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Abstract

In this work, the preliminary design of an attitude determination module for small space-
craft in LEO is carried out. Even though several standalone attitude determination and
control system (ADCS) units are currently available, very few determination-only (ADS)
solutions exist. This project aims to fill that gap in the market, whilst integrating mul-
tiple sensors from Solar MEMS Technologies’ catalog. A versatile sensor suite is se-
lected, together with appropriate mathematical models. Moreover, several variants of the
multiplicative extended Kalman filter (MEKF) are studied, where two different MEMS
gyroscopes are tested in dynamic replacement mode. Additionally, a novel bias clipping
technique to improve convergence is introduced, which consists in adding artificial bounds
to the bias estimate within the filter. This better captures the real behavior of the gyro-
scope, and shows promising results. The contents are presented in a didactic manner, and
allow for a deep understanding of the multiple factors involved in the design process. A
comprehensive simulation strategy, including three representative scenarios with different
conditions, is developed to test the performance of the designed attitude determination
module. Extensive Monte-Carlo simulations demonstrate that a combination of Sun sen-
sor, three-axis magnetometer, star tracker and three-axis gyroscope measurements provide
quasi-continuous attitude and angular velocity estimates with enough accuracy for most
small spacecraft in LEO. The results present an in-depth comparison of current attitude
estimation methods, and yield a sound starting point for future developments.

Keywords: spacecraft attitude, small spacecraft, estimation, Kalman filter





Sommario

In questo lavoro, viene effettuato il progetto preliminare di un modulo di determinazione
dell’assetto per piccoli satelliti in orbita terrestre bassa (LEO). Anche se attualmente
esistono diverse soluzioni autonome di determinazione e controllo dell’assetto (ADCS),
esistono poche soluzioni solo di determinazione (ADS). Questo progetto mira a colmare
questa lacuna nel mercato, integrando contemporaneamente più sensori dal catalogo di
Solar MEMS Technologies. Viene selezionata una serie di sensori versatile, insieme a
modelli matematici appropriati. Inoltre, vengono studiate diverse varianti del filtro di
Kalman esteso moltiplicativo (MEKF), dove vengono inseriti due diversi giroscopi MEMS
in modalità di sostituzione dinamica. Inoltre, viene introdotta una nuova tecnica di lim-
itazione del bias dei sensori per migliorare la convergenza, che consiste nell’aggiungere
limiti artificiali alla stima del bias all’interno del filtro. Questo rispetta meglio il compor-
tamento reale del giroscopio e mostra risultati promettenti. I contenuti sono presentati
in modo didattico e consentono una comprensione approfondita dei molteplici fattori
coinvolti nel processo di progettazione. Viene sviluppata una strategia di simulazione
completa, che include tre scenari rappresentativi con condizioni diverse, per verificare le
prestazioni del modulo di determinazione dell’assetto progettato. Estese simulazioni con
metodo Monte Carlo dimostrano che una combinazione di sensore solare, magnetometro
a tre assi, star tracker e giroscopio a tre assi forniscono stime quasi continue dell’assetto
e della velocità angolare con sufficiente precisione per la maggior parte dei piccoli satel-
liti in LEO. I risultati presentano un confronto approfondito dei metodi attuali di stima
dell’assetto e costituiscono un solido punto di partenza per futuri sviluppi.

Parole chiave: assetto del satellite, piccoli satelliti, stima, filtro di Kalman
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1 Introduction

1.1. Context

The attitude of a spacecraft is defined as its orientation in space, with respect to
a suitable reference frame. Most modern-day spacecraft missions have specific pointing
requirements, which drive the need to accurately estimate the spacecraft’s attitude and
then effectively control it. Typically, one talks about an attitude determination and control
system (ADCS) of a spacecraft. The estimation and control problems are coupled but,
nonetheless, can be considered separately to some extent. This approach has been adopted
by most space missions, as it greatly simplifies the design process and in most cases
provides satisfactory results.

This work has been carried out at Solar MEMS Technologies, which is a company
specialized in micro-electromechanical systems technology (MEMS) and its application to
the design and development of high accuracy Sun sensors for the aerospace industry. In
addition to Sun sensors, they offer a horizon sensor and are currently developing a star
tracker for nano satellites. Given that the company does not produce any kind of actuator
to carry out the attitude control of a spacecraft, it is reasonable to limit the scope of this
project to attitude determination. The objective of the thesis is therefore to perform the
preliminary design of an attitude determination module by integrating multiple sensors
from Solar MEMS Technologies’ catalog.

When designing an ADCS from scratch, sensors must be installed in precise locations
and fed by dedicated power and data lines. Additionally, attitude estimation algorithms
need to be developed. The efficient integration of all elements is not a simple task,
and requires specialized engineers. By designing a self contained attitude determination
module, spacecraft designers would only need to integrate a single, compact unit with
all the necessary components. This considerably facilitates implementation of the ADCS,
and ensures performance in a variety of scenarios.
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1.2. Scope of the Project

The field of spacecraft attitude determination was born in the early 1960s, coinciding
with the beginning of the Space Age. Since the first algorithm for determining the attitude
of a spacecraft was published in 1964, a great number of developments have been carried
out. Today, many different approaches to the attitude determination problem exist, and
investigation in the field is still ongoing.

The objective of this project is not to perform an comprehensive review of all the
different algorithms available, nor present a novel approach (although some original tech-
niques are proposed). Instead, it will focus on selecting an appropriate suite of sensors,
implementing currently available algorithms, and conducting simulations to evaluate the
performance of the attitude determination module in various scenarios. A more practical
approach has therefore been adopted, although no physical experiments will be carried
out.

The scope is limited to a preliminary assessment of the module’s components and
algorithm using a high-level programming language. Other aspects such as hardware
selection (choosing a suitable microcontroller), the module’s structural design (housing,
component location, etc.) or its interfaces with other subsystems of the spacecraft will
not be considered, and are left for future work.

1.3. Objectives

The main goal of this project is to perform the preliminary design of an attitude
determination module suitable for small spacecraft in low Earth orbit (LEO). This may
be broken down into a number of smaller objectives:

• Analyze other existing ADCS modules on the market and extract their main char-
acteristics.

• Explore different sensor configurations, suited for a representative set of realistic
scenarios.

• Study at least two modern algorithms for attitude estimation, and determine which
one provides the better performance in the scenarios considered.

• Assess the precision in attitude knowledge that can be achieved using Solar MEMS
Technologies’ sensors.
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1.4. Structure of the Document

The thesis will be organized in three main blocks: preliminary studies, design, and
simulation. Starting with the first block, in Chapter 2, the current small spacecraft market
is analyzed, and present-day commercial ADS/ADCS solutions are reviewed. It must be
noted that most available units combine both attitude determination and control, yet
they are still relevant for the topic of this thesis. Additionally, a brief review of historical
and modern attitude determination algorithms is included. In Chapter 3, the theoretical
framework required to tackle the attitude determination problem is provided, covering
attitude representations, attitude kinematics and some relevant concepts from statistics.

Chapter 4 addresses the sensor selection and modeling. The usefulness of various sen-
sors in different scenarios is discussed, and some measurement models are presented. The
design block continues with Chapter 5, in which several variations of the extended Kalman
filter are described, commenting some of their advantages and limitations. Additionally,
an original technique to improve filter convergence is proposed.

In order to test and compare the previous attitude estimation methods, in Chapter
6, the complete ADS is evaluated through multiple simulations in a variety of scenarios.
Finally, in Chapter 7, the final conclusions are drawn and future developments suggested.
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2 State of the Art

The purpose of this chapter is to reflect the current state of small spacecraft systems and
ADCS technologies. Only publicly available information will be reviewed. The intent is
to provide motivation for the development of an attitude determination module that will
fit into the current market, justifying the topic of this thesis.

2.1. Small Spacecraft Systems and Current Market

A small satellite, or smallsat, is a satellite with a mass less than 180 kg and reduced
dimensions [5]. They can additionally be divided into the following categories:

1. Minisatellite 100-180 kg

2. Microsatellite 10-100 kg

3. Nanosatellite 1-10 kg

4. Picosatellite < 1 kg

Perhaps the most popular kind of small satellites, CubeSats, fall both under the mi-
crosatellite and nanosatellite clasifications. They use a standard size and form factor,
consisting of small 10 × 10 × 10 cm cubes which can be arranged in different configura-
tions (1U, 2U, 3U, etc.). The historical distribution of form factors is shown in Figure
2.1, and it is clear that 3U CubeSats continue the most popular size. 0.25U has increased
rapidly in the last years thanks to Swarm, and 6U is being used by multiple newer con-
stellations [1]. Other platforms such as PocketQube, TubeSat of ThinSat, although much
less popular, have also been included in this comparison.

A comprehensive review of the current state of nanosatellites, including launch fore-
casts and other predictions, can be found in [6]. Figure 2.2 shows the yearly number of
nanosatellite launches together with historical and current predictions. The bottom line
is that, even though most predictions have been overestimated, with only four interplan-
etary CubeSats in space, expanding launch options, and numerous technologies yet to be
developed, the times of nanosatellites are still ahead.



6 2| State of the Art

Figure 2.1: Nanosatellite form factors. Credit: Kulu [1].

Figure 2.2: Launch Forecast showing previous predictions. Credit: Kulu [1].
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Another interesting conclusion that can be extracted from the data is that sizes are
both getting larger and smaller. On one hand, educational missions could move into
smaller form factors. On the other hand, commercial satellites are moving towards larger
sizes to save development costs on miniaturization, spurred by decreasing launch costs.

Furthermore, the number of launches beyond LEO will increase significantly in the
following years. These include MEO, GTO, GEO, lunar and interplanetary or deep space
missions. According to [6], only eight of such CubeSats had been launched by 2021. In
contrast, 60 launches are scheduled up to 2025, with 15 already performed in 2022. In
this context, there is a slight skew towards larger form factors, being 6U and 12U the
most popular choices for current and planned missions.

Figure 2.3: Smallsat market evolution since 2012 by mass class. Credit: Bryce Space and
Technology [2].

All things considered, in 2020 and 2021 nanosatellites make up only about 10% of the
total number of smallsats launched [2]. These numbers, however, are heavily influenced
by the recent Starlink and OneWeb constellations. Excluding them, the nanosatellite
class has constituted the largest share of smallsats since 2013. In 2021, they account
for 42% of the total share, while picosatellites and microsatellites are tied at 27% and
minisatellites come last at only 4%. Including the Starlink and OneWeb constellations,
mainly constituted of larger minisatellites (Starlink) and microsatellites (OneWeb), these
classes’ shares increase to 58% (mini) and 24% (micro) respectively, with a combined
>1000 launches (see Figure 2.3). As has been shown, a single company such as SpaceX
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or Planet can heavily skew the results. Therefore it is not easy to predict how will the
smallsat market drift in the years to come.

What is clear is that smallsats have become the main focus of the space industry,
making up to 94% of the spacecraft launched in 2021. This is a very recent trend, since
69% of all smallsats in the last 10 years have been launched just in 2020 and 2021. The
great majority of these are for communication purposes, followed to a lesser extent by
remote sensing and technology development [2].

The main operators have become SpaceX (1944 smallsats in orbit), Planet (485),
OneWeb (394), Spire Global (147) and Swarm Technologies (121), recently acquired by
SpaceX. That is, 70% of the smallsat market is controlled by US operators, followed by
the UK and China with only a 9% and 6% share respectively [2]. The extent to which
European companies will be able to keep up with this pace is hard to predict.

One important bottleneck that the small satellite sector is facing worldwide is the lack
of convenient launch systems, which is hindering smallsat projects and putting pressure on
launch services [7]. In Europe, fourteen organizations have joined forces in a EU Horizon
2020 project called SMall Innovative Launcher for Europe (SMILE) [8]. In words of the
project coordinator Leo Timmermans, “Over 500 small satellites are currently operational,
most of which are 1-5 kg CubeSats. A trend towards more mature and better performing
satellites (10-50 kg) is on-going. About 50-100 companies are currently deploying small
satellites, and many more will follow.”

This information is vital to address the feasibility of a new ADCS development. As
of now, most commercially available options (all focused on CubeSats) are based outside
of Europe. This implies hefty import fees for European companies that may want to use
these products. Additionally, many EU funded projects require made in Europe goods to
be used. Another aspect to take into account is the fact that mega constellation projects
tend to implement in-house ADCS solutions. In 2021, 73% out of 1743 smallsats launched
were destined towards Starlink and OneWeb’s constellations. Therefore, the real market
for a commercial turnkey ADCS is much smaller than what the numbers may imply.

2.2. Present-day Integrated ADCS Solutions

In this section, currently available commercial ADCS solutions will be analyzed.
Almost all of them are geared towards CubeSats which, as discussed in the previous
section, constitute the main target within the smallsat market.
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Table 2.1: General information of currently available integrated systems.

Manufacturer Model Platform Actuators Sensors Price

Y-Momentum
Series 2-12U 1 RW

3 MTQ

10 coarse SS
3 gyros
1 TAM

$22-27k

CubeSpace

3-Axis Series 2-12U
3 RW

3 MTQ
(= •)

10 coarse SS
1 fine SS, 1 ES
3 gyros, 1 TAM
(Optional STR)

$34-58k

XACT Series 3-12U • 1 STR, 1 TAM ∼ $140kBlue Canyon
Technologies FlexCore Microsats • 1 STR, 1 TAM N/A

AAC Clyde
Space &
Berlin Space
Technologies

iADCS Series 1-12U •

3 gyros
1 STR

(Optional TAM
and precision gyro)

∼ e140k

KU Leuven ARCUS <12U •
3 gyros

1 STR, 1 TAM
6 photodiodes

N/A

SatRev S.A. ADCS ∼12U* •
1 2D SS

3 gyros, 3 ACC
1 TAM, 1 GPS

N/A

NewSpace
Systems CubeSat ACS ∼12U* •

3 fine SS, 3 gyros
1 stellar gyro

1 TAM, 1 GPS
N/A

ADCS10 1-3U 3 MTQ 1 fine SS
1 TAM N/A

Tensor Tech
ADCS100-400 1.5-16U

3 MTQ
1-4 reaction

spheres

6 fine SS
3 gyros
1 TAM

∼ $70k

D-Orbit ADCS Suite Minisats • Configurable N/A

Serenum
Space VAC02 ADCS 1-6U • 6 SS, 3 gyros

2 TAM N/A

MAI-25 1-3U* 1 RW
3 MTQ 1 TAM N/A

MAI-400 3-6U* • 2 ES, 1 TAM N/A

Adcole
Maryland
Aerospace

MAI-500 3-6U* • 2 STR, 1 TAM N/A
* These target platforms are not explicitly stated by the manufacturer, but have been derived from the
maximum torque values.
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As can be seen in Table 2.1, a number of companies from all around the globe
are involved in the manufacturing of integrated systems. These combine the data from
multiple sensors to determine the spacecraft’s attitude, and provide actuators to control
it. They also include processors and software with attitude determination and control
capabilities. Typical components are reaction wheels (RW), magnetorquers (MTQ), three-
axis magnetometers (TAM), star trackers (STR), Sun sensors (SS) and Earth sensors (ES).

This list is quite comprehensive, compiling information from multiple reliable sources
such as Satsearch [9], CubeSatShop [10] and NASA’s State-of-the-Art of Small Spacecraft
Technology report [11], besides the actual manufacturer’s websites. Of course, the research
is limited to publicly available information, and any ongoing development which hasn’t
been disclosed yet will not be reflected. Some systems might have been left out as well.

Something to keep in mind is the fact that not all the presented models are up
to the same NASA standard Technology Readiness Level (TRL) as defined by the 2020
NASA Engineering Handbook, found in NASA NPR 7123.1C NASA Systems Engineer-
ing Processes and Requirements. In some cases, flight heritage is claimed (CubeSpace,
Blue Canyon Technologies, Tensor Tech, AAC Clyde Space & Berlin Space Technologies,
NewSpace Systems, Adcole Maryland Aerospace), but most manufacturers do not specify
a specific TRL. Others mention qualification and acceptance testing (Serenum Space, KU
Leuven), and overall a TRL of at least 5 is expected from the analyzed systems.

Except for Blue Canyon Technologies’ FlexCore and D-Orbit’s ADCS suite, which
are oriented towards microsats and minisats respectively, the rest have been designed
for CubeSats ranging from 1U to 16U. The actuator choice is quite uniform across the
board, with most systems opting for a combination of three reaction wheels and three
magnetorquers to achieve three-axis control. For less demanding applications (detum-
bling and Earth or Sun pointing), one or no reaction wheels can be used. An exception is
the novel reaction sphere concept from Tensor Tech, which consists of a variable-speed,
single-gimbal control moment gyroscope (CMG) driven by spherical motor technology.
Traditional CMGs are rarely used since reaction wheels provide sufficient torque for the
majority of applications in the smallsat segment, without the added complexity. Per-
haps future missions with high-agility requirements could benefit from using them, but
currently there aren’t many CMGs suited for this spacecraft class available.

There is more variety regarding the sensor selection. All models implement a mag-
netometer, often along sun sensors and MEMS gyroscopes. Some rely more heavily on
the use of a star tracker, and others include Earth sensors or GPS receivers. Several
manufacturers provide various levels of customization, allowing the client to choose the
sensor combination that better suits its mission (turn-key solutions).
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In Table 2.2, some performance parameters of the previous systems are analyzed.
Regarding the volume, most models have a box shape with a base of approximately
10× 10 cm and varying height. If, for example, the height is of 3 cm, then the volume is
typically said to have a 0.3U form factor (as it occupies 30% of a CubeSat unit).

As to the radiation tolerance, some manufacturers provide a numerical value in krad,
and others simply state the system’s lifetime in a LEO orbit in years (which correlates
with a certain amount of radiation).

Table 2.2: Performance characteristics of currently available integrated systems.

Manufacturer Model Mass [g] Volume Pointing
Accuracy†

3-Axis
Control

Radiation
Tolerance

Y-Momentum
Series* 300-600 0.3-0.5U 5◦ — 20 krad

CubeSpace
3-Axis Series* 530-1150 0.3-0.8U 1◦ • 20 krad

XACT Series* 885-1810 0.5-0.75U 0.02◦ • 5 years
Blue Canyon
Technologies FlexCore* Config.

dependent
Config.

dependent 0.02◦ • 5 years

AAC Clyde
Space &
Berlin Space
Technologies

iADCS Series 345-1500 0.3-0.7U 1◦ • 2 years

KU Leuven ARCUS 715 0.5U 0.3◦ • 3 years

SatRev S.A. ADCS* 290 0.2U N/A • N/A

NewSpace
Systems CubeSat ACS* 200 0.2U 1◦ • 10 krad

ADCS10 140 0.2U N/A — 3 years
Tensor Tech

ADCS100-400* 300-1200 0.2-0.8U 0.2◦ • 3 years

D-Orbit ADCS Suite* Config.
dependent

Config.
dependent 0.3◦ • N/A

Serenum
Space VAC02 ADCS 424 0.3U 1.3◦ • 36 krad /

3 years

MAI-25 250 0.25U 3◦ — N/A

MAI-400 700 0.5U N/A • N/A
Adcole
Maryland
Aerospace MAI-500 1050 0.6U 0.1◦ • N/A
* These models may not be fully integrated, that is, there can be elements (usually reaction wheels) which are
not included in the mass and volume calculations.
† Expressed in terms of 3σ limits (99.7% confidence interval).
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Only Blue Canyon Technologies produces systems with high pointing accuracy (0.02◦

or 100 arcsec). The rest drop by one or two orders of magnitude, to around 0.1◦ and 1◦

respectively. These values are still acceptable, and depending on the application could be
more than enough. It must be noted that in this context, pointing accuracy refers to atti-
tude control accuracy. Alternatively, attitude determination accuracy can be considered.
Some manufacturers explicitly state both, and in general the latter is approximately up
to one order of magnitude higher.

