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Abstract

In recent decades, the market developed in a way that the majority of the applications
require a specific range of performance, area, and power consumption. This necessity
brought to the continuous research for computational efficiency, leading to the specializa-
tion of computer architectures and different CPU architectures have been developed to
satisfy specific market needs. The RISC-V Instruction Set Architecture, known for its sim-
plicity and flexibility, serves as the foundation for this CPU design, while the superscalar
and dual-issue concepts aim to enhance instruction throughput, thereby improving overall
computational efficiency. This thesis presents the comprehensive design, implementation,
and experimental evaluation of a superscalar RISC-V dual-issue central processing unit
(CPU) on an Artix-7 FPGA, a popular choice in the academic field. The architectural
choices and design considerations specific to RISC-V are meticulously discussed, emphasiz-
ing the integration of dual-issue capabilities to exploit parallelism in instruction execution.
The presented CPU features a 7-stage pipeline composed of Instruction Fetch, Decode,
Issue, Execution, Reorder Buffer, and Register File units. The architecture is verified
with a custom tool based on the RISC-V golden model, supporting an instruction gran-
ularity method where every committing instruction is verified. To evaluate the proposed
superscalar RISC-V dual-issue CPU, a comprehensive set of benchmarks is employed, en-
compassing a diverse range of real-world applications and workloads. Performance metrics
such as execution time, resource utilization, and energy efficiency are analyzed to provide
an overview of the CPU’s capabilities. This thesis contributes to the existing body of
knowledge by providing insights into the design challenges, trade-offs, and performance
implications associated with superscalar RISC-V dual-issue architectures. Overall, this
research underscores the significance of efficient instruction execution in advancing the
capabilities of RISC-V processors in the era of complex computing workloads.
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Abstract in lingua italiana

Negli ultimi decenni, il mercato si è sviluppato in modo tale che la maggior parte delle ap-
plicazioni richiede una specifica gamma di prestazioni, area e consumo energetico. Questa
necessità ha portato alla continua ricerca di maggiore efficienza computazionale. Di con-
seguenza, sono state sviluppate diverse architetture CPU per soddisfare queste specifiche
esigenze di mercato. L’Instruction Set Architecture RISC-V, noto per la sua semplic-
ità e flessibilità, funge da fondamento per il design di questa CPU, mentre i concetti di
superscalar e dual-issue mirano a migliorare il throughput delle istruzioni, migliorando
così l’efficienza computazionale complessiva. Questa tesi presenta il design completo,
l’implementazione e la valutazione sperimentale di una CPU RISC-V superscalare dual-
issue su un FPGA Artix-7, scelta popolare nel campo accademico. Le scelte architet-
turali e le considerazioni di design specifiche per la CPU sono discusse meticolosamente,
sottolineando l’integrazione delle funzionalità di dual-issue per sfruttare il parallelismo
nell’esecuzione delle istruzioni. La CPU discussa presenta una pipeline a 7 stadi composta
da unità di Fetch, Decode, Issue, Execute, Reorder Buffer e Register File. L’architettura
è verificata con un’infrastruttura personalizzata basata sul golden model di RISC-V, sup-
portando un metodo in cui ogni istruzione viene singolarmente verificata. Per valutare la
CPU RISC-V superscalar proposta, viene impiegato un set di benchmark, che comprende
una vasta gamma di applicazioni del mondo reale e carichi di lavoro. Le metriche di perfor-
mance come il tempo di esecuzione, l’utilizzo delle risorse e l’efficienza energetica vengono
analizzate per fornire una panoramica delle capacità della CPU. Questa tesi contribuisce
all’attuale corpus di conoscenze fornendo approfondimenti sulle sfide di progettazione,
i compromessi e le implicazioni delle prestazioni associate alle architetture superscalari
RISC-V dual-issue. In generale, questa ricerca sottolinea l’importanza di un’efficiente
esecuzione delle istruzioni nel promuovere le capacità dei processori RISC-V in un’era di
carichi di lavoro informatici complessi.

Parole chiave: CPU, superscalare, dual-issue, RISC-V, architetture dei calcolatori, ver-
ifica
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1| Introduction

