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ABSTRACT

Although the circular restricted three body problem gives accurate results of the
dynamics of a satellite, in proximity of a binary system like the Earth and Moon,
perturbations from other bodies can start to become important, especially in
correspondence of unstable Lagrangian points, when integrating the trajectory for a
long time. The aim of this thesis is to describe the tools available nowadays in order to
construct closed orbits, using a more realistic model, around Lagrangian points and
apply the results to LUMIO spacecraft, which is plan to orbit in proximity of one of
these stationary points.
However, before learning to pedal, you need to know how to walk, therefore preliminary
notion are necessary about easier dynamical models. Starting from the general N-body
problem, the dynamics is simplified through some reasonable assumption, considering
the circular restricted three body problem and the bicircular model, then, also a
presentation about the low-energy transfer used by LUMIO is studied, in order to have
an idea of how satellites can reach libration points, saving more propellant compared to
traditional transfers. Successively the dynamic formulation of the rotopulsating N-body
problem is presented and, combined with the multiple shooting technique, a non linear
optimization is formulated, capable of generate orbits in a more realistic models. The
results are then applied to the LUMIO satellite.



SOMMARIO

Sebbene il modello ristretto circolare dia risultati accurati della dinamica di un
satellite, in prossimità di un sistema binari come la Terra e la Luna, perturbazioni di
altri corpi possono iniziare a diventare importanti, specialmente in corrispondenza dei
punti Lagrangiani instabili, quando la traiettoria è integrata per un lungo tempo.
L’obbiettivo di questa tesi è descrivere gli strumenti disponibili oggigiorno in modo da
costruire orbite chiuse, usando un modello più realistico, intorno ai punti Lagrangiani
ed applicare i risultati al satellite LUMIO, il quale è pianificato che orbiti in prossimità
di uno di questi punti stazionari.
Ad ogni modo, prima di iniziare a pedalare bisogna sapere camminare, perciò nozioni
preliminari sono necessarie riguardo ai modelli dinamici più semplici. Iniziando da un
problema generico a N corpi, la dinamica viene semplificata attraverso ragionevoli
assunzioni, considerando il problema ristretto circolare e dal modello bicircolare, poi,
anche una presentazione riguardante il trasferimento a bassa energia usato da LUMIO
viene studiato, in modo da avere un idea di come i satelliti possono raggiungere i punti
di librazione, salvando più propellente rispetto a un trasferimento tradizionale.
Successivamente la formulazione dinamica del problema degli N corpi rotopulsante
viene presentata e, combinata con una strategia di shooting multiplo, un ottimizzazione
non lineare è formulata, in grado di generare orbite in un modello più realistico. I
risultati sono poi applicati al satellite LUMIO.
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1 Introduction

Since the beginning of space missions, the design of trajectories was dependent on the
concept of solving, at each step, a two-body problem and then patch together the dif-
ferent branches using the patched conic approximation. However, with the increase of
complexity of space mission’s requirements and computing power, these classical methods
are no more adequate and newer economic and feasible solutions are needed, exploiting
more realistic dynamical models.
One of the new solutions was applied, for the first time, on the Japanese spacecraft Hiten
that was launched in orbit in January 1990. During the mission, the Spacecraft fly-by
with the Moon and the Hagoromo orbiter was released from Hiten and inserted into a
lunar orbit. Unfortunately, Hagoromo failed during the insertion and was not able to
perform its objective. At the end of the mission of Hiten, the satellite was in an Earth
orbit and not capable to reach the Moon using a direct transfer.
In this situation E. Belbruno and J. Miller described a new design strategy ([1, 2]) to
transfer the spacecraft into a lunar orbit, using a low-energy transfer based on the so-
called weak stability boundaries, the trajectory was studied so that a spacecraft in an
Earth orbit is temporarily and ballistically captured in a lunar orbit requiring a small
fraction of fuel compared with the traditional transfers. This transfer was successful im-
plemented and Hiten satellite was able to fly around the Moon until it was deliberately
crashed on the lunar surface on April 1993.
Koon et al, explained the idea of low energy transfer using the patched circular restricted
three-body problem approximation and manifold theory ([3]). Based on the work of
Koon, Parker, was able to identify different families of low energy transfer, targeting
Earth-Moon libration point or a lunar orbit, setting a certain time of flight and tuning
opportunely some parameters of the trajectory ([4, 5, 6]), while a different partition in
families is given in [7] where, low energy transfers with lunar fly-by are considered.
From the positive result of Hiten, low energy transfers became trajectories useful for
transfer CubeSat in a lunar orbit, indeed, after Hiten, also other missions were designed
to exploit low energy transfer, some examples are: GENESIS ([8]), used to obtain infor-
mation on the origin of the solar system and then return safely to the Earth and GRAIL
([9]), which consisted on two satellite used to acquire data about the surface and inter-
nal structure of the Moon. Also, other missions are planned to use these trajectories in
future like EQUULEUS ([10]), OMOTENASHI ([11]) and LUMIO.
LUMIO is a 12U CubeSat, winner of the ESA’s competition “Lunar CubeSats for Ex-
ploration”, used for the detection of flashes, on the dark side of the Moon, due to impact
of asteroids on the lunar surface. Its design strategy ([12, 13]) is to transfer into a Halo
orbit around L2 point in the Earth-Moon system and observe the lunar surface for at
least one year, giving important information’s about the estimation flux of asteroids that
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hit a spacecraft in orbit and can also give the possibility to understand the feasibility of
a human colony on the Moon.
In this thesis, an analysis of LUMIO’s orbit is studied in a high fidelity model, starting
from a circular restricted three body problem, the orbit is then refined in a more realistic
dynamics.

1.1 Summary

This thesis is organized as follows:

• In Chapter 2 we will discuss some different models that can be available in order
to design low energy transfer.
Initially the general n-body problem and its important features are presented, then
the Circular restricted three body problem (CRTBP) model is derived, the main
approximation and the equation of motion.
Then a discussion of the existence of equilibrium solution and their stability anal-
ysis is carried out, studying the linear approximation of the perturbed trajectory.
Successively an analysis related to the constant of motion on the CRTBP is pre-
sented, showing how influence the accessible regions where motion can happen.
Finally a presentation of the four body problem is presented, in particular, the Bi-
circular model is investigated and the equation of motion are shown in the different
reference frame.

• In Chapter 3 We will see how to design low-energy transfer targeting libration
points, from how to construct periodic orbit around Lagrangian points in the
CRTBP to the design of trajectories using Manifold theory and then a brief dis-
cussion of weak stability boundaries is also discussed.

• In Chapter 4 The RPRnBP model is presented and its equation of motion are de-
rived. Then, an optimization analysis is carried out, different possible constraints,
typical of space mission, are presented. Finally LUMIO orbit is optimize under the
RPRnBP, exploiting the multiple shooting algorithm.

• In Chapter 5 we summarize the investigation did in chapter 4 and the final con-
siderations.
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2 Dynamical Models

The patched conic approximation is based on the definition of the sphere of influence,
spherical region centred in an attracting body, where the trajectory of the spacecraft is
subjected to the gravitational attraction of only that body, solving a two-body problem
each time the satellite escape from a sphere of influence to another one and then patch
together the different conics. The obtained trajectory is a good approximation near each
body, becoming less accurate at the patch points.
More precise models are necessary to represent high-fidelity transfer during the entire
mission of the satellite. However, the main disadvantage of considering more than two
bodies is that no closed solution exists, and numerical solution are needed.
In this chapter an overview of only the most important dynamical models is presented,
a more detailed classification is given in hierarchy order in [14].

2.1 n-body problem formulation

The most generic model is represented considering an arbitrary number n of bodies,
in Figure 1 is reported a schematic representation of the n-body problem. The axis
(O;X, Y, Z) denotes the inertial frame with the origin placed in O. The position of the
q-th body, Pq respect to the origin and its mass are indicated as rq = (rxq , r

y
q , r

z
q) and mq

respectively.

Figure 1: n-body problem
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Each mass is subjected to the mutual attraction of the other bodies, the equations of
motion in the inertial frame, are given from Newton’s law:

mir̈i = −G
n∑
j=1
j 6=i

mimj

r3ji
r̄ji = −G

n∑
j=1
j 6=i

mimj

r3ji
(ri − rj) , ∀i = 1, ..., n (1)

Where rji = ri − rj is the vector distance from the j-th body to the i-th body, rji its
norm and G the gravity constant (G = 6.67× 10−11Nm

2

kg2
).

Each Eq. (1) can be rewritten using a system of six scalar, non-linear ordinary differen-
tial equations of the first order, a total of 6n coupled, scalar equations that represents
the state/degree of freedom of each body (position and velocity in our case) that must
be solved once an initial state is set. Another possible approach is to find 6n constant
of motion since in that case it would be possible obtain the solution of the problem in
closed form without integrated it numerically.
We remark that the constant of motion of a generic n-body problem are the following:

• Since gravitational forces are internal forces and no external forces R(ext) act on
the system, from the first cardinal equation we get:

Q̇ =
n∑
i=1

miacm = R(ext) = 0 (2)

This means that either the center of mass rcm is at rest or it is moving with a
constant velocity in a straight line with respect to the origin O.
Eq. (2) introduce six constant of motion about the position and velocity of the
center of mass.

• Since there are not external torque, the second cardinal equation written respect
to the origin O becomes:

Γ̇O =
d

dt
(
n∑
i=1

ri×mivi) = M
(ext)
O = 0 (3)

This means that the angular momentum ΓO is constant and this introduce three
integral of motion.

• We note that the gravitational force can be written as a gradient of a potential
function U :

U =
∑

1≤i<j≤n

G
mimj

rji
(4)
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Since:

∂U

∂ri
=

n∑
j=1,j 6=i

−Gmimj

r3ji
rji (5)

This means that, in a system of only conservative forces, the total mechanical
energy E must be conserved:

E = Ek + U = const (6)

with

Ek =
1

2

n∑
i=1

mi(vi · vi) (7)

The kinetic energy of the entire system.
This add another constant of motion of the n-body problem.

At the end of the analysis we have only 10 constant that are not sufficient, this means
that unluckily we cannot obtain a closed form solution and numerical integration is the
only way. A note must be done for the two body problem since we have 12 degree of
freedom we should not obtain a closed solution, however, it is possible to define a rela-
tive motion subtracting the two Eq.(1) obtaining an ODE which is decoupled with the
relative position as the only variable, which is easier to solve.

2.2 Circular restricted three body problem (CRTBP)

Even if the n-body problem is very accurate, in most cases, it is possible to obtain a
good approximation of the satellite dynamic just considering a limited number of bodies
that mainly affect the motion of the satellite.
One of the most important model is the circular restricted three body problem.
The circular restricted three body problem is an approximation of the three body problem
when dealing with space mission involving the mutual interaction of just three bodies,
the main approximations are the following:

• Since we are focus on space mission one of the bodies must be the satellite there-
fore, its mass m is negligible compared with the other two massive bodies, called
primaries, M1 and M2, that can be planets, comets or satellites planet.

• M1 and M2 with M1 > M2, are not affecting by the presence of the satellite and
their motion can be assumed as a solution of a two body problem, obtaining a
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conic section whose solution is known. This seems to be a very strong assumption
since we are actually reduce the degree of freedom of the dynamical system from
18 to only 6 related to the satellite, however this assumption is very accurate when
the first hypothesis is verified.

• The two bodies are assumed to revolve on circular orbits around their center of
mass, this is because in our solar system most of the orbits involving massive
object are quasi circular orbit, a good example to take in mind is the Sun-Earth
or Earth-Moon system.

Note that no restriction of the motion on the spacecraft is imposed, it is free to move in
space.

2.2.1 Problem definition and Normalize coordinates

In this section we derive the equation of motion of the third body in the restricted three
body problem.
We start to solve the problem as in [15], first of all we need to introduce some notation.
Consider the set (O; ξ, η, ζ) of axis in the inertial frame, centered on the fixed origin O,
the ξ-axis lies along the line joining the primaries at time t = 0, which during the motion
remain confined in the ξ − η plane and let ζ the axis perpendicular to this plane.
The position of the primaries and the particle P , are denoted as R1, R2 and r respec-
tively while the distances from M1 and M2 to P are r1 and r2 as shown in Figure 2,
where the mass of the particle is denoted as m.
From the two-body problem, if the two masses, M1 and M2, move on circular orbits, the
distance between them is constant and rotate around their center of mass with the same
angular velocity ω. It is possible to introduce another reference frame (O

′
;x, y, z) with

the origin placed in O′ , coincident with the barycenter of the primaries, that we suppose
at rest, rotating rigidly with M1 and M2, having the x-axis directed toward the smaller
primary and the z-axis coincident with the ζ-axis of the inertial frame, the reason behind
this choice of this frame will be clearer later.
Without loss of generality, we take, for simplicity, the two origin coincident and therefore,
since the barycenter is fixed, they will be both fixed during the motion of the system.

In order to simplify further the equations, we consider new units of measurement, indi-
cated as #∗ and its associated quantity as #̂ defined as follows:

• The unit of mass m∗, is taken such that, in the new units, the sum of the masses

6



Figure 2: Restricted three body problem

of the primaries M̂1 and M̂2 is unitary:

M̂1 + M̂2 = 1m∗ (8)

Therefore the primaries, in this reference, have a mass given by:

M̂1 = µ1 =
M1

M1 +M2

M̂2 = µ2 =
M2

M1 +M2

(9)

With µ1 = 1− µ2.

• The unit of length d∗, is chosen such that, the distance between the primaries is
unitary:

‖R̂2 − R̂1‖ = R̂12 = 1d∗ (10)

Knowing that in the synodic frame R̂1 and R̂2 have only the x component different
from zero and that the position of the barycenter of the system coincide with the
origin:

rcm =
M̂1R̂1 + M̂2R̂2

M̂1 + M̂1
= 0 (11)

7



We can compute the position of the primaries in the synodic frame, obtaining:

R̂1 = (x1, y1, z1) = (−µ2, 0, 0)

R̂2 = (x2, y2, z2) = (µ1, 0, 0)
(12)

• The unit of time s∗ is selected in order that the angular rate ω is unitary:

ω̂ = 1
rad

s∗
(13)

With this choice we can also relate the time in the two different units, since the
rad unit doesn’t change, the angle spanned must be the same, therefore:

θ = ωt = t̂ = θ̂ (14)

With these new units we can also see that, from Kepler third law:

Ĝ =
ω̂2R̂3

12

M̂1 + M̂2
=

(1 rad
s∗

)2(1d∗)3

1m∗
= 1

N∗d∗2

m∗2
(15)

Therefore, also the gravity constant is unitary.

