
POLITECNICO DI MILANO

School of Industrial and Information Engineering

Department of Electronics, Information and Bioengineering

Master of Science Degree in Computer Science and Engineering

Opponent Identification in Multi-Agent

Reinforcement Learning

AI & R Lab

The Artificial Intelligence and Robotics Lab

of the Politecnico di Milano

Supervisor: Prof. Marcello Restelli

Co-supervisor: Dr. Giorgia Ramponi

Master Graduation Thesis by:

Davide Spinelli

Student ID n. 900229

Academic Year 2019-2020

To all the people I met in this incredible journey.

Acknowledgements

I would like to thank Prof. Marcello Restelli, for the opportunity to work

on this project and for the important insights you have given me in these

months, and Dr. Giorgia Ramponi, for the patience shown to me especially

in the initial stages during the understanding of the subject and for the con-

stant assistance during the development of this work. Furthermore, I would

like to thank both of them for their availability which, despite the events

and the distance, has never failed.

I will always be grateful to my parents and family for supporting me morally

and materially all these years, allowing me to focus full-time on my uni-

versity career. The certainty of being able to count on their support was

fundamental to overcome difficult moments and reach the goals I had set

for myself. I want to dedicate a particular thanks to my parents for their

teachings, thanks to them I grew up into the person I am today.

A special thanks also goes to my dearest friends, whose company over the

years has brought countless moments of joy into my life. Without them,

this experience would not have been as enjoyable.

Finally, I would like to thank all the people who accompanied me for some

parts of this journey, my classmates during the Bachelor’s and Master’s, the

’big family’ of BEST, my clubmates at UCL and my flatmates in Berlin.

Thanks to them and to all the activities carried out together I was able to

experience moments and build memories that will stay with me forever.

Davide

Milan, 15 December 2020

Ringraziamenti

Desidero ringraziare il Prof. Marcello Restelli, per la possibilità di lavorare

su questo progetto e per le importanti indicazioni fornitemi in questi me-

si, e la Dott. Giorgia Ramponi, per la pazienza dimostratami soprattutto

nelle fasi iniziali di comprensione della materia e per la costante assistenza

durante lo sviluppo di questo lavoro. Inoltre, vorrei ringraziare entrambi

per la disponibilità che, nonostante gli avvenimenti e la distanza, non è mai

venuta meno.

Sarò per sempre grato ai miei genitori e alla mia famiglia per avermi sup-

portato moralmente e materialmente in tutti questi anni, permettendomi

di concentrarmi sulla carriera universitaria a tempo pieno. La certezza di

poter contare sul loro sostegno è stata fondamentale per superare momenti

complicati e raggiungere i traguardi che mi ero prefissato. Un particolare

ringraziamento lo voglio dedicare ai miei genitori per i loro insegnamenti,

grazie ad essi sono cresciuto nella persona che sono oggi.

Un grazie speciale va anche ai miei più cari amici, la cui compagnia in questi

anni ha portato innumerevoli momenti di gioia nella mia vita. Senza di loro

quest’esperienza non sarebbe stata altrettanto piacevole.

Infine, vorrei ringraziare tutte le persone che mi hanno accompagnato per

alcuni tratti di questo viaggio, i miei compagni della triennale e della ma-

gistrale, la ’grande famiglia’ di BEST, i miei compagni della UCL e i miei

coinquilini a Berlino. Grazie a loro e a tutte le attività svolte insieme ho

avuto modo di vivere momenti e costruire ricordi che resteranno con me per

sempre.

Davide

Milano, 15 dicembre 2020

Contents

Acknowledgements I

Ringraziamenti III

Contents V

Mathematical notation IX

List of Figures XI

List of Algorithms XIII

Abstract XV

Sommario XVII

1 Introduction 1

1.1 Contribution . 2

1.2 Document outline . 2

2 Preliminaries and related works 5

2.1 Reinforcement Learning . 5

2.1.1 Markov Decision Processes 7

2.1.2 Algorithms . 8

2.1.2.1 Value-based algorithms 8

2.1.2.2 Policy Search algorithms 11

2.2 Multi-Agent Environments . 16

2.2.1 Stochastic Games . 16

2.2.2 Nash Equilibrium . 16

2.2.3 MARL algorithms . 17

2.2.3.1 Single-agent RL algorithms 18

V

2.2.3.2 Agent-independent algorithms 18

2.2.3.3 Agent-tracking algorithms 19

2.2.3.4 Agent-aware algorithms 19

2.3 Algorithms with Future Policy Prediction 19

2.3.1 IGA-PP and LOLA 20

2.3.2 NOHD, SOS, SGA, CO, CGD 21

2.4 Imitation Learning . 23

2.4.1 Behavioral Cloning . 24

2.4.2 Inverse Reinforcement Learning 25

2.4.3 Policy Gradient-based IRL 26

2.4.4 IRL from a Learning agent 26

2.5 Likelihood . 28

2.5.1 Discrete probability distribution 28

2.5.2 Continuous probability distribution 28

2.5.3 Log-likelihood . 29

2.5.4 Likelihood and Log-Likelihood Ratio 29

2.5.5 Likelihood and Log-Likelihood Ratio Test 30

2.5.6 Simple-vs-simple hypothesis test 30

2.6 Importance Sampling . 31

2.6.1 Multiple Importance Sampling 32

2.7 Renyi divergence . 33

2.7.1 Kullback-Leibler divergence 34

2.8 Opponent identification: related works 34

3 Multi-Agent Inverse Reinforcement Learning 37

3.1 Single-Agent Reinforcement Learning approach 37

3.2 Agent-aware with Future Policy Prediction approach 38

4 Experimental Evaluation of Multi-Agent Inverse Reinforce-

ment Learning 41

4.1 Environments . 41

4.1.1 Bimatrix . 41

4.1.2 Continuous Gridworld 42

4.2 IRL in Bimatrix . 44

4.3 IRL in Continuous Gridworld 46

5 Algorithm Identification 49

5.1 Overview . 49

5.2 Passive Algorithm Identification 50

VI

5.3 Active Algorithm Identification 51

6 Experimental Evaluation of Algorithm Identification 57

6.1 Identification in Bimatrix . 57

6.2 Identification in Gridworlds 59

6.3 Best response with identified algorithm 61

7 Conclusion 63

7.1 Future work . 64

Bibliography 65

A Gridworld: Soccer 73

B IRL in Bimatrix: LOLA 77

VII

Mathematical notation

S: the state space;

S0: the initial state distribution;

A: the action space;

R: the reward function;

P: the transition model;

T : the set of trajectories;

J : the Jacobian;

Jo: the anti-diagonal blocks of J ;

M: the set of algorithms;

L: the value of the log-likelihood;

∇H: the gradient of the Hamiltonian function;

T : the horizon;

J : the expected return;

I: the identity matrix;

S: the Potential part of the game;

A: the Hamiltonian part of the game;

S−1
u : the Positive Truncated Inverse of S;

R: the set of real numbers;

N: the set of natural numbers;

E: the expectation;

s: the state;

a: the action;

r: the reward;

p: the transition probability;

t: the time step;

k: the learning step;

IX

v: the state-value function;

q: the action-value function;

d: the number of dimensions of the parameter’s vector;

n: the number of agents;

Π: the policy space;

Λ: the likelihood ratio test;

π: the policy;

γ: the discount factor of the reward;

τ : the trajectory;

θ: the policy parameters;

α: the learning rate;

ξ: the simultaneous gradient;

ν: the Behavioral Cloning learning rate;

φ: the feature vector of the reward;

ψ: the cumulative discounted feature vector of the reward;

ω: the weight vector of the reward;

ζ: the threshold for the likelihood ratio test;

λ: the likelihood ratio;

ρ: the Importance Sampling ratio;

β: the order of the Renyi divergence;

L (): the likelihood function;

`(): the log-likelihood function;

PD(): the probability distribution function;

Updm(): the update function using algorithm m;

MIS(): the Multiple Importance Sampling function;

· : the placeholder operator;

· : the estimated value;

·̂ : the optimized value;
_ : the concatenation operator;

‖ · ‖ : the 2-norm;

·x : y : the history of values from x to y;

Dβ(· ‖ ·) : the Renyi divergence;

DKL(· ‖ ·) : the Kullback-Leibler divergence;

· superscript : the agent and/or the candidate algorithm;

· subscript : the time step and/or the learning step.

X

List of Figures

4.1 Matching Pennies payoff table. 42

4.2 Gridworld 1 (a) and Gridworld 2 (b). 43

4.3 Matching Pennies results. Probability of choosing Heads with

IRL on GPOMDP (a) and on IGA-PP (b). Expected return

with IRL on GPOMDP (c) and on IGA-PP (d). 45

4.4 Gridworld results. Estimation error with IRL on GPOMDP

(a) and on IGA-PP (b). Expected return with IRL on GPOMDP

(c) and on IGA-PP (d). 46

6.1 Results of passive algorithm identification (a) and active al-

gorithm identification (b) in Matching Pennies. 58

6.2 Results of passive algorithm identification (a) and active al-

gorithm identification (b) in Gridworld 2. 60

6.3 Results of the identification (a) and expected return (b) of a

Best Response strategy after the identification of opponent’s

algorithm. 62

A.1 Gridworld Soccer. 73

A.2 Gridworld Soccer cyclical behavior point. 74

A.3 Probabilities of the agents using GPOMDP in Gridworld Soccer 75

A.4 Probabilities of the agents using IGA-PP in Gridworld Soccer 75

B.1 Matching Pennies results. Probability of choosing Heads with

IRL on GPOMDP (a) and on LOLA (b). Expected return

with IRL on GPOMDP (c) and on LOLA (d). 78

XI

List of Algorithms

1 Q-Learning . 10

2 Model-free policy gradient method 12

3 GPOMDP update rule . 13

4 REINFORCE update rule . 14

5 NOHD update rule selection 22

6 SOS criterion parameter . 23

7 BC for estimation of θ . 25

8 LOGEL 2-steps IRL . 38

9 Passive Algorithm Identification 51

10 Active Algorithm Identification 53

XIII

Abstract

Imitation Learning is the problem of recovering information about other

agents’ strategies and goals. The research in this area mainly focuses on

imitating the demonstrations of expert agents. However, in Multi-Agent

environments, the agents usually learn simultaneously, thus, imitating a

non-optimal policy does not provide the information desired and, in most

cases, does not lead to high payoffs. Recent works overcame this assump-

tion and developed imitation techniques on learning agents in Single-Agent

environments.

In this work, evolving from these results, we develop a technique to estimate

the reward function of the opponent agent in a Multi-Agent environment

where the agents are still learning. We present the developed approach and

the results obtained by applying the method in different scenarios.

Moreover, during the learning phase, agents update their strategies following

specific algorithms. In this document, within a Multi-Agent environment,

we present a technique to identify the algorithm used by the other agent

from a finite set of possible algorithms. Above this technique, we further

develop an exploration strategy to facilitate the identification of the algo-

rithm, maximizing the Kullback-Leibler divergence of the estimated future

strategies of the agent following the different algorithms. We present the

results of these identification techniques over a set of gradient-based algo-

rithms and the result of a possible application in which the agent plays a

Best Response strategy to the identified opponent.

XV

Sommario

L’apprendimento per imitazione rappresenta il problema di recuperare le

informazioni riguardo le strategie e gli obiettivi degli altri agenti. La ri-

cerca in quest’area si è concentrata principalmente nell’imitazione delle di-

mostrazioni di agenti esperti. Ciononostante, negli ambienti Multi-Agente,

normalmente gli agenti apprendono in simultanea, quindi, imitare strategie

sub-ottimali non fornisce le informazioni volute e, nella maggior parte dei

casi, non porta a maggiori ricompense. Recenti lavori hanno superato que-

sta supposizione e hanno sviluppato tecniche di imitazione di agenti in fase

di apprendimento in ambienti a Singolo-Agente.

In questo lavoro, costruendo sopra questi risultati, abbiamo sviluppato una

tecnica per stimare la funzione di rinforzo dell’agente avversario in un am-

biente Multi-Agente, dove gli agenti stanno ancora apprendendo. Presentia-

mo l’approccio sviluppato e i risultati ottenuti applicando il metodo in vari

scenari.

Inoltre, durante la fase di apprendimento, gli agenti aggiornano le loro stra-

tegie seguendo algoritmi specifici. In questo testo, considerando un ambien-

te Multi-Agente, presentiamo una tecnica per identificare l’algoritmo usato

dall’altro agente all’interno di un set finito di possibili algoritmi. Parten-

do da questa tecnica, abbiamo sviluppato una strategia di esplorazione che

faciliti l’identificazione dell’algoritmo attraverso la massimizzazione della di-

vergenza di Kullback-Leibler tra le strategie future stimate che l’agente avrà

seguendo i vari algoritmi. Presentiamo i risultati di queste tecniche di iden-

tificazione applicate ad un set di algoritmi a gradiente e il risultato di una

possibile applicazione in cui l’agente gioca seguendo la miglior strategia di

risposta nei confronti dell’avversario identificato.

XVII

Chapter 1

Introduction

Reinforcement Learning is a machine learning method in which an agent

learns to increase its payoff by experiencing the environment, following a

trial-and-error approach. In many cases, there is more than one agent that

interacts with the environment at the same time. In some cases, the agent

does not start with prior information on the other agents and, due to this

lack of knowledge, the agent’s learning process is more difficult, so the abil-

ity to model the other agents is of great importance. Imitation Learning is

the field that aims at retrieving information about other agents’ strategies

and goals. In Imitation Learning we can distinguish two techniques: Be-

havioural Cloning (BC), which has the task of recovering the strategy, and

Inverse Reinforcement Learning (IRL), which has the task of recovering the

reward function characterizing the goals. The agent needs to obtain this

information to devise its strategy to achieve its objective. In the meantime,

it must keep into consideration the behavior of the other agents in the en-

vironment and plan its interactions with them accordingly.

Another useful information about the other agents is the updating method

they are using while learning the environment. The updating method is the

algorithm used by each agent to choose how to interact with the environment

and how to devise new strategies based on the observations it receives. An

agent recovering this information could precisely compute the strategies the

other agents will use in the following step and use this knowledge to exploit

their behaviors for its own goal. In a competitive environment, this means

that the agent could figuratively be always “one step ahead” of its competi-

tors while, in a cooperative environment, the agent could devise strategies

to influence the other agents to facilitate cooperation among them.

1.1 Contribution

The contribution of this document is two-fold. First, we apply the IRL

technique used in [48] to the Multi-Agent environment, specifically a 2-

agent environment, and devise two new techniques for other, more complex,

algorithms. This is relevant to the literature since most of the Imitation

Learning methods rely on the assumption that the other agent is already

an expert while, in Multi-Agent environments, this is often not the case.

Then, we evaluate both techniques in a simple bimatrix game and a more

complex continuous gridworld. Second, we propose a new method to identify

an algorithm from a given selection used by a learning agent, analyzing its

different interactions with the environment during the process. Then we

expand our method to include an exploration technique which can reduce

the time needed for the identification of the algorithm and that, paired with

a Best Response strategy, could lead to a higher payoff. The relevance of

this approach relies on the novelty of the information recovered since, to

the best of our knowledge, no other method in the literature identifies the

update rule used by the other agent.

1.2 Document outline

This thesis is organized as follows.

In Chapter 2 we present the background knowledge needed to follow this

work. We start presenting Reinforcement Learning and Markov Decision

Processes, then proceed with Multi-Agent environments, Stochastic Games

and a possible classification of the algorithms used in this environment.

Then, we present Imitation Learning, Behavioural Cloning and Inverse Re-

inforcement Learning, and more general concepts like Likelihood functions,

Importance Sampling and Renyi and Kulback-Leibler divergences. We con-

clude with an analysis of previous works in the literature related to the

identification of other agents’ algorithms.