In recent decades, the market has been developing in a way that the majority of the appli-
cations require the hardware to be in a specific range of interest in terms of performance,
area, and power consumption, which represent the main quality metrics to identify the
optimal solution to target. This necessity brought continuous research for computational
efficiency, leading to the specialization of computer architecture, and, as time went on,
different CPU architectures were developed to satisfy specific market needs.
The final goal of the majority of commercial design flows is the production of a System-on-
Chip (SoC) to be inserted in the market, with a time to market that is always reducing.
For this reason, many agile SoC development frameworks, like Chipyard [3], were cre-
ated, which allow the generation of different CPUs to be used as a base for the needed
customization. Some of these are open-source, enabling academic groups to work with
pre-existing cores, with the possibility to parametrically compose the architecture required
for a specific application.
The accelerating pace of technological advancement has been indelibly marked by Gordon
Moore’s empirical assertion in 1965, known as Moore’s Law [21], which postulated that
the number of transistors on a microchip would double approximately every two years.
However, as the physical limitations of silicon-based transistor scaling began to manifest,
the industry found itself facing a profound challenge to sustain this exponential growth.
It is within this context that Robert Dennard’s scaling [16] principles became a guiding
force, predicting that as transistors shrink, their power density remains constant, leading
to a proportional increase in performance without a corresponding rise in power consump-
tion. The pursuit of smaller, faster, and more energy-efficient semiconductor devices has
encountered challenges in recent years, as the miniaturization of transistors approaches
the atomic scale. The once dependable cadence of doubling transistor density every two
years has become increasingly difficult to maintain, prompting a paradigm shift in how the
industry conceptualizes and engineers computational devices. The Moore’s Law narrative
has evolved from a straightforward prediction of transistor count to a broader conversation
about the nature of computational power and efficiency. The dichotomy between Com-
plex Instruction Set Computing (CISC) and Reduced Instruction Set Computing (RISC)
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architectures has long been a focal point in processor design. CISC architectures, with
their rich instruction sets, aim to reduce the number of instructions per program, theo-
retically leading to more efficient code execution. On the other hand, RISC architectures
streamline instruction sets, emphasizing simplicity and efficiency in execution.
Being open-source, the RISC-V Instruction Set Architecture [24] is the most adopted in
the academic research field. Its modularity and extendibility allow for a high degree of
customization in terms of ISA extensions or even the creation of brand-new instructions,
thanks to the free spaces left in the opcodes list. The simpler nature of a Reduced In-
struction Set is also optimal for the development of more logically complex pipelines, to
boost the performances with the cost of a minor increase in area and power consumption.
One of the approaches is to allow the concurrent propagation of more than one instruction
at a time through the each stage of pipeline, creating the distinction between scalar and
superscalar CPUs.
A superscalar CPU presents more complex logic and, as a consequence, a higher area oc-
cupation and power consumption but with the advantage of completing, ideally, multiple
instructions per clock cycle. If designed carefully, this type of CPU can represent a good
middle ground between low-cost and high-performance solutions. Often, FPGAs repre-
sent the best target for the development of a design, thanks to their re-programmability,
consequentially reducing the time to market of a product.
In an era where the inexorable march of technological progress is measured not only by
raw computational power but increasingly by the judicious use of resources, the concept
of computational efficiency assumes paramount importance. Striving for more compu-
tational efficiency requires the optimization of the performance of computing systems
while minimizing resource utilization, including power consumption and heat dissipation.
As demands for more powerful and energy-conscious processors intensify, the pursuit of
computational efficiency emerges as a driving force shaping the trajectory of contempo-
rary processor design. The significance of computational efficiency is underscored by its
multifaceted impact on diverse facets of computing. Energy consumption, a critical con-
cern in an age of environmental consciousness and escalating power costs is intrinsically
linked to the efficiency of computational processes. A processor that executes instructions
with optimal efficiency not only contributes to reduced energy consumption but also mit-
igates challenges associated with heat dissipation, a factor that has become increasingly
challenging with the escalating transistor density and clock frequencies. Furthermore,
computational efficiency extends its influence to the realm of mobile and embedded sys-
tems, where power constraints and battery life are at a premium. In these contexts,
processors optimized for computational efficiency become enablers of prolonged device
operation, fostering advancements in fields ranging from portable electronics to the In-
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ternet of Things (IoT) [23]. By combining the streamlined instruction sets characteristic
of RISC architectures with the parallel execution capabilities of superscalar designs, this
thesis seeks not only to enhance raw computational power but to do so in a manner that
is inherently mindful of resource utilization. As the industry pivots towards sustainable
computing practices, the computational efficiency of processors becomes not merely a de-
sirable attribute but an imperative for meeting the demands of contemporary computing
landscapes.
The paramount importance of verification in processor design stems from the increas-
ing complexity and sophistication of contemporary architectures, necessitating robust
methodologies to ensure correctness. As the industry navigates between Moore’s Law
and Dennard Scaling, the sheer volume of transistors packed into a limited space ampli-
fies the risk of design errors, underscoring the criticality of verification processes. These
processes are not merely safeguards against functional bugs; they are indispensable mech-
anisms for validating that the processor adheres to its intended specifications. In an era
where processors drive applications that range from safety-critical systems to cloud com-
puting infrastructures, the consequences of undetected errors can be profound, demanding
a meticulous and exhaustive verification approach. The design of a RISC-V superscalar
CPU introduces additional layers of complexity, as it involves intricate interactions be-
tween concurrent execution units and advanced pipelining. Furthermore, the verification
process is not confined to the design phase alone. As updates, optimizations, and new
features are introduced, rigorous verification practices are a staple to avoid unintended
consequences, such as performance regressions. In this thesis, verification is treated as an
integral aspect of the design philosophy. As we delve into the nuances of parallel execu-
tion, pipelining, and the unique challenges posed by the RISC-V architecture, the thesis
recognizes verification not just as a means of avoiding failure but as a tool to assist a
processor design while maintaining or expanding the base functionalities.
This thesis aims to harness the potential of RISC-V in the development of a superscalar
CPU, exploring its applicability in pushing the boundaries of computational efficiency.
In the subsequent chapters, this master thesis will delve into the design principles of
superscalar processors, the challenges and opportunities in their integration, and the
methodologies employed in the verification process. Through this exploration, we aim to
contribute to the ongoing dialogue in the field of processor design, offering insights and
innovations that propel computational efficiency into the next frontier of technological
advancement.
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1.1. Contributions

The present thesis proposes an extensive description of ViVit, a RISC-V superscalar
in-order dual-issue CPU, and its corresponding verification method, which exploits a
customized version of an open-source ISA simulator. The study aims to provide a com-
prehensive understanding of the CPU architecture and its verification mechanism, which
is crucial for the development of high-performance computing systems. ViVit is a cutting-
edge CPU architecture that leverages the RISC-V instruction set architecture (ISA) and
implements a superscalar in-order dual-issue design. This design allows for the CPU to
execute two instructions in parallel, which significantly enhances the overall performance
of the processor. The verification mechanism employed in this study utilizes a customized
version of an open-source ISA simulator. The simulator provides a means to test the
CPU’s functionality and performance under various conditions, including different work-
loads and environmental factors. The verification process is crucial in ensuring that the
CPU operates as intended. The 4 main contributions are:

• The design of the CPU’s microarchitecture. The present study centers on the mi-
croarchitecture design of the superscalar CPU, with a particular emphasis on each
pipeline stage. Our analysis is supported by graphs and pseudocode, which aim to
reinforce our findings. Additionally, we scrutinize the logic networks that could po-
tentially emerge as the critical path of each stage. By examining the pipeline stages
and their associated logic networks, we seek to better understand the microarchi-
tecture of the superscalar CPU. Ultimately, this effort will help us to improve the
functionality and performance of the CPU.

• A comparison between the performance of scalar and superscalar CPUs.The present
study aims to compare the performance of scalar and superscalar CPUs, with a par-
ticular focus on the architectural distinctions between dual-issue and single-issue
configurations. This endeavor is undertaken with the objective of highlighting the
benefits of the superscalar design paradigm. Through the use of practical exam-
ples, we intend to demonstrate how the superscalar approach leads to improved
performance and efficiency, and how it is superior to its scalar counterpart.

• The verification infrastructure comprises a functional Instruction Set Architecture
(ISA) simulator and a communication socket that facilitates the exchange of data
between the functional ISA simulator terminal and the SystemVerilog testbench for
the superscalar CPU. This system is endowed with bespoke features that enable
the exposure of either the register file or memory cells as required. The utility of
these features is discussed comprehensively, and an in-depth methodology for the
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verification process is presented. One of the notable features of the verification
infrastructure is the ability to expose either the register file or memory cells. This
feature enables users to verify the contents of the processor’s register file or memory
cells at any point during the verification process. The verification methodology
presented is a comprehensive approach to verifying a processor’s design. It entails
setting up a simulation environment, running verification tests, and analyzing the
results to identify and resolve any issues that arise.

• Experimental evaluation. In order to evaluate the efficacy of a CPU, it is imperative
to conduct a comprehensive analysis of its performance, power consumption, and
area occupation across all the data extracted. This analysis provides a holistic view
of the quality of the CPU, with a particular emphasis on identifying the modules
that have a significant impact on both power consumption and area occupation. By
conducting such an evaluation, we can gain an in-depth understanding of the CPU’s
overall quality and identify areas for potential optimization.

1.2. Structure of the thesis

The rest of this thesis is organized in 5 chapters:

• Chapter 2 provides the basic theoretical knowledge needed for a complete compre-
hension of the subsequent topics.

• Chapter 3 analyzes multiple scalar, superscalar and Out-of-Order CPUs which are
already available and confronts them.

• Chapter 4 describes the whole microarchitecture module by module, compares it
with a similar scalar one through practical examples, and then describes the verifi-
cation infrastructure and method.

• Chapter 5 evaluates the performance results obtained through a set of benchmarks,
as well as the post-implementation area occupation and power consumption estima-
tions.