(a) CubeSpace 3-Axis ADCS. (b) Blue Canyon Technologies XACT 100.

Figure 2.4: Fully integrated vs non fully integrated ADCS units.

Another factor to take into account is that not all units are fully integrated. Most
of them consist of a single block with all the components inside, but some leave out the
reaction wheels or other components (see Figure 2.4). This is primarily the case for models
aimed towards bigger satellites, where removing the RWs from the main package allows
for better space management. NewSpace Systems, in collaboration with CubeSpace, have
taken this idea to the extreme, designing a distributed system where most components can
be placed arbitrarily within the spacecraft (see Figure 2.5). Aimed towards microsatellites,
not much information about the project (probably still under development) is available
at the moment.

Figure 2.5: Distributed ADCS concept from NewSpace Systems.



2| State of the Art 13

Other technical considerations include the number of external interfaces available
to incorporate additional components (for instance, AAC Clyde Space’s iACDS200 can
connect to 6 or more additional sun sensors, an external magnetometer or GNSS receivers),
and long-term performance. Given the relatively poor reliability of many existing ADCS
components, especially actuators, this is a concern for CubeSat applications. A component
can become unserviceable due to radiation damage and/or other sources of degradation,
in which case there needs to be some kind of backup plan to compensate for the loss.
If the critical element is a sensor, the attitude determination algorithm must be able to
autonomously correct for it. On the other hand, if it is an actuator, the control logic
must vary accordingly (e.g. considering underactuated control). In general, information
regarding these aspects is not publicly available. Some manufacturers allow for some
degree of redundancy in order to avoid these issues (e.g. including four reaction wheels
instead of three).

Perhaps just as important as technical specifications are the user interface and tech-
nical support provided by the manufacturer, as well as various geopolitical interests. As
shown in Table 2.3, out of the 11 companies analyzed six are based inside the EU. Some
manufacturers allow the user to program its own control loops, and offer programming
support as an extra (e.g. Berlin Space Technologies for e12k per month).

Table 2.3: Manufacturer’s countries of origin.

Manufacturer Country

CubeSpace South Africa
Blue Canyon Technologies USA
AAC Clyde Space Sweden/Scotland
Berlin Space Technologies Germany
KU Leuven Belgium
SatRev S.A. Poland
NewSpace Systems South Africa
Tensor Tech Taiwan
D-Orbit Italy
Serenum Space Czech Republic
Adcole Maryland Aerospace USA

2.2.1. ADS-Only Solutions

As of now, complete ADCS units have been considered. The market for these units is
quite saturated, as multiple, already established products, offer solutions for a wide range
of situations. Alternatively, attitude determination and control can be treated separately.
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Since this thesis is being developed under the supervision of Solar MEMS Technologies
S.L., who manufacture several sensors but no actuators, it only makes sense to consider
developing an attitude determination module. An additional advantage is the fact that the
ADS does not (always) depend on the satellite size, but just on the type of orbit/mission.

Currently, only D-Orbit advertises a standalone ADS unit: D-Sense. It includes sev-
eral Sun sensors and Earth sensors, a magnetometer, a three-axis gyroscope and a camera
“for photos, videos and star tracking”. Everything is included into a single, compact box
(200 g and 7× 7× 5 cm), equipped with its own microcontroller, and fed by a single pair
of power and data line (using a CAN bus interface). The power consumption is of 300
mW in standard operative mode and 500 mW in camera mode, and the unit is able to
withstand temperatures ranging from −30◦C to 70◦C.

Figure 2.6: D-Sense multi-sensor ADS module.

2.3. Attitude Determination Algorithms

Besides physical and functional characteristics, the algorithms used to solve the atti-
tude determination problem are essential to guarantee performance and robustness. Un-
fortunately, most manufacturers do not publish any details regarding the inner workings
of their systems. A couple state the use of an extended Kalman filter (EKF) to com-
pute the attitude vector, and CubeSpace additionally mentions using various rate filters
and the TRIAD method. Usually, multiple estimation modes are used depending on the
mission’s phase (detumbling, target tracking, etc.), orbit type or sun availability among
other factors.

In this next section, a brief review of the state of the art in attitude determination
algorithms will be carried out. This will set the stage for the consequent ADS design.
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Attitude determination methods can be divided into several categories. One useful
division is to distinguish between static and filtering approaches. Static determination
methods use measurements taken at the same moment, or close enough in time that the
spacecraft motion between the measurements can be ignored or easily compensated for.
One important requirement is that enough information to compute the attitude is avail-
able at each time. This implies at least one measured vector (e.g. the direction to a star
in the spacecraft body frame) and one angle (e.g. of the Sun relative to the line-of-sight
of a single-axis Sun sensor). In practice, however, over-determined approaches which
use two vectors or more are typically employed. These include the TRIAD method, origi-
nally published in 1964, solutions to Wahba’s problem, or maximum likelihood estimation
(MLE).

The term filtering traditionally refers to a class of methods that can be used for
estimating the state of a time-varying system which is directly or indirectly observed
through noisy measurements. In the context of attitude estimation, filtering approaches
make explicit use of the equations of motion of the spacecraft to accumulate a “memory”
of past measurements. Typically, recursive filtering is chosen over batch filtering, as a
real-time estimate of the attitude is desired.

The mathematics behind attitude determination can be broadly characterized into
approaches that account for stochastic variables and approaches that do not. The term
“attitude estimation” is in principle restricted to stochastic methods, while “attitude de-
termination” refers to the latter approach. However, this distinction is often blurred, and
the terms used interchangeably. Stochastic methods include Kalman filtering and MLE.
On the other hand, the TRIAD method or Wahba’s problem do not show explicit relations
to stochastic errors in their original formulation.

Static approaches offer great simplicity and low computational cost. They have
been extensively used in historical space missions and still have a place in spacecraft
contingency design (in case of anomalies) or as simple tools for analysis purposes. Most
modern spacecraft, however, implement filtering methods due to their versatility and the
fact that they generally produce more accurate estimates.

Early applications in the late 70s and early 80s relied mostly on the extended Kalman
filter (EKF) for attitude estimation. Since then, many new approaches have been devel-
oped which, in some aspects, have proven to be superior to the EKF. The vast majority
fall under the category of optimal recursive estimation in the minimum mean-square error
(MMSE) sense. Several of these algorithms still maintain the basic EKF structure but em-
ploy various modifications, mainly to improve convergence. This is the case for the filter



16 2| State of the Art

QUEST [12] or the iterated Kalman filter [13]. Others, such as the unscented Kalman fil-
ter [14, 15], transform the so called sigma-points instead of linearizing the dynamic model
of the system. The previous algorithms are based on the Gaussian assumption that the
probability density function is adequately described by its mean and covariance. Other
approaches which do not require this assumption exist, but have not found widespread
application. More details about modern attitude estimation algorithms through 2007 can
be found in the comprehensive and excellent survey by Crassidis et al. [16].

In spite of the many newer alternatives, which have shown to have some advantages,
Crassidis et al. [16] apply the old saying “If it ain’t broke don’t fix it”, and argue that the
standard EKF still remains the workhorse of real-time spacecraft attitude estimation due
to its relatively simple formulation and flexible characteristics.
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3 Theoretical Framework

In this chapter, a theoretical framework is provided, dealing with some fundamental con-
cepts and historical attitude determination algorithms. It is assumed, however, that the
reader has some familiarity with this material. For a comprehensive, from the ground
up review of attitude determination theory, the reader is referred to the classic textbook
edited by Wertz [17] or the more recent version by Crassidis & Markley [3].

First, some useful reference frames will be reviewed. Next, a few attitude representa-
tions, which characterize the rotation from one reference frame to another, are introduced.
In Section 3.2.7, the focus will be on attitude error representations, which are used for
small rotations and become essential in the Kalman filter formulation.

The relationship between the attitude dynamics of a spacecraft and a certain attitude
representation is given by the attitude kinematics equations, which are stated in Section
3.3. Finally, Section 3.4 provides a brief refresher of some fundamental statistical concepts.

3.1. Useful Reference Frames

3.1.1. Spacecraft Body Frame

The spacecraft body frame is defined by an origin, specified somewhere within the
spacecraft’s body, and three right-handed Cartesian axes. A spacecraft is made up of
multiple components, some of which may shift due to the extreme forces experienced
during launch and/or thermal deformations, or moved deliberately (such as solar panels to
be oriented towards the Sun, or the deployment of boom/antennas). Typically the body
axes are fixed to some sufficiently rigid navigation base, where most sensors, actuators
and other payload instruments are attached. The orientation of these components with
respect to the navigation base, and therefore with respect to the body axes, is known. The
purpose of attitude determination and control is to estimate and to control the orientation
of the body frame with respect to some external reference frame, commonly an inertial
frame such as those described in the next section.
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3.1.2. Inertial Reference Frames

An inertial reference frame is a frame in which Newton’s equations are valid. A
frame moving at a constant velocity and with no rotation with respect to an inertial
frame will also be inertial. In our universe everything is in constant accelerated motion,
and therefore the concept of inertial frame is in theory only ideal. In practice, however,
cosmic motion is extremely small compared to the dynamics of most systems, including
spacecraft attitude and orbital dynamics. Celestial frames with their axes pointing to
very distant “fixed” stars are the best realizations of inertial frames. The standard is
the International Celestial Reference System (ICRF), with its z axis aligned with the
Earth’s North pole and its x axis with the vernal equinox, the intersection of the Earth’s
equatorial plane with the plane of the Earth’s orbit around the sun (the ecliptic). The
y axis is simply the one that completes the right-handed Cartesian coordinate system.
Unfortunately neither the North pole nor the ecliptic are inertial, since both vary in time.
The ICRF axes are defined to be the “mean” (smoothing out short-period dynamics)
orientations of the pole and vernal equinox at a some fixed epoch.

The ICRF frame is centered at the Solar System’s center of mass. Inertial frames
whose center lies at Earth’s center of mass are denoted Earth Centered Inertial (ECI)
coordinate frames. These frames have a linear acceleration due to the rotation of the
Earth around the Sun, but for attitude analysis it is unimportant. A commonly used ECI
frame is the J2000 frame, whose definition is based on the Earth’s equator and equinox,
determined from observations of planetary motions, plus other data. The J2000 frame
essentially coincides with the ICRF frame taken at 12:00 Terrestrial Time on 1 January
2000 (with its origin displaced). Note that the J2000 frame came first, and the realization
of ICRF was made to coincide almost exactly with it. The difference between both is less
than 0.1 arcsec, and therefore are mostly treated as equivalent. Other useful ECI frame
is the TEME frame, used for the NORAD two-line elements.

Throughout this project, the J2000 frame will be considered as the default inertial
reference frame (although this is not especially relevant).

3.2. Attitude Representations

The discipline of attitude determination is concerned with the estimation of the
proper orthogonal matrix that transforms vectors from an inertial reference frame to a
body frame. These will be referred to as rotation matrices or attitude matrices and will
be denoted by the letter A. A transformation given by A can be interpreted in an active
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(also known as alibi) or passive (alias) sense. Consider a vector x which is transformed
into x′. This transformation can be viewed as a direct rotation of the vector with no
change in the basis (active interpretation), or as a rotation in the basis with no change
in the vector (passive interpretation). The components of x′ will be the same either way
(x′ = Ax), but when comparing both interpretations, the vector and basis would have
been rotated in opposite directions. To illustrate these ideas, a simple two-dimensional
example is provided in Figure 3.1. If a given reference frame F ′ is rotated an angle θ

around the z axis with respect to F , then the corresponding transformation A will rotate
x an angle −θ around said axis.

Figure 3.1: Active and passive interpretations of a transformation. (a) Initial vector. (b)
Passive interpretation. (c) Active interpretation. Credit: Crassidis & Markley [3].

Unless specified otherwise, all the transformations considered throughout this docu-
ment are to be interpreted as passive transformations. Note that in typical linear algebra
applications, the transformation is generally interpreted in an active sense, and therefore
care must be taken regarding the sign of the angles.

Successive rotations can be accomplished by simple matrix multiplication of the
respective transformation matrices. For instance, consider that we have three reference
frames, F , G and H, and we transform a vector from F to G and then from G to H. This
can be effectively represented by

xH = AHG xG = AHG (AGF xF ) = (AHGAGF )xF (3.1)

A direct transformation from F to H can therefore be accomplished through the trans-
formation AHF = AHGAGF . In a passive sense, AGF would represent the rotation from F

to G, AHF the rotation from F to H and so on. The composition of rotations will become
relevant when considering attitude error.
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3.2.1. Euler Angle/Axis Representation

Euler’s Theorem states that any rotation is a rotation about a fixed axis. If the
generic transformation from reference frame F to F ′ is denoted by A, where Ax = x′,
then Euler’s Theorem can be stated algebraically as

Ae = e (3.2)

Given an axis e and angle ϑ, a rotation matrix A(e, ϑ) can be constructed as:

A(e, ϑ) = I3 − sinϑ [e×] + (1− cosϑ) [e×]2 (3.3)

where I3 is the identity matrix of order three and [e×] is the cross product matrix of e,
defined by

[e×] =

 0 −e3 e2

e3 0 −e1
−e2 e1 0

 (3.4)

The concept of cross product matrix will be used extensively throughout this text. Note
that it is just a matrix representation of the regular cross product or vector product
between two vectors: x× y = [x×]y.

The attitude matrix appears to depend on four parameters, ϑ and the three compo-
nents of e, but only three of them are independent owing to the constraint ∥e∥ = 1. The
nine-component attitude matrix has only three independent parameters as well, due to
the six scalar constraints derived from the orthogonality constraint ATA = I (where AT

is the transpose of A).

3.2.2. Rotation Vector Representation

The Euler axis and angle can be combined into the three-component rotation vector

ϑ = ϑ e (3.5)

To express the attitude matrix in terms of the rotation vector, the series expansions for
sinϑ and cosϑ can be substituted in Equation (3.3), which after some manipulation leads
to

A(ϑ) = exp(−[ϑ×]) (3.6)

where exp is the matrix exponential.
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This three-component attitude representation is useful for small rotations but not
so much for large rotations, as it obscures the periodicity of the attitude matrix as a
function of ϑ. In particular, in Equation (3.6) it is not obvious that for ϑ = 2π, A returns
to the identity transformation. The rotation angle can be restricted to 0 ≤ ϑ ≤ π, which
avoids this problem and gives a 1:1 mapping of rotations. However, when ϑ = π both ϑ

and −ϑ represent the same rotation, and therefore the rotation vector parametrization
of a smoothly-varying attitude can experience a discontinuous jump. Unfortunately, no
1:1 global, three-component attitude representation exists without singular points [18].
This discontinuity can be avoided by giving up the 1:1 mapping by allowing rotation
angles greater than π, but this causes other difficulties. Additionally the expense of
computing the matrix exponential renders the rotation vector parametrization impractical
for numerical computations.

3.2.3. Quaternion Representation

Quaternions were introduced by Hamilton in 1843, and are used nowadays primarily
due their utility in describing spatial rotations. A quaternion can be considered as a four
component vector with some additional operations defined on it. In this text, a quaternion
q will have a three-vector part q1:3 and a scalar part q4:

q =

[
q1:3

q4

]
where q1:3 =

q1q2
q3

 (3.7)

following the convention used by Crassidis & Markley [3]. Some authors consider the scalar
component to be q0 and place it on top of the vector part, since it is more historically
accurate, but both approaches are valid as long as the quaternion operations are defined
accordingly.

The quaternion product will be defined as

q̄⊗ q =

[
q4 q̄1:3 + q̄4 q1:3 − q̄× q

q̄4 q4 + q̄ · q

]
(3.8)

and can be represented by matrix multiplication, very much like the vector product:

[q⊗] =

[
q4 I3 − [q1:3×] q1:3

−qT
1:3 q4

]
=

[
Ψ(q) q

]
(3.9)
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Quaternion multiplication is associative, q ⊗ (q̄ ⊗ ¯̄q) = (q ⊗ q̄) ⊗ ¯̄q, and distributive,
q⊗ (q̄+ ¯̄q) = q⊗ q̄+ q⊗ ¯̄q, but not commutative in general, q⊗ q̄ ̸= q̄⊗ q.

The identity quaternion is defined as

Iq =

[
03

1

]
(3.10)

which obeys Iq ⊗ q = q⊗ Iq = q.

Additionally, the conjugate q∗ of a quaternion can be obtained by changing the sign
of its vector part:

q∗ =

[
−q1:3

q4

]
(3.11)

The product of a quaternion by its conjugate gives q ⊗ q∗ = q∗ ⊗ q = ∥q∥2 Iq, and it is
not difficult to see that [q∗⊗] = [q⊗]T .

The quaternion product notation may be overloaded to allow for the multiplication
of a three-component vector x and a quaternion, using the following definition:

x⊗ q =

[
x

0

]
⊗ q = [x⊗]q =

[
−[x×] x

−x 0

]
⊗ q (3.12)

Here, only the quaternion properties relevant to this work have been introduced.
Many more can be found in Section 2.7 from Crassidis & Markley [3] or any other text
devoted to quaternion algebra.

For attitude parametrization, only unit quaternions, i.e. quaternions with unit norm,
are considered. Substituting sinϑ = 2 sin(ϑ/2) cos(ϑ/2) and cosϑ = cos(ϑ/2)2−sin(ϑ/2)2

into Equation (3.3) and defining the quaternion

q(e, ϑ) =

[
e sin(ϑ/2)

cosϑ/2

]
(3.13)

gives the quaternion representation of the attitude matrix

A(q) = (q24 − ∥q1:3∥2) I3 − 2 q4 [q1:3×] + 2q1:3 q
T
1:3 (3.14)

The rotation of a three-component vector x can be implemented through quaternion
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multiplication:

q⊗ x⊗ q∗ =

[
A(q)

0

]
(3.15)

This can be used to derive the rule for performing successive transformations using quater-
nions:

A(q̄⊗ q) = A(q̄)A(q) (3.16)

which is just the product of the respective quaternions. Using the quaternion product ⊗
defined previously, the order of quaternion multiplication is identical to the order of matrix
multiplication. Note that the order may be reversed if other, more classical definitions,
are used.

One of the multiple advantages of the quaternion representation is that it expresses
the attitude matrix as a homogenous quadratic function of the elements of the quaternion,
requiring no trigonometric or other transcendental function evaluations. A consequence
of this is that q and −q represent the same attitude. This 2:1 mapping of quaternions is
a minor annoyance that cannot be solved without introducing discontinuities such as the
one described for the rotation vector representation.

