure 1.24: Figure of eight re-entry with dispersion of refractoriness (left) and in healthy
tissue (right) at t = 280 ms.

10. S1-S2 stimuli on PVs on LA: we applied both the first S1 and the second S2 stimuli on
the PVs. The resulting solution is reported in Figure 1.31.

11. Ionic properties on LA: we focus on equations (1.1) coupled with (1.5) and we vary
the value of the ionic parameter c1 from 0.05 to 0.03. By comparing Figure 1.32 with
Figure 1.16 it is clear that break-up happens in both cases but the activation pattern
is different.

12. Re-entry break up on large final time T on LA: we consider again the Bidomain equa-
tions (1.1) coupled with A-P ionic model (1.5) and we perform a simulation by setting
the final time T = 10000 in order to show that the re-entry break-up does not extin-
guish and the self-sustained activation pattern lasts until this large T . The results are
shown in Figure 1.33.
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Figure 1.25: Figure of eight re-entry with dispersion of refractoriness at t = 320 ms (left) and
t = 340 ms (right).

Figure 1.26: Figure of eight re-entry induced by the S1-S2-S3 protocol at t = 310 ms (left)
and t = 430 ms (right).
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Figure 1.27: Left: Spiral wave with different APD restitution properties in the domain at
t = 1500 (the shaded circular region is the portion of the domain in which a steep APD
restitution is present). Right: Spectrum of the AP in different conditions.

Figure 1.28: Re-entry break-up in a square slab of cardiac tissue without (left) and with
fibrosis (right) for c1 = 0.12 at t = 380 ms.

Figure 1.29: Re-entry break-up in a square slab of cardiac tissue without (left) and with
fibrosis (right) for c1 = 0.14 at t = 380 ms.
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Figure 1.30: Figure of eight re-entry with inverted stimuli on an idealized LA geometry at
t = 800 ms.

Figure 1.31: Figure of eight re-entry with both stimuli on PVs on an idealized LA geometry
at t = 564 ms.
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Figure 1.32: Re-entry break-up with c1 = 0.03 on an idealized LA geometry at t = 1200.

Figure 1.33: Re-entry break-up on an idealized LA geometry at T = 10000.
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Chapter 2
Reduced order modeling and deep
learning

The aim of this Chapter is to provide the bases of reduced order modeling and deep learning
(DL), cores of the methodologies developed in the following, for nonlinear time-dependent
parametrized PDEs, such as cardiac electrophysiology (EP), in order to to achieve computa-
tional efficiency in the solution of systems (1.3) and (1.1). In particular, starting from the
well-known setting of linear (projection-based) reduced order models (ROMs), we generalize
this task to the case of nonlinear ROMs. We provide a quick overview of DL and of useful
facts about neural networks. Moreover, an overview of those DL models, which the techniques
proposed in Chapter 3 rely on, is provided together with an example of application consisting
in the classification of atrial fibrillation (AF) starting from electrocardiograms (ECGs). The
latter represents one of the most meaningful and successful examples of application of DL
techniques in the cardiac EP field.

2.1 Reduced order modeling for parametrized PDEs

The solution of a parametrized system of PDEs by means of a full order model (FOM),
such as the FE method and IGA, whenever dealing with real-time or multi-query scenarios,
may entail prohibitive computational costs if the FOM is high-dimensional, as anticipated in
Chapter 1. In the real-time context, the FOM solution must be computed in a very limited
amount of time; in the multi-query one, the FOM must be solved for a huge number of
parameter instances sampled from the parameter space. Cardiac EP problems detailed in
Chapter 1 fit into real-time and multi-query contexts, due to the fact that, in view of the
integration within the clinical practice, outputs of interest must be computed in short times,
and, as outlined in Section 1.5, repetitive solutions of systems (1.3) and (1.1) are required in
order to analyze different pathological scenarios.

Reduced order modeling techniques aim at replacing the FOM by a reduced order model
(ROM), featuring a much lower dimension, however still able to express the physical features
of the problem described by the FOM, thus being able to efficiently approximate the global
map (t,µ) 7→ uh(t,µ), where t ∈ (0, T ) denotes time, µ ∈ P ⊂ Rnµ a vector of input
parameters and uh(t,µ) ∈ RNh the solution of a dynamical system arising from the space
discretization of a time-dependent (non)linear parametrized PDE, such as the one of systems
(1.3) and (1.1). The basic assumption underlying the construction of such a ROM is that
the solution of the parametrized PDE, belonging a priori to a high-dimensional (discrete)
space, lies on a low-dimensional manifold embedded in this space. The goal of a ROM is
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then to approximate the solution manifold – that is, the set of all PDE solutions when the
parameters vary in the parameter space – through a suitable, approximated trial manifold.

A widespread family of reduced order modeling techniques relies on the assumption that
the reduced order approximation can be expressed by a linear combination of basis functions,
built starting from a set of FOM solutions, called snapshots. Among these techniques, proper
orthogonal decomposition (POD) – equivalent to principal component analysis in statistics
[Hastie et al., 2001], or Karhunen-Loève expansion in stochastic applications – exploits the
singular value decomposition (SVD) of a suitable snapshot matrix (or the eigen-decomposition
of the corresponding snapshot correlation matrix), and the greedy algorithm [Prud’homme
et al., 2001, Buffa et al., 2012] consists in an iterative procedure based on the evaluation of
efficient estimates of the error between the FOM and the ROM, thus yielding linear ROMs,
in which the ROM approximation is given by the linear superimposition of POD modes. In
this case, the solution manifold is approximated through a linear trial manifold, that is, the
ROM approximation is sought in a low-dimensional linear trial subspace.

Projection-based methods are linear ROMs in which the ROM approximation of the PDE
solution, for any new parameter value, results from the solution of a low-dimensional (non-
linear, dynamical) system, whose unknowns are the ROM degrees of freedom (or generalized
coordinates). Despite the PDE (and thus the FOM) being linear or not, the operators appear-
ing in the ROM are obtained by imposing that the projection of the FOM residual evaluated
on the ROM trial solution is orthogonal to a low-dimensional, linear test subspace, which
might coincide with the trial subspace. Hence, the resulting ROM manifold is linear, that is,
the ROM approximation is expressed as the linear combination of a set of basis functions. In
particular, in projection-based ROMs, the reduced dynamics is obtained through a projection
process onto a linear subspace [Benner et al., 2017, Benner et al., 2015, Quarteroni et al.,
2016]. POD-Galerkin ROMs and greedy-Galerkin ROMs have been successfully applied in
several contexts [Grepl and Patera, 2010, Veroy and Patera, 2005, Rozza et al., 2008] and to a
broad range of applications, such as structural dynamics and elasticity [Willcox and Peraire,
2002, Amsallem et al., 2009, Bonomi et al., 2017], aerodynamics [Carlberg et al., 2013, Bui-
Thanh et al., 2008, Bui-Thanh et al., 2004], cardiovascular fluid-dynamics [Manzoni et al.,
2012, Colciago et al., 2014, Ballarin et al., 2016], and many other fields.

However, linear ROMs might experience computational bottlenecks at different extents
when dealing with parametrized problems featuring coherent structures (possibly dependent
on parameters) that propagate over time, namely in transport and wave-type phenomena,
or convection-dominated flows, as soon as the physical behavior under analysis is strongly
affected by parametric dependence. For larger parametric variations, or stronger dependence
of coherent structures on parameters, the dimension of the linear trial manifold can easily
become extremely large (if compared to the intrinsic dimension of the solution manifold for the
sake of accuracy) thus compromising the ROM efficiency. The same difficulty may also affect
(often expensive) hyper-reduction techniques, such as the (discrete) empirical interpolation
(DEIM) [Barrault et al., 2004, Chaturantabut and Sorensen, 2010]. Such hyper-reduction
techniques are essential to assemble the operators appearing in the ROM in order to not
rely on expensive Nh-dimensional arrays, see, e.g., [Farhat et al., 2020] for further details.
To overcome this issue, ad-hoc extensions of the POD strategy may bee considered, see, e.g.,
[Ohlberger and Rave, 2016, Pagani et al., 2018, Reiss et al., 2018]. Projections-based methods,
such as, e.g, POD-Galerkin ROMs, are usually intrusive. In several applications the FOM is
not directly accessible or deriving the reduced equations starting from the FOM entails high
computational costs. For this reason, several recent works focus on non-intrusive, purely data-
driven ROMs built by means of DL models. For example, in [González and Balajewicz, 2018]
an autoencoder is used to compress the state and is followed by a recurrent neural network,
[Carlberg et al., 2019] applies hierarchical dimensionality reduction comprising autoencoders
and PCA followed by dynamics learning to recover missing CFD data and in [Takeishi et al.,
2017, Lusch et al., 2018] autoencoders are applied to learn approximate invariant subspaces
of the Koopman operator.
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Our goal is to set up non-intrusive DL-based nonlinear ROMs, i.e. the solution manifold
is approximated through a nonlinear trial manifold, whose dimension is nearly equal (if not
equal) to the intrinsic dimension of the solution manifold that we aim at approximating. In
this way, we want to overcome the critical issues of linear ROMs, e.g. projection-based ROMs,
arising when applied to problems featuring wave-type phenomena and problems characterized
by remarkable variability of the solution (with respect to the problem parameters), such as
physiological and pathological cardiac EP.

2.2 Problem formulation

We formulate the construction of ROMs in algebraic terms, for the sake of generality, starting
from the high-fidelity (spatial) approximation of nonlinear, time-dependent, parametrized
PDEs; note that cardiac EP problems fall into this class. By introducing suitable space
discretizations techniques, such as, e.g., the FE method or IGA (see Chapter 1 for further
details), the high-fidelity, FOM can be expressed as a nonlinear parametrized dynamical
system. Given µ ∈ P, a vector of input parameters, we aim at solving the initial value
problem {

u̇h(t;µ) = f(t,uh(t;µ);µ) t ∈ (0, T ),

uh(0;µ) = u0(µ),
(2.1)

where the parameter space P ⊂ Rnµ is a bounded and closed set, uh : [0, T )×P → RNh is the
parametrized solution of (2.1), u0 : P → RNh is the initial datum and f : (0, T )×RNh ×P →
RNh is a (nonlinear) function, encoding the system dynamics. The FOM dimension Nh
is related with the finite-dimensional subspace Xh introduced in Section 1.3 and it can be
extremely high whenever the PDE problem shows complex physical behaviors and/or high
degrees of accuracy are required to its solution. The parameter µ ∈ P may represent physical
or geometrical properties of the system, like, e.g., material properties, initial and boundary
conditions, or the shape of the domain.

Our goal is the efficient numerical approximation of the whole set

Sh = {uh(t;µ) | t ∈ [0, T ) and µ ∈ P ⊂ Rnµ} ⊂ RNh , (2.2)

of solutions to problem (2.1) when (t;µ) varies in [0, T ) × P, also referred to as solution
manifold (a sketch is provided in Figure 2.2). Assuming that, for any given parameter µ ∈ P,

Figure 2.1: Example of a two-dimensional manifold embedded in R3. Each curve represents
the time-evolution of the first three components of the solution of a (nonlinear) parametrized
PDE for a fixed parameter value µ.

problem (2.1) admits a unique solution, for each t ∈ (0, T ), the intrinsic dimension of the
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solution manifold is at most nµ+ 1� Nh, where nµ is the number of parameters (time plays
the role of an additional coordinate). This means that each point uh(t;µ) belonging to Sh
is completely defined in terms of at most nµ + 1 intrinsic coordinates, or equivalently, the
tangent space to the manifold at any given uh(t;µ) is spanned by nµ + 1 basis vectors.

2.3 Projection-based reduced order models

The most common way to build a ROM for the efficient approximation of problem (2.1) relies
on the introduction of a reduced linear trial manifold, that is, a subspace S̃n = Col(V) ⊂ RNh
of dimension n � Nh, spanned by the n columns of a matrix V ∈ RNh×n. Hence, what we
can refer to as a linear ROM looks for an approximation ũh(t;µ) ≈ uh(t;µ) in the form

ũh(t;µ) = Vun(t;µ), (2.3)

where ũh : [0, T ) × P → S̃n. Here un(t;µ) ∈ Rn for each t ∈ [0, T ), µ ∈ P, denotes the
vector of intrinsic coordinates (or degrees of freedom) of the ROM approximation; note that
the map

Ψh : Rn → RNh , sn 7→ s̃h = Vsn,

that, given the (low-dimensional) intrinsic coordinates, returns the (high-dimensional) ap-
proximation of the FOM solution uh(t;µ), is linear. The ROM approximation (2.3) is sought
as a linear superimposition of modes, comparable to superposition of effects.

Proper orthogonal decomposition (POD) is one of the most widely employed techniques
to generate the linear trial manifold [Fink and Rheinboldt, 1984]. Considering a set of Ntrain
instances of the parameter µ ∈ P, we introduce the snapshot matrix S ∈ RNh×Ns defined as

S =
[
uh(t1;µ1) | . . . | uh(tNt ;µ1) | . . . | uh(t1;µNtrain) | . . . | uh(tNt ;µNtrain)

]
, (2.4)

where we have introduced a partition of the time interval [0, T ] in Nt time steps {tk}Ntk=1,
tk = k∆t, of size ∆t = T/Nt and Ns = NtrainNt. Moreover, let us introduce a symmetric
and positive definite matrix Xh ∈ RNh×Nh encoding a suitable norm (e.g., the energy norm

|| · ||Xh
= ||X1/2

h · ||2) on the high-dimensional space and admitting a Cholesky factorization
Xh = HTH. POD computes the SVD of HS,

HS = UΣZT ,

where U = [ζ1| . . . |ζNh ] ∈ RNh×Nh , Z = [ψ1| . . . |ψNs ] ∈ RNs×Ns and Σ = diag(σ1, . . . , σr) ∈
RNh×Ns with σ1 ≥ σ2 ≥ . . . ≥ σr, and r ≤ min(Nh, Ns), and sets the columns of V in terms
of the first n left singular vectors of S that is, V = [H−1ζ1| . . . |H−1ζn]. By construction,
the columns of V are orthonormal (with respect to the scalar product ( · , · )Xh) and among
all possible n-dimensional subspaces spanned by the column of a matrix W ∈ RNh×n, V
provides the best reconstruction of the snapshots, that is,

Ntrain∑

i=1

Nt∑

k=1

‖uh(tk;µi)−VVTXhuh(tk;µi)‖2Xh
=

min
W∈Vn

Ntrain∑

i=1

Nt∑

k=1

‖uh(tk;µi)−WWTXhuh(tk;µi)‖2Xh
,

(2.5)

where Vn = {W ∈ RNh×n : WTXhW = I}. For this reason, we refer to VVTXhuh(t;µ)
as to the optimal-POD reconstruction, that is, the projection of uh(t;µ) onto the reduced
subspace S̃n of dimension n < Nh.
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In order to model the reduced dynamics of the system, that is, the time evolution of the
generalized coordinates un(t;µ), we can replace uh(t;µ) by (2.3) in system (2.1)

{
Vu̇n(t;µ) = f(t,Vun(t;µ);µ) t ∈ (0, T ),

Vun(0;µ) = u0(µ),
(2.6)

and impose that the residual

rh(Vun(t;µ)) = Vu̇n(t;µ)− f(t,Vun(t;µ);µ) (2.7)

associated to the first equation of (2.6) is orthogonal to an n-dimensional subspace spanned
by the column of a matrix Y ∈ RNh×n, that is

YT rh(Vun) = 0.

This condition yields the following ROM

{
YTVu̇n(t;µ) = YT f(t,Vun(t;µ);µ) t ∈ (0, T ),

un(0;µ) = (YTV)−1YTu0(µ).
(2.8)

In the case Y = V, a Galerkin projection is performed, while the case Y 6= V yields a more
general Petrov-Galerkin projection. Note that choosing Y such that YTV = I ∈ RNh×Nh
does not automatically ensure ROM stability on long time intervals.

The RB method under the form of either POD-Galerkin or POD-Petrov-Galerkin methods
has been successfully applied to a broad range of parametrized time-dependent (non)linear
problems (see, e.g., [Pagani et al., 2018, Manzoni et al., 2016]) however it provides low-
dimensional subspaces of dimension n � nµ + 1 much larger than the intrinsic dimension
of the solution manifold – relying on a linear, global trial manifold thus represent a major
bottleneck to computational efficiency [Ohlberger and Rave, 2016, Pagani et al., 2018]. This
is the case, for instance, of hyperbolic problems, for which the RB method is not able to
significantly decrease the dimensionality of the problem. In the following we refer to ROMs
built by means of the RB method in the POD-Galerkin form as POD-Galerkin ROMs.

2.3.1 Hyper-reduction techniques

The efficient evaluation of the ROM arrays appearing in (2.8) as time and parameters vary
is still a challenging task in order to achieve an efficient online, i.e. testing, evaluation of
a ROM when dealing with nonlinear and/or complex nonaffine terms, i.e. terms depending
nonlinearly on the input parameters of the problem. The function f : (0, T )×RNh×P → RNh
in (2.1) can be seen as the sum of linear and nonlinear operators, that is

f(t,uh(t;µ);µ) = L(t;µ)uh(t;µ) + N(t,uh(t;µ);µ). (2.9)

When dealing with nonlinear operators N(·, ·;µ) ∈ RNh , evaluating VTN(·, ·;µ) depends
on the FOM dimension Nh; indeed, at each time step, its assembly relies on high-dimensional
arrays and this would be a very expensive task compromising the overall efficiency of the
ROM. To overcome this problem, the (discrete) empirical interpolation method (DEIM) can
be exploited at each time step to handle the nonaffine µ-dependent and nonlinear terms
efficiently, as proposed in [Chaturantabut and Sorensen, 2010, Maday et al., 2008]. It allows
to speed up the evaluation of nonlinear and nonaffine arrays, avoiding to access the FOM
structures and ensuring the overall ROM efficiency. In particular, the DEIM approximation
of a nonlinear operator is computed through the following steps, see, e.g., [Farhat et al.,
2020]:
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• compute the snapshot matrix of the nonlinear term N

SN =
[
N(t1,uh(t1;µ1);µ1)| . . . |N(tNt ,uh(tNt ;µNtrain),µNtrain)

]
, (2.10)

• compute the matrix of basis functions Φ = [φ1, . . . , φm] ∈ RNh×m by applying POD to
SN ,

• select iteratively m interpolation indexes I ⊂ {1, . . . , Nh}, with |I| = m, from the
basis Φ according to a suitable greedy procedure, which minimizes at each step the
interpolation error over the snapshots set measured in the maximum norm (see [Maday
et al., 2008] for further details); in particular, the index matrix is built

P = [e1, . . . , em] (ei)j = δij .

Given a new µ and the associated intrinsic coordinates un(tk;µ) at a given time instant,
during the online phase, we can compute N(tk,uh(tk;µ);µ) as

N(tk,uh(tk;µ);µ) = Φθ(tk;µ) with ΦIθ(tk;µ) = NI(tk,Vun(tk;µ);µ), (2.11)

where ΦI and NI(tk,Vun(tk;µ);µ) denote the matrix formed by the I rows of Φ and the
vector N(tk,Vun(tk;µ);µ) evaluated at the I entries, respectively. The vector θ(tk;µ) =
[θ1(tk;µ), . . . , θm(tk;µ)] ∈ Rm is evaluated by solving the linear system in (2.11), encoding
m interpolation constraints at the mesh points selected in I. We can express

ΦI = PTΦ, NI(tk,Vun(tk;µ);µ) = N(tk,PTVun(tk;µ);µ).

In conclusion, the DEIM approximation reads

VTN(tk,Vun(tk;µ);µ) ≈ VTΦ(PTΦ)−1

︸ ︷︷ ︸
n×m

N(tk,PTVun(tk;µ);µ)︸ ︷︷ ︸
m×1

.

We emphasize that P selects only a subset of indexes from the FOM solution; this means
that we do not need to assemble nonlinear operators on the entire mesh, but only on the
elements related to the degrees of freedom selected by the DEIM algorithm.

In those cases where the linear operators L(·;µ) µ-dependence is nonaffine, it is possible
to rely on DEIM or matrix DEIM (MDEIM) [Negri et al., 2015, Bonomi et al., 2017] to get
an approximated affine expansion.

We remark that hyper-reduction techniques entail intrusive changes to the FOM imple-
mentation of the problem and linear subspaces whose dimension m may become very large,
in order to provide an approximation to FOM arrays sufficiently accurate, thus leading to
inefficient ROMs.

2.3.2 Local POD-Galerkin ROMs

Problems featuring a travelling wave behavior, such as cardiac EP, might easily yield solutions
showing a remarkable variability over the parameter space. This might causes the solution
manifold (2.2) to be highly nonlinear; as a matter of fact, its (linear) approximation by means
of a single linear subspace yields accurate approximation only at the price of considering
very large dimensions n and m of the POD expansion and of the DEIM approximation,
respectively, thus preventing the ROM from ensuring a considerable speed-up compared to
the FOM.

A first attempt to overcome the computational bottleneck entailed by the use of a linear,
global trial manifold is to build a piecewise linear trial manifold, using local reduced bases
whose dimension is smaller than the one of the global linear trial manifold. Clustering
algorithms applied on a set of snapshots can be employed to partition them into Nc clusters
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from which POD can extract a subspace of reduced dimension; the ROM is then obtained by
following the strategy described above on each cluster separately, see, e.g. [Amsallem et al.,
2012, Amsallem et al., 2015]. In particular, multiple local subspaces can be generated when
performing the POD-Galerkin ROM approximation of the PDE solution, and the DEIM
approximation can be used for terms depending nonlinearly on either the solution or the
input parameters of the problem. Approximating the manifold by a series of subspaces of
smaller dimension results in a more efficient approach than building a single subspace of
larger dimension. With this aim, we employ a four-step procedure as proposed in [Amsallem
et al., 2012]:

1. we compute the snapshot matrix S ∈ RNh×Ns by solving the FOM over time for suitably
chosen training-parameter instances;

2. for a given Nc we group snapshots into clusters Sk, k = 1, . . . , Nc; each column of S is
thus assigned to a cluster accordingly to the k-means clustering algorithm [Likas et al.,
2003];

3. we construct a local reduced basis for each cluster through POD;

4. we construct a ROM for each cluster by projecting the original FOM onto each reduced
subspace Vk, k = 1, . . . , Nc, as in the classical POD-Galerkin ROM.

As soon as the local ROMs for the solution of the PDE have been built, snapshots of
the nonlinear terms are computed to form the matrix SN defined in (2.10). Then, also the
columns of SN are partitioned into Nc clusters SkN , k = 1, . . . , Nc, and the DEIM procedure
of Subsection 2.3.1 is applied to each cluster, yielding a set of Nc bases Φk, k = 1, . . . , Nc,
to be used to approximate nonlinear terms efficiently. The same number Nc of clusters is
chosen for both approximations, although in principle a different number of clusters could be
selected to partition both column sets S and SN .

The online query to the local POD-Galerkin ROM is then performed by exploiting the
reduced matrices and vectors, as well as the local DEIM approximation associated to the
reduced subspace selected at step 2; note that switching from a local ROM to a new one
must be done inexpensively during the online stage. Neighboring snapshots can be either
added or not to each cluster to obtain overlapping clusters; we do not consider any overlap
among clusters, although in principle this can also be done [Amsallem et al., 2012, Amsallem
and Haasdonk, 2016].

The approach described above was firstly proposed in [Amsallem et al., 2012] to address
the construction of local ROMs in the state space – although without constructing a ROM
to be systematically queried over the parameter space – and further extended in [Amsallem
et al., 2015, Amsallem and Haasdonk, 2016]. It was also applied in [Peherstorfer et al., 2014]
for the sake of approximating nonlinear quantities by DEIM.

An alternative approach is based on classification binary trees and has been introduced
in [Amsallem and Haasdonk, 2016]. It has been employed (and compared) in [Pagani et al.,
2018] in order to solve parametrized problems in cardiac EP, showing that the approach based
on the k-means clustering algorithm improves the approximation accuracy of the ROM.

2.4 Nonlinear dimensionality reduction

Using a piecewise linear trial manifold partially overcomes the limitation of a linear dimen-
sionality reduction technique as POD, yet employing local bases of dimension much higher
than the intrinsic dimension of the solution manifold Sh. An approach based on a dictionary
of solutions, computed offline, has been developed in [Abgrall et al., 2016] as an alterna-
tive to using a truncated reduced basis based on POD, together with an online L1-norm
minimization of the residual.
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Other possible options involving nonlinear transformations of modes might rely on a
reconstruction of the POD modes at each time step using Lax pairs [Gerbeau and Lombardi,
2014], on the solution of Monge-Kantorovich optimal transport problems [Iollo and Lombardi,
2014], on a problem-dependent change of coordinates requiring the solution of an optimization
problem repeatedly [Cagniart et al., 2019], on shifted POD modes [Reiss et al., 2018] after
multiple transport velocities have been identified and separated, or again basis updates are
derived from querying the full model at a few selected spatial coordinates [Peherstorfer, 2018].

Despite providing remarkable improvements compared to the classic (Petrov-)Galerkin-
POD approach, all these strategies exhibit some drawbacks, such as: (i) the high computa-
tional costs entailed during the online testing evaluation stage of the ROM – which is not
restricted to the intensive offline training stage; (ii) performance and settings are highly de-
pendent on the problem at hand; (iii) the need to deal only with a linear superimposition of
modes (which characterizes linear ROMs), yielding low-dimensional spaces whose dimension
is still (much) higher than the intrinsic dimension of the solution manifold.

Motivated by the need of avoiding the drawbacks of linear ROMs and setting a general
paradigm for the construction of efficient, extremely low-dimensional ROMs, we resort to
nonlinear dimensionality reduction techniques.

We build a nonlinear ROM to approximate uh(t;µ) ≈ ũh(t;µ) by

ũh(t;µ) = Ψh(un(t;µ)), (2.12)

where Ψh : Rn → RNh , Ψh : sn 7→ Ψh(sn), n � Nh, is a nonlinear, differentiable function;
similar approaches can be found in [González and Balajewicz, 2018, Lee and Carlberg, 2020].
As a matter of fact, the solution manifold Sh is approximated by a reduced nonlinear trial
manifold

S̃n = {Ψh(un(t;µ)) | un(t;µ) ∈ Rn, t ∈ [0, T ) and µ ∈ P ⊂ Rnµ} ⊂ RNh (2.13)

so that ũh : [0, T ) × P → S̃n. As before, un : [0, T ) × P → Rn denotes the vector-valued
function of two arguments representing the intrinsic coordinates of the ROM approximation.
Our goal is to set a ROM whose dimension n is as close as possible to the intrinsic dimension
nµ+1 of the solution manifold Sh, i.e. n ≥ nµ+1, in order to correctly capture the solution of
the dynamical system by containing the size of the approximation spaces [Lee and Carlberg,
2020].

To model the relationship between each pair (t,µ)→ un(t,µ), and to describe the system
dynamics on the reduced nonlinear trial manifold S̃n in terms of the intrinsic coordinates, we
consider a nonlinear map under the form

un(t;µ) = Φn(t,µ), (2.14)

where Φn : [0, T )× Rnµ → Rn is a differentiable, nonlinear function. No additional assump-
tions such as, e.g., the (exact, or approximate) affine µ-dependence as in the POD-Galerkin
ROM, are needed, thus avoiding (intrusive and often expensive) hyper-reduction techniques.

2.5 Basic concepts of deep learning

Artificial intelligence (AI) refers to the ability of computers to imitate typical human intelli-
gence behaviors, to carry out tasks requiring human intelligence [Russell and Norvig, 2009].
This may be achieved by explicitly programming a machine to solve a given problem described
by means of formal instructions. Sometimes it is not possible to formally describe the task
to carry out. The AI systems ability to acquire their own knowledge, by extracting patterns
from raw data, is called machine learning (ML). In this case computers are not explicitly
programmed to solve a specific task but they learn from experience. A formal definition of
ML is provided in [Mitchell, 1997]: a computer program is said to learn from experience E,
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with respect to some class of task T and a performance measure P , if its performance at
tasks in T , as measured by P , improves because of experience E.

Deep learning (DL) is a particular kind of ML in which the computer also learns a data
representation expressed as a hierarchy of nested concepts more and more complex and ab-
stract. For example, if we are interested in solving a classification problem, given the two
categories person and animal, starting from images, the computer has to learn the map asso-
ciating to a set of pixel one identity. A DL system represents the concept of image of a person
by combining simpler concepts as corners and contours, defined in terms of edges, identified
starting from the pixel of the image, the raw data (see Figure 2.2 for the illustration of such
DL system).

Figure 2.2: Illustration of a DL model [Goodfellow et al., 2016].

DL techniques have gained great attention in recent years in several areas like com-
puter vision [Krizhevsky et al., 2012, Antipov et al., 2017], natural language processing
[Sutskever et al., 2014, Devlin et al., 2018] and speech recognition [Bourlard and Wellekens,
1989, Chung et al., 2017], due to their ability to discover pattern and extract features from
massive datasets, in order to make predictions without providing hand-crafted features.

Many kinds of tasks can be solved with ML and DL. The most common are [Goodfellow
et al., 2016]

• classification: the computer program is asked to specify which of k categories some
input belongs to. To solve this task, the learning algorithm is usually asked to produce
a function f : Rn → {1, . . . , k}. When y = f(x), the model assigns an input described
by vector x to a category identified by a numeric code y, or the probability distribution
over classes;

• regression: the computer program is asked to predict a numerical value given some
input. To solve this task, the learning algorithm is asked to output a function f : Rn →
R.

ML and DL algorithms can be broadly categorized following three paradigms. Provided
a certain experience E, i.e. a dataset {x1, . . . ,xM}, the kind of experience they are allowed
to have during the learning process can be divided in
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• supervised learning : given the desired outputs y1, . . . , yM , learn to produce the correct
outputs given a new set of inputs;

• unsupervised learning : exploit regularities in {x1, . . . ,xM} to build a representation to
be used for reasoning or prediction;

• reinforcement learning : producing actions a1, . . . , aM , which affect the environment,
and receiving rewards r1, . . . , rM , learn to act in order to maximize rewards in the long
term.

In supervised learning problems, three datasets are commonly used in the different stages
of the definition of the model

• training set : data used to fit the parameters of the model,

• validation set : data used to estimate the generalization error during training, allowing
for the hyperparameters to be updated accordingly,

• testing set : data not seen during the training phase and used to provide an unbiased
evaluation of the performance of the model.

In this work, we focus on supervised and unsupervised learning, by carrying out regression
tasks, and, in the rest of this Section, we provide an overview of those DL models which the
techniques proposed in the following rely on.

2.5.1 Deep feedforward neural networks

A remarkable example of DL model is the deep feedforward neural network (DFNN). A
DFNN is a mathematical function modeling the relationship between a set of input values
and some output values [Goodfellow et al., 2016]. This mathematical function is obtained
through composition of simpler (nonlinear) functions, or layers, and allows to learn complex
hierarchies of features. More formally, provided an input x ∈ RN0 a DFNN with L layers
takes the form

φDF : (x;θDF ) 7→ φL(·;θL) ◦ φL−1(·;θL−1) ◦ . . . ◦ φ1(x;θ1), (2.15)

where φi(·;θi) : RNi−1 7→ RNi , i = 1, . . . , L, refers to the activation function applied at layer
i of the DFNN and θi = (Wi,bi), with Wi ∈ RNi×Ni−1 and bi ∈ RNi , i = 1, . . . , L, are
the weights and the bias of layer i such that θDF = (θ1, . . . ,θL). We usually refer to the
collection of all weights and biases as to the parameters vector. Each layer of the network
corresponds to a matrix whose values are computed by applying a linear transformation to the
previous layer followed by the application of a nonlinear activation function. In particular,
referring to Figure 2.3, y0 = x ∈ RN0 is the input layer, yL = φDF (x;θDF ) ∈ RNL is the
output layer, and each hidden layer yi ∈ RNi , i = 1, . . . , L− 1, takes the form

yi = φi(Wiyi−1 + bi). (2.16)

Given a set of M input-output pair observations {(xi,yi)}Mi=1 and considering a supervised
learning paradigm [Goodfellow et al., 2016], the learning task consists in finding the optimal
parameters vector θ∗DF by solving the optimization problem

min
θDF
J (θDF ) = min

θDF

1

M

M∑

i=1

L(yi,yiL;θDF ), (2.17)

where J is the loss (or cost) function, and L is the per-example loss function, measur-
ing the mismatch between the desired observed output yi and the approximated one yiL.

50



Figure 2.3: Feedforward neural network.

Problem (2.17) is usually solved by means of the gradient descent method exploiting the
back-propagation algorithm [Rumelhart et al., 1986] to compute the derivatives of the loss
function with respect to parameters. In particular, the gradient descent method requires to
evaluate

∇θDFJ (θDF ) =
1

M

M∑

i=1

∇θDFL(yi,yiL;θDF ), (2.18)

a task which might easily become prohibitive when the size M of the training dataset is very
large, thus causing a single step of the gradient descent method to require a huge amount
of time. The stochastic gradient descent (SGD) method allows to reduce the computational
cost associated to the computation of the gradient of the loss function, by exploiting the
fact that (2.18) can be considered as an expectation over the entire training dataset. Such
an expectation can be approximated using a small set (or minibatch) of samples; hence,
at each iteration the SGD method samples a minibatch of m < M data points, drawn (e.g.,
uniformly) from the training dataset [Goodfellow et al., 2016], and approximates the gradient
(2.18) of the loss function by

∇̂θDFJ (θDF ) =
1

m

m∑

i=1

∇θDFL(yi,yiL;θDF ).

2.5.2 Convolutional neural networks

Convolutional neural networks (CNNs) [LeCun et al., 1998] are the standard neural network
architecture in computer vision tasks, since they are well-suited to high-dimensional and
spatially distributed data like images. This is due to the local approach of convolutional
layers which enables them to exploit spatial correlations among pixels in order to extract
low-level features of the input to carry out the task. The main ingredients of a convolutional
layer are convolutional kernels, or filters, which consist in tensors of smaller dimensions with
respect to the input. Each element of a feature map is obtained by sliding the kernel over the
image and by computing the discrete convolution, as shown in Figure 2.4, where we assume
striding equal to 1 and valid padding.

Considering a 3-dimensional input Y0 = X ∈ RN1
0×N

2
0×N

3
0 and a bank of Ki convolutional

filters in layer i denoted as Wk
i ∈ Rn1

i×n
2
i×n

3
i , i = 1, . . . , L and k = 1, . . . ,Ki, the k-th feature

map is computed as

Yk
i = φi(W

k
i ∗Yi−1 + bki ).

where Yi ∈ RN1
i ×N

2
i ×N

3
i (or, equivalently, Yk

i ∈ RN1
i ×N

2
i ) with N1

i and N2
i depending on n1

i

and n2
i , respectively, the padding and the striding strategies, and N3

i = Ki.
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Figure 2.4: Computation of the elements of a feature map in a convolutional layer.