• Chapter 6 concludes the proposed work, and describes the possible future improve-
ments.
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2| Background

Starting with the simplest architectures and moving towards the most complex ones, each
stage and improvement is analyzed to build a foundation in CPU architecture. This allows
for a clear understanding and justification of every choice made in the architectural design
process.
This chapter aims to explain the theoretical concepts involved in CPU architectures.
It starts with the concept of pipelining and the fundamentals of pipelined processors,
along with the related hazards due to dependencies in the code. It then provides a high-
level view of a 5-stage pipelined scalar CPU, highlighting the role of each pipeline stage,
followed by a focus on superscalar architectures and the modifications required to obtain
it from a scalar one. The concept of Out-of-Order (OoO) is explained, focusing on the
differences between OoO dispatch and OoO completion. A comparison between these
concepts is also made, underlining the impact of the type of architecture on the quality
metrics of a design such as performance, area, and scalability, concluding by indicating
which applications each CPU targets. Finally, the chapter concludes with an analysis
of the RISC-V Instruction Set Architecture and an explanation of the ISA extensions
adopted by the state-of-the-art processors.
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2.1. Fundamentals of pipelined processors

When an application is written, it needs to be executed by a CPU. To do that, the
application is compiled from the source code into a list of instructions that the processor
can understand. Normally, the architecture would have to finish executing one instruction
before it starts working on the next one. However, to speed up the process, most computer
architectures are designed using a technique called pipelining.
Pipelining is a way to execute multiple instructions at the same time, by breaking down
the execution process into different phases. This technique is called Instruction Level
Parallelism (ILP). In each phase of the execution process, the CPU performs a specific
task, and this determines the logic that must be implemented in the corresponding pipeline
stage. By doing this, the architecture can execute instructions much faster, since it
requires only a fraction of the time needed to complete the entire process.

Figure 2.1: Comparison between non-pipelined and pipeline execution, with different
colours indicating different instruction

Pipelined designs are evaluated based on their throughput, which refers to the number
of instructions executed within a specific time frame, rather than on their latency. As
pipelined architectures provide ILP, it is crucial to consider the different types of depen-
dencies among subsequent instructions. These dependencies are called Read After Write
(RAW), Write After Read (WAR), and Write After Write (WAW), and are a property
of the compiled code. Failing to respect these dependencies can cause execution errors,
known as hazards, which limit the amount of parallelism that can be exploited.
A RAW hazard occurs when an instruction produces a value that is required by a subse-
quent instruction before the first one has written it. If the second instruction attempts
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to read the operand before it has been written, the read value will be incorrect.
A WAR hazard is the opposite of a RAW hazard, and occurs when an instruction over-
writes a register value before a prior instruction has had a chance to read it. This type
of hazard is only problematic during Out-of-Order dispatch, which will be discussed in
section 2.4.
Finally, a WAW hazard occurs when two instructions target the same destination register,
but do not follow the program order. In this case, the execution’s accuracy is compro-
mised, and the final register value will be incorrect. Similarly to the WAR hazard, this
problem arises only during Out-of-Order dispatch.
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2.2. Scalar CPU

In computer architecture, a basic pipeline consists of five stages: Instruction Fetch (IF),
Instruction Decode (ID), Execute (EXE), Memory (MEM), and Write Back (WB). Each
stage has a specific function that will be explained in the following subsections.

Figure 2.2: Abstract view of a scalar pipeline

2.2.1. Instruction Fetch (IF)

During the first stage of the front end, the CPU performs the Instruction Fetch. In this
stage, the CPU reads instructions from a memory address determined by the next PC
logic. This logic selects between the Program Counter (PC) register and a branch result.
As each new instruction is fetched, the value of the PC register increases by 4.

2.2.2. Instruction Decode (ID)

During the Instruction Decode stage, the instruction from the IF stage is decoded and the
register file is accessed to retrieve the values for the operands. In case these values have
not been produced, the instruction is stalled, and a stall request is propagated to the IF
stage as well. The Instruction Decode stage also drives auxiliary outputs that control the
operation to be performed in the EXE stage and the result destination.
To optimize this stage, an early evaluation logic can be added to anticipate the calculation
of the branch and target address by one stage. This requires the addition of an ALU and
a multiplexer to the stage. A branch predictor can be used to avoid stalling every time a
branch operand is needed. A branch predictor, which is essentially a memory containing
the predicted branch outcome and target address, updates the predicted outcome for
future uses whenever a prediction turns out to be wrong, depending on the predictor
structure.
There are different types of predictors, each with varying prediction performance. The
most complex ones are useful when the code has nested loop or other intricate branch
structures, while the simpler ones have better performance in terms of miss rate for simple
loops with lots of iterations.
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2.2.3. Execute Stage (EXE)

During this stage, various types of operations are carried out. In each architecture, we
can add all the required functional units as long as we ensure that the desired extension
is also guaranteed in the Instruction Decode (ID) stage, and we prevent the Out-of-Order
completion of operations that could cause incorrect execution.
One possible optimization in the Execution (EXE) stage is called "forwarding." If an
Arithmetic Logic Unit (ALU) instruction produces a result that the next instruction
requires, it can back-propagate it to one of the ALU inputs. This eliminates the need for
stalls in case of Read After Write (RAW) between subsequent instructions.
If the architecture doesn’t use the early evaluation method (discussed in subsection 2.2.2),
the branch condition and target address are calculated in this stage and then propagated
to the next Program Counter (PC) logic.

2.2.4. Memory (MEM)

After the EXE stage, the Memory stage receives the outputs. It can perform three different
actions based on the type of operation. For a store operation, the Memory stage saves
the propagated value in memory at the address calculated by the EXE, and doesn’t send
anything to the WB stage. For a load operation, the Memory stage forwards the value
read from the data memory at the address calculated by the EXE to the WB stage. For
a normal operation, the result is simply buffered to the next stage.
Similar to the previous stage, the Memory stage can perform an optimization called
"bypassing" to back-propagate a value towards the EXE stage. This optimization works
like the forwarding but from the Memory stage. It can be especially helpful in reducing
the impact of RAWs between a load instruction and a subsequent operation that requires
the loaded operand.

2.2.5. Write Back (WB)

This stage of the scalar CPU stores results from the previous stage in the Register File
(RF).
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2.3. Superscalar CPU

Superscalarity is a property of a processor architecture that enables it to issue more
than one instruction per clock cycle. This number is known as the issue window width,
which indicates the maximum number of instructions that can be dispatched together as a
bundle. To prevent a bottleneck in terms of superscalarity, it is crucial to ensure that the
same Window Width is granted to all the other stages of the pipeline, such as Instruction
Fetch and Instruction Decode.
For instance, an ideal architecture can propagate an instruction to the next stage and
complete its execution every clock cycle without any dependencies. In this case, with a
single instruction fetched and decoded every cycle, the Issue will only have one operation
at a time to dispatch towards the Execute stage, which would lead to every commit
being a single commit, effectively avoiding the exploitation of the superscalarity and
bottlenecking the theoretical performances. However, increasing the issue window width
can exponentially increase the complexity of the architecture as every new instruction in
the bundle would require comparison for dependencies and issue compatibility with others.
This leads to an increase in hardware resources and a decrease in the maximum frequency.
Compatibility to compose a bundle is a concept that will be detailed in subsection 2.3.1.
The following subsections will highlight the modifications required to adapt the scalar
stages to obtain a superscalar architecture, as well as the newly introduced logic.