In Chapter 3, we start presenting an extension of the algorithm LOGEL

[48] to perform IRL in a 2-agent environment while the opponent is learn-

ing with a gradient-based algorithm. Then we consider two variations of

this scenario with algorithms like IGA-PP [72] and LOLA [19] and devise

a method to recover the reward function of an opponent that uses these

algorithms.

Then, in Chapter 4, we evaluate the performances of our methods and

2

we present the advantage of using an algorithm-specific IRL method on two

environments like Matching Pennies and a continuous gridworld.

In Chapter 5, we present a method to passively identify the algorithm

used by another learning agent from a finite set of possible algorithms. Then,

we introduce an exploration technique to choose a strategy that induces the

opponent to reveal its learning algorithm, thus significantly reducing the

time needed for the agent to identify its opponent’s algorithm.

Next, in Chapter 6, we present the performance obtained by the pas-

sive algorithm identification method and the advantage of using the active

algorithm identification method as an exploratory strategy towards this ob-

jective both in Matching Pennies and in a continuous gridworld.

We conclude with a performance evaluation of an agent using the algorithm

identification method to identify the opponent’s algorithm and then exploit

this knowledge to compute a Best Response and obtain a higher payoff.

In Chapter 7, we draw conclusions by summarizing the contributions

of this document and the results obtained. Moreover, we present possible

directions for future developments of this work.

To conclude, in Appendix A, we present a variation of Littman’s soccer

that shows a cyclical behavior similar to Matching Pennies, useful for further

experiments, and, in Appendix B, we include more results of the algorithm-

specific IRL method using LOLA in Matching Pennies, similar to the ones

presented in Section 4.2.

3

4

Chapter 2

Preliminaries and related

works

In this chapter, we present an introduction to the main concepts that will be

used in the following chapters. We start presenting Reinforcement Learning

(RL, [60]) in Section 2.1 and Markov Decision Processes (MDP, [47]) in Sec-

tion 2.1.1, then proceed with Multi-Agent (MA) environments in Section

2.2, Stochastic Games (SG, [57]) in Section 2.2.1 and their algorithms in

the following sections, and conclude with Imitation Learning in Section 2.4,

addressing Behavioral Cloning (BC, [3]) in Section 2.4.1 and Inverse Rein-

forcement Learning (IRL, [39]) in Section 2.4.2, and more general concepts

like likelihood in Section 2.5, Importance Sampling (IS, [27]) in Section 2.6

and Renyi and Kulback-Leibler divergences respectively in Sections 2.7 and

2.7.1.

These preliminaries are based on [60],[18] and [13].

2.1 Reinforcement Learning

In Reinforcement Learning (RL), the agent learns by trial and error, per-

forming actions to improve the numerical reward signals it receives from

the environment. Moreover, the environment can have delayed rewards, in

which the actions of the agent do not immediately affect the rewards it re-

ceives, so the agent learns how to improve its cumulative reward in the long

term.

In computer science, a reinforcement learning system has a policy, a

reward function and a model. A policy π is a mapping from each state s to

the probabilities of choosing each possible action a available in that state.

Solving a reinforcement learning problem means finding the optimal policy

π∗ that maximize the cumulative reward. All policies that are better or

equal than all the others are called optimal and there always exists at least

one.

Given the reward function R : S × A × S → ∆(R), where R(s, a, s′) is the

reward obtained by choosing action a in state s and ending in state s′, a

policy space Π and the optimal policy π∗ ∈ Π, π∗ satisfies:

Rπ∗(s, a, s′) ≥ Rπ(s, a, s′), ∀π ∈ Π

The knowledge or not of the model yields to the first of many ways in which

RL algorithms can be classified.

Reinforcement Learning algorithms with a model are called model-based,

otherwise, they are called model-free.

Another classification is based on the difference between the target pol-

icy, the policy learned, and the behavior policy, the policy used to interact

with the environment.

This dichotomy yields two algorithms:

• on-policy, in which the two policies coincide;

• off-policy, in which the target policy is learned from data obtained

using the behavior policy.

Another difference is due to the relation between experience and learning

and depends on the concept of time. Time is represented as a sequence of

natural numbers T = 0, 1, . . . , t, . . . , T where t is a step and T is the horizon

which can be finite, T ∈ N+, or infinite, T ∈ ∞. In applications where the

horizon is finite, we have finite sequences of states and actions that we call

episodes. This concept leads to another classification in which we have:

• Continuous learning, in which the policy is updated online at each

step;

• Episodic learning, in which the policy is updated in between episodes

of experience;

• Batch learning, in which the experience is collected with a behavior

policy and used to learn the target policy.

In this document, we will mainly consider on-policy, episodic, finite-horizon,

model-free learning. The episodes have a constant length of T steps, which

means that after T actions following policy π the simulation is stopped.

One of the biggest challenges in RL is the trade-off between exploration

6

and exploitation. Since the agent has to try different actions to understand

their rewards and improve its performance it has to choose each time between

exploring to find better actions and greedily exploiting its actual knowledge

to receive what it believes is the highest possible reward.

2.1.1 Markov Decision Processes

A Markov Decision Process (MDP, [47]) is a formalization of a problem

in which an agent must interact with an environment through actions in

order to maximize a reward. MDPs are a useful abstraction to problems in

which a goal-oriented agent improves its performances by taking different

actions in different states and accumulating rewards, learning to focus on

the cumulative reward instead of the immediate reward only. We consider

discrete MDPs in which at every time step the environment is in a given state

and an agent has to choose an action that will lead to a new state, under

a transition probability, and receiving a reward. MDPs are an example of

sequential decision making problems since the actions taken do not only

influence the immediate rewards but also future states and rewards.

Definition 2.1. An MDP is a tuple 〈S,A,P,R, γ,S0〉 where:

• S is the state space;

• A is the action space;

• P : S × A → ∆(S) is the transition model, where P(s′|s, a) is the

probability that starting from state s and taking action a the resulting

state is s′;

• R : S × A × S → R is the reward function, where R(s, a, s′) is the

reward obtained by choosing action a in state s and ending in state s′;

• γ ∈ (0, 1] is the discount factor of the reward;

• S0 is the initial state distribution.

An MDP is called terminal if there is a terminal state in which no other

state can be reached and which usually yields reward zero.

A trajectory τ is a sequence of state-action-reward τ = (st, at, rt)
T (τ)
t=0 where

T (τ) represents the horizon of the trajectory τ . We call the set of all tra-

jectories T = (S,A,R)T .

We denote with π(a|s) the probability of choosing action a when in state s.

We say that an agent follows a policy π if it chooses its actions based on

7

these probabilities. A policy is called deterministic if for each state s there

exist some action a such that π(a|s) = 1.

MDPs satisfy two important properties:

• Markov property : each state depends only on the previous state and

the action taken. This means that each state fully represents the en-

vironment and previous states and actions do not influence the future

state;

• Stationarity : the dynamics of the environment does not change over

time.

The goodness of a policy π is expressed as the utility function Jπ and is

called the expected return for the policy π. Jπ is the expectation of the sum

of the rewards collected along every trajectory τ discounted by a factor γ:

Jπ = E
τ

[T (τ)∑
t=0

γtR(sτ,t, aτ,t, s
′
τ,t)

]
Having a measurement of performance, the goal of the agent is to maximize

it, thus this problem can be seen as the optimization problem:

π∗ = arg max
π

Jπ

where π∗ is the optimal policy. In case the policy is parameterized, i.e.

policy π depends on parameters θ, the expected return will also depend

on θ and this dependency is expressed with J(θ). Thus, the optimization

problem can be rewritten as:

θ∗ = arg max
θ

J(θ) (2.1)

2.1.2 Algorithms

In this setting, algorithms can be classified into two main categories: Value-

Based algorithms, which use the value function (action-value function) to

find the optimal policy, and Policy Search algorithms, which directly search

the optimal policy in the policy space.

2.1.2.1 Value-based algorithms

In value-based algorithms, the agent computes a value function (action-value

function) that keeps track of which states (which actions in which states)

are better in the long-term to find the optimal policy.

8

This value function represents the goodness of each state (state-action pair)

with respect to the utility function.

The value function (action-value function) can be expressed with arrays or

tables, with a value for each state (state-action pair). This method is called

tabular. In many real-world examples, however, there are far too many

states or actions to fit in a table, so we have to approximate them with a

parameterized function.

In the case of MDPs, the utility function is the Expected Return Jπ and the

state-value function is typically the expected return of the agent if it follows

the policy π starting from state s:

vπ(s) = E
τ

[T (τ)∑
t=t′

γtR(sτ,t, aτ,trt)

∣∣∣∣sτ,t′ = s

]
∀s ∈ S

while the action-value function qπ(s, a) is the expected return of the agent

if it follows the policy π starting from state s and taking action a:

qπ(s, a) = E
τ

[T (τ)∑
t=t′

γtR(sτ,t, aτ,t)

∣∣∣∣sτ,t′ = s, aτ,t′ = a

]
∀s ∈ S, a ∈ A

In other words, the state-value function represents the total reward that an

agent can expect by being in state s, while the action-value function rep-

resents the total reward that an agent can expect by being in state s and

choosing action a.

The Bellman equation represents the relationship between the value of a

state (state-action pair) and its subsequent states (state-action pairs). The

state-value function vπ and the action-value function qπ are the unique so-

lution to their respective Bellman equations, defined as:

vπ(s) = r(s) + γ
∑
a

π(a|s)
∑
s′

p(s′|s, a)vπ(s′) (2.2)

qπ(s, a) = r(s, a) + γ
∑
s′

p(s′|s, a)
∑
a′

π(s′, a′)qπ(s′, a′) (2.3)

The relation between the optimal policy and the optimal value function

is that all the optimal policies share the same optimal state-value function

defined as:

v∗(s)
.
= max

π
vπ(s)

9

Algorithm 1: Q-Learning

Input: learning rate α
Initialize q(s, a) arbitrarily for all states s and actions a
for each episode do

Initialize starting state s
for each step in episode, until s is terminal do

Choose action a from possible actions in state s using
action-value function q(s, ·)

Take action a, observe s′ and R(s, a, s′)
q(s, a) = q(s, a) + α[R(s, a, s′) + γmax

a′
q(s′, a′)− q(s, a)]

s = s′

end

end

or the same action-value function defined as:

q∗(s, a)
.
= max

π
qπ(s, a)

If we know the dynamics of the MDP, have sufficient computational re-

sources and it satisfies the Markov property, we can find the optimal policy

just selecting in each state the action with the maximum value. This is

called the greedy policy.

There are many algorithms that approximate Q∗: model-based using Dy-

namic Programming [7][47], on-line model-free methods that estimate the

value function [68][40], and methods that learn a model and then use model-

based algorithms [59][36].

In Q-Learning [68], the Bellman equation (2.3) is used to update the action-

value function during a sequence of episodes to approximate Q∗. The up-

dates are performed over the experience of the environment and at each

step, an action is chosen using a strategy derived from Q and the reward

and subsequent state are observed (see Algorithm 1).

Given the current learning step t, after performing action a from state s and

observing the ending state s′ and the reward R(s, a, s′), the update can be

computed as:

qt+1(s, a) = qt(s, a) + αt[R(s, a, s′) + γmax
a′

qt(s
′, a′)− qt(s, a)] (2.4)

where αt is the learning rate, which indicates how much the current values

of Q are updated towards the perceived sample and that typically decrease

10

with time to learn faster at the beginning of the learning and perform small

changes, or fine-tuning, afterward.

Since Equation (2.4) does not depend on the knowledge of the reward func-

tion R or the transition function P, Q-Learning is a model-free method.

Q converges to Q∗ under the following conditions [68][25][65]:

• Distinct values of the action-value function are saved and updated at

each learning step,

• The agent keep exploring all possible state-action pairs with non-zero

probability, π(s, a) > 0 ∀s ∈ S, a ∈ A,

• The learning rates sums to infinity while the sum of their squares is

finite (Robins-Monro condition [52]).

The second condition can be achieved with an ε-greedy exploration, in which

at each step a random action is chosen with probability ε ∈ (0, 1), or with a

Boltzmann strategy which in state s selects action a with probability:

π(s, a) =
e
q(s,a)
τπ∑

a′ e
q(s,a′)
τπ

(2.5)

where τπ > 0 is the temperature that controls the exploration’s randomness.

Actions with a higher action-value have a greater chance to be chosen. When

τπ → ∞ actions tend to be chosen completely random, on the other hand,

when τπ → 0 actions tend to be chosen with a greedy strategy.

2.1.2.2 Policy Search algorithms

Unlike value function (action-value function) methods, direct policy search

methods look for the optimal policy in the policy space. In model-free pol-

icy search algorithms, this is done through the use of parameterized policies

determined by a set of parameters θ ∈ Rd in which πθ(a|s) is the probability

of taking action a in state s with vector parameter θ. These policies are

continuously evaluated and updated.

The algorithms are divided into three main areas: policy exploration, policy

evaluation and policy update.

Policy exploration strategies can search in action space or parameter space

and they can also be episode-based or step-based.

If the exploration is in the parameter space, a noise ε is added as a pertur-

bation to the parameter vector θ. Instead, if the exploration is in the action

space then the noise is directly added to the policy π.

If the exploration is episode-based, the perturbation is added at the begin-

11

Algorithm 2: Model-free policy gradient method

Output: θK ∼ θ∗
Initialize θ1 arbitrarily
for k = 1,2,. . . ,K learning steps do

Generate trajectories Tk
Estimate gradient ∇θJ(θk)
Update policy parameters θk+1 = θk + αk∇J(θk)
(Eventually) Update learning rate αk

end

ning of the episode and kept constant for the whole duration of the episode.

Instead, if the exploration is step-based, then a different independent noise

is added at each step.

Policy evaluation strategies can be step-based or episode-based.

Episode-based evaluation strategies use the expected return of the whole

episode as a performance function of the policy. Instead, step-based evalua-

tion strategies estimate the quality of the individual actions as the expected

return that the agent can receive from that state choosing that action.

In this document, for the policy update, we will use a Policy Gradient

[71][41][42] step-based likelihood-ratio method [61].

In model-free policy gradient methods, a performance based on the policy

parameters is needed. Their goal is to find θ∗ such that: θ∗ = arg max
θ

J(θ)

where J(θ) is the performance measure.

To obtain θ∗, these methods update the policy parameters following gradient

ascent in J :

θk+1 = θk + α∇θJ(θk) (2.6)

where α is the learning rate and ∇θJ(θk) is the estimate of the gradient

of the expected return Jk at step k with respect to its parameters θk (see

Algorithm 2).

In MDPs, being ∇θJ(θ) the gradient of the expected return, it can be

rewritten as:

∇θJ(θ) = E
τ

[
∇θlogPθ(τ)R(τ)

]
(2.7)

where ∇θlogPθ(τ) can be computed as:

∇θlogPθ(τ) =

T (τ)∑
t

∇θlogπθ(sτ,t, aτ,t)

12

Algorithm 3: GPOMDP update rule

Input: Policy parameters θ
Data: Trajectories Ti=1,...,N

Output: ∇GPθ J(θ)
for each time step t do

for each parameter j do
//estimate the baseline

bGPj,t =

N∑
i

(
t∑

t′=0

∇θj
logπθ(aτi,t′

|sτi,t′)

)2

γtR(sτi,t,aτi,t)

N∑
i

(
t∑

t′=0

∇θj
logπθ(aτi,t′

|sτi,t′)

)2

end

end
for each parameter j do

//estimate the gradient

∇GPθj J(θ) = 1
N

N∑
i

T (τi)∑
t

(t∑
t′=0

∇θj logπθ(aτi,t′ |sτi,t′)
)

(
γtR(sτi,t, aτi,t)− bGPj,t

)
end

so that we can rewrite:

∇θJ(θ) = E
τ

[T (τ)∑
t

∇θlogπθ(aτ,t|sτ,t)γtR(sτ,t, aτ,t)

]
To estimate the policy gradient we used a likelihood ratio method in which b

is a baseline used to reduce variance, as shown in [71], hence we can rewrite

Equation (2.7) as:

∇θJ(θ) = E
τ

[
∇θlogPθ(τ)(R(τ)− b)

]
yielding to a popular algorithm like Gradient Partially Observable Markov

Decision Processes (GPOMDP, [6]).