In practice, the 2:1 mapping does not represent any major issue and the quaternion
representation has been widely adopted as a global attitude representation due to its lack
of singular points and the fact that it is much more compact (four components) than
the attitude matrix (nine components). Additionally, it is much easier to generate a
quaternion from Euler’s angle and axis and extract them from it.

3.2.4. Rodrigues Parameters Representation

This attitude representation was first introduced by Olinde Rodrigues in 1840, and
later analyzed by J. Willard Gibbs. For this reason the vector of Rodrigues parameters
is often called Gibbs vector and denoted by g. It is related to the quaternion through

g =
q1:3

q4
(3.17)

which has the inverse

q =
±1√

1 + ∥g∥2

[
g

1

]
(3.18)

Additionally, g can be expressed in terms of the Euler axis and angle:

g(e, ϑ) = e tan(ϑ/2) (3.19)
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Substituting Equation (3.18) into Equation (3.14) gives the Rodrigues parameter
representation of the attitude matrix:

A(g) = I3 + 2
[g×]2 − [g×]
1 + ∥g∥2

(3.20)

It is clear from Equation 3.17 that q and −q map to the same Gibs vector, and
therefore the Rodrigues parameters provide a 1:1 mapping of rotations. The singularity
in this case is that for 180◦ rotations, g becomes infinite. For small rotations, however,
the Rodrigues parameters provide an excellent representation and its relationship with
the attitude quaternion does not involve trigonometric functions.

3.2.5. Modified Rodrigues Parameters

The modified Rodrigues parameters (MRPs) are the newest of the commonly em-
ployed attitude representations, and slightly differ from the original Rodrigues parameters
in that they are related to the quaternion by

p =
q1:3

1 + q4
(3.21)

The MRP representation is 2:1 just like the quaternion representation, and has the
inverse

q =
1

1 + ∥p∥2

[
2p

1− ∥p∥2

]
(3.22)

In terms of the Euler axis and angle:

p(e, ϑ) = e tan(ϑ/4) (3.23)

and the associated attitude matrix is

A(p) = I3 +
8 [p×]2 − 4 (1− ∥p∥2)[p×]

(1 + ∥p∥2)2
(3.24)

3.2.6. Euler Angles Representation

The Euler angles representation is used extensively in many fields, and the reader
may already be familiarized with some form of it such as the roll, pitch, yaw sequence
typically used for aircraft. A sequence in which no rotation axis is repeated receives the
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name of asymmetric sequence. Even though Euler angles present singularities (e.g. gimbal
lock), they provide a very intuitive representation of a rotation.

Since the Euler angles representation will not be utilized for this project, their full
description and properties will not be explored. The small-angle, first order approximation
of the attitude matrix for asymmetric sequences, however, helps to intuitively interpret
attitude error representations. For a given sequence {i, j, k}, with rotation axes ei, ej, ek,
and the respective small-angles δθi, δθj, δθk,

Aijk(δθi, δθj, δθk) ≈ I3 − [δθ×] (3.25)

where

δθ =

δθ1δθ2

δθ3

 (3.26)

3.2.7. Attitude Error Representations

The attitude matrix represents the rotation ABR from some reference frame R to
the spacecraft body frame B. Attitude estimation errors are commonly represented as a
small rotation ABB̂ between B and an estimated body frame B̂:

ABR = ABB̂AB̂R (3.27)

where the estimated attitude is represented by AB̂R. Since the error is typically small,
ABB̂ is expected to be close to the identity matrix.

Attitude errors are most naturally represented in terms of the rotation vector and
its small-angles approximation

A(δϑ) = exp(−[δϑ×]) ≈ I3 − [δϑ×] + 1

2
[δϑ×]2 (3.28)

Other attitude parametrizations can be used to represent attitude errors, such as the
quaternion:

A(δq) ≈ I3 − 2 [δq1:3×] + 2 [δq1:3×]2 (3.29)

the Gibbs vector:
A(δg) ≈ I3 − 2 [δg×] + 2 [δg×]2 (3.30)
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or the MRPs:
A(δp) ≈ I3 − 4 [δp×] + 8 [δp×]2 (3.31)

Note that Equation (3.27) may be written in terms of the quaternion as q = δq ⊗ q̂,
where δq is expected to be close to the identity quaternion. The error quaternion can be
expressed in terms of other attitude parametrizations as:

δq(δϑ) ≈

[
δϑ/2

1− ∥δϑ∥2/8

]
(3.32)

or

δq(δg) ≈

[
δg

1− ∥δg∥2/4

]
(3.33)

or

δq(δp) ≈

[
2 δp

1− 2 ∥δp∥2

]
(3.34)

All of these error representations are equivalent up to second order if the following
identification is made:

δϑ = 2 δq1:3 = 2 δg = 4 δp (3.35)

and agree to first order with the Euler angles’ small-angles approximation in Equation
(3.25). Since for most applications only the first order term is relevant, these error repre-
sentations share an exceptionally intuitive interpretation given by the Euler angles. For
instance, the first component will represent a rotation around the x axis, the second com-
ponent a rotation around the y axis, and the third component a rotation around the z

axis. Of course, the rotation angles will need to be interpreted in radians.

3.3. Attitude Kinematics

The kinematics equations for every attitude representation reviewed in the previ-
ous section can be derived. Here, the focus will be on quaternion kinematics, since the
quaternion is the global attitude representation of choice for most current Kalman filtering
applications.

Kinematic equations are differential equations that relate a certain attitude repre-
sentation with the angular velocity vector ω(t), which is defined as the time rate at which
an object rotates around an instantaneous axis. A more formal definition can be stated
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in terms of the rotation vector

ω(t) = lim
∆t→0

ϑ(t+∆t)− ϑ(t)

∆t
(3.36)

where ω(t) represents the instantaneous rotation at time t of the body frame around
the reference frame (the frame-specifying subscripts have been omitted for simplicity).
Note that direction of ω(t) is perpendicular to the instantaneous plane of rotation, and
since the rotation vector is specified in radians, its units will be rad/s (assuming time is
measured in seconds).

The kinematics equation for the quaternion representation, which will not be derived
here, is

q̇(t) =
1

2
[ω(t)⊗]q(t) (3.37)

The fact that [ω(t)⊗] is a skew-symmetric matrix ([ω(t)⊗]T = −[ω(t)⊗]) ensures that
Equation (3.37) preserves the quaternion unit norm.

3.3.1. Integration methods

Once the appropriate differential equations for attitude propagation have been es-
tablished, it is necessary to determine a method for solving them. An exact, closed-form
solution will not be available in most cases, and therefore two methods are discussed in
this section: an approximate closed-form solution assuming constant angular velocity, and
direct numerical integration.

Approximate Closed-Form Solution for the kinematics equation

Equation (3.37) is an homogeneous matrix differential equation. The standard ap-
proach for solving equations of these form is to determine the state transition matrix
Φ(t, t0) which “maps” an initial state q(t0) into the current state as [19]

q(t) = Φ(t, t0)q(t0) (3.38)

a differential equation for determining Φ(t, t0) can be developed by substituting Equation
(3.38) and its derivative into Equation (3.37), which gives

Φ̇(t, t0) =
1

2
[ω(t)⊗] Φ(t, t0) (3.39)



28 3| Theoretical Framework

with the initial condition Φ(t0, t0) = I4. Only when the angular velocity is constant
(ω(t) = ω = constant) can a practical closed-form solution of Equation (3.39) be obtained:

Φ(t, t0) = exp

(
1

2
[ω⊗] ∆t

)
(3.40)

where ∆t = t− t0. After some manipulation of the series expansion for the matrix expo-
nential (and introducing the series expansions for trigonometric functions), the previous
equation can be rewritten in a more convenient form for numerical computation [17]:

Φ(t, t0) = cos

(
1

2
∥ω∥∆t

)
I4 +

1

∥ω∥
sin

(
1

2
∥ω∥∆t

)
[ω⊗] (3.41)

which avoids the computation of an infinite series. This expression corresponds to an or-
thogonal rotation, which retains the normalization of the propagated attitude quaternion.
Because of its simplicity, this closed-form solution has been widely used as the kinematic
integrator for onboard computers.

In general, the angular velocity vector ω(t) can be measured on board using a gy-
roscope. It is assumed that the gyro data is sampled at a fixed rate and that ω(t) is
constant over the sampling interval. In most cases this is a reasonable approximation,
since modern spacecraft gyros use sampling rates ranging from 10 to 1000 Hz. Then,
considering a time interval [tk, tk+1] which is split into N samples (including one at tk but
not at tk+1),

q(tk+1) = Φ(τN+1, τN) · · ·Φ(τj+1, τj) · · ·Φ(τ2, τ1)q(tk) (3.42)

where
τj = tk + (j − 1)

tk+1 − tk
N

, j = 1, 2, ..., N (3.43)

Additionally,

Φ(τj+1, τj) = cos

(
1

2
∥ωj∥∆τ

)
I4 +

1

∥ωj∥
sin

(
1

2
∥ωj∥∆τ

)
[ωj ⊗] (3.44)

where ∆τ = τj+1−τj corresponds to the sampling time interval of the gyro and ωj = ω(τj)

is the sampled angular velocity vector at time τj (ω(t) = ωj ∀ t ∈ [τj, τj+1)).

Gyro data is typically sampled with a zero-order hold, which corresponds to the
above description. Thus, it is intrinsically discrete, and even though some information
about the derivatives of the angular velocity may be extracted, the integration method
described in this section is perfectly appropriate.
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Direct Integration

For more precise results, one can resort to numerical algorithms to solve the kine-
matics equation. Since it is a system of nonstiff ordinary differential equations, explicit
predictor-corrector methods such as those in the Runge-Kutta family are well suited.
Multi-step methods in the Adams-Bashford or Adams-Moulton families can also be used.

Numerical methods in some way “estimate” the derivatives of Φ(t, t0), and generally
are capable of producing extremely precise solutions. However, their precision and con-
vergence heavily depend on the step size of the numerical integration, which in this case
is fixed to be equal or greater than the sampling time. For typical gyro sampling rates
this is not an issue, but it is something to take into account as it could potentially lead
to the divergence of the attitude solution.

Another disadvantage of numerical algorithms is that they don’t retain the normal-
ization of the quaternion, and therefore it needs to be normalized by brute force at every
step. This, along with the rest of operations, incur in computation times which exceed
that of the approximate method described in the previous section. Furthermore, the in-
troduction of noise in the measurement of ω(t) leads to a significant deterioration of the
precision, to the point where the computed attitude solution is indistinguishable from the
one obtained using Equation (3.42).

For onboard applications where reliability and computational efficiency are essential,
the approximate closed-form solution has for a long time been the integration method of
choice. Nonetheless, direct integration has its place in this project, as it can provide a
more precise “true” trajectory against which different attitude determination methods can
be compared in a simulated environment. This “true” trajectory is obtained by integrating
a given ω(t) which can then also be used to generate the gyro measurements (covered in
detail in Chapter 4).

3.3.2. Attitude error kinematics

Usually, only an estimation of the angular velocity vector is available, which will be
denoted by ω̂(t). Note that the estimated value of the angular velocity is not necessarily
the one measured by the gyro1. The error angular velocity δω can then be defined as

δω = ω − ω̂ (3.45)

1Using certain attitude determination methods, such as the Kalman Filter, the gyro bias can also be
estimated and then subtracted from the measured angular velocity.
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where the time dependency has been omitted for simplicity.

The exact analytical attitude error kinematics equations for most of the known atti-
tude representations can be found in [20]. However, in the context of this work, only a first
order approximation is required (which will become the basis of the Extended Kalman
Filter). If we denote any of the attitude error representations in Equation (3.35) by a, all
of them agree to first order with

ȧ = −[ω̂×] a+ δω (3.46)

3.4. Statistics Refresher

Many attitude estimation methods, including the Kalman Filter, deal with random
noise of known statistics. Additionally, propagating an estimated (uncertain) state re-
quires applying a nonlinear transformation to a certain probability distribution. Here, a
short statistics refresher covering these concepts will be provided. The main references
for this section are [21–23].

3.4.1. Random Variables and the Gaussian Distribution

Let X be a scalar, continuous random variable. Its cumulative distribution function
F (x) represents the probability that X ≤ x, which may be written as F (x) = P{X ≤ x}.
F (x) can be computed from

F (x) =

∫ x

−∞
f(u)du (3.47)

where f(x) is the probability density function (PDF) of X.

Now, let g(X) be a function of the random variable X. The expected value of g(X)

is defined by

E{g(X)} =
∫ ∞

−∞
g(x)f(x)dx (3.48)

In particular, the expected value or mean of X is

µX = E{X} =
∫ ∞

−∞
xf(x)dx (3.49)

and its variance is defined by

var(X) = E{(X − µX)
2} =

∫ ∞

−∞
(x− µX)

2f(x)dx (3.50)
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The variance of a random variable quantifies its variation relative to the expected value,
and it is related to the standard deviation σX in that σ2

X = var(X). Note that the
standard deviation has the same units as the mean. In cases where the meaning is clear,
the subscript indicating the random variable may be dropped.

The kth moment of X about a value c is defined by

E{(X − c)k} =
∫ ∞

−∞
(x− c)kf(x)dx (3.51)

The mean of X then corresponds to its first raw moment (i.e moment about zero) and
the variance to its second central moment (i.e. moment around the mean).

The Gaussian distribution or normal distribution1 is the most commonly used dis-
tribution in statistics. This stems from the central limit theorem, which shows that the
sum of many independent and identically distributed random variables tends to a normal
distribution. In general, sensor noise can be considered to be Gaussian distributed, as it
is the superposition of many small random effects.

The notation X ∼ N(µ, σ2) is used to indicate that a random variable X has the
Gaussian PDF described by

f(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
(3.52)

Thus, a Gaussian random variable is completely described by two parameters µ and σ,
and it can be shown that they correspond to its mean and standard deviation respectively.
Additionally, since the PDF in Equation (3.52) is symmetric, its odd central moments are
zero.

A convenient way to represent the uncertainty of a random variable is through a
confidence interval, which is the range of values the variable is expected to lie in with
a certain confidence level. The confidence level represents the probability of said range
containing the true value. For example, a 90% confidence interval would imply that the
true value of the variable is within the specified range with a probability (given as a
percentage) of 90%. In scientific applications, confidence intervals are typically defined
using multiples of the the standard deviation. For instance, the most commonly used
confidence intervals of a scalar Gaussian random variable correspond to

• 1σ interval: P{X ∈ [µ− σ, µ+ σ]} = 68.3%
1These terms will be used interchangeably.
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• 2σ interval: P{X ∈ [µ− 2σ, µ+ 2σ]} = 95.4%

• 3σ interval: P{X ∈ [µ− 3σ, µ+ 3σ]} = 99.7%

Empirically, 99.7% probability is treated as near certainty and the 3σ interval will be used
extensively throughout this project.

The previous concepts can be extended to multivariate continuous random variables.
For a random vector X = [X, Y ]T , the joint cumulative distribution function, is defined
as

F (x, y) = P{X ≤ x and Y ≤ y} =
∫ x

−∞

∫ y

−∞
f(u, v)dudv (3.53)

where f(x, y) is the joint probability density function. The expected value of g(X, Y ) may
therefore be computed as

E{g(x, y)} =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y)dxdy =

∫
R2

g(x)f(x)dx (3.54)

The mean of a random vector X = [X1, X2, ..., Xn]
T is defined by

µ = E{X} =
∫
Rn

xf(x)dx (3.55)

but the analogous to Equation (3.50) becomes

P = E{(X− µ)(X− µ)T} =
∫
Rn

(X− µ)(X− µ)Tf(x)dx (3.56)

which does not exactly correspond to the variance, and is instead called the covariance
matrix 1 of X. In probability theory and statistics, covariance is originally defined as
cov(X, Y ) = E{(X − µX)(Y − µY )}, and measures the joint variability of two scalar
random variables. Note that cov(X,X) = var(X). The elements of P can therefore be
computed using

Pij = cov(Xi, Xj), i, j = 1, 2, ..., n (3.57)

where Pij represents the (i, j)-th element of P . In particular, when i = j (that is, elements
on the main diagonal), Pii = σ2

i .

The notation X ∼ N(µ, P ) is used to indicate that X has the multivariate Gaussian
1Also known as the auto-covariance matrix, variance-covariance matrix, or simply covariance.
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or normal density function described by

f(X) =
1√

(2π)n det(P )
exp

(
−1

2
(X− µ)TP−1(X− µ)

)
(3.58)

where det(P ) is the determinant of P . Again, the Gaussian random vector X is completely
defined by its expected value µ ∈ Rn and its covariance matrix P ∈ Rn×n.

Confidence intervals become confidence regions in Rn, defined by P{X ∈ Ω} = PΩ.
The shape of these regions is a multidimensional ellipsoid described by

(X− µ)TP−1(X− µ) = d2 (3.59)

where d is known as the Mahalanobis distance and depends on PΩ. The eigenvalues
of P determine the size of the ellipsoid, whereas the eigenvectors provide the direction
of its axes. Usually, only projections of the ellipsoid into two-dimensional ellipses are
represented. If we denote the ellipse as Σ = Σ(d), then the confidence regions are

• 1σ region: P{X ∈ Σ(σ)} = 39.4%

• 2σ region: P{X ∈ Σ(2σ)} = 86.5%

• 3σ region: P{X ∈ Σ(3σ)} = 98.9%

3.4.2. Propagating Means and Covariances Through Nonlinear

Transformations

Consider the following problem. A random vector x has mean x̄ and covariance Px,
and a second random vector, y, is related to x through the nonlinear transformation

y = h(x) (3.60)

where h : Rn → Rn. The problem is to estimate ȳ and Py. Note that only partial
distribution information of x (in the form of mean and covariance) is being considered,
and no assumptions about its complete PDF are being made.

A first idea is to generate the Taylor series expansion of Equation (3.60). Let x =

x̄+ δx where δx is a zero mean random variable with covariance Px. Expanding h about
x̄,

h(x) = h(x̄+ δx) = h(x̄) +∇hδx+
1

2
∇2hδx2 +

1

3!
∇3hδx3 + · · · (3.61)



34 3| Theoretical Framework

where, for the sake of simplicity, ∇ihδxi represents the ith order term in the multidi-
mensional Taylor series (for instance, ∇h is the Jacobian of h evaluated at x̄). Taking
expectations, it can be shown that

ȳ = E{y} = h(x̄) +
1

2
∇2hPx +

1

6
∇3hE{δx3}+ · · ·

Py = E{(y − ȳ)(y − ȳ)T}

= ∇hPx(∇h)T +
1

4
∇2hE{δx3}(∇h)T +

1

2
∇hE{δx3}(∇2h)T + · · ·

(3.62)

(3.63)

Next, a few strategies to approximate these values are discussed.

Linear Approximation

If only the first order elements of Equations (3.62-3.63) are considered (effectively
linearizing h), then

ȳ ≈ h(x̄)

Py ≈ ∇hPx(∇h)T
(3.64)

(3.65)

In the special case that x is Gaussian distributed, E{δxi} = 0 if i is odd (due to the
symmetry of the distribution). This implies that the linear approximation predicts the
mean correctly to first order and the covariance to third order.