Convolutional layers are characterized by shared parameters, that is, weights are shared
by all the elements (neurons) in a particular feature map, and local connectivity, that is,
each neuron in a feature map is connected only to a local region of the input. Parameter
sharing allows convolutional layers to enjoy another property: translation invariance or, more
precisely, translation equivariance. This means that if the input varies, the output changes
accordingly [Goodfellow et al., 2016]. In particular, if we apply a transformation to the input
Y0 and then compute the convolution, the result is the same we would obtain by computing
the convolution and then applying the transformation to the output. The two properties
above increase efficiency of CNNs, both in terms of memory and computational costs, with
respect to DFNNs, thus making them preferable to the latter when dealing with extremely
high-dimensional data.

2.5.3 Autoencoder neural networks

Autoencoders (AEs) [Bourlard and Kamp, 1998, Hinton and Zemel, 1994] are a particular
type of feedforward neural networks aiming at reproducing, under suitable constraints, the
identity function by generating the following map

fAE(·;θE ,θD) : xh 7→ x̃h with x̃h ' xh, (2.19)

where, of course, x̃h is just an approximation of xh due to the unavoidable error associated
to the learning process. Internally, an AE has a hidden layer consisting in a code used to
represent the input. We focus on undercomplete AEs [Goodfellow et al., 2016], where the
constraint imposed is the reduction of the dimension of the code with respect to the input
and output dimensions.

By considering the input y0 = xh ∈ RNh and the output yL = x̃h ∈ RNh , an AE is
composed by two main parts (see Figure 2.5)

• the encoder function fEn (·;θE) : xh 7→ x̃n = fEn (xh;θE), where fEn (·;θE) : RNh → Rn
and n � Nh, mapping the high-dimensional input xh onto the low-dimensional code
x̃n. The encoder function depends on a vector of parameters θE ∈ RNE collecting all
the weights and biases specifying the function itself;

• the decoder function fDh (·;θD) : x̃n 7→ x̃h = fDh (x̃n;θD), where fDh (·;θD) : Rn →
RNh , mapping the code x̃n to an approximation of the original high-dimensional input
x̃h. Similarly to the encoder function, the decoder function depends on a vector of
parameters θD ∈ RND collecting all the weights and biases specifying the function
itself.

The AE is then defined as

fAE(·;θE ,θD) : xh 7→ x̃h = fDh (fEn (xh;θE);θD).

52



Figure 2.5: Autoencoder neural network.

AE learning lays within the unsupervised learning paradigm [Goodfellow et al., 2016] since
its goal is to reconstruct the input being the target output an approximation of the input.
An AE not only learns a low-dimensional representation of the high-dimensional input but
also learns how to reconstruct the input from the code through the encoder and the decoder
functions.

When dealing with large inputs, as the ones arising from the discretization of system (2.1),
the use of a feedforward AE may become prohibitive as the number of parameters (weights
and biases) required may be very large. As pointed out in Subsection 2.5.2, parameter
sharing and local connectivity allow to reduce the numbers of parameters of the network and
the number of associated computations, both in the forward and in the backward pass, thus
training and testing computational times, hence the idea of relying on convolutional AEs for
the sake of building our deep learning-based ROM technique.

Remark 1 By choosing single-layer linear encoder and decoder functions, i.e. by setting the
activation function in (2.16) equal to the identity function, that is

x̃n = fEn (xh;θE) = WExh + bE and x̃h = fDh (x̃n;θD) = WDx̃n + bD,

where WE ∈ Rn×Nh , bE ∈ Rn, WD ∈ RNh×n, bD ∈ RNh , and by setting the per-example
loss function in (2.17) equal to

L(xh, x̃h;θE ,θD) = ||xh − x̃h||2 = ||xh −WWTxh||2, (2.20)

with W = WD = WT
E, the AE will learn the same subspace as the one spanned by the first n

POD modes. However, without additional constraints on W, the columns of W do not form
an orthonormal basis or do not have any hierarchical ordering.

2.6 Example: classification of atrial fibrillation by CNN

In the cardiac EP context, ML and DL are currently areas of intense exploration [Itchhaporia
et al., 1996]. The use of this kind of algorithms, in cardiac EP research, has expanded
exponentially in recent years, with emphasis on disease detection and diagnosis, prediction
of patient outcomes, automatic segmentation of medical images and novel characterization
of disease (see, e.g, [Feeny et al., 2020] for a complete review). Disease detection, starting
from electrocardiograms (ECGs) or electrograms (EGMs) time series, results to be one of the

53



areas in which the use of neural networks is more advanced [Rajpurkar et al., 2017, Xia et al.,
2018].

In this Section we provide an example of application of neural networks to a classification
problem, in a supervised learning paradigm (see Section 2.5), to detect AF from ECGs. This
example is inspired by the PhysioNet Computing in Cardiology Challenge 2017 [Clifford et al.,
2017].

The task we want to perform is classification (see Section 2.5 for further details) of short
single lead ECG recordings in four classes: normal sinus rhythm, AF, alternative rhythm or
noise (see Figure 2.6 (left)). Despite the great interest shown by the scientific community in
detecting heart arrhythmias [Rajpurkar et al., 2017, Xia et al., 2018], AF detection remains
problematic primarily because it may be episodic, as in paroxysmal cases (see Subsection
1.1.1). Previous studies concerning AF classification are generally limited in applicability be-
cause: (i) only classification of normal and AF rhythms are performed; (ii) good performance
is shown on carefully selected clean data; (iii) a testing dataset is not used; (iv) only a small
number of patients is considered. Reliable detection of AF, from a single short lead ECG, is
a challenging task, and the broad taxonomy of rhythms makes this particularly difficult. In
particular, many non AF rhythms exhibit irregular features that may be similar to AF.

typical waveform for each class is shown in the lower 
panel of Figure 1. 

 
 

Figure 1: Top: The distribution of training and test set 
samples. Bottom: Typical recordings for each of the 4 
classes in the data set. 
 
2.2. Deep Learning Approaches 

In this study, we have developed and compared three 
machine learning approaches: recurrent neural networks 
(RNN), spectrogram learning, and 16-layer CNN for the 
ECG classification task. 

2.2.1 Recurrent Neural Networks 
A 3 layer RNN was designed to extract temporal 

features from the raw waveform [6]. The RNN processed 
the input signal values sequentially with a feedback 
mechanism for any particular value by gaining the 
information learnt from the prior input values. This then 
propagated to the next temporal location where the same 
operations occurred. This allowed the raw ECG signal 
vector to be fed in one value at a time for the entire signal.  

 
2.2.2 Spectrogram Learning 

Spectrograms provided a representation of ECGs in the 
frequency domain using the Fourier transform when 
temporal domain representations alone were not enough. 
The converted 2D frequency-time matrix would then be 
processed like an image. The GoogleNet, winner of the 
2014 ImageNet Large Scale Visual Recognition 
Challenge, was then used to process the resultant 
spectrograms [7]. 

 
2.2.3  A 16-layer convolutional neural 
network  

 
Figure 2: The proposed neural network architecture with 
repeated 16 1D convolutions with skip connections. 

 
A 16-layer CNN was developed for the ECG 

classification task (Figure 2). The design consisted of 16 
sequential skip connections [8], as a means of increasing 
the efficiency of traditional CNNs. 

In each block, the same operations were performed. 
During training, the data was fed into the CNN network 
in batches. To normalise the batch at each layer, batch-
normalization [9] was performed to ensure the numerical 
values throughout the network were scaled to the same 
magnitude. Rectified linear activation (ReLU) units[10] 
were applied to speed up training by further normalising 
the values. Dropout[11] was then used to reduce 
overfitting of the CNN on the training data before the 
convolution layer.  

The convolution layer was the major feature learning 
component of the CNN and involved a 15x1 filter with 
trainable weights that slid across the signals to extract 
features from the waveform. When significant features 
were detected, the filters activated by changings its 
weights to a more significant numerical value. By 
providing the CNN with labelled data, the model was able 
to learn the significant features that characterise different 
classes. 

Pooling layers were added to down sample the signal 
by taking every two values in a vector and reducing it to 1 
value by either averaging the two (average pool) or taking 
the max of the two (max pool). This forced the CNN to 
keep only the most relevant features and also decreased 
the memory burden of such a large network. Pooling 
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Figure 2.6: Left: Typical recordings for each of the four classes in the dataset [Clifford et al.,
2017]. Right: AliveCor device [Clifford et al., 2017].

In the task considered, ECG recordings, collected using the AliveCor device (see Figure 2.6
(right)), are sampled at 300 Hz and band-pass filtered by the device. The training dataset is
composed by 8528 signals of variable lengths and they are not uniformly distributed among
the four classes, as shown in Figure 2.7. Indeed, the normal class represents almost the
60% of the entire dataset whereas the noise class only the 3%. Due to the very low class
representation and to the fact that, from an electrophysiological point of view, the noise class
is not meaningful we decide not to consider this class. Moreover, motivated by the fact that
the testing dataset is still not available we perform only validation, not testing. Although
we considered to reserve a small set of data at our disposal for the final testing purpose, we
believe that is better to provide by our side the best DL model we can, using all the data for
training and validation purposes. Two metrics are used to evaluate the performance of the
neural network

• accuracy:

A =
#correct predictions

#total predictions
,

• F1 score:

F̄1 =
F1n + F1a + F1o

3
,
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Figure 2.7: Data profile for the training set [Clifford et al., 2017].

where F1n =
2Nn∑
N +

∑
n

, F1a =
2Aa∑
A+

∑
a

and F1o =
2Oo∑
O +

∑
o

in accord with

Figure 2.8. This is the scoring method provided by the organizers of the Physionet
Challenge 2017.

Figure 2.8: Scoring notation used for the confusion matrix [Clifford et al., 2017].

Data are splitted cyclically into training and validation sets, according to the proportion
of 9 to 1, with the 10-fold cross-validation approach [Goodfellow et al., 2016], used to reduce
the variance of the generalization error. We end up with 10 different networks which global
performance are evaluated considering the average of the performance of the 10 networks.
Moreover, data are normalized by using the mean and the standard deviation of all training
samples. Each sample is truncated to a length of reference equal to 10100 elements. When
the time series is shorter the signal is extended by repeating the last elements.

We decided to implement a 1D deep CNN, taking as a baseline one of the highest ranked
projects in the challenge [Pyakillya et al., 2017, Xiong et al., 2017]. Moreover, a 34-layer 1D
CNN has shown to exceed the average cardiologists performance in classifying ECGs among
14 classes [Rajpurkar et al., 2017]. The architecture of the neural network used to solve the
classification task is shown in Figure 2.9. The neural network presents a structure of convo-
lutional and dense blocks, followed by a final dense layer. We rely on the dropout technique
[Srivastava et al., 2014], which limits overfitting by randomly setting outputs activation to
0 during training, according to the dropout rate dp. The weights and biases initializations
follow the Glorot and Bengio uniform law, in the case of convolutional layers, and the Glorot
and Bengio normal law, in the case of dense layers [Glorot and Bengio, 2010]. As nonlinear
activation function we employ the ReLU function [Agarap, 2018] defined as

σ(z) =

{
z z ≥ 0

0 z < 0.

We solve the optimization problem (2.17) by means of the ADAM algorithm [Kingma and
Ba, 2015] with a starting learning rate η = 10−3. The bacth size, dropout rate and maximum
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Input

1D Convolution
ReLU Activation
1D MaxPooling

Dropout

Dense

Softmax

1D Convolution
ReLU Activation

1D GlobAvgPooling

Prediction

3 Times

Dense
ReLU Activation

Dropout
3 Times

Layer #	of	output
Kernel	size	/	
Pooling	size

Strides Padding
Kernel	
initializer

Conv1 128 55 1 VALID glorot_uniform
ReLU1 128
Pool1 128 10 10 VALID
Dropout1
Conv2 128 25 1 VALID glorot_uniform
ReLU2 128
Pool2 128 5 5 VALID
Dropout2
Conv3 128 10 1 VALID glorot_uniform
ReLU3 128
Pool3 128 5 5 VALID
Dropout3
Conv4 128 5 1 VALID glorot_uniform
ReLU4 128
GlobAvgPool1 128 33 1 VALID
Dense1 256 glorot_normal
ReLU5 256
Dropout4
Dense2 128 glorot_normal
ReLU6 128
Dropout5
Dense3 64 glorot_normal
ReLU7 64
Dropout6
Dense4 3 glorot_normal
Softmax 3

Figure 2.9: Left: CNN architecture. Right: Detailed architecture.

number of epochs are set to Nb = 276, dp = 0.5 and Nepochs = 50, respectively, through
hyperparameters tuning. Tensorflow is used as DL framework for the implementation of the
model [Abadi et al., 2016] and all the computations are performed on a Nvidia GeForce GTX
1070 8 GB GPU.

In Figure 2.10 we show the trend of the accuracy over the validation set versus the epochs
for each fold. Both the accuracy A and the F1 score F̄1 are equal to 0.85 (see Table 2.6).
The class predicted with lower accuracy is the O, i.e. alternative rhythm, one due to the
fact that this class collects a great variety of signals, related to different pathologies, whereas
the other classes refer to one precise condition. This is confirmed by the scores obtained by
participants to the challenge. Indeed, in Table 2.6 we compare the performance of our model
with the one obtained by [Zihlmann et al., 2017, Xiong et al., 2017, Andreotti et al., 2017].
In particular, [Xiong et al., 2017] employs a 1D CNN and has gained the second highest
score, in [Zihlmann et al., 2017] the authors implement a 2D CNN which takes as input
the spectrograms of the ECGs and [Andreotti et al., 2017] uses a 1D residual CNN inspired
by the work of [Rajpurkar et al., 2017]. In Figure 2.11 (left) the mean confusion matrix

AF N O F̄1

our model 0.86 0.9 0.78 0.85
Andreotti et al. 0.68 0.88 0.67 0.74
Zihlmann et al. 0.77 0.89 0.73 0.8

Xiong et al. 0.87 0.93 0.83 0.88

Table 2.1: Comparison among our network and existing models.

for the proposed model is shown. By looking at the third line, the loss of accuracy in the
prediction of the class O, with respect to the others, is related to the records misclassified
normal. Finally, in Figure 2.11 (right), we show the accuracy trend over the validation set
versus the number of epochs for the best network of the 10-fold cross-validation by achieving
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Figure 2.10: Accuracy trend vs. number of epochs with 10-fold cross-validation.

an accuracy equal to 0.87, higher than the 0.85 one obtained in [Pyakillya et al., 2017].

AF

AF

N

N O

O

Figure 2.11: Left: Confusion matrix for 10-fold cross-validation. Right: Accuracy trend vs.
number of epochs for the best network.

In conclusion, we are able to accurately identify AF short single-lead ECGs by means
of the model presented in this Section. The proposed model gives comparable results with
the performance obtained by participants to the challenge. Our findings confirm that an
approach based on deep neural networks is suitable for this kind of problems.

Neural networks, applied to the kind of task described in this Section, are not able to
provide information about the spatial distribution of the electrical signal in the heart. We
are interested in using DL algorithms, in the cardiac EP applicative context, over their
classification ability, that is we focus on the efficient reconstruction of the potential field, which
otherwise would be the output of the expensive solution of the Bidomain and Monodomain
equations by suitable numerical methods, such as the FE method and IGA, in order to
reproduce all the time and spatial scales of the transmembrane potential. Indeed, we want
to approximate the map (t,µ) 7→ uh(t,µ), where t ∈ (0, T ) denotes time, µ ∈ P ⊂ Rnµ a
vector of input parameters and uh(t,µ) ∈ RNh the solution of cardiac EP systems, in order
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to retain more information than the one associated to an ECG, as in this case. In particular,
by accurately characterizing the solutions of equations (1.1) and (1.3) in terms of their time
and spatial scales, inferring a specific arrhythmia is a straightforward task.
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Chapter 3
A deep learning-based reduced order
model for time-dependent nonlinear
parametrized PDEs

In this Chapter1, we propose a computational, non-intrusive approach based on deep learn-
ing (DL) algorithms to deal with the construction of efficient reduced order models (ROMs)
(which we refer to as DL-ROMs) in order to tackle parameter-dependent PDEs; in partic-
ular, we consider PDEs that feature wave-type phenomena. A comprehensive framework is
presented for the global approximation of the map (t,µ) 7→ uh(t,µ), where t ∈ (0, T ) de-
notes time, µ ∈ P ⊂ Rnµ a vector of input parameters and uh(t,µ) ∈ RNh the solution
of a dynamical system arising from the space discretization of a time-dependent (non)linear
parametrized PDE. Moreover, we assess the DL-ROM numerical accuracy on three different
test cases of increasing complexity (with respect to the parametric dependence and the na-
ture of the PDE). We show that the proposed DL-ROM framework can efficiently provide
solutions to parametrized cardiac electrophysiology (EP) problems in Chapter 4.

3.1 Parametrized PDEs and deep learning

As outlined in Chapter 2, conventional ROMs, such as POD-Galerkin ROMs, show severe lim-
itations when dealing with nonlinear time-dependent parametrized PDEs, such as cardiac EP
problems. These might be related to (i) the need to deal with projections onto high dimen-
sional linear approximating trial manifolds, (ii) expensive hyper-reduction strategies, or (iii)
the intrinsic difficulty to handle physical complexity with linear superimpositions of modes.
Several recent works have shown possible applications of DL techniques to parametrized
PDEs – thanks to their approximation capabilities, their extremely favorable computational
performances during online testing phases, and their relative easiness of implementation –
both from a theoretical [Kutyniok et al., 2019] and a computational standpoint. Regarding
this latter aspect, artificial neural networks (ANN), such as feedforward neural networks,
have been employed to model the reduced dynamics in a data-driven and less intrusive way
(avoiding, e.g., the costs entailed by projection-based ROMs), but still relying on a linear
trial manifold built, e.g., through POD. For instance, in [Guo and Hesthaven, 2018, Guo
and Hesthaven, 2019, Hesthaven and Ubbiali, 2018, San and Maulik, 2018, Kast et al., 2020]
the solution of a (nonlinear, time-dependent) ROM for any new parameter value has been

1This Chapter is mainly based on the paper [Fresca et al., 2020a].
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replaced by the evaluation of ANN-based regression models; similar ideas can be found, e.g.,
in [Kani and Elsheikh, 2017, Mohan and Gaitonde, 2018, Wan et al., 2018, Pulch and Youssef,
2020, Bērzinš et al., 2020].

A first effort to include physics laws in the definition of the ROM is provided in [Chen
et al., 2020] where the intrinsic coordinates of the linear trial manifold, generated by POD,
are approximated by means of a feedforward neural network trained by minimizing the mean
squared residual error of the ROM on a set of points in the parameter space. The limitations
of this approach are related to the fact that it has been applied only to steady state PDEs
and it is not capable of handling efficiently terms that depend nonlinearly on either the
solution or the input parameters of the problem. Few attempts have been made in order to
describe the reduced trial manifold where the approximation is sought (avoiding, e.g., the
linear superimposition of POD modes) through ANNs, see, e.g., [González and Balajewicz,
2018, Lee and Carlberg, 2020]. In particular:

• a projection-based ROM technique has been introduced in [Lee and Carlberg, 2020],
in which the FOM system is projected onto a nonlinear trial manifold identified by
means of the decoder function of a convolutional AE. However, the ROM is derived by
minimizing a residual formulation, for which the quasi-Newton method herein employed
requires the computation of an approximated Jacobian of the residual at each time step,

• a ROM technique based on a deep convolutional recurrent AE has been proposed in
[González and Balajewicz, 2018], where a reduced trial manifold is generated through a
convolutional AE; the latter is then used to train a Long Short-Term Memory (LSTM)
neural network modeling the reduced dynamics. However, explicit parameter depen-
dence in the PDE problem is not considered, apart from µ-dependent initial data, and
the LSTM is trained on reduced approximations obtained through the encoder function
of the AE.

Another promising application of machine learning techniques within a ROM framework deals
with the efficient evaluation of ROM errors, see, e.g., [Freno and Carlberg, 2018, Pagani et al.,
2019, Parish and Carlberg, 2019, Trehan et al., 2017].

We set up nonlinear ROMs whose dimension is nearly equal (if not equal) to the intrinsic
dimension of the solution manifold that we aim at approximating (see Section 2.2). Our
DL-ROM approach combines and improves the techniques introduced in [González and Bal-
ajewicz, 2018, Lee and Carlberg, 2020] by shaping an all-inclusive DL-based ROM technique,
where we both

• construct the reduced trial manifold,

• model the reduced dynamics on it employing ANNs.

The former task is achieved by using the decoder function of a convolutional AE; the latter
task is instead carried out by considering a feedforward neural network and the encoder
function of a convolutional AE. Moreover, we set up a computational procedure performing
the training of both network architectures simultaneously, by minimizing a loss function that
weights two terms, one dedicated to each single task.

In this respect, we are able to design a flexible framework capable to handle parameters
affecting both PDE operators and data, which avoids both the expensive projection stage
of [Lee and Carlberg, 2020] and the training of a more expensive LSTM network. In the
DL-ROM, the intrusive construction of a ROM is replaced by the evaluation of the ROM
generalized coordinates through a deep feedforward neural network taking only (t,µ) as
inputs. The proposed technique is purely data-driven, non-intrusive, that is, it only relies on
the computation of a set of FOM snapshots – in this respect, DL does not replace the high-
fidelity FOM as, e.g., in the works by Karniadakis and coauthors [Raissi and Karniadakis,
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2018, Raissi et al., 2017a, Raissi et al., 2017b, Raissi et al., 2019, Raissi, 2018]; rather, DL
techniques are built upon it, to enhance the repeated evaluation of the FOM for different
values of the parameters.

3.2 Deep learning-based reduced order models
(DL-ROMs)

In this Section we detail the construction of the proposed nonlinear ROM. In this respect, we
define the functions Ψh and Φn in (2.12) and (2.14) by means of DL algorithms, exploiting
neural network architectures. This choice is motivated by their ability of effectively ap-
proximating nonlinear maps, and by their ability to learn from data and generalize to unseen
data. On the other hand, DL models enable us to build non-intrusive, completely data-driven,
ROMs, since their construction only requires to access the dataset, the parameter values and
the snapshot matrix, but not the FOM arrays appearing in (2.1). The DL-ROM technique
that we develop is composed by two main blocks responsible, respectively, for the reduced dy-
namics learning and the reduced trial manifold learning (see Figure 3.1). Hereon, we denote
by Ntrain, Ntest and Nt the number of training-parameter instances, of testing-parameter
instances and time instances, respectively, and we set Ns = NtrainNt. The dimension of both
the FOM solution and the ROM approximation is Nh, while n� Nh denotes the number of
intrinsic coordinates.

For the description of the system dynamics on the reduced nonlinear trial manifold (which
we refer to as reduced dynamics learning), we employ a deep feedforward neural network
(DFNN) with L layers, that is, we define the function Φn in definition (2.14) as

Φn(t;µ,θDF ) = φDFn (t;µ,θDF ), (3.1)

thus yielding the map

(t,µ) 7→ un(t;µ,θDF ) = φDFn (t;µ,θDF ),

where φDFn takes the form (2.15), with t ∈ [0, T ), and results from the subsequent composition
of a nonlinear activation function, with a linear transformation of the input, L times. Here
θDF denotes the vector of parameters of the DFNN.

Regarding instead the description of the reduced nonlinear trial manifold S̃n defined in
(2.13) (which we refer to as reduced trial manifold learning), we employ the decoder function
of a convolutional autoencoder (AE), that is, we define the function Ψh appearing in (2.12)
and (2.13) as

Ψh(un(t;µ,θDF );θD) = fDh (un(t;µ,θDF );θD), (3.2)

thus yielding the map

un(t;µ,θDF ) 7→ ũh(t;µ,θ) = fDh (un(t;µ,θDF );θD),

where fDh results from the composition of several layers, some of which of convolutional type,
overall depending on the vector θD of parameters of the decoder function.

Combining the two former stages, the DL-ROM approximation is given by

ũh(t;µ,θ) = fDh (φDFn (t;µ,θDF );θD), (3.3)

where φDFn (·; ·,θDF ) : [0, T ) × Rnµ → Rn and fDh (·;θD) : Rn → RNh are defined as in (3.1)
and (3.2), respectively, and θ = (θDF ,θD) are the parameters defining the neural network.
The architecture of DL-ROM is shown in Figure 3.1.

Computing the ROM approximation (3.3) for any new value of µ ∈ P, at any given time,
requires evaluation of the map (t,µ)→ ũh(t;µ,θ) at the testing stage, once the parameters
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For the description of the system dynamics on the reduced nonlinear trial manifold (which we refer to
as reduced dynamics learning), we employ a deep feedforward neural network (DFNN) with L layers, that
is, we define the function �n in definition (11) as
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n (t; µ,✓DF ), (12)

thus yielding the map

(t, µ) 7! un(t; µ,✓DF ) = �DF
n (t; µ,✓DF ),

where �DF
n takes the form (30), t 2 [0, T ], and results from the subsequent composition of a nonlinear

activation function L times. Here µ 2 P ⇢ Rnµ and ✓DF denotes the vector of hyper-parameters of the
DFNN.

Regarding instead the description of the reduced nonlinear trial manifold S̃n defined in (10) (which we
refer to as reduced trial manifold learning), we employ the decoder function of a convolutional autoencoder
(AE), that is, we define the function  h appearing in (9) and (10) as
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)| . . . |(tNt , µNs
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Computing the ROM approximation (14) for any new value of µ 2 P, at any given time, requires
to evaluate the map (t, µ) ! ũh(t; µ,✓) at the testing stage, once the parameters ✓ = (✓DF ,✓D) have
been determined, once and for all, during the training stage. The training stage consists in solving an
optimization problem (in the variable ✓) after a set of snapshots of the FOM have been computed.
More precisely, provided the parameter matrix M 2 R(nµ+1)⇥Ns defined as

M = [(t1, µ1)| . . . |(tNt , µ1)| . . . |(t1, µNtrain
)| . . . |(tNt , µNtrain

)], (15)

and the snapshot matrix S, defined in (4), we solve the problem: find the optimal parameters ✓⇤

solution of

J (✓) =
1

Ns

NtrainX

i=1

NtX

k=1

L(tk, µi;✓) ! min
✓

(16)

where

L(tk, µi;✓) =
1

2
kuh(tk; µi) � ũh(tk; µi,✓)k2 =

1

2
kuh(tk; µi) � fD

h (�DF
n (tk; µi,✓DF );✓D)k2. (17)

To solve the optimization problem (16)-(17) we use the ADAM algorithm [29] which is a Stochastic
Gradient Descent method [52] computing an adaptive approximation of the first and second momentum
of the gradients of the loss function. In particular, it computes exponentially weighted moving averages
of the gradients and of the squared gradients. We set the starting learning rate to ⌘ = 10�4, the batch
size to Nb = 20 and the maximum number of epochs to Nepochs = 10000. We perform cross-validation,
in order to tune the hyper-parameters of the DL-ROM, by splitting the data in training and validation
and following a proportion 8:2. Moreover, we implement an early-stopping regularization technique
to reduce overfitting [20]. In particular, we stop the training if the loss does not decrease over 500
epochs. As nonlinear activation function we employ the ELU function [14] defined as

�(z) =

(
z z � 0

exp(z) � 1 z < 0.

No activation function is applied at the last convolutional layer of the decoder neural network, as
usually done when dealing with autoencoders. The parameters, weights and biases, are initialized
through the He uniform initialization [24].

As we rely on a convolutional autoencoder to define the function  h, we also exploit the encoder
function

ũn(t; µ,✓E) = fE
n (u(t; µ);✓E), (18)

which maps each FOM solution associated to the pairs (t; µ) 2 Col(M) provided as inputs to the
feed-forward neural network (12), onto a low-dimensional representation ũn(t; µ,✓E) depending on
the parameters vector ✓E defining the encoder function.

Indeed, the actual architecture of DL-ROM that is used only during the training and the validation
phases, but not during testing, is the one shown in Figure 3. In practice, we add to the architecture of
the DL-ROM introduced above the encoder function of the convolutional autoencoder. This produces
an additional term in the per-example loss function (17), thus calling the following optimization
problem to be solved:

min
✓

J (✓) = min
✓

1

Ns

NtrainX

i=1

NtX

k=1

L(tk, µi;✓), (19)

where

L(tk, µi;✓) =
!h

2
kuh(tk; µi)� ũh(tk; µi,✓DF ,✓D)k2 +

1 � !h

2
kũn(tk; µi,✓E)�un(tk; µi,✓DF )k2 (20)

L(t, µ;✓) =
!h

2
kuh(t; µ) � ũh(t; µ,✓DF ,✓D)k2 +

1 � !h

2
kũn(t; µ,✓E) � un(t; µ,✓DF )k2
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Deep learning-based reduced order modeling (DL-ROM) 164

To overcome the limitations of linear ROMs we consider a new, nonlinear ROM technique 165

based on deep learning models. First introduced in [16] and assessed on one-dimensional 166

benchmark problems, the DL-ROM technique aims at learning both the nonlinear trial 167

manifold (corresponding to the matrix V in the case of a linear ROM) in which we 168

seek the solution to the parametrized system (1) and the nonlinear reduced dynamics 169

(corresponding to the projection stage in a linear ROM). This method is non-intrusive; 170

it relies on DL algorithms trained on a set of FOM solutions obtained for different 171

parameter values. 172

We denote by Ntrain and Ntest the number of training and testing parameter instances, 173

respectively; the ROM dimension is again denoted by n ⌧ N . In order to describe the 174

system dynamics on a suitable reduced nonlinear trial manifold (a task which we refer 175

to as reduced dynamics learning), the intrinsic coordinates of the ROM approximation 176

are defined as 177

un(t; µ,✓DF ) = �DF
n (t; µ,✓DF ), (8)

where �DF
n (·; ·,✓DF ) : R(nµ+1) ! Rn is a deep feedforward neural network (DFNN), 178

consisting in the subsequent composition of a nonlinear activation function, applied to a 179

linear transformation of the input, multiple times [34]. Here ✓DF denotes the vector of 180

parameters of the DFNN, collecting all the corresponding weights and biases of each 181

layer of the DFNN. 182

Regarding instead the description of the reduced nonlinear trial manifold, approx- 183

imating the solution one, S̃ ⇡ S (a task which we refer to as reduced trial manifold 184

learning) we employ the decoder function of a convolutional autoencoder (AE) [35,36]. 185

More precisely, S̃ takes the form 186

S̃ = {fD(un(t; µ,✓DF );✓D) | un(t; µ,✓DF ) 2 Rn, t 2 [0, T ) and µ 2 P ⇢ Rnµ} (9)

where fD(·;✓D) : Rn ! RN consists in the decoder function of a convolutional AE. This 187

latter results from the composition of several layers (some of which are convolutional), 188

depending upon a vector ✓D collecting all the corresponding weights and biases. 189

As a matter of fact, the approximation ũ(t; µ) ⇡ u(t; µ) provided by the DL-ROM 190

technique is defined as 191

ũ(t; µ) = fD(�DF
n (t; µ,✓DF );✓D). (10)

The encoder function of the convolutional AE can then be exploited by mapping the 192

FOM solution associated to (t, µ) onto a low-dimensional representation 193

ũn(t; µ,✓E) = fE
n (u(t; µ);✓E), (11)

where fE
n (·,✓E) : RN ! Rn is the encoder function, depending on a vector of parameters 194

✓E . 195

Computing the DL-ROM approximation of u(t; µtest), for any possible t 2 (0, T ) and 196

µtest 2 P, corresponds to the testing stage of a DFNN and of the decoder function of 197

a convolutional AE; this does not require the evaluation of the encoder function. We 198

remark that our DL-ROM strategy overcomes the three major computational bottlenecks 199

implied by the use of projection-based ROMs, since: 200

- the dimension of the DL-ROM can be kept extremely small; 201

- the time resolution required by the DL-ROM can be chosen to be larger than the 202

one required by the numerical solution of dynamical systems in cardiac electro- 203

physiology; 204
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Figure 3.1: DL-ROM architecture (online stage, testing): the DL-ROM to be queried for any
new selected couple (t,µ) during the testing phase.

θ = (θDF ,θD) have been determined, once and for all, during the training stage. The
training stage consists in solving an optimization problem (in the variable θ) after a set of
snapshots of the FOM have been computed. More precisely, provided the parameter matrix
M ∈ R(nµ+1)×Ns defined as

M = [(t1,µ1)| . . . |(tNt ,µ1)| . . . |(t1,µNtrain)| . . . |(tNt ,µNtrain)], (3.4)

and the snapshot matrix S, we find the optimal parameters θ∗ solution of

J (θ) =
1

Ns

Ntrain∑

i=1

Nt∑

k=1

L(tk,µi;θ)→ min
θ

(3.5)

where

L(tk,µi;θ) =
1

2
‖uh(tk;µi)− ũh(tk;µi,θ)‖2

=
1

2
‖uh(tk;µi)− fDh (φDFn (tk;µi,θDF );θD)‖2.

(3.6)

To solve the optimization problem (3.5)-(3.6) we use the ADAM algorithm [Kingma and
Ba, 2015] which is a stochastic gradient descent method [Robbins and Monro, 1951] computing
an adaptive approximation of the first and second momentum of the gradients of the loss
function. In particular, it computes exponentially weighted moving averages of the gradients
and of the squared gradients. We set the starting learning rate to η = 10−4, the batch size
to Nb = 20 and the maximum number of epochs to Nepochs = 10000. We perform cross-
validation, in order to tune the hyperparameters of the DL-ROM, by splitting the data in
training and validation sets, with a proportion 8:2. Moreover, we implement an early-stopping
regularization technique to reduce overfitting [Goodfellow et al., 2016], arresting the training
if the loss, over the validation set, does not decrease over 500 epochs. As nonlinear activation
function we employ the ELU function [Clevert et al., 2015] defined as

σ(z) =

{
z z ≥ 0

exp(z)− 1 z < 0.

No activation function is applied at the last convolutional layer of the decoder neural network,
as usually done when dealing with AEs. The parameters, weights and biases, are initialized
through the He uniform initialization [He et al., 2015].

As we rely on a convolutional autoencoder to define the function Ψh, we also exploit the
encoder function

ũn(t;µ,θE) = fEn (uh(t;µ);θE), (3.7)
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which maps each FOM solution associated to (t;µ) ∈ Col(M) provided as inputs to the feed-
forward neural network (3.1), onto a low-dimensional representation ũn(t;µ,θE) depending
on the parameters vector θE defining the encoder function.