2.2.2 Equation of motion

Applying Eq.(1) with three body and to the motion of the third particle we obtain:

m¨̂r = −GmM1

r31
r̂1 −G

mM2

r32
r̂2 (16)

Making simplifications and introducing the new units discussed before we get:

¨̂r = −µ1

r̂31
r̂1 −

µ2

r̂32
r̂2 (17)

Where the derivatives are now in the normalized time and:

r̂1 = r̂ − R̂1 = (ξ̂, η̂, ζ̂)− (ξ̂1, η̂1, ζ̂1) = (ξ̂, η̂, ζ̂)− (−µ2 cos t̂,−µ2 sin t̂, 0) (18a)

r̂2 = r̂ − R̂2 = (ξ̂, η̂, ζ̂)− (ξ2, η2, ζ2) = (ξ̂, η̂, ζ̂)− (µ1 cos t̂, µ1 sin t̂, 0) (18b)

are the positions of P respect to the primaries in these new units. From now on, we drop,
for simplicity, the notation with ,̂ remembering that we are in normalized coordinates,
Eq.(17) can be written in scalar form:

8



ξ̈ = −µ1

r31
(ξ + µ2 cos t̂)− µ2

r32
(ξ − µ1 cos t̂) (19a)

η̈ = −µ1

r31
(η + µ2 sin t̂)− µ2

r32
(η − µ1 sin t̂) (19b)

ζ̈ = −µ1

r31
ζ − µ2

r32
ζ (19c)

Eq.(19) are the equations of motion written in inertial and in normalized coordinate, a
system like this is called non − autonomous since the motion depend explicitly on the
independent variable, the time.
At this point, it is natural to ask if there exist a particular reference such that the equa-
tions of motion are autonomous. Intuitively, the synodic frame is the frame that we are
looking for, infect, as already discuss, in this frame the motion of the primaries is at rest
and independent on time.
In order to write the Eq.(19) in the synodic frame, we apply a counterclockwise rotation
around the out of plane axis, with ω = 1. In this case the two generic positions can be
related in the following form:

ξη
ζ

 =

cos t − sin t 0

sin t cos t 0

0 0 1


xy
z

 = R

xy
z

 (20)

Taking the derivative, we get the relations in the velocities:

ξ̇η̇
ζ̇

 =
dR

dt

xy
z

+R
d

dt

xy
z

 =

cos t − sin t 0

sin t cos t 0

0 0 1


ẋ− yẏ + x

ż

 = R

ẋ− yẏ + x

ż

 (21)

Finally, the accelerations will be:ξ̈η̈
ζ̈

 =

cos t − sin t 0

sin t cos t 0

0 0 1


ẍ− 2ẏ − x
ÿ + 2ẋ− y

z̈

 = R(arel + aCoriolis + aCentr.) (22)

We note that actually Eq. (22) is the representation of the relative kinematics using the
apparent accelerations when ω = const = 1 and when the origin of the rotating frame is
fixed:
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ainertial = aO′ + arel + 2ω × v + ω × (ω × r) +
dω

dt
× r =

= arel + 2ω × v + ω × (ω × r) =

= arel + aCoriolis + aCentr. = R

ẍ− 2ẏ − x
ÿ + 2ẋ− y

z̈


(23)

Where r, v and a are the position, velocity and acceleration of the third particle P respect
to the synodic frame, a transformation through R is needed to obtain the corresponding
inertial representation .
Substituting Eq. (20) and Eq. (21) into Eq. (19), we obtain:

(ẍ− 2ẏ − x) cos t− (ÿ + 2ẋ− y) sin t =

=

(
µ1
x1 − x
r31

+ µ2
x2 − x
r32

)
cos t+

(
µ1

r31
+
µ2

r32

)
y sin t

(24a)

(ẍ− 2ẏ − x) sin t+ (ÿ + 2ẋ− y) cos t =

=

(
µ1
x1 − x
r31

+ µ2
x2 − x
r32

)
sin t−

(
µ1

r31
+
µ2

r32

)
y cos t

(24b)

z̈ = −
(
µ1

r31
+
µ2

r32

)
z (24c)

With:

r1 =
√

(x+ µ2)2 + y2 + z2 (25a)

r2 =
√

(x− µ1)2 + y2 + z2 (25b)

The distances between the primaries and the particle P in the synodic frame.
It seems that Eq. (24) is much more complicated respect to what obtained in the inertial
frame, however, multiplying Eq.(24a) by cos t and Eq.(24b) by sin t, and add the results,
and then multiply Eq.(24a) by − sin t and Eq.(24b) by cos t and add these together, the
equation of motion in the rotating system become:
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ẍ− 2ẏ − x = −
(
µ1
x+ µ2

r31
+ µ2

x− µ1

r32

)
(26a)

ÿ + 2ẋ− y = −
(
µ1

r31
+
µ2

r32

)
y (26b)

z̈ = −
(
µ1

r31
+
µ2

r32

)
z (26c)

These accelerations can be written as the gradient of a scalar potential U so that:

ẍ− 2ẏ =
∂U

∂x
(27a)

ÿ + 2ẋ =
∂U

∂y
(27b)

z̈ =
∂U

∂z
(27c)

With:

U(x, y, z) =
x2 + y2

2
+
µ1

r1
+
µ2

r2
(28)

Where U denotes the specific potential in this case.
First of all we note that Eq.(26) constitutes an autonomous system since are no more
dependent on time.
Then, another consideration of its different term is done, if we multiply Eq.(23) by the
mass m of the particle P and using Newton’s law, we get:

F grav. = marel + F Coriolis + F centr. (29)

From mechanics is known that a conservative force can be written as a gradient of a
specific potential energy U (per unit of mass) defined in Eq.(28).
Manipulating Eq.(29):

arel + aCoriolis =
F grav.

m
− F centr.

m

arel + aCoriolis =∇(Ugrav. + Ucentr.) =∇U(x, y, z)
(30)

Actually Eq.(26) and Eq.(30) are the same, this means that the term x2+y2

2
is the po-

tential term associated to the centrifugal acceleration while the terms µ1
r1

and µ2
r2

are
associated to the gravity acceleration due to the presence of the primaries.

11



We note that the Coriolis force is not inside the gradient, this because the Coriolis force
is not capable of doing work since it is always perpendicular to the velocity in the synodic
frame (its potential would be constant).
Equation of motion can also be written as a system of first order ordinary differential
equation in order to represent explicitly the state of P .
Let x = (x1, x2, x3, x4, x5, x6)

T = (x, y, z, ẋ, ẏ, ż)T be the state of the satellite, we can
write:

ẋ = F (x) (31)

Or equivalently:



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


=



x4

x5

x6

2x5 + x1 − (µ1
x1+µ2
r31

+ µ2
x1−µ1
r32

)

−2x4 + x2 − (µ1
r31

+ µ2
r32

)x2

−(µ1
r31

+ µ2
r32

)x3


(32)

With:

r1 =
√

(x1 + µ2)2 + x22 + x23 (33a)

r2 =
√

(x1 − µ1)2 + x22 + x23 (33b)

2.2.3 Jacobi Constant

Multiplying Eq.(27a) by ẋ, Eq.(27b) by ẏ and Eq.(27c) by ż and add all together we have:

ẋẍ+ ẋẍ+ ẋẍ =
∂U

∂x
ẋ+

∂U

∂y
ẏ +

∂U

∂z
ż (34)

And integrating gives:

ẋ2 + ẏ2 + ż2 = 2U − CJ (35)

Where CJ is a constant of integration.
Since ẋ2 + ẏ2 + ż2 = v2 is the velocity in the synodic frame, using eq.(28) we can write:

CJ = (x2 + y2) + 2

(
µ1

r1
+
µ2

r2

)
− ẋ2 − ẏ2 − ż2 = 2U − v2 (36)
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The constant CJ is called Jacobi constant and represent an integral of motion of the
restricted three body problem.
We notice that CJ express the conservation of the energy in the synodic frame since:

− CJ
2

=
ẋ2 + ẏ2 + ż2

2
− U = ek − U = e (37)

With ek the specific kinetic energy and e the specific mechanical energy.
Since we have added different approximation and decreased the degree of freedom of the
system, we are tempted to say that we have enough integral of motions to solve Eq.(26)
in closed form, however, this is not true, the only constant of motion is the Jacobi
constant in the restricted three body problem. This because the approximation
of considering circular orbits leads Eq.(1) to a two body formulation for the primaries
while a classic three-body formulation for P , thus the considerations about the different
integral of motion cannot be applied in this case.
Even if we write Eq.(11), the conservation of the position of the center of mass and its
velocity, the motion associated to P doesn’t appear and therefore can’t be used as a
constant of motion.
Analogous consideration can be done for the angular momentum that is constant for M1

and M2 but changes for P since exchange with the primaries is not taken into account
while the energy in the inertial frame can be express as (see.[15] for more detail):

1

2
(ξ̇2 + η̇2 + ζ̇2)−

(
µ1

r1
+
µ1

r1

)
= h · ω − 1

2
CJ (38)

which is not constant because the angular momentum of the spacecraft h is not constant.
Therefore the circular restricted three body problem has 6 degree of freedom and only 1
constant of motion so, also here, no closed solution of Eq.(26) exist.

2.2.4 State Transition Matrix

It is possible to linearize the system in Eq.(32) in order to develop a method of comput-
ing an approximation of the possible trajectories that are near to a reference one.
Let x̄(t) = (x̄(t), ȳ(t), z̄(t), ˙̄x(t), ˙̄y(t), ˙̄x(t))T be a reference trajectory, a close trajectory
x(t) can be expressed as a perturbation of x̄(t) in the following way:

x(t) = x̄(t) + δx(t) (39)

Where δx(t) indicate the difference, in the state space, between the two trajectories.
Linearizing Eq.(31) along the reference trajectory, for small values of δx(t), we obtain:
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ẋ− ˙̄x = δẋ(t) = F (x)− F (x̄) ≈ ∂F

∂x
(x̄)δx(t) = A(t)δx(t) (40)

Where ∂F
∂x

is the Jacobian matrix evaluated at the reference trajectory x̄(t).
Computing all the derivatives, the Jacobian becomes:

A(t) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Uxx Uxy Uxz 0 2 0

Uyx Uyy Uyz −2 0 0

Uzx Uzy Uzz 0 0 0


|x̄(t) (41)

With:

Uxx =
∂2U

∂x2
= 1− µ1

r31
− µ2

r32
+ 3[µ1

(x+ µ2)
2

r51
+ µ2

(x− µ1)
2

r52
] (42a)

Uyy =
∂2U

∂y2
= 1− µ1

r31
− µ2

r32
+ 3[

µ1

r51
+
µ2

r52
]y2 (42b)

Uzz =
∂2U

∂z2
= −µ1

r31
− µ2

r32
+ 3[

µ1

r51
+
µ2

r52
]z2 (42c)

Uxy = Uyx =
∂2U

∂x∂y
= 3[µ1

(x+ µ2)

r51
+ µ2

(x− µ1)

r52
]y (42d)

Uxz = Uzx =
∂2U

∂x∂z
= 3[µ1

(x+ µ2)

r51
+ µ2

(x− µ1)

r52
]z (42e)

Uyz = Uzy =
∂2U

∂y∂z
= 3[

µ1

r51
+
µ2

r52
]yz (42f)

Eq.(40) describe the evolution of the displacement between the nominal and another
trajectory in the neighborhood, once initial displacement δx̂0 = δx̂(t = 0) is set. Note
also that in this case the Jacobian depends on time, this means that while the trajectory
evolves the different weights of each state coordinate xi, change in time so that their
contribution have a different influence on the velocity of the deviation δẋ(t) between the
two trajectories, depending on the evolution of the satellite’s state.
The solution of Eq.(40) will depend on the actual trajectory x̄(t), to write it explicitly,
let φ(t;x0) the generic trajectory that starts at x0 = x(t0) and describing the trajectory
at the generic time t > t0 that is, φ(t∗;x0) is the state of the spacecraft obtained starting
in x0 and propagating the trajectory until t = t∗. First of all we note that with this
definition:
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d

dt
φ(t;x0) = F (φ(t;x0)) , φ(t0;x0) = x0 (43)

Meaning that the solution of the satellite dynamics is a curve φ(t;x0) in R6, such that
its velocity is tangent to the vector F when moving along that curve.
Since φ(t;x0) can describe the motion of a fluid particle, it is also referred as "flow map".
A generic trajectory that depart near the reference trajectory will evolve with a displace-
ment given by:

δx(t) = φ(t,x0 + δx0)− φ(t,x0) , δx0 = δx(t0) (44)

If we linearized the first term we get:

δx(t) =
∂φ

∂x0

(t,x0)δx0 = Φ(t, t0)δx0 (45)

Eq.(45) is the solution of Eq.(40), Φ(t, t0) is a 6× 6 matrix called state transition ma-
trix and relates the small displacement at t = t0 with a generic one at t > t0 with the
following elements:

Φ(t, t0) =



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂ẋ
∂x0

∂ẋ
∂y0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ẏ
∂x0

∂ẏ
∂y0

∂ẏ
∂z0

∂ẏ
∂ẋ0

∂ẏ
∂ẏ0

∂ẏ
∂ż0

∂ż
∂x0

∂ż
∂y0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0


(46)

Taking the derivative of Eq.(45) and using Eq.(40) we can obtain the time evolution of
the state transition matrix:

d

dt
Φ(t, t0) = A(t)Φ(t, t0) with Φ(t0, t0) = I (47)

Note that, deviation from the nominal trajectory can be obtained considering also small
time variations δt at t so that:

δx(t) = φ(t+ δt,x0 + δx0)− φ(t,x0) (48)

And the resulting linearized equation will be:

δx(t) =
∂φ

∂x0

(t,x0)δx0 +
∂φ

∂t
(t,x0)δt = Φ(t, t0)δx0 + F (x0)δt (49)
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2.2.5 Equilibrium points and stability analysis

It is interesting to understand if there exist equilibrium points of the restricted three
body problem, where a particle is at rest in the synodic frame, to do so, setting null
velocity and acceleration in Eq.(27) we get the usual condition:

∂U

∂x
(x, y, z) = x−

(
µ1
x+ µ2

r31
+ µ2

x− µ1

r32

)
= 0 (50a)

∂U

∂y
(x, y, z) = y −

(
µ1

r31
+
µ2

r32

)
y = 0 (50b)

∂U

∂z
(x, y, z) = −

(
µ1

r31
+
µ2

r32

)
z = 0 (50c)

That states the equilibrium about the apparent centrifugal force and the gravitational
forces, without considering Coriolis force because the particle is stationary in the rotat-
ing frame.
From Eq.(50c) we note that this is satisfy only if z = 0 and this means that the set of all
equilibrium points must lie in the plane of the primaries, this is not surprising since the
centrifugal force acts only in this plane and the gravitational forces cannot be balanced
in this direction.
A quick analysis of Eq.(50a) and Eq.(50b) shown that a possible solution is given impos-
ing r1 = r2 = 1, in this case we have 2 equilibrium points where both forms an equilateral
triangle with the primaries, their position, in normalized coordinates, is given by:

x =
1

2
− µ2 and y = ±

√
3

2
(51)

These are called triangular equilibrium points and are indicated as L4 and L5, a satellite
placed in one of this point at rest would be subjected to a centrifugal force, direct toward
the center of mass, which is balanced by the gravitational forces of µ1 and µ2.
Other possible equilibrium points must be in the x-axis where all the forces are aligned,
setting y = 0, Eq.(50b) is automatically satisfied, while Eq.(50a) becomes:

∂U

∂x
(x, 0, 0) = x−

(
µ1

x+ µ2

|x+ µ2|3
+ µ2

x− µ1

|x− µ1|3

)
= 0 (52)

Solution of Eq.(52) can’t be written exactly since is quite complicated, anyway we can
study it and it is possible to shown that there are other three equilibrium points indicated
as L1, L2 and L3 called collinear points, obtained depending on the different sign chosen,
their approximated position can be found in the appendix.