The Unscented Transform

In 1994, Jeffrey Uhlmann noted that with a fixed number of parameters, it should be
easier to approximate a given distribution than it is to approximate an arbitrary nonlinear
function [24]. That is, he suggested that a better approach than the previous linearization
method would be to use the exact nonlinear transformation applied to an approximate
probability distribution. This can be accomplished by deterministically choosing a set of
weighted sigma points, so that certain properties of these points (such as their mean and
covariance) match those of x. Each point undergoes the nonlinear transformation, and
the estimated mean and covariance of y will then correspond to those of the transformed
set of points. This idea is referred to as an unscented transform (UT).

In general, any set of sigma points that matches the available information of the
initial distribution is as good as any. However, there are some considerations that may
give preference to some sigma sets over others. Suppose that only mean and covariance
information is available for some n-dimensional random vector. This information can be
captured in a simplex set of n + 1 sigma points, which utilizes the minimum number
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of points required to match the mean and covariance but generally introduces nonzero
higher order moments. These higher order moments may fortuitously align with those of
the true distribution, or on the contrary be in the opposite direction potentially harming
the results.

In the original paper [22], Uhlmann proposes a symmetric set of 2n+1 points. If the
true distribution is also symmetric (e.g. Gaussian), then this set will be more accurate
than the simplex set. If not, the simplex set is still likely to produce the poorest results
in the worst case (when higher order moments are in the opposite direction). Following
this logic, “neutral” higher order moments (i.e. close to zero) are preferred.

The scaled unscented transform [23] takes the previous idea one step further by
providing a scaling parameter α, which can be made arbitrarily small in order to minimize
higher order moments (while maintaining the true mean and covariance). Additionally, it
provides a mechanism to minimize the error in the fourth order term of Equation (3.63)
and guarantees that the estimate of Py remains positive semidefinite, which is essential
in filtering applications.

The point selection algorithm for the scaled UT is given as follows. First, compute
the following symmetric set of 2n+ 1 sigma points with associated weights:

X0 = x̄

Xi = x̄+
(√

(n+ λ)Px

)
i
, i = 1, 2, ..., n

Xi = x̄−
(√

(n+ λ)Px

)
i−n

, i = n+ 1, n+ 2, ..., 2n

w0 =
λ

n+ λ

wi =
1

2(n+ λ)
, i = 1, 2, ..., 2n (3.66)

where λ = α2(n + κ) − n is a scaling parameter. α determines the spread of the sigma
points around x̄ and is usually set to a small positive value (e.g. 10−3). κ is a secondary
scaling parameter which is usually set to 0.

(√
(n+ λ)Px

)
i
is the ith row of the matrix

square root, which can be computed using the Cholesky decomposition. Then, propagate
the sigma points through the nonlinear function,

Yi = h(Xi), i = 0, 2, ..., 2n (3.67)

The mean and covariance of y are approximated using a weighted sample mean and
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covariance (the latter with an added term) for the propagated sigma points,

ȳ ≈
2n∑
i=0

wiYi

Py ≈
2n∑
i=0

wi(Yi − ȳ)(Yi − ȳ)T + (1− α2 + β)(Y0 − ȳ)(Y0 − ȳ)T

(3.68a)

(3.68b)

where β is used to incorporate prior knowledge of the distribution of x, in order to
minimize the error in the fourth order term of Equation (3.63) (for Gaussian distributions,
β = 2 is optimal).

It is often stated that for non-Gaussian inputs, these approximations are accurate
to at least second order1. In the special case that x is Gaussian distributed, both the
mean and covariance would then be accurate to third order. Typically, the UT predicts
the mean more accurately than a simple linearization of h, and the covariance at least
as accurately. An appropriate choice of α and β can further minimize the error in fourth
order terms.

Monte-Carlo Sampling

Monte-Carlo simulations are computational methods that rely on the use of random
sampling and statistics. They give approximate (numerical) solutions to problems which
are hard to solve using deterministic mathematical approaches. In the context of apply-
ing a nonlinear transformation to a probability distribution, performing a Monte-Carlo
simulation consists on the following steps. First, a large amount of points are randomly
sampled from the prior distribution (so that its properties are matched as accurately as
possible). These points are then propagated through the nonlinear function, and their
sample mean and covariance approximate the mean and covariance of the transformed
distribution.

However, there are a some drawbacks to this method. First, the relationship between
the number of points and the accuracy of the resulting approximation is not clearly defined
and depends on both the prior distribution and the nature of the nonlinear function.
Secondly, propagating a large number of points (typically being in the order of tens of
thousands to a million) comes with an increased computational burden. Typically, a
compromise between accuracy and computational cost is achieved.

Nevertheless, the resulting approximation tends to be much more accurate than
1This, however, has been shown to not always be the case [25].
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Figure 3.2: Mean and covariance propagation using Monte-Carlo sampling, a linear ap-
proximation and the UT. Adapted from Wan & van der Merwe [4].

those obtained through linearization or the UT1, as higher order moments of the prior
distribution are correctly captured. Therefore, even though Monte-Carlo sampling re-
quires increased computational times, it can be used to compute the “true” propagated
mean and covariance to which other approximations may be compared. In Figure 3.2, a
graphical representation of the previous approximation methods is presented.

3.4.3. Stochastic Processes

A stochastic process, also called a random process, is simply a random variable
that changes with some parameter, generally time. The autocorrelation function of a
continuous-time process ν(t) (i.e. the random variable ν at each time is continuous) is
defined by

Rv(t1, t2) = E{ν(t1)νT (t2)} (3.69)

1Although the UT may superficially resemble a Monte-Carlo method, no random sampling is used,
and in consequence only a small number of points (2n+ 1 for an nth dimensional space) are required.
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and quantifies the similarity of the random process to itself at two different times.

A random process is stationary if its distribution is independent of time. If a random
process is stationary, its expected value will be time invariant and its autocorrelation
function will only depend on the time difference τ = t2 − t1 (i.e. Rv(t1, t2) = Rv(τ)).
The power spectral density (PSD) of a stationary random process ν(t) is the Fourier
transformation of its autocorrelation function:

Sv(jω) =

∫ ∞

−∞
Rv(τ)e

−jωτdτ (3.70)

One stochastic process that is particularly useful for modeling purposes is white noise.
A continuous-time stochastic process ν(t) ∈ Rn is referred to as white noise if its PSD is
constant:

Sv(jω) = σ2
vIn (3.71)

Then, by Equation (3.70), its correlation function is

Rv(t) = σ2
vδ(τ)In (3.72)

where δ(τ) is the Dirac delta function defined as

δ(τ) = 0 if τ ̸= 0,

∫ ∞

−∞
δ(τ)dτ = 1 (3.73)

and has units of Hz1. An implication of Equation (3.72) is that white noise has zero mean.
Additionally, it reflects that ν(t1) is independent from ν(t2) for all t1 ̸= t2. If this is not
the case (the PSD is not constant), the process is referred to as colored noise.

A white noise process can have any probability distribution; however, the Gaussian
distribution is often assumed (recall the central limit theorem). The notation ν ∼ N(0, S)

will sometimes be used to describe a continuous-time, Gaussian, white noise process ν.
In this case, S is to be interpreted as the PSD and not the covariance matrix.

1Reasoning through the units of σ2
v often causes confusion. From the PSD perspective, σ2

v represents
the power per unit frequency interval. For example, if ν is an angular rate in rad/s, then σ2

v has units of
(rad2/s2)/Hz = rad2/s. The units of σv are then rad/

√
s or rad/s/

√
Hz.
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4 Sensor Selection and Modeling

The selection of an appropriate sensor suite is essential for achieving accurate and reliable
attitude estimation. In the case of small spacecraft, this task is particularly challenging
due to the stringent constraints imposed by the satellite’s size, weight, power, and eco-
nomic budget. These limitations will be implicitly taken into consideration by restricting
the sensor selection to components specifically designed for small spacecraft.

In this chapter, sensor selection and modeling will be covered. First, a versatile sensor
suite is proposed, integrating multiple sensors from Solar MEMS Technologies’ catalog.
Then, a brief section on measurement error sources is included, providing some insight on
their nature and assessing some practical considerations. Next, based on this information,
several measurement models for the different sensors are presented. These models are
essential for the integration of sensor data in the attitude estimation algorithms and,
additionally, may be used to perform the simulations. The chapter ends with an overview
of the technical specifications of the selected sensor suite.

4.1. Sensor Suite Selection

The sensor selection depends on several mission requirements, which typically in-
clude:

• Attitude determination accuracy: The required accuracy of the attitude deter-
mination depends on the mission objectives. Some missions require high-precision
attitude determination, while others may be able to tolerate lower accuracy.

• Attitude determination frequency: The frequency at which the attitude deter-
mination needs to be updated. For some missions, frequent updates are required,
while for others, less frequent updates may be sufficient.

• Operational environment: The operational environment of the spacecraft can
impact the selection of the sensor suite. For example, magnetic fields, radiation,
and thermal conditions can affect the performance of certain sensors, such as mag-
netometers and gyroscopes.
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• Cost: The cost of the sensor suite can be a limiting factor in some missions, par-
ticularly those with smaller budgets.

• Size, weight, and power constraints: The sensor suite must be designed to fit
within the size, weight, and power constraints of the spacecraft. Small satellites,
such as CubeSats, may have more limited resources in terms of size, weight, and
power, which can impact the selection of the sensor suite.

• Redundancy: Some missions may require redundant sensor suites to ensure the
reliable operation of the attitude determination system in the event of a sensor
failure.

• Integration with other spacecraft systems: The sensor suite must be compat-
ible with other spacecraft systems, such as the attitude control system and commu-
nication system.

For this project, however, the design flow shall be reversed. Instead of designing an
ADS to satisfy a given set of mission requirements, an attitude determination module
integrating multiple sensors from Solar MEMS Technologies’ catalog is proposed. The
goal is then to analyze the achievable performance, and will be up to the spacecraft
systems engineer to decide whether it fulfills their mission requirements. Nonetheless, the
sensor selection will be carried out keeping the previous points in mind, with the intent
of designing a versatile module suitable for a wide range of missions. This has proved to
be a reasonable strategy, given the large number of modular ADCS solutions currently
available on the market (see Chapter 2).

There are a variety of sensors that can be used for small spacecraft in LEO. Next,
some of their respective advantages and disadvantages are briefly discussed:

• Gyroscopes: Modern gyros are almost exclusively used in strap-down mode (solidly
attached to the spacecraft). They are reliable and accurate, but can be expensive
and may require frequent calibration.

• Sun sensors: Sun sensors determine the spacecraft’s orientation with respect to
the sun. They are low cost and can provide accurate measurements, but they require
sunlight and can only be used when the sun is visible.

• Star trackers: Star trackers compute the spacecraft’s attitude with respect to a
celestial reference frame. They provide highly accurate measurements and can oper-
ate in a nearly continuous fashion, but they can be expensive and require significant
processing power.



4| Sensor Selection and Modeling 41

• Magnetometers: Magnetometers measure the strength and direction of the Earth’s
magnetic field, and are relatively small, lightweight, rugged, and inexpensive. In
LEO they can provide a continuous, reliable reference for attitude determination,
but they are susceptible to interference from other magnetic sources (current loops
in solar arrays, electric motors, payload instruments, magnetorquers, etc.).

• Earth horizon sensors: Earth horizon sensors compute the nadir vector by de-
tecting points on the Earth’s horizon, and therefore are especially suited for Earth-
pointing spacecraft. They are low cost and can provide relatively accurate mea-
surements, but they require a clear view of the horizon and may be affected by
atmospheric conditions.

Other sensors such as GPS receivers and accelerometers may also be used to be used to
complement the previous options, but they present serious practical limitations and have
not experienced widespread use.

A combination of multiple sensors is typically used to provide redundancy and im-
prove the accuracy and reliability of the attitude determination system. Historically,
magnetometers, Sun sensors and Earth horizon sensors have been used in conjunction
with precise gyroscopes. Modern star trackers, able to track multiple stars simultane-
ously, appeared around 1990 and have since then been extensively used in missions with
high-precision pointing requirements. Solar MEMS Technologies manufacture a couple of
sensors oriented towards nanosatellite platforms such as CubeSats. Namely, a moderately
fine Sun sensor (NanoSSOC) and an Earth horizon sensor (HSNS). Additionally, a star
tracker (STNS) is currently under development.

To gain some insight into which sensor combinations are better suited for this project,
Table 2.1 (showing the sensors utilized by the different commercial ADCS modules) may
be analyzed. Out of the 16 models (including the ADS-only solution), 15 implement
a three-axis magnetometer (TAM), 9 include gyros, 9 Solar sensors, 6 star trackers, 3
Earth horizon sensors, 2 GPS receivers and only one accelerometers. It is clear that
the TAM is an indispensable element in any attitude determination sensor suite, given
its reliability, relative low cost and almost insignificant power demand. The next most
popular sensors are gyros and Solar sensors, followed closely by star trackers for high-
precision applications. Moreover, Earth horizon sensors, GPS receivers and accelerometers
are seldom used.

Following the previous discussion, a sensor suite composed of Solar MEMS’ NanoS-
SOC and future STNS, in conjunction with commercial-off-the-shelf (COTS) gyros and
TAM, has the potential to provide versatility, redundancy and high performance. The
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HSNS will be omitted since it does not offer any additional advantages to the previous
selection and is not as flexible (it would require special customization depending on the
orbit altitude). Regarding the gyro, while it is true that gyroless configurations exist, they
require precise knowledge about the spacecraft mass distribution in order to successfully
implement a Kalman filter and carry out the attitude estimation. In order to follow a
more flexible approach, with potentially no drawbacks, gyros will be considered within
the sensor suite.

The TAM selection is relatively straightforward, since its precision does not depend as
much on the specific technology used, but rather on the Earth’s magnetic field modeling
error, orbit uncertainty, magnetic interference, or orthogonality and alignment (among
other error sources, which will be covered in more detail in Section 4.2). The MM200
model from AAC Clyde Space will be selected as a low cost option, specifically designed
for nanosatellite platforms. On the other hand, gyro performance is highly dependent on
the used technology. In the following section, several options are studied.

4.1.1. Gyro Selection

Gyros can be classified by the physical mechanisms they use: spinning-mass gyros,
optical gyros (FOGs and RLGs), or Coriolis vibratory gyros (CVGs). In the early space-
craft, spinning-mass gyroscopes were commonly used, which relied on the conservation of
angular momentum to maintain the spacecraft’s orientation. Later, fiber optic gyroscopes
and ring laser gyroscopes were also developed, which use the principles of interferometry
to measure rotation rates with high accuracy. Today, CVGs manufactured with micro-
electromechanical system (MEMS) are commonly used in small spacecraft due to their
small size, low power consumption, and low cost (albeit with low performance and short
lifetime compared to other gyros).

MEMS gyros have been successfully flown in numerous space missions, making them
a trustworthy and established option for small spacecraft. FOGs have also been occa-
sionally employed, usually providing superior performance at a mass and cost penalty.
Even though both options may be suitable for this project, MEMS gyroscopes offer more
versatility and a greater number of COTS models are available on the current market.
Therefore, they will be the technology of choice for the attitude determination module.

In [11], a comprehensive review of currently available gyroscopes (and other sensors)
for small spacecraft is available. Inertial sensors can be packaged in a variety of ways,
ranging from single-axis devices such as individual gyroscopes or accelerometers, to In-
ertial Measurement Units (IMUs), which include multiple axes of both gyroscopes and
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accelerometers to enable six degrees of freedom inertial propagation. Some vendors also
provide packages that include additional sensors like magnetometers and barometers.

For this project, the selection will be limited to standalone MEMS gyros, which
additionally come in a variety of performance levels. In order to carry out a thorough
assessment, two representative models have been selected. On one hand, the PinPoint
model (CRM100, CRM200) from Silicon Sensing is selected as low-cost option (∼ e100)
with decreased performance. On the other hand, the STIM202 model from Safran Sensing
Technologies will be considered as a high-performance alternative, along with a hefty
increase in price (∼ e3000).

4.2. Measurement Error Sources

The assessment of measurement error sources is a critical step in the development
of a sensor model. It involves identifying and quantifying the sources of error that affect
the measurements made by the sensors, including environmental factors (e.g. temperature,
vibrations, etc.), inherent sensor noise, and any errors introduced by the sensor electronics
or processing algorithms.

Once the sources of error have been identified, mathematical models can be developed
to characterize their effects on the sensor measurements. These error models are typically
expressed as statistical distributions, such as Gaussian or uniform distributions. The
Gaussian distribution offers several useful properties, including its ability to accurately
model many natural and man-made phenomena, its well-known mathematical properties,
and its ability to be easily incorporated into statistical methods such as the Kalman filter.
While it is true that the Gaussian distribution does not have finite bounds, this is typically
not a concern for practical applications.

By incorporating measurement error sources into the sensor model, it becomes pos-
sible to accurately simulate the behavior of the sensor under a wide range of operating
conditions, and to estimate the uncertainty associated with the measurements made by
the sensor.

4.2.1. Sun Sensor

Sun sensors have a relatively simple geometry, which makes them easier to model
compared to more complex sensors. Typical measurement error sources include misalign-
ment of the sensor with respect to the spacecraft body frame, sensor noise, atmospheric
attenuation, and non-uniformity of the sun sensor’s response to incident light. Addition-
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ally, thermal effects and aging of the sensor can also affect the accuracy.

Systematic errors, such as those due to misalignment or non-uniformity, are ac-
counted for in the calibration step. This is typically done during the manufacturing pro-
cess or before launch, and may need to be updated periodically throughout the mission
to ensure accuracy of the measurements.

The remaining errors can generally be approximated by a normal distribution with a
mean of zero and a standard deviation that depends on the specific sensor model and its
operating conditions. Typically, its value is stated in the sensor’s datasheet and expressed
directly in angular units.

4.2.2. Star Tracker

Star trackers are considerably more complex, and are subject to a wider range of
errors. Some common error sources include:

• Star catalog errors: Inaccuracies in the star catalog used by the star tracker
(unmodeled parallax effects, errors on star propagation due to proper motion, etc.)
can result in errors in attitude determination.

• Stellar aberration: Stellar aberration is an apparent shift in the positions of stars
caused by the motion of the observer. It can cause errors in the measurements
obtained by star trackers, as the apparent positions of stars may be slightly shifted
from their actual positions.

• Sensor Noise: Star tracker measurements are subject to noise, which can be caused
by a variety of factors, such as thermal fluctuations, dark current, fixed-pattern
noise, readout noise and quantization errors.

• Optical distortion and aberrations: Imperfections in the optics of the star
tracker can introduce errors in the measurement of the position of stars.

• Thermal effects: Thermal variations can cause mechanical distortions in the star
tracker, leading to measurement errors.

• Centroiding errors: Centroiding errors can be caused by various factors such as
noise in the image, pixel size, pixel sensitivity, distortion, and optical aberrations.
These errors can cause a shift in the calculated centroid position and thus introduce
errors in the star identification process.