Figure 2.3: Abstract view of a superscalar dual-issue pipeline
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2.3.1. Instruction Fetch (IF)

In a superscalar Instruction Fetch (IF) stage, multiple instructions are fetched from the
Instruction Memory and sent to the outputs, following the issue compatibility rules of
the superscalar architecture. However, the IF stage still behaves like a scalar one, with
one exception: the need for a pre-decode logic. This logic can be integrated in the IF or
added as a separate pipeline stage before the Instruction Decode (ID) stage.
The role of the pre-decode logic is to create a bundle of instructions that are compatible
with each other. For example, it avoids creating a bundle if one of the instructions is
a conditional or unconditional jump, because those instructions are usually propagated
alone. Some rule sets even prohibit the concurrent propagation of RAW-dependent in-
structions.
To solve WAW and WAR hazards, which are commit order-related problems, the instruc-
tions are reordered after the Execute stage using a Reorder Buffer.

2.3.2. Instruction Decode (ID)

In terms of the scalar ID stage, the only significant alterations are the replication of input
and output ports, as well as the decode logic. When it comes to the Early Evaluation logic,
no modifications are necessary. This is because the pre-decode stage applies compatibility
rules that allow jump or branch instructions to reach the ID alone, which is similar to the
scalar architecture.

2.3.3. Issue (IS)

The Issue (IS) stage is a crucial component of a superscalar processor. It is a new set of
logic that provides essential functionalities supporting out-of-order completion and, as a
result, superscalarity. It is divided into two parts: the Issue Queue (IQ) and the Read
Operands logic.
The IQ is responsible for getting the decoded instruction fields from the ID and adding
them to a first-in-first-out (FIFO) queue. By communicating with the ROB, it assigns
the index of the first available ROB cell (called destination ROBid) to the first free cell
of the IQ and writes to that destination the current instruction Program Counter and
destination address. The destination ROBid is a critical piece of information that informs
the EXE stage where its result needs to be committed. The Read Operands logic checks
the availability of the required values, starting from the RF, then the ROB, and lastly the
Common Data Bus. As soon as the required information is available, the instruction is
dispatched towards the EXE stage with the same additional flags described in the scalar
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ID subsection 2.2.2. Based on the compatibility ruleset adopted, every instruction after
the first one needs to be checked for RAWs to avoid the concurrent dispatch of data-
dependent operations.
The Read Operands phase also takes care of renaming the destination register, either
in an independent table or as an extension of the RF. Memory accesses for load and
store operations are regulated thanks to a Disambiguation Buffer. Whenever a store is
dispatched, its destination memory address is stored in this structure. As a result, a
subsequent load operation is stalled as long as it sees the address it wants to read from
inside the Disambiguation Buffer, avoiding a RAW hazard. The eviction of an address
from this structure is described in subsection 2.3.6.

2.3.4. Execute (EXE) and Common Data Bus (CDB)

In a superscalar architecture, the base EXE stage is similar to the scalar one. However, the
functional units (FUs) have to propagate the destination ROBid in addition to the result.
Each FU can carry out an operation concurrently with the others. The newly produced
results are propagated via the Common Data Bus (CDB) along with their destination
ROBid to the ROB and the IS stage. This helps to speed up the Read Operands process
if the values are immediately required.
It is important to note that Out-of-Order completion must always be taken care of in
a superscalar architecture. This is because different FUs have different latencies, and
multiple results could be ready at the same clock cycle. Therefore, either the CDB must
be capable of committing the maximum number of possible concurrent results, or a priority
and buffer logic must be implemented. An example of the latter is discussed in subsection
4.1.5.

2.3.5. Reorder Buffer (ROB)

The Reorder buffer (ROB) is a vital component in the construction of a superscalar
processor. It is used along with the Issue to ensure that all the instructions are committed
in order into the Register File (RF) and Memory (MEM) by reordering them based on
their ROBid. The ROB receives the results from the EXE stage and commits them only
when they are ready.
It functions like a FIFO structure, where the index is referred to as the ROBid, and it can
be composed of various entries depending on the information required in the architecture
infrastructure. In its basic form, it includes entries such as result_ready, result_value,
PC, destination_register, destination_memory, exception_flag and exception_code.
The ROB also has the capability of ensuring a precise-exception behavior by having two
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fields, exception_flag and exception_code: when an instruction that triggers an exception
reaches the commit point, the ROB ensures that the exception is not propagated towards
the RF and MEM. Instead, the entire pipeline is flushed, preserving the machine state
(the contents of the RF and the MEM), and the execution restarts from the instruction
after the one that triggered the exception.

2.3.6. Memory (MEM)

In-order memory commits are guaranteed by the ROB, similar to RF commits. However,
store instructions must evict their destination address from the disambiguation buffer, a
memory used to resolve address disambiguation problems in the IS.

2.3.7. Register File (RF)

To prevent any bottlenecking of the superscalar property of the architecture, the super-
scalar RF must provide a number of write ports that is equal to the issue window width.
This is explained in section 2.3.
The internal structure of the superscalar RF has some additional fields that enable it to
support renaming, which is necessary for Out-of-Order completion. These fields include a
ROBid field, which stores the destination ROBid of the last issued instruction producing
that register’s value, and a busy flag that tells the IS stage whether that register value
is ready or not. During a commit, the busy flag associated with the destination register
is de-asserted only if the committing instruction ROBid matches the ROBid field. If it
doesn’t match, it means that there is currently another instruction inside the pipeline
that targets that register, and the renaming must not be undone.
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2.4. Out-of-Order CPU

An out-of-order (OoO) CPU is a type of processor architecture that can execute instruc-
tions without following the program order. When an instruction cannot be dispatched in
its program order, but a successive one can, the latter gets executed first.
It is important to understand that there is a difference between Out-of-Order dispatch
and completion. Dispatch refers to the order in which the Execute stage is fed, while
completion refers to the order in which the functional units (FUs) produce results. The
presence of multiple FUs with different latencies implies Out-of-Order completion, but
not necessarily Out-of-Order dispatch, which requires additional support logic in the In-
struction Stage (IS) to determine when and how to exploit this functionality.
The Reorder Buffer (ROB) plays a crucial role in Out-of-Order CPUs. Together with
the In-Order nature of the fill queue logic, it resolves not only Read After Write (RAW)
hazards but also Write After Read (WAR) and Write After Write (WAW) hazards, which
could otherwise invalidate the correctness while working Out-of-Order.
The main complexity introduced by Out-of-Order dispatch is the logic required to resolve
any data and name dependencies, as well as to understand the availability of the operands
before deciding which instruction(s) to dispatch. This leads to an increase in area and
complexity, which grows exponentially with the number of potentially dispatchable in-
structions.
The rules for Out-of-Order dispatch must be coherent with the base in-order architecture
and can vary depending on the design. To achieve similar overall performance increases,
compile-time code reordering techniques can be used, which unburden the hardware from
implementing the logic nets described above.