Indeed, the actual architecture of DL-ROM used only during the training and the valida-
tion phases, but not during testing, is the one shown in Figure 3.2. In practice, we add to

deep feedforward NN decoder function of a convolutional autoencoder

3 A Deep Learning-based Reduced Order Model (DL-ROM)

Let us now detail the construction of the proposed nonlinear ROM. In this respect, we define the functions
 h and�n in (9) and (11) by means of deep learning (DL) models, exploiting neural network architectures.
This choice is motivated by their capability of approximating nonlinear maps e↵ectively, and by their
ability to learn from data and generalize to unseen data. On the other hand, DL models enable us to
build non-intrusive, completely data-driven, ROMs, since their construction only requires to access the
dataset, the parameter values and the snapshots matrix, but not the FOM arrays appearing in (1).

The DL-ROM technique we developed is composed by two main blocks responsible, respectively, for the
reduced dynamics learning and the nonlinear trial manifold learning (see Figure 2). Hereon, we denote
by Ntrain, Ntest and Nt the number of training-parameter instances, of testing-parameter instances and
time instances, respectively, and we set Ns = Ntrain · Nt. The dimension of both the FOM solution and
the ROM approximation is Nh, while n denotes the number of intrinsic coordinates, with n ⌧ Nh.

For the description of the system dynamics on the reduced nonlinear trial manifold (which we refer to
as reduced dynamics learning), we employ a deep feedforward neural network (DFNN) with L layers, that
is, we define the function �n in definition (11) as

�n(t; µ,✓DF ) = �DF
n (t; µ,✓DF ), (12)

thus yielding the map

(t, µ) 7! un(t; µ,✓DF ) = �DF
n (t; µ,✓DF ),

where �DF
n takes the form (30), t 2 [0, T ], and results from the subsequent composition of a nonlinear

activation function L times. Here µ 2 P ⇢ Rnµ and ✓DF denotes the vector of hyper-parameters of the
DFNN.

Regarding instead the description of the reduced nonlinear trial manifold S̃n defined in (10) (which we
refer to as reduced trial manifold learning), we employ the decoder function of a convolutional autoencoder
(AE), that is, we define the function  h appearing in (9) and (10) as
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thus yielding the map
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where fD
h results from the composition of several layers, some of which of convolutional type, overall

depending on the vector ✓D of hyper-parameters of the decoder function.

Combining the two stages above, the DL-ROM approximation is then given by
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where �DF
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h (·;✓D) : Rn ! RNh are defined as in (12) and (13), respec-
tively, and ✓ = (✓DF ,✓D) are the parameters defining the neural network. The architecture of DL-ROM
is shown in Figure 2.

Computing the ROM approximation (9) in the developed framework is equivalent to solve an optimiza-
tion problem. More precisely, provided the parameter matrix M 2 R(nµ+1)⇥Ns defined as
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where �DF
n takes the form (30), t 2 [0, T ], and results from the subsequent composition of a nonlinear

activation function L times. Here µ 2 P ⇢ Rnµ and ✓DF denotes the vector of hyper-parameters of the
DFNN.
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where fD
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Combining the two stages above, the DL-ROM approximation is then given by
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where �DF
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h (uh(t; µ),✓E) ũn(t; µ,✓E) uh(t; µ)

Computing the ROM approximation (14) for any new value of µ 2 P, at any given time, requires to
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Computing the ROM approximation (14) for any new value of µ 2 P, at any given time, requires
to evaluate the map (t, µ) ! ũh(t; µ,✓) at the testing stage, once the parameters ✓ = (✓DF ,✓D) have
been determined, once and for all, during the training stage. The training stage consists in solving an
optimization problem (in the variable ✓) after a set of snapshots of the FOM have been computed.
More precisely, provided the parameter matrix M 2 R(nµ+1)⇥Ns defined as

M = [(t1, µ1)| . . . |(tNt , µ1)| . . . |(t1, µNtrain
)| . . . |(tNt , µNtrain

)], (15)

and the snapshot matrix S, defined in (4), we solve the problem: find the optimal parameters ✓⇤

solution of

J (✓) =
1

Ns

NtrainX

i=1

NtX

k=1

L(tk, µi;✓) ! min
✓

(16)

where

L(tk, µi;✓) =
1

2
kuh(tk; µi) � ũh(tk; µi,✓)k2 =

1

2
kuh(tk; µi) � fD

h (�DF
n (tk; µi,✓DF );✓D)k2. (17)

To solve the optimization problem (16)-(17) we use the ADAM algorithm [29] which is a Stochastic
Gradient Descent method [52] computing an adaptive approximation of the first and second momentum
of the gradients of the loss function. In particular, it computes exponentially weighted moving averages
of the gradients and of the squared gradients. We set the starting learning rate to ⌘ = 10�4, the batch
size to Nb = 20 and the maximum number of epochs to Nepochs = 10000. We perform cross-validation,
in order to tune the hyper-parameters of the DL-ROM, by splitting the data in training and validation
and following a proportion 8:2. Moreover, we implement an early-stopping regularization technique
to reduce overfitting [20]. In particular, we stop the training if the loss does not decrease over 500
epochs. As nonlinear activation function we employ the ELU function [14] defined as

�(z) =

(
z z � 0

exp(z) � 1 z < 0.

No activation function is applied at the last convolutional layer of the decoder neural network, as
usually done when dealing with autoencoders. The parameters, weights and biases, are initialized
through the He uniform initialization [24].

As we rely on a convolutional autoencoder to define the function  h, we also exploit the encoder
function

ũn(t; µ,✓E) = fE
n (u(t; µ);✓E), (18)

which maps each FOM solution associated to the pairs (t; µ) 2 Col(M) provided as inputs to the
feed-forward neural network (12), onto a low-dimensional representation ũn(t; µ,✓E) depending on
the parameters vector ✓E defining the encoder function.

Indeed, the actual architecture of DL-ROM that is used only during the training and the validation
phases, but not during testing, is the one shown in Figure 3. In practice, we add to the architecture of
the DL-ROM introduced above the encoder function of the convolutional autoencoder. This produces
an additional term in the per-example loss function (17), thus calling the following optimization
problem to be solved:

min
✓

J (✓) = min
✓

1

Ns

NtrainX

i=1

NtX

k=1

L(tk, µi;✓), (19)

where

L(tk, µi;✓) =
!h

2
kuh(tk; µi)� ũh(tk; µi,✓DF ,✓D)k2 +

1 � !h

2
kũn(tk; µi,✓E)�un(tk; µi,✓DF )k2 (20)

L(t, µ;✓) =
!h

2
kuh(t; µ) � ũh(t; µ,✓DF ,✓D)k2 +

1 � !h

2
kũn(t; µ,✓E) � un(t; µ,✓DF )k2
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Deep learning-based reduced order modeling (DL-ROM) 164

To overcome the limitations of linear ROMs we consider a new, nonlinear ROM technique 165

based on deep learning models. First introduced in [16] and assessed on one-dimensional 166

benchmark problems, the DL-ROM technique aims at learning both the nonlinear trial 167

manifold (corresponding to the matrix V in the case of a linear ROM) in which we 168

seek the solution to the parametrized system (1) and the nonlinear reduced dynamics 169

(corresponding to the projection stage in a linear ROM). This method is non-intrusive; 170

it relies on DL algorithms trained on a set of FOM solutions obtained for different 171

parameter values. 172

We denote by Ntrain and Ntest the number of training and testing parameter instances, 173

respectively; the ROM dimension is again denoted by n ⌧ N . In order to describe the 174

system dynamics on a suitable reduced nonlinear trial manifold (a task which we refer 175

to as reduced dynamics learning), the intrinsic coordinates of the ROM approximation 176

are defined as 177

un(t; µ,✓DF ) = �DF
n (t; µ,✓DF ), (8)

where �DF
n (·; ·,✓DF ) : R(nµ+1) ! Rn is a deep feedforward neural network (DFNN), 178

consisting in the subsequent composition of a nonlinear activation function, applied to a 179

linear transformation of the input, multiple times [34]. Here ✓DF denotes the vector of 180

parameters of the DFNN, collecting all the corresponding weights and biases of each 181

layer of the DFNN. 182

Regarding instead the description of the reduced nonlinear trial manifold, approx- 183

imating the solution one, S̃ ⇡ S (a task which we refer to as reduced trial manifold 184

learning) we employ the decoder function of a convolutional autoencoder (AE) [35,36]. 185

More precisely, S̃ takes the form 186

S̃ = {fD(un(t; µ,✓DF );✓D) | un(t; µ,✓DF ) 2 Rn, t 2 [0, T ) and µ 2 P ⇢ Rnµ} (9)

where fD(·;✓D) : Rn ! RN consists in the decoder function of a convolutional AE. This 187

latter results from the composition of several layers (some of which are convolutional), 188

depending upon a vector ✓D collecting all the corresponding weights and biases. 189

As a matter of fact, the approximation ũ(t; µ) ⇡ u(t; µ) provided by the DL-ROM 190

technique is defined as 191

ũ(t; µ) = fD(�DF
n (t; µ,✓DF );✓D). (10)

The encoder function of the convolutional AE can then be exploited by mapping the 192

FOM solution associated to (t, µ) onto a low-dimensional representation 193

ũn(t; µ,✓E) = fE
n (u(t; µ);✓E), (11)

where fE
n (·,✓E) : RN ! Rn is the encoder function, depending on a vector of parameters 194

✓E . 195

Computing the DL-ROM approximation of u(t; µtest), for any possible t 2 (0, T ) and 196

µtest 2 P, corresponds to the testing stage of a DFNN and of the decoder function of 197

a convolutional AE; this does not require the evaluation of the encoder function. We 198

remark that our DL-ROM strategy overcomes the three major computational bottlenecks 199

implied by the use of projection-based ROMs, since: 200

- the dimension of the DL-ROM can be kept extremely small; 201

- the time resolution required by the DL-ROM can be chosen to be larger than the 202

one required by the numerical solution of dynamical systems in cardiac electro- 203

physiology; 204
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Figure 3.2: DL-ROM architecture (offline stage, training and validation): DL-ROM architec-
ture used during the training phase. The FOM solution uh(t;µ) is provided as input to block
(A) which outputs ũn(t;µ). The same parameter instance associated to the FOM, i.e. (t;µ),
enters block (B) which provides as output un(t;µ) and the error between the low-dimensional
vectors (dashed green box) is accumulated. The intrinsic coordinates un(t;µ) are given as
input to block (C) returning the ROM approximation ũh(t;µ). Then the reconstruction error
(dashed black box) is computed.

the DL-ROM architecture introduced above the encoder function of the convolutional AE.
This produces an additional term in the per-example loss function (3.6), thus yielding the
following optimization problem to be solved:

min
θ
J (θ) = min

θ

1

Ns

Ntrain∑

i=1

Nt∑

k=1

L(tk,µi;θ), (3.8)

where

L(tk,µi;θ) =
ωh
2
‖uh(tk;µi)− ũh(tk;µi,θDF ,θD)‖2

+
1− ωh

2
‖ũn(tk;µi,θE)− un(tk;µi,θDF )‖2

(3.9)

and θ = (θE ,θDF ,θD), with ωh ∈ [0, 1]. The per-example loss function (3.9) combines
the reconstruction error (that is, the error between the FOM solution and the DL-ROM
approximation) and the error between the intrinsic coordinates and the output of the encoder.
This further term allows to enhance the performance of the DL-ROM, as shown in Test 3 of
Section 3.4.

63



3.3 Training and testing algorithms

We now detail the algorithms through which the training and testing phases of the networks
are performed. First of all, data normalization and standardization enhance the training
phase of the network by rescaling all the values contained in the dataset to a common frame.
For this reason, the inputs and the output of DL-ROM are normalized by applying an affine
transformation in order to rescale them in the range [0, 1]. In particular, provided the training
parameter matrix Mtrain ∈ R(nµ+1)×Ns , we define

M i
max = max

j=1,...,Ns
M train
ij , M i

min = min
j=1,...,Ns

M train
ij , (3.10)

so that data are normalized by applying the following transformation

M train
ij 7→

M train
ij −M i

max

M i
max −M i

min

, i = 1, . . . , nµ + 1, j = 1, . . . , Ns. (3.11)

Each feature of the training parameter matrix is rescaled according to its maximum and
minimum values. Regarding instead the training snapshot matrix Strain ∈ RNh×Ns , we
define

Smax = max
i=1,...,Nh

max
j=1,...,Ns

Strainij , Smin = min
i=1,...,Nh

min
j=1,...,Ns

Strainij , (3.12)

and apply transformation (3.11) by replacing M i
max,M

i
min with Smax, Smin ∈ R, respectively,

that is. we use the same maximum and minimum values for all the features of the snapshot
matrix, as in [Lee and Carlberg, 2020, González and Balajewicz, 2018]. Using the latter
approach or employing each feature’s maximum and minimum values, for the matrix Strain,
does not lead to remarkable changes in the DL-ROM performance. Transformation (3.11) is
applied also to the validation and testing sets, but considering as as maximum and minimum
the values computed over the training set. In order to rescale the reconstructed solution to the
original values, we apply the inverse transformation of (3.11). We point out that the input
of the encoder function, the FOM solution uh = uh(tk;µi) for a given (time, parameter)
instance (tk,µi), is reshaped in a matrix. In particular, starting from uh ∈ RNh we apply

the transformation uRh=reshape(uh) where uRh ∈ RN
1/2
h ×N1/2

h . If Nh is not a square, the
input uh is zero-padded [Goodfellow et al., 2016]. For the sake of simplicity, we continue
to refer to the reshaped FOM solution to as uh. The inverse reshaping transformation is
applied to the output of the last convolutional layer in the decoder function, the ROM
approximation. Moreover, we highlight that applying one of the functions (3.1)-(3.2)-(3.7)
to a matrix X ∈ Rm×Ns means applying it column-wise. The reduced dimension is chosen
through hyperparameters tuning, i.e. we start from n equal to the dimension of the solution
manifold (nµ + 1) and select a different value for n only if it leads to a significant increase of
the performance of the neural network.

The training algorithm referring to the architecture of DL-ROM depicted in Figure 3.2
is reported in Algorithm 1. During the training phase, the optimal parameters of the DL-
ROM neural network are found by solving the optimization problem (3.8)-(3.9) through the
back-propagation and ADAM algorithms. At testing time, the encoder function is instead
discarded (the DL-ROM architecture is the one shown in Figure 3.1) and the testing algorithm
is provided by Algorithm 2. The testing phase corresponds to a forward step of the DL-ROM
neural network in Figure 3.1.

We implement the DL-ROM neural network by means of the Tensorflow DL framework
[Abadi et al., 2016]; numerical simulations are performed on a workstation equipped with an
Nvidia GeForce GTX 1070 8 GB GPU. The code developed for the following tests (Section
3.4) is freely available at https://github.com/stefaniafresca/DL-ROM-Meth.
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Algorithm 1 DL-ROM training

Input: Parameter matrix M ∈ R(nµ+1)×Ns , snapshot matrix S ∈ RNh×Ns , training-
validation splitting fraction α, starting learning rate η, batch size Nb, maximum number
of epochs Nepochs, early stopping criterion, number of minibatches Nmb = (1−α)Ns/Nb.

Output: Optimal model parameters θ∗ = (θ∗E ,θ
∗
DF ,θ

∗
D).

1: Randomly shuffle M and S
2: Split data in M = [Mtrain,Mval] and S = [Strain,Sval] (Mval,Sval ∈ RNh×αNs)
3: Normalize data in M and S according to (3.11)
4: Randomly initialize θ0 = (θ0

E ,θ
0
DF ,θ

0
D)

5: ne = 0
6: while (¬early-stopping and ne ≤ Nepochs) do
7: for k = 1 : Nmb do
8: Sample a minibatch (Mbatch,Sbatch) ⊆ (Mtrain,Strain)
9: Sbatch = reshape(Sbatch)

10: S̃batchn (θNmbne+kE ) = fEn (Sbatch;θNmbne+kE )

11: Sbatchn (θNmbne+kDF ) = φDFn (Mbatch;θNmbne+kDF )

12: S̃batchh (θNmbne+kDF ,θNmbne+kD ) = fDh (Sbatchn (θNmbne+kDF );θNmbne+kD )

13: S̃batchh = reshape(S̃batchh )

14: Accumulate loss (3.9) on (Mbatch,Sbatch) and compute ∇̂θJ
15: θNmbne+k+1 = ADAM(η, ∇̂θJ ,θNmbne+k)
16: end for
17: Repeat instructions 9-13 on (Mval,Sval) with the updated weights θNmbne+k+1

18: Accumulate loss (3.9) on (Mval,Sval) to evaluate early-stopping criterion
19: ne = ne + 1
20: end while

Algorithm 2 DL-ROM testing

Input: Testing parameter matrix Mtest ∈ R(nµ+1)×(NtestNt), optimal parameters (θ∗DF ,θ
∗
D).

Output: ROM approximation matrix S̃h ∈ RNh×(NtestNt).
1: Load θ∗DF and θ∗D
2: Sn(θ∗DF ) = φDFn (M test;θ∗DF )

3: S̃h(θ∗DF ,θ
∗
D) = fDh (Sn(θ∗DF );θ∗D)

4: S̃h = reshape(S̃h)

3.4 Numerical results: benchmark problems

In this Section, we report the numerical results obtained by applying the proposed DL-ROM
technique to three parametrized, time-dependent PDE problems, namely (i) Burgers equa-
tion, (ii) a linear transport equation, and (iii) the Monodomain equation (1.3). In particular,
on this latter test case, we highlight the limitation of POD-Galerkin ROMs associated to the
linear superimposition of modes (see Section 2.1) and the ability of the DL-ROM in accurately
reconstructing the space and time scales of the transmembrane potential (see Section 2.6).
We deal with problems set in d = 1 (spatial) dimensions. In these one-dimensional test cases
we aim at assessing the numerical accuracy of the DL-ROM approximation, comparing it to
the solution provided by a POD-Galerkin ROM, which features linear (possibly, piecewise
linear) trial manifolds. In the following Chapters, by considering two and three-dimensional
test cases, we instead focus on computational efficiency, by comparing the computational
times of DL-ROM to the ones entailed by a POD-Galerkin method.

To evaluate the performance of DL-ROM we rely on the loss function (3.9) and on the
following error indicators
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• the error indicator εrel ∈ R given by

εrel = εrel(uh, ũh) =
1

Ntest

Ntest∑

i=1




√∑Nt
k=1 ||ukh(µtest,i)− ũkh(µtest,i)||2√∑Nt

k=1 ||ukh(µtest,i)||2


 , (3.13)

• the relative error εk ∈ RNh , for k = 1, . . . , Nt, defined as

εk = εk(uh, ũh) =
|ukh(µtest)− ũkh(µtest)|√

1
Nt

∑Nt
k=1 ||ukh(µtest)||2

. (3.14)

While (3.13) is a synthetic indicator, the quantity defined in (3.14) is instead a function of
the space independent variable

3.4.1 Test 1: Burgers equation

Let us consider the parametrized one-dimensional nonlinear Burgers equation




∂u

∂t
+ u

∂u

∂x
− 1

µ
,
∂2u

∂x2
= 0 (x, t) ∈ (0, L)× (0, T ),

u(0, t) = 0 t ∈ (0, T ),

u(L, t) = 0 t ∈ (0, T ),

u(x, 0) = u0(x) x ∈ (0, L),

(3.15)

where
u0(x) =

x

1 +
√

1/A0 exp(µx2/4)
,

with A0 = exp(µ/8), L = 1 and T = 2. System (3.15) has been discretized in space by means
of linear finite elements, with Nh = 256 grid points, and in time by means of the Backward
Euler scheme, withNt = 100 time instances. The parameter space, to which belongs the single
(nµ = 1) parameter, is given by P = [100, 1000]. We consider Ntrain = 20 training-parameter
instances uniformly distributed over P and Ntest = 19 testing-parameter instances, each of
them corresponding to the midpoint between two consecutive training-parameter instances.

The configuration of the DL-ROM neural network used for this test case is the following.
We choose a 12-layers DFNN equipped with 50 neurons per hidden layer and n neurons in
the output layer, where n corresponds to the dimension of the reduced trial manifold. The
architectures of the encoder and decoder functions are instead reported in Tables 3.1 and 3.2,
and are similar to the ones used in [Lee and Carlberg, 2020].

layer input output kernel #of filters stride padding
dimension dimension size

1 [16, 16, 1] [16, 16, 8] [5, 5] 8 1 SAME

2 [16, 16, 8] [8, 8, 16] [5, 5] 16 2 SAME

3 [8, 8, 16] [4, 4, 32] [5, 5] 32 2 SAME

4 [4, 4, 32] [2, 2, 64] [5, 5] 64 2 SAME

5 Nh 256

6 256 n

Table 3.1: Attributes of convolutional and dense layers in the encoder fEn .

Problem (3.15) does not represent a remarkably challenging task for linear ROMs, such as
the POD-Galerkin method. Indeed, by using the POD method on the snapshot matrix (the
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layer input output kernel #of filters stride padding
dimension dimension size

1 n 256

2 256 Nh

3 [2, 2, 64] [4, 4, 64] [5, 5] 64 2 SAME

4 [4, 4, 64] [8, 8, 32] [5, 5] 32 2 SAME

5 [8, 8, 32] [16, 16, 16] [5, 5] 16 2 SAME

6 [16, 16, 16] [16, 16, 1] [5, 5] 1 1 SAME

Table 3.2: Attributes of dense and transposed convolutional layers in the decoder fDh .

Figure 3.3: Test 1 : FOM, optimal-POD and DL-ROM solutions for the testing-parameter
instance µtest = 976.32 at t = 0.02, with n = 20.

latter built by collecting the solution of (3.15) Ntrain training-parameter instances), we find
that a linear trial manifold of dimension 20 is enough to capture more than the 99.99% of
the energy of the system [San and Maulik, 2018, Quarteroni et al., 2016]. In order to assess
the DL-ROM performance, we compute the DL-ROM solution by fixing the dimension of the
nonlinear trial manifold to n = 20. In Figure 3.3 we compare the DL-ROM and the FOM
solutions, with the optimal-POD reconstruction (that is, the projection of the FOM solution
onto the POD linear trial manifold of dimension 20), for t = 0.02 and the testing-parameter
instance µtest = 976.32.

The latter testing value has been selected as the instance of µ for which the reconstruction
task results to be the most difficult both for POD and DL-ROM, being the diffusion term in
(3.15) smaller and the solution closer to the one of a purely hyperbolic system. In particular,
for µtest = 976.32, employing the DL-ROM technique allows us to halve the error indicator
εrel associated to the optimal-POD reconstruction. Referring to Figure 3.3, the DL-ROM
approximation is more accurate than the optimal POD reconstruction, indeed it mostly fits
the FOM solution, even in correspondence of its maximum, as shown in Figure 3.3. Moreover,
it does not introduce oscillations where a large gradient of the FOM solution is observed, as it
happens instead by employing POD. The same comparison of Figure 3.3, but with a reduced
dimension n = 10, is shown in Figure 3.4, where the difference in terms of accuracy provided
by the two approaches is even more remarkable.

Finally, in Figure 3.5 we highlight the accuracy properties of both the DL-ROM and
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Figure 3.4: Test 1 : FOM, optimal-POD and DL-ROM solutions for the testing-parameter
instance µtest = 976.32 at t = 0.02, with n = 10.

POD techniques by displaying the behavior of the error indicator εrel, defined in (3.13), with
respect to the dimension n of the corresponding reduced trial manifold. For n < 20 the DL-
ROM approximation is more accurate than the one provided by POD, and only for n = 20
the two techniques provide almost the same accuracy.

Figure 3.5: Test 1 : Error indicator εrel vs. n on the testing set.

3.4.2 Test 2: Linear transport equation

Test 2.1: nµ = 1 input parameter

First, we consider the parametrized one-dimensional linear transport equation



∂u

∂t
+ µ

∂u

∂x
= 0 (x, t) ∈ R× (0, T ),

u(x, 0) = u0(x) x ∈ R,
(3.16)

whose solution is u(x, t) = u0(x− µt); here u0(x) = (1/
√

2πσ)e−x
2/2σ and T = 1.

The parameter represents the velocity of the travelling wave, varying in the parameter
space P = [0.775, 1.25]; we set σ = 10−4. The dataset is built by uniformly sampling the
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exact solution in the domain (0, L) × (0, T ), with L = 1, considering Nh = 256 degrees of
freedom in the space discretization and Nt = 200 time instances. We consider Ntrain = 20
training-parameter instances uniformly distributed over P and Ntest = 19 testing-parameter
instances such that µtest,i = (µtrain,i + µtrain,i+1)/2, for i = 1, . . . , Ntest. This test case, and
more in general hyperbolic problems, are examples in which the use of a linear approach to
ROM might yield a loss of accuracy. Indeed, the dimension of the linear trial manifold must
be very large, if compared to the dimension of the solution manifold, in order to capture the
variability of the FOM solution over the parameter space P.

Figure 3.6 shows the exact solution and the DL-ROM approximation for the testing-
parameter instance µtest = 0.8625; here, we set the dimension of the nonlinear trial manifold
to n = 2, equal to the dimension nµ + 1 of the solution manifold. Moreover, in Figure 3.6 we
also report the relative error εk ∈ RNh (3.14), for k = 1, . . . , Nt, associated to the selected
µtest ∈ P, whose largest values are found in proximity of the largest variations of the solution.

Figure 3.6: Test 2.1 : Exact solution (left), DL-ROM solution with n = 2 (center) and relative
error εk (right), for the testing-parameter instance µtest = 0.8625 in the space-time domain.

In Figure 3.7 we report the exact solution and the DL-ROM approximation, with n =
2, at three particular time instances. To compare the performance of DL-ROM with a
linear ROM, we performed POD on the snapshot matrix and report, for the same testing-
parameter instance, the optimal-POD reconstruction (that is, the projection of the exact
solution onto the POD linear trial manifold). Still with n = 50 POD modes, the optimal-
POD reconstruction is affected by spurious oscillations. On the other hand, the DL-ROM
approximation with n = 2 yields an error indicator εrel = 8.74 · 10−3; to achieve the same
accuracy obtained through DL-ROM over the testing set, a linear trial manifold should have
dimension n = 90.

Figure 3.8 shows the behavior of the error indicator (3.13) with respect to the reduced
dimension n. By increasing the dimension n of the nonlinear trial manifold there is a mild
improvement of the DL-ROM performance, i.e. the error indicator slight decreases; however,
such an improvement is not significant, in general: in this range of n, indeed, the number of
parameters (i.e., weights and biases) of the DL-ROM neural network slight increases, thus
implying almost the same approximation capability of the neural network.

Remark 2 (Hyperparameters tuning). The hyperparameters of the DL-ROM neural network
are tuned by evaluating the loss function over the validation set and by setting each of them
equal to the value minimizing the generalization error on the validation set. In particular, we
show the tests performed to choose the size of the (transposed) convolutional kernels in the
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Figure 3.7: Test 2.1 : Exact solution, DL-ROM approximation and optimal-POD reconstruc-
tion for the testing-parameter instance µtest = 0.8625 at t = 0.125, 0.5 and 0.625.

Figure 3.8: Test 2.1 : Error indicator εrel vs. n on the testing set.

(decoder) encoder function, the number of hidden layers in the feedforward neural network
and the number of neurons for each hidden layer. The hyperparameters evaluation starts from
the default configuration in Table 2.

kernel size #hidden layers #neurons
[3, 3] 1 50

Table 3.3: Test 2.1 : Starting configuration of DL-ROM.

Then, the best values are found iteratively by inspecting the impact of the variation of a
single hyperparameter at a time on the validation loss. Once the best value of each hyperpa-
rameter is found, it replaces the default value from that point on. For each hyperparameter
the tuning is performed in a range of values for which the training of the network is compu-
tationally affordable.

In Figure 3.9, we show the impact of the size of the convolutional kernels on the loss over
the validation and testing sets, the number of hidden layers in the FDNN and the number of
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neurons in each hidden layer by varying the reduced dimension in order to find the best value
of such hyperparameter over n. The final configuration of the DL-ROM neural network is the
one provided in Table 2.

Figure 3.9: Test 2.1 : Impact of the kernel size (left), the number of hidden layers (center)
and the number of neurons (right) on the validation and testing losses.

kernel size #hidden layers #neurons
[7, 7] 4 200

Table 3.4: Test 2.1 : Final configuration of DL-ROM.

Test 2.2: nµ = 2 input parameters

Here we consider again the parametrized one-dimensional transport equation





∂u

∂t
+
∂u

∂x
= 0 (x, t) ∈ R× (0, T ),

u(x, 0) = u0(x) x ∈ R,
(3.17)

whose exact solution is u(x, t) = u0(x− t;µ); however, we now take

u0(x;µ) =

{
0 if x < µ1,

µ2 if x ≥ µ1,
(3.18)

as initial datum, where µ = [µ1, µ2]T . The nµ = 2 parameters belong to the parameter
space P = Pµ1

× Pµ2
= [0.025, 0.25] × [0.5, 1]. We build the dataset by uniformly sampling

the exact solution in the domain (0, L) × (0, T ), with L = 1 and T = 1, and by considering
Nh = 256 grid points for the space discretization and Nt = 100 time instances. We collect,
both for µ1 and µ2, Ntrain = 21 training-parameter instances uniformly distributed in the
parameter space P and Ntest = 20 testing-parameter instances, selected as in the other test
cases. Equation (3.17), completed with the initial datum (3.18), represents a challenging test
bed for linear ROMs because of the difficulty to accurately reconstruct the jump discontinuity
of the exact solution as a linear combination of basis functions computed from the snapshots,
for a testing-parameter instance. The architecture of the DL-ROM neural network used here
is the one presented in the Test 2.1.

In Figure 3.10 we show the exact solution and the DL-ROM approximation obtained by
setting n = 3 (thus equal to the dimension of the solution manifold nµ + 1) for the testing-
parameter instance µtest = (0.154375, 0.6375), along with the relative error εk, defined in
(3.14). Also in this case, the relative error is larger close to the solution discontinuity.
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Figure 3.10: Test 2.2 : Exact solution (left), DL-ROM solution with n = 3 (center) and
relative error εk (right), for the testing-parameter instance µtest = (0.154375, 0.6375) in the
space-time domain.

In Figure 3.11 we report the DL-ROM approximation, the optimal-POD reconstruction
and the exact solution, for the time instances t = 0.245, 0.495 and 0.745, and the testing-
parameter instance µtest = (0.154375, 0.6375). The dimension of the reduced manifolds are
n = 3 and n = 50 for the DL-ROM and the POD techniques, respectively. Also in this
case, even by setting the dimension of the linear manifold equal to n = 50, the reconstructed
solution presents spurious oscillations. Moreover, the optimal-POD reconstruction is not able
to fit the discontinuity of the exact solution in a sharp way. These oscillations are significantly
mitigated by the use of our DL-ROM technique, which is able to fit the jump discontinuity
accurately, as shown in Figure 3.11.

Figure 3.11: Test 2.2 : Exact, DL-ROM and optimal-POD solutions for the testing-parameter
instance µtest = (0.154375, 0.6375) at t = 0.245, 0.495 and 0.745.

Finally, we can remark (see Figure 3.12) the same behavior of the relative error with
respect to the reduced dimension n as in the previous test case. The DL-ROM approximation
yields an error indicator εrel = 2.85 · 10−2 with n = 3; a similar accuracy would be achieved
by POD only through a linear trial manifold of dimension n = 165.
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Figure 3.12: Test 2.2 : Error indicator εrel vs. n on the testing set.

3.4.3 Test 3: Monodomain equation

In the first stage of the assessment of the perfomance of the DL-ROM, we refer to a benchmark
one-dimensional test case in cardiac EP. Further exploitations of the developed technique
in the context of cardiac EP will come in Chpater 4. In particular, we consider the one-
dimensional Monodomain equation (1.3) coupled with the FitzHugh-Nagumo cellular model
[FitzHugh, 1961, Nagumo et al., 1962] (see Section 1.2)





µ
∂u

∂t
− µ2 ∂

2u

∂x2
+ u(u− 0.1)(u− 1) + w = 0 (x, t) ∈ (0, L)× (0, T ),

dw

dt
+ (γw − βu) = 0 (x, t) ∈ (0, L)× (0, T ),

∂u

∂x
(0, t) = 50000t3e−15t t ∈ (0, T ),

∂u

∂x
(L, t) = 0 t ∈ (0, T ),

u(x, 0) = 0, w(x, 0) = 0 x ∈ (0, L),

(3.19)

where L = 1, T = 2, γ = 2 and β = 0.5; the parameter µ belongs to the parameter
space P = 5 · [10−3, 10−2]. System (3.19) has been discretized in space through linear finite
elements, by considering Nh = 256, i.e. dim(Xh) = 256, and using a one-step, semi-implicit,
first order scheme for time discretization; see Section 1.3 for further details2. The solution of
the former problem consists in a parameter-dependent travelling wave, which exhibits sharper
and sharper fronts as the parameter µ gets smaller (see Figure 3.13).

We consider Ntrain = 20 training-parameter instances uniformly distributed in the pa-
rameter space P and Ntest = 19 testing-parameter instances, each of them corresponding to
the midpoint between two consecutive training-parameter instances.

Figure 3.14 shows the FOM solution and the DL-ROM one obtained by setting n = 2,
the dimension of the solution manifold, for the testing-parameter instance µtest = 0.0062.
We also report in Figure 3.14 the relative error εk (3.14), which takes larger values close to
the points where the FOM solution shows steeper gradients. The accuracy obtained by our
DL-ROM technique with n = 2, and measured by the error indicator on the testing set, is
εrel = 3.42 · 10−3.

2The Matlab library used to compute snapshots and to implement the (local) POD-Galerkin method for
problem (3.19) is available at https://github.com/StefanoPagani/LocalROM
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Figure 3.13: Test 3 : FOM solutions for different testing-parameter instances.

Figure 3.14: Test 3 : FOM solution (left), DL-ROM solution with n = 2 (center) and relative
error εk (right), for the testing-parameter instance µtest = 0.0062 in the space-time domain.

In order to assess the performance of the DL-ROM against a linear ROM, we consider
a POD-Galerkin ROM exploiting local reduced bases; these latter are obtained by applying
POD to a set of clusters which partition the original snapshot set. In particular, we employ
the k-means clustering algorithm [Likas et al., 2003], an unsupervised statistical learning
technique for finding clusters and cluster centers in an unlabelled dataset, to partition into
Nc clusters the snapshots, i.e. the columns of S, such that those within each cluster are more
closely related to one another than elements assigned to different clusters. In Table 3.5 we
report the maximum number of basis functions among all the clusters, i.e. the dimension
of the largest linear trial manifold, required by the (local) POD-Galerkin ROM, in order to
achieve the same accuracy obtained through a DL-ROM. By increasing the number Nc of
clusters, the dimension of the largest linear trial subspace decreases; this does not hold as
long as the number of clusters is larger than Nc = 32. Indeed, the dimension of some linear
subspaces become so small that the error might increase compared to the one obtained with
fewer clusters.