Linked to some of the previous effects, star trackers typically present time-correlated
noise, with correlation times proportional to the spacecraft’s angular velocity. Its two



4| Sensor Selection and Modeling 45

major components are high spatial frequency error (HSFE), related to the time a star
needs to cross one pixel, and low spatial frequency error (LSFE), associated to the time a
star needs to cross the entire sensor field-of-view. Nevertheless, these errors are relatively
small and are often lumped into Gaussian noise together with other error sources. For
the purposes of this work, this will constitute a valid simplification.

Furthermore, systematic errors (stellar aberration, optical distortion, thermal effects,
etc.) can be eliminated to a sufficient degree through calibration. Usually, star trackers
are able to provide a full attitude estimate and their precision is specified in terms of
across- and around-boresight attitude errors (their standard deviation). These, however,
may be traced back to an unique Gaussian error affecting each individual star direction.

4.2.3. Magnetometer

Magnetometers are also subject to some of the instrumental error sources affecting
the previous sensors, including sensor noise, thermal effects, quantization errors, scaling
factors and non-orthogonality. Additionally, the measurements can be affected by nearby
magnetic or large electric fields originating from other spacecraft components. Fortu-
nately, most of these can be calibrated, and the rest may be approximated by a Gaussian
distribution whose standard deviation is typically indicated in sensor datasheets.

However, inaccurate modeling of the Earth’s magnetic field and orbit uncertainty
also introduce errors relevant for attitude determination. The geomagnetic field, denoted
by B, is related to the geomagnetic potential V through B = −∇V . The latter can be
approximated by a series expansion of spherical harmonics [26]:

V (r, θ, ϕ) = RE

∞∑
n=1

n∑
m=0

(
RE

r

)n+1

(gmn cosmϕ+ hm
n sinmϕ)Pm

n (cos θ) (4.1)

Here, r, θ, ϕ refer to coordinates in a geocentric spherical coordinate system, RE is the
mean radius of the Earth, 6371 km, and Pm

n are Schmidt semi-normalized associated
Legendre functions of degree n and order m. The spherical harmonic coefficients gmn and
hm
n may be determined experimentally by combining earth-based and satellite measure-

ments of Earth’s magnetic field. This series is typically truncated at n = 13, and the
coefficients are regularly updated by the International Association for Geomagnetism and
Aeronomy (IAGA) producing what is known as the International Geomagnetic Reference
Field (IGRF).

Although modeling errors are sometimes considered as white noise [27, 28], they
are highly time-correlated and therefore a more special treatment is recommended [29].
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To simulate this autocorrelation, two IGRF models may be used, one with coefficients
offset from the truth epoch by three years. For a selected time interval, this results in
time-correlated noise with a root-mean-square error (RMSE) of 184 nT, in line with most
reported modeling error estimations [30, 31]. In Figure 4.1, the angle between the true
and offset magnetic field vectors is shown, with an RMSE close to 0.2◦.

Figure 4.1: Typical geomagnetic field model error using a three year offset estimation
model.

Assuming that the spacecraft stores a full order IGRF model to perform its compu-
tations, the noise in Figure 4.1 is an accurate representation of what the error between
the estimated and real geomagnetic field may look like, including possible orbit uncer-
tainty. The Kalman filter deals much less effectively with non-Gaussian error sources,
and simulating time-correlated noise augments the realism of the analysis. In cases where
a Gaussian approximation is required, the RMSE may be interpreted as its standard
deviation.

4.2.4. Gyroscope

As with the previously analyzed sensors, gyroscope measurements may be corrupted
by deterministic and stochastic errors. Deterministic errors typically include scale factor
error, misalignment, non-linearity, and turn-on bias. Except for turn-on bias, which re-
quires real-time estimation via state augmentation, in general these errors show insignif-
icant variation throughout the instrument’s lifetime and can be accounted for through
factory calibration.

Stochastic errors, on the other hand, are difficult to predict. They can be caused
by temperature variations, vibration, and electronic noise among other factors, and are
typically characterized by their power spectral density. Its dominant components are
known as angle random walk (ARW), bias instability (BI) and rate random walk (RRW),
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which may be extracted from what is known as an Allan Standard Deviation (ASD) plot
[32]. The manufacture usually provides the ASD plot or parameters extracted from it.

In general terms, ARW corresponds to white noise and RRW represents an actual
random walk of the measurement (i.e. its derivative is Gaussian). BI, on the other hand,
is slightly more complex and requires at least first-order Gauss-Markov models, which
will not be covered here. Ultimately, the non-Gaussian noise components result in a
time-varying bias which needs to be continuously estimated on-board to avoid significant
errors.

4.3. Sensor Models

Sensor models are used to describe the relationship between the measurements ob-
tained by a sensor and the physical parameters being measured. These models are used
for a variety of purposes, such as calibrating the sensor, simulating its behavior in dif-
ferent scenarios, and optimizing the sensor system’s performance. In the context of this
work, they allow for measurement simulation and data processing within the filtering
framework.

A sensor model can be highly complex and depend on a variety of factors, including
the physical principles governing the sensor’s operation, environmental conditions, and
measurement noise sources. Typically, simplified models can provide sufficient accuracy
while being easier to develop, interpret, and implement. In this section, several widely
used models for the different types of sensor are introduced.

4.3.1. Unit Vector Observation Model

In many attitude systems, the observations are naturally represented as vectors.
Typical measurements include the direction to the Earth, the Sun, a star, or the Earth’s
magnetic field. Unit vectors are preferred because they are independent of the magnitude
of the measured quantity and are mathematically simpler to work with. The unit vector
observation model assumes that the measured vector is simply a linear combination of the
true unit vector and measurement noise. As argued in Section 4.2, in most cases this is
a reasonable approximation. Discrete-time observations for a single sensor may therefore
be given by

b̃ = Ar+ ν (4.2)

where b̃ denotes the measurement vector in the body frame, r is the known reference
vector in an inertial reference frame, A is the attitude matrix, and ν represents zero-
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mean Gaussian measurement error vector with covariance σ2I3.

Note that the simplifying assumption of isotropic measurement error is being made,
which is clearly not true; if the error-corrupted vectors are thought of as arrows sharing a
common base, their points should all lie on a unit sphere. Nevertheless, Malcolm Shuster
demonstrated that in the context of Kalman filtering, considering isotropic measurement
error produces equivalent results to considering its projection onto the unit sphere [33]. A
simple illustrative diagram is provided in Figure 4.2, where an uncertainty cone bounds (in
a statistical sense) all the possible directions of the real reference vector in the spacecraft’s
body frame.

Figure 4.2: Diagram of an exaggerated measurement error distribution (3σ limits).

While unit vector measurements are the norm in static methods such as TRIAD and
Wahba’s problem, some non-linear filtering methods (for instance the UKF) allow more
flexibility. Specifically, two quantity observation models may be employed (e.g. the two
angles measured by a two-axis Sun sensor).

4.3.2. Two quantity Observation Models

In this section, two different models are presented, valid for star trackers and two-axis
Sun sensors such as Solar MEMS’ NanoSSOC. Figure 4.3a shows the simplified geometry
of a star tracker, similar to that of a pinhole camera. The x, y and z axis constitute
a right-handed Cartesian coordinate system, with its origin at the vertex of the optical
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lens and its z axis along the optical axis, the star tracker’s boresight. The focal plane is
located at a distance f behind the vertex (focal distance) and, at its center, the origin of
the u, v coordinate system is defined.

(a) Star tracker geometry.
Adapted from Crassidis & Markley [3]. (b) Two angles model.

Figure 4.3: Typical two quantity observation models for star trackers and Sun sensors.

The unit vector s from the spacecraft to a star can be computed from the focal plane
coordinates as:

s =
1√

f 2 + u2 + v2

uv
f

 (4.3)

and it is conventional to define α = arctan(u/f) and β = arctan(v/f), leading to the two
angles model in Figure 4.3b where

s =
1√

1 + tan2 α + tan2 β

tanαtan β

1

 (4.4)

The previous definitions allow for a more accurate characterization of the measure-
ment errors. Using the model in Figure 4.3a, errors may directly represent uncertainty in
the imaged stars centroids and be expressed in terms of pixels or other units of length.
Alternatively, they may represent uncertainty in the angles α and β and be expressed in
angular units.

Note that isotropic error in either (u, v) or (α, β) does not translate into a circular
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uncertainty cone such as the one in Figure 4.2 (except when s is aligned with the z

axis). Nevertheless, for small errors it is generally a good approximation. If the initial
measurements are subject to a Gaussian error with covariance σ2

uvI2 or σ2
αβI2 (where σαβ

is expressed in radians), the covariance of the corresponding Gaussian error vector in
Equation (4.2) can be approximated by (σuv/f)

2I3 or σ2
αβI3 respectively.

As stated in Section 4.2, Sun sensor error is typically provided by the manufacturer
as uncertainty in (α, β). For star trackers, since the attitude determination is performed
internally, the error is generally specified in terms of across- and around-boresight attitude
errors. These, however, can be easily translated into (α, β) error through a simple proce-
dure. First, simulate n stars in the star tracker’s FOV (a mean number of 6-8 identified
stars may be assumed) and compute their corresponding (α, β). Then, corrupt each angle
with Gaussian error of covariance σ2

αβI2, solve Wahba’s problem to obtain an attitude es-
timation, and calculate the across- and around-boresight errors. To find the correct value
of σαβ, repeat the previous procedure until the computed attitude accuracy matches with
that provided by the manufacturer to a sufficient degree.

4.3.3. Gyro Measurement Model

A widely used continuous-time model for three-axis gyroscope measurements is:

ω̃(t) = ω(t) + β(t) + ηv(t)

β̇(t) = ηu(t)

(4.5a)

(4.5b)

where ω(t) is the true angular velocity, ω̃(t) is the measured angular velocity, β(t) is the
true bias, and ηv(t) and ηu(t) are independent white noise process (Gaussian, zero-mean)
with power spectral densities σ2

vI3 and σ2
uI3 respectively. In this model, ηv(t) corresponds

to ARW and ηu(t) to RRW.

For simulation purposes, a discrete-time model is usually required. With a gyro
sampling interval ∆t, the discrete-time angular velocity and bias equations are:

ω̃k+1 = ωk +
1

2
(βk+1 + βk) +

(
σ2
v

∆t
+

1

12
σ2
u∆t

)1/2

Nv

βk+1 = βk + σ2
u∆t1/2Nu

(4.6a)

(4.6b)

where the subscript k denotes the k-th step, and Nv and Nu are Gaussian variables
with covariance each given by the identity matrix. A complete derivation of the previous
equations can be found in [3].
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Equations (4.5b) and (4.6b) imply that the bias is unbounded, since the standard
deviation of β(t) grows indefinitely over time (a well known property of Gaussian random
walk). While bias may drift due to environmental factors such as temperature changes
and mechanical stresses, in practice it is limited by the physical properties of the gyro
(consider the finite turn-on bias). To avoid excessively large values, an artificial limit may
be imposed. In the context of measurement simulation, this can be easily achieved by
forcing the sign of Nu to be negative whenever βk(i) > βmax or positive if βk(i) < −βmax,
where βmax is the bias limit and β(i) denotes any component of βk (i = 1, 2, 3).

4.4. Technical Specifications

This section will provide an overview of the key technical specifications of the selected
sensors. First, the specifications given by each manufacturer are presented in Table 4.1.

Table 4.1: Technical specifications of the selected sensor suite.

Manufacturer Model Technical Specifications

Solar MEMS STNS

• Max. sampling rate: 5 Hz
• Across-boresight error: 30 arcsec (3σ)
• Along-boresight error: 200 arcsec (3σ)
• Field of view (FOV): 14◦
• Max. slew rate: 2 deg/s

Solar MEMS NanoSSOC • Max. sampling rate: 50 Hz
• Accuracy: 0.5◦ (3σ)

AAC Clyde Space MM200
• Max. sampling rate: 500 Hz
• Noise spectral density: 1.18 nT/

√
Hz

Silicon Sensing CRM100

• Max. sampling rate: 160 Hz
• Turn-on bias: 0.42 deg/s (3σ)
• Max. bias variation with temperature: ±3 deg/s
• ASD plot in Figure 4.4

Safran STIM202

• Max. sampling rate: 1000 Hz
• Turn-on bias: 0.01 deg/s (3σ)
• Typical bias drift over temperature in Figure 4.6
• ASD plot in Figure 4.5

First, note that the sampling rate is generally configurable. For a fair comparison,
both gyroscopes will be simulated using identical sampling rate. Additionally, the TAM
sampling rate will be selected so as to match that of the Sun sensor. These can be adjusted
depending on the scenario and pointing requirements. Spacecraft typically rotate very
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Figure 4.4: Allan standard deviation (and not variance, as indicated on the vertical axis
of the original figure) plot of the CRM100 gyroscope.

Figure 4.5: Allan standard deviation plot of the STIM202 gyroscope.
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slowly, and changes in the measured quantities (magnetic field, Sun or star directions,
etc.) are also slow. For most applications, sampling rates ranging from 1 to 10 Hz tend
to provide satisfactory results.

As for the star track tracker and Sun sensor, translating the previous accuracy values
into useful properties for the models in Equations (4.2) and (4.4) is straightforward. On
one hand, the Sun sensor accuracy is already specified in (α, β), and just a change in units
(to radians) is required for use in the unit vector observation model. Regarding the star
tracker, its across- and along-boresight error can be expressed in terms of (α, β) accuracy
following the procedure presented in Section 4.3.2. Assuming an average number of 6
stars in the specified FOV, the resulting angular error in the direction of each star has a
3σ value of 55◦.

Dealing with the magnetometer is slightly more complex. The value indicated in the
sensor’s datasheet corresponds to white noise corrupting the measurement, which may
be converted into discrete measurement error by multiplying the spectral density by the
square root of the sampling rate. At 50 Hz, this results in a Gaussian error with covariance
σ2
TAMI3, where σTAM ≃ 8.4 nT. Since the minimum magnetic field encountered in LEO

orbits has an intensity of 24000 nT, this results in a worst-case (α, β) error with standard
deviation ∼ 0.02◦. In addition, modeling noise needs to be considered. As argued in
Section 4.2.3, autocorrelated noise with an RMSE (standard deviation) of 0.2◦ may be
used.

Table 4.2: Gyro parameters.

Model σv [◦/
√

h] σu [◦/h3/2] βmax [deg/s]

CRM100 0.2 200 4

STIM202 0.2 1 0.15

The parameters σv and σu used in the continuous gyro measurement model of Equa-
tion (4.5) may be extracted from the ASD plots in Figures 4.4 and 4.5 following the
procedure in [32]. However, these plots are computed at a constant temperature, which
is not realistic in the context of a low Earth orbit. Generally, due to periodic eclipses,
the spacecraft is subject to extreme changes in temperature which introduce significant
drift in the gyro bias. To include this effect into the ARW and RRW parameters, a trial-
and-error process has been carried out; starting from the values extracted from the ASD
plots, modify them until the simulated gyro response at rest matches with the expected
bias drift (e.g. the evolution in Figure 4.6). The resulting values are presented in Table
4.2, along with indicative values of the bias limit βmax.
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Figure 4.6: Typical bias drift over temperature of the STIM202 gyroscope.
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5 Filter Design

This chapter explores the design of Kalman filters for spacecraft attitude estimation,
which is an essential aspect of the attitude determination module. The Kalman filter is a
widely-used state estimation method that combines system dynamics and measurements
to provide an accurate estimate of the state. After a brief introduction, three specific
Kalman filters will be covered: the multiplicative extended Kalman filter (MEKF), an
unscented version based on Crassidis & Markley’s USQUE [14], and an iterated MEKF
(IMEKF) based on the recent work by Chang [13]. Additionally a novel technique for
improving convergence (bias clipping) will be introduced.

The MEKF is widely regarded as the workhorse of real-time spacecraft attitude
estimation, and represents the attitude as the product of an estimated quaternion and
a deviation from that estimate. Since it is based on the classical EKF, it also uses
linearization to approximate the system and measurement equations. The USQUE, on
the other hand, uses the unscented transform to propagate the state and its uncertainty
through the system dynamics and perform the measurement update. The IMEKF is a
modified version of the MEKF that improves the filter convergence.

Overall, this chapter provides an in-depth overview of the design and implementation
of various Kalman filters for spacecraft attitude estimation, addressing relevant practical
aspects and the bias clipping technique.

5.1. Introduction to Kalman Filtering

The Kalman filter, originally developed by Rudolf Kalman in the 1960s, is a recursive
algorithm that uses measurements of a system and a mathematical model of its dynam-
ics to estimate the system’s state (e.g. the spacecraft’s attitude). The filter works by
combining these measurements with the model predictions to form an optimal estimate.

Kalman filtering is particularly useful for systems that are subject to noise and
uncertainties, as it can handle these factors and provide accurate estimates of the system
state. The filter is also able to adapt to changes in the system dynamics over time and can
make real-time predictions based on the available measurements and the system model.
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The design of a Kalman filter involves several key steps, including defining the sys-
tem state, selecting dynamic and measurement models, and determining the process and
measurement noise covariances. The successful implementation of a Kalman filter requires
careful consideration of the previous steps and a thorough understanding of the under-
lying system dynamics. In the following sections, these aspects will be covered for the
specific case of spacecraft attitude estimation.

5.2. Multiplicative Quaternion Representation

Section 3.2 presented several different attitude representations, some of which are
more appropriate for attitude estimation than others. For most filtering applications, the
quaternion has become the representation of choice, mainly due to its compact param-
eterization and lack of singularities. Quaternions are also very computationally efficient
and easy to normalize, making them convenient to work with in numerical algorithms.

As argued in Section 3.2.7, the most natural way of representing attitude errors is
using a multiplicative approach:

q = δq⊗ q̂ (5.1)

where q represents the true quaternion, q̂ the estimated quaternion, and δq the error
quaternion defined in the spacecraft body frame. Note that they are all properly normal-
ized unit quaternions.

An additive error representation (q = q̂+∆q) is simpler to implement and may be
preferred in certain applications, but presents some problems which have not yet been
solved in a satisfactory manner. For instance, enforcing the unit norm constraint even-
tually produces an ill-conditioned covariance matrix, since only three degrees of freedom
exist [3].

5.3. MEKF

The fundamental idea behind the multiplicative EKF (and its variants) is to utilize
the quaternion as a “global” attitude representation, with a three-component state vector
a serving as the “local” representation of attitude errors. This approach present several
advantages; on one hand, the multiplicative formulation guarantees that the normalization
of q̂ is maintained. Additionally, since the four-component error quaternion has been
effectively replaced by a three-component error vector, the covariance matrix has minimum
dimensionality and therefore does not show any singularities.
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Typical choices for a include the rotation vector, two times the vector part of the
quaternion, two times the vector of Rodrigues parameters, or four times the vector of
MRPs. As discussed in 3.2.7, all of these error representations are equivalent up to
second order, and share the following first order error quaternion parametrization:

δq(a) ≈

[
a/2

1

]
(5.2)

Based on the study in [14], four times the vector of MRPs (a = 4 δp) has been chosen as
the local attitude error representation for the current filters.