Figure 2.4: A high-level view of an In-Order (left) vs Out-of-Order (right) Issue stage



2| Background 17

2.5. Comparison of CPU architectures

When considering different processor designs, a scalar CPU is the most basic option. Al-
though it may not offer the highest performance in terms of Instructions per Cycle (IPC),
it is a good choice for low-end applications that require limited power consumption due
to its low complexity and small size.
On the other hand, a superscalar CPU is a more advanced solution for high-end appli-
cations that require high computational power and efficiency, while still being reasonably
resource-efficient. Compared to an Out-of-Order (OoO) architecture, a superscalar CPU
is simpler and offers a good foundation for modifications. However, when choosing the is-
sue window width, the tradeoff between area and complexity must be taken into account.
In conclusion, a superscalar architecture represents a smart balance between performance
and scalability, making it a solid choice for a range of applications.

Table 2.1: Architectures comparison summary

Performance Area Scalability Target applications

Scalar Medium-Low Low High Low-end, Low power

Superscalar Medium-High Medium Medium High-end, Medium power

Out-of-Order High High Very-Low Leading-Edge
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2.6. RISC-V Instruction Set Architecture

In computer science, an Instruction Set Architecture (ISA) is an abstract model of a
computer and it defines all the supported instructions, data types, registers and hardware
support for managing the main memory.
Is it possible to distinguish between two main types of ISA, in particular: CISC, Complex
Instruction Set Computer, which is characterized by a large set of complex instructions
available and offers different addressing modes, on the other hand, RISC, Reduced In-
struction Set Instruction Computer, can count on simpler instructions.
RISC-V is an open-source RISC ISA and it’s getting more popular day by day, not only
thanks to its free availability but also thanks to its modularity and extensibility. In fact
in RISC-V is possible to either add an extension to the existing ISA, exploiting all the
free opcodes, or removing the existing extensions that are not needed for the current ap-
plication.
The base extension is the I-extension and it provides instructions for load/store opera-
tions and integer calculations, while the others such as M- and F-extension offer a set of
instructions needed for multiplications or divisions and floating-point operations.

Figure 2.5: Types of instruction encodings as described in the RISC-V specification [24]

In the base RV32I ISA [24], there are four core instruction formats (R/I/S/U). All are
fixed 32 bits in length and must be aligned on a four-byte boundary in memory. The
source (rs1 and rs2) and destination (rd) registers are kept at the same position in all
formats to simplify decoding. Except for the 5-bit immediates used in CSR instructions,
immediates are always sign-extended, and are generally packed towards the leftmost avail-
able bits in the instruction and have been allocated to reduce hardware complexity. In
particular, the sign bit for all immediates is always in bit 31 of the instruction to speed
sign-extension circuitry.
The RV32F extension adds 32 floating-point registers, f0–f31, each 32 bits wide, and a
floating-point control and status register fcsr, which contains the operating mode and
exception status of the floating-point unit. Most floating-point instructions operate on
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values in the floating-point register file. Floating-point load and store instructions trans-
fer floating-point values between registers and memory. Instructions to transfer values to
and from the integer register file are also provided.
The RV32M extension introduces a set of instructions to directly perform different types
of multiplications and divisions. MUL performs a 32-bit × 32-bit multiplication of rs1
by rs2 and places the lower 32 bits in the destination register. MULH, MULHU, and
MULHSU perform the same multiplication but return the upper 32 bits of the full 2 ×
32-bit product, for signed × signed, unsigned × unsigned, and signed rs1 × unsigned
rs2 multiplication, respectively. DIV and DIVU perform a 32 bits by 32 bits signed and
unsigned integer division of rs1 by rs2, rounding towards zero. REM and REMU provide
the remainder of the corresponding division operation. For REM, the sign of the result
equals the sign of the dividend.
The C extension is compatible with all other standard instruction extensions. The C
extension allows 16-bit instructions to be freely intermixed with 32-bit instructions, with
the latter now able to start on any 16-bit boundary, i.e., IALIGN=16. With the addition
of the C extension, no instructions can raise instruction-address-misaligned exceptions.
The compressed instruction encodings are mostly common across RV32C, RV64C, and
RV128C, but a few opcodes are used for different purposes depending on base ISA width.
For example, the wider address-space RV64C and RV128C variants require additional
opcodes to compress loads and stores of 64-bit integer values, while RV32C uses the same
opcodes to compress loads and stores of single-precision floating-point values. Similarly,
RV128C requires additional opcodes to capture loads and stores of 128-bit integer values,
while these same opcodes are used for loads and stores of double-precision floating-point
values in RV32C and RV64C. If the C extension is implemented, the appropriate com-
pressed floating-point load and store instructions must be provided whenever the standard
floating-point extension (F and D) is also implemented. In addition, RV32C includes a
compressed jump and link instruction to compress short-range subroutine calls, where the
same opcode is used to compress ADDIW for RV64C and RV128C.
The standard atomic-instruction extension, named “A”, contains instructions that atom-
ically read-modify-write memory to support synchronization between multiple RISC-V
harts running in the same memory space. The two forms of atomic instruction pro-
vided are load-reserved/store conditional instructions and atomic fetch-and-op memory
instructions. Both types of atomic instruction support various memory consistency order-
ings including unordered, acquire, release, and sequentially consistent semantics. These
instructions allow RISC-V to support the RCsc memory consistency model. The base
RISC-V ISA has a relaxed memory model, with the FENCE instruction used to impose
additional ordering constraints. The address space is divided by the execution environ-
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ment into memory and I/O domains, and the FENCE instruction provides options to
order accesses to one or both of these two address domains. To provide more efficient
support for release consistency, each atomic instruction has two bits, aq and rl, used to
specify additional memory ordering constraints. The bits order accesses to one of the
two address domains, memory or I/O, depending on which address domain the atomic
instruction is accessing. No ordering constraint is implied to accesses to the other domain,
and a FENCE instruction should be used to order across both domains. If both bits are
clear, no additional ordering constraints are imposed on the atomic memory operation. If
only the aq bit is set, the atomic memory operation is treated as an acquire access, i.e.,
no following memory operations on this RISC-V hart can be observed to take place before
the acquire memory operation. If only the rl bit is set, the atomic memory operation is
treated as a release access, i.e., the release memory operation cannot be observed to take
place before any earlier memory operations on this RISC-V hart. If both the aq and rl bits
are set, the atomic memory operation is sequentially consistent and cannot be observed
to happen before any earlier memory operations or after any later memory operations in
the same RISC-V hart and to the same address domain.
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The RISC-V Instruction Set Architecture (ISA) owes its increasing popularity to its open-
source nature, which has made it a popular choice not only within academic settings but
also in the commercial sector. Its availability has become essential for small to medium-
sized companies, who face a financial barrier when it comes to using other Instruction
Set Architectures, such as ARM [1], making RISC-V the go-to solution. Additionally, a
RISC-V ecosystem [8] has been developed, which provides useful tools like software com-
pilers, SoC development frameworks, and functional simulators for verification. This has
simplified the process of generating FPGA or ASIC solutions based on the RISC-V ISA.
This article provides an overview of the most significant RISC-V cores currently in use,
with a particular emphasis on superscalar ones. Each core is discussed in detail, including
its supported ISA, number of functional units (FUs) and pipeline stages, the hardware
description language (HDL) used to design it, the frameworks it is supported by, and
whether it is capable of executing instructions out-of-order (OoO). Table 3.1 is also pro-
vided to highlight the differences between the cores before analyzing them in detail.
Finally, a comparison will be made between the cores in terms of their supported ISA,
number of pipeline stages, FUs, execution order, superscalarity, HDL used, and frame-
works for RTL generation.
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Table 3.1: Comparison between State of the Art processors. The column "Stages" repre-
sents the pipeline stages of the architecture.