In particular, in Figure 3.15 the POD-Galerkin ROM approximations obtained by con-
sidering n = 2 and n = 66 basis functions are shown. In Figure 3.16 we compare the FOM
solution for µtest = 0.0157 at t = 0.4962, 0.9975 and 1.4987, with the DL-ROM approxima-
tion obtained for n = 2, and the POD-Galerkin approximation with a global (Nc = 1) linear
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Nc = 1 Nc = 2 Nc = 4 Nc = 8 Nc = 16 Nc = 32
66 68 55 34 26 20

Table 3.5: Test 3 : Maximum number of basis functions for the POD-Galerkin ROM.

trial manifold, of dimension n = 2, 20 and 66, respectively.

Figure 3.15: Test 3 : POD-Galerkin ROM solutions for the testing parameter instance µtest =
0.0062 with n = 2 (left) and n = 66 (right).

Figure 3.16: Test 3 : FOM and DL-ROM solutions (left) and FOM and POD-Galerkin ROM
solutions (right) for the testing-parameter instance µtest = 0.0157 at t = 0.4962, 0.9975 and
1.4987.

The convergence of the error indicator (3.13) as a function of the reduced dimension n is
shown in Figure 3.17. For the (local) POD-Galerkin ROM, by increasing the dimension of the
largest linear trial manifold, the error indicator decreases; this also occurs for the DL-ROM
technique for n ≤ 20, although the error decay in this latter case is almost negligible, for the
same reason pointed out in Test 2.1. If we consider larger values of n, e.g. n = 40, overfitting
might then occur, meaning that the neural network model is too complex with respect to
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the amount of data provided to it during the training phase. This might explain the slight
increase of the error indicator εrel for n = 40. Similar trends are found in [Bhattacharya
et al., 2020].

Figure 3.17: Test 3 : Error indicator εrel vs. n on the testing set.

Finally, in Figure 3.18 we report the behavior of the loss function and of the error indicator
εrel with respect to the number of training-parameter instances, i.e. the size of the training
dataset. By providing more data to the DL-ROM neural network, its approximation capabil-
ity increases, thus yielding a decrease in the generalization error and the error indicator. In
particular, the decay of the loss function with respect to the number of training-parameter
instances Ntrain is of about order 1/N3

train, while the decay of the error indicator (3.13) is of
about order 1/N2

train.

Figure 3.18: Test 3 : Loss and error indicator εrel on the testing set vs. number of training-
parameter instances of the parameter µ.

Remark 3 (Hyperparameters tuning). In order to perform hyperparameters tuning we follow
the same procedure used for Test 2.1. We start from the default configuration and we tune the
size of the (transposed) convolutional kernels in the (decoder) encoder function, the number of
hidden layers in the DFNN and the number of neurons for each hidden layer. In Figure 3.19
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we show the impact of different values of hyperparameters on the validation and testing losses.
The final configuration of the DL-ROM neural network is the one provided in Table 3.6.

kernel size #hidden layers #neurons
[7, 7] 1 200

Table 3.6: Test 3 : Final configuration of DL-ROM.

Figure 3.19: Test 3 : Impact of the kernel size (left), the number of hidden layers (center)
and the number of neurons (right) on the validation and testing losses.

Remark 4 (Sensitivity with respect to the weight ωh). For all the test cases, we set the
parameter ωh in the loss function (3.9) equal to ωh = 1/2. To justify this choice, we performed
a sensitivity analysis for problem (3.19) as shown in Figure 3.20. For extreme values of ωh,
the error indicator (3.13) worsens of about one order of magnitude. In particular, the case
ωh = 1 (that is, not considering the contribution of the encoder function fEn in the loss) yields
worse DL-ROM performance; similarly, the case ωh = 0 would neglect the reconstruction
error (that is, the first term in the per-example loss function 3.9) – this is why the error
indicator is large for ωh = 0.1. All the values of ωh in the range [0.2, 0.9] do not yield
significant differences in terms of error indicator, so we decided to set ωh = 1/2.

Figure 3.20: Test 3 : Error indicator εrel vs. ωh.
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3.5 Discussion

In this Chapter we proposed a novel technique to build low-dimensional ROMs by exploiting
DL algorithms, which we refer to as DL-ROM, to overcome typical computational bottle-
necks shown by classical, linear projection-based ROM techniques (such as POD-Galerkin
ROMs) when dealing with problems featuring coherent structures propagating over time.
The numerical results obtained for three different test cases show that the proposed DL-
ROM technique provides sufficiently accurate solutions to the parametrized PDEs involving
a low-dimensional solution manifold whose dimension is equal to (or slightly larger than) the
solution manifold nµ + 1. The proposed DL-ROM outperforms linear ROMs such as the RB
method (relying on a global POD basis), as well as nonlinear approaches exploiting local
POD bases, when applied both to (i) problems which are challenging for linear ROMs, such
as the linear transport equation or the Monodomain equation, and (ii) problems which are
more tractable using a linear ROM, like Burgers equation, however featuring POD bases with
much higher dimension. The proposed DL-ROM technique provides approximations that are
orders of magnitude more accurate than the ones provided by linear ROMs, when keeping the
same dimension. Error decrements are moderate when considering low-dimensional spaces of
increasing dimensions, thus making, in the numerical tests considered, the accuracy of both
approximations comparable when dealing with O(102) POD basis functions. Furthermore,
compared to POD-Galerkin ROMs, our DL-ROM technique completely avoids the use of
(very often expensive) hyper-reduction techniques.

Our numerical assessment has shown that employing DL techniques to build ROMs for
nonlinear parametrized PDEs is indeed a feasible way, in terms of numerical accuracy; this is
a fundamental step toward the application of the DL-ROM technique to cardiac EP problems
involving more complex solutions and a larger number Nh of DOFs (see Chapter 4).
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Chapter 4
DL-ROM numerical results in cardiac
electrophysiology

In this Chapter1, we assess the computational performance of the DL-ROM strategy, proposed
in Chapter 3, on five relevant test cases in cardiac electrophysiology (EP), by focusing on
computational times. We start by detailing the construction of projection-based reduced
order models (ROMs), such as POD-Galerkin ROMs, considering the parametric spatial
discretization of the Monodomain equation (1.3) coupled with the Aliev-Panfilov (A-P) ionic
model (1.5).

4.1 Parametrized PDEs in cardiac electrophysiology

Solving systems (1.1) and (1.3) using standard numerical methods such as the FE method
and IGA (see Chapter 1), is computationally demanding and far from being able to provide
solutions or compute outputs of interest in real-time applications. Indeed, the propagation of
the electrical signal is characterized by the fast dynamics of very steep fronts, thus requiring
very fine space and time discretizations [Sundnes et al., 2007, Colli Franzone and Pavarino,
2004, Colli Franzone et al., 2014]; see also, e.g., [Sundnes et al., 2009, Cervi and Spiteri, 2019]
for higher-order and/or more robust numerical methods, [Bendahmane et al., 2010] for time
and space adaptivity, and [Sachetto Oliveira et al., 2018] regarding the use of GPU computing
in this context.

In Section 1.5 we highlight the need for exploring the parameter space, i.e. solving the
equations, modeling the propagation of the electrical signal in the heart, for several values
of parameters, in order to investagate different scenarios or intra- and inter-subject variabil-
ity. Solving the equations may quickly become unaffordable if such a coupled system must
be solved for several parameters instances. Multi-query analysis is relevant in a variety of
situations: when analyzing multiple scenarios, when dealing with sensitivity analysis and
uncertainty quantification (UQ) problems in order to account for inter-subject variability
[Mirams et al., 2016, Johnstone et al., 2016, Hurtado et al., 2017, Clayton et al., 2020], for
parameter estimation or data assimilation, in which some unknown (or unaccessible) quan-
tities characterizing the mathematical model must be inferred from a set of measurements
[Dhamala et al., 2018, Quaglino et al., 2018, Johnston et al., 2018, Pathmanathan et al.,
2019, Levrero-Florencio et al., 2020]. In all these cases, to achieve computational efficiency,
multi-query analysis in cardiac EP must rely on suitable surrogate models see, e.g., [Niederer
et al., 2020] for a recent review on the topic. Among surrogate models, several options are

1This Chapter is mainly based on the paper [Fresca et al., 2020b].
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available, such as (i) emulators, obtained, e.g., via Polynomial Chaos Expansions, GP regres-
sion or neural networks [Coveney et al., 2020, Longobardi et al., 2020, Lei et al., 2020, Ayed
et al., 2019], aiming at the approximation of the input-output mapping by fitting a set of
training data, including possibily governing laws in its definition [Sahli Costabal et al., 2020];
(ii) lower-fidelity models, introducing suitable modeling simplifications – such as, for instance,
the Eikonal model in this context [Neic et al., 2017]; and (iii) ROMs obtained through a pro-
jection process on the equations governing the phenomenon under consideration to reduce
the state-space dimensionality, see Chapter 2 for further details. Although typically more
intrusive to implement, ROMs often yield more accurate approximations than data fitting
and usually generate more significant computational gains than lower-fidelity models.

Conventional projection-based ROMs built, e.g., through the RB method [Quarteroni
et al., 2016], yields inefficient ROMs when dealing with nonlinear time-dependent parametrized
PDE-ODE system as the one arising from cardiac EP. The three major computational bot-
tlenecks shown by such kind of ROMs for cardiac EP are:

- the linear superimposition of modes, on which they are based, would cause the dimen-
sion of the ROM to be excessively large to guarantee an acceptable accuracy;

- evaluating the ROM requires the solution of a dynamical system, which might be un-
stable unless the size of time-step ∆t is very small;

- the ROM must also account for the dynamics of the gating variables, even when aiming
at computing just the electrical potential. This fact entails an extremely intrusive and
costly hyper-reduction stage to reduce the solution of the ODE system to a few, selected
mesh nodes [Pagani et al., 2018].

To overcome the limitations of projection-based ROMs, we apply the new, non-intrusive
ROM technique based on DL algorithms, which we refer to as DL-ROM, introduced in chapter
3. Combining in a suitable way a convolutional AE and a DFNN, the DL-ROM technique
enables the construction of an efficient ROM, whose dimension is as close as possible to
the number of parameters upon which the solution of the differential problem depends. A
preliminary numerical assessment of our DL-ROM technique has already been presented in
Section 3.4, albeit on simpler – yet challenging – test cases.

The proposed DL-ROM technique combines data-driven and physics-based models. In-
deed, it exploits snapshots taken from a set of FOM solutions (for selected parameter values
and time instances) and deep neural network architectures to learn, in a non-intrusive way,
both (i) the nonlinear trial manifold where the ROM solution is sought, and (ii) the non-
linear reduced dynamics. In a linear ROM built, e.g., through POD, the former quantity is
nothing but a set of basis functions, while the latter task corresponds to the projection stage
in the subspace spanned by these basis functions. Here, our goal is to show that DL-ROM
can be effectively used to handle parametrized problems in cardiac EP, accounting for both
physiological and pathological conditions, in order to provide fast and accurate solutions.
The proposed DL-ROM is computationally efficient during the testing stage, that is for any
new scenario unseen during the training stage. This is particularly useful in view of the
evaluation of patient-specific features to enable the integration of computational methods in
current clinical platforms.

4.2 Projection-based ROMs in cardiac electrophysiology

We start from the general setting of linear (projection-based) ROMs provided in Section
2.3, and formulate the construction of a POD-Galerkin ROM on the specific case of the
parametrized Monodomain equation. From an algebraic standpoint and by introducing the
parameter vector µ ∈ P, the spatial discretization of the parameter-dependent version of
system (1.3) through the Galerkin-FE approximation [Quarteroni and Valli, 1994] yields the
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following nonlinear dynamical system for uh = uh(t;µ), wh = wh(t;µ), representing our
FOM:





M(µ)
∂uh
∂t

+ A(µ)uh + Iion(t,uh,wh;µ) = Iapp(t;µ) t ∈ (0, T ),

∂wh

∂t
(t;µ) = g(t,uh,wh;µ) t ∈ (0, T ),

uh(0) = 0 wh(0) = 0.

(4.1)

Here A(µ) ∈ RNh×Nh is a matrix arising from the diffusion operator (thus including the
conductivity tensor D(µ) = D(x;µ), which can vary within the myocardium due to fibers
orientation and conditions, such as the possible presence of ischemic regions); M(µ) ∈
RNh×Nh is the mass matrix; Iion,g ∈ RNh are vectors arising from the nonlinear terms;
finally, Iapp ∈ RNh is a vector collecting the applied currents. The dimension Nh is related to
the dimension of the FE space Xh. Note that the system of ODEs arises from the collocation
of the ODE in (1.3) at the nodes used for the numerical integration, see Subsection 1.3.1 for
further details.

As outlined in Section 2.3, when using a projection-based ROM, the approximation of
uh(t;µ) is sought as a linear superimposition of modes, under the form

uh(t;µ) ≈ Vun(t;µ), (4.2)

thus yielding a linear ROM, in which the columns of the matrix V = [ζ1, . . . , ζn] ∈ RNh×n
form an orthonormal basis of a space Vn, an n-dimensional subspace of RNh . In the case
of POD, Vn provides the best n-rank approximation of S in the Frobenius norm, that is,
ζ1, . . . , ζn are the first n (left) singular vectors of S corresponding to the n largest singular
values σ1, . . . , σn of S, such that the projection error is smaller than a desired tolerance εPOD.
To meet this requirement, it is sufficient to choose n as the smallest integer such that

∑N
i=1 σ

2
i∑Ns

i=1 σ
2
i

> 1− ε2
POD,

i.e., the energy retained by the last Ns − n POD modes is equal or smaller than ε2
POD.

The approximation of wh is given instead by its restriction

wh(t;µ) ≈ Pwh,I(t;µ),

to a (possibly, small) subset I of m degrees of freedom, where m� Nh, at which the nonlinear
term Iion is interpolated exploiting a problem-dependent basis, spanned by the columns of a
matrix Φ ∈ RNh×m, which is built according to a suitable hyper-reduction strategy, such as
DEIM. By referring to Subsection 2.3.1, the DEIM approximation of the ionic term in the
potential equation in (1.3) reads

VT Iion(t,Vun,wh;µ) ≈ VTΦ(PTΦ)−1Iion(t,PTVun,P
Twh;µ).

A POD-Galerkin ROM for system (1.3) is then obtained by (i) first, substituting equation
(4.2) into equation (4.1) and projecting it onto Vn; then, (ii) solving the system of ODEs
at m selected degrees of freedom, thus yielding the following nonlinear dynamical system for
un = un(t;µ) and the selected components PTwh = PTwh(t;µ) of wh:





VTM(µ)V
∂un
∂t

+ VTA(µ)VTun

+VTΦ(PTΦ)
−1

Iion(t,PTVun,P
Twh;µ)−VT Iapp(t;µ) = 0 t ∈ (0, T ),

PT ∂wh

∂t
+ g(t,PTVun,P

Twh;µ) = 0 t ∈ (0, T ),

un(0) = 0 PTwh(0) = 0.

(4.3)
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Using (4.3) as an approximation to (4.1) is known to suffer from several problems. First of
all, an extensive hyper-reduction stage, exploiting, e.g., DEIM (see Section 2.3.1 for further
details), must be performed in order to be able to evaluate any µ- or uh-dependent quantities
appearing in (4.3), that is, without relying on Nh-dimensional arrays. Moreover, whenever
the solution of the differential problem features coherent structures that propagate over time,
such as steep wavefronts, the dimension n of the projection-based ROM (4.3) might easily
become very large (see Test 3 of Chapter 3 for the results on a benchmark one-dimensional
Monodomain equation test case), due to the basic linearity assumption, by which the solution
is given by a linear superimposition of POD modes, thus severely degrading the computational
efficiency of the ROM. A possible way to partially overcome this bottleneck is to rely on local
reduced bases, built through POD after the set of snapshots has been split into Nc > 1
clusters, according to suitable clustering (or unsupervised learning) algorithms [Pagani et al.,
2018].

4.3 Numerical results

Our choice of the numerical tests is aimed at highlighting the performance of the DL-ROM
technique, proposed in Chapter 3, on challenging EP problems, namely pathological cases in
portion of cardiac tissue or physiological scenarios on realistic LV geometries.

The configuration of the DL-ROM neural network, together with the values of the hyper-
parameters, used for our numerical tests is the one provided in Subsection 3.4.1. To evaluate
the performance of the DL-ROM, we use the loss function (3.9) and the error indicators
defined in (3.13) and (3.14).

The DL-ROM neural network has been implemented by means of the Tensorflow DL
framework [Abadi et al., 2016]. The training phase has been carried out on a workstation
equipped with an Nvidia GeForce GTX 1070 8 GB GPU while, in addition to this hardware,
the testing phase has also been carried out on a HPC cluster. The code is freely available at
https://github.com/stefaniafresca/DL-ROM.

As highlighted in Section 1.3, the Monodomain equation coupled with the A-P ionic model
has been discretized in space through linear finite elements. For the time discretization and
the treatment of nonlinear terms, we use a one-step, semi-implicit, first order scheme.

4.3.1 Test 1: Two-dimensional slab

We now focus on the two-dimensional Monodomain equation (1.3) coupled to the A-P ionic
model (1.5). Here, we consider a square domain Ω = (0, 10 cm)2 and two (nµ = 2) parameters,
consisting in the electric conductivities in the longitudinal and the transversal directions to
the fibers, i.e., the conductivity tensor D(x;µ) takes the form

D(x;µ) = µ2I + (µ1 − µ2)f0 ⊗ f0, (4.4)

where f0 = (1, 0)T and the parameters space is P = 12.9 · [0.02, 0.2]× 12.9 · [0.01, 0.1]cm2/ms.
The applied current is defined as

Iapp(x, t̃) =
C

2πα
exp

(
− ||x||

2

2β

)
1[0,t̄](t̃),

where C = 100 mA, α = 1, β = 1 cm2 and t̄ = 2 ms. The parameters of the A-P ionic
model are set to K = 8, a = 0.01, b = 0.15, ε0 = 0.002, c1 = 0.2, and c2 = 0.3, see,
e.g., [Göktepe et al., 2010]. The equations have been discretized in space by considering
Nh = 64 × 64 = 4096. For the time discretization, we consider a time-step ∆t = 0.1/12.9
over the interval (0, T ), with T = 400 ms.

For the training phase, we uniformly sample Nt = 1000 time instances in the interval (0, T )
and consider Ntrain = 25 training-parameter, i.e. µtrain = 12.9·(0.02+i0.045, 0.01+j0.0225)
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with i, j = 0, . . . , 4. For the testing phase, Ntest = 16 testing-parameter instances have been
considered, each of them given by µtest = 12.9 · (0.0425 + i0.045, 0.0212 + j0.0225) with
i, j = 0, . . . , 3. The maximum number of epochs is Nepochs = 10000, the batch size is Nb = 40
and, regarding the early-stopping criterion, we stop the training if the loss function does not
decrease along 500 epochs.

In Figure 4.1 we show the FOM and the DL-ROM solutions, the latter obtained with
n = 3, for the testing-parameter instance µtest = 12.9 · (0.088, 0.066) cm2/ms and µtest =
12.9 · (0.178, 0.066) cm2/ms, respectively, at t̃ = 47.7 ms, together with the relative error εk.
We remark the variability of the solution of (1.3) over P, characterized by the propagation
of a sharp front across the domain, depending on the parameters values.

Figure 4.1: Test 1 : FOM solution (left), DL-ROM solution with n = 3 (center) and relative
error εk (right), for the testing-parameter instance µtest = 12.9·(0.088, 0.066) cm2/ms (above)
and µtest = 12.9 · (0.178, 0.066) cm2/ms (bottom) at t̃ = 47.4 ms.

We now focus on the performance of our DL-ROM technique, in terms of computational
efficiency. In Table 4.1 we compare the computational times2 required to compute the solution
for a randomly sampled testing-parameter instance, over the entire time interval (0, T ), by
the FOM, the (local) POD-Galerkin ROM (for different values of Nc) and the DL-ROM,
keeping the same degree of accuracy achieved by DL-ROM, i.e. εrel = 5.87× 10−3.

time [s] FOM/ROM dimensions
FOM 243 Nh = 4096
DL-ROM 0.45 (1.8) n = 3
POD-Galerkin ROM (Nc = 1) 14 n = 87
POD-Galerkin ROM (Nc = 2) 11 n = 58, 49
POD-Galerkin ROM (Nc = 4) 9 n = 44, 33, 31, 29
POD-Galerkin ROM (Nc = 6) 8 n = 38, 33, 27, 26, 21, 6
POD-Galerkin ROM (Nc = 8) 8 n = 30, 25, 24, 22, 21, 20, 19, 6

Table 4.1: Test 1 : FOM, POD-Galerkin ROM and DL-ROM computational times along with
FOM and reduced trial manifold(s) dimensions.

2Here we performed our simulations on a full 64 GB node (20 Intel R© Xeon R© E5-2640 v4 2.4GHz cores)
of the HPC cluster available at MOX, Politecnico di Milano.
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Figure 4.2: Test 1 : Left: FOM and DL-ROM solutions for the testing-parameter istance
µtest = 12.9 · (0.088, 0.066) cm2/ms at P1 and P2. Right: FOM, (local) POD-Galerkin ROM
and DL-ROM computational times to compute ũh(t̄) vs. t̄ averaged over the testing set.

We emphasize that the DL-ROM solution can be queried at any desired time instance
t̄ ∈ [0, T ], without involving the solution of a dynamic system to determine its evolution up
to t̄, unlike the FOM or the POD-Galerkin ROM. This latter still requires solving for whole
range of discrete times in the interval [0, t̄], with time-step size ∆t dependent on the desired
level of accuracy. In other words, when using the DL-ROM we are free to choose a larger time
resolution, to reach the same degree of accuracy, with respect to the time-stepping required
in the solution of the POD-Galerkin ROM dynamical system. Indeed, the underlying nature
of the FOM in the test case at hand implies very small time-step sizes when both solving the
POD-Galerkin ROM and sampling the FOM solution for the snapshot matrix assembly. This
feature allows to drastically reduce the testing computational time of DL-ROM with respect
to the ones required to compute the FOM or the POD-Galerkin ROM solutions at a given
time.

The speed-up introduced by the DL-ROM technique with respect to the solution of the
FOM is about 138 times, provided that we evaluate the solution at Nt = 4000 time steps as
in the FOM; the speed-up increases to 536 times if the DL-ROM approximation is computed
instead, ensuring the same degree of accuracy, at Nt = 1000 time steps. Compared to the
use of the local POD-Galerkin ROM in the best case (i.e., with Nc = 6 or 8 local bases),
DL-ROM leads to almost 30 times faster computations.

The computational gain is even more remarkable regarding the evaluation of the solution
at the final time t̄ = T : the DL-ROM directly provides it, as t̄ is an input of the neural
network, whereas a POD-Galerkin ROM still require solving for hundreds or thousands of
discrete time instances. In Figure 4.2 (right) we show the DL-ROM, FOM and POD-Galerkin
ROM CPU time needed to compute the approximated solution at t̄, for t̄ = 1, 10, 100 and 400
ms averaged over the testing set. We perform the training phase of the POD-Galerkin ROM
over the original time interval (0, T ) ms and we report the results for Nc = 8 local bases, for
which the smallest computational time is obtained in Table 4.1. The DL-ROM CPU time
to compute ũh(t̄) does not vary over t̄ and by choosing t̄ = T ms the DL-ROM speed-ups
are equal to 7.1× 104 and 2.4× 103 with respect to the FOM and the POD-Galerkin ROM
with Nc = 8 local bases3. In Figure 4.2 (left) we also show the comparison between the FOM
solution and the DL-ROM approximation (with n = 3) computed at P1 = (9.52, 4.76) cm and
P2 = (1.9, 1.11) cm, for the testing-parameter instance µtest = 12.9 · (0.132, 0.066) cm2/ms.
The time evolution of the FOM solution is sharply captured by our DL-ROM technique at
both locations.

3We did not investigate the case Nc > 8 due to the fact that the employing Nc = 6 or Nc = 8 clusters
lead to the same testing computational time.
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Last but not least, the weaker constraint on time-stepping used in the DL-ROM also has
a positive impact on the size of the dataset used for its training phase. For the case at hand,
we can train the DL-ROM on a snapshot matrix containing only 25% of the snapshots used
to train the POD-Galerkin ROM – taking Nt = 1000 instead of 4000 as in the POD-Galerkin
case.

4.3.2 Test 2: Two-dimensional slab varying restitution properties

To take into account a case in which parameters also affect the ionic model, we focus on
the solution of problem (1.3) in a square slab of cardiac tissue Ω = (0, 10 cm)2, considering
nµ = 3 parameters possibly reflecting intra- and inter-subjects variability. More precisely,
the conductivity tensor takes again the form

D(x;µ) = µ2I + (µ1 − µ2)f0 ⊗ f0,

where µ1 and µ2 consist of the electric conductivities in the longitudinal and the transversal
direction to the fibers f0 = (1, 0)T , respectively, and µ3 regulates the APD by defining

g(u,w) =
(
ε0 +

µ3w

c2 + u

)
(−w −Ku(u− b− 1)).

The parameters belong to the parameter space P = 12.9 · [0.06, 0.2] cm2/ms×12.9 · [0.03, 0.1]
cm2/ms × [0.15, 0.25] and the applied current is defined as in Test 1. The FOM dimension

is equal to Nh = 64× 64 = 4096.
For the training phase, we uniformly sample Nt = 1000 time instances in the interval

(0, T ), with T = 400 ms, and consider Ntrain = 5 × 5 × 5 = 125 training-parameters, i.e.
µtrain = (12.9 · (0.06+ i0.035), 12.9 · (0.03+ j0.0175), 0.15+s0.025) with i, j, s = 0, . . . , 4. For
the testing phase, Ntest = 4× 4× 4 = 64 testing-parameter instances have been considered,
each of them given by µtest = (12.9·(0.0775+i0.035), 12.9·(0.0387+j0.0175), 0.1625+s0.025)
with i, j, s = 0, . . . , 3. The maximum number of epochs is Nepochs = 10000, the batch size is
Nb = 40 and, regarding the early-stopping criterion, we stop the training if the loss function
does not decrease along 500 epochs.

In Figure 4.3 we show the FOM and the DL-ROM approximation, this latter with n = 4,
at t̃ = 319.7 ms for the testing-parameter instances µtest = (12.9 · 0.1125 cm2/ms, 12.9 ·
0.0563 cm2/ms, 0.1875) and µtest = (12.9 · 0.1475 cm2/ms, 12.9 · 0.0737 cm2/ms, 0.2375), to-
gether with the relative error defined as in (3.14). The DL-ROM technique is able to capture
the strong variability of the solution over the parameter space. Indeed, in Figure 4.3 (top)
the tissue is almost completely depolarized whereas in Figure 4.3 (bottom) repolarization has
already started. The error indicator, computed as in (3.13) over these Ntest = 64 testing-
parameter instances, is equal to 5.4× 10−3.

In Figure 4.4 we compare the FOM and the DL-ROM action potentials (APs) at x =
(9.524, 4.762) cm, by considering the effect of the different parameters separately. More pre-
cisely, in Figure 4.4 (left) we let µ3 vary, i.e. we take µ1

test = (12.9 · 0.1125 cm2/ms, 12.9 ·
0.0737 cm2/ms, 0.1625) and µ2

test = (12.9 · 0.1125 cm2/ms, 12.9 · 0.0737 cm2/ms, 0.2375). In
Figure 4.4 (right) instead we only vary µ1 and µ2, i.e. we take µ1

test = (12.9 · 0.0775 cm2/ms,
12.9 ·0.0387 cm2/ms, 0.2125) and µ2

test = (12.9 ·0.1825 cm2/ms, 12.9 ·0.0912 cm2/ms, 0.2125).
In both cases, the DL-ROM correctly reproduces the APD variability and the different de-
polarization patterns.

Finally, we report in Table 4.2 the training and testing computational times of the DL-
ROM, on a GTX 1070 8 GB GPU, by considering either nµ = 2 or 3 parameters:

• nµ = 2, Ntrain = 5 × 5 = 25, Nt = 1000, with P = 12.9 · [0.06, 0.2] cm2/ms × 12.9 ·
[0.03, 0.1] cm2/ms,

• nµ = 3, Ntrain = 5 × 5 × 5 = 125, Nt = 1000, with P = 12.9 · [0.06, 0.2] cm2/ms ×
12.9 · [0.03, 0.1] cm2/ms× [0.15, 0.25],
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Figure 4.3: Test 2 : FOM solution (left), DL-ROM solution with n = 4 (center) and relative
error εk (right), for the testing-parameter instances µtest = (12.9 · 0.1125 cm2/ms, 12.9 ·
0.0563 cm2/ms, 0.1875) (top) and µtest = (12.9 ·0.1475 cm2/ms, 12.9 ·0.0737 cm2/ms, 0.2375)
(bottom) at t̃ = 319.7 ms. The maximum of the relative error εk is about 10−3.

Figure 4.4: Test 2 : APs obtained through the FOM and the DL-ROM with n = 4.
Left: µ1

test = (12.9 · 0.1125 cm2/ms, 12.9 · 0.0737 cm2/ms, 0.1625) and µ2
test = (12.9 ·

0.1125 cm2/ms, 12.9 · 0.0737 cm2/ms, 0.2375). Right: µ1
test = (12.9 · 0.0775 cm2/ms, 12.9 ·

0.0387 cm2/ms, 0.2125) and µ2
test = (12.9 ·0.1825 cm2/ms, 12.9 ·0.0912 cm2/ms, 0.2125). The

DL-ROM approximation accurately reproduces the APD variability and the different depo-
larization patterns.

to analyze the effect of introducing an additional parameter on the training time for a pre-
scribed level of accuracy, keeping the architecture of the network fixed. The training time
refers to the overall training and validation time, while the testing one refers to the time
needed by the DL-ROM to compute Nt time instances of the solution for a given testing-
parameter instance. In this case, considering Ntrain = 125 training-parameter instances
allows us to reduce the training computational time of a factor 3, even if more parameters

86



are considered, a larger training set is provided. However, we highlight that stating general
conclusions about the training complexity and costs, as a function of the number of param-
eters and the training set dimensions, is far from being trivial, and still represents an open
issue in this framework.

nµ Ntrain train time nepochs test time
2 25 15 h 6981 0.08 s
3 125 5 h 449 0.08 s

Table 4.2: Test 2 : Number of parameters, training-parameter instances and epochs together
with training and testing computational times in the two configurations.

4.3.3 Test 3: Two-dimensional slab with ischemic region

We consider the computation of the transmembrane potential in a square slab Ω = (0, 10 cm)2

of cardiac tissue in presence of an ischemic (non-conductive) region. The ischemic region may
act as anatomical driver of cardiac arrhythmias like tachycardias and fibrillations. The system
we want to solve is a slight modification of equations (1.3), accounting for the presence of a
non-conductive region which affects both the conductivity tensor and the ionic current term.
The ischemic portion of the domain is modeled by replacing the conductivity tensor D(x),
defined in (1.4), with D̄(x;µ) = σ(x,µ)D(x), where the function σ(x,µ) is given by

σ(x;µ) = ρ(x;µ) + σ0(1− ρ(x;µ)),

ρ(x;µ) = 1− exp

(
− (x1 − µ1)4 + (x2 − µ2)4

2α2

)
.

(4.5)

In this case, nµ = 2 parameters are considered, representing the coordinates of the center

of the scar, belonging to the parameter space P = [3.5, 6.5 cm]
2
. Moreover, α = 7 cm2,

σ0 = 10−4, the transversal and longitudinal conductivities are σt = 12.9 · 0.1 cm2/ms and
σl = 12.9·0.2 cm2/ms, respectively, and f0 = (1, 0)T , meaning that the tissue fibers are parallel
to the x−axis. Similarly, the ionic current Iion(u,w) in (1.3) is replaced by Īion(u,w;µ) =
ρ(x;µ)Iion(u,w). The applied current takes the form

Iapp(x, t) = C exp

(
− ||x||

2

β

)
1[0,t̄](t̃),

where C = 100 mA, β = 0.02 cm2 and t̄ = 2 ms, consisting in a Gaussian-shaped applied
stimulus with support in a circle with radius almost equal to 3 cm. The parameters appearing
in (1.5) are set to K = 8, a = 0.01, b = 0.15, ε0 = 0.002, c1 = 0.2, and c2 = 0.3, see [Göktepe
et al., 2010]. The equations have been discretized in space by consideringNh = 64×64 = 4096.
For the time discretization, we consider a time-step ∆t = 0.1/12.9 over (0, T ) with T = 400
ms.

For the training phase, we uniformly sample Nt = 1000 time instances over (0, T ) and
consider Ntrain = 49 training-parameter instances, with µtrain = (3.5 + i0.5, 3.5 + j0.5),
i, j = 0, . . . , 6. The maximum number of epochs is set equal to Nepochs = 10000, the batch
size is Nb = 40 and, regarding the early-stopping criterion, we stop the training if the loss
function does not decrease in 500 epochs. For the testing phase, Ntest = 36 testing-parameter
instances µtest = (3.75 + i0.5, 3.75 + j0.5), i, j = 0, . . . , 5, have been considered.

In Figures 4.5 we show the FOM and the DL-ROM solutions, the latter obtained with
n = 3 for the testing-parameter instance µtest = (6.25, 6.25) cm at t̃ = 100 and 356 ms,
respectively, together with the relative error εk ∈ RNh defined in (3.14). In Figure 4.5 (top)
the tissue is depolarized except for the region occupied by the scar and surrounding it, which
is clearly characterized by a slower conduction. In Figure 4.5 (bottom) the tissue is starting
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to repolarize and even if the shape of the ischemic region is not sharply reproduced, the
DL-ROM solution is able to capture the diseased (non-conductive) nature of this portion of
tissue.

Figure 4.5: Test 3 : FOM solution (left), DL-ROM solution with n = 3 (center) and relative
error εk (right), for the testing-parameter instance µtest = (6.25, 6.25) cm at t̃ = 100 ms (top)
and t̃ = 356 ms (bottom). The maximum of the relative error εk is 10−2 and it is associated
to the diseased tissue.

In Figure 4.6 we compare the APs computed at six selected points P1, . . . , P6. The
DL-ROM is able to provide an accurate reconstruction of the AP at almost all points; the
maximum error is associated to the point P3, the closest one to the center of the scar, for
t̃ ≥ 200 ms. However, even in this case, the DL-ROM technique is able to capture the
difference, in terms of AP peak values, between the diseased and the healthy tissue.