The MEKF algorithm is presented in Table 5.1. Even though a mathematical deriva-
tion is readily available in any dedicated textbook, a brief review is presented next for
convenience, and to point out certain aspects which differentiate it from the other con-
sidered filters. Additionally, an integration technique to process n gyro samples between
successive attitude measurements (which is not addressed in any of the referenced sources)
is presented.

Table 5.1: MEKF.

Initialization Set q̂0, β̂0 and P0

Propagation q̂+
k−1, P

+
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Global update ∆x̂+
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The MEKF proceeds by iteration of three steps: propagation to the next measure-
ment time, measurement update, and state vector reset. While the first two are general
steps in any Kalman filter, the third is a particular feature of the MEKF. The reset moves
the updated information from the error state to the global attitude representation, and
resets the components of the error state to zero. Using this strategy, a always remains
small and therefore never approaches a singularity.

5.3.1. Step 1: Propagation

There are two ways of approaching the propagation step. The first one, more in line
with classical Kalman filter applications, is to use a dynamic model which incorporates
attitude kinematics and attitude dynamics, and therefore considers both the attitude and
angular velocity as state variables. Gyro data is then included as conventional measure-
ments in the update step. The alternative is to incorporate gyro information as part of
dynamic model, excluding attitude dynamics equations. This is often referred to as using
gyros for dynamic model replacement, and presents two significant advantages; first, gyro
information is typically more accurate than the available models of rotational dynamics
and torques, and secondly, requires much less computation. For these reasons, it will be
the method of choice for the current application.

As stated in Section 3.3, the kinematics equations for the global quaternion estimate
and the local error vector are

˙̂q =
1

2
[ω̂⊗] q̂ (5.3)

and
ȧ = −[ω̂×] a+ δω (5.4)

respectively, where ω̂ is the estimated angular velocity vector and δω the error angular
velocity (δω = ω − ω̂). Note that the time dependency of all variables has been omitted
for simplicity.

For general on-board usage, the MEKF estimates gyro biases in addition to the
attitude. Therefore, it updates the error state

∆x =

[
a

∆β

]
(5.5)

where ∆β is the error in gyro biases, defined as the difference between their true and
estimated values (∆β = β− β̂). It is assumed that the relatively fixed gyro error sources
(e.g. scale factor, misalignment) have already been calibrated by an appropriate spacecraft
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maneuver profile. By substituting the continuous gyro model from Equation (4.5) into
Equation (5.4), the kinematics of the error state can be obtained:

ȧ = −[ω̂×] a−∆β − ηv

∆β̇ = ηu

(5.6a)

(5.6b)

where the following considerations have been made:

δω = ω − ω̂ = ω̃ − ω̂ − β − ηv = β̂ − β − ηv = −∆β − ηv (5.7)

˙̂
β = 0 (5.8)

The previous system of equations may be expressed as:

∆ẋ = F∆x+Gw(
Ṗ = FP + PF T +GQGT

) (5.9a)

(5.9b)

where P is the state covariance,

F =

[
−[ω̂×] −I3
03 03

]
, G =

[
−I3 03

03 I3

]
(5.10)

and w is a process noise vector with power spectral density

Q =

[
σ2
vI3 03

03 σ2
uI3

]
(5.11)

Note that 03 represents a 3× 3 null matrix.

For practical applications, a discrete-time version of Equations (5.3) and (5.6) is
required. Recall that within the MEKF framework, the error state is always reset to zero
after the measurement update, and remains identically zero over the propagation step.
Therefore, only its covariance, which will be denoted by P (t), needs to be propagated.
Consider the time interval [tk, tk+1] between successive measurements, which is split into
n gyro samples (including one at tk but not at tk+1). Recall that the quaternion estimate
may be propagated using

q̂(tk+1) = Ω(τn+1, τn) · · ·Ω(τj+1, τj) · · ·Ω(τ2, τ1) q̂(tk) (5.12)
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with
τj = tk + (j − 1)

tk+1 − tk
n

, j = 1, 2, ..., n (5.13)

Ω(τj+1, τj) = cos

(
1

2
∥ω̂j∥∆τ

)
I4 +

1

∥ω̂j∥
sin

(
1

2
∥ω̂j∥∆τ

)
[ω̂j ⊗] (5.14)

where ∆τ = τj+1−τj corresponds to the sampling time interval of the gyro and ω̂j = ω̂(τj)

is the estimated angular velocity vector at time τj (it is being assumed that ω̂(t) = ω̂j ∀ t ∈
[τj, τj+1)). Note that ω̂(t) = ω̃(t)− β̂(t).

The solution to Equation (5.6) is slightly more complicated, since it involves an
external variable, namely process noise. Nevertheless, assuming constant angular velocity,
the following closed-form solution can be obtained [19]:

∆x(t) = Φ(t, t0)∆x(t) +

∫ t

t0

Φ(τ, t0)G(τ)w(τ) dτ (5.15)

Following the previous strategy, the time interval between measurements [tk, tk+1] may
be split into n gyro samples, where at each individual time step τj the state is propagated
until τj+1 using

∆x(τj+1) = Φ(τj+1, τj)∆x(τj) +

∫ τj+1

τj

Φ(t, τj)G(t)w(t) dt (5.16)

where

Φ(τj+1, τj) =

[
Φ11 Φ12

Φ21 Φ22

]

Φ11 = I3 − [ω̂j×]
sin(∥ω̂j∥∆τ)

∥ω̂j∥
+ [ω̂j×]2

1− cos(∥ω̂j∥∆τ)

∥ω̂j∥2

Φ12 = [ω̂j×]
1− cos(∥ω̂j∥∆τ)

∥ω̂j∥2
−∆τI3 − [ω̂j×]2

ω̂j∆τ − sin(∥ω̂j∥∆τ)

∥ω̂j∥3

Φ21 = 03, Φ22 = I3

(5.17a)

(5.17b)

(5.17c)

(5.17d)

with τj, ω̂j and ∆τ defined previously.

At each time step τj, the state covariance P (t) may be propagated until τj+1 using

P (τj+1) = Φ(τj+1, τj)P (τj)Φ
T (τj+1, τj) +

∫ τj+1

τj

Φ(t, τj)G(t)Q(t)GT (t) ΦT (τj+1, τj) dt

(5.18)
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where the integral corresponds to the discrete process noise covariance Q∆τ and can be
approximated by

Q∆τ ≈


(
σ2
v∆τ + 1

3
σ2
u∆τ 3

)
I3 −

(
1
2
σ2
u∆τ 2

)
I3

−
(
1
2
σ2
u∆τ 2

)
I3 (σ2

u∆τ)I3

 (5.19)

Equation (5.18) is then applied recursively in order to propagate P from tk to tk+1.

5.3.2. Step 2: Measurement Update

The MEKF typically makes use of the unit vector observation model presented in
Section 4.3. Multiple (m) vector observations can be concatenated to form

ỹ =


A(q)r1

A(q)r2
...

A(q)rm

+


ν1

ν2

...
νm

 = h(q) + v (5.20)

where the power spectral density of v is

R =


σ2
1I3

σ2
2I3

. . .

σ2
mI3

 (5.21)

Since the MEKF updates the error state, the relationship between ỹ and ∆x needs
to be found. This can be achieved by linearizing Equation (5.20) around q̂:

ỹ = h(q̂) +H(q̂)∆x+ v (5.22)

where H(q) is the measurement sensitivity matrix, defined as

H(q) =
∂h

∂∆x
=

[
∂h

∂a

∂h

∂∆β

]
=

[
Ha H∆β

]
(5.23)

Now, for a single observation, the true and estimated body vectors are given by

b = A(q)r, b̂ = A(q̂)r (5.24)
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respectively, and therefore Equation (5.20) may be rewritten as:

ỹ = b̂+∆b+ ν (5.25)

where ∆b = b − b̂. Applying the quaternion composition property in Equation (3.16)
and using a first order approximation of the attitude matrix A(δq):

b = A(δq)A(q̂)r ≈ (I3 − [a×])A(q̂)r (5.26)

Thus

∆b = −[a×]A(q̂)r = −[a×] b̂ = [b̂×] a (5.27)

and then

ỹ = b̂+ [b̂×] a+ ν (5.28)

Comparing Equations (5.25) and (5.28), the sensitivity matrix for m measurements is
therefore given by

H(q̂) =


[A(q̂)r1×] 03

[A(q̂)r2×] 03
...

...
[A(q̂)rm×] 03

 (5.29)

Note that H is to be computed using the quaternion estimate right after the propa-
gation step and prior to the measurement update. Typically, a-priori values are denoted
by q̂−, while a-posteriori values (after the measurement update) are denoted by q̂+. At
time tk, the standard Kalman update equations are:

∆x̂+
k = ∆x̂−

k +Kk zk

P+
k = P−

k −KkHkP
−
k

(5.30a)

(5.30b)

where the innovation zk is given by

zk = ỹk − ŷ−
k = ỹk − h(q̂−

k )−Hk∆x̂−
k (5.31)

and the Kalman gain is computed as

Kk = P−
k HT

k (HkP
−
k HT

k +Rk)
−1 (5.32)
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Note that since ∆x−
k = 0,

∆x̂+
k = Kk zk

zk = ỹk − h(q̂−
k )

(5.33)

(5.34)

5.3.3. Step 3: Reset

A reset procedure is used to move information from the updated error state ∆x̂+ to
the global estimate vector q̂+ and β̂

+
. This is achieved through

q̂+ = δq(â+)⊗ q̂−

β̂
+
= β̂

−
+∆β̂

+

(5.35a)

(5.35b)

after which the error state is reset to zero. This operation has to preserve the normalization
of the quaternion, and therefore the exact quaternion parametrization δq(a) must be
used (the linearized expression in Equation (5.2) or the second order approximation from
Section 3.2.7 are not valid).

5.4. IMEKF

As argued in [13] or [34], for spacecraft attitude estimation, the nonlinearity mainly
lies in the measurement model. In the MEKF, at time tk, the measurement sensitivity
matrix is computed by linearizing Equation (5.20) around q̂−

k , which may not be adequate
for large attitude errors. The basic idea of the IMEKF is to relinarize the measurement
model around the more accurate a posteriori estimate, and the perform once again the
measurement update. This can be done a number of times, but according to the results
in [13], one iteration strikes a good balance between performance improvement and added
computational cost. The IMEKF algorithm is presented in Table 5.2.

5.5. USQUE/MUKF

The unscented version of the MEKF uses the UT to propagate the quaternion and
error state covariance, as well as to obtain the predicted measurements ŷ. In this section,
a formulation based on Crassidis & Markley’s USQUE [14] will be presented. In addition
to the original USQUE, a modified version using the scaled UT is considered, which will
be referred to as MUKF.
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Table 5.2: IMEKF.

Initialization Set q̂0, β̂0 and P0

Propagation q̂+
k−1, P

+
k−1 −→ q̂−

k , P−
k using

ω̂ = ω̃ − β̂
+

k−1
˙̂q = 1

2
[ω̂⊗] q̂

Ṗ = FP + PF T +GQGT

Update q̂k,1 = q̂−
k , β̂k,1 = β̂

−
k , Pk,1 = P−

k

for i = 1, 2:
Local update:

∆x̂k,i = Kk,i(ỹk − h(q̂k,i))
Pk,i+1 = Pk,i −Kk,iHk,iPk,i

where
Kk,i = Pk,iH

T
k,i(Hk,iPk,iH

T
k,i +Rk,i)

−1

h(q̂k,i) =


A(q̂k,i)r1
A(q̂k,i)r2

...
A(q̂k,i)rm

, Hk,i =


[A(q̂k,i)r1×] 03
[A(q̂k,i)r2×] 03

...
...

[A(q̂k,i)rm×] 03


Global update:

∆x̂k,i =

[
âk,i

∆β̂k,i

]
q̂+
k,i = δq(â+

k,i)⊗ q̂k,i

β̂k,i+1 = β̂k,i +∆β̂k,i+1

end
q̂+
k = q̂k,2, β̂

+

k = β̂k,2, P
+
k = Pk,2
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Table 5.3: USQUE/MUKF.

Initialization Set q̂0, β̂0 and P0

Sigma point USQUE: α = 1, κ = 1, γ = 0
generation MUKF: α = 10−3, κ = 0, γ = 2

x̂+
k−1 =

[
â+
k−1 = 03

β̂
+

k−1

]
Xk−1(0) = x̂+

k−1

Xk−1(i) = x̂+
k−1 +

(√
(6 + λ)(P+

k−1 +Q′)
)
i
, i = 1, ..., 6

Xk−1(i) = x̂+
k−1 −

(√
(6 + λ)(P+

k−1 +Q′)
)
i−n

, i = 7, ..., 12

w0 = λ/(n+ λ)
wi = 1/(2(n+ λ)), i = 1, ..., 12

Propagation q̂+
k−1, x̂

+
k−1, P

+
k−1 −→ q̂−

k , x̂−
k , P−

k using
q̂k−1(i) = δqk−1(i)⊗ q̂+

k−1, i = 0, 1, ..., 12

ω̂(i) = ω̃ −X β
k−1(i)

˙̂q(i) = 1
2
[ω̂(i)⊗] q̂(i)

X a
k (i)←− δqk(i) = q̂k(i)⊗ q̂−1

k (0)
q̂−
k = q̂k(0)

x̂−
k ←− UT mean of X β

k (i)

P−
k ←− UT covariance of X β

k (i)

Local update x̂+
k = x̂−

k +Kk zk
P+
k = P−

k −KkP
z
kK

T
k

where
zk = ỹk − ŷ−

k

Kk = P xy
k (P z

k )
−1

h(q̂k(i)) =


A(q̂k(i))r1
A(q̂k(i))r2

...
A(q̂k(i))rm


Global update q̂+

k = δq(â+
k )⊗ q̂−

k
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The USQUE/MUKF algorithm is presented in Table 5.3. In order to formulate it,
a different, more general approach than the one used for the MEKF is required. Us-
ing a Bayesian approach1, and assuming that all variables are Gaussian distributed, the
following general equations for optimal recursive estimation can be obtained [35]

x̂+
k = x̂−

k +Kk zk

P+
k = P−

k −KkP
z
kK

T
k

(5.36a)

(5.36b)

where zk = ỹk − ŷ−
k is known as the innovation, and P z

k corresponds to its covariance.
For the system model

xk = f(xk−1,wk−1)

ỹk = h(xk,vk)

(5.37a)

(5.37b)

the optimal terms in this recursion are given by

x̂−
k = E{f(xk−1,wk−1)}

Kk = P xy
k (P z

k )
−1

ŷ−
k = E{h(xk,vk)}

(5.38a)

(5.38b)

(5.38c)

where P xy
k is the cross-correlation matrix between x̂−

k and ŷ−
k . The original Kalman filter

calculates all terms in these equations exactly in the linear case. For nonlinear models,
however, the EKF approximates the optimal terms as:

x̂−
k ≈ f(x̂k−1, w̄k−1)

Kk ≈ P̂ xy
k (P̂ z

k )
−1

ŷ−
k ≈ h(x̂k, v̄k))

(5.39a)

(5.39b)

(5.39c)

where the predictions are approximated simply as the function of the prior mean values2,
which for the state correspond to the prior estimates. In the MEKF, x̂ would correspond
to the error state. First, â is assumed to remain zero after the propagation (instead
of propagating its distribution and then computing its mean), and the attitude error
covariance Pk−1 is propagated using a first order linearization of f around âk−1 = 03

(always zero after the reset).

1The Kalman filter may be derived using various approaches. It was originally formulated through
the minimization of the mean-square error (MMSE) between predicted and actual measurements, but
Bayesian inference provides a more general framework.

2The noise means are denoted by w̄ = E{w} and v̄ = E{v} are are usually assumed to equal zero.
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Similarly, just the estimated state is used to compute ŷ−
k (instead of transforming the

complete state distribution and then computing its mean), and a linear approximation of
h is used to compute P xy

k and P z
k (P̂ xy

k = P−
k HT

k and P̂ z
k = HkP

−
k HT

k +Rk).

On the other hand, the unscented version of the MEKF uses the UT to propa-
gate/transform the mean and covariance of the state variables. First, the state is redefined
as

x =

[
a

β

]
(5.40)

where the bias, and not the bias error as in the MEKF, is being considered. At time tk,
the sigma points and associated weights are computed using the expressions in Section
3.4.2:

Xk(0) = x̂k

Xk(i) = x̂k +
(√

(n+ λ)(Pk +Q′)
)
i
, i = 1, 2, ..., n

Xk(i) = x̂k −
(√

(n+ λ)(Pk +Q′)
)
i−n

, i = n+ 1, n+ 2, ..., 2n

w0 =
λ

n+ λ

wi =
1

2(n+ λ)
, i = 1, 2, ..., 2n (5.41)

where n = 6 (state dimension), λ = α2(n+κ)−n is a scaling parameter, and Q′ is related
to the process noise covariance, which will be discussed shortly.

(√
(n+ λ)(Pk +Q′)

)
i

is the ith row of the matrix square root, which can be computed using the Cholesky
decomposition. Each vector Xk(i) may be partitioned into

Xk(i) =

[
X a

k (i)

X β
k (i)

]
, i = 0, 1, ..., 12 (5.42)

In order to propagate the quaternion distribution using the UT, a “sigma set” of quater-
nions is generated:

q̂k(i) = δqk(i)⊗ q̂k, i = 0, 1, ..., 12 (5.43)

where δqk(i) = δq(X a
k (i)) shall be computed using the exact quaternion parametrization

in order to preserve normalization. Note that q̂k(0) = q̂k, since the attitude error vector
is reset before the propagation. The updated quaternions are propagated forward using
Equation (5.12), each with an estimated angular velocity given by

ω̂(t) = ω̃(t)−X β
k (i) ∀t ∈ [tk, tk+1], i = 0, 1, ..., 12 (5.44)
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At tk+1, the propagated sigma points X a
k+1(i) can be computed using

δqk+1(i) = q̂k+1(i)⊗ q̂−1
k+1(0), i = 0, 1, ..., 12 (5.45)

and the expressions in Section 3.2 relating the quaternion to other attitude representations
(for instance, if a = 4 δp, then X a(i) = 4 δq1:3(i)/(1 + δq4(i))).

The predicted mean and covariance can now be computed using

x̂k+1 ≈
2n∑
i=0

wiXk+1(i)

Pk+1 ≈
2n∑
i=0

wi(Xk+1(i)− x̂k+1)(Xk+1(i)− x̂k+1)
T

+ (1− α2 + γ)(Xk+1(0)− x̂k+1)(Xk+1(0)− x̂k+1)
T +Q′

(5.46a)

(5.46b)

where γ is an auxiliary parameter of the scaled UT.

Recall that in the formulation of the MEKF, the error state covariance was propa-
gated using the linearized kinematics in Equation (5.9) and a recursive integration tech-
nique based on n gyro measurements between tk and tk+1. With this approach, process
noise was seamlessly incorporated into the propagated value. Unfortunately, adopting a
similar strategy here would imply computing â and P , adding Q∆τ (with ∆τ equal to the
gyro sampling interval), and regenerating all sigma points at every gyro sampling time.
For obvious reasons, this is very impractical and computationally inefficient. One solution
is to consider Q∆t, with ∆t = tk+1− tk, and add it to the propagated covariance in Equa-
tion (5.46b). Crassidis & Markley propose a more sophisticated approach, approximating
the integration of process noise by adding the matrix

Q′ =
∆t

2

[
(σ2

v − 1
6
σ2
u∆t2)I3 O3

03 σ2
uI3

]
(5.47)

before and after the propagation, akin to a trapezoidal rule for integration. This is
reflected in the previous formulation.