• The point L1 is placed between the primaries, in this case we have (x+µ2) > 0 and
(x − µ1) < 0, a spacecraft put in this point can be used for a continuous monitor
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Figure 3: Lagrangian points position, adapted from [16]

Figure 4: Plot of the Jacobi constant surface on the plane (left) and its associated
contour levels (right)

of M1 or M2, considering the Sun-Earth system, L1 it is useful for a continuous
monitor of the Sun like the SOHO mission (see [17]).

• The point L2 lies behind the smaller primary, µ2 with x + µ2 > 0 and x− µ1 > 0

and in general can be used as a deep space observation mission like the James
Webb Space Telescope (see [18] ).

• The point L3 lies behind the bigger primary, µ1 with x + µ2 < 0 and x − µ1 < 0

and can be used for deep space observation or for monitoring the Sun, anyway this
is not an interesting point since it is situated far away from the Earth and has an
energy higher with respect to the other two collinear point meaning that more fuel
consumption is needed to reach it.
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In total we have five equilibrium points, as we can see in Figure 3 and Figure 4, where
forces are balanced.
If we rearrange Eq.(52) we obtain a quintic, a polynomial of 5-th degree of the form:

ax5 + bx4 + cx3 + dx2 + ex+ f = 0 (53)

Where the coefficients a, b, c, d, e, f depend on the collinear point considered.
Even if a spacecraft is placed in a equilibrium point, perturbations due to an-modeled
dynamic are present so a stability analysis must be carried out.
To do so we apply a small disturb of the equilibrium state in order to study the devia-
tion δx(t) = (X, Y, Z, Ẋ, Ẏ , Ż) of the resulting dynamics respect to the steady solution
trajectory.
We note that the study of a neighborhood trajectory respect to a nominal one is already
study in Section 2.2.4, where we have obtained the variational equation describing the
time evolution of the displacement between the two close generic trajectories.
If we apply Eq.(40) in our case with x̄(t) = (x0, y0, 0, 0, 0, 0)T and setting δx(t) =

(X, Y, Z, Ẋ, Ẏ , Ż) = X(t) the displacement of the satellite with respect to an equilib-
rium point, we get:

Ẋ(t) ≈



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U0
xx U0

xy U0
xz 0 2 0

U0
yx U0

yy U0
yz −2 0 0

U0
zx U0

zy U0
zz 0 0 0


X(t) = AX(t) (54)

Where A is obtained evaluating the jacobian at the stationary equilibrium point and
thus is independent on time.
We note that from Eq.(42e) and Eq.(42f), U0

zx = U0
zy = 0 for all equilibrium points,

mining that the motion along the z direction is decoupled from the motion on the plane.
The general solution of Eq.(54) is well know and can be written in the form:

x = veλt (55)

where λ is called eigenvalue while v is a six dimensional vector, in our case, which is the
associated eigenvector.
If we look to Eq.(55) we note that in order to have stability the only condition is that
the real part of the eigenvalue is non-positive since in that situation the amplitude v will
decrease exponentially if Re(λ) < 0 while it will be bounded if λ is pure imaginary.
Returning to our problem, restricting our analysis on the state Z we get:
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(
Ż

Z̈

)
=

[
0 1

U0
zz 0

](
Z

Ż

)
(56)

The first equation is trivially satisfied while the second equation becomes:

Z̈ − U0
zzZ = 0 (57)

Substituting the general solution of Eq.(55), where v = γ0 is a scalar since we are looking
only to the position state, we obtain:

(−λ2 − Uzz)γ0eλt = 0 (58)

With U0
zz = −( µ1

(r1)30
+ µ2

(r2)30
) < 0.

That is, in the z direction, the system has two pure imaginary eigenvalues λ = ±i
√
|Uzz|

and therefore two distinct eigenvectors, the general solution is an harmonic oscillation
with frequency given by ωz =

√
|Uzz|, also called natural frequency:

z(t) = γ1 cos(ωzt) + γ2 sin(ωzt) = γ cos(ωzt+ φ0) (59a)

with: z(0) = z0 , ż(0) = ż0 (59b)

Where γ1 and γ2 or, equivalently, γ and φ0 are constant determined from the initial
conditions. For now on, since we have proved the stability in the out of plane motion,
we focus in the stability motion on the plane.
In order to study the stability on the x− y plane we start to eliminate the dependency
of Z and Ż in the linearized motion:

dX

dt
=


Ẋ

Ẏ

Ẍ

Ÿ

 =


0 0 1 0

0 0 0 1

U0
xx U0

xy 0 2

U0
xy U0

yy −2 0



X

Y

Ẋ

Ẏ

 = ÂX (60)

Substituting the generic solution in Eq.(55) we obtain:

Âv = λv (61)

Eq.(61) is how eigenvalue and eigenvector are defined from linear algebra.
If Â is thought of as a transformation matrix, the result of applying Â to the eigenvec-
tor v that satisfy Eq.(61) is to produce a vector in the same direction of v but with a
different magnitude.
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Even if we have obtained already the solution in the z-motion, in order to study the
stability of the system an analysis of only the eigenvalues λ must be considered, a full
derivation of the solution will be discussed in Section 2.2.7.
Eq.(61) can be written as an homogeneous system in the form:

(Â− λI)v = 0 (62)

Where I is the identity matrix.
Forcing the system to have non-trivial solution, v 6= 0, we have:

det(Â− λI) = 0 (63)

Computing the determinant we obtain the following polynomial:

λ4 + (4− U0
xx − U0

yy)λ
2 + U0

xxU
0
yy − U0

xy
2

= 0 (64)

This is a quartic in the variable λ but also biquadratic in λ2 with roots:

λ1,2 = ±
[

1

2
(U0

xx + U0
yy − 4)− 1

2
[(4− U0

xx − U0
yy)

2 − 4(U0
xxU

0
yy − U0

xy
2
)
1
2 ]

1
2

]
(65a)

λ3,4 = ±
[

1

2
(U0

xx + U0
yy − 4) +

1

2
[(4− U0

xx − U0
yy)

2 − 4(U0
xxU

0
yy − U0

xy
2
)
1
2 ]

1
2

]
(65b)

Note that in this case we have four different eigenvalues-eigenvectors pair, the analysis
of stability doesn’t change, in order to have stability all the eigenvalues must be with
negative real part or pure imaginary, otherwise, if this is not verified, the system is un-
stable.
Now we can analyze the stability of each equilibrium point.

Collinear points In this case we have y0 = 0, (r21)
0 = (x0 + µ2)

2 , (r22)
0 = (x0 − µ1)

2

and hence:

U0
xx = 1 + 2Ā , U0

xx = 1− Ā , U0
xy = 0 (66)

Where:

Ā =
µ1

(r31)
0

+
µ2

(r32)
0

(67)

Making the substitution β = λ2 Eq.(64) becomes:

β2 + (2− Ā)β + (1 + Ā− 2Ā2) = 0 (68)
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Eq.(68) is a quadratic function, in order to investigate its roots we use the Cartan rule.
The equation has real solution since the discriminant ∆ = 9Ā2 ≥ 0 moreover since we
want negative solutions, that would generate imaginary stable eigenvalues, we require
the coefficients to be positive:  (2− Ā) > 0

(1 + Ā− 2Ā2) > 0
(69)

This means that in order to be stable we need to have −1
2
< Ā < 1.

However if we compute Ā substituting the corresponding values of r01 and r02 for each
collinear point we obtain that Ā > 1 (given that µ2 <

1
2
), this indicate that the system

has a positive eigenvalues so that small displacement around L1, L2 and L3 will growth.
Therefore we conclude that the collinear points are always unstable.

Triangular points In this case we have r1 = r2 = 1, x = 1
2
− µ2 and y = ±

√
3
2

and so:

U0
xx =

3

4
, U0

xx =
9

4
, U0

xy = ±3
√

3
(1− 2µ2)

4
(70)

The characteristic equation becomes:

λ4 + λ2 +
27

4
µ2(1− µ2) = 0 (71)

And Eq.(65) reduce to:

λ1,2 = ±

√
−1−

√
1− 27(1− µ2)µ2
√

2
(72a)

λ3,4 = ±

√
−1 +

√
1− 27(1− µ2)µ2
√

2
(72b)

Since 1−27(1−µ2)µ2 < 1, λ3,4 is always complex while in order to obtain pure imaginary
solution also for λ1,2, we need to have:

1− 27(1− µ2)µ2 ≥ 0 (73)

This implies that condition for stability reduces to:

µ2 ≤
27−

√
621

54
≈ 0.0385 = µ̄ (74)
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At the end we have that the collinear points are always unstable, this feature seams
a disadvantage but in reality is a very useful property in order to construct low energy
transfer since with a small maneuver the satellite can escape easily from these points
while triangular points can have stable behaviour. Putting some numbers we see that
within our system, each planet with the Sun have µ2 < µ̄ and therefore have the trian-
gular points stable, this means that in such points asteroids belts can be found.

2.2.6 Zero velocity surfaces

If we look at Eq.(37) we see that as the spacecraft move far away from the center of
mass of the primaries, its potential energy U increases and, accordingly, the kinetic en-
ergy decrease in order to maintain CJ constant. However, at a certain point where the
spacecraft reach a condition where its kinetic energy is zero and the potential energy
reach its maximum, if the spacecraft would move away after this point it would have a
negative kinetic energy which is unfeasible, if we set T = 0 we get:

CJ = 2U (75)

This equation defines different surfaces in space, according to the value of CJ , called zero-
velocity surfaces that define regions where the motion can happen due to only energy
considerations, the feasible regions are the accessible regions where the kinetic energy is
positive:

CJ ≥ 2U (76)

It is possible to show how those surfaces evolve changing the values of CJ , in order to
do that we compute the Jacobi constant at each equilibrium point, since they define
limiting cases of accessible/forbidden regions. Substituting the position of L1, L2, L3, L4

and L5 in Eq.(75) we get the zero surface associated to each equilibrium point, Table 1
summarize the value of CJ of such a points in the Earth-Moon system.

Table 1: Values of Cj for each Lagrangian points in the Earth-Moon system

L1 L2 L3 L4 L5

CJ 3.188373 3.172188 3.012151 2.987994 2.987994

In Figure 5 are analyzed the accessible and forbidden regions varying the Jacobi constant
obtaining the following possible cases:
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• For Values of CJ ≥ CL1
J , the system is divided in 3 different accessible realm: the

realm in proximity of each primaries and a region outside the system. In this case
the regions can’t communicate since the energy level is too small, a spacecraft put
in each one of this zones remain there without moving to other possible realm since
it would cross the forbidden regions.

• For values of CL2
J ≤ CJ ≤ CL1

J the two realms around the primaries opens and a
spacecraft can move from one body to another, this energy range is suitable for
mission toward the Moon like the Apollo mission.

• If CL3
J ≤ CJ ≤ CL2

J we are in a condition where the satellite has enough energy to
move also outside the system of primaries.

• when CL4
J ≤ CJ ≤ CL3

J the accessible region growth, the zero velocity surfaces
moves away from the x − y plane so that when CJ = CL4

J = CL5
J the satellite is

free to move in this plane even if there are still regions in the space where motion
is not allowed.
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Figure 5: Zero velocity surfaces (left) and zero velocity curves in the plane (right) that
highlight accessible and forbidden regions for different values of CJ
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2.2.7 Linear solutions around Lagrange points

Since we have four different eigenvectors, the general linear solution is written, by su-
perposition, as a linear combination of such a solutions:

X =
4∑
j=1

αje
λjt (77a)

Y =
4∑
j=1

βje
λjt (77b)

Ẋ =
4∑
j=1

αjλje
λjt (77c)

Ẏ =
4∑
j=1

βjλje
λjt (77d)

Z = γeωt (77e)

Ż = γωeωt (77f)

Where αj and βj are, in general, complex.
We have already seen the solution in the Z-direction which is an harmonic undamped
oscillation with solution given by:

z(t) = γ cos(ωt+ φ0) (78a)

ż(t) = −ωγ sin(ωt+ φ0) (78b)

z(0) = z0 , ż(0) = ż0 (78c)

In order to find also the solution in the x− y plane, we compute the eigenvectors, sub-
stituting the expression of X, Y , Ẋ and Ẏ in one of the last two equations of Eq.(60)
(since they are linear dependent they express the same thing), we obtain the following
relationship between αj and βj:

(αjλ
2
j − 2βjλj − Uxxαj − Uxyβj)eλjt = 0 , ∀j = 1, ..., 4 (79)

Therefore:

βj(αj) =
λ2j − Uxx
2λj + Uxy

αj (80)

So that the generic eigenvector v can be expressed in the form vj = (αj, βj(αj), λjαj, λjβj(αj))
T

Where α’s can be computed from the initial condition at t = t0 = 0:
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4∑
j=1

αj = X0 ,
4∑
j=1

αjλj = Ẋ0 ,
4∑
j=1

βj(αj) = Y0 ,
4∑
j=1

βj(αj)λj = Ẏ0 (81)

Note that αj is real if and only if λj is real.
The Eq.(77) represent the generic motion of a satellite around an equilibrium point. Al-
througth the generic solution can contain unstable behaviour, it is possible to set initial
conditions such that, the only eigenvalues excited by the system are only those related
with pure imaginary eigenvalues related to oscillatory behaviour. In this particular con-
dition periodic orbits around equilibrium points exist, note that the main difference with
respect to the generic case is that we are removing part of the dynamics and therefore,
given a certain position of the satellite along the orbit X(t), there is only one velocity
vector V (t) that satisfy the motion, this means that the initial conditions are only de-
fined in terms of position.
Here we can summarize the different possibilities of the motion of a satellite where we
supposed µ2 ≤ µ̄.