Architecture OoO ISA Stages FUs HDL

Rocket [18] scalar no RV32/64 5 4 Chisel

IMAFDC

CVA6 [4] scalar no RV64 6 6 SV

IMAFDC

Shakti-C [11] scalar no RV32/64 5 3 BSV

IMAFDC

LAMP [22] scalar no RV32 5 4 SV

IMF

PicoRV [23] scalar no RV32 5 ? Verilog

IMC

MicroRV [23] scalar no RV32 5 ? SpinalHDL

IMC

RI5CY [23] scalar no RV32 4 ? SV

IM

Noel-V[5] scalar no RV32/64 7 6 VHDL

superscalar IMAFDBCH

Dual Pipeline [19] superscalar no RV32 5 3 Verilog

IMAFD

BOOM [17] superscalar yes RV64 10 8 Chisel

IMAFDC

Legend: SV SystemVerilog, BSV Bluespec SystemVerilog.
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3.1. In-Order scalar CPUs

3.1.1. Rocket

Rocket [18] is an in-order RISC-V scalar processor developed at University of California,
Berkeley. It is written in Chisel HDL, an object-oriented hardware description language
based on Scala.

Figure 3.1: Rocket Core Pipeline

The processor under discussion features a 5-stage pipeline, namely: Instruction Fetch (IF),
Instruction Decode (ID), Execute (EX), Memory Access (MEM), and Writeback (WB).
It has the capability to support RV32/64G ISA, which can be conveniently extended
with subsets such as M, A, F, and D, thanks to the high abstraction of the Chisel HDL.
Furthermore, the branch predictor can be customized with a configurable Branch Target
Buffer (BTB), Branch History Table (BHT), and Return Address Stack (RAS). This
feature allows for the precise tuning of the processor’s performance. To integrate Rocket
cores, caches, and interconnects into a cohesive System-on-Chip (SoC), users can employ
the open-source SoC design generator Rocket Chip Generator [15]. This tool is integrated
within the open-source Chipyard [3] framework, which facilitates the expansion of the
execute stage with accelerators and the attachment of a co-processor. The processor has
been used as a starting point for development and has seen numerous tape-outs since
2012. SiFive U54, a quad-core processor capable of reaching frequencies up to 1.5 GHz,
is among the latest of these tape-outs.
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3.1.2. CVA6

CVA6 [4] (formerly named Ariane) is an in-order, single-issue, 64-bit processor. The core
is written in SystemVerilog and its micro-architecture is designed to reduce critical path
length while keeping IPC losses moderate. The purpose of the core is to run a full OS at
reasonable speed and IPC.

Figure 3.2: CVA6 Core Pipeline. Source: [4]

In order to achieve optimal speed and performance, the core is equipped with a six-stage
pipeline. This is similar to the five-stage pipeline of the Rocket architecture, which is
discussed in subsection 3.1.1, but includes a dedicated stage for Program Counter (PC)
calculation. The Instruction Set Architecture (ISA) that is supported is RV64GC, which
includes the MAFD extensions. The front-end is equipped with a branch prediction
unit consisting of a Branch Target Buffer (BTB), Branch History Table (BHT), and
Return Address Stack (RAS). This unit can be selected based on the requirements of the
application. To increase the Instructions Per Cycle (IPC), the CPU is equipped with
a scoreboard that issues data-independent instructions to hide the latency to the data
RAM (cache). The core consists of six functional units in the execute stage, including
an Arithmetic Logic Unit (ALU), a dedicated multiplier/divider, an optional Floating-
Point Unit (FPU), which aims to be IEEE 754-2008 compliant, a CSR buffer, branch
unit, and a load/store unit (LSU). The core has been integrated into both Chipyard [3]
and the OpenPiton [6] projects, making it simpler to generate, simulate, and customize a
CVA6-based System on Chip (SoC).
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3.1.3. Shakti C-Class

The SHAKTI C-Class, a member of the base family of SHAKTI Processor Program [11],
initiated by the IIT Madras in 2014, is a controller-grade processor designed for IoT-,
industrial-,and automotive segments.
The core is designed for a frequency range from 500 MHz to 1.5G Hz and is capable of
booting and running Linux and RTOS. The processor is written in Bluespec SystemVer-
ilog (BSV), which can be synthesized in Verilog code with an open-source compiler.

Figure 3.3: Schematic view of a SHAKTI C-Class. Source: [11]

The SHAKTI processor features a 5-stage in-order pipeline and supports both RV32I and
RV64I instruction sets, including MAFDC extensions. The processor is highly customiz-
able and permits selective activation of the S and M extensions. The core’s front-end
incorporates a two-level GShare branch predictor, while the execution stage comprises
three distinct functional units: M-Box, F-Box, and ALU. It is important to note that the
SHAKTI C-Class processor is not currently integrated into the Chipyard framework. How-
ever, the SHAKTI project offers an independent framework for creating System-on-Chips
(SoCs), known as "shakti-soc," as well as an SDK called "shakti-sdk" and a verification
framework called "RISC-V Trace Analyzer." Overall, the SHAKTI processor’s impressive
features and high degree of configurability make it a valuable tool for a variety of appli-
cations in the business and academic worlds.
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3.1.4. LAMP

The proposed CPU [22] features a single-issue, in-order, 5-stage pipeline implementing
the standard Integer (I), Multiply (M), and Floating Point (F) extensions of the RISC-V
ISA.