Proceeding with the measurement update, the mean observation and output covari-
ance are given by

ŷk+1 ≈
2n∑
i=0

wiYk+1(i) (5.48a)
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and

P y
k+1 ≈

2n∑
i=0

wi(Yk+1(i)− ŷk+1)(Yk+1(i)− ŷk+1)
T

+ (1− α2 + γ)(Yk+1(0)− ŷk+1)(Yk+1(0)− ŷk+1)
T (5.48b)

where
Yk+1(i) = h(Xk+1(i)), i = 0, 2, ..., 12 (5.49)

Given that the Jacobian matrix of h does not need to be derived, any measurement
function may be used, including the two quantity observation models in Section 4.3.2.
While Crassidis & Markley implement an unit vector observation model in [14], they
recommend that two quantity observation models are used instead, since Equation (5.48b)
may not produce a mean observation with unit norm. For this project both alternatives
have been tested; with the selected sensor suite, the resulting attitude errors agree to
within 1 arcsec. While the results using a two quantity observation model are indeed
more precise, such a small improvement does not justify the added computational cost.
For this reason, the vector observation model will be kept:

h(Xk+1(i)) =


A(q̂k+1(i))r1

A(q̂k+1(i))r2
...

A(q̂k+1(i))rm

 (5.50)

The innovation covariance is simply given by

P z
k+1 = P y

k+1 +Rk+1 (5.51)

and the cross-correlation matrix is computed as

P xy
k+1 ≈

2n∑
i=0

wi(Xk+1(i)− x̂k+1)(Yk+1(i)− ŷk+1)
T

+ (1− α2 + γ)(Xk+1(0)− x̂k+1)(Yk+1(0)− ŷk+1)
T (5.52)

After adding a “−” superscript to the previous a priori values, the update may be per-
formed using

x̂+
k+1 = x̂−

k+1 +Kk+1 zk+1

P+
k+1 = P−

k+1 −Kk+1P
z
k+1K

T
k+1

(5.53a)

(5.53b)
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with

zk+1 = ỹk+1 − ŷ−
k+1

Kk+1 = P xy
k+1(P

z
k+1)

−1

(5.54)

(5.55)

after which â+
k+1 is reset to zero.

The scaled UT used in the current formulation differs from the older version used in
[14]. However, the same results1 may be obtained using α = 1, κ = 1 and γ = 0. A modern
version based on the typical scaled UT parameters (α = 10−3, κ = 0, γ = 2) and receiving
the generic name MUKF (multiplicative unscented Kalman filter) will also be tested. Note
that the MUKF parameters are designed for Gaussian distributions, minimizing higher
order moments. On the other hand, those of the USQUE can introduce significant higher
order moments, which may produce better results if they are aligned with those of the
true distribution (or poorer results if they are in the opposite direction).

5.6. Bias Clipping

The bias clipping technique basically consists on artificially limiting (or constrain-
ing) the bias estimation within the filter. Constrained Kalman filtering is not a new idea
[36], [37], and has been used extensively in fields such as chemical engineering, where e.g.
concentrations of a solution may be forced to take positive values. Ultimately, adding
constraints to the estimated values is a way of incorporating additional knowledge about
certain variables. To the knowledge of the author, however, there has not been investiga-
tion of a constrained Kalman filter for spacecraft attitude estimation.

For large initialization errors, the filtering performance of the MEKF may be sig-
nificantly degraded due to linearization errors. This is a well documented limitation of
extended Kalman filters, and has motivated the development of alternatives such as the
IMEKF and USQUE. During the convergence phase, the state variables are typically
subject to large oscillations before settling down, which negatively impacts the speed of
convergence. Regarding the unconstrained attitude error vector, the values reached dur-
ing these oscillations do not present any conceptual issues. However, gyro biases may
reach values which are physically unattainable. As stated in Section 4.3.3, gyro bias is
not truly unbounded as the used model may imply, but rather limited by the physical
properties of the gyro (consider the finite turn-on bias).

In addition, the probability density function of the bias estimate is not unimodal
(more than one peak exist), which can cause the filter to converge to the wrong value.

1In [14], different values of λ are studied, concluding that the USQUE performs best using λ = 1.
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This is easy to visualize; imagine that the spacecraft is spinning around a certain axis,
and multiple sensors are providing measurements at fixed time intervals. In order to
correctly capture the spacecraft’s motion, measurements are sampled at a frequency which
is multiple times greater than the rotational frequency of the spacecraft (obeying the
Nyquist sampling theorem). However, an unbounded gyro bias estimate may theoretically
converge to a value that increases the estimated angular velocity over the Nyquist limit.
Therefore, it is possible for the estimate to be erroneous while still agreeing with the
measurements. This has been observed in simulations with a large angular velocity and
relatively slow sensor sampling frequency (that is, with a reduced “Nyquist sampling
margin”).

Figure 5.1: Saturation of the gyro bias estimate.

The issues stated in the previous discussion motivate the inclusion of an artificial gyro
bias constraint. The bias clipping strategy achieves this by implementing a saturation
effect on the estimated a posteriori value of the gyro bias. This effect is illustrated in
Figure 5.1, where β′ denotes the saturated bias. The value βmax must be selected in
accordance with the gyro technical specifications. While the values of βmax indicated in
Table 4.2 may be adopted directly, a safety factor of two will be taken into account (the
bias estimate will be saturated at twice the indicated values).

Note that the results presented in this work are based on simulated measurements,
and not on real sensor outputs. A practical application of the bias clipping technique
must consider a previous characterization of βmax based on extensive gyro testing, and
greater safety factors may be applied.
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6 Simulation and Results

The objective of this Chapter is to assess the precision in attitude knowledge that can
be achieved using the sensor suite selected in Chapter 4 and the various filters intro-
duced in Chapter 5. Several performance comparisons between the MEKF, IMEKF and
USQUE/MUKF are made through simulated examples using a realistic spacecraft model.
The attitude estimation algorithms are implemented using Python. Overall, the results
presented in this chapter provide valuable insights into the effectiveness of the various
filtering methods and justify the sensor selection.

6.1. Simulation Strategy

6.1.1. General Considerations

The simulations are performed using a representative Earth-pointing spacecraft in
a circular orbit at an altitude of 530 km (orbital period of ∼ 95.2 min). Additionally,
the orbit is Sun synchronous with a corresponding inclination of 97.51◦. This represents
the most popular orbit for nanosatellites, with over 300 active spacecraft as of early 2023
[1]. Other hypothesis include the lack of perturbations altering the initial orbit or the
spacecraft attitude, and perfect attitude control (the spacecraft will follow the specified
angular velocity profile).

Recall that the sensor suite consists of a star tracker, fine sun sensors, a three-axis
magnetometer (TAM) and a three-axis gyroscope. It is assumed that the Sun is within
a Sun sensor’s field of view at all times other than during eclipse. Additionally, the star
tracker is pointing towards the z axis of the spacecraft body frame. The simulations will
be carried out for the two selected gyro models (CRM100 and STIM202), in order to
assess their performance and viability.

The sensors have the technical characteristics specified in Section 4.4, and are sim-
ulated using the various models introduced in Section 4.3. In particular, the two angles
model is used to simulate star tracker and Sun sensor measurements, which are then fed to
the filters as vector observations. Additionally, TAM measurements are generated using
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an updated IGRF model (early 2023), while the reference model will be offset from the
truth epoch by three years. This introduces a systematic error component which is added
to the Gaussian measurement noise. Lastly, gyro measurements are simulated using the
discrete-time model in Section 4.6. Note that the sampling frequency of each sensor will
depend on the analyzed scenario, and is specified in the description of each particular
case.

6.1.2. Case Studies

In this section, three different scenarios are presented. First, normal mode is studied,
as it is the standard operating mode of a spacecraft’s ADS and generally covers the
majority of the mission’s lifetime. The main objective is to assess steady state accuracy
of the attitude estimation, comparing the performance of the different filters.

Next, a slew maneuver is analyzed. A change in the pointing direction of a satellite
may be performed for various reasons, which include:

• Satellite commissioning and decommissioning.

• Orbital station keeping.

• Calibrating and testing the attitude control system.

• Pointing the solar panels towards the Sun to recharge its batteries or optimize power
generation.

• Changing the orbital plane or altitude of the satellite.

With a time-varying rotational speed, the multiple assumptions of constant angular ve-
locity in the filtering algorithms are tested.

Lastly, a scenario of complete loss of attitude knowledge is studied. This may happen
during a spacecraft’s lifetime due to sensor failure, radiation effects, actuator malfunction,
or software or communication errors, and can be a critical issue. Typically, when the
spacecraft experiences an anomaly or malfunction that may threaten its operational status
or safety, it enters the so called safe mode. Most systems are powered down or switched
to low-power mode, and only essential components are maintained. In this scenario, the
limits of the attitude determination module will be pushed, finding the minimum set of
sensors required to recover attitude knowledge to an acceptable degree of accuracy.

The previous scenarios represent typical phases or modes throughout the average
mission’s lifetime, and allow to test the module design in a wide range of conditions.
Other common phases/modes such as detumbling, Sun-pointing mode or target-pointing
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mode will not be considered, as they become redundant and do not add much value to
the analysis.

Case 1: Nominal Earth-Pointing Conditions

In normal mode, the spacecraft is continuously pointing towards the Earth, and thus
completing a full rotation each orbit (resulting in an angular velocity of 0.063 deg/s in
the direction perpendicular to the orbital plane). The complete sensor suite will be used
in order to assess whether there is any performance improvement over star tracker-only
attitude estimation. Additionally, several combinations of sensor sampling rates will be
analyzed to quantify the advantage (if any) in using higher rates. Other relevant aspects
of the simulation are outlined below:

• Total simulation time of 10 minutes.

• Eclipse conditions during the second half of the simulation.

• Complete availability of all the sensors except for the Sun sensor during eclipse.
This assumes that no Sun intrusions in the star tracker’s FOV are present.

• Constant average number of six identified stars by the star tracker. In reality, this
number typically oscillates between one and about ten stars..

• Initial attitude-estimation error: δϑ0 ∼ N(µδθ, σ
2
δϑI3), with µδθ = [0◦, 0◦, 0◦]T and

σδϑ = 0.1◦.

• Initial bias-estimation error: ∆β0 ∼ N(µ∆β, σ
2
∆βI3), with µ∆β = [0, 0, 0]T deg/s

and σ∆β equal to the standard deviation of the corresponding turn-on bias.

The initial conditions mimic a typical situation, where normal operation begins after
an initial attitude acquisition phase using Sun sensor and TAM measurements only. A
relatively accurate attitude estimation is already available, and therefore there are no
filter convergence issues. On the other hand, no previous gyro bias estimate exists and it
is set to zero. The fact that the true bias is initially distributed according to the turn-on
bias specification leads to the indicated distribution of ∆β0.

Note that the initial attitude-estimation error is being expressed in terms of the ro-
tation vector, but the filters employ a different error representation, namely a = 4 δp.
However, since the error is small, both representations are virtually equivalent and there-
fore just a simple change in units (from degrees to radians) is required.

Also note that multiple simulations (i.e. Monte-Carlo runs) will be carried out to av-
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erage the results. In each simulation, the true quaternion1 and gyro bias will be generated
using a different realization of the previous initial error distributions.

Case 2: Slew Maneuver

The angular velocity profile of a slew maneuver can vary depending on the specific
requirements of the mission and the design and size of the satellite. However, in general,
a typical slew maneuver involves an initial acceleration phase, followed by a constant
velocity phase, and then a deceleration phase as the satellite approaches its target attitude.
A representative angular velocity profile for small satellites can be found in [38], showing
a maximum magnitude of approximately 2 deg/s and a total duration of 90 s. To simplify
computations, a slightly simpler profile will be employed, using “rest-to-rest” motion (the
maneuver endpoints are inertially fixed). The magnitude of the angular velocity ω(t) =

∥ω(t)∥ shall verify:

• Start and finish at rest: ω(0) = ω(T ) = 0, where T = 90 s.

• Start and finish with zero torque: ω̇(0) = ω̇(T ) = 0.

• Reach a maximum magnitude2 ωmax ≃ 2 deg/s.

The polynomial ω(t) = Ct2(T − t)2 automatically fulfills the first two requirements, and
choosing C = 5 · 10−7 deg/s5 achieves ωmax = 2.05 deg/s. The resulting angular velocity
profile is displayed in Figure 6.1. Integrating the previous expression and computing its
derivative gives a total rotation of 98.4◦ and a maximum angular acceleration of magnitude
ω̇max = 0.07 deg/s2 respectively.

Figure 6.1: Angular velocity profile used for the simulations.

The main objective is to test whether nominal accuracy is maintained during a slew
1Adding the error to the true quaternion in order to generate the estimate or doing it the other way

around are equivalent.
2Note that ωmax may be limited by the star tracker’s maximum slew rate. Coincidentally, 2 deg/s

matches that of the selected model.
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maneuver. This will be assessed using various gyro sampling rates, which are directly
related to the precision in attitude propagation. Exact initial attitude and gyro bias
knowledge is assumed (σδϑ = σ∆β ≃ 0), as well as complete availability of all the sensors.
For the purposes of this analysis, the axis of rotation does not have much influence.
Nevertheless, an axis which is not aligned with the Sun nor the star tracker’s boresight
will be chosen.

Case 3: Lost In Space

Here, the initialization problem is addressed. Complete loss of attitude knowledge
will be simulated, testing the different filters’ ability to converge to a correct estimate.
A worst-case scenario, where only the gyroscope and either the Sun sensor or TAM are
available due to a failure in the star tracker, is studied. The goal is to analyze which
combinations of gyro model (CRM100 vs. STIM202) and attitude sensor allow the filter
to converge. Additionally, the case where both attitude sensors are used will be considered,
simulating regular eclipse cycles.

One of the main goals of this simulation is to assess the speed of convergence of the
different algorithms, as well as the achievable accuracy using Sun sensor and magnetome-
ter measurements only. Total attitude and bias uncertainty are assumed, which lead to
the following initial conditions:

• Initial attitude-estimation error: δϑ0 ∼ N(µδϑ, σ
2
δϑI3), with µδϑ = [0◦, 0◦, 0◦]T and

σδϑ = 60◦.

• Initial bias-estimation error: ∆β0 ∼ N(µ∆β, σ
2
∆βI3), with µ∆β = [0, 0, 0]T deg/s

and σ∆β equal to the standard deviation of the corresponding turn-on bias.

Even if the value of σδϑ is quite large, it still can be directly translated into MRP
error (4 tan− 1[(60× π)/(4×)] = 58.68◦). In this context, it represents a complete lack of
confidence in the provided attitude estimate.

The same attitude error distribution can be used to generate the true quaternion,
which in terms of Euler angle results in an approximate mean error of

√
3× 60◦ ≃ 104◦.

However, in order to simulate a worst-case scenario, each error component will instead be
uniformly distributed, ranging from −180◦ to 180◦. Using this strategy, a Monte-Carlo
analysis with 10000 samples indicates an expected Euler angle error of about 150◦. Note
that in order to perform a realistic analysis and truly capture the average characteristics
of the various filters, it is important to provide several different initial attitude errors. As
the simulations will show, using a fixed value may lead to wrong conclusions.
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6.2. Simulation Results

In order to quantify the simulation results and assess filter performance, several
parameters are analyzed:

• Pointing error: Characterized by the components of the local error vector a(t) or
the error Euler angle δϑ(t) (from the Euler angle/axis representation).

• Computation time: Run time for each filter, expressed as a ratio to the MEKF
run time (i.e. MUKF run time = ratio× MEKF run time).

• Convergence time: Time it takes for the filter to converge within its 3σ bounds.

These will be averaged through 20 Monte-Carlo runs, which in the author’s experience
are representative enough. The time average of the resulting averaged error Euler angle,
referred to as the root-mean-square error (RMSE), will also be considered. It represents
the mean error that can be expected at any particular time, and provides a scalar per-
formance indicator which eases the filter comparison. If the Monte-Carlo average of the
error Euler angle is denoted by δϑMC(t), then the RMSE is simply defined as

RMSE =
1

N

N∑
i=1

δϑMC(ti) (6.1)

where N is the total amount of attitude estimates during the simulation. Note that when
the gyro sampling rate is higher than any of the attitude sensor’s sampling rates, an
attitude estimate is generated at each gyro sampling time. Otherwise, N will correspond
to the total number of measurement updates.

Pointing errors will be computed with respect to a “true” quaternion trajectory q(t),
which has been propagated using direct numerical integration of a “true” angular velocity
ω(t). Note that these true parameters are also used to generate the attitude and gyro
measurements. Regarding the chosen error characterizations, recall that any of the local
error vector representations for a(t) agree to first order with the Euler angles, providing
an intuitive interpretation. For instance, the first component will represent a rotation
around the x axis of the spacecraft body frame, the second component a rotation around
the y axis, and the third component a rotation around the z axis. Both the components
of the local error vector a(t) and the error Euler angle δϑ(t) correspond to the ESA
recommended pointing error specifications [39].
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6.2.1. Case 1: Nominal Earth-Pointing Conditions

A number of different configurations are analyzed in order to assess the filtering
performance of the various algorithms using the selected gyro models, and determine the
optimal sampling rate of each sensor. First, the complete sensor suite is considered, at
sampling rates of 1 Hz, 5 Hz and 50 Hz (except for the star tracker, which is limited to 5
Hz). Additionally, a simulation using star tracker and gyro measurements only is studied.
Results for the RMSE (expressed in arcseconds) are presented in Table 6.1, where the
best performing configurations have been highlighted.

Table 6.1: Case 1: RMSE [arcsec] for the different configurations.

Gyro Model Sensor Configuration MEKF IMEKF MUKF USQUE

CRM100

All @ 1 Hz
All @ 5 Hz
STR/gyro @ 5 Hz
All @ 50 Hz (STR @ 5 Hz)

53.15
33.08
32.84
35.15

54.72
33.71
33.56
35.85

52.68
33.71
32.84
35.15

52.68
33.71
32.84
35.15

STIM202

All @ 1 Hz
All @ 5 Hz
STR/gyro @ 5 Hz
All @ 50 Hz (STR @ 5 Hz)

28.34
18.69
18.61
19.49

29.03
19.20
19.10
19.96

28.34
18.69
18.61
19.49

28.34
18.69
18.61
19.49

From these values, several important conclusions can be extracted. First, it is clear
that all filters offer very close performance. For small initial errors, the unscented ver-
sions generally produce results which are practically identical to those of the MEKF,
which indicate that the linearity assumptions are valid. The IMEKF exhibits very similar
performance as well, but consistently generates slightly worse estimates. This agrees with
the results presented in [13].

Secondly, the contrast in accuracy using the CRM100 and STIM202 gyros is quite
obvious. By using the STIM202, a ∼ 46% decrease in attitude-estimation error can be
obtained. Keep in mind that the difference is still in the order of tens of arcseconds, which
may be significant or not depending on the application. It must be noted, however, that
a precision of even a few hundreds of arcseconds will satisfy the pointing requirements of
any typical mission for small spacecraft.