Figure 4.6: Test 3 : Left: FOM solution evaluated for µtest = (6.25, 6.25) cm at t̃ = 400
ms together with the points P1, . . . , P6. Right: APs evaluated for µtest = (6.25, 6.25) cm at
points P1, . . . , P6. The DL-ROM, with n = 3, is able to sharply reconstruct the AP in almost
all the points and the main features are captured also for the points close to the scar.

The AP variability across the parameter space characterizing both the FOM and the DL-
ROM solutions is shown in Figure 4.7. Still with a DL-ROM dimension n = 3, we report the
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APs for µtest = (µtest, µtest) cm, with µtest = 3.75, 4.25, 4.75, 5.25, 5.75, 6.25, evaluated at
P = (7.46, 6.51) cm. The DL-ROM is able to capture such variability over P; moreover, the
larger µtest, the smaller the distance between the point P and the scar, with their proximity
impacting on the shape and the values of the AP. In particular, for µtest = 6.25, the point P
falls into the grey zone.

Figure 4.7: Test 3 : FOM (right) and DL-ROM (left) AP variability over P at P = (7.46, 6.51)
cm. The DL-ROM sharply reconstructs the FOM variability over P.

By using the DL-ROM technique and setting the dimension of the nonlinear trial manifold
equal to the dimension of the solution manifold, i.e. n = 3, we obtain an error indicator (3.13)
of εrel = 2.01×10−2. In order to assess the computational efficiency of DL-ROM, we compare
it with the POD-Galerkin ROM relying on Nc local reduced bases; we report in Table 4.3
the maximum and minimum number of basis functions, among all the clusters, required by
the POD-Galerkin ROM [Quarteroni et al., 2016, Pagani et al., 2018] to achieve the same
accuracy.

Nc = 1 Nc = 2 Nc = 4 Nc = 6
250 219 200 193

107 35 26

Table 4.3: Test 3 : Maximum and minimum dimensions of the local reduced bases (that is,
linear trial manifolds) built by the POD-Galerkin ROM for different numbers Nc of clusters.

In Figure 4.8 (left) we compare the CPU time required to solve the FOM (through linear
finite elements) over the time interval (0, T ), with the one needed by DL-ROM with n = 3,
and the POD-Galerkin ROM with Nc = 6 local reduced bases, at testing time, by varying
the FOM dimension Nh. Here, with testing time we refer, both for the DL-ROM and the
POD-Galerkin ROM, to the time needed to query the ROM over the whole interval (0, T ), by
using for each technique the proper time resolution, for a given testing-parameter instance.
Since the DL-ROM solution can be queried at a given time without requiring any solution
of a dynamical system to recover the former time instances, the DL-ROM can employ larger
time windows compared to the time-steps required by the solution of the FOM and POD-
Galerkin ROM dynamical systems for the cases at hand. This fact also has a positive impact
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on the data used during the training phase4. The speed-up obtained, for each value of Nh
considered, is reported in Table 4.4. Both the DL-ROM and the POD-Galerkin ROM allow
us to decrease the computational costs associated to the computation of the FOM solution for
a testing-parameter instance. However, for a desired level of accuracy, CPU times required
by the POD-Galerkin ROM during the testing phase are remarkably higher than the ones
required by a DL-ROM with n = 3.

Figure 4.8: Test 3 : Left: CPU time required to solve the FOM, by DL-ROM at testing
time with n = 3 and by the POD-Galerkin ROM at testing time with Nc = 6 vs. Nh. The
DL-ROM provides the smallest testing computational time for each Nh considered. Right:
FOM, POD-Galerkin ROM and DL-ROM CPU computational times to compute ũh(t̄;µtest)
vs. t̄ averaged over the testing set. Thanks to the fact that the DL-ROM can be queried at
any time istance it is extremely efficient in computing ũh(t̄;µtest) with respect to both the
FOM and the POD-Galerkin ROM.

Nh = 256 Nh = 1024 Nh = 4096 Nh = 16384
FOM vs. DL-ROM 472 536 539 412
FOM vs. POD-Galerkin ROM 3 6 12 22

Table 4.4: Test 3 : DL-ROM and POD-Galerkin ROM vs. FOM speed-up by varying Nh. The
DL-ROM speed-up is remarkably higher than the one obtained by using the POD-Galerkin
ROM.

Both the DL-ROM and the POD-Galerkin ROM depend on the FOM dimension Nh.
In the case of DL-ROM, the dependency on Nh at testing time, for a fixed value of ∆t,
is due to the presence of the decoder function; indeed, the process of learning the reduced
dynamics (and so the dimension of the nonlinear trial manifold) does not depend on the
FOM dimension. On the other hand, the dependence of the POD-Galerkin ROM on the
FOM dimension also impacts on the dimension of the local linear trial manifolds: in general,
by increasing Nh the dimension of each local linear subspace also increases. Referring to
Figure 4.8 (left) and Table 4.4, the CPU time required by the DL-ROM at testing time scales
linearly with Nh, instead the one required by the POD-Galerkin ROM scales linearly with√
Nh. In particular, even for the larger FOM dimension considered (Nh = 16384 for this

test case), our DL-ROM is 19 times faster than the POD-Galerkin ROM. We are not able
to run simulations for Nh > 16384, because of the limitation of the computing resources we

4Indeed, in order to build the snapshot matrix, we uniformly sample Nt time instances of the FOM solution
over T/∆t = 4000 time steps; for each training parameter instance, only 25% of 4000 snapshots are retained
from the FOM solution in the DL-ROM case, against 4000 snapshots in the POD-Galerkin ROM case.
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have at our disposal. Despite the trend in Figure 4.8 (left) is apparently not favorable for
the DL-ROM technique, practice indicates that the CPU time for DL-ROM is smaller than
the one for the POD-Galerkin ROM for small values of Nh, in other words only with very
large values of Nh the POD-Galerkin ROM outperforms the DL-ROM strategy. Indeed, a
linear fitting of the DL-ROM and the POD-Galerkin ROM CPU times5 in Figure 4.8 (left)
highlights that for Nh = 65536 and Nh = 262144, DL-ROM could be almost 10 and 5 times,
respectively, faster than the POD-Galerkin ROM for the same values of Nh. Note that the
results of this Section have been obtained by employing the DL-ROM on a single CPU, an
architecture which is not favorable to neural networks6. Further improvements are expected
when employing our DL-ROM on a GPU for a given testing-parameter instance.

We highlight that since the DL-ROM solution can be evaluated at any desired time in-
stance without solving any dynamical system, the resulting computational time entailed by
the DL-ROM at testing time are drastically reduced compared to the ones required by the
FOM or the POD-Galerkin ROM to compute solutions at a particular time instance. In
Figure 4.8 (right) we show the DL-ROM, FOM and POD-Galerkin ROM CPU time needed
to compute the approximated solution at t̄, for t̄ = 1, 10, 100 and 400 ms averaged over the
testing set and with Nh = 4096. We perform the training phase of the POD-Galerkin ROM
over the original time interval (0, T ) ms and we report the results for Nc = 6, the number of
clusters for which the smallest computational time is obtained. The DL-ROM CPU time to
compute ũh(t̄;µtest) does not vary over t̄ and, by choosing t̄ = T , the DL-ROM speed-ups
are equal to 7.3× 104 and 6.5× 103 with respect to the FOM and the POD-Galerkin ROM,
with Nc = 6, computational times.

Regarding the training (offline) times, in the case of a FOM dimension Nh = 4096, training
the DL-ROM neural network on a GTX 1070 8GB GPU requires about 21 hours, whereas
training the POD-Galerkin ROM (with Nc = 6 local bases) on 5 cores of a node of the HPC
cluster at our disposal requires about 3 hours; in both the cases, the time needed to assemble
the snapshot matrix S is not included. However, the 7 times higher training time of the
DL-ROM is justified by the efficiency gained at testing time; indeed, a query to the DL-ROM
online requires 0.08 seconds on a GPU, implying a speed-up of about 275 times compared to
the POD-Galerkin ROM.

Finally we report the feature maps of the DL-ROM neural network. In Figures 4.9 we show
the feature maps of the first convolutional layer of the encoder function σ1(W k

1 ∗u1(µtest) +
bk1), for k = 1, . . . , 8, in the DL-ROM neural network when the FOM solutions for the testing-
parameter instances µtest = (3.75, 3.75) cm and µtest = (6.25, 6.25) cm at t = 0.2 ms, are
provided as inputs. At this stage, the feature maps retain most of the information present in
the FOM solution. Moreover, by considering the two testing-parameter instances, we observe
the translation equivariance property [Goodfellow et al., 2016] that convolutional layers hold
when applied to the part of cardiac tissue corresponding to the scar. Moving to deeper
layers, feature maps become increasingly abstract, and less visually interpretable; however,
the extracted high-level features are still related both to the ischemic region and the electrical
activation pattern.

4.3.4 Test 4: Two-dimensional slab with figure of eight re-entry

The most recognized cellular mechanisms sustaining atrial tachycardia is re-entry [Nattel,
2002]. The particular kind of re-entry we deal with in this test case is the so-called figure
of eight re-entry, and can be obtained by solving equations (1.3). To induce the re-entry,

5Nh = 65536 and Nh = 262144 for this test case represent FOM dimensions corresponding to mesh sizes h
needed to solve, by means of linear finite elements, the problem on a 3D slab geometry both for physiological
and pathological electrophysiology in the case a ten Tusscher-Panfilov ionic model [ten Tusscher and Panfilov,
2006] is used. This latter would indeed require smaller values of h compared to the Aliev-Panfilov model, due
to the shape of the AP. See, e.g., [Trayanova, 2011, Plank et al., 2008] for further details.

6Indeed, all tests are performed on a node (20 Intel R© Xeon R© E5-2640 v4 2.4GHz cores), using 5 cores, of
our in-house HPC cluster.
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Figure 4.9: Test 3 : Feature maps of the first convolutional layer of the encoder function
in the DL-ROM neural network for the testing-parameter instances µtest = (3.75, 3.75) cm
(top) and µtest = (6.25, 6.25) cm (bottom) at t̃ = 0.2 ms.

we apply a classical S1-S2 protocol [Nagaiah et al., 2013, Colli Franzone et al., 2014]. In
particular, we consider a square slab of cardiac tissue Ω = (0, 2 cm)2 and apply an initial
stimulus (S1) at the bottom edge of the domain, i.e.

I1
app(x, t) = 1Ω1

(x)1[ti1,t
f
1 ](t̃), (4.6)

where Ω1 = {x ∈ Ω : y ≤ 0.1}, ti1 = 0 ms and tf1 = 5 ms. A second stimulus (S2) under the
form

I2
app(x, t;µ) = 1Ω2(µ)(x)1[ti2,t

f
2 ](t̃), (4.7)

with Ω2(µ) = {x ∈ Ω : (x − 1)2 + (y − µ)2 ≤ (0.2)2}, ti2 = 70 ms and tf2 = 75 ms, is
then applied. Here the parameter µ is the y-coordinate of the center of the second circular
stimulus. We analyze two configurations: (i) a first case in which both re-entry and non
re-entry cases are generated, by considering P = [0.5, 1.1] cm; (ii) a second case in which
instead only re-entrant dynamics are taken into account, and P = [0.8, 1.1] cm. These choices
have been made to obtain a re-entry elicited and sustained until T = 175 ms. Moreover, we
restrict ourselves to the time interval [95, 175] ms, without considering the time window [0,
95) ms in which the re-entry has not arisen yet, and is common to all µ instances. The time-
step is ∆t = 0.2/12.9. We consider a FOM dimension Nh = 256 × 256 = 65536, implying a
mesh size h = 0.0784 mm; this mesh size is recognized to correctly solve the tiny transition
front developing during depolarization of the tissue, see [Trayanova, 2011, Plank et al., 2008].
The fibers are parallel to the x-axis and the conductivities in the longitudinal and transversal
directions to the fibers are σl = 2× 10−3 cm2/ms and σt = 3.1× 10−4 cm2/ms, respectively.
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The parameters appearing in (1.5) are set to K = 8, a = 0.1, b = 0.1, ε0 = 0.01, c1 = 0.14,
and c2 = 0.3, see [ten Tusscher, 2004].

The snapshot matrix is built by solving problem (1.3), completed with the applied currents
(4.6) and (4.7) over Nt = 400 time instances. Moreover, we consider Ntrain = 13 training-
parameter instances uniformly distributed in the parameter space and Ntest = 12 testing-
parameter instances, each of them corresponding to the midpoint of two consecutive training-
parameter instances. The maximum number of epochs is set equal to Nepochs = 6000, the
batch size is Nb = 3, due to the high GPU memory occupation of each sample. Regarding
the early-stopping criterion, we stop the training if the loss does not decrease in 1000 epochs.

In Figure 4.10 we show the FOM solution and the DL-ROM one, obtained by setting
the reduced dimension to n = 5, for the testing-parameter instance µtest = 0.9625 cm, at
t̃ = 141.2 ms and t̃ = 157.2 ms, together with the relative error εk ∈ RNh computed according
to (3.14).

Figure 4.10: Test 4 : FOM solution (left), DL-ROM one (center) with n = 5, and relative
error εk (right) at t̃ = 141.2 ms (top) and t̃ = 157.2 ms (bottom), for the testing-parameter
instance µtest = 0.9625 cm. The relative error εk is below 0.1% at both time instants.

We introduce the relative error εsk ∈ RNh , for k = 1, . . . , Nt, given by

εsk =
|uk(µtest)− ũk(µtest)|

‖uk(µtest)‖1
×100. (4.8)

The trend of (4.8) over time, for the selected testing-parameter instance µtest = 0.9625 cm,
is depicted in Figure 4.11; we highlight that the error is, on average, always smaller than
0.3%. In particular, in Figure 4.11 we show the mean, the median, and the first and third
quartile (all computed with respect to the spatial coordinates) of the relative error, as well
as its minimum. The interquartile range (IQR) shows that the distribution of the error is
almost uniform over time, and that the maximum error is associated to the first time instant
– this latter being the time instant at which the solution is most different over P.

In Figure 4.12 we show the FOM and the DL-ROM solutions, the latter obtained by setting
n = 5, for the last time instance, i.e. at t̃ = 175 ms, for µtest = 0.6125 cm and µtest = 0.9125
cm, in order to point out the variability of the solution over the parameter space P = [0.5, 1.1]
cm and the ability of DL-ROM to capture it. In particular, in Figure 4.12 we compare the
FOM and the DL-ROM solutions for two testing-parameter instances corresponding to (i) a
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Figure 4.11: Test 4 : Relative error εsk vs. t̃ with n = 5 for the testing-parameter instance
µtest = 0.9625 cm (the red band indicates the IQR). The error distribution is almost uniform
over time.

Figure 4.12: Test 4 : FOM solution (left), DL-ROM one (center), with n = 5, and relative
error εk (right) at t̃ = 175 ms, for the testing-parameter instance µtest = 0.6125 cm (top)
and µtest = 0.9125 cm (bottom). In both cases the relative error εk is below 1%.

case in which the re-entry does not arise (top), since S2 is too far from the front elicited with
S1, i.e. the tissue around S2 is no longer in the refractory period and is able to activate again;
(ii) a case in which the re-entry is elicited, the electrical signal follows an alternative circuit
looping back upon itself and developing a self-perpetuating rapid and abnormal activation
(bottom).

In Figure 4.13 we show the trend of the relative error (4.8) at a selected time instance
given by t̃ = 147 ms over the parameter space, reporting the mean, the median, the first and
third quartile, as well as its minimum (all computed with respect to the spatial coordinates).
We highlight that the error is always smaller than 1%, except for its maximum which is
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Figure 4.13: Test 4 : Relative error εsk vs. µtest with n = 5 for the time instance t̃ = 147 ms
(the violet band indicates the IQR). The maximum error is associated to µtest = 0.7875 cm,
the testing-parameter instance between µtrain = 0.775 cm (the last value for which re-entry
does not arise) and µtrain = 0.8 cm (the first value for which re-entry is elicited).

associated to the value of µtest corresponding to the transition between re-entry and non
re-entry dynamics.

Let us now focus on the case in which only re-entrant dynamics are generated, and P =
[0.8, 1.1] cm, in order to compare the FOM, the POD-Galerkin ROM and the DL-ROM
approximations. In Figure 4.14 we show the solutions obtained through the POD-Galerkin
ROM with Nc = 2 (top) and Nc = 4 (bottom) local reduced bases, along with the relative
error defined in (3.14), for the testing-parameter instance µtest = 0.9625 cm at t̃ = 175
ms. In both cases, we have considered the setting yielding the most efficient POD-Galerkin
ROM approximation, which require about 40 (30, respectively) seconds to be evaluated. By
comparing Figure 4.14 and Figure 4.10 (bottom), we observe that the DL-ROM outperforms
the POD-Galerkin ROM in terms of accuracy.

Figure 4.14: Test 4 : POD-Galerkin ROM solution (left) and relative error εk (right) for
Nc = 2 (top) and Nc = 4 (bottom) at t̃ = 157.2 ms for µtest = 0.9625 cm.
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In Figure 4.15 we show the APs obtained through the FOM, the DL-ROM and the POD-
Galerkin ROM (with Nc = 4 local reduced bases) for the testing-parameter instance µtest =
0.9625 cm, evaluated at P1 = (0.64, 1.11) cm and P2 = (0.69, 1.03) cm. These two points
are close to the left core of the figure of eight re-entry, where a shorter APD, and lower
peak values of AP, with respect to a healthy case, due to the meandering of the cores, are
observed. The AP dynamics at those points is accurately captured by the DL-ROM, while
the POD-Galerkin ROM leads to slightly less accurate results requiring larger testing times.

Figure 4.15: Test 4 : AP obtained through the FOM, the DL-ROM and the POD-Galerkin
ROM with Nc = 4 for the testing-parameter instance µtest = 0.9625 cm, at P1 = (0.64, 1.11)
cm and P2 = (0.69, 1.03) cm. The POD-Galerkin ROM approximations are obtained by
imposing a POD tolerance εPOD = 10−4 and 10−3, resulting in error indicator (3.13) values
equal to 5.5× 10−3 and 7.6× 10−3, respectively.

We now compare the computational times required by the FOM, the POD-Galerkin ROM
(for different values of Nc) and the DL-ROM, keeping for all the same degree of accuracy
achieved by DL-ROM, i.e. εrel = 7.87 × 10−3, and running the code on the hardware each
implementation is optimized for – a CPU for the FOM and the POD-Galerkin ROM, a GPU7

for the DL-ROM. In Table 4.5 we report the CPU time needed to compute the FOM solution
and the POD-Galerkin ROM approximation (online, at testing phase), both on a full 64
GB node (20 Intel R© Xeon R© E5-2640 v4 2.4GHz cores), and the GPU time required by the
DL-ROM to compute 875 time instances (the same number of time instants considered in
the solution of the dynamical systems associated to the FOM and the POD-Galerkin ROM)
at testing time, by fixing its dimension to n = 5, on an Nvidia GeForce GTX 1070 8 GB
GPU. For the sake of completeness, we also report the computational time required by the
DL-ROM when employing a single CPU node. It is evident that a POD-Galerkin ROM, built
employing a global reduced basis (Nc = 1), is not amenable to a complex and challenging
pathological cardiac EP problem like the figure of eight re-entry. Using a nonlinear approach,
for which the solution manifold is approximated through a piecewise linear trial manifold (as
in the case of Nc = 2 or Nc = 4 local reduced bases) reduces the online computational time.
However, the DL-ROM still confirms to provide a more efficient ROM, almost 5 (or 2) times
faster on the CPU, and 39 (or 19) faster on the GPU, than the POD-Galerkin ROM with
Nc = 2 (or Nc = 4) local reduced bases.

7Indeed, at each layer of a neural network thousands of identical computations must be performed. The
most suitable hardware architectures to carry out this kind of operations are GPUs because (i) they have
more computational units (cores) and (ii) they have a higher bandwidth to retrieve from memory. Moreover,
in applications requiring image processing, as CNNs, the graphics specific capabilities can be further exploited
to speed up calculations.
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time [s] FOM/ROM dimensions
FOM (CPU) 382 Nh = 65536
DL-ROM (CPU/GPU) 15/1.8 n = 5
POD-Galerkin ROM Nc = 1 (CPU) 103 n = 1538
POD-Galerkin ROM Nc = 2 (CPU) 70 n = 1158, 751
POD-Galerkin ROM Nc = 4 (CPU) 33 n = 435, 365, 298, 45

Table 4.5: Test 4 : POD-Galerkin ROM and DL-ROM computational times along with FOM
and reduced trial manifold(s) dimensions. DL-ROM provides a more efficient ROM with
respect to the POD-Galerkin ROMs.

Figure 4.16: Test 4 : Error indicator εrel vs. CPU testing computational time for different
values of Nc and εPOD. The DL-ROM outperforms the POD-Galerkin ROM in terms of both
efficiency and accuracy.

In Figure 4.16 we show the trend of the error indicator (3.13) over the testing set versus
the CPU time both for the DL-ROM and the POD-Galerkin ROM at testing phase. Slight
improvements of the performance of DL-ROM, in terms of accuracy, are obtained for a small
increase of the DL-ROM dimension n, coherently with our previous findings in Chapter 3.
Indeed, the DL-ROM is able, also in this case, to accurately represent the solution manifold
by a reduced nonlinear trial manifold of dimension nµ + 1 = 2; for the case at hand, we
report the results for n = 5 (very close to the intrinsic dimension nµ + 1 = 2 of the problem,
and much smaller than the POD-Galerkin ROM dimension), providing slightly smaller values
of the error indicator (3.13) than in the case n = 2. Regarding instead the POD-Galerkin
ROM, in Figure 4.16 we report results obtained for different tolerances εPOD = 10−4, 5·10−4,
10−3, 5 · 10−3, 10−2. In the cases Nc = 2 and Nc = 4 we only report the results related to
the smallest POD tolerances, which indeed allow us to meet the prescribed accuracy on the
approximation of the gating variable, which would otherwise impact dramatically on the
overall accuracy of the POD-Galerkin ROM. Moreover, we do not consider more than Nc = 4
local reduced bases in order not to generate too small local linear subspaces, which would
be otherwise unable to approximate the variability of the solution over the parameter space
P accurately. Indeed, by considering a larger number of clusters, the dimension of some
linear subspaces becomes so small that the error would start to increase compared to the one
obtained with fewer clusters. As shown in Figure 4.16, the proposed DL-ROM outperforms
the POD-Galerkin ROM in terms of both efficiency and accuracy.

Regarding the training (offline) times, training the DL-ROM neural network on a GTX
1070 8GB GPU requires about 64 hours, whereas training the POD-Galerkin ROM (with

97



Nc = 4 local bases) on a full node (20 Intel R© Xeon R© E5-2640 v4 2.4GHz cores) of a HPC
cluster requires about 4 hours; in both cases, the time needed to assemble the snapshot
matrix S is not included. The DL-ROM training time is related to the value chosen during
the hyperparameters tuning for the batch size, i.e. Nb = 3; indeed we highlight that by
choosing a slightly higher value of Nb, it is possible to decrease the GPU computational
training time as long as we look for a lower accuracy. The fact that the DL-ROM training
time is 16 times higher than the POD-Galerkin ROM one is again justified by the efficiency
introduced at testing time. Indeed, a query to the DL-ROM online requires 1.2 seconds on a
GPU, implying a speed-up of about 28 times compared to the POD-Galerkin ROM.

4.3.5 Test 5: Three-dimensional ventricle geometry

We consider the solution of the system (1.3) coupled with the A-P ionic model (1.5) in a
three-dimensional left ventricle (LV) geometry, obtained from the 3D Human Heart Model
provided by Zygote [zyg, 2014]. Here, we consider a single (nµ = 1) parameter, given by the
longitudinal conductivity in the fibers direction. The conductivity tensor takes the form

D(x;µ) = σtI + (µ− σt)f0 ⊗ f0, (4.9)

where σt = 12.9 · 0.02 mm2/ms; f0 is determined at each mesh point through a rule-based
approach, by solving a suitable Laplace problem [Rossi et al., 2014]. The resulting fibers field
is reported in Figure 4.17.

Figure 4.17: Test 5 : Fibers field on the Zygote LV geometry.

The applied current is defined as

Iapp(x, t) =
C

(2π)3/2α
exp

(
− ||x− x̄||2

2β

)
1[0,t̄](t̃),

where t̄ = 2 ms, C = 1000 mA, α = 50, β = 50 mm2, x̄ = [44.02, 1349.61, 63.28]
T

mm.
In order to build the snapshot matrix S, we solve problem (1.3) completed with the

conductivity tensor (4.9) on a mesh made by Nh = 16365 vertices over the interval (0, T ) with
T = 300 ms and time-step ∆t = 0.1/12.9. We uniformly sample Nt = 1000 time instances
in (0, T ) and we zero-padded [Goodfellow et al., 2016] the snapshot matrix to reshape each
column in a 2D square matrix. The parameter space is provided by P = 12.9 · [0.04, 0.4]
mm2/ms; here we consider Ntrain = 25 training-parameter instances and Ntest = 24 testing-
parameter instances computed as in Test 4. In this case, the maximum number of epochs is
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set to Nepochs = 30000, the batch size is Nb = 40 and the training is stopped if the loss does
not decrease over 4000 epochs.

In Figure 4.18 we report the FOM solution for two testing-parameter instances, i.e. µ =
12.9 · 0.0739 mm2/ms and µ = 12.9 · 0.1991 mm2/ms, at t̃ = 276 ms, to show the variability
of the FOM solution over the parameter space. As expected, front propagation is faster for
larger values of the parameter µ.

Figure 4.18: Test 5 : FOM solutions for µ = 12.9 ·0.0739 mm2/ms (left) and µ = 12.9 ·0.1991
mm2/ms (right) at t̃ = 276 ms. By increasing the value of µ the wavefront propagates faster.

In Figures 4.19 and 4.20 we report the FOM and DL-ROM solutions, the latter with n =
10, at t̃ = 42.1 ms and t̃ = 222.1 ms, for two testing-parameter instances, µtest = 12.9 ·0.1435
mm2/ms and µtest = 12.9 · 0.3243 mm2/ms. The DL-ROM approximation is essentially as
accurate as the FOM solution.

Figure 4.19: Test 5 : FOM solution (left) and DL-ROM one (right), with n = 10, at t̃ = 42.1
ms (top) and t̃ = 276 ms (bottom), for the testing-parameter instance µtest = 12.9 · 0.1435
mm2/ms.
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Figure 4.20: Test 5 : FOM solution (left) and DL-ROM one (right), with n = 10, at t̃ = 42.1
ms (top) and t̃ = 276 ms (bottom), for the testing-parameter instance µtest = 12.9 · 0.3243
mm2/ms.

Also for this test case, it is possible to build a reduced nonlinear trial manifold of dimension
very close to the intrinsic one – nµ + 1 = 2 – as long as the maximum number of epochs
Nepochs is increased; the choice n = 10 is obtained as the best trade-off between accuracy
and efficiency of the DL-ROM approximation in this case.

The DL-ROM approximation can also replace the FOM solution when evaluating outputs
of interest. For instance, in Figure 4.21 we show the FOM and DL-ROM activation maps
(ACs), the latter obtained by choosing n = 10 as DL-ROM dimension. Given the electric
potential u = u(x, t;µ), the (unipolar) activation map at a point x ∈ Ω is evaluated as the
minimum time at which the AP peak reaches x, that is

AC(x;µ) = arg min
t∈(0,T )

(
u(x, t;µ) = max

t∈(0,T )
u(x, t;µ)

)
.

Here we compare the activation maps ACFOM and ACDL−ROM obtained through the FOM
and the DL-ROM, respectively, by evaluating the maximum of the relative error

εAC(x;µ) =
|ACFOM (x;µ)−ACDL−ROM (x;µ)|

|ACFOM (x;µ)|

over the Nh mesh points; in the case µtest = 12.9 · 0.31, the maximum relative error is equal
to 4.32× 10−5.

In Figure 4.22 (left) we report the APs obtained by the FOM and the DL-ROM, this latter
with n = 10, computed at point P = (36.56, 1329.59, 28.82) mm for the testing-parameter
instance µtest = 12.9 · 0.31 mm2/ms. For the sake of comparison, we also report the POD-
Galerkin ROM approximation, with Nc = 1, of dimension n = 10 and n = 120. Clearly, in
dimension n = 10 the DL-ROM approximation is far more accurate than the POD-Galerkin
ROM approximation; to reach the same accuracy (about εrel = 5.9×10−3, measured through
the error indicator (3.13)) achieved by the DL-ROM with n = 10, n = 120 POD modes
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Figure 4.21: Test 5 : FOM (top) and DL-ROM (bottom) ACs for the testing-parameter
instance µtest = 12.9 · 0.31 mm2/ms with n = 10.

would be required. In Figure 4.22 (right) we highlight instead the improvements, in terms of
efficiency, enabled by the use of the DL-ROM technique; we report the CPU time required to
solve the FOM for a testing-parameter instance, the one required by DL-ROM (of dimension
n = 10) at testing time and by the POD-Galerkin ROM with Nc = 4 (n = 68, 81, 82, 45), by
using the time resolution each technique requires and by varying the FOM dimension Nh on
a 6-core platform8. The FOM solution with Nh = 16365 DOFs requires about 40 minutes to
be computed, against 57 seconds required by the DL-ROM approximation, thus implying a
speed-up almost equal to 41 times.

Regarding the training (offline) times for this test case, featuring a FOM dimension Nh =
16365, training the DL-ROM neural network on a GTX 1070 8GB GPU requires about 160
hours, whereas training the POD-Galerkin ROM (with Nc = 4 local bases) on a full node (20
Intel R© Xeon R© E5-2640 v4 2.4GHz cores) of a HPC cluster requires about 28 hours; in both
cases, the time needed to assemble the snapshot matrix S is not included. We report also the
GPU testing computational time of DL-ROM which is equal to 0.35 seconds thus obtaining
a speed-up, with respect the POD-Galerkin ROM testing time with Nc = 4, equal to 172.
The efficiency introduced at testing time justifies the higher training time of DL-ROM.

4.4 Discussion

The numerical results, presented in this Chapter, show that the DL-ROM technique, proposed
in Chapter 3, allows to accurately capture complex front propagation processes in cardiac

8Numerical tests have been performed on a MacBook Pro Intel Core i7 6-core with 16 GB RAM.
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Figure 4.22: Test 5 : Left: FOM, DL-ROM and POD-Galerkin ROM APs for the testing-
parameter instance µtest = 12.9 · 0.31 mm2/ms. For the same n, the DL-ROM is able to
provide more accurate results than the POD-Galerkin ROM. Right: CPU time required to
solve the FOM, by DL-ROM with n = 10 and by the POD-Galerkin ROM with Nc = 6 at
testing time vs. Nh. The DL-ROM is able to provide a speed-up equal to 41.

EP, both in physiological and pathological scenarios. Moreover, it provides ROMs that are
orders of magnitude more efficient than the ones obtained by common linear (projection-
based) ROMs, built for instance through a POD-Galerkin RB method, for a prescribed level
of accuracy. Through the use of DL-ROM, it is possible to overcome the main computational
bottlenecks shown by POD-Galerkin ROMs, when addressing parametrized problems in car-
diac EP. The most critical points related to (i) the linear superimposition of modes which
linear ROMs are based on; (ii) the need to account for the gating variables when solving the
reduced dynamics, even if not required; and (iii) the necessity to use (very often expensive)
hyper-reduction techniques to deal with terms that depend nonlinearly on either the trans-
membrane potential or the input parameters, are all avoided by the DL-ROM technique,
which finally yields more efficient and accurate approximation than POD-Galerkin ROMs.
Moreover, larger time resolutions can be employed when using DL-ROM, compared to the
ones required by the numerical solution of a dynamical systems through a FOM or a POD-
Galerkin ROM. Indeed, the DL-ROM approximation can be queried at any desired time,
without requiring to solve a dynamical system until that time, thus drastically decreasing the
computational time required to compute the approximated solution at any given time.

Outputs of clinical interest, such as ACs and APs, can be more efficiently evaluated by
the DL-ROM technique than by a FOM built through the FE method, while maintaining
a high level of accuracy. The numerical tests carried out in this Chapter are a proof-of-
concept of the DL-ROM technique ability to investigate intra- and inter-subjects variability,
towards performing multi-scenario analyses in real-time and, ultimately, supporting decisions
in clinical practice. In this respect, the use of DL-ROM techniques can foster assimilation of
clinical data with physics-driven computational models.

So far, the training time required by the DL-ROM technique appears to be the major
computational bottleneck, even if it is completely compensated by the wider computational
efficiency provided at testing time. The DL-ROM depends on Nh and this may lead to long
training computational times for large FOM dimension. Enhancing efficiency also during the
training phase, which we afford by means of the POD-enhanced DL-ROM, represents the
focus of the next Chapter.
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Chapter 5
Deep learning-based reduced order
models enhanced by POD

In this Chapter1, we address a key aspect in the construction of DL-ROMs, related with
computational efficiency during the training phase. Although extremely efficient at testing
time, when evaluating the PDE solution for any new testing-parameter instance, DL-ROMs
introduced in Chapter 3, require an expensive training stage, because of the extremely large
number of network parameters to be estimated. In this Chapter we propose a possible way
to avoid an expensive training stage of DL-ROMs, by (i) performing a prior dimensionality
reduction through proper orthogonal decomposition (POD), and (ii) relying on a multi-fidelity
pretraining stage, where different physical models can be efficiently combined. The proposed
POD DL-ROM is then assessed on different – both scalar and vector – nonlinear time-
dependent parametrized PDEs (including advection-diffusion-reaction, structural mechanics
and fluid dynamics problems) to show the flexibility of this approach and its remarkable
computational savings.

5.1 Making ROMs non-intrusive by ANNs & deep learn-
ing

Merging classical projection-based ROMs, such as the POD-Galerkin method, and ANNs
has been shown to be a suitable approach in view of making ROMs less intrusive and more
efficient. In this respect, several strategies have been proposed to replace the projection stage
in classical ROMs for parametrized PDEs and model the reduced dynamics. For instance,
in [Guo and Hesthaven, 2018, Guo and Hesthaven, 2019, Hesthaven and Ubbiali, 2018, Kast
et al., 2020, Wang et al., 2019] ANN-based or Gaussian Process (GP) regression models have
been proposed to approximate the mapping from the input parameters (and, possibly, time)
to the reduced coefficients, as an alternative to the assembling and solution of the reduced
order system arising from POD-Galerkin ROMs, however still using a linear trial manifold
built through POD; similar strategies have also been introduced in [Kani and Elsheikh, 2017,
Mohan and Gaitonde, 2018, Wan et al., 2018, Pulch and Youssef, 2020, Bērzinš et al., 2020].