In GPOMDP (see Algorithm 3), the expected return is computed considering

the reward at each step. On the contrary, the algorithm REINFORCE [71]

(see Algorithm 4), on which GPOMDP is based, considers only the total

reward of the trajectory.

In GPOMDP, the expectation is replaced by the empirical over a set of N

13

Algorithm 4: REINFORCE update rule

Input: Policy parameters θ
Data: Trajectories Ti=1,...,N

Output: ∇RFθ J(θ)
for each trajectory i do

//compute cumulative reward

RTOTi =
T (τi)∑
t
R(aτi,t|sτi,t)

end
for each time step t do

for each parameter j do
//estimate the baseline

bRFj =

N∑
i

(
t∑

t′=0

∇θj
logπθ(aτi,t′

|sτi,t′)

)2

γtRTOTi

N∑
i

(
t∑

t′=0

∇θj
logπθ(aτi,t′

|sτi,t′)

)2

end

end
for each parameter j do

//estimate the gradient

∇RFθj J(θ) = 1
N

N∑
i

T (τi)∑
t

(t∑
t′=0

∇θj logπθ(aτi,t′ |sτi,t′)
)(

γtRTOTi − bRFj
)

end

14

independent samples and the update rule is formulated as:

∇GPθ J(θ) =
1

N

N∑
i

(T (τi)∑
t

(t∑
t′=0

∇θlogπθ(aτi,t′ |sτi,t′)
)(

γtR(sτi,t, aτi,t)−bGPt
))

while in REINFORCE, considering RTOT =
∑T (τ)

t R(st, at) the cumulative

reward at the end of the trajectory, the update rule is formulated as:

∇RFθ J(θ) =
1

N

N∑
i

(T (τi)∑
t

(t∑
t′=0

∇θlogπθ(aτi,t′ |sτi,t′)
)(

γtRTOTi − bRF
))

The baseline is used to reduce the variance of the gradient estimate and can

be scalar or vectorial. The optimal baseline for parameter j in θ is the one

that minimizes the variance of ∇θjJ(θ), i.e. it satisfies the condition:

∂

∂b
Var[∇θjJ(θ)] =

∂

∂b

(
E
Pθ(τ)

[
(∇θjJ(θ))2

]
− E
Pθ(τ)

[
∇θjJ(θ)

]2)
=

∂

∂b
E
Pθ(τ)

[
(∇θjJ(θ))2

]
= 0

since the baseline does not affect the expected gradient in the second term.

In GPOMDP, to obtain a vectorial (component-wise) baseline for each pa-

rameter j and each timestep t, we formulate it as [6]:

bGPj,t =

N∑
i

(
t∑

t′=0

∇θj logπθ(aτi,t′ |sτi,t′)
)2

γtR(sτi,t, aτi,t)

N∑
i

(
t∑

t′=0

∇θj logπθ(aτi,t′ |sτi,t′)
)2

while in REINFORCE, being the baseline equal for each timestep t of the

same trajectory, is formulated as [71]:

bRFj =

N∑
i

(
t∑

t′=0

∇θj logπθ(aτi,t′ |sτi,t′)
)2

γtRTOTi

N∑
i

(
t∑

t′=0

∇θj logπθ(aτi,t′ |sτi,t′)
)2

15

2.2 Multi-Agent Environments

When the environment involves more than one agent it is called a Multi-

Agent environment (MA) and methods fall under the category of Multi-

Agent Reinforcement Learning (MARL). The generalization of an MDP to

the MA setting is the Stochastic Game (SG, [57]).

2.2.1 Stochastic Games

Definition 2.2. A Stochastic Game is a tuple 〈S,A,P,R, γ,S0〉 where:

• n is the number of agents;

• S is the state space;

• A is the joint action space made of the actions spaces A1, . . . ,An of

all the agents;

• P : S × A → ∆(S) is the transition model, where P(s′|s,a) is the

probability that starting from state s and taking joint actions a the

resulting state is s′;

• R : S ×A × S → R is the joint reward function made of the reward

functions R1, . . . ,Rn of all the agents, where Ri(s,a, s′) is the reward

obtained by agent i with chosen joint actions a in state s and ending

in state s′;

• γ ∈ (0, 1] is the discount factor of the reward;

• S0 is the initial state distribution.

If all the agents have the same reward function then they all maximize the

same utility function and the SG is called fully cooperative. If there are two

agents, n = 2, and R1 = −R2, the agents have opposite goals, then the SG

is called zero-sum game.

A trajectory τ is a sequence of state-joint actions-reward τ = (st,at, rt)
T (τ)
t=0

where T (τ) represents the horizon of the trajectory τ . We call the set of all

trajectories T = (S,A,R)T .

2.2.2 Nash Equilibrium

In this document, we focus only on mixed games, in which the rewards of

the agents are not always cooperative or always competitive.

16

The goal of RL algorithms is to find the best equilibrium for the agent and

if multiple equilibria exist, the agents need to be able to choose the same

one to achieve the highest reward.

One important equilibrium concept is the Nash Equilibrium (NE, [38]).

To present it, we first need to define the concept of a Best Response strategy,

which is the optimal strategy given the other agents’ strategies. Given a set

of n players N , where πi is the strategy for player i ∈ N and π−i is the joint

strategy of all the other agents, and where for each agent i the expected

return is defined as Jπi,π−i = Eπi,π−i

[∑T (τ)
t=0 γtR(sτ,t,aτ,t, s

′
τ,t)

]
, the best

response strategy π∗i (π−i) satisfies:

π∗i (π−i) = arg max
πi

Jπi,π−i

A Nash Equilibrium is the joint strategy in which each strategy π∗i (π−i) is

the best response to the others, i.e. [π∗1, . . . , π
∗
i , . . . , π

∗
n

]
, so a NE is a status

quo reached when no player can increase its expected reward by unilaterally

changing its strategy. Every static (state-less) game has at least one (possi-

bly infinite) Nash Equilibria. In [37], Nash proved that an equilibrium point

always exists in finite games, i.e. games in which the number of players is

finite, there is a finite set of pure strategies to choose from and the players

use mixed strategies (every player has a probability distribution to choose

from the pure strategies).

2.2.3 MARL algorithms

MARL algorithms can be divided into different criteria:

• The degree of awareness of the other agents, which is related to the

learning goal: the agents attempt to achieve stability (algorithms un-

aware, or independent, of the other agents), they attempt to adapt

to the other agents (algorithms tracking the other agents) or they at-

tempt to do both (algorithms aware of the other agents).

• The homogeneity of the algorithms used by the agents: all the agents

must use the same algorithm (homogeneous, e.g. Nash-Q [22]) or can

use different algorithms (heterogeneous, e.g. AWESOME [16], WoLF-

PHC [9][10]) to reach the goal.

• Knowledge of the task: model-based (e.g. AWESOME) or model-free

(e.g. Nash-Q, WoLF-PHC).

• Requirements regarding other agents’ observations: the algorithms

17

might need to know other agents’ actions (e.g. AWESOME), their

actions and rewards (e.g. Nash-Q) or neither of them (e.g. WoLF-

PHC).

Now we present a more detailed categorization of the algorithms based on

the degree of awareness.

2.2.3.1 Single-agent RL algorithms

Single-agent RL algorithms can still be used in the multi-agent environment.

They consider the other agents as part of the environment which is now non-

stationary because of them, losing most of their guarantees of convergence.

Despite this, Q-Learning-like algorithms have been widely used in MARL

applications [56][34][17][32][33].

In [66] the authors analyzed the dynamic behavior of Boltzmann policies in

iterated games, which is the policy used in the second part of this document.

They proved that with particular settings, Q-Learning agents can reach

a coordinated equilibrium (the same or corresponding Nash Equilibrium

strategies) in certain games. In other cases, which we will see later, Gradient-

based and Q-Learning-like algorithms show a cyclic behavior.

2.2.3.2 Agent-independent algorithms

Agent-independent algorithms find a strategy independently from the other

agents, computing their action-value function and then using algorithms like

Nash Q-Learning [23][22] to obtain the expected return of a strategy in the

NE and then determine each agent strategy for that equilibrium.

This requires two assumptions: the rewards and the actions of all the agents

are known and observable, and all the agents use the same or similar algo-

rithms. Moreover, it requires that every state encountered by all the agents

at any point of the learning has a NE in which all the expected returns are

maximal, or every state has a NE in which the agent does not increase its

expected return by changing its strategy while all the other agents do, i.e.

a saddle point.

These requirements are satisfied in a small class of problems and in case

the last requirement is missing some methods of equilibrium selection are

needed.

18

2.2.3.3 Agent-tracking algorithms

Agent-tracking algorithms estimate the model, or directly the policy, of the

other agents and determine a Best Response to those strategies. This can

happen both in static tasks, like in Fictitious Play [12], MetaStrategy [46]

and Hyper-Q [63], based on Q-Learning, and in dynamic tasks, like the

Non-Stationary Converging Policies [69].

2.2.3.4 Agent-aware algorithms

In agent-aware algorithms, both convergence and adaptation to the other

agents are taken into account.

In static tasks, a model of the environment, typically the reward function,

is usually assumed. The AWESOME algorithm (Adapt When Everyone

is Stationary, Otherwise Move to Equilibrium, [16]) make use of fictitious

play when the other agents are stationary but switch to a centrally pre-

computed NE if it deduces that the other agents are non-stationary. In the

Policy Search algorithm category some methods use gradient update rules

to guarantee convergence in particular classes of SG: Infinitesimal Gradient

Ascent (IGA, [58]), Win-or-Learn-Fast-IGA (WoLF-IGA, [9]), Generalized

IGA (GIGA, [73]), and GIGA-WoLF [8].

In IGA-like algorithms, the update function can be generalized with:

θik+1 = θik + αik
∂ E
[
ri|θk

]
∂θi

(2.8)

where θi are the policy parameters of agent i, θ are the joint policy pa-

rameters of all the agents, real or estimated, k is the learning step and α

is the constant gradient step. The expected return converges to a NE with

infinitesimal step size, i.e. α→ 0.

In dynamic tasks, Win-or-Learn-Fast Policy Hill-Climbing (WoLF-PHC,

[9][10]) updates an action-value function similar to Q-Learning with a WoLF-

inspired rule, in which α is higher if losing, so to quickly change policy, and

lower if winning, so to converge towards the optimal.

2.3 Algorithms with Future Policy Prediction

In this document, other than the standard gradient ascent algorithm GPOMDP,

we consider another class of algorithms, the agent-aware algorithms with fu-

ture policy prediction. These algorithms take into account in their update

19

function knowledge about the other agents’ policy updates, but they differ

on the policy predicted and in the guarantees they provide.

2.3.1 IGA-PP and LOLA

The main algorithms we consider are Iterated Gradient Ascent Policy Pre-

diction (IGA-PP, [72]) and Learning with Opponent Learning Awareness

(LOLA, [19]). They both take into account, in their update function, knowl-

edge about the other agents’ policy updates, but they differ on the policy

predicted and in the guarantees they provide.

IGA-PP assumes to know its opponent’s current strategy and its change di-

rection and, with this knowledge, IGA-PP can predict the updated strategy

of the other agent and play a Best Response. IGA-PP is shown to converge

to a Nash Equilibrium if played in self-play and if the learning rate is suffi-

ciently small.

LOLA, on the other hand, try to directly influence the other agent, shaping

its learning direction. This is done by taking into account the impact of the

update of the LOLA agent into the shaping of the other agent’s learning

direction. LOLA assumes that the other agent uses an update rule similar

to (2.6).

If the policies are parameterized, given n agents, the expected return Jx of

agent x depends on the set of the agents’ parameters and this dependency

is expressed with Jx(θ1,θ2).

Given θxk the policy parameters of agent x at time step k, ∇θyJx(θ1
k,θ

2
k) the

gradient of agent x over the parameters of agent y and ∇θ1,θ2Jx(θ1
k,θ

2
k) the

Hessian of agent x over the parameters of both the opponent agent and its

own, the update rule for IGA-PP is formulated as:

θ1
k+1 = θ1

k + α1∇θ1(J1
(
θ1
k,θ

2
k + α2∇θ2J2(θ1

k,θ
2
k)
)
)

Writing ∇xJy = ∇θxJy(θ1,θ2) and ∇xyJz = ∇θx,θyJz(θ1,θ2) for any

x, y, z, we can rewrite it as:

θ1
k+1 = θ1

k + α1(∇1J
1 + α2(∇12J

1)T∇2J
2) (2.9)

Instead, the update rule for LOLA is formulated as:

θ1
k+1 = θ1

k + α1(∇1J
1 + α2

(
(∇2J

1)T∇12J
2
)T

) (2.10)

20

where, with the last term
(
(∇2J

1)T∇12J
2
)
, the agent actively shapes the

opponent’s learning process.

2.3.2 NOHD, SOS, SGA, CO, CGD

Moreover, we take into consideration other gradient-based algorithms, with

prediction of the opponent’s policy, to show how our method can iden-

tify the correct algorithm among them. They are Newton Optimization on

Helmholtz Decomposition (NOHD, [49]), Stable Opponent Shaping (SOS,

[30]), Symplectic Gradient Adjustment (SGA, [5]), Consensus Optimization

(CO, [35]), and Competitive Gradient Descent (CGD, [55]).

We start by presenting, as defined in those works, some concept used by

their update rules:

• the simultaneous gradient, i.e. the concatenation of the gradients of

the agents, is:

ξ = (∇1J
1,∇2J

2)

• the Jacobian, i.e. the derivative of the simultaneous gradients, is:

J = ∇ξ =

(
∇11J

1 ∇12J
1

∇21J
2 ∇22J

2

)

• Jo is the matrix of the anti-diagonal blocks of J ;

• α = (α1, α2) is the concatenation of the values of the learning rates of

the agents;

• diag : Rd×n → Rd, where d is the number of parameters representing

the policy, is the operator that creates a vector made by the values in

the diagonal of a matrix;

• I is the identity matrix;

• S = 1
2(J + J T) and A = 1

2(J − J T) are respectively the Potential

and Hamiltonian part of a game;

• ∇H = (S +A)T ξ is the gradient of the Hamiltonian function;

• S−1
u is the Positive Truncated Inverse (PT-Inverse) of matrix S, in

which negative eigenvalues’ signs are flipped and small eigenvalues are

replaced by u.

In NOHD, the authors perform the update differently depending if the

method identifies the game as Potential or Hamiltonian. If the game is Po-

21

Algorithm 5: NOHD update rule selection

if cos νS ≥ 0 then
if cos νS ≥ cos νA then

use Potential update rule
else

use Hamiltonian update rule

else
if cos νS ≤ cos νA then

use Potential update rule
else

use Hamiltonian update rule

tential the update rule is θk+1 = θk − α(S−1
u ξ), if instead is Hamiltonian

the update rule is θk+1 = θk − α(A−1ξ). To identify if the game is Poten-

tial or Hamiltonian, the cosine between ∇H and the directions of the two

candidates update is computed as:

cos νS =
(S−1
u ξ)T∇H∥∥S−1
u ξ
∥∥ ‖∇H‖ , cos νA =

(A−1ξ)T∇H
‖A−1ξ‖ ‖∇H‖

The identification algorithm can be expressed with Algorithm 5.

NOHD converges to a local Nash Equilibrium in general games if: α > 0

and sufficiently small; the loss function is twice differentiable; ξ is Lipschitz;

A is invertible and J , S,A, S−1, A−1 are bounded and Lipschitz continuous

in the surroundings of a fixed point.