• Saddle motion: Is the solution that contains the unstable and asymptotic stable
behaviour, it can be obtained for L1, L2 and L3, having Z(t) = 0.
The solution is written in the form:(

X(t)

Y (t)

)
=

[
α1

β1(α1)

]
eλ1t +

[
α2

β2(α2)

]
eλ2t = aeλ1t + beλ2t (82)

Where λ1 and λ2 are real and with different sign.
In this case the motion is an hyperbolic motion in which the direction of the two
asymptote are given by a and b that are the direction where the satellite leaves
the point faster (unstable direction) or the direction where the satellite approach
the equilibrium point asymptotically (stable direction).

• Lissajous orbits: Are quasi period orbits obtained eliminating the saddle mo-
tion from the general solution, in this case only two pure imaginary eigenvalues
λ1,2 = ±iωp in the plane are present:(
X(t)

Y (t)

)
=

[
α1

β1(α1)

]
eλ1t+

[
α2

β2(α2)

]
eλ2t = aeλ1t+beλ2t , Z(t) = γ1e

iωzt+γ2e
−iωzt

(83)
Since we have ωp 6= ωz the orbit is called quasi periodic since it is not closed
oscillating in the z-direction with a frequency different from that of the plane as
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we can seen in Figure 6.

Figure 6: Lissajous orbit

• Lyapunov orbits: Are 2-D orbits obtained from Lissajous orbits setting Z(t) = 0,
Eq.(83) becomes:(

X(t)

Y (t)

)
=

[
α1

β1(α1)

]
eλ1t +

[
α2

β2(α2)

]
eλ2t = aeλ1t + beλ2t (84)

Those are periodic orbits that can be obtained around each Lagrangian point, they
are ellipses, as can be seen in Figure 7, and can be found in all Lagrangian points,
the size of this ellipse is related to a and b.
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Figure 7: Lyapunov orbit

• Trojan orbits: Are particular orbits that exist only in L4 and L5 since they have
4 imaginary eigenvalues where are associated to two different frequencies ω1 and
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ω2 such that λ1,2 = ±iω1 and λ3,4 = ±iω2, therefore the general solution in this
case becomes:

(
X(t)

Y (t)

)
=

[
α1

β1(α1)

]
eλ1t +

[
α2

β2(α2)

]
eλ2t +

[
α3

β3(α3)

]
eλ3t +

[
α4

β4(α4)

]
eλ4t

=aeλ1t + beλ2t + ceλ3t + deλ4t

(85)

Figure 8 shown an example of those orbits note that the solution can be thought
as a combination of two periodic motion.
Those orbits are common when dealing with asteroids belts inside our system, this
because, as already mention, belts of asteroids orbiting in proximity of L4 and L5

can be found, those belts are also known as Trojan asteroids.
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Figure 8: Trojan orbit

2.2.8 High order term orbits around Lagrangian points

In the previous section we have discussed the possible types of orbit around each equi-
librium point, however those solutions are valid for small displacement respect to the
stationary solution, in order to be able to search other possible orbits or the evolution
of the previous orbits discussed, higher order terms must be considered.
First of all we note that no closed orbits in space exist in linear approximation since
in general, ωz 6= ωp. However the in plane and out of plane frequencies are closed to
each other in correspondence of the collinear points, therefore, if we consider higher or-
der terms, the non-linearities alters the frequency of the linearized orbits so that, under
particular constraints, ωz = ωp and 3-D closed orbits, called Halo orbits, may exist (for
more detail see the appendix).
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Figure 9: Halo orbit around L2 in the Earth-Moon system

Figure 10: Lyapunov orbits around L1 and L2 in the Earth-Moon system

Note also that non linear term can also alters the preexisting orbits or introduce new
kind of orbits, in Figure 10 is reported the evolution of Lyapunov orbits increasing the
distance from the equilibrium point, note how these orbits starts to deviate from the el-
liptical shape while in Figure 11 is reported a tadpole and horseshoe orbits, special orbits
obtained around triangular points, integrating the CRTBP for specific initial conditions.

2.3 Four body problem

Until now we have discussed the the motion under the three body problem approxima-
tion, that actually describe quite well the dynamics of the satellite in proximity of the
primaries attraction.
However, it is possible that, during the flight, the spacecraft starts to go far away from
the primaries or it remains around an equilibrium point for a long time so that pertur-
bations due to other bodies start to become important, in those cases, a new dynamical
model is needed, taking into account another body.
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(a) Tadpole Orbit µ2 = 0.001,
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(b) Horseshoe Orbit µ2 = 0.000953875,
X0 = (−1.02745, 0, 0, 0, 0.04032, 0)

Figure 11: Example of Tadpole and Horseshoe orbits, from [15]

In our case, since we focus on the Earth-Moon system, the third primary that affect
mainly the dynamics is the Sun, that dominate the motion of the spacecraft respect to
the other planets due to its huge mass when moving toward the deep space.
As we have done with the three body problem we do some approximation regarding on
the motion of the primaries so that, also in this case, the degree of freedom of the system
are only six, related to the spacecraft.
The difference is that in the four body problem since the primaries are more than two,
we can have two possible approximation about the motion of the primaries, indicating
their masses as M0, M1 and M2:

• Concentric circular model: In this case M0 is the central body while M1 and
M2 move on circular orbit around M0, moreover the motion is assumed co-planar.
This model is used for describing the dynamics of the Moons of a planet M0 like
Jupiter’s moon and so on.

• Bicircular model: M1 and M2 are moving on circular orbits around their center
of mass which is rotating in a circular orbit about the central bodyM0. This model
is also co-planar and is suitable, for example, in order to study the the motion of
the Sun-Earth-Moon system.

In this thesis, we consider motion in the Earth-Moon system, where we neglect the in-
clination of the Moon with respect to the Sun-Earth system, therefore, the Bicircular
model is adopted indicating the mass of the Sun, Earth and Moon as M0, M1 and M2

respectively.
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2.3.1 Equations of motion Bicircular model

Similarly with the circular restricted three body problem we can represent the problem
in normalized coordinates in a rotating frame. However now we can have different pos-
sibilities to define those units since we can definite different rotating frame while the
inertial frame (O; ξ, η, ζ) is considered centered in the fixed center of mass O of M0 and
M1-M2 barycenter.

Earth-Moon rotating frame The Earth-Moon rotating frame (O′;x, y, z) has the
origin O′ centered in the center of mass of the Earth-Moon system, the x-axis is taken
aligned with M1-M2 and directed toward M2, rotating rigidly with them. The z-axis
is perpendicular to the plane coincident with the ζ-axis while the y-axis completes the
frame, this choice is the same that we have seen in the restricted three body problem, note
that in this case, the angular velocity of the rotating frame is ω = (0, 0, 2.6644× 10−6)T

in the Earth-Moon system, obtained using Kepler’s third law, which is unitary in nor-
malized coordinate.
In order to write the equation of motion, first of all we consider again the general Eq.(23),
the only difference is now that the center of mass of the Earth and Moon is moving, there-
fore:

ainertial = aO′ + arel + 2ω × v + ω × (ω × r) +
dω

dt
× r =

= aO′ + arel + 2ω × v + ω × (ω × r) =

= aO′ + arel + aCoriolis + aCentr.

(86)

Multiplying by the mass m of the satellite and using again Newton’s law, the dynamic
of the particle becomes:

F grav. = maO′ +marel + F Coriolis + F centr. (87)

Where here F grav. takes into account also the gravitational interaction of the Sun.
If we now substitute each term and rearranging, we get:

¨̂r = −µ1

r̂31
r̂1 −

µ2

r̂32
r̂2 −

ms

r̂33
r̂3 − 2ω × v − ω × (ω × r)− aO′ (88)

The term aO′ is related to the acceleration of the Earth and Moon barycenter, since
we supposed that O′ moves on a circular orbit, in the barycenter O′ should be applied
a gravitational force that grants the centripetal acceleration needed in order to have a
curved trajectory.
However this force is not present since O′ is not a point mass in reality, what we can
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(a) Inertial view point (b) Rotating view point

Figure 12: Bicircular model in the Earth-Moon system

do is to assume that in the barycenter O′ of M1 and M2 is concentrated the total mass
M1 + M2, note that this approximations works well especially when M1 >> M2 like in
our case.
Therefore, the acceleration of O′ can be written in the following form:

aO′ =
V 2
O′

rs
er =

ms

ρ3s
ρs (89)

Where er is the unit vector directed toward M0, VO′ the velocity of the barycenter while
rs = rser and ρs = ρser represent the vector from O′ to O and from O′ and the Sun
respectively.
In Figure 12 is reported a schematic representation of the Bicircular model in the Earth-
Moon reference frame, the angle θs is defined as the relative angle between the x-axis of
the rotating frame and the Sun. The mass of the Sun is denoted as ms, the position of
the satellite with respect to the Sun is r3.

Summarizing the different terms of Eq.(88) in the rotating-normalized frame are given by:

rs = (rs cos θs, rs sin θs, 0)T (90)

ρs = (ρs cos θs, ρs sin θs, 0)T (91)

r3 = r − ρs = (x− ρs cos θs, y − ρs sin θs, z)
T (92)

ms =
M0

M1 +M2

≈ 329006m∗ (93)

Where all distances are normalized with respect to the distance of M1 and M2 and the
unit mass is M1 +M2 leaving the other parameters the same as the CRTBP.
Substituting Eq.(89) into Eq.(88) and using the above relations, we obtain:
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ẍ− 2ẏ − x = −µ1
x+ µ2

r31
− µ2

x− µ1

r32
−ms

x− ρs cos θs
r33

− ms

ρ3s
ρs cos θs (94a)

ÿ + 2ẋ− y = −µ1

r31
y − µ2

r32
y −ms

y − ρs sin θs
r33

− ms

ρ3s
ρs sin θs (94b)

z̈ = −
(
µ1

r31
+
µ2

r32
+
ms

r33

)
z (94c)

With:

θs = θ0s + θ̇s(t− t0) (95)

Where θ0s is the initial angular position of the Sun while its angular rate θ̇s in the rotating
frame, can be computed from the kinematics, expressing the relative velocity of the Sun
with respect to O′:

vabss = ωO′ × (ρs − rs) = vO′ + vrel + ω × ρs (96)

Therefore, since vO′ = ωO′ × (−rs), substituting and rearranging we get:

vrel = (ωO′ − ω)× ρs = θ̇s × ρs (97)

where in components, θ̇s = (ωO′ − ω) = (0, 0, θ̇s)
T .

Putting some numbers, we can compute ωO′ in normalized coordinates, setting in Eq.(14)
the time of the period of O′, we get its value in normalized time denoted as TO′ , so that:

θ̇s = ωO′ − ω =
2π

TO′
− 1 ≈ −0.925287494370215

rad

s∗
(98)

Also in this case, Eq.(94) can be written defining a potential Ω defined as:

Ω(x, y, z, θs(t)) = U(x, y, z) +
ms

r3
− ms

ρ2s
(x cos θs + y sin θs) (99)

So that the equations of motions become:

ẍ− 2ẏ =
∂Ω

∂x
(100a)

ÿ + 2ẋ =
∂Ω

∂y
(100b)

z̈ =
∂Ω

∂z
(100c)
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The Earth-Moon system is a reference in general used when modeling the motion in the
Earth-Moon system when the spacecraft starts to go far away from the system, adding
the presence of the sun that acts as a perturbation.

Sun-Earth rotating frame The rotating frame should has its origin coincident with
the barycenter of M0 and M1, however, in this model, the equations of motion of the
particle are not so simple, therefore we can assume that, since M0 � M1 � M2 in our
case, the two origin of the two frames are coincident, with this assumption the equations
that we obtain are slightly different from Eq.(94) nevertheless give good results. If one
insist to obtain exactly Eq.(94) in the Sun-Earth system, transformation of coordinate
between the the two rotating frames is necessary.
Referring to Figure 13, most of the parameter are similar to those already defined in the
CRTBP that we have already discuss, moreover, we denote with R3 the position of the
mass M2 while rM the position of M2 with respect to M1 and r3 the position of P with
respect to M2.
With this choice is interesting to note that since O ≡ O′ and is fixed, aO′ = 0 and
therefore, as we will see, we retrieve a similar structure of equations of motion obtained
in the CRTBP, the equation of motion becomes:

r̈ = −µ1

r31
r1 −

µ2

r32
r2 −

mM

r33
r3 − 2ω × v − ω × (ω × r) (101)

Where r3 is given by:

r3 = r −R3 (102)

In this case the angular velocity ω of M0 and M1, is taken unitary with also its distance
and the mass M0 + M1. The angular velocity of M2, θ̇M relative to the rotating frame
can be computed from kinematics, infect:

vabsM = ω ×R2 + ωM × (R3 −R2) = vrelM + ω ×R3 (103)

Where ωM is the absolute angular velocity of M2 around M1 and:

R3 = R2 + rM = (µ1 + rM cos θM , rM sin θM , 0) , θM = θ̇M(t− t0) + θ0M (104)

Therefore Eq.(102) becomes:

vrelM = (ωM − ω)×R3 = ωrel ×R3 (105)

With ωrel = (0, 0, θ̇M).
Using again Eq.(14), substituting the period of M2 around M1 we get the period in nor-

34



Figure 13: Sun-Earth reference system

malized time TM , then:

θ̇M = ωM − ω =
2π

TM
− 1 ≈ 12.369326500732065

rad

s∗
(106)

Finally, the equations of motion can be written in scalar form as follow:

ẍ− 2ẏ − x = −µ1
x+ µ2

r31
− µ2

x− µ1

r32
−mM

x− µ1 − rM cos θM
r33

(107a)

ÿ + 2ẋ− y = −µ1

r31
y − µ2

r32
y −mM

y − rM sin θM
r33

(107b)

z̈ = −(
µ1

r31
+
µ2

r32
+
mM

r33
)z (107c)

with:

mM =
M2

M0 +M1

≈ 3.6942× 10−8m∗ (108)

Where also in this case, it is possible to introduce a potential Ω defined as:

Ω(x, y, z, θM(t)) = U(x, y, z) +
mM

r3
(109)

So that we obtain the same structure of Eq.(100).
This model is in general used when modelling the motion of a particle in the Sun-Earth
system taking into account the Moon as a perturbation.
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As we can see, in both cases, the equation of motion that we obtain are non−autonomous

due to the time presence, moreover we note that the primaries M0,M1,M2 move in a
incoherent motion meaning that they don’t satisfy Newton’s equations since in reality,
is not possible to have the three primaries that moves under the assumption of the Bi-
circular model (the same happen in the concentric model), however the motion obtained
gives very accurate results with respect to the real dynamics.
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3 Low-Energy trajectory design

When considering a transfer between two bodies, an Hohmann transfer gives the lower
limit of the propellant that must be used in order to transfer from one point to another
one under the two-body problem assumption.
However, when considering more bodies, new transfer strategy arises so that, in par-
ticular conditions, the total amount of propellant can be significantly lower than an
Hohmann transfer.
In this chapter we follow [3] to construct low energy trajectories based on the idea of
manifold implemented in a CRTBP and then the idea of weak stability boundary is also
presented using a formulation given in [1] and [2].