In particular, in [Hesthaven and Ubbiali, 2018, Wang et al., 2019] the intrinsic coordinates
are approximated by means of a DFNN. In the POD DL-ROM technique introduced in this
Chapter, a further level of dimensionality reduction is performed, that is the dimension of
the intrinsic coordinates is decreased by matching the minimal dimension of the problem.

1This Chapter is mainly based on the paper [Fresca and Manzoni, 2021].
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Moreover, we exploit convolutional layers which result more suited to high-dimensional spa-
tial data, thus implying lower computational costs, with respect to dense layers. In [Guo and
Hesthaven, 2019] a data-driven RB method is presented where GPs are employed as regres-
sion model for the approximation of the intrinsic coordinates. The regression functions are
represented as the linear combinations of several tensor products of two GPs, one depending
on the variable time and the other taken as function of the input parameters. In particular,
to decompose the training data associated to each element of the intrinsic coordinates vector
into several time- and parameter-modes, SVD is applied. Then GPs are trained to approxi-
mate the modes of each intrinsic coefficient. This approach is extended in [Kast et al., 2020],
where a multi-fidelity setup in used in two ways: first in the reduced basis construction and
secondly in the GP regression. However, when dealing with high POD dimensions, the previ-
ous strategies may entail the training of a very high number of regression models. By means
of the POD DL-ROM instead, we are able to model and approximate the entire intrinsic
coordinates vector all at once and no additional SVDs are required.

Furthermore, a hybrid strategy proposed in [Chen et al., 2020] merges ANN-based regres-
sion models and PINNs, training the network by minimizing the mean squared residual error
of the reduced order equation on a set of points in the parameter space; similar results can
be found in [Kani and Elsheikh, 2018].

5.2 (Randomized) POD for dimensionality reduction

POD exploits the SVD of the snapshot matrix S to compute an orthonormal basis, which is
optimal in a least-squares sense (see Section 2.3). Due to the linear superimposition of modes
assumption, POD is not able to compute a reduced subspace of dimension equal (or close) to
the dimension of the solution manifold, that is to say nµ+1 by using the notation introduced
in Chapter 2, while preserving an acceptable degree of accuracy with respect to the FOM
solution, when dealing with problems featuring coherent structures propagating over time.
In Chapters 3 and 4 we showed, by computing the optimal-POD or the POD-Galerkin ROM
solutions, that the dimension N of the linear trial manifold built by means of POD, must be
much higher than nµ + 1 in order to ensure the same level of accuracy obtained with a DL-
ROM. Hence, although POD does not capture the intrinsic dimension of the problem under
consideration it is still able to perform a moderate dimensionality reduction, thus yielding a
dimension N � Nh. This latter feature is exploited in the POD DL-ROM strategy.

Computing the SVD can be extremely time consuming for large-scale problems; if we
deal with a snapshot matrix S ∈ RNh×NtrainNt characterized by a large FOM dimension Nh
and/or a high number of training-parameter or time instances, the computational time and
the memory needed to compute the SVD may become prohibitive. For every large values of
Nh and NtrainNt, the time and the memory required by the SVD are superlinear in Nh and
NtrainNt [Drineas et al., 2006]. In order to speed up computations, we rely on the randomized
matrix approximation technique developed in [Halko et al., 2011]. Randomized SVD (rSVD)
computes an approximated SVD using randomization. It consists of two main stages: (i) in
the first one an approximated basis for Col(S), i.e. Q, is obtained by using randomization,
and (ii) in the second one the SVD of a smaller matrix B is computed and then the SVD of
S is recovered by means of Q. More precisely, a Gaussian random matrix Ω ∈ RNtrainNt×m
is drawn, where N ≤ m ≤ NtrainNt and m − N is called the oversampling parameter. The
matrix

Y = (SST )qSΩ

is then assembled, by normally setting q = 1 or 2, and an iterative QR factorization, i.e.
Y = QR, is computed where Q ∈ RNh×m. Computing Q in such a way consists in applying
an adaptive randomized range finder algorithm to approximate the range of S by means of
a matrix Q whose colums are orthonormal, i.e. S ≈ QQTS [Halko et al., 2011]. Once Q has
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been computed, N columns are selected, i.e. Q ∈ RNh×N , and the SVD of the matrix

B = QTS = ṼΣ̃Z̃

is computed. The SVD factorization of S is recovered by simply setting

V = QṼ.

We refer to V as the rPOD basis matrix. For futher details about rSVD we refer to [Halko
et al., 2011, Szlam et al., 2014].

By applying rSVD, we build a reduced linear trial manifold S̃h = Col(V) of dimension
N � Nh, approximating the solution manifold Sh. The ROM approximation is then provided
by

uh(t;µ) ≈ ũh(t;µ) = VuN (t;µ),

where ũh : [0, T )× P → S̃h. Here uN (t;µ) ∈ RN , for each t ∈ [0, T ) and µ ∈ P, denotes an
approximation of the vector of the intrinsic coordinates of the ROM approximation on the
linear subspace generated through rSVD, that is

uN (t;µ) ≈ VTuh(t;µ).

We finally define the whole set

SN = {VTuh(t;µ) | t ∈ [0, T ) and µ ∈ P ⊂ Rnµ} ⊂ RN , (5.1)

of the intrinsic coordinates, when (t,µ) varies in [0, T ) × P, which is a, possibly nonlinear,
manifold of dimension nµ + 1 ≤ dim(SN ) � N .

5.3 Pretraining

Directly training a model to solve a specific task can be very demanding if the model is
complex and hard to optimize, or if the task is very difficult. It is sometimes more effective
to train a simpler model to solve the task, then make the model more complex. It can also be
more effective to train the model to solve a simpler task, then move on to the final task. In a
broad sense, these strategies are known as pretraining [Goodfellow et al., 2016]. In particular,
fine tuning a pretrained model is equivalent to transfer learning, if the data on which the
model is fine tuned is of a different nature from the original data used to pretrain the model.
Pretraining is then a form of transfer learning, where a pretrained model is used as initial
state of the network [Taylor and Stone, 2009]; this strategy works extremely well in many
objects classification tasks [Yosinski et al., 2014] and natural language processing problems
[Devlin et al., 2018]. In the area of scientific ML, pretraining has been used, for example,
in [Haghighat et al., 2020] where a pretrained neural network is used to perform parameter
identification on a new dataset.

By means of pretraining, we are able to combine models with different fidelities (e.g., by
considering coarser/finer spatial discretizations, different physical laws, more/less parameters
or larger/smaller parameter spaces) in order to enhance the training phase of the POD
DL-ROM. In particular, we train the POD DL-ROM neural network on an initial simpler
configuration and use the optimal weights and biases found by this training procedure as
initializers of the POD DL-ROM neural network on a more complex problem (see Figure 5.1).
Together with dimensionality reduction by rPOD, this strategy has been proved to be a
cornerstone in view of drastically reducing the training computational time of the POD DL-
ROM with respect to the time needed to train the neural network, from scratch, on the more
complex task.
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Train	the	POD	DL-
ROM	neural
network	on	a	
simpler (S) task

Train	the	POD	DL-
ROM	neural
network	on	a	
more	complex (C)	
task	by	setting

(PRETRAINING)

Figure 5.1: Pretraining workflow.

5.4 POD-enhanced DL-ROMs (POD DL-ROMs)

The POD DL-ROM strategy then represents a suitable combination of the best features
of DL algorithms and POD – namely, the non-intrusive character of the former, and the
simplicity, combined with the rigorous mathematical foundation, of the latter – at the same
time mutually compensating their weaknesses – namely, the curse of dimensionality of DL-
ROM for increasing FOM dimensions, and the modest approximation properties of POD-
based linear trial manifolds for some classes of nonlinear parametrized PDEs.

As previously pointed out, DL-ROM explicitly depends on Nh and, when the FOM di-
mension is large, this may lead to long training computational times, even if it remains
very efficient at testing time. In order to overcome the major computational bottleneck
of DL-ROMs, we extend them by approximating, by means of neural networks, the intrin-
sic coordinates manifold SN . More precisely, we build a nonlinear ROM to approximate
V Tuh(t;µ) ≈ ũN (t;µ) by

ũN (t;µ) = ΨN (un(t;µ)), (5.2)

where ΨN : Rn → RN , ΨN : sn 7→ ΨN (sn), n � N , is a nonlinear, differentiable function.
In this way, the manifold SN is approximated by the n-dimensional reduced nonlinear trial
manifold

S̃n = {ΨN (un(t;µ)) | un(t;µ) ∈ Rn, t ∈ [0, T ) and µ ∈ P ⊂ Rnµ} ⊂ RN , (5.3)

where ũN : [0, T ) × P → S̃n. The function un : [0, T ) × P → Rn denotes the minimal
coordinates of ũN on the linear trial manifold S̃n. Our goal is, again, to set-up a ROM whose
dimension n is as close as possible to the intrinsic dimension nµ + 1 of the solution manifold
Sh, i.e. n ≥ nµ + 1, in order to correctly capture the degrees of freedom of the set SN by
containing its size [Lee and Carlberg, 2020].

To model the relationship between each pair (t,µ) 7→ un(t,µ), and to describe the reduced
dynamics on the reduced nonlinear trial manifold S̃n, we consider a nonlinear map under the
form

un(t;µ) = Φn(t,µ), (5.4)

where Φn : [0, T )× Rnµ → Rn is a differentiable, nonlinear function.
As in DL-ROM (see Chapter 3), both the reduced dynamics and the reduced nonlinear

trial manifold must be learnt. Now, in the first case we aim at learning the dynamics of the
set SN on the nonlinear trial manifold S̃n in terms of minimal coordinates by means of a
DFNN; indeed, we set the function Φn in (5.4) equal to

Φn(t;µ,θDF ) = φDFn (t;µ,θDF ),

where θDF denotes again the vector of parameters of the DFNN, collecting all the corre-
sponding weights and biases of each layer of the DFNN.

For the description of the reduced nonlinear trial manifold we instead employ the decoder
function of a convolutional AE, that is, we define the function in (5.2) as

Ψh(un(t;µ,θDF );θD) = fDN (un(t;µ,θDF );θD),
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where fDN depends on the vector θD of parameters of the convolutional and dense layers of
the decoder function.

By combining the two previous stages, the POD DL-ROM approximation ũN takes the
form

ũN (t;µ,θDF ,θD) = fDN (φDFn (t;µ,θDF );θD). (5.5)

The encoder function of the convolutional AE can then be exploited to map the intrinsic
coordinates VTuh associated to (t,µ) onto a low-dimensional representation

ũn(t;µ,θE) = fEn (VTuh(t;µ);θE),

where fEn denotes the encoder function, depending upon a vector θE of parameters.
The architecture of the POD DL-ROM neural network, employed at training time, is

the one shown in Figure 5.2. As in Chapter 3, at testing time we can discard the encoder
function.

deep feedforward NN decoder function of a convolutional autoencoder

3 A Deep Learning-based Reduced Order Model (DL-ROM)

Let us now detail the construction of the proposed nonlinear ROM. In this respect, we define the functions
 h and�n in (9) and (11) by means of deep learning (DL) models, exploiting neural network architectures.
This choice is motivated by their capability of approximating nonlinear maps e↵ectively, and by their
ability to learn from data and generalize to unseen data. On the other hand, DL models enable us to
build non-intrusive, completely data-driven, ROMs, since their construction only requires to access the
dataset, the parameter values and the snapshots matrix, but not the FOM arrays appearing in (1).

The DL-ROM technique we developed is composed by two main blocks responsible, respectively, for the
reduced dynamics learning and the nonlinear trial manifold learning (see Figure 2). Hereon, we denote
by Ntrain, Ntest and Nt the number of training-parameter instances, of testing-parameter instances and
time instances, respectively, and we set Ns = Ntrain · Nt. The dimension of both the FOM solution and
the ROM approximation is Nh, while n denotes the number of intrinsic coordinates, with n ⌧ Nh.

For the description of the system dynamics on the reduced nonlinear trial manifold (which we refer to
as reduced dynamics learning), we employ a deep feedforward neural network (DFNN) with L layers, that
is, we define the function �n in definition (11) as

�n(t; µ,✓DF ) = �DF
n (t; µ,✓DF ), (12)

thus yielding the map

(t, µ) 7! un(t; µ,✓DF ) = �DF
n (t; µ,✓DF ),

where �DF
n takes the form (30), t 2 [0, T ], and results from the subsequent composition of a nonlinear

activation function L times. Here µ 2 P ⇢ Rnµ and ✓DF denotes the vector of hyper-parameters of the
DFNN.

Regarding instead the description of the reduced nonlinear trial manifold S̃n defined in (10) (which we
refer to as reduced trial manifold learning), we employ the decoder function of a convolutional autoencoder
(AE), that is, we define the function  h appearing in (9) and (10) as

 h(un(t; µ);✓D) = fD
h (un(t; µ);✓D), (13)

thus yielding the map

un(t; µ) 7! ũh(t; µ,✓D) = fD
h (un(t; µ);✓D)

where fD
h results from the composition of several layers, some of which of convolutional type, overall

depending on the vector ✓D of hyper-parameters of the decoder function.

Combining the two stages above, the DL-ROM approximation is then given by

ũh(t; µ,✓) = fD
h (�DF

n (t; µ,✓DF );✓D) (14)

where �DF
n (·; ·,✓DF ) : R(nµ+1) ! Rn and fD

h (·;✓D) : Rn ! RNh are defined as in (12) and (13), respec-
tively, and ✓ = (✓DF ,✓D) are the parameters defining the neural network. The architecture of DL-ROM
is shown in Figure 2.

Computing the ROM approximation (9) in the developed framework is equivalent to solve an optimiza-
tion problem. More precisely, provided the parameter matrix M 2 R(nµ+1)⇥Ns defined as

M = [(t1, µ1)| . . . |(tNt , µ1)| . . . |(t1, µNs
)| . . . |(tNt , µNs

)], (15)
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dataset, the parameter values and the snapshots matrix, but not the FOM arrays appearing in (1).

The DL-ROM technique we developed is composed by two main blocks responsible, respectively, for the
reduced dynamics learning and the nonlinear trial manifold learning (see Figure 2). Hereon, we denote
by Ntrain, Ntest and Nt the number of training-parameter instances, of testing-parameter instances and
time instances, respectively, and we set Ns = Ntrain · Nt. The dimension of both the FOM solution and
the ROM approximation is Nh, while n denotes the number of intrinsic coordinates, with n ⌧ Nh.

For the description of the system dynamics on the reduced nonlinear trial manifold (which we refer to
as reduced dynamics learning), we employ a deep feedforward neural network (DFNN) with L layers, that
is, we define the function �n in definition (11) as

�n(t; µ,✓DF ) = �DF
n (t; µ,✓DF ), (12)

thus yielding the map

(t, µ) 7! un(t; µ,✓DF ) = �DF
n (t; µ,✓DF ),

where �DF
n takes the form (30), t 2 [0, T ], and results from the subsequent composition of a nonlinear

activation function L times. Here µ 2 P ⇢ Rnµ and ✓DF denotes the vector of hyper-parameters of the
DFNN.

Regarding instead the description of the reduced nonlinear trial manifold S̃n defined in (10) (which we
refer to as reduced trial manifold learning), we employ the decoder function of a convolutional autoencoder
(AE), that is, we define the function  h appearing in (9) and (10) as

 h(un(t; µ);✓D) = fD
h (un(t; µ);✓D), (13)

thus yielding the map

un(t; µ) 7! ũh(t; µ,✓D) = fD
h (un(t; µ,✓DF );✓D)

where fD
h results from the composition of several layers, some of which of convolutional type, overall

depending on the vector ✓D of hyper-parameters of the decoder function.

Combining the two stages above, the DL-ROM approximation is then given by

ũh(t; µ,✓) = fD
h (�DF

n (t; µ,✓DF );✓D) (14)

where �DF
n (·; ·,✓DF ) : R(nµ+1) ! Rn and fD

h (·;✓D) : Rn ! RNh are defined as in (12) and (13), respec-
tively, and ✓ = (✓DF ,✓D) are the parameters defining the neural network. The architecture of DL-ROM
is shown in Figure 2.
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)| . . . |(tNt , µNs

)], (15)
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Computing the ROM approximation (14) for any new value of µ 2 P, at any given time, requires
to evaluate the map (t, µ) ! ũh(t; µ,✓) at the testing stage, once the parameters ✓ = (✓DF ,✓D) have
been determined, once and for all, during the training stage. The training stage consists in solving an
optimization problem (in the variable ✓) after a set of snapshots of the FOM have been computed.
More precisely, provided the parameter matrix M 2 R(nµ+1)⇥Ns defined as

M = [(t1, µ1)| . . . |(tNt , µ1)| . . . |(t1, µNtrain
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)], (15)

and the snapshot matrix S, defined in (4), we solve the problem: find the optimal parameters ✓⇤

solution of

J (✓) =
1

Ns

NtrainX

i=1

NtX

k=1

L(tk, µi;✓) ! min
✓

(16)

where

L(tk, µi;✓) =
1

2
kuh(tk; µi) � ũh(tk; µi,✓)k2 =

1

2
kuh(tk; µi) � fD

h (�DF
n (tk; µi,✓DF );✓D)k2. (17)

To solve the optimization problem (16)-(17) we use the ADAM algorithm [29] which is a Stochastic
Gradient Descent method [52] computing an adaptive approximation of the first and second momentum
of the gradients of the loss function. In particular, it computes exponentially weighted moving averages
of the gradients and of the squared gradients. We set the starting learning rate to ⌘ = 10�4, the batch
size to Nb = 20 and the maximum number of epochs to Nepochs = 10000. We perform cross-validation,
in order to tune the hyper-parameters of the DL-ROM, by splitting the data in training and validation
and following a proportion 8:2. Moreover, we implement an early-stopping regularization technique
to reduce overfitting [20]. In particular, we stop the training if the loss does not decrease over 500
epochs. As nonlinear activation function we employ the ELU function [14] defined as

�(z) =

(
z z � 0

exp(z) � 1 z < 0.

No activation function is applied at the last convolutional layer of the decoder neural network, as
usually done when dealing with autoencoders. The parameters, weights and biases, are initialized
through the He uniform initialization [24].

As we rely on a convolutional autoencoder to define the function  h, we also exploit the encoder
function

ũn(t; µ,✓E) = fE
n (u(t; µ);✓E), (18)

which maps each FOM solution associated to the pairs (t; µ) 2 Col(M) provided as inputs to the
feed-forward neural network (12), onto a low-dimensional representation ũn(t; µ,✓E) depending on
the parameters vector ✓E defining the encoder function.

Indeed, the actual architecture of DL-ROM that is used only during the training and the validation
phases, but not during testing, is the one shown in Figure 3. In practice, we add to the architecture of
the DL-ROM introduced above the encoder function of the convolutional autoencoder. This produces
an additional term in the per-example loss function (17), thus calling the following optimization
problem to be solved:

min
✓

J (✓) = min
✓

1

Ns

NtrainX

i=1

NtX

k=1

L(tk, µi;✓), (19)

where

L(tk, µi;✓) =
!h

2
kuh(tk; µi)� ũh(tk; µi,✓DF ,✓D)k2 +

1 � !h

2
kũn(tk; µi,✓E)�un(tk; µi,✓DF )k2 (20)

L(t, µ;✓) =
!h

2
kuh(t; µ) � ũh(t; µ,✓DF ,✓D)k2 +

1 � !h

2
kũn(t; µ,✓E) � un(t; µ,✓DF )k2
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kuh(t; µ) � ũh(t; µ,✓DF ,✓D)k2 +

1 � !h

2
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Deep learning-based reduced order modeling (DL-ROM) 164

To overcome the limitations of linear ROMs we consider a new, nonlinear ROM technique 165

based on deep learning models. First introduced in [16] and assessed on one-dimensional 166

benchmark problems, the DL-ROM technique aims at learning both the nonlinear trial 167

manifold (corresponding to the matrix V in the case of a linear ROM) in which we 168

seek the solution to the parametrized system (1) and the nonlinear reduced dynamics 169

(corresponding to the projection stage in a linear ROM). This method is non-intrusive; 170

it relies on DL algorithms trained on a set of FOM solutions obtained for different 171

parameter values. 172

We denote by Ntrain and Ntest the number of training and testing parameter instances, 173

respectively; the ROM dimension is again denoted by n ⌧ N . In order to describe the 174

system dynamics on a suitable reduced nonlinear trial manifold (a task which we refer 175

to as reduced dynamics learning), the intrinsic coordinates of the ROM approximation 176

are defined as 177

un(t; µ,✓DF ) = �DF
n (t; µ,✓DF ), (8)

where �DF
n (·; ·,✓DF ) : R(nµ+1) ! Rn is a deep feedforward neural network (DFNN), 178

consisting in the subsequent composition of a nonlinear activation function, applied to a 179

linear transformation of the input, multiple times [34]. Here ✓DF denotes the vector of 180

parameters of the DFNN, collecting all the corresponding weights and biases of each 181

layer of the DFNN. 182

Regarding instead the description of the reduced nonlinear trial manifold, approx- 183

imating the solution one, S̃ ⇡ S (a task which we refer to as reduced trial manifold 184

learning) we employ the decoder function of a convolutional autoencoder (AE) [35,36]. 185

More precisely, S̃ takes the form 186

S̃ = {fD(un(t; µ,✓DF );✓D) | un(t; µ,✓DF ) 2 Rn, t 2 [0, T ) and µ 2 P ⇢ Rnµ} (9)

where fD(·;✓D) : Rn ! RN consists in the decoder function of a convolutional AE. This 187

latter results from the composition of several layers (some of which are convolutional), 188

depending upon a vector ✓D collecting all the corresponding weights and biases. 189

As a matter of fact, the approximation ũ(t; µ) ⇡ u(t; µ) provided by the DL-ROM 190

technique is defined as 191

ũ(t; µ) = fD(�DF
n (t; µ,✓DF );✓D). (10)

The encoder function of the convolutional AE can then be exploited by mapping the 192

FOM solution associated to (t, µ) onto a low-dimensional representation 193

ũn(t; µ,✓E) = fE
n (u(t; µ);✓E), (11)

where fE
n (·,✓E) : RN ! Rn is the encoder function, depending on a vector of parameters 194

✓E . 195

Computing the DL-ROM approximation of u(t; µtest), for any possible t 2 (0, T ) and 196

µtest 2 P, corresponds to the testing stage of a DFNN and of the decoder function of 197

a convolutional AE; this does not require the evaluation of the encoder function. We 198

remark that our DL-ROM strategy overcomes the three major computational bottlenecks 199

implied by the use of projection-based ROMs, since: 200

- the dimension of the DL-ROM can be kept extremely small; 201

- the time resolution required by the DL-ROM can be chosen to be larger than the 202

one required by the numerical solution of dynamical systems in cardiac electro- 203

physiology; 204
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Figure 5.2: POD DL-ROM architecture. Starting from the FOM solution uh(t;µ), the
intrinsic coordinates VTuh(t;µ) are computed, by means of rSVD, and the neural network
provides as output ũN (t;µ), an approximation of them. The reconstructed solution ũh(t;µ)
is then recovered trough the rPOD basis matrix.

Computing the ROM approximation (5.5), by means of POD DL-ROM thus consists in
solving the optimization problem (3.8) where now the per-example loss function is given by

L(tk,µi;θ) =
ωh
2
‖VTuh(tk;µi)− ũN (tk;µi,θDF ,θD)‖2

+
1− ωh

2
‖ũn(tk;µi,θE)− un(tk;µi,θDF )‖2.

(5.6)

The POD DL-ROM approximation of the FOM solution ũh(t;µ) ≈ uh(t;µ) is then recovered
by means of the rPOD basis matrix

ũh(t;µ,θDF ,θD) = VũN (t;µ,θDF ,θD).

5.4.1 Extension to vector problems

We have also extended the POD DL-ROM technique to treat vector problems, by exploiting
the analogy with RGB images. By considering the spatial discretization of a PDE, whose
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solution is a d-dimensional vector field, the initial value problem (2.1) can be rewritten as





u̇1
h(t;µ) = f1(t,u1

h(t;µ), . . . ,udh(t;µ);µ) t ∈ (0, T ),
...

u̇dh(t;µ) = fd(t,u1
h(t;µ), . . . ,udh(t;µ);µ) t ∈ (0, T ),

u1
h(0;µ) = u1

0(µ),
...

udh(0;µ) = ud0(µ),

(5.7)

where uih : [0, T ) × P → RNih is the solution of the i-th equation in (5.7), ui0 : P → RNih
is the i-th initial datum, f i : (0, T ) × RNih × P → RNih describes the dynamics of uih(t;µ)
and i = 1, . . . , d, with d = 2, 3. Depending on the problem at hand, some of the equations
appearing in (5.7) might not involve the derivatives and related initial conditions; this is what
happens, for instance, in the case of unsteady Navier-Stokes equations for incompressible
flows, where the equation expressing flow incompressibility involves the velocity components
but no time derivatives.

Provided the solution of (5.7), associated to a particular instance (t,µ), and the orthonor-

mal basis Vi ∈ RNih×N , with i = 1, . . . , d, found though rSVD, we compute the intrinsic
components VT

1 u1
h(t;µ), . . . ,VT

d udh(t;µ), reshape each component in a square matrix of di-

mension (
√
N,
√
N), where N = 4m with m ∈ N, and stack them together thus forming a

tensor with d channels (a sketch in Figure 5.3).

Figure 5.3: Each vectorial component of the solution of problem (5.7) is reshaped in a square
matrix and they are stacked together thus forming a tensor of dimension (

√
N,
√
N, 3).

This approach allows N i
h, i = 1, . . . , d, to be different. Indeed, it is the rPOD dimension

N of the different vectorial components that must be kept equal for i = 1, . . . , d. We remark
that stacking all components together allows to reduce the number of parameters and then
the training and testing computational times of POD DL-ROM.

Regarding the optimization algorithm, the values of the hyperparameters of the POD
DL-ROM and the configuration of the neural network we refer to Chapters 3 and 4. The
input and the output of the POD DL-ROM are normalized by applying transformation (3.11)
to each channel of the d-dimensional tensor. Once training is performed, the reconstructed
solution is rescaled to the original values by applying the inverse transformation of (3.11). In

the vector case, the snapshot matrix S ∈ R
∑
iN

i
h×NtrainNt takes the form

S =




S1

. . .
Sd


 =




u1
h(t1;µ1) | . . . | u1

h(tNt ;µ1) | . . . | u1
h(t1;µNtrain) | . . . | u1

h(tNt ;µNtrain)
. . .

udh(t1;µ1) | . . . | udh(tNt ;µ1) | . . . | udh(t1;µNtrain) | . . . | udh(tNt ;µNtrain)


 .
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We detail the algorithms through which the training and the testing of the neural network
are performed in Algorithms 3 and 4. During the training phase, the optimal parameters of
the POD DL-ROM are found by solving the optimization problem (3.8)-(5.6) through the
back-propagation and ADAM algorithms (see Algorithm 3). At testing time, the encoder
function is instead discarded (see Algorithm 4).

Algorithm 3 POD DL-ROM training algorithm

Input: Parameter matrix M ∈ R(nµ+1)×Ns , snapshot matrix S ∈ R
∑
iN

i
h×Ns , training-

validation splitting fraction α, starting learning rate η, batch size Nb, maximum number
of epochs Nepochs, early stopping criterion, number of minibatches Nmb = (1−α)Ns/Nb.

Output: Optimal model parameters θ∗ = (θ∗E ,θ
∗
DF ,θ

∗
D).

1: Compute rPOD basis matrix V = [V1| . . . |Vd]
T

2: Randomly shuffle M and S
3: Split data in M = [Mtrain,Mval] and S = [Strain,Sval] (Mval,Sval ∈ R

∑
iN

i
h×αNs)

4: Compute intrinsic coordinates StrainN = [Strain1 | . . . |Straind ]T where Straini = VT
i Straini

with i = 1, . . . , d
5: Compute intrinsic coordinates SvalN = [Sval1 | . . . |Svald ]T where Svali = VT

i Svali with i =
1, . . . , d

6: Normalize data in M and SN = [StrainN ,SvalN ]
7: Randomly initialize θ0 = (θ0

E ,θ
0
DF ,θ

0
D)

8: ne = 0
9: while (¬early-stopping and ne ≤ Nepochs) do

10: for k = 1 : Nmb do
11: Sample a minibatch (Mbatch,SbatchN ) ⊆ (Mtrain,StrainN )

12: SbatchN = reshape(SbatchN ) ∈ RNb×
√
N×
√
N×d

13: S̃batchn (θNmbne+kE ) = fEn (SbatchN ;θNmbne+kE )

14: Sbatchn (θNmbne+kDF ) = φDFn (Mbatch;θNmbne+kDF )

15: S̃batchN (θNmbne+kDF ,θNmbne+kD ) = fDN (Sbatchn (θNmbne+kDF );θNmbne+kD )

16: S̃batchN = reshape(S̃batchN ) ∈ RNb×N×d

17: Accumulate loss (5.6) on (Mbatch,SbatchN ) and compute ∇̂θJ
18: θNmbne+k+1 = ADAM(η, ∇̂θJ ,θNmbne+k)
19: end for
20: Repeat instructions 12-16 on (Mval,SvalN ) with the updated weights θNmbne+k+1

21: Accumulate loss (5.6) on (Mval,SvalN ) to evaluate early-stopping criterion
22: ne = ne + 1
23: end while

Algorithm 4 POD DL-ROM testing algorithm

Input: Testing parameter matrix Mtest ∈ R(nµ+1)×(NtestNt), rPOD basis matrix V, optimal
model parameters (θ∗DF ,θ

∗
D).

Output: ROM approximation matrix S̃h ∈ R
∑
iN

i
h×(NtestNt).

1: Load θ∗DF and θ∗D
2: Sn(θ∗DF ) = φDFn (Mtest;θ∗DF )

3: S̃N (θ∗DF ,θ
∗
D) = fDN (Sn(θ∗DF );θ∗D)

4: S̃N = reshape(S̃N )

5: S̃h = VS̃N
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5.5 Numerical results

We assess the performance of the POD DL-ROM technique, by focusing on the training and
testing computational times needed to construct and deploy a POD DL-ROM, and the use of
pretraining, on three test cases: unsteady advection-diffusion-reaction, elastodynamics and
unsteady Navier-Stokes equations for incompressible flows.

To evaluate the performance of the POD DL-ROM we rely on the two error indicators
(3.13) and (3.14). The coefficient ωh in (5.6) is set equal to 0.5 by following the results
presented in Test 3 of Section 3.4. The rPOD dimension N is selected, in all test cases,
in such a way that εrel(uh,VVTuh) ≈ 10−4, whereas the dimension of the nonlinear trial
manifold n is set trying to match the dimension of the solution manifold nµ + 1.

The POD DL-ROM neural network is implemented by means of the Tensorflow DL
framework [Abadi et al., 2016].

5.5.1 Test 1: unsteady advection-diffusion-reaction equation

The first test case we consider deals with the solution of the following advection-diffusion-
reaction system





∂u

∂t
− div(µ1∇u) + b(µ2) · ∇u+ cu = f(µ3, µ4) (x, t) ∈ Ω× (0, T ),

µ1∇u · n = 0 (x, t) ∈ ∂Ω× (0, T ),

u(0) = 0 x ∈ Ω,

(5.8)

in a two-dimensional square domain Ω = (0, 1)2, where

f(x, t;µ3, µ4) = 10 exp(−((x− µ3)2 + (y − µ4)2)/0.072),

and
b(x, t;µ2) = [cos(π/µ2t), sin(π/µ2t)]

T .

Here, the nµ = 4 parameters belong to the parameter space P = [0.002, 0.005] × [30, 70] ×
[0.4, 0.6]2. The equations have been discretized in space through linear finite elements by
considering Nh = 10657 DOFs. For time integration, we use a BDF of order 2 by considering
a time-step ∆t = 2π/20 over (0, T ), with T = 10π. For different values of µ3 and µ4 the
solution of (5.8) exhibits different patterns, due to the location of the distributed source; the
dependence on µ1 and µ2 impact instead on the relative importance of diffusion and advection
terms, and on the direction of this latter. We expect that for the case at hand POD-Galerkin
ROMs might involve a large number of basis functions. Moreover, the dependence on µ3 and
µ4 makes the problem nonaffine in the parameters.

The number of time instances is set toNt = 100 and we considerNtrain = 5×5×5×4 = 500
training-parameter instances uniformly distributed in each parametric direction. For the
testing phase, Ntest = 4× 4× 4× 3 = 192 testing-parameter instances have been considered.
The maximum number of epochs is set equal to Nepochs = 10000, the batch size is Nb = 120
and, regarding the early-stopping criterion, we stop the training if the loss function does not
decrease within 500 epochs. We set N = 64 and the dimension of the reduced nonlinear trial
manifold to n = 5, i.e. equal to nµ+1. The training and testing phases of the POD DL-ROM
neural network are performed on a Tesla V100 32GB GPU.

In Figure 5.4 we show the FOM and the POD DL-ROM solutions, for the testing-
parameter instances µtest = (0.425, 0.425, 35, 0.0045) and µtest = (0.575, 0.475, 45, 0.0045)
at t = 29.53, respectively, together with the relative error (3.14).

The comparison between some components of the intrinsic coordinates vector VTuh and
their POD DL-ROM approximation, for the testing parameter instance µtest = (0.575, 0.475,
45, 0.0045), is shown is Figure 5.5. We remark that, as expected, the first components are the
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Figure 5.4: Test 1 : FOM (left), POD DL-ROM (center), with n = 5 and N =
64, solutions and relative error εk (right), for the testing-parameter instances µtest =
(0.425, 0.425, 35, 0.0045) (top) and µtest = (0.575, 0.475, 45, 0.0045) (bottom) at t = 29.53.

Figure 5.5: Test 1 : Comparison between the intrinsic coordinates VTuh components
and the POD DL-ROM approximation ũN for the testing-parameter instance µtest =
(0.575, 0.475, 45, 0.0045).

ones retaining most of the energy of the system; thus being the ones with higher magnitude
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[Quarteroni et al., 2016].

In Figure 5.6 (left) we show the CPU computational times required by the exact SVD and
the rSVD to compute the factorization and thus performing the first level of dimensionality
reduction required by the POD DL-ROM with respect to N . The CPU time of the exact
SVD does not change by varying the rPOD dimension, whereas the one of rSVD increases
with respect to N . We remark that the two times are almost the same for N = 4096, a
dimension for which constructing a ROM could in principle be avoided. We set N = 64 and,
for this value, the use of rSVD allows a speed-up equal to 32 with respect to the exact SVD.
The trend of the relative error (3.14) over time, for the selected testing-parameter instance
µtest = (0.575, 0.475, 45, 0.0045), is depicted in Figure 5.6 (right). In particular, in Figure 5.6
(right) we show the mean (over the domain), the median, and the first and third quartile
of the relative error, as well as its minimum. The interquartile range (IQR) shows that the
distribution of the error is almost uniform over time.