In SOS, first, ξ0 = (I−αJo)ξ and X = diag
(
J To (∇1J

1,∇2J
2)
)

are com-

puted. Then, given the hyperparameter 0 < a, b < 1, the two-part criterion

p controlling the update is calculated with Algorithm 6 and the update rule

is given by θk+1 = θk −α(ξ0 − pαX).

SOS converges to a local Nash Equilibrium in all differentiable games if:

α > 0 and sufficiently small; the loss function is thrice differentiable; J � 0

is invertible with symmetrical diagonal blocks.

In SGA, the update rule is given by θk+1 = θk − α(ξ + χAT ξ), with

χ = sign
(
〈ξ,∇H〉〈AT ξ,∇H〉 + ε

)
, where sign is the sign function and ε is

a small bias that directs the update towards stable fixed points. SGA con-

verges to a Nash Equilibrium in general games if α > 0 and sufficiently small.

22

Algorithm 6: SOS criterion parameter

if 〈−αX , ξ0〉 > 0 then
p1 = 1

else

p1 = min
{

1, −a‖ξ0‖
2

〈−αX ,ξ0〉
}

if ‖ξ‖ < b then

p2 = ‖ξ‖2
else

p2 = 1

p = min{p1, p2}

In CO, the update rule is formulated as θk+1 = θk + α
(
ξ + h(J T ξ)

)
,

where h is the regularization parameter. CO converges to a Nash Equilib-

rium in two-players zero-sum games if: α > 0 and sufficiently small; I−hJ T
is invertible; J at the local Nash Equilibrium is negative, semi-definite and

invertible.

In CGD, the update rule for agent x, where y is the other agent, is

given by θxk+1 = θxk −αx(I− (αx)2∇xyJx∇yxJy)−1(∇xJx−αx∇xyJx∇yJy).
CGD converges to a Nash Equilibrium in two-players zero-sum games, and

in games dominated by competition according to the authors’ expectations,

if: α > 0 and sufficiently small; the loss function is twice continuous differ-

entiable with L-Lipschitz continuous mixed Hessian and convex-concave or

∇xxJx,∇yyJx are L-Lipschitz continuous and the Hessian’s diagonal blocks

satisfy α ‖∇xxJx‖ , α ‖∇yyJx‖ ≤ 1;

For more details about these algorithms we refer to the original documents.

2.4 Imitation Learning

To compute these updates, the learning agent has to know the policies and

the reward functions of the other agents, but this is not always the case.

To overcome this obstacle, we present an approach based on Imitation Learn-

ing in which the information about an agent is learned by observing its in-

teraction with the environment and recovering from that the policy used,

the reward function maximized or both.

Imitation Learning can be divided into two main approaches: Behavioral

Cloning (BC, [3]) and Inverse Reinforcement Learning (IRL, [39]).

23

The agent whose actions are observed is called expert or demonstrator.

BC recovers the policy from its trajectories in a supervised learning fashion,

while IRL recovers the reward function it maximizes. BC recovers the policy

used but it does not say anything about the reason for that policy (its goal)

which is instead recovered by IRL in the reward function.

On the other hand, knowing the reward with IRL is more informative than

knowing the policy with BC since the latter can be reconstructed from the

reward function, even after changes in the transition function of the envi-

ronment.

2.4.1 Behavioral Cloning

Behavioral Cloning is used to recover a policy that can be mapped to the

demonstrated one. If the policy to recover is deterministic and the action

space is finite classification techniques like Gaussian Mixture Models (GMM)

[15], Decision Trees [53], Bayesian Networks [24] and k-Nearest Neighbors

[54] are employed. Instead, if the action space is continuous regression tech-

niques like Lazy Learning [4] and Neural Networks (NN, [45]) are adopted.

If the policy to recover is stochastic, a set of policy parameters can be es-

timated to satisfy the demonstration and it can be seen as a probability

estimation problem.

In this document, we perform BC following a maximum-likelihood esti-

mation approach as presented in [43]. Given probability distributions Pθ1
and Pθ2 , respectively dependent on parameters θ1 and θ2 in parameter space

Θ, if Pθ1 = Pθ2 ⇒ θ1 = θ2 ∀θ1, θ2 ∈ Θ, then the model satisfy the identifi-

ability property. Assuming differentiable policies belonging to a parameter-

ized policy space, mild regularity conditions and the identifiability property

[14], the optimization problem is formulated as:

θ̂ = max
θ

1

N

N∑
τ

T (τ)∑
t

logπθ(aτ,t|sτ,t) (2.11)

To solve this maximization, we arbitrarily initialize θ̂, then we iteratively

compute the gradients between the trajectories demonstrated and the policy

parameters θ̂ and use this gradient to update the policy parameters. We

iteratively repeat this process till convergence or till the iteration limit is

reached (see Algorithm 7).

24

Algorithm 7: BC for estimation of θ

Input: BC’s learning factor η, (optional) number of iterations Ni

Data: N trajectories T with states and actions (no rewards)
Output: Policy parameters θ̂
Initialize random θ̂
while iteration ≤ Ni and not converged do

Set update = 0
for each trajectory τ do

for each trajectory step t do
update += log π

θ̂
(aτ,t|sτ,t)

end

end

θ̂ += η · update
end

2.4.2 Inverse Reinforcement Learning

To present Inverse Reinforcement Learning, we take advantage of the con-

cept of Feature Expectation [1]. The idea is that the rewards can be ex-

pressed as feature vectors φ, linearly combined with the policy parameters.

Given a trajectory τ generated by following a policy π, we can compute the

feature expectations as the cumulative discounted feature vector ψπ with

respect to the distribution of the trajectory.

ψπ = E
st∼τ
at∼τ

[T (τ)∑
t=0

γtφ(sτ,t, aτ,t)

]
Hence we can rewrite the expected return in terms of the feature expecta-

tions:

Jπ = E
st∼τ
at∼τ

[T (τ)∑
t=0

γtR(sτ,t, aτ,t, s
′
τ,t)

]
= E

st∼τ
at∼τ

[T (τ)∑
t=0

γtφπ(sτ,t, aτ,t)
Tω

]
= ψTπω

Where ω is the weight vector of the rewards.

Considering πE the policy of the expert (the policy imitated) and its reward

function RE , πω the policy induced by the reward function φTω where φ

is the feature vector of reward vector ω, our goal is to find a vector ω that

produces a policy as close as possible to the policy demonstrated. This can

be achieved by minimizing the difference (e.g. Euclidean distance) between

25

RE and φTω.

ω̂ = arg min
ω

∥∥RE − φTω∥∥2

2

where RE can be estimated as R̂E = 1
N

N∑
τ=1

T (τ)∑
t=0

φ(sτ,t, aτ,t) [1].

2.4.3 Policy Gradient-based IRL

Policy Gradient methods that perform IRL use the minimization of the

policy gradient to retrieve the reward function. We focus on Gradient Inverse

Reinforcement Learning (GIRL, [44]), since it is a batch model-free approach

[50], but policy gradients have been notably used also in [62] and [21].

Given the expert policy πEθ over the vector parameter θ, we can formulate

the policy gradient as:

∇θJ(θ,ω) = E
st∼τ
at∼τ

[T (τ)∑
t

∇θlogπEθ (aτ,t|sτ,t)γtRω(sτ,t, aτ,t)

]

The expert policy πEω is a stationary point of J(θE ,ωE) because of the

reward vector parameter ωE . To recover the estimated reward vector ω̂, the

authors proposed a minimization of the norm with respect to the gradient.

This optimization is possible because the objective function is convex as

long as the reward function is convex with respect to ω. Moreover, if the

reward parameterization is linear, the problem is ill-posed and has a trivial

solution in zero. This is solved restricting the expert’s vector ωE into the

unit (q − 1)-simplex ∆q−1 = {ω ∈ Rq : ‖ω‖1 = 1 ∧ ω � 0} where � is the

component-wise inequality and q > 1 is the dimension of the reward vector.

Under these conditions, the optimization problem can be formulated as:

ω̂ = arg min
ω

1

y

∥∥∇θJ(θE ,ω)
∥∥y
x

where x, y ≥ 1.

This means that the minimum norm gradient ω̂ is the reward that minimizes

the improvement in the expected return depending on the policy parameters.

2.4.4 IRL from a Learning agent

Till now we have always performed IRL on expert agents but, in multi-agent

environments, it is important to learn the reward even if the other agent is

still learning to be able to decide if cooperating or competing with them.

26

In [26] the authors showed how it is possible to learn the reward function

not only from an optimal demonstrator but also from a sub-optimal one

which is learning to perform the task itself. The learning agent is called

the learner while the agent who is observing the learner and recovering the

reward function is the observer. They assume that the learner’s policy is

strictly improving over time, i.e. the expected return following the policy at

time k + 1 is greater than at time k. To do so they assume the learning to

be under the framework of entropy-regularized RL.

However, this is not always the case. Both when the learning process is per-

formed by humans and when is performed by RL algorithms, the learning

process does not satisfy the property of monotonic improvements [60].

To overcome this assumption, in [48], the authors propose an algorithm

called Learning Observing a Gradient not-Expert Learner (LOGEL). The

authors assume that the learner’s algorithm is gradient-based, following the

direction of its expected discounted return, since many successful RL algo-

rithms are in this category [41]. The optimization problem determines the

reward function that minimizes the distance between the given policy pa-

rameters and the parameters obtained following policy gradient ascent from

the beginning of the demonstration using that reward function.

Being ∆k = θk+1 − θk, the minimization problem at learning step k + 1 is

defined as:

ω̂ = min
ω

k∑
k′=1

∥∥∆k′ − α∇θk′ψ
T
k′ω
∥∥2

2
(2.12)

Moreover, in realistic scenarios, the observer has access only to the trajec-

tories demonstrated and not to information regarding the learner, like the

learning rate or the exact policy parameters. In this setting, the observer

has to estimate the policy parameters Θ = θ1, . . . ,θk+1, the learning rates

α = α1, . . . , αk and the reward weight ω.

Under the assumption of gradient-based updates and given θk+1 = θk +

αk∇θψTk ω, this problem is a maximization of the log-likelihood of

p(θ1,α,ω|T):

max
θ1,α,ω

∑
(s,a)∈τ1

logπθ1(a|s) +
k+1∑
k′=2

∑
(s,a)∈τk′

logπθk′ (a|s)

To solve this problem, gradients up to the k-th order need to be computed,

thus this is not practical. To solve it, the problem is broken into two parts,

first the estimation of the policy parameters Θ, then the estimation of the

27

learning rates α and reward weights ω.

To recover the policy parameters, they used BC as a maximum-likelihood

estimation problem as shown in Equation (2.11) and in Algorithm 7.

Now, given the estimated policy parameters (θ1, . . . ,θk+1), if the learning

rate of the learner is constant, Equation (2.12) can be directly used, other-

wise we need to estimate α first. In this case, given ∆k = θk+1 − θk and

αk ≥ ε where ε is a small constant, the optimization problem becomes:

min
ω,α

m∑
k=1

∥∥∆k − αk∇θψkω
∥∥2

2

To optimize this function the optimization of α and ω are alternated using

alternate block-coordinate descent [64].

2.5 Likelihood

In statistics, the likelihood is a function representing how well a statistical

model fits a sample of data, given the values of the unknown parameters. In

other words, the likelihood function associates the probability of collecting

the sample provided for each set of parameters. For this reason, the likeli-

hood is not a probability but rather a value proportional to a probability.

2.5.1 Discrete probability distribution

Given a sample of observations x ∈ X, a probability mass function p(x) and

its unknown parameters θ, we call L (θ|x) = p(x, θ) the likelihood function

that states how likely each set of parameters θ is, given the outcome sample

x. If X is a set of independent and identically distributed (i.i.d.) random

variables, the likelihood function is equal to the product of the probabilities

of the sample:

L (θ|x) =
n∏
i=1

p(xi, θ)

2.5.2 Continuous probability distribution

Given a random variable X, an absolutely continuous probability distri-

bution with density function f(x) and its unknown parameters θ, we call

L (θ|x) = f(x, θ) the likelihood function that states how likely parameters

θ are, given the outcome x of X. If the n outcomes x = x0, . . . , xi, . . . , xn

28

of the random variable X are i.i.d., the likelihood function is equal to the

product of the marginal densities of the outcomes:

L (θ|x) =
n∏
i=1

f(xi, θ)

2.5.3 Log-likelihood

Instead of the likelihood, the log-likelihood is often taken. The reason lies

in the unstable nature of products which tend to converge quickly to zero

or infinity. Since the likelihood is numerically solved on computers with

limited precision, this fast convergence leads to results not distinguishable

from zero or infinity. To solve this problem, the log-likelihood is usually

computed. This is due to the logarithm property that the logarithm of

a product of values is equivalent to the sum of the logarithms of those

values. Having a sum instead of a product greatly alleviates the convergence

problem. Moreover, the concavity of the function is a key property in the

maximization and the most common probability distribution family, the

exponential family, is only logarithmically concave.

The log-likelihood is often formulated as:

L = `(θ|x) = log(L (θ|x)) (2.13)

2.5.4 Likelihood and Log-Likelihood Ratio

The law of likelihood, based on the likelihood principle, states that the sup-

port of the evidence of one set of parameters θ1 against another set θ2 can

be determined as the ratio of their two likelihoods and it is called likelihood

ratio:

l =
L (θ1|x)

L (θ2|x)

If the likelihood ratio l is greater than 1, then the evidence supports θ1

against θ2; if it is lower than 1, then vice-versa; if it is equal to 1, then the

evidence is indifferent to the two sets of parameters.

The parameters that maximize the likelihood function are the values that

the evidence supports the most. This fact is the basis of the method of

Maximum Likelihood Estimation (MLE).

As we saw for the likelihood function, also the likelihood ratio is more

often expressed as the log-likelihood ratio, since maximizing the likelihood

is equivalent to maximizing the log-likelihood due to the strictly increasing

29

property of the logarithms.

Given a i.i.d. sample and the properties of the logarithms, the log-likelihood

ratio can be expressed as the difference of the log-likelihoods:

λ = log

(
L (θ1|x)

L (θ2|x)

)
= log(L (θ1|x))− log(L (θ2|x)) = `(θ1|x)− `(θ2|x)

2.5.5 Likelihood and Log-Likelihood Ratio Test

The likelihood-ratio test states the relation between the goodness of fit of two

statistical models, based on their likelihood-ratio. In the ratio, the numer-

ator is the statistical model in which the maximization over the parameter

space is bounded by some constraints while the denominator is the statisti-

cal model whose maximization over the parameter space is unbounded.

Formally, given a parameter space Θ, a subset Θ0 ⊂ Θ due to some con-

straints, the null hypothesis H0 : θ ∈ Θ0 and being sup the supremum

function, the likelihood-ratio test statistic is formulated as:

Λ = −2 log

[
supθ∈Θ0

L (θ)

supθ∈Θ L (θ)

]
The test is carried out looking at the result of the ratio. If the value Λ is

lower than a predefined value ζ then it is said that the null hypothesis H0,

the constrained model, is supported by the sample and the null hypothesis

can not be rejected. Otherwise, if it is greater than ζ the null hypothesis is

rejected. If Λ = ζ the null hypothesis is rejected with probability q. Usually,

ζ and q are chosen to have a significance level of α.

As seen above, when performing operations with likelihoods, usually

they are expressed in terms of log-likelihoods, making use of the properties

of logarithms. Then, the log-likelihood ratio test is formulated as:

Λ = −2
[
`(θ0)− `(θ̂)

]
where θ0 ∈ Θ0, θ̂ ∈ Θ, `(θ̂) is defined as log

[
sup
θ∈Θ

L (θ)

]
and `(θ0) is the

maximal value in the case in which the null hypothesis is true.