Regarding the sensor configuration, several distinct effects can be observed. On one
hand, the results show that increasing the sensor sampling rates from 1 Hz to 5 Hz leads
to a ∼ 36% decrease in attitude-estimation error. Again, whether this improvement is
significant or not will depend on the specific application. A more interesting observation,



80 6| Simulation and Results

however, is that Sun sensor and TAM measurements do not improve accuracy, and may
even slightly degrade filter performance. Finally, at 50 Hz, there is a noticeable increase
in attitude error with respect to the 5 Hz case. Rather than being due to SS/TAM mea-
surements, however, it is largely due to the higher gyro sampling rate (a simulation with
star tracker measurements only has been carried out, producing very similar results). As
with most inertial measurements, decreasing the gyro sampling rate implies an averag-
ing process which reduces measurement noise. Thus, it appears that fewer, less noisy
gyro measurements are preferred. This gyro oversampling effect will be subject to further
analysis in Case 2.

In terms of computation time, the IMEKF takes on average ∼ 70% longer than the
MEKF to perform each simulation (IMEKF run time ∼ 1.7× MEKF run time), and
the MUKF/USQUE take on average ∼ 750% longer (MUKF/USQUE run time ∼ 8.5×
MEKF run time). Although the total run time does change depending on the sensor
sampling rates (at 5 Hz the simulations take approximately five times more, and at 50 Hz
approximately 50 times more), these ratios remain relatively fixed. While the IMEKF does
not add excessive run time, the unscented filters come with a substantial computational
cost, which may prohibit its use for onboard implementations.

In nominal filter operation, it is clear that the best results are obtained using the
MEKF to filter star tracker measurements only. One one hand, the MEKF performs sig-
nificantly faster than any other filter. On the other hand, adding SS/TAM measurements
has proven to degrade attitude-estimation accuracy. Whether the sampling rate shall be
set to 1 Hz, 5 Hz, or any other value, will depend on the pointing requirements of the
spacecraft (a higher sampling rate implies a higher precision but also higher computa-
tional cost). The gyro selection, in contrast to the sampling rate, cannot be modified
onboard and therefore will be considered after reviewing the results for cases 2 and 3.

Next, some graphical results using the MEKF and star tracker measurements only
at 5 Hz and 1 Hz are presented. First, the error Euler angle with its respective 3σ

bound is shown in Figure 6.2. The time-averaged 3σ bounds of the various configurations
accurately match three times the RMSE values in Table 6.1, which indicates that the filter
is well tuned (the process noise has been correctly modeled). Notice that the error is quite
noisy, in contrast to typical results that may be seen in the open literature. This is due
to the low quality gyros used, which greatly decrease the confidence in a priori values and
therefore transfer star tracker noise directly into the estimate. Another remarkable aspect
is the fact that the filter converges almost instantaneously. Once again, this is caused by
the continuous lack of confidence in a priori values, which lead the filter to quickly adopt
the attitude derived from star tracker measurements.
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Figure 6.2: Case 1: Error Euler angle and 3σ bound.

Figure 6.3: Case 1: Attitude error vector and 3σ bounds at a sampling rate of 5 Hz.
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Figure 6.4: Case 1: Attitude error vector and 3σ bounds at a sampling rate of 1 Hz.

In Figures 6.3 and 6.4, the components of the local error vector in the spacecraft body
frame and their respective 3σ bounds are shown for the first 20 seconds of the simulation.
Recall that the star tracker boresight is aligned with the z axis of the spacecraft, and the
specifications in Table 4.1 indicate an across-boresight error of 30 arcsec (3σ) and an along-
boresight error of 200 arcsec (3σ), which correspond to those obtained using static attitude
determination methods. As the results show, these can be improved using a filtering
approach. On one hand, across-boresight errors (ax, ay) are reduced in approximately
25% to 50% using the several gyro and sampling rate combinations. A more significant
effect can be observed in the along-boresight component; with a sampling rate of 5Hz
and using the CRM100 gyro, the 3σ bounds stabilize at around 120 arcsec. Using the
STIM202 gyro instead, they stabilize at ∼ 60 arcsec. With a sampling rate of 1 Hz,
these values increase to 200 arcsec and 90 arcsec respectively. Based on these results, it
can be concluded that the 1 Hz, CRM100 configuration offers barely any improvement
over static star tracker performance, while using the STIM202 at 5 Hz can reduce the
along-boresight error to approximately one third of the original value. With the other
configurations, intermediate values are obtained.

Regarding the bias estimation, some results are presented next. In Figure 6.5, the
evolution of the estimated and true bias components is shown for both gyroscopes at a
sampling rate of 5 Hz. Note that the bias is expressed in an inertial reference frame, whose
axes will be denoted by 1, 2 and 3. It is interesting to observe the nature of bias drift, and
it is clear that the filter manages to produce a good estimate. While it may appear that
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Figure 6.5: Case 1: Estimated and true bias evolution.

Figure 6.6: Case 1: Bias errors and 3σ bounds.

the estimated bias more closely follows the true bias using the CRM100 gyro, notice the
difference in magnitude. In Figure 6.6, the components of bias error (∆β = β− β̂) along
with its 3σ bounds are shown in order to better assess filter performance. Here, the time
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window has been adapted to illustrate the relevant characteristics of each configuration.
With the CRM100, convergence takes a couple of seconds and a precision of about 0.025
deg/s (3σ) in each component is achieved. This represents a significant improvement over
non-calibrated gyro measurements, which may reach errors in the order of degrees per
second. On the other hand, the results obtained using the STIM202 gyro show a much
larger convergence time, possibly due to the increased confidence in gyro measurements.
The final precision in angular velocity estimation is of around 0.001 deg/s (3σ) in each
component. In contrast to attitude errors, bias errors are fairly isotropic. With a sampling
rate of 1 Hz the results are very similar, and therefore will be omitted.

6.2.2. Case 2: Slew Maneuver

The main goal of this analysis is to test the constant angular velocity assumptions
made in the filters’ formulation, and assess whether nominal accuracy is maintained dur-
ing a slew maneuver. In accordance to the previous results, only star tracker and gyro
measurements will be considered, and the four filters are analyzed with sampling rates of
1 Hz and 5 Hz. Additionally, a case where the gyro sampling rate is increased to 160 Hz
is studied. Results for the RMSE (expressed in arcseconds) are presented in Table 6.2.

Table 6.2: Case 2: RMSE [arcsec] for the different configurations.

Gyro Model Sampling Rate MEKF IMEKF MUKF USQUE

CRM100
Both @ 1 Hz
Both @ 5 Hz
STR @ 5 Hz, gyro @ 160 Hz

53.57
33.32
36.45

54.42
33.84
37.23

53.21
33.34
36.45

53.21
33.34
36.45

STIM202
Both @ 1 Hz
Both @ 5 Hz
STR @ 5 Hz, gyro @ 160 Hz

253.74
29.30
20.15

187.36
24.77
20.72

253.73
29.30
20.15

253.73
29.30
20.15

Upon first glance, these results are quite surprising. On one hand, those obtained
using the CRM100 gyro do not differ much from the nominal values in Table 6.1. All
filters offer almost identical performance, and a higher star tracker sampling rate improves
attitude precision. In this case, the filter is heavily relying on star tracker data to generate
the estimate. Notice, however, that increasing the gyro sampling rate to 160 Hz degrades
filter performance to some degree. At first this may seem counter-intuitive, since a higher
number of angular velocity samples should result in a more precise time propagation.
Nonetheless, as argued in the previous section, it can be justified by the consequent
increase in gyro measurement noise.
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The results obtained using the STIM202, on the other hand, present a significant
degradation, especially at 1 Hz. This is a clear case of improper filter tuning; the process
noise, which is entirely based on the mathematical gyro model, does not adequately
capture the imprecision in attitude and covariance propagation caused by the time-varying
angular velocity, therefore causing the filter to diverge. When using the CRM100 gyro
this is not as problematic; in general, a larger process noise will increase the robustness
of the filter against possible modeling inaccuracies. Fortunately, by increasing the gyro
sampling rate to 160 Hz, the propagation accuracy is recovered to some extent. As can
be seen, the values in the last row of Table 6.2 more closely match those obtained for the
nominal case.

The main conclusion that can be extracted from these results is that special care
must be taken in scenarios with time varying angular velocity. Nevertheless, a comparable
performance to the nominal case may be achieved with both gyros.

6.2.3. Case 3: Lost In Space

a) Using one attitude sensor only

First, the most critical scenario is addressed, where attitude knowledge must be
recovered using a gyro and measurements from either the Sun sensor or TAM (not both
at the same time). Additionally, the spacecraft is assumed to be Earth-pointing and
therefore rotating with very slow angular velocity. At first, it might seem impossible
to have three-axis attitude determination using just one measured direction; indeed, it
cannot be done using static methods. Intuitively, however, one measurement could be
propagated forward in time until a second measurement is available. Then, both could
be combined to produce an full attitude estimate. This interpretation closely describes
what a filtering algorithm may be able to achieve in the right conditions. For this to
work, the time propagation shall be accurate enough, and the successive measurements
need to be independent from each other (if the sensor measures the same direction, no
new information is being added).

After some experimentation, it has been determined that the only viable option is to
use the higher grade STIM202 gyro along with TAM measurements (otherwise no filter
manages to converge). On one hand, time propagation with the CRM100 is not precise
enough. On the other hand, the Sun vector remains virtually fixed in the inertial reference
frame, which together with the slowly rotating spacecraft provides very weak observability
(two successive measurements are almost identical). Additionally, the experiments have
concluded that a sampling rate of 1 Hz (for both the gyro and TAM) is sufficient. Since
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the magnetic field direction changes slowly, further increasing the sampling rate does not
provide any noticeable improvement in convergence speed, and only adds computational
cost.

Figure 6.7: Case 3: Average error Euler angle and 3σ bound using TAM measurements.

In order to assess the effect of the bias clipping technique, two different versions of
each filter are considered: one implementing bias clipping and other with no modifications.
In Figure 6.7, the average error Euler angle evolution is shown (over 20 simulations). Each
filter produces very similar 3σ bounds, and that of the MEKF has also been included to
add some perspective. The first thing to note is that all filters converge to an error of a
few degrees in less than two orbits, regardless of the algorithm used. While the MEKF
has been known to present convergence problems, this is typically due to the reduced
observability that may arise in orbits at a higher altitude and/or with less inclination,
which cause the magnetic field to vary more slowly. This is patently not the case for polar
orbits.

Furthermore, it is clear that bias clipping has a significant effect on the convergence
speed, where the “clipped” filters take less than half of the time to converge. While
the difference in filtering performance is less pronounced between the various algorithms,
some observations can be made. First, the results show that the MEKF and MUKF offer
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almost identical performance, indicating that the scaled unscented transform (using the
recommended parameters) closely resembles a plain linearization. The same applies to the
IMEKF, where the additional iteration does not seem to help much. The USQUE, on the
other hand, appears to produce noticeably different results; together with bias clipping,
it offers the best performance. The convergence times of the various filters, computed as
the times of crossing the respective 3σ bound, are indicated in Table 6.3.

Table 6.3: Case 3: Convergence time (in minutes) of each filter.

MEKF IMEKF MUKF USQUE

With no bias clipping 125.3 135.7 125.3 129.6

With bias clipping 60.7 60.1 43.6 60.9

Bear in mind that Figure 6.7 presents averaged results, and a single simulation may
reveal very different behavior. In Figure 6.8, two unique realizations are shown. They
have been initialized using different attitude and bias errors, and both implement the
clipping technique. While the MEKF, IMEKF and MUKF generally produce consistent
outputs (not much changes from simulation to simulation), the USQUE is less stable.
Sometimes it may naturally converge very rapidly, but other times it performs worse than
the other algorithms. Nevertheless, as shown in Figure 6.7, on average it provides faster
convergence.

Figure 6.8: Case 3: Filter performance in two different realizations.

In conclusion, the results show that the bias clipping strategy generates the most
significant performance improvements. An illustrative example to see the clipping effect
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in action is presented in Figure 6.9. Moreover, while the USQUE converges 30% faster
than the other alternatives, its computational cost is about eight times higher than that
of the MEKF. Since convergence speed is typically not a major concern (as long as the
filter converges), the MEKF proves to be the overall better option.

Figure 6.9: Case 3: Effect of clipping on the bias estimate.

b) Using Sun sensor and TAM measurements

Lastly, attitude knowledge recovery using Sun sensor and TAM measurements is
studied, simulating regular eclipse cycles. The sampling rate of all sensors is set to 1 Hz
(for the previously mentioned reasons), and the spacecraft will be spinning on an axis
perpendicular to the direction of the Sun (the eclipse covers approximately half of the
orbit). In Figure 6.10, the error Euler angle obtained using both gyros is shown. In this
case, all filtering algorithms produce very similar results (including the 3σ bounds), and
therefore only those obtained through the MEKF are presented. Since two independent
directions are available, convergence is much faster than in the previous case, and bias
clipping is generally not required. Using the CRM100, a RMSE of about 0.16◦ can be
achieved during the illuminated portion of the orbit. With the STIM202, it drops to 0.08◦.
Again, these results agree with the computed 3σ bounds. Moreover, entering the shadow
region results in complete loss of attitude knowledge when using the CRM100 gyro, while
some precision can be maintained with the STIM202.

Overall, the results show that attitude knowledge may be recovered with a multitude
of sensor configurations and filtering algorithms. While convergence takes just a few
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Figure 6.10: Case 3: Average error Euler angle and 3σ bound using TAM and Sun sensor
measurements.

minutes when using two independent directions or more, it slows down considerably if just
TAM measurements are available, additionally requiring the better STIM202 gyro. The
precision obtained using Sun sensor and TAM measurements may be sufficient for some
missions, specially when eclipses are not common (e.g. for a dawn-dusk Sun synchronous
orbit). Therefore, the ADS module could be tailored to include a star tracker or not
depending on the specific mission requirements.

Note that in the open literature, for instance in [13], the various filters are shown to
converge quite slower than what the current results indicate. However, this is strongly
influenced by the precision of the gyroscope in relation to that of the attitude sensors. In
this work, relatively poor performing gyros have been selected, which cause the filters to
converge very rapidly when two or more directions are available.
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7 Conclusions and Future Work

In this project, the preliminary design of an attitude determination module for small
spacecraft in LEO has been successfully carried out. After analyzing the current state
of the art of integrated ADCS/ADS solutions and attitude determination algorithms, an
appropriate sensor suite and several variants of the multiplicative extended Kalman filter
(MEKF) were selected as the basis of the module

Three scenarios have been proposed to test the design, simulating different condi-
tions that a spacecraft may experience during its lifetime. First, nominal Earth-pointing
operation was analyzed, as it is the standard operating mode of a spacecraft’s ADS and
generally takes up the majority of the mission’s lifetime. Secondly, a typical slew ma-
neuver was considered in order to cover other common spacecraft modes. Lastly, a more
critical scenario with complete loss of attitude knowledge was studied to test the limits
of the design.

Multiple simulations have been performed to find the best configuration in each
scenario, evaluating:

• Two MEMS gyroscopes with different technical specifications.

• Four Kalman filters; the classical MEKF, an iterated version (IMEKF), and two
unscented variants (USQUE and MUKF).

• A novel bias clipping technique.

In addition, various combinations of attitude sensors at different sampling frequencies
have been tested.

The results show that the selected sensor suite, integrating Sun sensors and a star
tracker from Solar MEMS Technologies’ catalog, provides high pointing accuracy in any
of the analyzed scenarios. In nominal operation, only a star tracker shall be used in
conjunction with gyro data, as the noisier Sun sensor and magnetometer measurements
may degrade filter performance. Moreover, a gyro sampling rate matching that of the star
tracker is recommended. All filters provide almost identical performance, and therefore the
MEKF is preferred due to its reduced computational cost. While a lower grade gyroscope
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may be enough for most applications, producing maximum pointing and angular velocity
errors of approximately 25/100 arcsec (across/along the star tracker boresight) and 0.025
deg/s respectively (3σ limits), these can be reduced to 20/60 arcsec and 0.001 deg/s using
a higher grade alternative.

In the context of slew maneuvers, a performance comparable to that in the nominal
case may be achieved. However, special care must be taken when using the higher grade
gyro, as the time-varying angular velocity can result in integration errors which are not
adequately captured by the established process noise (that is, the filters become badly
tuned). The simulations show that increasing the gyro sampling rate (thus producing a
better approximation of the real angular velocity profile) solves this issue. Alternatively,
artificial process noise may be added to the model.

Lastly, the results for the lost-in-space scenario indicate that attitude knowledge can
be recovered in polar orbits using a higher grade gyro and magnetometer measurements
only. Note that in orbits with lower inclination this may not always be possible, although
these are much less common for small spacecraft. Additionally, the bias clipping technique
proves to be a very effective tool for filter initialization, halving the time of convergence.
Conversely, the difference in filtering performance is less pronounced between the various
algorithms. Although the USQUE may offer slightly better average performance, the
MEKF produces more consistent results and requires much less computation, which again
make it the preferred option.

Based on the previous results, it is clear that an attitude determination module
consisting of several Sun sensors, a three-axis magnetometer, one star tracker, and an
affordable three-axis MEMS gyroscope is capable of producing quasi-continuous attitude
and angular velocity estimates in various scenarios, with enough accuracy for most small
spacecraft missions in LEO. The use of a higher grade gyro may be justified in missions
with stringent pointing requirements, owing to a significant increase in attitude accu-
racy and more flexibility in terms of attitude recovery. For less demanding applications,
however, a lower grade gyro will generally provide adequate performance. Furthermore,
the use of a star tracker may be optional if a pointing accuracy of no more than 1◦ is
required, specially in polar orbits where eclipses are not common (e.g. for a dawn-dusk
Sun synchronous orbit). Otherwise, a higher grade gyro is generally needed to maintain
attitude knowledge during an eclipse.

Regarding the filter selection, the MEKF has proven to be the best option for most
applications, given its much lower computational cost compared to the unscented filters,
and similar performance in all of the analyzed scenarios. Only under very specific con-
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ditions, where the filter must be initialized with poor observability, may the USQUE
present an advantage over the MEKF. Therefore, careful consideration of the mission
requirements and computational capacity budget is needed in order to assess whether
implementing the USQUE is necessary and/or feasible.

Finally, it is opportune to recall that only a preliminary design of the attitude de-
termination module has been carried out, and further experimentation will be required
at a more advanced stage. For instance, although the most common orbit for CubeSats
has been analyzed, other orbits with lower inclination shall also be studied (e.g. to check
if attitude determination is still possible using magnetometer measurements only). Ad-
ditionally, more realistic conditions may be simulated, including attitude dynamics with
perturbation torques and non-perfect control. The integration with an appropriate control
system also needs to be assessed, as there may be some unwanted interaction between con-
trol and estimation that ought to be avoided. Lastly, a gyroless configuration could also
be considered; although it requires a slightly more complex formulation, it may produce
comparable results to those using a lower grade gyro.
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