Figure 5.6: Test 1 : Left: SVD and rSVD CPU times vs. N . Right: Trend of the relative
error over time for µtest = (0.575, 0.475, 45, 0.0045).

In Figure 5.7 (left) we show the error indicator (3.13) computed on the FOM and POD
DL-ROM solutions, the FOM and optimal-POD ones, and the intrinsic coordinates VTuh
and the approximated ones ũN . The trend of εrel(uh, ũh), for N = 16, is dictated by
the projection error εrel(uh,VVTuh), meaning that, for N = 16, the rPOD dimension is
too small to accurately reconstruct the FOM solution. For N ≥ 64, the error indicator
εrel(uh, ũh) remains almost the same and this is related to the trend of εrel(V

Tuh, ũN ). As
observed for the DL-ROM in Chapters 3 and 4, this behavior is related to the fact that
an increase of N only entails the addition of few parameters to the POD DL-ROM neural
network, i.e. the approximation capability of the network remains almost the same while the
input increases, thus resulting in a more difficult task.

The GPU training and testing computational times versus N are pointed out in Figure 5.7
(right). The training time refers to the total time required for the training and validation
phases; for the sake of completeness we also show the number of epochs ne along with
N . The training time varies between 2 h 30 m and 4 h 40 m, we remark that we deal
with Ntrain = 500 training-parameter instances. The testing time consists instead in the
time required to compute Nt time instances for a testing-parameter instance. The trend is
proportional to N1/2 and, for example, for N = 64 the testing time is equal to 4.2 ×10−3 s.
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Figure 5.7: Test 1 : Left: Error indicator εrel vs. N . Right: GPU training and testing
computational times vs. N .

5.5.2 Test 2: elastodynamics equations

We now consider the solution of an elastodynamics problem, consisting of the following
initial/boundary-value problem [Gurtin, 1982] for nonlinear elasticity equations, in a three-
dimensional slab Ω = (0, 1) cm ×(0, 5) cm ×(0, 1) cm





ρ
∂2d

∂t2
− div (P(d)) = f (x, t) ∈ Ω× (0, T ),

d = 0 (x, t) ∈ ΓD × (0, T ),

P(d)n = 0 (x, t) ∈ ΓN × (0, T ),

d(0) = 0 x ∈ Ω,

∂d

∂t
(0) = 0 x ∈ Ω.

(5.9)

Here we consider ρ = 1 kg/cm3, f = (−0.01, 0,−0.02) kg/(cm s2), ΓD = {(x, z) ∈ (0, 1)2, y =
0} and ΓN = ∂Ω\ΓD. We consider a St. Venant-Kirchhoff constutive law involving a hy-
perelastic nonlinear model to describe the behavior of compressible materials [Ogden, 1997],
characterized by the following strain energy function

ψ(F) = νE : E +
λ

2
(tr(E))2.

Here E = 1
2 (FTF− I) = 1

2 (C− I) is the Green-Lagrange strain tensor, ν and λ are the Lamé
coefficients and its first Piola-Kirchhoff stress tensor is given by

P(F) = F (2νE + λtr(E)I) .

The nµ = 2 parameters coincides with the Young modulus and the Poisson ratio, belonging
to the parameter space P = [1, 3] Pa× [0.25, 0.42], and they appear in the expression of the
Lamé coefficients as follows

ν =
µ1

2(1 + µ1)
and λ =

µ1µ2

(1 + µ2)(1− 2µ2)
.

Equations (5.9) are discretized in space by means of P2 finite elements thus generating a
dynamical system of dimension Nh = 5674× 3 = 17022. For the time integration, we use the
generalized-α method [Chung and Hulbert, 1993] over the interval (0, T ), with T = 15 s and
a time-step ∆t = 0.2 s.
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We consider Nt = 75 time instances over (0, T ), Ntrain = 10× 5 = 50 training-parameter
instances µtrain = (1 + i2/9, 0.25 + j0.0425), for i = 0, . . . , 9 and j = 0, . . . , 4, and Ntest =
9×4 = 36 testing-parameter instances µtest = (1.111+i2/9, 0.2712+j0.0425), for i = 0, . . . , 9
and j = 0, . . . , 4. We set the rPOD dimension to N = 64× 3 = 192 and the dimension of the
nonlinear trial manifold S̃n to n = 3, that is we match the dimension nµ + 1 of the solution
manifold. The maximum number of epochs is Nepochs = 10000, the batch size is Nb = 20
and, regarding the early-stopping criterion, we stop the training if the loss function does not
decrease along 500 epochs. The training and testing phases are performed on a GTX 1070
8GB GPU.

In Figure 5.8 we show the FOM solution and the POD DL-ROM one, with n = 3, along
with the relative error (3.14), for the testing-parameter instance µtest = (2.88 Pa, 0.3987) at
T = 15 s. The maximum relative error, which is associated to the portion of the domain
undergoing the maximum displacement, is about 10−3.

Figure 5.8: Test 2 : FOM (left), POD DL-ROM (center) solutions and relative error εk (right),
for the testing-parameter instance µtest = (2.88 Pa, 0.3987) at T = 15 s, with n = 3.

In Figure 5.9 we report the FOM and POD DL-ROM, where n = 3, x, y and z components
of the vector displacement over the longitudinal axis, i.e. the line which connects the two
points P1 = (0.5, 0, 0.5) cm and P2 = (0.5, 5, 0.5) cm, for the testing-parameter instance
µtest = (2.88 Pa, 0.3987) at T = 15 s. All the three components are accurately captured by
the POD DL-ROM.

Figure 5.9: Test 2 : FOM and POD DL-ROM solutions components over the longitudinal
axis, for the testing-parameter instance µtest = (2.88 Pa, 0.3987) at T = 15 s, with n = 3.

Here we also want to investigate how the use of pretraining, involving different fidelity
models, impacts on the POD-DL-ROM technique, starting from the previous low-fidelity
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model. In particular, we consider the nearly-incompressible Neo-Hookean constitutive law
[Ogden, 1997], an hyperelastic nonlinear model whose strain energy function is specified in
terms of an isochoric-volumetric splitting

ψ(F) =
G

2

(
Ī1 − 3

)
︸ ︷︷ ︸

ψiso

+
K

4

(
(J − 1)2 + (ln J)2

)
︸ ︷︷ ︸

ψvol

,

where Ī1 = J−2/3I1 = J−2/3tr(C), J = det(F), G is the shear modulus and K the bulk
modulus. The coefficients G and K depend on the Young modulus and the Poisson coefficient
and are defined as follow

G =
µ1

2(1 + λ)
and K =

2

3
G+ λ.

The nµ = 2 parameters belong to the parameter space P = [0.1, 1] Pa× [0.3, 0.45]. This time,
the external stimulus takes the form f = (−0.001t, 0,−0.002t), the final time is T = 22.5 s,
that is we enlarge the time interval, and the time-step is set equal to 0.25 s. We consider
Nt = 90 time instances over (0, T ), Ntrain = 50 training-parameter instances and Ntest = 36
testing-parameter instances uniformly distributed over the parameter space. We use the
optimal weights ans biases found on the first low-fidelity model, as initial guess for the
parameters of the POD DL-ROM on this second configuration.

In Figure 5.10 we show the FOM and DL-ROM solutions, with n = 3, together with the
relative error (3.14), for the testing-parameter instances µtest = (0.25 Pa, 0.32) and µtest =
(0.95 Pa, 0.43) at T = 22.5 s.

In Figure 5.11 we compare the FOM and POD DL-ROM, with n = 3, components of
the vector displacement over the longitudinal axis for the testing-parameter instance µtest =
(0.25 Pa, 0.32) at T = 22.5 s.

In Table 5.1 we finally compare the GPU total and testing computational times of the
POD DL-ROM neural network with and without the use of pretraining. In particular, the use
of pretraining allows to strongly reduce the total training and validation time. The testing
computational time, which refers to the time needed by the POD DL-ROM to compute
Nt = 90 time instances for a testing-parameter instance, is equal to 0.006 s, and is remarkably
lower than the final time T = 22.5 s, that is our technique is able to return even faster than
real-time solutions.

#params #epochs total time test [s]
POD DL-ROM 270259 6490 63 m 0.006
POD DL-ROM PRETRAINED 270259 1519 15 m 0.006

Table 5.1: Test 2 : GPU computational times of pretrained and from scratch POD DL-ROM.

5.5.3 Test 3: Navier-Stokes equations

We finally focus on the unsteady Navier-Stokes equations for incompressible flows in primitive
variables (velocity and pressure) [Quarteroni and Valli, 1994]





ρ
∂u

∂t
+ ρu · ∇u−∇ · σ(u, p) = 0 (x, t) ∈ Ω× (0, T ),

∇ · u = 0 (x, t) ∈ Ω× (0, T ),

u = 0 (x, t) ∈ ΓD1 × (0, T ),

u = h (x, t) ∈ ΓD2 × (0, T ),

σ(u, p)n = 0 (x, t) ∈ ΓN × (0, T ),

u(0) = 0 x ∈ Ω,

(5.10)

115



Figure 5.10: Test 2 : FOM (left), POD DL-ROM (center) solutions and relative error
εk (right), for the testing-parameter instances µtest = (0.25 Pa, 0.32) (top) and µtest =
(0.95 Pa, 0.43) (bottom) at T = 22.5 s, with n = 3.

Figure 5.11: Test 2 : FOM and POD DL-ROM solutions components over the longitudinal
axis, for the testing-parameter instance µtest = (0.25 Pa, 0.32) at T = 22.5 s, with n = 3.

where u is the fluid velocity, p its pressure, n the (outward directed) normal unit vector to
∂Ω, ρ the fluid density and σ is the stress tensor defined as

σ(u, p) = −pI + 2νε(u).
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Here ν denotes the dynamic viscosity of the fluid, while the strain tensor is given by

ε(u) =
1

2

(
∇u +∇uT

)
.

We consider the flow around a cylinder test case, a well-known benchmark for the eval-
uation of numerical algorithms for incompressible Navier-Stokes equations in the laminar
case. The domain consists in a two-dimensional pipe with a circular obstacle, i.e. Ω =
(0, 2.2) × (0, 0.41)\B̄r(0.2, 0.2) with radius r = 0.05 (see Figure 5.12 for a sketch of the ge-
ometry). The density of the fluid is ρ = 1, on ΓD1

= {x ∈ [0, 2.2], y = 0} ∪ {x ∈ [0, 2.2], y =

Figure 5.12: Test 3 : Sketch of the geometry.

0.41} ∪ ∂Br(0.2, 0.2) no-slip boundary conditions are applied, while the outflow boundary is
ΓN = {x = 2.2, y ∈ [0, 0.41]}. On the boundary ΓD2

a parabolic inflow profile is prescribed

h(x, t;µ) =

(
4U(t, µ)y(0.41− y)

0.412
, 0

)
,

where U(t;µ) = µ sin(πt/8). We consider as parameter (nµ = 1) µ ∈ P = [1, 2] which
reflects on the Reynolds number varying in the range [66,133]. Equations (5.10) have been
discretized in space by means of P2-P1 finite elements and in time through a BDF of order
2 with semi-implicit treatment of the convective term [Forti and Dedè, 2015] over the time
interval T = 8 with a time-step ∆t = 2× 10−3.

We uniformly sample Nt = 400 time instances and consider Ntrain = 11 and Ntest = 10
training- and testing-parameter instances uniformly distributed over P. We are interested in
reconstructing the velocity field, then the FOM dimension is equal to Nh = 32446×2 = 64892,
the dimension of the rPOD basis is N = 256 × 2 = 512 and the one of the nonlinear trial
manifold is n = 2. We highlight the possibility, by using POD DL-ROM, to reconstruct the
field of interest, i.e the velocity u, without the need of taking into account the approximation
of the pressure p.

In Figure 5.13 we compare the FOM and POD DL-ROM solutions, the latter for n = 2,
for two testing-parameter instances µtest = 1.05 (Re = 70) and µtest = 1.75 (Re = 117)
at t = 5.64. We highlight the strong variability of the solution over the parameter space
P; indeed in Figure 5.13 (top) we do not assist to vortex shedding whereas in Figure 5.13
(bottom) it is present. Hence, the POD DL-ROM approximation is able to accurately capture
this remarkable variability.

The computational training and testing time of the POD DL-ROM neural network on a
Tesla V100 32 GB GPU are equal to 50 minutes and 0.1 seconds, respectively.

We remark that ensuring ROM stability in the classical POD-Galerkin framework usually
requires additional computational efforts, such as a suitable enrichment of the velocity reduced
basis, and a consequent increase of the size of the ROM; see, e.g., [Dal Santo et al., 2019,
Ballarin et al., 2015, Rozza and Veroy, 2007].
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Figure 5.13: Test 3 : FOM (left) and POD DL-ROM (right) solutions for the testing-
parameter instances µtest = 1.05 (top) and µtest = 1.75 (bottom) at t = 5.64, with n = 2.

5.6 Discussion

In this Chapter, we proposed a strategy to enhance DL-ROMs in order to make the offline
training stage dramatically faster. This strategy, which we refer to as POD DL-ROM, over-
comes the main computational bottleneck of the DL-ROM technique, namely the (strong)
limitation related to the FOM dimension Nh. In particular, it exploits dimensionality reduc-
tion of FOM snapshots by means of randomized POD (rSVD) and a suitable multi-fidelity
pretraining stage. Moreover, the POD DL-ROM approximations retain all the features of DL-
ROM solutions enabling extremely efficient testing computational times. Through the numer-
ical test cases assessed in this Chapter, POD DL-ROMs have shown to yield extremely effi-
cient numerical approximations to (scalar and vector) nonlinear time-dependent parametrized
PDEs, ultimately leading to the possibility to solve in more than real-time, during the online
testing stage, parametrized PDEs modeling physical phenomena whose time scale is seconds.
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Chapter 6
POD DL-ROMs for cardiac
electrophysiology (I): benchmark
problems

In this Chapter we assess the performance of the POD DL-ROM technique, proposed in
Chapter 5, on some relevant numerical benchmark test cases in cardiac electrophysiology
(EP), both in physiological and pathological conditions, similarly to what we did in Chapter
4 for the DL-ROM technique. We reconsider some numerical experiments already presented
in Section 4.3 to compare the increased efficiency entailed by the use of POD DL-ROM with
respect to the case of the DL-ROM and the POD-Galerkin ROM. Regarding the reduced
order model (ROM) construction, we investigate the use of pretraining in three scenarios:
(i) increasing the full order model (FOM) dimension, (ii) enlarging the dimension of the
parameter space P and (iii) varying the geometry of the problem. Moreover, we apply the
POD DL-ROM technique to problems where the FOM has been obtained through either the
finite element (FE) method or NURBS-based Isogeometric Analysis (IGA).

6.1 Moving from DL-ROM to POD DL-ROM

The numerical results presented in Section 4.3 show that the resulting DL-ROM technique,
formerly introduced in Chapter 3, allows one to accurately capture complex fronts propaga-
tion processes, both in physiological and pathological scenarios.

The proposed DL-ROM can efficiently provide solutions to parametrized cardiac EP prob-
lems, thus enabling multi-scenario analyses in pathological cases, especially if compared to
common linear (projection-based) ROMs, built for instance through a POD-Galerkin RB
method. In particular, the benefits introduced by the use of DL-ROM, in cardiac EP prob-
lems, can be summarized as follows:

• the dimension of the DL-ROM can be kept extremely small, very close (or even equal)
to the dimension of the solution manifold nµ + 1;

• the DL-ROM can be queried at any desired time instant, without requiring the solution
of a dynamical system until that time, differently from projection-based ROMs such as,
e.g, POD-Galerkin ROMs;

• the time resolution required by the DL-ROM can be chosen to be larger than the one
required by the numerical solution of dynamical systems in cardiac EP;
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• DL-ROMs avoid the use of (intrusive and very often extremely expensive) hyper-
reduction techniques, which are required by POD-Galerkin ROMs (i) to handle effi-
ciently those terms that depend nonlinearly on either the transmembrane potential or
the input parameters, and (ii) to account for the dynamics of the gating variables.
Indeed, DL-ROMs allow us to approximate the electric potential without the need of
computing the gating variables.

For all these reasons, DL-ROMs completely avoid both the assembly and the projection stages
typical of traditional projection-based ROMs, thus substantially improving computational
efficiency.

However, the DL-ROM depends on Nh, which ultimately might entail long training com-
putational times for large FOM dimension, as the ones entailed by cardiac EP problems. The
POD DL-ROM technique introduced in Chapter 5, thanks to a prior dimensionality reduction
relying on POD and a suitable multi-fidelity pretraining, greatly enhances the efficiency of
the DL-ROM during the training phase, thus dramatically decreasing training computational
times, as shown by the numerical results discussed in this Chapter.

6.2 Test 1: Two-dimensional slab

In this Section we are interested in the approximation of the solution of the problem presented
in Subsection 4.3.1 by means of POD DL-ROM. We recall that the parameters (nµ = 2)
consist of the longitudinal and transversal conductivities to the fibers direction f0 = (1, 0)T .

In Figure 6.1 we report the FOM and POD DL-ROM solutions, the latter obtained by
setting n = 3 and N = 64, along with the relative error (3.14), for the testing-parameter
instance µtest = 12.9 · (0.1825, 0.0912) cm2/ms at t = 47.7 ms (top) and t = 379.7 ms
(bottom).

Figure 6.1: Test 1 : FOM (left), POD DL-ROM (center) solutions and relative error εk (right)
for the testing-parameter instance µtest = 12.9 · (0.1825, 0.0912) cm2/ms at t = 47.7 ms and
t = 379.7 ms, with n = 3.

The comparison among the DL-ROM and POD DL-ROM neural networks number of
parameters, the GPU training and validation time for one epoch, the total number of epochs,
the total GPU training and validation (total time) and testing GPU computational times are
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reported in Table 6.1. We also report the total CPU offline and online computational times1

required by the POD-Galerkin ROM with Nc = 6 clusters, which corresponds to the choice
providing the most efficient results (see Subection 4.3.1), by keeping for all the models the
same degree of accuracy εrel = 4.03×10−3 and by following the approach running the code on
the hardware it is optimized for. The use of POD DL-ROM not only leads us to even faster
testing computational times with respect to DL-ROM, due to the remarkable reduction of
the number of parameters of the neural network, but also reduces both the DL-ROM and the
POD-Galerkin ROM total times of a factor 37.5 and 5, respectively. Then, POD DL-ROM
etablishes to be the most efficient ROM both at training and testing stages.

#params
train - val
[s/epoch]

#epochs total time test [s]

DL-ROM (GPU) 2342595 7.5 - 0.8 6981 15 h 0.08
POD DL-ROM (GPU) 269057 1.5 - 0.15 866 24 m 0.015
POD-Galerkin ROM (Nc = 6) - - - 115 m 8

Table 6.1: Test 1 : DL-ROM, POD DL-ROM and POD-Galerkin ROM computational times.

We now investigate the use of pretraining, multi-fidelity approach aimed at further de-
creasing training times, in two different scenarios:

• increasing the FOM dimension Nh;

• increasing the dimension of the parameter space P.

First, we use the optimal parameters, weights and biases, of the POD DL-ROM neural net-
work found in the case Nh = 4096, to initialize the POD DL-ROM neural network parameters
associated to Nh = 128 × 128 = 16384 and Nh = 256 × 256 = 65536, by fixing N = 64 for
a prescribed degree of accuracy εrel = 4.03× 10−3. The use of pretraining is possible in this
framework because the POD DL-ROM neural network does not depend on Nh, but only on
N . Pretraining then allows to drastically reduce the GPU training computational times as
shown in Table 6.2, where we compare the training times, in presence of pretraining, with
the ones of the network trained from scratch. The testing computational times increase with
respect to the case Nh = 4096 due to the matrix multiplication VuN , since V has a higher
number of rows.

#params #epochs total time test [s]
POD DL-ROM (Nh = 16384) 269057 1378 38 m 0.06
POD DL-ROM PRETRAINED
(Nh = 16384)

269057 165 5 m 0.06

POD DL-ROM (Nh = 65536) 269057 1540 42 m 3
POD DL-ROM PRETRAINED
(Nh = 65536)

269057 461 12 m 3

Table 6.2: Test 1 : GPU computational times of pretrained and from scratch POD DL-ROM
for Nh = 16384 and 65536.

Then, we report the results referring to a larger parameter space by setting Nh = 4096 and
N = 64. In particular, we use the optimal parameters associated to P = 12.9 · [0.06, 0.2] ×
12.9 · [0.03, 0.1] cm2/ms as initial guess of the POD DL-ROM neural network parameters
in the case P = 12.9 · [0.02, 0.2] × 12.9 · [0.01, 0.1] cm2/ms. We show the GPU training
computational times in Table 6.3 for a prescribed level of accuracy, i.e. εrel = 4.03 × 10−3,

1Here we employ a full 64 GB node (20 Intel R© Xeon R© E5-2640 v4 2.4GHz cores) of the HPC cluster
available at MOX, Politecnico di Milano.
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and a fixed number of training-parameter instances Ntrain = 25, using pretraining and not,
respectively. By means of pretraining, the total time is remarkably decreased also in this
case.

#params #epochs total time test [s]
POD DL-ROM 269057 1486 41 m 0.015
POD DL-ROM PRETRAINED 269057 588 16 m 0.015

Table 6.3: Test 1 : GPU computational times of pretrained and from scratch POD DL-ROM
for P = 12.9 · [0.02, 0.2]× 12.9 · [0.01, 0.1] cm2/ms.

6.3 Test 2: Two-dimensional slab with ischemic region

In this Section we focus on the application of the POD DL-ROM technique on a two-
dimensional slab including an ischemic region depending on a set of input parameters, namely
the coordinates of the center of the scar belonging to the parameter space P = [3.5, 6.5 cm]

2
.

The set-up of the FOM (apart from the FOM dimension equal to Nh = 128 × 128 = 16384
in this case), the parameter space, the number of training- and testing-parameter instances,
the number of time instances and the hyperparameters of the neural network, are the same
as the ones provided in Test 3 of section 4.3.

In Figure 6.2 we show the FOM and the POD DL-ROM solutions, obtained by setting the
dimension of the reduced trial manifolds equal to n = 3 and N = 256, along with the relative
error εk, defined in (3.14), for the testing-parameter instance µtest = (6.25, 6.25) cm at t̃ = 94
ms, and for the same level of accuracy εrel achieved by DL-ROM on this test case. Even if
the high gradients of the solution around the ischemic region are not sharply reproduced, the
POD DL-ROM approximation is able to capture the location and the diseased nature of this
portion of tissue.

Figure 6.2: Test 2 : FOM (left) and POD DL-ROM (center) solutions, with n = 3 and
N = 256, and relative error εk (right), for the testing-parameter instance µtest = (6.25, 6.25)
cm at t̃ = 94 ms.

In Table 6.4 we compare the performance of the DL-ROM, the POD DL-ROM and the
POD-Galerkin ROM with Nc = 6 clusters2, reporting the total and testing computational
times for a prescribed level of accuracy. The DL-based ROM techniques provide more efficient
ROMs, if compared to the POD-Galerkin ROM, at testing time. Moreover, the use of POD
DL-ROM, relying on a first data dimensionality reduction of a factor Nh/N = 64, drastically

2The simulation is performed on 10 cores of 1.7 TB node (192 Intel R© Xeon Platinum R© 8160 2.1GHz cores)
of the HPC cluster available at MOX, Politecnico di Milano.
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reduces the total training and validation time. Once again, POD DL-ROM provides the most
efficient ROM both at training and testing time.

#params #epochs total time test [s]
DL-ROM (GPU) 8645765 7949 90 h 0.35
POD DL-ROM (GPU) 293595 560 35 m 0.01
POD-Galerkin ROM (Nc = 6) - - 68 h 27

Table 6.4: Test 2 : DL-ROM, POD DL-ROM and POD-Galerkin ROM computational times.

6.4 Test 3: Two-dimensional slab with figure of eight
re-entry

In this Section we apply the POD DL-ROM technique to Test 4 of Section 4.3, namely the
figure of eight re-entry test case where the parameter is the y-coordinate of the center of
the second applied stimulus. The set-up of the FOM, the number of training- and testing-
parameter instances, the number of time instances and the hyperparameters of the neural
network are the same provided in Test 4 of Section 4.3. The parameter space is given by
P = [0.8, 1.1] cm.

In Figure 6.3 we report the FOM and the POD DL-ROM solutions, the latter with
n = 5 and N = 1024, along with the relative error εk, for the testing-parameter instance
µtest = 0.9125 cm at t̃ = 147 ms, corresponding to almost the same level of accuracy εrel
achieved by a DL-ROM on this problem.

Figure 6.3: Test 3 : FOM (left) and POD DL-ROM (center) solutions, with n = 5 and
N = 1024, and relative error εk (right), for the testing-parameter instance µtest = 0.9125 cm
at t̃ = 147 ms.

The comparison among the DL-ROM, the POD DL-ROM and the POD-Galerkin ROM
with Nc = 4 clusters3 training and testing computational times obtained by keeping the
same degree of accuracy for the three models, is provided in Table 6.5. The use of POD
DL-ROM introduces a first level of dimensionality reduction, by means of the rSVD, equal to
Nh/N = 64, which reflects in the striking reduction of the total training and validation time
with respect to the ones of the DL-ROM and the POD-Galerkin ROM. Finally, we remark
that the POD DL-ROM technique results to be the most efficient both at training and testing
time.

3Tests are performed on a full 64 GB node (20 Intel R© Xeon R© E5-2640 v4 2.4GHz cores) of our in-house
HPC cluster.
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#params #epochs total time test [s]
DL-ROM (GPU) 33891843 5633 64 h 0.6
POD DL-ROM (GPU) 395907 12738 138 m 0.4
POD-Galerkin ROM (Nc = 4) - - 238 m 33

Table 6.5: Test 3 : DL-ROM, POD DL-ROM and POD-Galerkin ROM computational times.

6.5 Test 4: Two-dimensional rectangular slab

We now focus on the analysis of the POD DL-ROM performance on a rectangular slab,
by varying the longitudinal conductivity to the fibers direction, when applied to a problem
involving a FOM obtained by means of NURBS-based IGA. Indeed, as pointed out in Chapter
1, smooth NURBS basis functions control and limit numerical dispersion thus accurately
capturing steep fronts. Few attempts have been made in order to build ROMs starting
from IGA snapshots, see, e.g., [Salmoiraghi et al., 2016, Garotta et al., 2020, Rinaldi et al.,
2015, Haghighat et al., 2020]. As outlined in Subsections 1.3.2 and 1.4.1, regular NURBS
basis functions allow a smooth representation of the computational domain. An attempt in
this direction is provided by [Tencer and Potter, 2020] where the authors propose a nonlinear
manifold learning technique based on deep AEs for reduced order modeling of physical systems
on unstructured meshes. Even if still introducing a level of approximation in the construction
of the computational domain, unstructured meshes are characterized by a lower error of
approximation with respect to the structured ones on complex geometries. The smoothness
of the geometry is instead completely maintained by the use of NURBS basis functions.

In the following we will denote by Nh the dimension of the finite-dimensional space Xh

spanned by NURBS basis functions, previously indicated with n in Chapter 1, in order to
standardize the discussion.

We consider the two-dimensional coupled PDE-ODE nonlinear system consisting in the
Bidomain equation (1.1) coupled with the R-M ionic model (1.6) in a rectangular slab of
cardiac tissue Ω = (0, 10) cm × (0, 2) cm. The parameter (nµ = 1) consists in the electric
intracellular conductivity in the longitudinal direction to the fibers, i.e., the conductivity
tensor Di(x;µ) takes the form

Di(x;µ) = σitI + (µ− σit)f0 ⊗ f0,

where f0 = (1, 0)T and the parameter space is P = 2.3 · [10−4, 10−3] Ω−1cm−1. The re-
maining intra- and extracellular conductivities are set equal to σit = 2.4 × 10−4 Ω−1cm−1,
σel = 1.5× 10−3 Ω−1cm−1 and σet = 1× 10−3 Ω−1cm−1, respectively. The parameters of the
R-M ionic model are given by uth = 13 mV, vp = 100 mV, G = 1.5 ms−1, η1 = 4.4 ms−1,
η2 = 1.2 × 10−2 and η3 = 1, see, e.g., [Gerardo-Giorda, 2007]. Aiming at investigating the
effect of different spatial discretizations on the performance of POD DL-ROM, we provide
snapshots approximated by means of different polynomials orders and global order continu-
ities. In particular, we consider two discretization settings: P1/C0 NURBS basis functions,
by considering a FOM dimension Nh = 161 × 33 = 5313, and P2/C1 NURBS basis functions,
where Nh = 165 × 35 = 5705, with the same number of mesh elements nel = 5120. Time
integration is performed over the interval (0, T ), with T = 150 ms and a time-step ∆t = 0.05
ms, through the BDF of order 2. The intracellular applied current takes the form

Iiapp(x, t) = C1Ωapp(x)1[ti,tf ](t), (6.1)

where C = 100 mA, Ωapp = {x ∈ Ω : x ≤ 0.2}, ti = 0 ms and tf = 1 ms.
For the training phase, we uniformly sample Nt = 1500 time instances in the interval

(0, T ) and consider Ntrain = 11 training-parameter instances uniformly distributed in the
parameter space. For the testing phase, Ntest = 10 testing-parameter instances have been
considered, each of them corresponding to the midpoint of two consecutive training-parameter
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instances. The maximum number of epochs is Nepochs = 30000, the batch size is Nb = 40
and, regarding the early-stopping criterion, we stop the training if the loss function does not
decrease along 1000 epochs.

In Figure 6.4 we report the FOM and POD DL-ROM solutions, the latter with n = 2 and
N = 256, together with the relative error (3.14), arising from P1/C0 and P3/C2 NURBS-
based IGA for the testing-parameter instance µtest = 0.0199 Ω−1cm−1 at t = 109 ms.

Figure 6.4: Test 4 : FOM solution (top), POD DL-ROM one (center), with n = 2 and
N = 256, and εk (bottom), obtained by means of P1/C0 (left) and P3/C2 (right) NURBS
basis functions, for the testing-parameter instance µtest = 0.0199 Ω−1cm−1 at t = 109 ms.

In Tables 6.6 and 6.7 we compare the reconstruction error εrel(uh, ũh), the error between
the intrinsic coordinates and the approximated ones εrel(V

Tuh, ũN ), the projection error
εrel(uh,VVTuh) and the number of epochs ne, by varying N , both for P1/C0 and P3/C2
basis functions. We use a k-fold cross-validation strategy [Goodfellow et al., 2016], with k = 5,
in order to decrease the variance of the generalization error, i.e. how much an estimator varies
as function of data sampling, and mitigate the effect of randomization intrinsic to the neural
network.

By comparing the P1/C0 and the P2/C3 errors between the FOM solution and the
optimal-POD one, that is the projection of the FOM solution onto the linear subspace gen-
erated through rPOD, and by varying N , it seems that the use of P1/C0 leads to a slightly
better accuracy. In other words, in the case of P3/C2 NURBS a higher number of modes is
required. A similar analysis can be found in [Zhu et al., 2017a, Zhu et al., 2017b] where the
decay of POD eigenvalues of the snapshot matrices obtained by means of P2/C1 NURBS-
based IGA, P2/C0 NURBS-based IGA and P2 FE method, are compared, however, on much
simpler problems with respect to the one treated here. We highlight that the projection
error limits the recostruction error for N = 16, 64 both for P1/C0 and P3/C2 basis functions
whereas the error εrel(V

Tuh, ũN ) increases with N due to the fact that the dimension of
the input, and of the output, is higher and the reconstruction task is more complex. The
latter determines the reconstruction error for N = 256. In particular, P3/C2 basis functions
achieve a smaller reconstruction error, determined by εrel(V

Tuh, ũN ). The slightly higher ac-
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curacy on the error between the intrinsic coordinates and the approximated ones is achieved
through a higher number of epochs, meaning that P3/C2 NURBS basis functions are less
subject to overfitting than P1/C0; indeed all the results shown here are obtained by fulfilling
the early-stopping criterion during the training.

εrel(V
Tuh, ũN ) εrel(uh, ũh) εrel(uh,VVTuh) ne

N = 16 3.3× 10−3 1.2× 10−1 1.2× 10−1 6328
N = 64 4.3× 10−3 4.3× 10−2 4.3× 10−2 9003
N = 256 7.9× 10−3 7.9× 10−3 2.7× 10−14 11616

Table 6.6: Test 4 : P1/C0 error indicators εrel(V
Tuh, ũN ), εrel(uh, ũh), εrel(uh,VVTuh)

and number of epochs vs. N .

εrel(V
Tuh, ũN ) εrel(uh, ũh) εrel(uh,VVTuh) ne

N = 16 2× 10−3 1.3× 10−1 1.3× 10−1 8334
N = 64 2.7× 10−3 6.5× 10−2 6.5× 10−2 10241
N = 256 7.3× 10−3 7.3× 10−3 1.1× 10−13 13170

Table 6.7: Test 4 : P3/C2 error indicators εrel(V
Tuh, ũN ), εrel(uh, ũh), εrel(uh,VVTuh)

and number of epochs vs. N .

In Tables 6.8 and 6.9 we show the training and validation time for one epoch, the total time
and the testing time for P1/C0 and P3/C2 NURBS basis functions, respectively, obtained
by running the code on a Tesla V100 32GB GPU. Both for P1/C0 and P3/C2 the testing
computational time increases with N . The P1/C0 testing times are slightly smaller than the
P3/C2 ones due to the fact that the matrix V has a lower number of rows, because of the
FOM dimension Nh. The training and validation times per epoch are exactly the same in
the two cases, depending the POD DL-ROM neural network only on N . The P3/C2 total
times are slightly higher than the ones associated to P1/C0 NURBS basis functions due to
the higher number of epochs. At testing time, it is possible to achieve very efficient results
both for P1/C0 and P3/C2 basis functions.

train - val [s/epoch] total time test [s]
N = 16 1.15 105 m 0.021
N = 64 1.25 163 m 0.029
N = 256 1.4 271 m 0.053

Table 6.8: Test 4 : Computational times for P1/C0 NURBS basis functions vs. N .

train - val [s/epoch] total time test [s]
N = 16 1.15 138 m 0.022
N = 64 1.25 186 m 0.032
N = 256 1.4 307 m 0.053

Table 6.9: Test 4 : Computational times for P3/C2 NURBS basis functions vs. N .

In conclusion, no strong evidence of a better performance of the POD DL-ROM technique
on P1/C0 or P3/C2 basis functions is obtained. The errors obtained in the two cases are
indeed very close, as well as the total and testing times; indeed POD DL-ROM provides
accurately results and efficient computational times either with P1/C0 or smoother P3/C2
NURBS basis functions.