Figure 3.4: Schematic view of the SoC and CPU. Source: [22]

The Instruction Fetch (IF) stage of the CPU can fetch up to a single, 32-bit, fixed-
length instruction per clock cycle. Moreover, the program counter is updated in the
same clock cycle following the standard RISC-V ISA architectural specification manual.
The Instruction Decode (ID) stage extracts from the fetched instruction the information
required to drive the Register File (RF), the Floating Point Register File (FP-RF), and
the immediate operand logic to set up the operands for the execution stage. The ID stage
also forwards the signals derived from the instruction operation code (opcode) to the five
functional units (FUs) implemented in the EX stage, i.e., the Arithmetic-Logic Unit, the
Integer Multiply and Divide, the Load-Store Adder Unit (LSU-ADR), the Floating Point
Unit (FPU) and the jump/branch ALU (TRG-ADR). In the EX stage, the operands
are multiplexed with the results from the memory (M) and write-back (WB) stages to
implement the EX-EX and M-EX forwarding paths. Moreover, the M-M forwarding path
is also implemented in the M stage to optimize the load-store instruction patterns. Both
the address and the condition of the branch instructions are computed in the EX stage
while the PC update due to a control-flow instruction is delayed up to the M stage as in
the standard RISC pipeline.
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3.1.5. PicoRV and RavenSoC

PicoRV is a RISC-V Instruction Set Architecture (ISA)-based central processing unit
(CPU) that incorporates the RV32I, RV32M, and RV32C extensions, as well as being
configurable to work with RV32E, RV32IM, RV32IC, and other combinations. As a co-
processor to a field-programmable gate array (FPGA) or application-specific integrated
circuit (ASIC), PicoRV is designed to offer high performance and an efficient computing
solution. It can also function as a standalone CPU core. PicoRV’s primary feature is
its customizable bus, which can be tailored to different applications and protocols. This
versatility makes the PicoRV32 highly adaptable, and a preferred choice for implementing
custom CPUs. Notably, it serves as a base for a significant portion of RISC-V-based
processors. PicoRV has been implemented on various FPGAs, including Xilinx Kintex
and Virtex series. The CPU utilizes a maximum of 2019 look-up tables (LUTs) for the
CPU and 88 LUTs for memory. The processor can operate at clock speeds of up to 769
MHz SOCs, making it a high-performance computing solution for various applications.

Figure 3.5: Block diagram of RavenSoC. Source: [7]

The RavenSoC, available at [7], leverages a 32-bit RISC-V core, specifically the PicoRV32.
The core has undergone significant testing, having been previously implemented in an
FPGA, and is incorporated within the RavenSoC as the first System on Chip (SoC) to
utilize it. The RISC-V board implementation found in the RavenSoC is particularly well-
suited for Internet of Things (IoT) applications, as it offers a range of features that are
essential for such work. Furthermore, the code base is both robust and highly extendable,
making it an excellent reference for similar designs.
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3.1.6. MicroRV

MicroRV32 [23] also known as RV32 is an open-source RISC-V platform that integrates
an RV32I-based RISC-V core to several peripherals via a generic bus system. It is imple-
mented in SpinalHDL and can run the FREERTOS operating system. It is developed for
educational and research purposes.

Figure 3.6: DataPath of MicroRV

The CPU core uses an interface consisting of an address, a command, and data to interact
with other peripherals. A handshake bus interface is employed, wherein the bus master
(CPU core) sends a valid signal to notify the bus slaves (other peripherals) of a payload on
the bus. The peripherals are addressed and mapped at the top level, with the transaction
packet routed to their respective peripheral based on the memory address. The peripherals
respond to the transaction request in a single clock cycle.

Figure 3.7: Block Scheme of MicroRV
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3.1.7. RI5CY

RI5CY is a 32-bit RISC-V core that has been developed as an open-source platform for re-
searchers and developers. It is written in SystemVerilog [14] and supports the RV32IMC
instruction set. RI5CY utilizes a single-issue four-stage instruction pipeline and is de-
signed for separate instruction and data memories. Notably, the core does not employ
caches, thereby increasing its suitability for various applications. The use of SystemVer-
ilog ensures that the core is both efficient and reliable, enabling researchers and developers
to leverage RI5CY for a wide range of applications.

Figure 3.8: Block Scheme of RI5CY [20]

The RI5CY processor, based on the RISC-V architecture, is a highly efficient and reliable
solution for researchers and developers seeking to design a wide range of applications. The
processor’s ability to execute code from separate instruction and data memories enhances
its versatility, while its cache-less design ensures suitability for a variety of applications.
Moreover, the use of SystemVerilog guarantees robustness and reliability, making RI5CY
an excellent choice for businesses and academics alike. The design is synchronous using
the rising clock edge of a single clock domain and implements a low active asynchronous
reset for all storage elements. Some peripherals are attached to the processor core via a
32-bit AXI on-chip bus system to provide interfaces to GPIO, UART, I2C, SPI, etc.
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3.2. In-Order superscalar CPUs

3.2.1. Noel-V

Developed by Frontgrade Gaisler, Noel-V [5] is a customizable RISC-V core capable of
being synthesized as both scalar or superscalar, and designed in VHDL. It features mul-
tiple levels of configuration, ranging from secure, fault-tolerant, and high performance to
area-optimization.

Figure 3.9: Features of the NOEL-V processor. Source: [5]

The processor can have either RV32I or RV64I as its base Instruction Set Architecture
(ISA). It also supports different subsets, including MAFDBC. Its F-extension can use
either a 32/64-bit non-pipelined, area-efficient Floating Point Unit (FPU) or a high-
performance, fully-pipelined IEEE-754 FPU. If used as a processor, it can be configured
as a dual or single-issue. However, if it is set up as a controller, it can only be used
as a single-issue processor. The architecture includes an advanced branch predictor and
cache controller that can maintain a one-cycle-per-store throughput. When set up as a
high-performance or general-purpose processor, it can run Linux and supports supervisor
and user privilege modes. The processor provides a solution to the problem of Single
Event Upsets in critical aerospace applications. It employs a reconstruction scheme that
can correct single-bit errors and detect up to 4-bit errors. It can be synthesized using
common tools such as Xilinx Vivado, Synplify, and Synopsys DC.
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3.2.2. Dual pipeline superscalar

A dual-issue, 32-bit superscalar processor [19] that was presented at the 2020 23rd Eu-
romicro Conference on Digital System Design held in Kranj, Slovenia. It was designed in
Verilog.

Figure 3.10: Scheme of the Dual Pipeline superscalar processor. Source: [19]

The processor is equipped with a 5-stage dual-pipeline and supports the RV32IMAFD ISA.
It utilizes a dynamic branch prediction unit that operates parallelly with the Instruction
Decode stage. In the issue stage, two instructions can be dispatched at the same clock
cycle if the second instruction does not have any dependencies with the first. Otherwise,
only one instruction, in program order, is propagated towards the Execute stage, while the
other is held back in the Instruction Decode stage. While creating a bundle, a conditional
or unconditional jump is always issued alone. Similarly, no bundle can be created with
two memory access operations. Both the instruction cache and data cache are 8 KB,
2-way set associative, with a block size of 32 bytes. The data cache has two memory
access ports, one of which is reserved for atomic reads only. This processor was verified
through the standard RISC-V Toolchain, which was used to compile standard C code and
well-known benchmarks. It was implemented on a Virtex-7 (xc7vx485tffg1761-2) FPGA
board, achieving a maximum frequency of 40 MHz. It should be noted that the processor
does not support Linux, which necessitates the implementation of a supervisor privilege
level. Furthermore, it is noteworthy that the processor supports the use of virtual memory.
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3.3. Out-of-Order CPUs

3.3.1. BOOM

BOOM is a processor that uses superscalar Out-of-Order technology and has been de-
signed at the University of California, Berkeley. This highly parametric processor is
deeply customizable and has been specifically crafted to act as a baseline for education
and research in the field of Out-of-Order processors. Its robustness and versatile nature
make it an ideal option for those seeking to explore the intricacies of processor technology.
In addition, the BOOM processor has been integrated into the Chipyard framework, which
further enhances its value proposition. The BOOM processor is a remarkable achievement
in the field of processor technology and is expected to have a significant impact on the
research and education community.