3.1 Construction of periodic orbits in the CRTBP

We have already see that third order, Richardson approximation is a very useful tool in
order to construct periodic orbits when also non-linearities are considered.
However, taking the initial condition of such orbits and integrating the dynamics under
the CRTBP leads to a non-closed orbits, as we can see in Figure 14, the integrated orbit
follow the periodic orbit in the first half orbital period but then starts to diverge without
return to the initial point, in order to face to this problem we need some preliminary
considerations.

Figure 14: Comparison between Richarson and its propagated trajectory in the CRTBP

First of all we note that the CRTBP has symmetries, infect if we denote (x, y, z, vx, vy, vz, t)

a generic solution of Eq.(27), if we making the following substitution:

(x, y, z, vx, vy, vz, t)→ (x,−y, z,−vx, vy,−vz,−t) (110)
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(x(-t), -y(-t), z(-t))(x (t), y(t), z(t))

y=0

(a) Generic

(x (-t), -y(-t), z(-t)) (x (t), y(t), z(t))

y=0

(b) Perpendicular crossing

(x(-t), -y(-t), z(-t)) (x (t), y(t), z(t))

y=0

(c) Closed orbit

Figure 15: Symmetry property

we obtain that also (x,−y, z,−vx, vy,−vz,−t) is a solution that represents the mirrored
trajectory respect to the x− z plane but in this case the curve is traveled in the opposite
direction as we can see in Figure 15a.
A closed orbit can be constructed using symmetries, if we take a trajectory, starting at
p with a velocity perpendicular to the x − z plane and applying Eq.110, we get that
from a trajectory that flows forward from p, there exist another solution given by its
mirrored image that flows toward p as in Figure 15b, the two trajectories are attached
in p and they represent the same trajectory. However this is not sufficient to obtain a
closed trajectory since also in the next crossing the velocity must be perpendicular to
the plane y = 0 as in Figure 15c.
Thanks to this property, we can restrict our problem in analyze only half of the orbit,
imposing to have the initial and final state in the following form:

xi = x(0) = (xi, 0, zi, 0, viy, 0)

xf = x(T/2) = (xf , 0, zf , 0, vfy , 0)
(111)

Starting from an Halo orbit and using an initial state at y(t0) = 0 given by Richardson
approximation, due to the higher non-linear term, the state after half orbit is of the form
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(x, δy, z, δvx, vy, δvz) when integrated using the CRTBP (where with δ we denote a small
value different from zero) and therefore, when integrated forward, the trajectory deviate
from the nominal Halo obtaining an open trajectory. In order to drive the system to
have a closed orbit, we apply a differential correction method.
The main idea behind the differential correction method is to change some free variables
at the starting condition in order to obtain the desired final state.
To do so we apply Newton’s method, let X the vector containing the free variables, at
the initial state, that we have access in order to drive the system to the desired final
target state xT = (xT , 0, zT , 0, vTy , 0), given by:

X =


x0

z0

v0y

t

 (112)

When integrating the trajectory the system must satisfy some constraints, in our case,
related to the final state, xf = (xf , yf , zf , vfx , v

f
y , v

f
z ), indicated as C(X) = 0, where:

C(X) =

y
f − yT

vfx − vTx
vfz − vTz

 =

y
f

vfx

vfz

 = 0 (113)

Therefore the goal of our problem is to tune opportunely the free variables in order to
satisfy Eq.(113). Due to the non-linearities, the solution is not obtained directly but
through an iterative process, let Xj the j-th iteration of the free variables vector, ex-
panding in Taylor series up to the first order C(X), we get:

C(X) ≈ C(Xj) +
∂C(Xj)

∂Xj (Xj+1 −Xj) = 0 (114)

Where ∂C(Xj)

∂Xj is the Jacobian of the constrain vector, given by:

∂C(X)

∂X
=


∂yf

∂x0
∂yf

∂z0
∂yf

∂v0y
ẏf

∂vfx
∂x0

∂vfx
∂z0

∂vfx
∂v0y

v̇fx
∂vfz
∂x0

∂vfz
∂z0

∂vfz
∂v0z

v̇fz

 =

Φ21(tf , t0) Φ23(tf , t0) Φ25(tf , t0) ẏf

Φ41(tf , t0) Φ43(tf , t0) Φ45(tf , t0) v̇fx

Φ61(tf , t0) Φ63(tf , t0) Φ65(tf , t0) v̇fz

 (115)

First of all we note that we have four free variables but just three equations describe how
are related to the constrain vector, therefore we will have an infinite possible solutions
(undetermined system), this reflects the fact that the resulting jacobian is rectangular
and not possible to take its inverse. What we can do is to fix one variable allowing
the other to change, eliminating the corresponding column of the jacobian obtaining a
diagonal matrix, otherwise the pseudo-inverse can be used, this last solution is used so
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Figure 16: Halo orbit differentially corrected and propagated in the CRTBP

that inverting Eq.(114), we obtain:

Xj+1 = Xj − ∂C(Xj)

∂Xj

T
[
∂C(Xj)

∂Xj

∂C(Xj)

∂Xj

T
]−1

C(Xj) (116)

Note that this can be done only if the term in parenthesis is invertible.
The iterative algorithm stops when C(Xj+1) is lower than a prescribe tolerance or a
maximum number of iteration is reached.
In Figure 16 is shown the resulting halo orbit corrected, propagated in the CRTBP.

Note that this can be also applied to Lyapunov orbit, imposing a planar orbit with
z(t) = 0 we get:

X =

x
0

v0y

t

 , C(X) =

[
yf

vfx

]
= 0 ,

∂C(X)

∂X
=

∂yf∂x0
∂yf

∂v0y
ẏf

∂vfx
∂x0

∂vfx
∂v0y

v̇fx

 (117)

A quick consideration must be done in this case, while for Halo orbits the initial seed for
the differential correction scheme is given by a Richardson approximation that considers
non-linear term up to the third order, in the Lyapunov orbit, the initial guess is a linear
approximation of the orbit given in Eq.(84) but for high amplitude the linear approxi-
mation is not more suitable to initiate a differential correction procedure (insisting using
the linear approximation leaves to a solution which is compatible with a two-body orbit
around the Moon), what we can do is to take as initial guess the Lyapunov orbit com-
puted in the previous step and start to increase its size, this method is also known as
continuation algorithm (for more detail about this method see [3]) the results is shown
in Figure 10.
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3.2 Stability of periodic orbits

When considering closed orbits around equilibrium point, it is interesting also to study
its stability when a perturbation δx0 is applied to the orbit.
We note that for a closed orbit x̄(t) of period T , the state is retrieved after one orbital
period:

x̄(t0) = x̄(t0 + T ) (118)

Therefore in order to understand the behaviour of the new trajectory x(t) we can simply
compare it with the nominal one at each orbital period. The new trajectory, after the
perturbation, can return or diverge from the nominal orbit, in these cases the orbit is
called stable or unstable respectively.
A generic orbit is completely determined by its state at one point xp, if we represent the
trajectory in the state space, what we have is a closed curve in R6 defined by the flow φ

as can be see in Figure 17.

xp

ϕ (t,x  )p

x +δxp 0

ϕ (t,x +δx  )p 0

x +δxp 1

Σ

Figure 17: Example of a low-energy transfer from [3]

In order to study its stability, we need a reference so that we can compare them, to do
so we can define Σ as the cross n− 1 dimensional section (also called Poincare section)
of the dynamical flow, that is a fixed section transverse to the curve at xp that define
the nominal orbit.
Applying a perturbation, the curve return to that surface with a displacement from the
nominal orbit given by:

δx(T ) = δx1 = Φ(t0, T + t0)δx(t0) = Mδx(t0) = Mδx0 (119)

Where the matrix M = Φ(t0, T + t0) is called Monodromy matrix, note that M is a
discrete map whose eigenvalues determines whenever initial perturbation δx(t0) = δx0

will growth or decay after each revolution.
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The generic solution of Eq.(119) after k revolutions is given by (note that the matrixM
is evaluated in the reference trajectory and therefore doesn’t change after each revolu-
tion):

δxk = δx(kT ) = M kδx0 (120)

Since we have a discrete map, the condition to have stability reduce to:

Re(λi) < 1 , ∀i (121)

In our case the eigenvalues of M can be expressed in the form:

λ1 =
1

λ2
(λ1 � 1) , λ3 = λ̄4 , λ5 = λ6 = 1 (122)

It is possible to demonstrate that the eigenvalues λ5 represent a neutral variation, normal
to the plane and not interesting in our case. The eigenvalue λ6 is in somehow related to
the energy, it is infect possible to perturb a nominal trajectory, obtaining another closed
one having the same energy (Jacobi constant), this generate different families of orbits
with the same energy level.

• The eigenvalues λ1 and λ2 represent unstable and stable behaviour, the associated
eigenvectors represent the direction, in the state space, where the spacecraft leaves
as fast as possible or it is captured by the orbit, those direction are very important
when define manifolds as we will see in the next section.

• (λ3,λ4) are complex and conjugate pairs (with |λ| = 1), in this case a perturbation
along the associated eigenvector has the effect to rotate the perturbation of a cer-
tain angle after one orbital period, this kind of motion is present only for 3D orbits
and generate the so called quasi-Halo and quasi-Lissajous orbit.
These perturbations leads to new type of orbit, since in general is not useful to
work in a six dimensional space for obvious reasons, its possible to study the pos-
sible orbit projecting the surface Σ in the x − y plane, perturbing each nominal
orbit previously studied in the direction of λ3 and λ4 obtaining Figure 18.
Each closed circles are formed by points that represents the intersection of an orbit
with the plane while the isolated points are the nominal orbits. As we can see
quasi-Halo orbits are orbits that looks like torus when the integration time go to
infinite while quasi-Lissajous orbits are more complicated. Note that in this case,
also the intersection after half period is shown (symmetric part).
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Figure 18: Example orbits representation in the Sun-Earth L2 from [19], note that this
map depend on the value of CJ

3.3 Invariant Manifolds and their computation

Periodic orbits around Lagrangian points are very important in order to design transfer
trajectories however an important aspect to take into account is also how we can reach
these orbits.
When designing orbit trajectories in libration point, we want, in general, reach the target
saving as much as possible propellant, moreover if we look in our prospective we have
no clear idea how to design such a trajectory starting from a parking orbit around the
Earth, what we can do in these situations is to start from the final part, and integrate
backwards in time.
To do so we apply a perturbation from the final orbit, among all the perturbations, the
stable is the most convenient since, integrating forward, the spacecraft is attracted from
that orbit.
Let V s(x0) denote the normalized stable eigenvector related to the Monodromy matrix
computed at x0 along the orbit, the perturbed state can be written as:

x(x0) = x0 ± εV s(x0) (123)

The term ε is a quantity that must be a compromise between accuracy (if it is too high
we have a big perturbation that is not representative of our problem) and time (since in
this case it takes a lot of time to leave the orbit for very small perturbations), a value of
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ε = 1× 10−6 is used.
Note also that the ± sign must be considered and derive from the definition of eigenvec-
tor (if V s(x0) is an eigenvalue also −V s(x0) it is).
Sometimes we are interested in leaving the orbit instead to reach it, in these cases we
intergrate forward the trajectory along the unstable eigenvector V u(x0) so that:

x(x0) = x0 ± εV u(x0) (124)

The previous results are valid for a point x0, in order to consider all points of the or-
bit we propagate the successive stable/unstable perturbations V s/u(x(t)) along the orbit:

V s/u(x(t)) = Φ(t0, t)V
s/u(x0) (125)

And since the state transition matrix not preserve the norm the results must be normal-
ized.
In Figure 19 is reported the propagated trajectory in forward (red lines) and backward
(green lines) in time, if we increase the number of points that we propagate what we
obtain is a stable and unstable manifold (a surface), mathematically:

W s(φ(t,x),x0) = {x ∈ X : φ(t,x) −→ x0 ∈ Y as t→∞}

W u(φ(t,x),x0) = {x ∈ X : φ(t,x) −→ x0 ∈ Y as t→ −∞}
(126)

Where Y is the set, in the state space, of all points corresponding to the closed orbit.