126



6.6 Test 5: Two-dimensional curved rectangular surface

In this Section we focus again on the solution of the Bidomain equations (1.1) coupled with
the R-M ionic model (1.6), by varying the longitudinal conductivity to the fibers direction
as in the previous example, in a rectangular surface geometry curved along the y-direction
(see Figure 6.5). We aim at investigating the effect of the curved geometry, in a benchmark
test case, on the performance of the POD DL-ROM technique and the use of pretraining in
a geometrical setting. The equations have been discretized in space through P3/C2 NURBS-
based IGA and the FOM dimension is equal to Nh = 325 × 35 = 11305. The final time is
T = 150 ms. The configurations of both the FOM and the POD DL-ROM are equal to the
ones provided in the previous example, as well as the parameter under investigation. We set
the dimension of the linear trial manifold S̃h to N = 256, which results in a projection error
εrel(uh,VVTuh) = 6× 10−3.

Figure 6.5: Test 5 : Curved rectangle surface geometry constructed by means of P3/C2
NURBS basis functions.

In Figure 6.6 we report the FOM and the POD DL-ROM solutions, the latter obtained
with n = 2, together with the relative error (3.14), for the testing-parameter instance µtest =
0.199 Ω−1cm−1 at t = 62 ms. The error indicator εrel is equal to 1.8× 10−2.

Here we investigate the use of pretraining when considering a two-stage procedure relying
on different computational geometries. More precisely, we use the optimal weights and biases
found in Test 4, that is the rectangle slab test case, where the snapshots are obtained by
means of P3/C2 NURBS basis functions over Nh = 5705 control points, to initialize the
parameters of the POD DL-ROM neural network over the problem detailed in this Section.
We highlight that the POD DL-ROM does not depend explicitly on the FOM dimension Nh,
thus allowing the use of pretraining, but only on the rPOD dimension N .

In Table 6.10 we compare the number of parameters, the number of epochs, the total
training and validation time and the testing time of the POD DL-ROM neural network
trained with and without pretraining, for a prescribed level of accuracy, on a Tesla V100
32GB GPU. The number of parameters and the GPU testing computational times, i.e. the
time employed by the POD DL-ROM neural network to compute Nt = 1500 time instances
for a testing-parameter instance, are the same in the two cases. There we increased the
output dimension of the first and second dense layers in the encoder and decoder functions,
respectively, with respect to other tests involving similar dimensions N and n, in order to
achieve a better accuracy. The use of pretraining drastically reduces the number of epochs
and, consequently the total time. In particular, relying on pretraining allows a speed-up
almost equal to 5 with respect to the time needed to train the neural network from scratch.

The numerical results reported in this Section have shown that employing POD DL-
ROM on a more complex geometry, that is the curved rectangle, and using pretraining in a
geometrical setting, by providing accurate and efficient solutions, are indeed feasible.
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Figure 6.6: Test 5 : FOM solution (left), POD DL-ROM one (right), with n = 2 and N = 256,
and relative error εk (center), for the testing-parameter instance µtest = 0.199 Ω−1cm−1 at
t = 62 ms.

#params #epochs total time test [s]
POD DL-ROM 2382171 21159 8.2 h 0.09
POD DL-ROM PRETRAINED 2382171 4419 1.7 h 0.09

Table 6.10: Test 5 : GPU computational times of pretrained and from scratch POD DL-ROM.

6.7 Discussion

In this Chapter we assessed the numerical accuracy and efficiency of the POD DL-ROM tech-
nique, previously introduced in Chapter 5, on benchmark problems of interest in cardiac EP.
The POD DL-ROM enhancements, introduced in order to decrease the training complexity
of DL-ROMs, consisting in a first dimensionality reduction, operated by means of rSVD,
and the use of a multi-fidelity pretraining, lead, both on FE-method and NURBS-based IGA
spatially discretized snapshots, analyzing in the latter case the effects of the basis functions
regularity on the performance of the POD DL-ROM, to very efficient training and testing
times, thus achieving real-time solutions during the testing phase. In the next Chapter we
aim at assessing the performance of the POD DL-ROM on relevant test cases in cardiac
EP on realistic geometries, both in physiological and pathological scenarios. These example
demonstrate the ability of the POD DL-ROM technique in accurately and efficiently solving
remarkably challenging tasks for reduced order modeling due to the steep wavefronts, the
complex activation patterns associated to pathological scenarios, the high FOM dimension
and the complexity of the geometries.
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Chapter 7
POD DL-ROMs for cardiac
electrophysiology (II): realistic
geometries and pathological scenarios

In this Chapter, we apply the POD DL-ROM technique, presented in Chapter 5, to relevant
problems in cardiac electrophysiology (EP), both in physiological and pathological scenarios,
solved on realistic geometries. In particular, we deal with the three-dimensional Zygote
template left ventricle (LV) [zyg, 2014] and the idealized surface left atrium (LA) geometries,
and high full order model (FOM) dimensions Nh, in order to study real scenarios. We remark
the great flexibility of POD DL-ROMs in dealing with different spatial discretization, such as
the finite element (FE) method [Quarteroni and Valli, 1994] and Isogeometric Analysis (IGA)
[Cottrell et al., 2009], as shown in Chapter 6. Moreover, we investigate the construction of
a DL-based ROM on the very challenging re-entry break-up problem. Dealing with realistic
geometries, large-scale problems, i.e. high FOM dimensions Nh, and pathological scenarios,
such as re-entries, shows the feasibility of POD DL-ROM to be integrated in the clinical
practice in order to compute outputs of interest, e.g. activation maps (ACs), action potential
durations (APDs), electrograms (EGMs) and location of rotors’ cores.

7.1 Test 1: Three-dimensional left ventricle geometry

In this Section, we focus on the application of the POD DL-ROM technique on the three-
dimensional Zygote LV geometry test case. We recall that we are interested in the solution
of the Monodomain equation (1.3) coupled with the A-P ionic model (1.5) and we consider
a single (nµ = 1) parameter, given by the longitudinal conductivity in the fibers direction,
belonging to the parameter space P = 12.9 · [0.04, 0.4] mm2/ms. The set-up of the FOM
(except for the FOM dimension, equal to Nh = 65503 in this case), the parameter space, the
number of training and testing-parameter instances, the number of time instances and the
hyperparameters of the neural network are the same as the ones provided in Test 5 of Section
4.3.

In Figure 7.1 we report the FOM and POD DL-ROM solutions, the latter with n = 2
and N = 256, and the relative error εk, at t̃ = 297.1 ms, for the testing-parameter instance
µtest = 12.9·0.3243 mm2/ms. The POD DL-ROM approximation accurately reconstructs the
FOM solution, the maximum values of the error εk being associated to a very small region
in the spatial domain.
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Figure 7.1: Test 1 : FOM (top), POD DL-ROM (center), with n = 3 and N = 256, solu-
tions and relative error εk (bottom), for the testing-parameter instance µtest = 12.9 · 0.3243
mm2/ms at t̃ = 297.1 ms.
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In Table 7.1 we report the CPU FOM computational time together with the training
(offline), and testing (online) times required by the POD-Galerkin ROM1 with Nc = 4 local
bases, and the POD DL-ROM training (total training and validation time) and testing times
obtained on a GTX 1070 8GB GPU. The POD DL-ROM allows to achieve a training speed-up
equal to 34 and a testing one of 4.8×105, if compared to the POD-Galerkin ROM training and
testing times, respectively. In particular, a POD DL-ROM approximation enables extremely
efficient testing computational times, even faster than real-time solutions (here T = 0.3 ms).

FOM
POD-Galerkin

ROM: train
POD-Galerkin

ROM: test
POD DL-ROM:

train
POD DL-ROM:

test
3.5 h 28 h 120 s 49 m 0.25 ms

Table 7.1: Test 1 :FOM, POD-Galerkin ROM and POD DL-ROM computational times.

Regarding the FOM dimension, we point out that it was not possible to handle the FOM
dimension Nh = 65503, by maintaining the batch size Nb = 40 and performing the DL-ROM
training on the GTX 1070 8GB GPU, due to the high memory consumption necessary to
store the model and the data mini-batch on the GPU. By applying instead the POD DL-
ROM technique this issue is fixed thanks to the fact that, in this latter case, the neural
network only depends on the rPOD dimension of the linear trial manifold, i.e. N .

7.2 Test 2: Left atrium surface geometry

In this Section, we consider the solution of the Bidomain equations (1.1) coupled with the A-P
ionic model (1.5) on an idealized LA surface geometry. The direction of the cardiac fibers is
determined by following the same strategy adopted in [Patelli et al., 2017, Rossi et al., 2014],
where a vector field directed as the gradient of the solution of a Laplace problem defined on
the atrial surface is assigned to the LA. The equations have been discretized in space by means
of P2 NURBS basis functions, the majority with a global C1 continuity, with Nh = 61732.
Time integration is performed over the interval (0, T ) with T = 200 and a time-step ∆t = 0.2.
Provided the position of the Bachmann bundle x̄ = (x̄, ȳ, z̄)T = (−1.51, 0.1,−1.71)T cm, one
of the four points at which the interatrial conduction shall occur, the intracellular applied
stimulus is given by

Iiapp(x, t) = C1Ωapp(x)1[ti,tf ](t),

with C = 1 mA, Ωapp = {x ∈ Ω : (x− x̄)2 + (y − ȳ)2 + (z − z̄)2 ≤ (0.5)2}, ti = 0 and tf = 5.
The parameter (nµ = 1) consists in the electric intracellular conductivity in the longitu-

dinal direction to the fibers, i.e., the conductivity tensor Di(x;µ) takes the form

Di(x;µ) = σitI + (µ− σit)f0 ⊗ f0,

where the parameter space is P = 3.1 · [10−4, 10−2] Ω−1cm−1. The remaining intra- and
extracellular conductivities are set equal to σit = 2×10−2 Ω−1cm−1, σel = 1.3×10−4 Ω−1cm−1

and σet = 2×10−3 Ω−1cm−1. The parameters of the A-P ionic model (1.5) are given by K = 8,
a = 0.1, ε0 = 0.01, b = 0.1, c2 = 0.3 and c1 = 0.05 [ten Tusscher, 2004].

For the training phase, we uniformly sample Nt = 500 time instances in the interval
(0, T ) and consider Ntrain = 21 training-parameter instances uniformly distributed over P.
For the testing phase, Ntest = 20 testing-parameter instances have been considered, each of
them corresponding to the midpoint of two consecutive training-parameter instances. The
maximum number of epochs is set toNepochs = 20000, the batch size isNb = 40 and, regarding

1The FOM and the POD-Galerkin ROM simulations are carried out on a full 64 GB node (20 Intel R©

Xeon R© E5-2640 v4 2.4GHz cores) of a HPC cluster.
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the early-stopping criterion, we stop the training if the loss function does not decrease along
1000 epochs.

In Figure 7.2 we show the FOM solution and the POD DL-ROM approximation, with
n = 2 and N = 256, for the testing-parameter instance µtest = 0.001055 Ω−1cm−1 at t = 67.4
and t = 116.6. In Figure 7.3 we report instead the error εk associated to the time instances
considered. The error indicator εrel is equal to 2.1× 10−2.

Figure 7.2: Test 2 : FOM solution (left) and POD DL-ROM one (right), with n = 2 and
N = 256, for the testing-parameter instance µtest = 0.001055 Ω−1cm−1 at t = 67.4 (top) and
t = 116.6 (bottom).

In Table 7.2 we show the CPU computational time needed to solve the FOM by means
of NURBS-based IGA on a 6-core platform2 and the GPU POD DL-ROM total training and
validation time, together with the testing time. The time needed to train the POD DL-ROM
in this case is higher than the one of the previous example, even if the two problems share
the same dimension N and almost the same dimensions Nh and Ntrain. This difference is
then related to the complexity of the LA geometry; indeed we recall that the input of the
POD DL-ROM, i.e. the FOM solution, is reshaped into a 2D matrix before entering the first
layer of the neural network. In the case of LA, being the geometry highly complex, when the
FOM solution is reshaped, the spatial correlation is completely lost; on the other hand, being
the geometry of the LV, introduced in Section 7.1, more regular, the spatial distribution is
partially preserved. However, we are able to achieve again the chance of solving the problem
in several different scenarios, during the testing stage, in real-time. Indeed, here T = 0.2,
which coincides with the computational time entailed by the POD DL-ROM.

2Numerical tests have been performed on a MacBook Pro Intel Core i7 6-core with 16 GB RAM.
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Figure 7.3: Test 2 : Relative error εk for the testing-parameter instance µtest =
0.001055 Ω−1cm−1 at t = 67.4 (left) and t = 116.6 (right).

FOM POD DL-ROM: train POD DL-ROM: test
2 h 3.5 h 0.2 s

Table 7.2: Test 2 : FOM and POD DL-ROM computational times.

7.3 Test 3: Left atrium surface geometry varying stim-
ulation site

Here we focus on the computation of the solution of the Bidomain equations (1.1) coupled with
the R-M model (1.6), thus considering a different ionic model with respect to the one taken
into account in the previous Section, on an idealized LA surface geometry. The direction
of the cardiac fibers is determined as in the previous example. The equations have been
discretized in space by means of P2 NURBS basis functions, the majority with a global C1
continuity, with Nh = 154036. Time integration is performed over the interval (0, T ), with
T = 200 ms and a time-step ∆t = 0.1 ms.

The parameters (nµ = 3) consist in the coordinates of the center of the intracellular
applied current, and belong to the two-dimensional subdomain, the fuchsia region shown in
Figure 7.4, together with the portion of the domain affected by the stimulus, the pink region.
The intracellular applied current is defined as

Iiapp(x, t) = C1Ωapp(µ)(x)1[ti,tf ](t),

with C = 100 mA, Ωapp(µ) = {x ∈ Ω : (x− µ1)2 + (y− µ2)2 + (z− µ3)2 ≤ (0.5)2}, ti = 0 ms
and tf = 5 ms.

For the training phase, we uniformly sample Nt = 200 time instances in the interval (0, T )
and consider Ntrain = 18 training-parameter instances randomly sampled from the parameter
space. For the testing phase, Ntest = 14 randomly sampled testing-parameter instances have
been considered. The maximum number of epochs is Nepochs = 40000, the batch size is
Nb = 40, the starting learning rate is η = 2 ·10−4 and, regarding the early-stopping criterion,
we stop the training if the loss function does not decrease along 2000 epochs.

In order to point out the ability of the POD DL-ROM approximation to approach the FOM
solution when computing outputs of interest we show, in Figure 7.5, the FOM and POD DL-
ROM activation maps (ACs), together with the associated εk, for the testing-parameter in-
stances µtest = (1.7168,−0.353198,−1.70097) cm and µtest = (1.43862,−0.803806,−1.43678)
cm. We highlight the strong variability of the solution over the parameter space, shown by
the different shape of the contour lines in Figure 7.5 (top) and (bottom), meaning that the
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Figure 7.4: Test 3 : Parameter space (fuchsia region) and portion of domain affected by the
stimulus (pink region).

propagation direction of the front remarkably varies over P, and the ability of the POD
DL-ROM solution to capture it accurately.

Figure 7.5: Test 3 : FOM (left) and POD DL-ROM (center), with n = 4 and N =
256, ACs and relative error εk (right), for the testing-parameter instances µtest =
(1.7168,−0.353198,−1.70097) cm (top) and µtest = (1.43862,−0.803806,−1.43678) cm (bot-
tom).

Finally, in Table 7.3 we show the FOM CPU computational time3 and the POD DL-
ROM GPU training and testing times. We highlight that solving the FOM, for a single
testing-parameter instance, requires 10 h, with respect to the POD DL-ROM total training
and validation time which is equal to 5 h. Moreover, POD DL-ROM shows to be extremely
efficient at testing time, by being able to provide results, once again, in real-time.

3Numerical tests have been carried out on a MacBook Pro Intel Core i7 6-core with 16 GB RAM.
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FOM POD DL-ROM: train POD DL-ROM: test
10 h 5 h 0.2 s

Table 7.3: Test 3 : FOM and POD DL-ROM computational times.

7.4 Test 4: Figure of eight re-entry on left atrium surface

We now investigate the computation of the figure of eight re-entry on the idealized LA
surface geometry in order to highlight the ability of the POD DL-ROM technique in tackling
pathological cardiac EP problems. The set-up of the FOM is the one provided in Subsection
1.4.4, except for the final time equal to T = 500 ms.

The parameters (nµ = 3) consist in the coordinates of the center of the S2 intracellular
applied currents and belong to the two-dimensional parameter space P highlighted in Fig-
ure 7.6. The choice of the parameter space is motivated by the fact that ectopic complexes
usually arise in correspondence of pulmonary veins (PVs). We first apply a physiological
stimulus in correspondence of the posterior septum and then the S2 stimulus, which takes
the form

Ii,2app(x, t) = C1Ω2(µ)(x)1[ti2,t
f
2 ](t),

with C = 100 mA, Ω2(µ) = {x ∈ Ω : (x − µ1)2 + (y − µ2)2 + (z − µ3)2 ≤ (0.5)2}, ti2 = 210

ms and tf2 = 215 ms, is applied.

Figure 7.6: Test 4 : Parameter space (fuchsia region).

This test case is a proof-of-concept of the strategy used in the clinical practice in order
to identify possible re-entrant circuits, part of which may be latent, by conducting a virtual
multi-site delivery of electrical stimuli from a number of atrial locations [Boyle et al., 2018,
Arevalo et al., 2016, Prakosa et al., 2018].

We consider Nt = 1000 time instances in the interval (300, 500) ms and randomly sample
Ntrain = 15 training-parameter and Ntest = 5 testing-parameter instances from the param-
eter space. The maximum number of epochs is Nepochs = 30000, the batch size is Nb = 40
and, regarding the early-stopping criterion, we stop the training if the loss function does not
decrease along 2000 epochs.

We firstly set the rPOD dimension equal to N = 256 which results, over the testing set,
in the projection error indicator εrel(uh,VVTuh) = 6.8× 10−2 and in the projection relative
error εk(uh,VVTuh) shown in Figure 7.7. Then, we do not expect the reconstruction error
indicators being smaller than the previous values over the testing set.

In Figure 7.8 we compare the FOM and POD DL-ROM solutions, the latter with n = 4 and
N = 256, together with εk, for the testing-parameter instance µtest = (0.2508, 0.7932, 1.66)
cm at t = 316.4 ms. The error indicator εrel(uh, ũh) is equal to 7.06 × 10−2, meaning that
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Figure 7.7: Test 4 : Projection relative error εk(uh,VVTuh) with N = 256.

the projection error limits εrel(uh, ũh) over the testing set. However, the POD DL-ROM is
able to completely capture the location and the shape of the re-entry, and the moving front;
the error is related to the reconstruction of the steep fronts. Hence, we consider the results
obtained completely satisfactory, given the extreme complexity of the problem at hand.

Figure 7.8: Test 4 : FOM (left) and POD DL-ROM (center) solutions, the latter obtained
with n = 4 and N = 256, together with εk (right), for the testing-parameter instance µtest =
(0.2508, 0.7932, 1.66) cm at t = 316.4 ms.

Then we investigate the impact of a higher value for the rPOD dimension; indeed, we set
it equal to N = 1024. In this case, the projection error indicator εrel(uh,VVTuh) is equal
to 2.84 × 10−2 and the error indicator (3.13) becomes εrel = 5.4 × 10−2. In Figure 7.9 we
report the FOM solution and the POD DL-ROM approximation, with n = 4 and N = 1024,
together with the relative error defined in (3.14), for the testing-parameter instance µtest =
(0.2508, 0.7932, 1.66) cm at t = 316.4 ms. By comparing Figures 7.8 (right) and 7.9 (right),
we can note how the use of a larger N leads to slightly more accurate results.

In Table 7.4 we report the FOM CPU computational time on a 6-core platform4 and the
POD DL-ROM GPU total, i.e. training and validation time, and testing times, and the total
number of epochs ne, obtained on a Tesla V100 32GB GPU, by varying N . As expected,
both the training and the testing times are larger for N = 1024 than N = 256, being the

4Numerical tests have been performed on a MacBook Pro Intel Core i7 6-core with 16 GB RAM.
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Figure 7.9: Test 4 : FOM (left) and POD DL-ROM (center) solutions, the latter obtained
with n = 4 and N = 1024, together with εk (right), for the testing-parameter instance
µtest = (0.2508, 0.7932, 1.66) cm at t = 316.4 ms.

number of parameters of the network higher in the former case. We highlight that, if we do
not consider the time needed to assemble the snapshot matrix, the time required to train the
POD DL-ROM over the parameter space, for N = 256, is smaller than performing a FOM
simulation for a single parameter instance. We remark that we started from a learning rate
equal to η = 2 · 10−4 for N = 256 and η = 10−4 for N = 1024, the latter resulting in a
longer total training and validation time; indeed, in this case training stops because of the
maximum number of epochs achieved, however yielding a higher accuracy. At testing time,
both the networks show to be extremely efficient.

FOM POD DL-ROM: train POD DL-ROM: test ne
N = 256 7.2 h 4.9 h 0.32 s 8849
N = 1024 7.2 h 20 h 0.77 s 30000

Table 7.4: Test 4 : FOM and POD DL-ROM computational times.

As done in Test 4 of Section 4.3, we increase the complexity of the problem by enlarging the
dimension of the parameter space, thus considering both re-entry and non re-entry dynamics.
We randomly sample Ntrain = 20 + 20 = 40 training-parameter and Ntest = 10 + 10 = 20
testing-parameter instances from the parameter space.

We set the rPOD dimension equal to N = 1024. In this case, the projection error indicator
value is εrel(uh,VVTuh) = 4.34×10−2 and the reconstruction one is εrel(uh, ũh) = 7.7×10−2.
We set the maximum number of epochs Nepochs to 30000, by increasing this value it is possible
to achieve a reconstruction error equal to the projection one. The parameter space is the one
shown in Figure 7.10.

In Figure 7.11 we report the FOM and POD DL-ROM solutions, with n = 4 andN = 1024,
along with εk, for the testing-parameter instances µtest = (0.3162, 0.8638, 0.6864) cm and
µtest = (0.2508, 0.7932, 0.8895) cm at t = 300.8 ms. The POD DL-ROM thus shows to be
able to reproduce the main features of the dynamics of the solution, and the error is mainly
associated to the truncated POD modes.

7.5 Test 5: Re-entry break-up

Few attempts have been made in order to solve, by means of DL algorithms, problems featur-
ing a chaotic and disorganized solution. In [Raissi, 2018] the Kuramoto-Sivashinsky equation,
in a chaotic regime, is solved by means of physics-informed neural networks (PINNs), but
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Figure 7.10: Test 4 : Parameter space (fuchsia region).

Figure 7.11: Test 4 : FOM (left) and POD DL-ROM (center) solutions, the latter obtained
with n = 4 and N = 1024, together with εk (right), for the testing-parameter instances
µtest = (0.3162, 0.8638, 0.6864) cm (top) and µtest = (0.2508, 0.7932, 0.8895) cm (bottom) at
t = 300.8 ms.

the algorithm leads to not completely satisfactory results. In [Pathak et al., 2018a, Pathak
et al., 2018b] a hybrid forecasting scheme based on reservoir computing in conjunction with
knowledge-based models are successfully applied to prototype spatiotemporal chaotic sys-
tems. In [Yeo, 2017] a deep neural network for a model-free prediction of a chaotic dynamical
system from noisy observations is presented. In that case, the proposed DL model aims to
predict the conditional probability distribution of the state variable. Here we want to ap-
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ply the techniques presented in this Thesis to the chaotic solution of the re-entry break-up
problem.

In particular, we focus on the solution of the Monodomain equation (1.3) coupled with
the A-P ionic model (1.5) over the domain Ω = (0, 4 cm)2 discretized by means of linear
finite elements with Nh = 128× 128 = 16384 grid points. Time integration is performed over
the interval (0, T ), with T = 900 ms and a time-step ∆t = 0.2/12.9, by means of a one-step,
semi-implicit, first order scheme. The fibers are parallel to the x-axis and the conductivities
in the longitudinal and transversal directions to the fibers are σl = 2 × 10−3 cm2/ms and
σt = 3.1 × 10−4 cm2/ms, respectively. We set the parameters of the A-P model equal to
K = 8, a = 0.1, ε0 = 0.01, b = 0.1, c2 = 0.3 and c1 = 0.05 [ten Tusscher, 2004] and apply the
cross-field stimulation protocol to generate the re-entry break-up.

The parameter (here nµ = 1) consists of the x-coordinate of the location of the S2 stimulus,
which takes the form

Ii,2app(x, t) = C1Ω2(µ)(x)1[ti2,t
f
2 ](t̃),

where C = 1 mA, Ω2(µ) = {x ∈ Ω : x ≤ µ}, ti2 = 125 ms, tf2 = 130 ms and µ ∈ P = [0.5, 2.25]
cm.

In order to investigate the feasibility of applying the POD DL-ROM technique on this
challenging problem, we analyze the decay of the eigenvalues of the training snapshot matrix
Strain. In particular, we uniformly sample Ntrain = 8, 15, 25, 35 training-parameter instances
from P and we compute the respective snapshot matrix. In Figure 7.12 we show the decay
of the eigenvalues for εPOD = 10−3, which results in a dimension of the linear trial subspace
equal to N = 2247, 3804, 5632, 6678. The dimension N remarkably increases with respect to
Ntrain, meaning that it is not possible to reduce the problem over the parameter space by
means of a linear ROM; indeed, a huge number of modes would be required to get an accurate
approximation of the dynamics. Motivated by this fact, we decided to apply the DL-ROM
technique to the problem under investigation.

Figure 7.12: Test 5 : Decay of σi for different Ntrain.

We consider Nt = 1000 time instances uniformly distributed over the interval (600, 900)
ms, Ntrain = 26 training- and Ntest = 21 testing-parameter instances, randomly sampled
from the parameter space. The maximum number of epochs is set equal to Nepochs = 30000
and the batch size is Nb = 40. Regarding the early-stopping criterion, we stop the training if
the loss does not decrease in 3000 epochs.

In Figure 7.13 we show the FOM and DL-ROM solutions, the latter with n = 20, along
with the relative error εk, for the testing-parameter instances µtest = 0.535 cm and µtest =
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0.7125 cm at t̃ = 688 ms. In particular, µtest = 0.535 cm consists in the midpoint among
two training-parameter instances whereas µtest = 0.7125 cm is a testing-parameter instance
close to the training-parameter instance µtrain = 0.7 cm; indeed in the last case the relative
error εk is smaller. We point out the impressive variability shown by the solution for different
parameters values, at each single time. Even if the steep fronts of the FOM solution are not
sharply reconstructed, the DL-ROM solution is able to capture all the multiple re-entries and
the main dynamics, and to provide useful information like the location of rotors’ cores.

Figure 7.13: Test 5 : FOM (left) and DL-ROM (right), with n = 10, solutions, together with
εk (right), for the testing-parameter instances µtest = 0.535 cm (top) and µtest = 0.7125 cm
(bottom) at t̃ = 688 ms.

In the previous results we have considered a quite large parameter space, considered the
strong variability of the solution of the re-entry break-up problem over P, equal to almost
half edge of the domain. We expect that, by reducing the dimension of the parameter space,
a higher accuracy could be achieved.

Finally, the DL-ROM testing computational time, on a GTX 1070 8 GB GPU, is 0.35 s,
thus generating a speed-up, with respect to the FOM CPU computational time5, equal to
1.48× 103.

At the best of our knowledge, this is the first trie in which chaotic regimes featuring so
many scales and depending on physical parameters are accurately reproduced by reduced
order modeling techniques.

5Numerical tests have been performed on a MacBook Pro Intel Core i7 6-core with 16 GB RAM.
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7.6 Discussion

In this Chapter, the performance of the (POD) DL-ROM technique has been verified on
relevant test cases in cardiac EP on realistic geometries, both in physiological and pathological
conditions, and by considering both FE method and NURBS-based IGA spatially discretized
snapshots. The proposed POD DL-ROM framework can efficiently perform the training
phase, thus drastically decreasing the computational complexity of DL-ROMs at training
time, and provide real-time solutions to parametrized EP problems at testing time. The
accuracy and the efficiency obtained by the (POD) DL-ROM approximations make them
amenable, in the clinical setting, to replace the FOM solutions when computing quantities of
interest, such as ACs and APDs.
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Conclusions

In this Thesis we have introduced a new generation of non-intrusive, nonlinear reduced order
models, based on deep learning algorithms, to efficiently and accurately deal with nonlinear
time-dependent parametrized PDEs featuring coherent structures which propagate over time.
We considered transport, wave, or convection-dominated phenomena, on which conventional
linear reduced order models reveal inefficient, with a focus on the solution of parametrized
problems arising in cardiac electrophysiology in pathological scenarios, such as atrial tachy-
cardia and atrial fibrillation.

Cardiac electrophysiology systems fit into both (i) a multi-query context, since repetitive
evaluations of the input-output map are required in order to perform multi-scenario analysis,
to deal with inter- and intra-subject variability and to consider specific pathological scenarios,
and into (ii) a real-time context, due to the need, in a clinical setting, to compute outputs of
interest in a very limited amount of time. Performing the numerical approximation of cardiac
electrophysiology problems in these contexts, by means of traditional full order models, such
as the finite element method or NURBS-based Isogeometric Analysis, is prohibitive because
of the huge computational costs associated to the solution of the equations. Indeed, small
time-step sizes must be selected to ensure stability; small mesh sizes are required in order to
capture the steep fronts and preserve accuracy.

We proposed a novel technique to build low-dimensional reduced order models by ex-
ploiting deep learning algorithms to overcome typical computational bottlenecks shown by
classical, linear projection-based reduced order models techniques (such as the reduced basis
method relying on proper orthogonal decomposition) when dealing with problems featuring
coherent structures propagating over time. The DL-ROM technique allows to approximate
the solution manifold of a given parametrized nonlinear, time-dependent PDE by means of a
low-dimensional, nonlinear trial manifold, and the nonlinear dynamics of the generalized co-
ordinates on such reduced manifold, as a function of the time coordinate and the parameters.
Both the nonlinear trial manifold and the reduced dynamics are learnt in a non-intrusive
way, thus avoiding to query the arrays related to the full order model. The former is learnt
by means of the decoder function of a convolutional autoencoder neural network, the latter
through a deep feedforward neural network, and the encoder function of the convolutional
autoencoder. The numerical results reported in this Thesis show that the proposed DL-ROM
technique provides accurate solutions to parametrized PDEs, involving a low-dimensional
reduced manifold whose dimension is equal to (or slightly larger than) the dimension of the
solution manifold. Our numerical tests have shown that employing deep learning techniques
to build reduced order models for parametrized nonlinear PDEs is indeed a feasible way, both
in terms of numerical accuracy and computational efficiency.
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Through the use of the DL-ROM, it is possible to boost the solution of parametrized
problems in cardiac electrophysiology, both in physiological and pathological conditions, thus
overcoming the main computational bottlenecks shown by POD-Galerkin ROMs in this con-
text, such as (i) the linear superimposition of modes which linear reduced order models are
based on, (ii) the need to account for the gating variables when solving the reduced dynamics,
even if not required, (iii) the necessity to use hyper-reduction techniques to deal with terms
that depend nonlinearly on either the transmembrane potential or the input parameters, and
(iv) the need to solve a dynamical system until the desired time (the DL-ROM approximation
can be queried at any time instance). Moreover, outputs of clinical interest, such as activa-
tion maps and action potentials, can be more efficiently evaluated by the DL-ROM technique
than by a full order model while maintaining a high level of accuracy.

A key aspect in the setting of DL-ROMs concerns computational efficiency during the
offline (or training) stage, which is also related with the curse of dimensionality. In this
respect, we developed a strategy to enhance DL-ROMs in order to make the offline training
stage dramatically faster. This strategy, which we refer to as POD DL-ROM, exploits (i)
dimensionality reduction of full order model snapshots through randomized proper orthog-
onal decomposition and (ii) a suitable multi-fidelity pretraining stage exploiting snapshots
computed through lower-fidelity models to initialize the parameters of neural networks in a
sequential procedure. The performance of the POD DL-ROM technique has been verified
on benchmark problems and challenging test cases on realistic geometries, both in physio-
logical and pathological cardiac electrophysiology. The proposed POD DL-ROM framework
can efficiently perform the training phase and provide real-time solutions to parametrized
cardiac electrophysiology problems at testing time. Not only, we assessed computational per-
formance, numerical accuracy and robustness of the POD DL-ROM technique on different
problems, including advection-diffusion-reaction equations, nonlinear structural mechanics,
and fluid dynamics. In all these cases, POD DL-ROMs are able to match the intrinsic dimen-
sion of the problems investigated, to overcome the main computational bottlenecks shown by
conventional projection-based methods and to make the training phase extremely fast.

Due to their data-driven and non-intrusive nature, DL-ROMs and POD DL-ROMs might
be considered as turn-key reduced order modeling techniques to handle applications of in-
terest; depending on the complexity of the problem at hand it is also possible, in principle,
to switch between these two strategies. In particular, the proposed reduced order modeling
framework has been successfully applied to parametrized physiological and pathological prob-
lems in cardiac electrophysiology, considering both finite element and Isogeometric Analysis.
At the best of our knowledge, the results reported in the last Chapter of this Thesis repre-
sent the first attempt at reducing the computational complexity associated to the re-entry
and the re-entry break-up problems, this opening, virtually, a new path towards the model
personalization in real-time, even when dealing with extremely challenging, and computa-
tionally involved, scenarios. The possibility to perform real-time numerical simulations, in
cardiac electrophysiology, can be seen as the first step towards the translation of computa-
tional methods in the clinical practice, aiming at complementing clinical data, in view of
supporting decisions, quantifying risks related to cardiac pathologies, planning therapies and
interventions.

We envision several future extensions of the work presented in this Thesis, such as, for
instance:

• enhancing the description of spatial heterogeneity by providing clinical data under the
form of medical images as input to the (POD) DL-ROM framework, thus replacing the
deep feedforward neural network, which now describes the reduced dynamics onto the
non linear trial manifold, with a convolutional neural network;

• enforcing physics-based laws in the (POD) DL-ROM framework, for instance by relying
on physics-informed neural networks;

144



• replacing intrusive and expensive hyper-reduction techniques, such as the discrete em-
pirical interpolation method, with the POD DL-ROM technique;

• extending the POD DL-ROM framework to multi-physics problems (such as, e.g. elec-
tromechanics);

• exploiting the POD DL-ROM technique to enhance the evaluation of quantities of
interest, to address sensitivity analysis and uncertainty quantification tasks efficiently;

• embedding POD DL-ROM within the clinical practice, to compute real-time outputs
accounting for inter- and intra-subject variability.
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