2.5.6 Simple-vs-simple hypothesis test

In the simple-vs-simple hypothesis test, the null and alternative hypothesis

are both specified and the distribution of the data is completely known,

30

there are no parameters to estimate. The two hypotheses are formulated in

terms of the fixed parameter θ as:

H0 : θ = θ0

H1 : θ = θ1

Then, given the i.i.d. sample x, the likelihood-ratio test is expressed as:

Λ =
L (θ0|x)

L (θ1|x)

If Λ > ζ the null hypothesis H0 can not be rejected. Otherwise, if Λ < ζ

the null hypothesis H0 is rejected. If Λ = ζ the null hypothesis is rejected

with probability q.

As before, this test can be performed also in logarithmic terms and

formulated as:

Λ = −2 log

(
L (θ0|x)

L (θ1|x)

)
= −2(log(L (θ0|x))− log(L (θ1|x)))

= −2(`(θ0|x)− `(θ1|x))

(2.14)

where multiplying by −2 ensures that, if the null hypothesis H0 is true, Λ

converges asymptotically to being χ2-distributed thanks to Wilks’ theorem

[70].

In this case, the rejection condition is the opposite: If Λ < ζ the null

hypothesis H0 can not be rejected. Otherwise, if Λ > ζ the null hypothesis

H0 is rejected. As above, if Λ = ζ the null hypothesis is rejected with

probability q.

2.6 Importance Sampling

Importance Sampling (IS, [27]) is the technique used to estimate the ex-

pected values of a distribution given only the sample from a different one.

The main idea is to sample from a different distribution to lower the variance

of the estimation needed or when sampling from the wanted distribution is

difficult or impossible.

For the purpose of this document, we present importance sampling applied

to a simulation when sampling is impossible.

In a SG, given (·)0:t the history of values (·) from time step 0 to time

31

step t, given a trajectory T0:t, starting from state s0 and continuing with

joint actions a0:t−1 under the joint policy π, and the transition probability

function P, the probability of this trajectory is:

Pr(a0, s1,a1, . . . , st|s0,a0:t−1,π) =

= π(a0|s0)P(s1|s0,a0)π(a1|s1) · · · P(st|st−1,at−1) =

=
t−1∏
t′=0

π(at′ |st′)P(st′+1|st′ ,at′)

Thus, given two joint policies, π0 following θ0 and π1 following θ1, the

relative probability of trajectory T0:t under joint policy π0 with respect to

joint policy π1 (the IS ratio) is:

ρ0:t−1 =

∏t−1
t′=0 π0(at′ |st′)P(st′+1|st′ ,at′)∏t−1
t′=0 π1(at′ |st′)P(st′+1|st′ ,at′)

=
t−1∏
t′=0

π0(at′ |st′)
π1(at′ |st′)

The ratio ρ0:t−1 represent the adjustment needed to correctly estimate the

expected value of a distribution given samples of another one.

Given n trajectories T1,0:t, . . . , Tτ,0:t, . . . , Tn,0:t, the IS estimator is the aver-

age of the single IS ratios ρτ0:t−1:

ρIS0:t−1 =
1

n

n∑
τ=1

ρτ0:t−1 =
1

n

n∑
τ=1

t−1∏
t′=0

π0(aτ,t′ |sτ,t′)
π1(aτ,t′ |sτ,t′)

2.6.1 Multiple Importance Sampling

In the case in which we have a sample based on more than one distribution,

we can rely on Multiple Importance Sampling (MIS, [67]). Given the distri-

bution without samples f0(T) and n distributions f1(T), . . . , fj(T), . . . , fn(T)

each with mj trajectories Tj,τ,0:t, the MIS ratio is the weighted combination

of the IS estimators of each distribution, weighted for the combining esti-

mator wj(Tj,τ), dependent on the sample Tj,τ .

ρMIS
0:t−1 =

n∑
j=1

1

mj

mj∑
τ=1

wj(Tj,τ)
f0(T)

fj(T)

=

n∑
j=1

1

mj

mj∑
τ=1

wj(Tj,τ)

t−1∏
t′=0

π0(aj,τ,t′ |sj,τ,t′)
πj(aj,τ,t′ |sj,τ,t′)

32

where ∀ T :
n∑
j=1

wj(T) = 1.

wj(T) can be an arithmetic average, hence simply wj(T) = 1
n , or a more

thoughtful balance heuristic:

wj(T) =
mjfj(T)
n∑
k=1

mkfk(T)

Using the balance estimator, we can rewrite the MIS ratio as:

ρMIS
0:t−1 =

n∑
j=1

mj∑
τ=1

t−1∏
t′=0

π0(aj,τ,t′ |sj,τ,t′)

n∑
k=1

mk

t−1∏
t′=0

πk(ak,τ,t′ |sk,τ,t′)
(2.15)

2.7 Renyi divergence

The Renyi divergence [51] is a function that measures how a probability

distribution differs from a second one. As with all divergences, the Renyi

divergence is a weaker notion of distance, since it need not be symmetric

(i.e. the divergence from P to Q does not need to be equal to the divergence

from Q to P) and need not satisfy the triangle inequality.

Given Z the space of all probability distributions and P , Q two probability

distributions, a divergence is formulated as a function D(· ‖ ·) : Z ×Z → R

where D(P‖Q) = 0 ⇐⇒ P = Q and D(P‖Q) ≥ 0 ∀P,Q ∈ Z.

In the case of the Renyi divergence of order β, given X the discrete prob-

ability space and r its probability function, the divergence of P from Q is

defined as:

Dβ(P‖Q) =
1

β − 1
log

(n∑
i=1

pβi

qβ−1
i

)
with 0 < β <∞ and β 6= 1.

The Renyi divergence is also the generalization of the Kullback-Leibler di-

vergence.

33

2.7.1 Kullback-Leibler divergence

Taking the limit β → 1, the Renyi divergence gives the Kullback-Leibler

divergence [29] for discrete probability distributions defined as:

DKL(P‖Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(2.16)

For distributions of a continuous random variable, the Kullback-Leibler di-

vergence is formulated as:

DKL(P‖Q) =

∫ +∞

−∞
p(x) log

(
p(x)

q(x)

)
dx (2.17)

Despite not being symmetrical, a version satisfying that property can be

formulated as:

DSYM
KL (P,Q) =

DKL(P‖Q) +DKL(Q‖P)

2

2.8 Opponent identification: related works

As defined in [2], Opponent Modeling is the process of constructing the model

of another agent, defined as a function that takes the interactions observed

as input and returns a prediction of some property of the modeled agent.

Most of the literature investigates how to model the policies, the parameters

or the reward functions of other agents. In type-based reasoning methods

[2], the modeling agent tries to identify the type of the modeled agent that

best matches one of several known types. To perform this identification, it

updates its belief about the other agent’s type according to the prediction

accuracy of the actions observed for the different types. These methods

differ from our approach since they consider as types already expert agents

or agents with already known strategies and their adaptation properties to

other agents. Instead, in our method, we consider learning agents which do

not have any knowledge of the environment or strategies at the beginning

of the learning, so they do not have a predefined type as intended in these

works. In recursive reasoning [2][20], the agent’s belief is nested, i.e. when

the agent models the knowledge of the other agent, it includes what itself

knows about the other agent, adding a level of complexity to the modeling

of the reasoning of the other agent. This process can be repeated infinitely,

leading to recursive modeling. Recursive reasoning methods approximate

34

the belief up to a fixed level of recursion. These methods differ from our

approach since they assume rational agents, i.e. agents that always choose

the optimal action according to their knowledge, which is an assumption we

do not make. Moreover, recursive reasoning stops to a fixed level of recursion

k, while our method could be seen as stopping always to a (k+1)-level since,

after identifying the correct algorithm, we can predict the precise update

of the other agent’s knowledge, hence consider its entire reasoning up to its

limit at level k.

35

36

Chapter 3

Multi-Agent Inverse

Reinforcement Learning

In this chapter, we present an extension of LOGEL ([48], Section 2.4.4) to

perform IRL in a 2-agents environment in which the opponent is learning,

thus deriving the settings from LfL [26]. We take the same assumption as

in LOGEL that the learner is optimizing its utility function using gradient-

based algorithms but we take the learning rate α as known and constant.

We start by applying LOGEL considering a simple gradient-descent oppo-

nent that learns only from its interactions with the environment without

being aware of its Multi-Agent nature (Section 3.1). Then we consider two

variations of this scenario introducing two famous gradient-based algorithms

presented in Section 2.3.1 like IGA-PP [72] and LOLA [19] (Section 3.2).

3.1 Single-Agent Reinforcement Learning approach

The algorithm structure is the same as the one in LOGEL. Given a set of

trajectories T , the reward weights ω are obtained in two steps. First, the

algorithm recovers the parameters θ generating the policies shown in the

given set of trajectories, then it uses those parameters to recover the reward

weights, as shown in Algorithm 8.

For the standard policy-gradient opponent, like GPOMDP, the formula is

directly taken from LOGEL.

Given ∆k = θk+1 − θk, the minimization problem at learning step k is

defined as:

ω̂ = min
ω

k∑
k′=1

‖∆k′ − α∇θψk′ω‖22 (3.1)

Algorithm 8: LOGEL 2-steps IRL

Data: Trajectories Ti=1,...,N

Output: ω
Use Behavioral Cloning (see Algorithm 7) to estimate θ
Compute ω with Equation (3.3)

Moreover, LOGEL’s authors prove that, if the matrix
∑k

k′=1 α∇θψk′ is full-

rank, then the optimization problem can be solved in closed form by:

ω̂ =

(k∑
k′=1

α2∇θψTk′∇θψk′
)−1(k∑

k′=1

α∇θψTk′∆k′

)
(3.2)

We can call Ak′ = α∇θψk′ and rewrite (3.2) in the more general form:

ω̂ =

(k∑
k′=1

ATk′Ak′

)−1(k∑
k′=1

Ak′∆k′

)
(3.3)

3.2 Agent-aware with Future Policy Prediction ap-

proach

In Multi-Agent Reinforcement Learning, update algorithms may be non-

rational and the learning agent may not always change its policy parameters

following the direction of the gradient. For this reason, we consider other

possible algorithms like IGA-PP and LOLA and we start by recollecting

their update rules.

Given agent 1 and opponent agent 2 the update for IGA-PP is formulated

as:

θ1
k+1 = θ1

k + α1(∇θ1J1(θ1
k,θ

2
k) + α2∇θ1,θ2J1(θ1

k,θ
2
k)
T∇θ2J2(θ1

k,θ
2
k))

while the update for LOLA is formulated as:

θ1
k+1 = θ1

k + α1(∇θ1J1(θ1
k,θ

2
k) + α2

(
∇θ2J1(θ1

k,θ
2
k)
T∇θ1,θ2J2(θ1

k,θ
2
k)
)T

)

Therefore, given ∆2
k = θ2

k+1 − θ2
k and J1(θ1

k,θ
2
k) = (ψ1

k)
Tω1 the opti-

mization problem for IGA-PP over the opponent agent can be written as:

ω̂ = min
ω

k∑
k′=1

∥∥∆2
k′ − α2(∇θ2ψ2

k′ + α1
(
(∇θ1,θ2ψ2

k′)
T ((∇θ1ψ1

k′)
Tω1)

)
)ω
∥∥2

2

38

and, with an analogous proof to LOGEL’s, given the matrix:

Ak′ = α2(∇θ2ψ2
k′ + α1

(
(∇θ1,θ2ψ2

k′)
T ((∇θ1ψ1

k′)
Tω1)

)
)

under the similar assumption that
k∑

k′=1

Ak′ is full-rank, we can express it in

closed form as:

ω̂ =

(k∑
k′=1

ATk′Ak′

)−1(k∑
k′=1

Ak′∆
2
k′

)
(3.4)

The same is valid for LOLA where the optimization problem is:

ω̂ = min
ω

k∑
k′=1

∥∥∥∆2
k′ − α2(∇θ2ψ2

k′ + α1
(
(∇θ1ψ2

k′)
T ((∇θ1,θ2ψ1

k′)
Tω1)

)T
)ω
∥∥∥2

2

and, given the matrix

Ak = α2(∇θ2ψ2
k′ + α1

(
(∇θ1ψ2

k′)
T ((∇θ1,θ2ψ1

k′)
Tω1)

)T
)

under the similar assumption that
k∑

k′=1

Ak′ is full-rank, we can express it in

closed form as:

ω̂ =

(k∑
k′=1

ATk′Ak′

)−1(k∑
k′=1

Ak′∆
2
k′

)
(3.5)

In the next chapter, we will show how the IRL methods for the Single-

Agent and the Agent-Independent algorithms obtain good results in chal-

lenging Multi-Agent environments.

39

Chapter 4

Experimental Evaluation of

Multi-Agent Inverse

Reinforcement Learning

In this chapter, we evaluate the results of the IRL algorithms on a set of

environments. The first one is a bimatrix game called Matching Pennies,

which is described in Section 4.1.1, while the other two are continuous grid-

worlds presented in Section 4.1.2.

We present the results with a comparison of two agents, playing both with

algorithm IGA-PP and estimating gradients, θ and ω of the other player,

first under the hypothesis that the opponent is using a standard gradient de-

scent algorithm, then under the hypothesis it is using IGA-PP. We perform

the experiments both in Matching Pennies (see Section 4.2) and, providing

the correct θ, in the continuous environment Gridworld 1 (see Section 4.3).

In the graphs, the shaded region represents the 95% confidence interval.

4.1 Environments

We now present the different typologies of environment used in this docu-

ment.

4.1.1 Bimatrix

Bimatrix games are a class of problems in which two players perform simul-

taneously an action chosen from a finite set. It is called bimatrix because

it is usually represented as a couple of matrices, the first one describing the

Heads Tails

Heads +1 / -1 -1 / +1

Tails -1 / +1 +1 / -1

Figure 4.1: Matching Pennies payoff table.

rewards of the first agent and the second one describing the rewards of the

second agent.

We consider a particular bimatrix game called Matching Pennies (MP). In

MP, the two players, called Even and Odd, have both a coin and have to

decide to play their coin as Heads or Tails, then they reveal their choices

simultaneously. If the two coins match (both Heads or Tails), then Even ob-

tain both coins, hence getting a payoff of +1 while Odd gets -1. If the coins

do not match (one Heads and one Tails), Odd receive the two coins, hence

getting a payoff of +1 while Even gets -1 (see Table 4.1). Since the sum

of the payoffs is always zero, Matching Pennies is called a zero-sum game.

Matching Pennies is a good benchmark since there is no pure strategy Nash

Equilibrium and there is a unique Nash Equilibrium in the mixed strategy

in which both players choose Heads and Tails with equal probability. In

Matching Pennies, as well as in all zero-sum games, gradient descent algo-

rithms have a cyclical behavior and never converge to a Nash Equilibrium

[5], making them interesting for our goals with respect to other bimatrix

games.

All our simulations are performed 20 times and the results are averaged on

them. We consider the class of Boltzmann policies (as shown with Equation

2.5) with temperature τπ = 1, where a single parameter θ is mapped to the

probability of taking action 1 or 2.

We take learning rate α = 1 and the starting θi of agent i is sampled from

a uniform distribution in range [−2,+2]. For the estimation of θ and ω,

the agents assume the other agent considers the same feature vectors, i.e.

one feature as the policy parameter θ and four features, the four possible

outcomes of the match, as the feature vector of the reward ω.

4.1.2 Continuous Gridworld

Gridworlds are environments represented with 2D-matrices N ×M , where

N and M are the dimensions of the matrix. In gridworlds, the agent can

generally move north, east, south, west or stay still and take other actions

that are dependent on the specific environment. The agent, moving through

42

(a) (b)

Figure 4.2: Gridworld 1 (a) and Gridworld 2 (b).

the environment, has to reach a goal to achieve a reward.