Figure 19: Stable (green) and Unstable (red) Manifold emanated from a Lyapunov
orbit around L1 and L2
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3.4 Transit and non-Transit trajectories

Manifold are useful tool when considering transfer trajectories and can be considered as
a separatrix of two important transfers: non-transit and transit orbits.
Let x̄(t) a planar Lyapunov periodic orbit, in these cases we only consider orbits around
L1 and L2, since the other points have too much energy and therefore not interesting for
our goal, for simplicity, we suppose that the Jacobi constant associated to x̄(t) is such
that the outer and internal realm can communicate through the bottleneck in order that
existence of period orbit around L1 and L2 is granted.
In order to design trajectories that moves from one region to another we define some
important Poincaré sections Ui that are useful when dealing with mission analysis:

U1(x, y, vx, vy) = {(x, y, vx, vy) ∈ X : y = 0,−1 < x < 0, vy < 0}

U2(x, y, vx, vy) = {(x, y, vx, vy) ∈ X : x = µ1, y < 0, vx > 0}

U3(x, y, vx, vy) = {(x, y, vx, vy) ∈ X : x = µ1, y > 0, vx < 0}

U4(x, y, vx, vy) = {(x, y, vx, vy) ∈ X : y = 0, x < −1, vy > 0}

(127)

Where X is the set of points that belongs to the manifold and inequalities must be con-
sidered due to feasibility of the manifold trajectories.
Those sections are 3D surfaces in (x, vx, vy) or (y, vx, vy) whose projection in the x − y
plane are shown in Figure 19.
In the previous chapter we have also see that a trajectory in the CRTBP admits an
integral of motion, the Jacobi constant, therefore, given a Poincaré section, only points
that intersect the Jacobi surface CJ with the manifold are compatible with the motion
of the spacecraft, this actually reduce the dimension of the problem from n− 1 to n− 2

since we can write, using Eq.(36):

vx(x, y, vy, CJ) = ±
√

(x2 + y2) + 2(
µ1

r1
+
µ2

r2
)− v2y − CJ

vy(x, y, vx, CJ) = ±
√

(x2 + y2) + 2(
µ1

r1
+
µ2

r2
)− v2x − CJ

(128)

Where ± sign must be chosen according the sign considered in Eq.(127) for the particular
section.
Now consider, for example, a Lyapunov orbit located at L2 and propagate the internal
stable manifold till reach the section U2, if we at that point project in the y−vy plane the
intersection of the manifold and Jacobi constant what we get is a closed 2D curve that
divide the plane in two region one inside and another outside the curve that combined
with Eq.128 and the position of the section gives a representation of the satellite’s state.
It is possible to demonstrate that if a spacecraft has initial condition such that the state
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is inside the curve, the satellite, when it moves toward L2, it escape from the interior to
the exterior region, accordingly, state outside the curve are not capable to escape from
their region and are bounced back, these two conditions are summarized in Figure 20
and Figure 21. An analogous reason can be applied for the unstable manifold with the
difference that the trajectories must be propagated backward in time and for a different
section.
From the plots, a transit orbit starts inside the stable manifolds and then once the space-
craft approach the closed orbit, the trajectory moves along the unstable manifold region.

(a) Poincaré Section (b) Propagated Trajectory

Figure 20: Example of non-transit orbit, the point represent the initial state

(a) Poincaré Section (b) Propagated Trajectory

Figure 21: Example of transit orbit, the point represent the initial state

Note that the phase plane shown is not a Poincare cut of the flow (only one velocity com-
ponent is shown) but rather it represents a projection of the Poincare section, however
in space mission design it is common to refer it as a Poincaré section. Moreover those
section are fictitious section meaning that we can define an arbitrary section, the cuts
Ui are placed there in order to compare trajectories coming from the stable/unstable in
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easier way but no one prohibit to select oblique sections or to propagate the manifold
also for successive time, a transit orbit can become transit after a certain number of
intersection with the cut, after that it is bounced back more and more times can have
the right state to escape, those are very important aspect when considering low energy
transfers.
Even if the procedure to obtain a transit or a non-transit orbits are quite simple, we
have discussed only planar Lyapunov orbits, the extension of 3D orbits it’s more difficult
since the number of state variables increase (for more detail see [20]).

3.5 Earth-Moon low-energy transfer, patched CRTBP approxi-

mation

As the patched two body problem can be used to model the dynamics with more body
considering at each step a two body problem, the patched three body problem use a
similar logic where the patched point is given by a Poincaré section.
While in the two body problem we have conics as trajectories in the PCRTBP we use
stable and unstable manifolds because represents pathways that go from one region to
another one with low fuel consumption.
When design a low energy transfer a possible idea is to transfer from a parking orbit and
insert the spacecraft into an interior stable manifold emanated from L1, using this idea,
in order to intersect a parking orbit the manifold must be propagated, in some cases, for
a long time, making a certain number of revolutions around the primary.
However, looking to the secondary body in Figure 19, the manifolds are very close to
it, a situation like this would be desirable and can be obtained studying the Sun-Earth
system.
Let’s consider a L2 orbit around the Moon, if we propagate backward along the exte-
rior stable manifold we see that all the trajectories start to go very faraway so that the
influence of the Sun starts to become important, in these situation where the modeled
dynamic change it is possible to switch from an Earth-Moon system to an Sun-Earth
dynamics by patching together the trajectories in a certain Poincaré cut.

In Figure 22 is reported an example of patched process and the resulting trajectory is
also highlighted. The trajectory is divided in two different legs, in the first leg, the pla-
nar orbit is integrated backward along the stable manifold until it reaches the Poincare
cut, while in the second leg, the spacecraft is in a parking orbit around the Earth and
an impulsive manoeuvre is applied, so that the spacecraft is injected in an heliocentric
trajectory toward L2, through the stable manifold of the Sun-Earth system, and then
it’s bounced back along the associated unstable manifold.
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Figure 22: Example of a low-energy transfer from [3]

At this point we observe that in particular condition the 2 legs intersect in position space
and a small maneuver is applied so that low energy transfer is obtained.
The main parameters that define a low energy transfer targeting libration point are the
following, for more detail see [21]:

• Earth Moon orbit parameter: This value correspond to the Jacobi constant of
the Halo orbit, this parameter can be useful especially when considering ballistic
capture.

• Sun-Earth-Moon angle θ: We have discuss previously a low energy transfer gener-
ally happen in some particular condition related to the phase angle θ, between the
Sun-Earth line and Earth-Moon line at the arrival, most of the low energy transfer
have 0 < θ < π

2
or π < θ < 3

2
π at the capture.

• Arrival position τ , p: At the arrival the satellite can be at any point along the
Halo orbit, the parameter 0 < τ < 1 parametrize a generic position of the Halo.
Moreover since, in general, we can approach the Earth-Moon’s libration point from
the interior or exterior stable manifold, the parameter p can be set to ’exterior’ or
’interior’ accordingly.

Change any of those parameters it is possible to construct different families of low energy
transfer that are captured by the Halo orbit.
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3.6 Weak stability boundary and its construction

Another possible way in order to design low-energy transfer is to use the so called weak
stability boundary (WSB).
The weak stability boundaries is a region, studied in [1], where the spacecraft experience
gravitational force due to a central body while the other forces tends to balance, in this
region, small maneuver can cause the trajectory to change dramatically obtaining a bal-
listic or quasi ballistic trajectory that are temporally captured by the Moon.
Let’s consider the radial direction emanated from a central body, that can be the Moon
in this context, using spherical coordinates, the position of the satellite is given by (θ, ϕ)

and the distance r such that r = rer as shown in Figure 23.
The velocity of the spacecraft is suppose to be initially contained in a plane perpendicu-
lar to the radial direction Σ while the parameter α, is the angle defined in order to span
all the possible directions on the plane.
We define the Keplerian energy H as in the two body problem:

H =
1

2
v2 − µ

r
(129)

Where µ is the mass parameter of the central body.
With the assumption made, a temporally captured orbit is a trajectory that revolves
around a central body for a certain number n of times without cycle around other bod-
ies, this type of orbits are also called n-stable if alsoH < 0 along the trajectory (otherwise
are n-unstable).
Starting from low altitude, and propagate the trajectory with a certain initial velocity
ẋ, the trajectory will cross again Σ after approximately one orbital period if the altitude
is sufficient small so that the the dynamics is well approximated by a two-body problem.
Increasing the distance r, keeping all the other parameters and the eccentricity e ∈ [0, 1)

(hence H < 0 initially) fixed and change the velocity accordingly in magnitude (needed
in order to have a constant e), the trajectory starts to go faraway from the Moon till at
some point, propagating further, the trajectory escape performing at least one revolu-
tion around the second primary, the Earth, before returning to the Moon as describe in
Figure 24.
Therefore, let r∗ the distance where the satellite escape, points with r < r∗ are called
stable points while if r > r∗ are unstable.
Even if a stable points perform one cycle around the Moon no one grants that in the
next integration the satellite remain stable again, it is possible that the point remain
stable for n cycles and then become unstable.
Moreover the condition doesn’t imply that other stable orbit can be found increasing r
but only means that a change of stability is present as we can see in Figure 25.
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Figure 24: Definition of r∗, from [1]

Therefore, if we denote as r∗nk the distance of the n-stable points, where the k-th stability
transition is present, the set of n-stable point Wn can be written as:

Wn(e, θ, ϕ, α, β) = {
⋃
k≥1

(r∗n2k−1 − r∗n2k )|θ ∈ [0, 2π] , ϕ ∈
[
−π

2
,
π

2

]
, (α, β) ∈ [0, 2π], e ∈ [0, 1)}

(130)

This However is a specific set, the total set of stable point span every possibilities:

W∗n = {
⋃

e,θ,ϕ,α,β

Wn(e, θ, ϕ, α, β)} (131)

Where β is the angle between the Sun-Earth line and the Earth-Moon line.
In Figure 26 is shown an example of 1-stable orbit, the weak stability boundaries are
defined as the boundary of Wn, that is the locus of all points r∗ for which there is a
change of stability of the initial trajectory:

WSBn = ∂W∗n (132)

Comparing the definition of WSBn and the one given by Manifold we can see that given
a stable manifold that revolves n times around the Moon, points in the intersection of
the stable manifold and a cut that have a null initial radial velocity and H < 0, are
points of WSBn, even if this consideration is valid for a range of energies only (for more
detail see [22]).
We can now discuss how to construct low-energy transfer.
In order to construct low energy transfer we join together a forward and backward
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Figure 26: WSB1 with e=0 on the plane,
from[22]

trajectory like in Figure 27. For the backward segment, a direction of approach to the
Moon is selected so that the parameters θ, ϕ, α, β are defined, selecting a point that lies
in the WSB of the Moon and propagate backward in time, the trajectory will escape and
the satellite arrives approximately 1.5× 106Km far from the Earth, this is the region of
the WSB of the Earth.
In the forward segment, the satellite starts in a parking orbit and the trajectory is
propagate forward, for certain combination of position and velocity, the two trajectory
intersect and a small manoeuvre is applied to patch in the state space. The trajectory
obtained is temporally captured by the moon, in order to stay there another small
manoeuvre must be applied.
Once the trajectory is defined, it can be used as initial guess in a more refined model
since, where the dynamical model is switched suddenly from a CRTBP to another one,
important deviation can be present.

∆V

M M

E

Figure 27: Example of a low-energy transfer
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4 LUMIO mission

The Lunar Meteoroid Impacts Observer (LUMIO) is a 12U CubeSat that is plan to be
placed in the Earth-Moon L2 point, it is equipped with a camera in order to detect
flashes, in the visible radiation, coming from asteroids impacts on the farside of the
Moon.
Combined with a detection of impacts in the nearside from ground, it is possible to get
an estimation of the asteroids flux that hit the lunar surface.

4.1 Mission overview

In this thesis we suppose to depart as a secondary payload of ARTEMIS-2, therefore the
design of LUMIO’s trajectory it depends strongly by the primary mission, in Figure 28 is
shown the mission profile of ARTEMIS-2, the main goal is to carry astronauts on board
and overfly the lunar surface thanks to a lunar fly-by and then return to the Earth.
LUMIO is injected in a trans-lunar orbit and, using a low-energy transfer, the satellite
is placed into a Halo orbit around L2 of the Earth-Moon system and plan to operate for
at least one year.

Figure 28: ARTEMIS mission profile (credits: NASA)
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4.2 RPRnBP model

As we have already discuss, when considering orbits around equilibrium points or also
low-energy transfer trajectories where, important deviation can be present especially in
correspondence of the weak stability boundaries at the patched point, refined dynamical
model is necessary in order to get more realistic results particularly when integrate for
a long time.
In our case we consider a rotopulsating restricted n-body problem (RPRnBP) that is
briefly describe in the following section (for more detail about the dynamics see in [24]).

4.2.1 Equation of motion RPRnBP

The equation of motion are written as perturbations of the restricted three body prob-
lem, the assumption are similar to those describe in the CRTBP, with the exception that
the motion of the primaries is assume elliptical instead of circular, and perturbations
due to the presence of the other bodies are added, note that ,with these approximations,
the problem becomes non-autonomous.
Referring to Figure 29, let (R(t), V (t)) the position and velocity of a massless particle
P , written in an inertial frame (O; i, j,k) centered in the barycenter of the solar system,
we want to make a change of coordinates in order to write the equation of motion in the
synodic frame centered on the barycenter of the two primaries, M1 and M2, in normal-
ized coordinates.

Figure 29: RPRnBP

The synodic frame (O′ ; e1, e2, e3) is defined as usual like in the CRTBP, although the
distance between M1 and M2 is not constant, the unit of length is chosen such that their
distance is unitary, instant by instant, if we denote as ρ the normalized distance in the
synodic frame, we can write:

R2(t)−R1(t) = k(t)e1 and ‖ρ2 − ρ1‖ = 1 (133)
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Where Ri and ρi are the position of the i-th primary in their reference frame and
k(t) = ‖R2(t)−R1(t)‖ depends on time.
The normal vectors (e1, e2, e3) can be computed as:

e1 =
R2 −R1

k(t)
(134a)

e2 = e3× e1 (134b)

e3 =
(V 2 − V 1)× (R2 −R1)

‖(V 2 − V 1)× (R2 −R1)‖
(134c)

The position of P in the inertial frame can be related with the normalized synodic frame
through a rototrasltion:

R = b+ rrel = b+ k(t)C(t)ρ(τ) (135)

Where b is just the distance between the two origin given by the center of mass in
Eq.(11), that is nonzero in this case, while C(t) is a rotation matrix defined by the
direction cosine, (C(t) = [e1, e2, e3]).
The velocity will be:

V =
dR

dt
= ḃ+ k̇Cρ+ kĊρ+ τ̇ kCρ

′
(136)

Where dots are time derivatives while primes stand for derivative in normalized time τ
given by:

τ = n(t− t0) =

√
G(m1 +m2)

d̄
(t− t0) (137)

where n is the mean angular velocity obtained from Kepler third law Eq.(15) using a
medium distance d̄ from the primaries so that also n is unitary in normalized coordinates.
In order to derive the equation of motion we consider Newton’s law:

mR̈ =∇U + F nc (138)

Where F nc are the forces that are not conservative.
The potential is written considering each body as an extended object, the major diffi-
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culty in doing this is that the shape of the planet is not perfectly spherical and therefore
the derivation of its potential is not straightforward, remanding to orbital mechanics
textbook, it is possible to demonstrate that in this case the potential of a body with
mass MB and mean radius RB at a distance r, can be written as:

U =
GM

r

[
1−

∞∑
k=2

Jk

(
RB

r

)k
Pk(sin δ)

]
(139)

Where Pk(sin δ) is the Legendre polynomial of degree k given by:

Pk(x) =
1

2nn!

dn

dxn
[(x2 − 1)n] (140)

While the generic Jk is called zonal harmonics and δ is the declination of P . As a matter
of fact the term that most influence the dynamics is J2 while higher terms are relatively
small compared to it, therefore the potential can be simplified, computing P2(sin δ) and
substituting in Eq.(139), obtaining:

U =
GM

r

[
1− J2

2

(
RB

r

)2(
3
r2z
r2
− 1

)]
(141)

Since sin δ = rz
r
.