In continuous gridworlds, the environment is not a discrete matrix anymore

but a continuous space. In our environments, similar to the ones in [49],

the grid has size 3×3 and the agent chooses an action that corresponds to

the direction to take, expressed as the angle from the horizontal direction

of reference, and moves of 1 length in that direction. The starting state of

the first agent is the lower-left corner, while the one of the second agent is

the upper-left. Actions have 0.9 probability of success and 0.1 probability of

being taken randomly. Moreover, the action is taken from a Gaussian dis-

tribution where the mean is the angle chosen and the variance is 0.5. The

actions of the two agents are chosen and performed simultaneously.

If the distance between the two agents is lower than 0.5, the two agents

collide, their movement is canceled, thus they remain in their previous po-

sitions, and receive a penalty of 1. If an agent takes an action that would

move it outside of the grid, which is not allowed, the agent is placed on the

nearest border of the grid from its illegal ending position. When an agent

reaches its goal, it receives a reward of 10.

To represent the state of the environment at each time, we use Radial Basis

Functions (RBF, [11]) as general feature function approximators. As RBFs

we use Gaussian functions and, for a given state s, each state-feature φi(s)

is represented by [28]:

φi(s) =
1√

2πσ2
e−||ci−s||

2/2σ2
(4.1)

43

where ci is the center of the i-th Gaussian and σ2 is the variance. The

Gaussians are usually distributed tiling the state-space, evenly distributing

the centers along each dimension. This way, bd centers are needed, where

d is the number of dimensions and b is the number of centers aligned on

each axis. With this distribution of the centers, and given N × N the size

of the grid, we chose σ2 = N
2(b−1)

2
as in [49]. For the estimation of ω, the

agents assume the other agent considers the same feature vector, i.e. three

features, one for reaching the goal, one for colliding with each other and one

for every other possible outcome of a step.

The two continuous gridworlds differ from each other because of the

objectives of the agents.

In Gridworld 1 (see Figure 4.2a), the agents have each of them their own goal,

which are circles with radius 0.5 placed on the opposite corners from their

starting positions. The small blue quadrant is the starting point of agent

1, the big blue quadrant is its goal and the small and big red quadrants are

agent 2’s starting point and goal respectively. An agent reaches its goal if its

ending position after a movement, the center of the agent’s circle, is inside

the circular area of the goal. When that happens, after each agent receives

its reward for the last movement, the following actions are always taken as

zero without actually performing them on the environment and both agents

receive zero reward for the rest of the episode until reaching the horizon T .

In Gridworld 2 (see Figure 4.2b), the agents have a common goal, represented

as a green circle of radius 0.5 with the center situated on the opposite side of

their starting points, equally distant from both of them, but a new condition

is introduced. At the start of each episode, a token is randomly assigned to

one of the players. A player can obtain the reward associated with reaching

the goal only if it reaches the goal and it owns the token. In this environment,

the collision does not generate a penalty but instead changes the ownership

of the token and it is the only way for the token to change possession.

4.2 IRL in Bimatrix

We start by analyzing two scenarios in which the agents are playing Match-

ing Pennies, both are using algorithm IGA-PP and both are estimating the

gradients, the parameters of the opponent with Behavioral Cloning and the

parameters of the opponent’s reward function.

The only difference between the scenarios is that in the first scenario they

44

0 100 200 300 400 500
Learning step

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
He

ad
s

agent 1
agent 2

(a)
0 100 200 300 400 500

Learning step

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
He

ad
s

agent 1
agent 2

(b)

0 100 200 300 400 500
Learning step

0.4

0.2

0.0

0.2

0.4

Ex
pe

ct
ed

 re
tu

rn

agent 1
agent 2

(c)
0 100 200 300 400 500

Learning step

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Ex
pe

ct
ed

 re
tu

rn

agent 1
agent 2

(d)

Figure 4.3: Matching Pennies results. Probability of choosing Heads with IRL on
GPOMDP (a) and on IGA-PP (b). Expected return with IRL on GPOMDP (c) and on
IGA-PP (d).

believe the other agent is using standard gradient descent and therefore

they use Equation (3.3) to estimate the opponent’s reward function. In the

second scenario instead, they know the algorithm used by the other agent,

IGA-PP, and therefore use Equation (3.4) to estimate the opponent’s reward

function.

For the experiments, we run the simulation 20 times and each run is com-

posed of 500 learning steps with 250 plays for each step. The learning rates

of the agents are both equal to 1.

The results in Figure 4.3 show that, using the omega estimation formula

(3.3), the two agents do not converge and instead diverge due to the lack

of the correct estimation of the other agent’s ω (see Figure 4.3a and 4.3c).

Instead, using IGA-PP omega estimation formula (3.4), the two agents learn

the correct opponent’s reward function and converge to the Nash Equilib-

rium (see Figure 4.3b and 4.3d).

We obtain similar results if instead than two agents playing IGA-PP we

use two agents playing LOLA (see Appendix B).

45

0 100 200 300 400 500
Learning step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
W

ei
gh

ts
 d

iff
er

en
ce

agent 1
agent 2

(a)
0 100 200 300 400 500

Learning step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

W
ei

gh
ts

 d
iff

er
en

ce

agent 1
agent 2

(b)

0 100 200 300 400 500
Learning step

0.2

0.0

0.2

0.4

0.6

Ex
pe

ct
ed

 re
tu

rn

agent 1
agent 2

(c)
0 100 200 300 400 500

Learning step

0.2

0.0

0.2

0.4

0.6

Ex
pe

ct
ed

 re
tu

rn

agent 1
agent 2

(d)

Figure 4.4: Gridworld results. Estimation error with IRL on GPOMDP (a) and on
IGA-PP (b). Expected return with IRL on GPOMDP (c) and on IGA-PP (d).

4.3 IRL in Continuous Gridworld

We perform the same experiments in Gridworld 1. In these scenarios, the

agents are using algorithm IGA-PP and both know the opponent parame-

ters and estimate only the gradients and the rewards.

As before, the only difference between the experiments is that, in the first,

the agents believe the other agent is using standard gradient descent and

estimate the opponent’s reward function using Equation (3.3) while, in the

second, they know the other agent is using IGA-PP and estimate opponent’s

reward function using Equation (3.4).

For the experiments, we run the simulation 20 times and each run is com-

posed of 500 learning steps. In every learning step, 50 trajectories are gen-

erated and each trajectory is 15 steps long. The learning rates of the agents

are both equal to 0.1.

The results in Figure 4.4 show that, using the omega estimation formula

(3.3), the two agents do not recover a precise estimation of ω (see Figure

4.4a). Instead, using IGA-PP omega estimation formula (3.4), the agents

46

both learn, in a quicker way, a more precise estimation of ω (see Figure 4.4b).

Nevertheless, the error in the estimation of omega does not significantly

influence the behavior of the agents in the environment, since both achieve

good results in a similar number of learning steps (see Figure 4.4c and Figure

4.4d).

47

48

Chapter 5

Algorithm Identification

In this chapter, we present a method to identify the algorithm used by

another learning agent in a Multi-Agent environment from a finite set of

possible algorithms (Section 5.1). This can be achieved independently by

the algorithm already used by the performing agent, thus without changing

any of the current behaviors of the agent. For this reason, we call this the

passive identification of an agent’s algorithm (Section 5.2). Then we present

an exploratory method to choose a strategy that lets the agent identify the

other agent’s algorithm in a reduced number of steps with respect to the

passive method. This is done by selecting at each step the strategy that

maximizes the distances in the opponent’s estimated behaviors depending

on the different algorithms. We call this the active identification method

(Section 5.3).

5.1 Overview

To present the algorithm identification methods, we start from the formal-

ization of the environment of a Stochastic Game as presented in Section

2.2.1. We consider a Stochastic Game with two agents, in which agent 1 is

the agent performing the identification over the algorithm used by agent 2,

which is included in a set of possible algorithmsM = {m1, . . . ,mM}, where

M is the number of possible algorithms. Each algorithm is defined by its

update rule and its hyperparameters. At some step k, the interaction of

the agents with the environment generates a set of demonstrations Tk that

comprises the information on the states visited and the actions taken. We

assume that agent 1 knows agent 2’s parameters only at the beginning of

the learning and that it is not changing its learning algorithm during the

game.

Thanks to these assumptions, agent 1 can always compute the correct pa-

rameters of agent 2 for every algorithm in the given set, independently of

agent 2’s knowledge of agent 1’s parameters. What it does not know is which

of the algorithm is the correct one and therefore the correct parameters. This

problem can be solved by our identification algorithm.

5.2 Passive Algorithm Identification

The passive algorithm identification at learning step k is performed taking as

input the set of possible algorithmsMk, the known parameters of our agent

θ1
k, the parameters of the opponent agent θ2,m

k for every algorithm m in

Mk, the trajectories generated with those parameters Tk and the threshold

ζ, which is used to keep or eliminate candidate algorithms (see Algorithm

9).

The identification process starts computing, for each algorithm m, the good-

ness of fit of the model, generated by the the parameters of agent 1 θ1
k and

agent 2 θ2,m
k , to the sample of data represented by the trajectories Tk. This

is performed computing the log-likelihood Lmk with Equation (2.13).

Then, it selects the value of the maximum log-likelihood L̂k among the ones

calculated, formulated as:

L̂k = max
m∈M

(
`
(
θ1
k,θ

2,m
k |Tk

))
where `(· | ·) is the log-likelihood as defined in (2.13). Afterward, we initial-

ize an empty set which will be filled with the algorithms which satisfied the

criterion of the threshold.

Next, for each algorithm m ∈ M, the log-likelihood Lmk is compared to the

maximum log-likelihood L̂k performing a simple-vs-simple hypothesis test

in logarithmic form against the threshold ζ, as presented in Section 2.5.6.

Given Λ = −2(Lmk −L̂k), if Λ < ζ the algorithm is kept. Otherwise, if Λ ≥ ζ
the algorithm is discarded. In this test, the alternative hypothesis is the

model with the highest log-likelihood and the null hypothesis to be evalu-

ated is the model generated with algorithm m that can be rejected or not.

If the outcome of the test does not reject the null hypothesis, the algorithm

m can not be excluded and, therefore, is added to the list of the algorithms

to be returned, i.e. the algorithms that satisfied the threshold evaluation.

50

Algorithm 9: Passive Algorithm Identification

Input: Set of possible algorithms at step k Mk, threshold ζ,
parameters of agent 1 at k θ1

k, joint parameters of agent 2

at step k for each algorithm m θ2,m
k

Data: Trajectories at step k Tk
Output: Set of possible algorithms Mk+1 ∈Mk

for each algorithm m in Mk do

Lmk = `(θ1
k,θ

2,m
k |Tk)

end

L̂k = max
m

(Lmk)

Mk+1 = Ø
for each algorithm m in Mk do

Λ = −2(Lmk − L̂k)
if Λ < ζ then

Add algorithm m to Mk+1

end
return Mk+1

5.3 Active Algorithm Identification

The exploration strategy is determined with the active algorithm identifica-

tion method.

We start recollecting that the identification of the opponent’s algorithm

is based on the likelihood that each possible θ2,m
k of the opponent, following

algorithm m, generated the observed trajectories at step k. To accelerate

the identification of the correct algorithm, we decided to facilitate the dis-

carding of at least one possible algorithm at each step.

In order to do so, we need to differentiate as much as possible the trajectories

that one algorithm would generate with respect to another one. Differenti-

ating the trajectories generated by the algorithms means having the greatest

distance between their probability distributions. Hence, in order to maxi-

mize this distance, we chose to measure it using the Kullback-Leibler (KL)

divergence (see Section 2.7.1).

We chose the KL divergence between two probability distributions be-

cause, given probability distributions p and q and a set of X1, . . . , Xn i.i.d.

samples generated from the distribution p, recollecting that the log-likelihood

51

ratio between p and q normalized by n is:

λn =
1

n

n∑
i=1

log
p(Xi)

q(Xi)

we can notice that λn is itself a random variable so λn → E [λn], i.e. as n

grows, λn tends to its expected value. The expected value of λn is:

E[λn] = E

[
1

n

n∑
i=1

log
p(Xi)

q(Xi)

]

=
1

n

n∑
i=1

E

[
log

p(Xi)

q(Xi)

]
=

∫
log

p(x)

q(x)
p(x)d(x)

= DKL (p(x)‖q(x))

So the expected value of the likelihood ratio test is equal to the KL diver-

gence between the two probability distribution.

One of the problem encountered is that, having observed the trajectories

at step k and not knowing the dynamics of the environment, we can not

directly influence the policy of the opponent’s agent during the following step

k + 1, since its strategy is computed with the trajectories already observed

at step k. After observing the trajectories at step k, we can only influence

the opponent’s policy at step k + 2.

To influence it, we choose the strategy θ1
k+1 for step k+1 that would induce

one of the other agent’s possible probability distributions at step k+2 to have

the greatest KL divergence from the one generated by a different algorithm.

This generates a second complication: while choosing θ1
k+1, we can not

simulate the trajectories that this policy will generate, so we are not able

to compute the opponent’s updates, and its possible policies, since they are

dependant on the trajectories observed. To solve this problem we have to

rely on off-policy estimation (see Section 2.1) and Importance Sampling (see

Section 2.6).

Since we do not have the trajectories at step k + 1, we need to perform

an off-policy estimation to approximate the opponent’s policy parameters

at step k + 2 using data obtained in the previous learning steps following

different policies. To reduce the variance due to the different distributions,

we adopt Multiple Importance Sampling (see Section 2.6.1) to compute the

52

Algorithm 10: Active Algorithm Identification

Input: Possible algorithms’ list at step k Mk, history of
parameters of agent 1 θ1

1:k, history of parameters of agent 2

for each algorithm m θ2,m
1:k

Data: Trajectories’ history T1:k

Output: Parameters of agent 1 at k + 1 maximizing the

KL-Divergence θ̂1
k+1

for each algorithm m in Mk do

θ2,m
k+1 = Updm(Tk,θ1

k,θ
2,m
k)

θ2,m
1:k+1 = θ2,m

1:k

_
θ2,m
k+1

end
while DMAX

KL does not converge to a maximum do
define new θ1

k+1

for each algorithm m in Mk do

MISm = MISmk (T1:k,θ
1
1:k,θ

2,m
1:k+1,θ

1
k+1)

θ2,m
k+2 = Updm(Tk,MISm,θ1

k+1,θ
2,m′

k+1)

PDm = PD(θ2,m
k+2)

end
for each algorithm m in Mk do

for each algorithm m′ in Mk do

Dm,m′

KL = DKL(PDm‖PDm′)
end

end

DMAX
KL = max

m∈Mk
m′∈Mk

(Dm,m′

KL)

end

return θ̂1
k+1

adjustments needed to correctly estimate the policy parameters at step k+2

given the history of the previous values and trajectories.

Therefore, given (·)1:k the history of values (·) from step 1 to step k,

the method takes as input the set of possible algorithms Mk at step k, the

history of known parameters of our agent θ1
1:k, the history of parameters

of the opponent agent θ2,m
1:k for every algorithm m in Mk, the trajectories

generated with those parameters T1:k and the threshold ζ.

With this data, we need to compute the expected parameters of the op-

ponent agent θ2,m
k+1 at step k + 1 for each algorithm m, computed with the

known algorithms’ update rules, and we write θ2,m
1:k+1 = θ2,m

1:k

_
θ2,m
k+1 the con-

catenation of θ2,m
1:k and θ2,m

k+1. Then, for every algorithm m, we compute the

53

Multiple Importance Sampling ratios (see Section 2.6.1) for the parameters

θ1
k+1 and θ2,m

k+1 at step k+ 1. Then, we use again the update method of each

algorithm to estimate the opponent’s parameters θ2,m
k+2 for that algorithm

m at step k + 2. As presented before, due to the impossibility to generate

trajectories with the parameters at step k+1, we need to perform this oper-

ation including in the calculation the MIS ratios. Now, for every algorithm

m, we need to compute the probability distribution of the estimated oppo-

nent’s parameters at step k + 2, expressed as PDm(θ2,m
k+2).

Finally, for every pair of algorithms (m,m′), we compute the Kullback-

Leibler divergence Dm,m′

KL and take its maximum value DMAX
KL .

The exploration algorithm then chooses the values of θ1
k+1 that maximize

DMAX
KL obtaining the parameters θ̂1

k+1, in parameter space Θ, of the strat-

egy to play the following step (see Algorithm 10).

We can now formulate the optimization as:

θ̂1
k+1 = max

θ1k+1∈Θ
DMAX
KL (θ1

k+1) (5.1)

where:

DMAX
KL (θ1

k+1) = max
θ1k+1∈Θ

m∈Mk
m′∈Mk

DKL

(
PD

(
θ2,m
k+2

)
‖PD

(
θ2,m′

k+2

))

is the formula to obtain the maximum KL divergence given the set of policy

parameters PD
(
θ2,m
k+2

)
of parameters θ2,m

k+2 dependent on parameters θ1
k+1.

Parameters θ2,m
k+2 can be expressed as:

θ2,m
k+2 = Updm(Tk,MISmk (T1:k,θ

1
1:k,θ

2,m
1:k+1,θ

1
k+1),θ1

k+1,θ
2,m′

k+1)

in which Updm(·) is the update function of the opponent agent using algo-

rithm m.

Given nj trajectories for learning step j ≤ k and assuming a fixed trajec-

tory length T (τ), the Multiple Importance Sampling ratios for each timestep

t is formulated as (see Equation (2.15)):

MISmk,t(T1:k,θ
1
1:k,θ

2,m
1:k+1,θ

1
k+1) =

k∑
j=1

nj∑
i=1

t−1∏
t′=1

πmk+1(aj,i,t′ |sj,i,t′)

k∑
l=1

τl
t−1∏
t′=1

πml (al,i,t′ |sl,i,t′)

54

and the set of the Multiple Importance Sampling ratios for all t is expressed

as:

MISmk = {MISmk,1, . . . ,MISmk,t, . . . ,MISmk,T (τ)}

Therefore, the expanded optimization formula is:

θ̂1
k+1 = max

θ1
k+1∈Θ
m∈Mk

m′∈Mk

DKL(PD(Updm(Tk,MISm
k (T1:k,θ

1
1:k,θ

2,m
1:k+1,θ

1
k+1),θ1

k+1,θ
2,m
k+1) ‖

PD(Updm
′
(Tk,MISm′

k (T1:k,θ
1
1:k,θ

2,m′

1:k+1,θ
1
k+1),θ1

k+1,θ
2,m′

k+1)))

This maximization function can not be expressed in closed form and it is

difficult to optimize with a gradient descent approach. Therefore, in our ex-

periments, we convert the continuous space of the parameters into a discrete

one and optimize over that set of parameters.

55

56

Chapter 6

Experimental Evaluation of

Algorithm Identification

We have already presented in Chapter 4 some of the advantages of knowing

the algorithm used by the opponent, enabling the agents to converge in-

stead of diverging. In this chapter, we present the results obtained with the

passive identification technique presented in Section 5.2 and compare those

results with the active method.

The experiments are performed both in Matching Pennies (see Section 6.1)

and in the continuous environment Gridworld 2 (see Section 6.2).

Then, we show the advantage of identifying the opponent’s algorithm in

Matching Pennies and how exploiting this information applying a Best Re-

sponse strategy leads to obtaining a higher payoff (see Section 6.3). As

before, the shaded region in the graphs represents the 95% confidence inter-

val.

6.1 Identification in Bimatrix

We start applying the algorithm in Matching Pennies (see Section 4.1.1). In

this scenario, agent 1 is the agent performing the identification and we as-

sume it has a finite set of possible algorithms. Each algorithm, as described

in Section 2.3.2, is defined with its starting parameters θ2
1, its reward func-

tion ω2 and its hyperparameters. To use passive identification as a baseline

for the active identification, agent 1 plays a different random strategy at

each learning step, while the opponent performs its algorithm. For the ac-

tive method, because of the difficulties presented in Section 5.3, we convert

the continuous space of the parameters into a discrete one and generate, at

0 20 40 60 80 100
Learning step

0

2

4

6

8

10

Lo
gl

ik
el

ih
oo

d
Ra

tio

IGA_PP, 1
LOLA, 1
GPOMDP, 1
NOHD, 1
SOS, 1
CO, 1
CGD, 1

(a)

0 20 40 60 80 100
Learning step

0

2

4

6

8

10

Lo
gl

ik
el

ih
oo

d
Ra

tio

IGA_PP, 1
LOLA, 1
GPOMDP, 1
NOHD, 1
SOS, 1
CO, 1
CGD, 1

(b)

Figure 6.1: Results of passive algorithm identification (a) and active algorithm identi-
fication (b) in Matching Pennies.

58

each learning step k, a vector of possible values for θ1
k+1, linearly separated

in the probability space, and perform the optimization over that set of val-

ues.

For the experiment, we run the simulation 20 times and each run is com-

posed of 100 learning steps with 250 plays for each step. The discretization

is performed linearly dividing the probability space of choosing Heads in 101

values in [0, 1] and computing the corresponding policy parameters.

The results in Figure 6.1a show how the passive identification method

(see Algorithm 9) can correctly discard many of the possible algorithms,

leaving only algorithms which show similar behaviors. Nevertheless, using

the active identification method presented in Algorithm 10, the identification

of the algorithms is significantly faster and even very similar algorithms are

differentiated (see Figure 6.1b).

6.2 Identification in Gridworlds

As done before for the IRL methods, we perform the algorithm identification

also in the continuous gridworld environment (see Section 4.1.2). We use

Gridworld 2 for this experiment. As seen in the bimatrix scenario, agent 1

is the agent performing the identification and we assume it knows the set

of possible algorithms of agent 2, its parameters θ2
1 at the beginning of the

learning and its reward function ω2. For the passive identification, agent

1 plays a different random strategy at each learning step taken by a fixed

pool of strategies, while the opponent performs its algorithm. For the active

method, we choose, at each learning step k, a subset of possible strategy

form the same fixed set as in the passive identification scenario, and per-

form the optimization over that set of strategies.

For the experiments, we run the simulation 20 times and each run is com-

posed of 50 learning steps. In every learning step, 50 trajectories are gener-

ated and each trajectory is 15 steps long. The learning rates of the agents

are both equal to 0.1. The set of possible strategies is created generating

100 random strategies and the subset is composed of 30 randomly chosen

strategies.

The results in Figure 6.2a show how the passive identification method

(see Algorithm 9) can correctly discard many of the possible algorithms,

leaving only algorithms which show similar behaviors. In this environment,

59

0 10 20 30 40 50
Learning step

0

20

40

60

80

100

Lo
g-

Lik
el

ih
oo

d
Ra

tio

IGA_PP, 0.1
LOLA, 0.1
GPOMDP, 0.1
NOHD, 0.1
SOS, 0.1
SGA, 0.1
CO, 0.1
CGD, 0.1

(a)

0 10 20 30 40 50
Learning step

0

20

40

60

80

100

Lo
g-

Lik
el

ih
oo

d
Ra

tio

IGA_PP, 0.1
LOLA, 0.1
GPOMDP, 0.1
NOHD, 0.1
SOS, 0.1
SGA, 0.1
CO, 0.1
CGD, 0.1

(b)

Figure 6.2: Results of passive algorithm identification (a) and active algorithm identi-
fication (b) in Gridworld 2.

60

however, the active identification achieves similar results to the passive iden-

tification (see Figure 6.2b), probably due to the complexities of finding a

good strategy for the exploratory purposes.

6.3 Best response with identified algorithm

In this section, we show how an agent performing algorithm identification

can make use of this knowledge to exploit the strategy of its opponent.

We consider the game of Matching Pennies and both the agents use IGA-PP

as the update algorithm. Since agent 1 performs algorithm identification,

we use the same characteristics presented in Section 5.2. Moreover, since the

goal of this experiment is to obtain a high reward, after ten steps of algo-

rithm identification, we compute a Best Response to the estimated strategy

of agent 2.

If the agent has not yet identified the opponent’s algorithm, the agent com-

putes the Best Response with respect to the algorithm with the highest

likelihood at each time step. To compute the Best Response, we perform

one step of gradient descent optimization over the expected return, given

the estimated parameter θ2
k+1, the set of trajectories at step k and the Im-

portance Sampling due to the different probability distribution for both the

agents.

The result, shown in Figure 6.3a, represents the identification of the oppo-

nent’s algorithm, while Figure 6.3b shows how the expected return of the

agent increases when it starts using the Best Response strategy and how

the other agent, using IGA-PP, quickly converges to the Nash Equilibrium.

Despite this, every time it shifts from the Nash Equilibrium, the agent is

ready to exploit the opponent’s behavior, increasing its reward.

61

0 20 40 60 80 100
Learning step

0

2

4

6

8

10

Lo
gl

ik
el

ih
oo

d
Ra

tio

IGA_PP, 1
LOLA, 1
GPOMDP, 1
NOHD, 1
SOS, 1
SGA, 1
CO, 1
CGD, 1

(a)

0 20 40 60 80 100
Learning step

0.4

0.2

0.0

0.2

0.4

Ex
pe

ct
ed

 re
tu

rn

agent 1
agent 2

(b)

Figure 6.3: Results of the identification (a) and expected return (b) of a Best Response
strategy after the identification of opponent’s algorithm.

62

Chapter 7

Conclusion

In this document, we expanded the usage of the LOGEL algorithm pre-

sented in [48] to the Multi-Agent environment. Furthermore, we proposed

two other techniques to recover the reward function of an opponent using

algorithm-specific optimization methods and presented the results for the

IGA-PP algorithm. We presented a comparison between the techniques per-

formed on the same agents following IGA-PP while modeling the opponent

as GPOMDP or IGA-PP. We saw the impact that the correct assumption

on the opponent’s algorithm has on the estimation of its reward function

and the overall learning process.

Then, we presented a method for a new approach in the field of opponent

modeling. With this technique, the information recovered from the oppo-

nent is the algorithm it uses to update its policy parameters. Identifying

the correct algorithm among a set of possibilities can be used to exploit the

future behavior of the other agent, being “one step ahead” in a competi-

tive environment or facilitating a collaboration if in a cooperative scenario.

Then, we expanded this method providing an exploration method to facil-

itate the identification of the opponent’s algorithm. Finally, we presented

the results obtained with both the methods and a possible application in a

competitive environment.

7.1 Future work

There are many possible directions for future work, being this a new ap-

proach to the problem of opponent modeling. We have selected some of

them in this non-exhaustive list:

• The main direction for future work regards the possibility of perform-

ing standard IRL to recover the parameters of the opponent’s reward

function while, at the same time, identifying the algorithm it is using.

This is a naturally ill-posed problem since one information is needed to

model the other, but we are confident that, under some assumptions,

great results could be achieved.

• Another direction could be to overcome the assumption made about

the knowledge of the policy parameters of the other agent at the be-

ginning of the learning. Those could be estimated with Behavioral

Cloning techniques and then estimated again at each learning step,

taking into account the possible algorithms, to refine the estimation.

• One of the difficulties encountered was the limited resources which

restricted our capability of performing extended experiments in more

complex scenarios. A possible environment could be Littman’s soccer

presented in [31] or a variation we presented in Appendix A due to its

cyclical behavior similar to Matching Pennies.

• The algorithm identification method could be extended to k-level rea-

soning algorithms. This could be an interesting approach to identify

the level of modeling power of the opponent and use this knowledge

to stop the recursive reasoning at the minimum higher level needed to

correctly model the opponent.

• We considered only 2-agent environments. A possible development

could be to expand these methods to n-agent environments.

• The last direction for future work presented is to apply this method

with Deep Reinforcement Learning algorithms. The challenges are

evident, but achieving good results in this scenario could lead to a

wider application in the real world of these techniques.

64

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via inverse

reinforcement learning”. In: Proceedings of the twenty-first interna-

tional conference on Machine learning. 2004, p. 1.

[2] Stefano V Albrecht and Peter Stone. “Autonomous agents modelling

other agents: A comprehensive survey and open problems”. In: Artifi-

cial Intelligence 258 (2018), pp. 66–95.

[3] Brenna D Argall et al. “A survey of robot learning from demonstra-

tion”. In: Robotics and autonomous systems 57.5 (2009), pp. 469–483.

[4] Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. “Lo-

cally weighted learning for control”. In: Lazy learning. Springer, 1997,

pp. 75–113.

[5] David Balduzzi et al. “The mechanics of n-player differentiable games”.

In: arXiv preprint arXiv:1802.05642 (2018).

[6] Jonathan Baxter and Peter Bartlett. “Direct Gradient-Based Rein-

forcement Learning: I. Gradient Estimation Algorithms”. In: (Jan.

2000).

[7] Dimitri P. Bertsekas. Dynamic programming and optimal control. Athena

Scientific, 2005.

[8] Michael Bowling. “Convergence and no-regret in multiagent learning”.

In: Advances in neural information processing systems. 2005, pp. 209–

216.

[9] Michael Bowling and Manuela Veloso. “Multiagent learning using a

variable learning rate”. In: Artificial Intelligence 136.2 (2002), pp. 215–

250.

65

[10] Michael Bowling and Manuela Veloso. “Rational and convergent learn-

ing in stochastic games”. In: International joint conference on artifi-

cial intelligence. Vol. 17. 1. Lawrence Erlbaum Associates Ltd. 2001,

pp. 1021–1026.

[11] David S Broomhead and David Lowe. Radial basis functions, multi-

variable functional interpolation and adaptive networks. Tech. rep.

Royal Signals and Radar Establishment Malvern (United Kingdom),

1988.

[12] George W Brown. “Iterative solution of games by fictitious play”. In:

Activity analysis of production and allocation 13.1 (1951), pp. 374–

376.

[13] Lucian Busoniu, Robert Babuska, and Bart De Schutter. “A compre-

hensive survey of multiagent reinforcement learning”. In: IEEE Trans-

actions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews) 38.2 (2008), pp. 156–172.

[14] George Casella and Roger L Berger. Statistical inference. Vol. 2. Duxbury

Pacific Grove, CA, 2002.

[15] Sonia Chernova and Manuela Veloso. “Confidence-based policy learn-

ing from demonstration using gaussian mixture models”. In: Proceed-

ings of the 6th international joint conference on Autonomous agents

and multiagent systems. 2007, pp. 1–8.

[16] Vincent Conitzer and Tuomas Sandholm. “AWESOME: A general

multiagent learning algorithm that converges in self-play and learns

a best response against stationary opponents”. In: Machine Learning

67.1-2 (2007), pp. 23–43.

[17] Robert H Crites and Andrew G Barto. “Improving elevator perfor-

mance using reinforcement learning”. In: Advances in neural informa-

tion processing systems. 1996, pp. 1017–1023.

[18] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey

on policy search for robotics. now publishers, 2013.

[19] Jakob N Foerster et al. “Learning with opponent-learning awareness”.

In: arXiv preprint arXiv:1709.04326 (2017).

[20] Piotr J Gmytrasiewicz and Edmund H Durfee. “Rational coordina-

tion in multi-agent environments”. In: Autonomous Agents and Multi-

Agent Systems 3.4 (2000), pp. 319–350.

66

[21] Jonathan Ho, Jayesh Gupta, and Stefano Ermon. “Model-free imita-

tion learning with policy optimization”. In: International Conference

on Machine Learning. 2016, pp. 2760–2769.

[22] Junling Hu and Michael P Wellman. “Nash Q-learning for general-

sum stochastic games”. In: Journal of machine learning research 4.Nov

(2003), pp. 1039–1069.

[23] Junling Hu and Michael P. Wellman. “Multiagent Reinforcement Learn-

ing: Theoretical Framework and an Algorithm”. In: Proceedings of the

Fifteenth International Conference on Machine Learning. ICML-98.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998,

pp. 242–250. isbn: 1558605568.