Transforming each term in normalized coordinate and considering n bodies, the potential
of P will be, by superposition:

U = m
n∑
j=1

µj

k
∥∥ρ− ρj∥∥

[
1 +

J2jR
2
Bj

2k2
∥∥ρ− ρj∥∥2

(
1−

3(ρ− ρj)TCTIzC(ρ− ρj)
(
∥∥ρ− ρj∥∥)2

)]
(142)

Where Iz is a 3× 3 zero matrix with the third diagonal term unitary needed in order to
consider a vectorial form of the third component, rz = [0, 0, rz]:

rz = kIzC(ρ− ρj) (143)

And hence:

r2z = rTz rz = k2(ρ− ρj)TCTIz
TIzC(ρ− ρj) (144)

Substituting the previous equation into the equation of motion and computing all the
derivatives we obtain:

ρ
′′

= −1

τ̇

(
2k̇

k
I + 2CT Ċ

)
ρ
′ − 1

τ̇ 2

[(
k̈

k
I + 2

k̇

k
CT Ċ +CT C̈

)
ρ+CT b̈

]
+∇U + anc

(145)
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Where µj =
mj

m1+m2
and:

∇U = −m

(
n∑
j=1

µj

k
∥∥ρ+ ρj

∥∥3 (ρ+ ρj) +
n∑
j=1

3µjJ2jR
2
Bj

2k3
∥∥ρ− ρj∥∥5 (ρ− ρj)

+
n∑
j=1

3µjJ2jR
2
Bj

2k3
∥∥ρ− ρj∥∥5

(
2CTIzC(ρ+ ρj)−

5(ρ+ ρj)
TCT IzC(ρ+ ρj)∥∥ρ− ρj∥∥2 (ρ+ ρj)

))
(146)

Eq.(145) is the equation of motion of the RPRnBP written in the synodic frame of M1

and M2, in this case we have added an acceleration to take into account possible other
forces that acts on P .
An example of a non conservative force is the solar radiation pressure that imparts an
acceleration aSRP to P given by:

aSRP =
F

m
= (1 + cr)

ASC
m

Ψd

c
er (147)

With Ψ the energy flux at a distance d from the Sun, er the radial direction directed
toward P from the Sun and cr the reflectivity coefficient.
Note that also in this case, the equation of motion can be written as a system of ordinary
differential equations:

ẋ = f(x, τ) (148)

The equation of motion can be used also to obtain the state transition matrix following
the same procedure discuss in 2.2.4, the equation are quite long and complicated, for
more details see [24].

4.3 Multiple shooting method

4.3.1 Motivation

Before starting to optimize trajectories is necessary to understand how they are con-
structed, infect simply integrate the trajectory starting from a certain initial condition
leave to inconsistent result.
The major difficulty that we encounter with this approach is due to the chaotic behaviour
of Eq.(145). For example, integrating directly a halo orbit trajectory using a RPRnBP
with initial condition given by a CRTBP, what we get is that the trajectory is too much
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sensitive to a small variations and even if initially a halo like shape is obtained then
starts to diverge dramatically. Compared with the RPRnBP model, the solution of the
CTBP is not capable to give satisfactory initial conditions to get something which is
similar to a Halo orbit therefore, what condition take in this situation?.
The answer is unknown, using this approach the results is inconclusive, even if we know
that there exist path similar to a Halo since the predominant dynamics is always given
by a CRTBP approximation, a similar consideration is valid when considering a generic
trajectory.
In order to solve this problem we need something different, which is more robust and
capable to desensitize the dynamics, especially when no maneuver are present, the mul-
tiple shooting method.

4.3.2 Overview

The multiple shooting method is describe in Figure 30, the trajectory is subdivided in
multiple segments, obtained propagating some selected points, also called nodes.
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Figure 30: Multiple shooting method

When these points are propagated forward in a more fidelity model, different segments
are generated, a shooting method is applied for each arc, adjusting the initial conditions
in order to satisfy some constrain like the continuity of the trajectory and, eventually,
constraints at the boundaries.
In this case the vector of free variable Y that can be tune to reach the desired results is
of the form:
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Y =

(
X

τ

)
=



x1

...
xi
...
xN

t1
...
ti
...
tN



(149)

Where xi is the state vector evaluated at the i-th node, at the normalized time ti and
N is the number of nodes.

4.4 Problem definition

In all orbital mechanical problem involving parameters that must be changed in order to
full fill some constrain, paying attention also to the "performance" of the trajectory, an
optimization process is needed. The optimization problem can be formulated as follows:

min J(Y ) Subject to:

Aeq(Y ) = beq Equality linear constrains

A(Y ) ≤ b Inequality linear constrains

H(Y ) = 0 Non linear equality constrains

G(Y ) ≤ 0 Non linear inequality constrains

Where J is the objective functions that rules the quality of the solution that satisfy the
constrains.
In order to find a minimum of this problem, the solution must satisfy KKT that gives
a necessary condition of a solution to be optimal, note however that this condition is
not sufficient in general and therefore, no one tell us if the solution is a global or a local
minimum, for more details see [25].
In the following are summarized most used constrains when design a transfer trajectory.
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4.4.1 Equality linear constrain

Equality linear constraints are those associated to known quantities, in some cases, po-
sition or velocity or both may be not allowed to vary in particular nodes.
However in most cases, constraints at the boundaries are probably the most important
since are related to insertion point or because mission need to reach a particular point
at the end of the transfer, the constrain can be written as:

C(x1,xN) = b̄ (150)

Where b̄, is a vector of known quantities.
Note that Eq.(150) involve position or velocity constrain, however also time constraint
must be set in order to have a consistent problem, in most of the cases, time at the initial
node is set:

t1 = t̄0 (151)

Note however that this constrain must be apply when the initial time is well defined, in
some cases, in a preliminary analysis, time window could be more appropriate.

4.4.2 Inequality linear constrain

Inequality constrain are related to the arc duration between two successive nodes, this
is due to the fact that maneuvers are supposed to be impulsive but in reality they need
time and cannot operate as continuous thrusters, therefore:

tk − tk−1 ≥ ∆t̄0 i = 2, . . . , N (152)

Even if we optimize a trajectory, the overall duration can be very high especially when
low-cost trajectory are considered, therefore condition related to a maximum time of
flight TOFmax must be considered:

tN − t1 ≤ TOFmax (153)

As already noted, in some cases, initial time is not clear and a time window of the initial
node is necessary, this is mostly due to delays of the nominal operations:

tmin ≤ t1 ≤ tmax (154)
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4.4.3 Equality non linear constrain

In order to introduce this type of constrain, let ρ and η the position and velocity in
normalized coordinates, so that, the state at each nodes and their components, can be
written in the following form:

xk =

[
ρk

ηk

]
=



ρxk
ρyk
ρzk
ηxk
ηyk
ηzk


, k = 1, .., N (155)

The dynamical flow in the RPRnBP, starting at xk and propagated till t = tk+1 is de-
noted as usual, φ(tk+1,xk) as already discuss. The defects ξi, in state space, from the
propagated node and its successive can be computed as:

ξk = φ(tk+1,xk)− xk+1 = 0 , k = 1, . . . , N − 1 (156)

Condition in Eq.(156) enforce the system to be continuous at each patched point in state
space, however a maneuver could be present, in those situations Eq.(156), valid for no
maneuver, must be modify, to do so, let’s consider the following partitions:

φ(tk+1,xk) =

[
φρ(tk+1,xk)

φη(tk+1,xk)

]
Φk(tk, tk+1) =

[
Φk
ρ(tk, tk+1)

Φk
η(tk, tk+1)

]
k = 1, . . . , N − 1 (157)

Let nm the set of nodes where ∆V is present, continuity condition becomes:

ξj = φρ(tj+1,xj)− ρj+1 = 0 , j + 1 ∈ nm (158)

Where only continuity in position is enforced, while:

∆Vj+1 =
∥∥φη(tj+1,xj)− ηj+1

∥∥ if j + 1 ∈ nm (159a)

∆V1 = ‖η0 − η1‖ if nm = 1. (159b)

Where ∆V1 is the impulsive maneuver at the first node (if present) while η0 is the initial
velocity before the manoeuvre which is known.
When dealing with optimization process in a computer, also gradients must be taken
into account. In general gradients need not to be set, they are computed by the machine
step by step and thus can require a lot of time, however if we are able to give also the
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gradients the optimization process benefits and time require is much less.
Lets consider the vector of constraints:

c(X, τ ) = (ξ1, . . . , ξi, . . . , ξj, . . . , ξN−1) (160)

Consisting in a column vector with 6(N − 1)− 3Nman or 6(N − 1)− 3(Nman − 1) com-
ponents depending if a maneuver at the initial node is present or not, the gradient of
c(X, τ ) reads:

∇c(X, τ ) =


∂c1
∂ρx1

∂c1
∂ρy1

. . . ∂c1
∂t1

. . . ∂c1
∂tN

∂c2
∂ρx1

∂c2
∂ρy1

. . . ∂c2
∂t1

. . . ∂c2
∂tN

... . . . ...
... . . . ...

 =
[
∂c
∂X

∂c
∂τ

]
(161)

Remembering the definition of Φ(t, t0) in Eq.(46), the term ∂c
∂X

can be express in the
following form:

∂c

∂X
=



Φ1 −I 0 . . . . . . . . . 0

0 Φ2 −I . . . . . . . . .
...

... . . . . . . . . . . . . . . .
...

0 . . .
. . . Φj

ρ −Ĩ
. . . 0

... . . . . . .
. . . . . . . . . ...

0 . . . . . . . . . 0 ΦN−1
ρ −Ĩ


(162)

Note that in how is written Eq.(162) a maneuver is present at the final node.
Where I is a 6× 6 identity matrix while:

Ĩ =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 (163)

Regarding the time derivatives:

∂xk(tk)

∂tk
= ẋk(tk) = fk(xk(tk), tk) =

[
fkρ(xk(tk), tk)

fkη(xk(tk), tk)

]
k = 1, . . . , N (164a)

∂φ(tk+1,xk)

∂tk+1

= fk(φ(tk+1,xk)) =

[
fkρ(φ(tk+1,xk))

fkη(φ(tk+1,xk))

]
k = 1, . . . , N − 1 (164b)

Where we have used Eq.(43).
A more difficult derivative is the following:
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∂φρ(tk+1,xk)

∂tk
= −Φk

ρ(tk, tk+1)f
k(xk, tk) (165a)

∂φ(tk+1,xk)

∂tk
= −Φk(tk, tk+1)f

k(xk, tk) (165b)

The derivation of this relations can be seen in [26].
Summarizing, the derivative of the constrain are the following:

∂ξk
∂tk

= −Φk(tk, tk+1)f
k(xk, tk) (166a)

∂ξk
∂tk+1

= fk(φ(tk+1,xk))− fk+1(xk+1, tk+1) (166b)

k = 1, . . . , N − 1 (166c)

If no maneuver is present, or:

∂ξk
∂tk

= −Φk
ρ(tk, tk+1)f

k
ρ(xk, tk) (167a)

∂ξk
∂tk+1

= fkρ(φρ(tk+1,xk))− fk+1
ρ (xk+1, tk+1) (167b)

k = 1, . . . , N − 1 (167c)

If maneuver is present at node k+ 1 (note that a maneuver at the first node is not ’seen’
by the constrain).
Now that we have all the derivatives the gradient can be computed, Figure 31 shows an
example of sparsity patter.

4.4.4 Inequality nonlinear constrain

During optimization process the spacecraft can take beneficial effect from fly-by’s in this
case the satellite is in proximity of a body and impact constraints must be considered.
Constrain are the following:

ψk = −(ρxk − µ1)
2 − (ρyk)

2 − (ρzk)
2 +R2

M (168a)

ζk = −(ρxk + µ2)
2 − (ρyk)

2 − (ρzk)
2 +R2

E (168b)
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Figure 31: Sparsity pattern example of constraints gradient with Nman = 4 (one at the
initial node, not shown), the colored dots are nonzero values

Where RM and RE are the normalized mean radius of the Moon and Earth respectively.

ψk = −(ρxk − µ1)
2 − (ρyk)

2 − (ρzk)
2 +R2

M (169a)

ζk = −(ρxk + µ2)
2 − (ρyk)

2 − (ρzk)
2 +R2

E (169b)

Considering the vector σ containing all the constrain:

σ(X, τ ) = (ψ1, . . . , ψN , ζ1, . . . , ζN) (170)

The gradient will be:

∇σ(X, τ ) =



∂ψ1

∂ρx1

∂ψ1

∂ρy1
. . . ∂ψ1

∂ηzN

∂ψ1

∂t1
. . . ∂ψ1

∂tN
...

...
...

...
...

...
...

∂ζ1
∂ρx1

∂ζ1
∂ρy1

. . . ∂ζ1
∂ηzN

∂ζ1
∂t1

. . . ∂ζ1
∂tN

...
...

...
...

...
...