[24] Tetsunari Inamura Masayuki Inaba Hirochika Inoue, M Inamura, and

H Inaba. “Acquisition of probabilistic behavior decision model based

on the interactive teaching method”. In: Proceedings of the Ninth In-

ternational Conference on Advanced Robotics, ICAR99. 1999.

[25] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. “On the

Convergence of Stochastic Iterative Dynamic Programming Algorithms”.

In: Neural Computation 6.6 (1994), pp. 1185–1201. doi: 10.1162/

neco.1994.6.6.1185.

[26] Alexis Jacq et al. “Learning from a Learner”. In: International Con-

ference on Machine Learning. 2019, pp. 2990–2999.

[27] Herman Kahn and Andy W Marshall. “Methods of reducing sample

size in Monte Carlo computations”. In: Journal of the Operations Re-

search Society of America 1.5 (1953), pp. 263–278.

[28] George Konidaris. “Value function approximation in reinforcement

learning using the Fourier basis”. In: Computer Science Department

Faculty Publication Series (2008), p. 101.

[29] Solomon Kullback. Information theory and statistics. Courier Corpo-

ration, 1997.

[30] Alistair Letcher et al. “Stable opponent shaping in differentiable games”.

In: arXiv preprint arXiv:1811.08469 (2018).

[31] Michael L. Littman. “Markov games as a framework for multi-agent re-

inforcement learning”. In: Machine Learning Proceedings 1994 (1994),

pp. 157–163. doi: 10.1016/b978-1-55860-335-6.50027-1.

67

https://doi.org/10.1162/neco.1994.6.6.1185
https://doi.org/10.1162/neco.1994.6.6.1185
https://doi.org/10.1016/b978-1-55860-335-6.50027-1

[32] Maja J Mataric. “Reward functions for accelerated learning”. In: Ma-

chine learning proceedings 1994. Elsevier, 1994, pp. 181–189.

[33] Maja J Matarić. “Learning in multi-robot systems”. In: International

Joint Conference on Artificial Intelligence. Springer. 1995, pp. 152–

163.

[34] Maja J. Matarić. “Reinforcement Learning in the Multi-Robot Do-

main”. In: Robot Colonies (1997), pp. 73–83. doi: 10.1007/978-1-

4757-6451-2_4.

[35] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. “The numer-

ics of gans”. In: Advances in Neural Information Processing Systems.

2017, pp. 1825–1835.

[36] Andrew W. Moore and Christopher G. Atkeson. “Prioritized sweeping:

Reinforcement learning with less data and less time”. In: Machine

Learning 13.1 (1993), pp. 103–130. doi: 10.1007/bf00993104.

[37] John Nash. “Non-cooperative games”. In: Annals of mathematics (1951),

pp. 286–295.

[38] John F Nash et al. “Equilibrium points in n-person games”. In: Pro-

ceedings of the national academy of sciences 36.1 (1950), pp. 48–49.

[39] Andrew Y Ng, Stuart J Russell, et al. “Algorithms for inverse rein-

forcement learning.” In: Icml. Vol. 1. 2000, p. 2.

[40] Jing Peng and Ronald J. Williams. “Incremental multi-step Q-learning”.

In: Machine Learning 22.1-3 (1996), pp. 283–290. doi: 10 . 1007 /

bf00114731.

[41] Jan Peters and Stefan Schaal. “Policy Gradient Methods for Robotics”.

In: 2006 IEEE/RSJ International Conference on Intelligent Robots

and Systems (2006). doi: 10.1109/iros.2006.282564.

[42] Jan Peters and Stefan Schaal. “Reinforcement learning of motor skills

with policy gradients”. In: Neural Networks 21.4 (2008), pp. 682–697.

doi: 10.1016/j.neunet.2008.02.003.

[43] Matteo Pirotta and Marcello Restelli. “Inverse reinforcement learn-

ing through policy gradient minimization”. In: AAAI Conference on

Artificial Intelligence. AAAI Press. 2016, pp. 1993–1999.

[44] Matteo Pirotta and Marcello Restelli. “Inverse reinforcement learn-

ing through policy gradient minimization”. In: AAAI Conference on

Artificial Intelligence. AAAI Press. 2016, pp. 1993–1999.

68

https://doi.org/10.1007/978-1-4757-6451-2_4
https://doi.org/10.1007/978-1-4757-6451-2_4
https://doi.org/10.1007/bf00993104
https://doi.org/10.1007/bf00114731
https://doi.org/10.1007/bf00114731
https://doi.org/10.1109/iros.2006.282564
https://doi.org/10.1016/j.neunet.2008.02.003

[45] Dean A Pomerleau. “Efficient training of artificial neural networks for

autonomous navigation”. In: Neural computation 3.1 (1991), pp. 88–

97.

[46] Rob Powers and Yoav Shoham. “New criteria and a new algorithm for

learning in multi-agent systems”. In: Advances in neural information

processing systems. 2005, pp. 1089–1096.

[47] Martin L. Puterman. Markov decision processes: Discrete stochastic

dynamic programming. 1994. isbn: 9780471619772.

[48] Giorgia Ramponi, Gianluca Drappo, and Marcello Restelli. “Inverse

Reinforcement Learning from a Gradient-based Learner”. In: arXiv

preprint arXiv:2007.07812 (2020).

[49] Giorgia Ramponi and Marcello Restelli. “Newton-based Policy Opti-

mization for Games”. In: arXiv preprint arXiv:2007.07804 (2020).

[50] Giorgia Ramponi et al. “Truly Batch Model-Free Inverse Reinforce-

ment Learning about Multiple Intentions”. In: International Confer-

ence on Artificial Intelligence and Statistics. PMLR. 2020, pp. 2359–

2369.

[51] Alfréd Rényi et al. “On measures of entropy and information”. In: Pro-

ceedings of the Fourth Berkeley Symposium on Mathematical Statistics

and Probability, Volume 1: Contributions to the Theory of Statistics.

The Regents of the University of California. 1961.

[52] Herbert Robbins and Sutton Monro. “A stochastic approximation

method”. In: The annals of mathematical statistics (1951), pp. 400–

407.

[53] Claude Sammut et al. “Learning to fly”. In: Machine Learning Pro-

ceedings 1992. Elsevier, 1992, pp. 385–393.

[54] Joe Saunders, Chrystopher L Nehaniv, and Kerstin Dautenhahn. “Teach-

ing robots by moulding behavior and scaffolding the environment”. In:

Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-

robot interaction. 2006, pp. 118–125.

[55] Florian Schäfer and Anima Anandkumar. “Competitive gradient de-

scent”. In: Advances in Neural Information Processing Systems. 2019,

pp. 7625–7635.

69

[56] Sandip Sen, Mahendra Sekaran, and John Hale. “Learning to Coordi-

nate without Sharing Information”. In: Proceedings of the Twelfth Na-

tional Conference on Artificial Intelligence (Vol. 1). AAAI ’94. Seat-

tle, Washington, USA: American Association for Artificial Intelligence,

1994, pp. 426–431. isbn: 0262611023.

[57] Lloyd S Shapley. “Stochastic games”. In: Proceedings of the national

academy of sciences 39.10 (1953), pp. 1095–1100.

[58] Satinder P Singh, Michael J Kearns, and Yishay Mansour. “Nash Con-

vergence of Gradient Dynamics in General-Sum Games.” In: UAI.

2000, pp. 541–548.

[59] Richard S. Sutton. “Integrated Architectures for Learning, Planning,

and Reacting Based on Approximating Dynamic Programming”. In:

Machine Learning Proceedings 1990 (1990), pp. 216–224. doi: 10.

1016/b978-1-55860-141-3.50030-4.

[60] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An

Introduction. Cambridge, MA, USA: A Bradford Book, 2018. isbn:

0262039249.

[61] Richard S Sutton et al. “Policy Gradient Methods for Reinforcement

Learning with Function Approximation”. In: Advances in Neural In-

formation Processing Systems 12. Ed. by S. A. Solla, T. K. Leen, and

K. Müller. MIT Press, 2000, pp. 1057–1063. url: http://papers.

nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-

learning-with-function-approximation.pdf.

[62] Umar Syed and Robert E Schapire. “A game-theoretic approach to ap-

prenticeship learning”. In: Advances in neural information processing

systems. 2008, pp. 1449–1456.

[63] Gerald Tesauro. “Extending Q-learning to general adaptive multi-

agent systems”. In: Advances in neural information processing sys-

tems. 2004, pp. 871–878.

[64] Paul Tseng. “Convergence of a block coordinate descent method for

nondifferentiable minimization”. In: Journal of optimization theory

and applications 109.3 (2001), pp. 475–494.

[65] John N. Tsitsiklis. “Asynchronous stochastic approximation and Q-

learning”. In: Machine Learning 16.3 (1994), pp. 185–202. doi: 10.

1007/bf00993306.

70

https://doi.org/10.1016/b978-1-55860-141-3.50030-4
https://doi.org/10.1016/b978-1-55860-141-3.50030-4
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
https://doi.org/10.1007/bf00993306
https://doi.org/10.1007/bf00993306

[66] Karl Tuyls, Pieter JT Hoen, and Bram Vanschoenwinkel. “An evolu-

tionary dynamical analysis of multi-agent learning in iterated games”.

In: Autonomous Agents and Multi-Agent Systems 12.1 (2006), pp. 115–

153.

[67] Eric Veach and Leonidas J Guibas. “Optimally combining sampling

techniques for Monte Carlo rendering”. In: Proceedings of the 22nd

annual conference on Computer graphics and interactive techniques.

1995, pp. 419–428.

[68] Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Ma-

chine Learning 8.3-4 (1992), pp. 279–292. doi: 10.1007/bf00992698.

[69] Michael Weinberg and Jeffrey S Rosenschein. “Best-response multia-

gent learning in non-stationary environments”. In: Proceedings of the

Third International Joint Conference on Autonomous Agents and Mul-

tiagent Systems-Volume 2. 2004, pp. 506–513.

[70] Samuel S Wilks. “The large-sample distribution of the likelihood ratio

for testing composite hypotheses”. In: The annals of mathematical

statistics 9.1 (1938), pp. 60–62.

[71] Ronald J. Williams. “Simple statistical gradient-following algorithms

for connectionist reinforcement learning”. In: Machine Learning 8.3-4

(1992), pp. 229–256. doi: 10.1007/bf00992696.

[72] Chongjie Zhang and Victor R Lesser. “Multi-Agent Learning with

Policy Prediction.” In: AAAI. Vol. 3. 2010, p. 8.

[73] Martin Zinkevich. “Online convex programming and generalized in-

finitesimal gradient ascent”. In: Proceedings of the 20th international

conference on machine learning (icml-03). 2003, pp. 928–936.

71

https://doi.org/10.1007/bf00992698
https://doi.org/10.1007/bf00992696

72

Appendix A

Gridworld: Soccer

Figure A.1: Gridworld Soccer.

In Gridworld Soccer, two players are in a 3x3 grid in which the two

lateral columns are the goals of the agents and each of them starts in the

middle raw of the opposite column with respect to their goal. A visual

representation can be seen in Figure A.1 where red represents agent 1 and

green agent 2.

In each moment of the simulation each agent can take one of five actions: go

north, go east, go south, go west or stay still. A ball is assigned randomly at

the beginning of each episode to one of the players, represented by a black

dot at the center of the agent. To obtain the reward associated with the

goal, the agent have to move in one of the goal cells while possessing the

ball. The interest of this environment is represented by the cyclical behavior

that gradient descent algorithms generate like Matching Pennies, even if in

a more complex environment, while algorithms like IGA-PP still converge

to a Nash Equilibrium. This behavior happens when the agent with the ball

Figure A.2: Gridworld Soccer cyclical behavior point.

is in the middle cell and the agent without the ball is in its starting position,

as shown in Figure A.2. In Figures A.3 and A.4, the probabilities of taking

actions up, down and staying still are plotted for both the agents, using a

continuous line for agent 1 and a dotted line for agent 2. It can be seen how

gradient descent algorithms like GPOMDP diverge while IGA-PP converges

to the Nash Equilibrium.

74

0 500 1000 1500 2000 2500 3000
Learning step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

ns
 P

ro
ba

bi
lit

ie
s

up
down
still
up
down
still

Figure A.3: Probabilities of the agents using GPOMDP in Gridworld Soccer

0 500 1000 1500 2000 2500 3000
Learning step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

ns
 P

ro
ba

bi
lit

ie
s

up
down
still
up
down
still

Figure A.4: Probabilities of the agents using IGA-PP in Gridworld Soccer

75

76

Appendix B

IRL in Bimatrix: LOLA

In this appendix we present the results in the same setting as in Section

4.2 with the single difference that the two agents instead of playing using

IGA-PP they play following the update rule of LOLA.

As with IGA-PP, the results in Figure B.1 show that, using the omega

estimation formula (3.3), the two agents do not converge and instead diverge

due to the lack of the correct estimation of the other agent’s ω (see Figure

B.1a and B.1c). Instead, using LOLA omega estimation formula (3.5), the

two agents learn the correct opponent’s reward function and converge to the

Nash Equilibrium (see Figure B.1b and B.1d).

0 100 200 300 400 500
Learning step

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
He

ad
s

agent 1
agent 2

(a)
0 100 200 300 400 500

Learning step

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
He

ad
s

agent 1
agent 2

(b)

0 100 200 300 400 500
Learning step

0.2

0.1

0.0

0.1

0.2

Ex
pe

ct
ed

 re
tu

rn

agent 1
agent 2

(c)
0 100 200 300 400 500

Learning step

0.10

0.05

0.00

0.05

0.10

Ex
pe

ct
ed

 re
tu

rn

agent 1
agent 2

(d)

Figure B.1: Matching Pennies results. Probability of choosing Heads with IRL on
GPOMDP (a) and on LOLA (b). Expected return with IRL on GPOMDP (c) and on
LOLA (d).

78

	Acknowledgements
	Ringraziamenti
	Contents
	Mathematical notation
	List of Figures
	List of Algorithms
	Abstract
	Sommario
	Introduction
	Contribution
	Document outline

	Preliminaries and related works
	Reinforcement Learning
	Markov Decision Processes
	Algorithms
	Value-based algorithms
	Policy Search algorithms

	Multi-Agent Environments
	Stochastic Games
	Nash Equilibrium
	MARL algorithms
	Single-agent RL algorithms
	Agent-independent algorithms
	Agent-tracking algorithms
	Agent-aware algorithms

	Algorithms with Future Policy Prediction
	IGA-PP and LOLA
	NOHD, SOS, SGA, CO, CGD

	Imitation Learning
	Behavioral Cloning
	Inverse Reinforcement Learning
	Policy Gradient-based IRL
	IRL from a Learning agent

	Likelihood
	Discrete probability distribution
	Continuous probability distribution
	Log-likelihood
	Likelihood and Log-Likelihood Ratio
	Likelihood and Log-Likelihood Ratio Test
	Simple-vs-simple hypothesis test

	Importance Sampling
	Multiple Importance Sampling

	Renyi divergence
	Kullback-Leibler divergence

	Opponent identification: related works

	Multi-Agent Inverse Reinforcement Learning
	Single-Agent Reinforcement Learning approach
	Agent-aware with Future Policy Prediction approach

	Experimental Evaluation of Multi-Agent Inverse Reinforcement Learning
	Environments
	Bimatrix
	Continuous Gridworld

	IRL in Bimatrix
	IRL in Continuous Gridworld

	Algorithm Identification
	Overview
	Passive Algorithm Identification
	Active Algorithm Identification

	Experimental Evaluation of Algorithm Identification
	Identification in Bimatrix
	Identification in Gridworlds
	Best response with identified algorithm

	Conclusion
	Future work

	Bibliography
	Gridworld: Soccer
	IRL in Bimatrix: LOLA