...
∂ζN
∂ρx1

∂ζN
∂ρy1

. . . ∂ζN
∂ηzN

∂ζN
∂t1

. . . ∂ζN
∂tN


(171)
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With derivatives given by:

∂ψk
∂xk

=



−2(ρxk − µ1)

−2ρyk
−2ρzk

0

0

0


,

∂ψk
∂tk

= 0 (172)

and:

∂ζk
∂xk

=



−2(ρxk + µ2)

−2ρyk
−2ρzk

0

0

0


,

∂ζk
∂tk

= 0 (173)

And all the other derivatives are null.

4.5 Construction of Halo orbit in the RPRnBP

As we have already discuss, when considering orbits around equilibrium points unmod-
eled dynamics starts to become important and must be taken into account when propa-
gate the trajectory for a long time, this section is dedicated to the refinement of periodic
orbit in the RPRnBP.

4.5.1 Implementation

In this case we consider a free trajectory, no maneuver is present, moreover we consider
a fixed time grid equally spaced:

tk = t1 +
j − 1

N − 1
(tN − t1) , j = 1, . . . , N (174)

So that the free variables are only those related to the state xk.
Therefore Eq.(162) simplify becoming:

∇c =
∂c

∂X
(X) =


Φ1 −I 0 . . . 0

0 Φ2 −I . . . ...
... . . . . . . . . . 0

0 . . . 0 ΦN−1 −I

 (175)
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Figure 32: Parametrization of τ

The initial conditions are specified at the initial time only and is taken from the solution
of the CRTBP.
Each point along the Halo orbit can be parametrized through the value τ , introduced in
the previous chapter, therefore the initial condition can be set accordingly:

x1(t1) = x̄(τ) (176)

The parametrization selected is shown in Figure 32.
Then an objective function must be set, in this case we force the solution to be contin-
uous so that we express the objective as a quadratic form of the constraints:

J(X) =
1

2
cMcT (177)

Where the matrix M must be positive definite in order to enforce the optimization to
have Jopt(X) ≈ 0, in this case the matrixM can be taken as the identity matrix I.
Also the gradient of the objective can be computes as:

∇J(X) =
1

2
∇c(IcT ) +

1

2
c∇
(
IcT

)
= (∇c)cT (178)

The implementation of the optimization algorithm is done with Matlabr, through
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Figure 33: First guess discrete and repeated Halo, in red is shown the starting point
with τ = 0

fmincon, using interior-point algorithm.
In this case the dynamics is integrated, the PrinceDormand78 integrator is chosen
(ode78) that uses a Runge-Kutta scheme up to the 7th order and then verified with
an 8th order scheme, with a tolerance set to 2.5× 10−12.
However before to start the optimization process an initial seed must be applied, the
selected initial guess, samples N times, is taken from the CRTBP orbit, differentially
corrected and repeated with a certain number of times in order to span the desired time
interval.
The selection of this repeated closed orbit is due to the fact that its construction is done
through an iterative process, therefore, errors at the second crossing of the y = 0 plane
are present so that when propagated for a long time, due to the chaotic behaviour and
computer errors, the trajectory will diverge after few revolutions.
LUMIO orbit is selected to be a L2 Southern Halo orbit with Az = 28418.41Km, ob-
tained after a trade-off analysis that can be found in [13].

4.5.2 Results

The trajectory is integrated for one year, starting on 21 March 2024, time difference
between successive nodes of 2 days is chosen (N = 183), the repeated Halo guess is
shown in Figure 33.
Solar radiation pressure is also consider, using a cannon-ball model, the main geometric
parameter are shown in Table 2
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Table 2: Main parameters of LUMIO spacecraft

Area [m2] Mass [Kg] Reflectivity Coeff. Cr Radiation flux Ψ [ W
m2 ]

0.4 24 1.08 1371

While the mean parameter of fmincon are the following:

1 options =optimoptions('fmincon','Display','Iter','Algorithm',...

2 'interior-point','SpecifyObjectiveGradient',true,...

3 'SpecifyConstraintGradient',true,'CheckGradients',false,'StepTolerance'...

4 ,1e-10,'MaxIterations',300,'FiniteDifferenceType','central'...

5 ,'ConstraintTolerance',5e-04,'EnableFeasibilityMode',true,...

6 'SubproblemAlgorithm','cg');

It is interesting to highlight the possibility to check the gradients, setting the correspond-
ing option to ’true’ once gradient of objective or constrains or both are specified.

(a) Constrained Case (b) Unconstrained Case

Figure 34: Optimize trajectory (blue) compared with the initial guess (red)

The trajectory results is shown in Figure 34 and Table 3, where is compared with the
Halo obtained in the CRTBP, with initial condition in τ = 0, note also that with this
procedure, it is also possible to formulate an optimization process without any constrain
at the boundaries, this situation can be used when studying closed orbits alone, without
be interested to the insertion point.

As suspected, the unconstrained case is more prone to be optimize and gives better re-
sults, even if no clear initial condition is defined.
According to [24], the trajectories obtained have the free boundaries removed (10% of
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Table 3: Comparison solutions

Case J(X) Max constrain violation Niter

Constrained 1.486414e-07 4.143e-04 23
Unconstrained 2.974350e-09 2.346e-05 5

the total time), this because in an optimization process, no one grants that a quasi Halo
trajectory is obtained also propagating further the trajectory, since the optimal solution
is optimal within the time interval selected and divergence behaviour can be found in
proximity of the free boundaries. Note that this is not a problem, in reality since station
keeping maneuvers are present, in order to maintain LUMIO inside its operative ranges
and to design a more robust trajectory against inevitable errors.
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5 Conclusion

When dealing with trajectory in high fidelity models, no closed solution exist and the
solution must be integrated numerically, moreover, optimization process is necessary in
order to search for an optimal solution among all the feasible one.
When considering closed orbits, multiple shooting algorithm is capable of desensitize the
dynamics, especially when no maneuver are present, providing a more robust construc-
tion of closed orbits, starting from a solution differentially corrected in the CRTBP.
For LUMIO, low-energy transfer strategy is used in order to reach Earth-Moon L2 li-
bration point, those trajectories can be designed using weak stability boundaries, or
exploiting manifolds, obtained perturbing the closed trajectory, that allow to the space-
craft to reach the target, saving a lot of propellant but with a considerable time of flight.

5.1 Recommendations

This section some recommendations are presented:

• About the model, the RPRnBP takes into account the Eath-Moon system, the
other planets and the Sun, however when propagating for a long time the tra-
jectory, other perturbations start to become significant. Firstly, asteroids, oppor-
tunely modeled, can be taken into account, especially those on the triangular points
of the Sun-Jupiter system, moreover, also relativistic effect starts to enter in the
game.

• As already note, errors are always present, the theory is different from the real
dynamics, therefore, in order to have a Halo-like trajectory, small corrective ma-
neuvers are always present.
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Appendices

A Quintic equation

Here is briefly reported the computation of the quintic equation for each collinear point:

• L1: Taking the different sign we have:

x− µ1
x+ µ2

(x+ µ2)3
+ µ2

x− µ1

(x− µ1)3
= 0 (179)

Simplifying and manipulating we get:

x5 + (2µ2 − 2µ1)x
4 + (µ2

1 + µ2
2 − 4µ1µ2)x

3 + (−2µ1µ
2
2 + 2µ2µ

2
1 − µ1 + µ2)x

2

+(µ2
1µ

2
2 + 2µ2

1 + 2µ2
2)x+ (µ3

2 − µ3
1) = 0

(180)

In this case a polynomial of fifth degree has five solutions four are complex and
conjugate pairs the last instead is real and is what we are looking for.

• L2: Taking the different sign we have in this case:

x− µ1
x+ µ2

(x+ µ2)3
− µ2

x− µ1

(x− µ1)3
= 0 (181)

Obtaining the following polynomial:

x5 + (2µ2 − 2µ1)x
4 + (µ2

1 + µ2
2 − 4µ1µ2)x

3 + (−2µ1µ
2
2 + 2µ2µ

2
1 − µ1 − µ2)x

2

+(µ2
1µ

2
2 + 2µ2

1 − 2µ2
2)x+ (−µ3

2 − µ3
1) = 0

(182)

• L3: In this case we get:

x− (−µ1
x+ µ2

(x+ µ2)3
− µ2

x− µ1

(x− µ1)3
) = 0 (183)

Therefore:
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x5 + (2µ2 − 2µ1)x
4 + (µ2

1 + µ2
2 − 4µ1µ2)x

3 + (−2µ1µ
2
2 + 2µ2µ

2
1 + µ1 + µ2)x

2

+(µ2
1µ

2
2 − 2µ2

1 + 2µ2
2)x+ (µ3

2 + µ3
1) = 0

(184)

B Richardson third order approximation

In this section is describe the procedure in order to obtain a Halo orbit, knowing its
amplitude, around a collinear point Li = (γi, 0, 0), for more detail about the method, see
[27]:

• Step 1: Once that the position of the interested libration point has been computed,
the distance from each primary to the generic Lagrangian point is:

r1 = |γi + µ2| for M1 (185a)

r2 = |γi − µ1| for M2 (185b)

Then it is possible to compute cn as follows:

cn =
µ2

r31
+ (−1)n

µ1r
n−2
1

rn+1
2

for L1 (186a)

cn = (−1)n
µ2

r31
+ (−1)n

µ1r
n−2
1

rn+1
2

for L2 (186b)

cn = (−1)n
µ1

r31
+ (−1)n

µ2r
n−2
1

rn+1
2

for L3 (186c)

Compute the values of k and the linearized frequency λ:

λ =

√
2− c2 +

√
9c22 − 8c2

2
(187a)

k =
λ2 + 1 + 2c2

2λ
(187b)

• Step 2: Some important constants are computed:
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d1 =
3λ2

k
(k(6λ2 − 1)− 2λ)

d2 =
8λ2

k
(k(11λ2 − 1)− 2λ)

a21 =
3c3(k

2 − 2)

4(1 + 2c2)

a22 =
3c3

4(1 + 2c2)

a23 = −3c3λ

4kd1
(3k3λ− 6k(k − λ) + 4)

a24 = −3c3λ

4kd1
(2 + 3kλ)

b21 = −3c3λ

2d1
(3kλ− 4)

b22 =
3c3λ

d1

d21 = − c3
2λ2

a31 = − 9λ

4d2
(4c3(ka23 − b21) + kc4(4 + k2))+

+
9λ2 + 1− c2

2d2
(3c3(2a23 − kb21) + c4(2 + 3k2))

a32 = − 9λ

4d2
(4c3(ka24 − b22) + kc4)−

3

2d2
(9λ2 + 1− c2)(c3(kb22 + d21 − 2a24)− c4)

b31 =
3

8d2
8λ(3c3(kb21 − 2a23)− c4(2 + 3λ2))+

+
3

8d2
((9λ2 + 1 + 2c2)(4c3(ka23 − b21) + kc4(4 + k2)))

b32 =
9λ

d2
(c3(kb22 + d21 − 2a24)− c4) +

3(9λ2 + 1 + 2c2)

8d2
(4c3(ka24 − b22) + kc4)

d31 =
3

64λ2
(4c3a24 + c4)

d32 =
3

64λ2
(4c3(a23 − d21) + c4(4 + k2))

s1 =
1

2λ(λ(1 + k2)− 2k)
(
3

2
c3(2a21(k

2 − 2)− a23(k2 + 2)− 2kb21)

− 3

8
c4(3k

4 − 8k2 + 8))

s2 =
1

2λ(λ(1 + k2)− 2k)
(
3

2
c3(2a22(k

2 − 2) + a24(k
2 + 2) + 2kb22 + 5d21)+

+
3

8
c4(12− k2))

l1 = −3

2
c3(2a21 + a23 + 5d21)−

3

8
c4(12− k2) + 2λ2s1

l2 =
3

2
c3(a24 − 2a22) +

9

8
c4 + 2λ2s2

(188)
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• Step 3: Compute ∆, defined as:

∆ = λ2 − c2 (189)

Then it is possible to use the following equations in order to compute the unknown
amplitude and the frequency of the orbit:

l1A
2
x + l2A

2
z + ∆ = 0 (190a)

(190b)

While the frequency ω and the period T are:

ω = λ(1 + s1A
2
x + s2A

2
z) (191)

T =
2π

ω
(192)

• Step 4: Now that all the terms are computed, the solution of the Halo orbit is the
following:

x = a21A
2
x + a22A

2
z − Ax cos τ + (a23A

2
x − a24A2

z) cos 2τ + (a31A
3
x − a32AxA2

z) cos 3τ

(193a)

y = kAx sin τ + (b21A
2
x − b22A2

z) sin 2τ + (b31A
3
x − b32AxA2

z) sin 3τ (193b)

z = δmAz cos τ + δmd21AxAz(cos 2τ − 3) + δm(d32AzA
2
x − d31A3

z) cos 3τ (193c)

Where τ = ωt + φ being φ the initial phase and δm = 1, 3 that correspond to a
northern (δm = 3) or southern (δm = 1) Halo orbit.
With the velocity given by:

vx = ωAx sin τ − 2ω(a23A
2
x − a24A2

z) sin 2τ − 3ω(a31A
3
x − a32AxA2

z) sin 3τ (194a)

vy = ωkAx cos τ + 2ω(b21A
2
x − b22A2

z) cos 2τ + 3ω(b31A
3
x − b32AxA2

z) cos 3τ (194b)

vz = −ωδmAz sin τ − δmωd21AxAz sin 2τ − 3ωδm(d32AzA
2
x − d31A3

z) sin 3τ (194c)

Note that, the equations just shown are valid in a reference frame centered in the
corresponding Lagrangian point, in order to transform into CRTBP normalized
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coordinates the following transformation must be applied:

xCRTBP = xrj + γi , yCRTBP = yrj , zCRTBP = zrj (195a)

vCRTBPx = vxrj , vCRTBPy = vyrj , vCRTBPz = vzrj (195b)

Where rj is the distance defined in Eq.(185) and must be replaced with j = 2 in
the L1 and L2 point, while j = 1 in L3.
In Table 4 are summarized the different coefficent:

Table 4: Coefficients for Halo orbit Computation

Coefficient Value

Az 0.4404
Ax 0.2439
a21 -1.7519
a22 -0.2702
a23 0.8179
a24 0.1208
a31 0.6936
a32 0.0909
b21 0.4727
b22 -0.0770
b31 0.6836
b32 0.0033
d1 192.9385
d2 995.9668
d21 0.3833
d31 0.0175
d32 0.3732
s1 -0.3476
s2 0.1469
∆ 0.2790
δm 1
λ 1.8626
k 2.9126
T 3.3471
ω 1.8772
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