Figure 3.11: Simplified BOOM pipeline. Source: [2]

The BOOM core is a High-Level Description Language (HDL) written in Chisel. It
supports the RV64I base Instruction Set Architecture (ISA), which can be extended with
the subsets A, F, D, and M. The core was designed based on the Rocket, which is an
In-Order, "classic" 5-stage pipeline that has been verified. This helped to simplify the
design work for the BOOM core, which implements a 10-stage pipeline. The front end
of the BOOM core features a highly configurable branch prediction unit, which is based
on two-level predictors such as GShare or TAGE, a Next-Line Predictor (NLP), and
12 cycles of branch-mispredict penalty. The issue width is also configurable, with a
micro-scheduler that assigns dispatched operations to an available functional unit, divided
between specialized and mixed. Just like the Rocket core, the Rocket Chip Generator
allows for easy expansion of the Execute stage, enabling the addition of ISA extensions
and/or accelerators. The data cache consists of two dual-ported banks, which can be used
to exploit the superscalar properties of a dual-issue architecture.
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In this chapter, we will describe the microarchitecture of the superscalar CPU, reported in
figure 4.1, and the corresponding verification method that was developed. A crucial met-
ric to consider when selecting the target FPGA board is the system’s resource utilization,
which increases with the issue window width. It is imperative to note that transitioning
from a scalar to a superscalar architecture leads to a considerable increase in area occu-
pation. This is due to the need to replicate most of the ports and interconnections to
support the propagation of multiple instructions through the pipeline. Furthermore, the
logic networks play a significant role, as they must be extended, often doubling the initial
complexity, to account for possible dependencies between multiple instructions. Section
4.1 exposes the methodology employed to design a synthesizable hardware architecture
of a superscalar CPU and develop a verification tool in detail. Although the focus will
be on a dual-issue version, the same reasoning can be conceptually extended to an N-
issue one. The subsequent sections will portray the functional ISA simulator adopted, the
customization required for verification, and the verification setup and process.

4.1. Microarchitecture of the superscalar CPU

In this section, we will analyze each block of the pipeline stages, explaining all the im-
plemented functionalities and structures using high-level schemes and pseudocode. The
description pertains to a dual-issue superscalar architecture, but it can be easily extended
to a generic N-issue one. The width of each signal and structure is determined by param-
eters, and a particular setup is described in Chapter 5.



34 4| Methodology

Figure 4.1: High level scheme of the superscalar CPU
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4.1.1. Instruction Memory and pre-fetch

The architecture’s Instruction Memory (IM) is implemented as a RAM that can be ac-
cessed from the Fetch stage through the desired Program Counter. The width of its entries
depends on the program counter length parameter PC_LEN, which is typically equal to
the architectural length. Additionally, its depth is also parametric and is dependent on
the instruction memory depth parameter INS_MEM_DEPTH.

Figure 4.2: Parametric structure of the functional scalar Instruction Memory

A superscalar architecture requires a pre-fetch logic in the Instruction Memory stage, with
sufficient input and output ports to support dual-issue properties.

Figure 4.3: High-level view of the Instruction Memory & Pre-Fetch stage of the superscalar
CPU

The Instruction Memory contains two pairs of Program Counters that are available for
selection. The first pair, denoted as fetch_next_pc_0 and fetch_next_pc_1, originates
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from the Instruction Fetch, while the second pair, referred to as decode_next_pc_0 and
decode_next_pc_1, is derived from the Instruction Decode’s jump logic.
During the Pre-Fetch stage, the last propagated instruction ins_1_to_fetch is preserved
in an internal variable. On each propagation of a bundle, the currently propagating first
instruction of the bundle, ins_0_to_fetch, is compared to the stored one. If both are
either a conditional or unconditional jump, then the outputs of the stage, fetched_ins_0
and fetched_ins_1 with fetched_pc_0 and fetched_pc_1, are not modified. This is
because, during the post-jump synchronization period, the one-cycle latency required to
assert the stall_mem would cause a change in the IF inputs for a single cycle.

4.1.2. Fetch and pre-decode

The Instruction Fetch (IF) is the second stage of the pipeline and datapath. It is respon-
sible for extracting two instructions from the memory in a single clock cycle. One of its
main features is the ability to perform a "pre-decode" of the input instructions, which
allows for synchronization between front end blocks. This is particularly important in the
case of subsequent bundles of instructions containing branches.
It must be noted that a CPU does not require to support multi-instruction Fetch stage
to be defined as superscalar. However, implementing multi-instruction Fetch stage can
prevent potential bottlenecks in the case of an ideal architecture or a simple executable
with few data dependencies and 1-cycle operations, as explained in Section 2.3.

Figure 4.4: High-level view of the Fetch stage of the superscalar CPU
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The Instruction Fetch and pre-decode stage in our architecture is designed to operate in a
fully-sequential and positive edge-sensitive manner. This stage includes auxiliary signals
such as stall_mem, stall_fetch, and counters that support the synchronization logic of
the pre-decode block.
At each clock cycle, two instructions are extracted from the Instruction Memory and sent
to the pre-decode logic, as described in Algorithm 4.1, through the block’s input ports:
ins_0_from_mem and ins_1_from_mem. The pre-decode logic analyzes the bundle of
instructions and distinguishes between three cases: the first instruction is a conditional
or unconditional jump, the second one is a jump, or neither are jump instructions.
In the first case, the second instruction of the bundle is flushed, and the jump is prop-
agated as fetched_ins_0. This is because our architecture always incurs a cost when
encountering a conditional or unconditional jump. After propagating the instruction in
this case, the stall_mem is asserted to keep its inputs steady, and a number of clock cycles
are counted to ensure synchronization with the rest of the front end. After propagation,
the stall_fetch flag is also asserted to avoid decoding the same instruction multiple times.
This is particularly useful in the case of JAL and JALR operations, which must be prop-
agated to the Issue stage, unlike branches, which are treated as NOPs as they are entirely
resolved in the Decode stage.
In the second case, the pre-decode logic propagates the first instruction of the bundle
as fetched_ins_0 and stores the second one, the jump, in an internal variable. After
one clock cycle, this stored jump instruction is fed to the Decode stage also through
fetched_ins_0, and the behavior is the same as the first case.
Lastly, in the third case, the bundle of instructions is simply buffered to the Decode stage,
and the next_pc_0 and next_pc_1 are driven based on the input Program Counters. It
should be noted that in each of the cases above, each instruction (fetched_ins_0 and
fetched_ins_1 ) is always propagated together with its corresponding PC (fetched_pc_0
and fetched_pc_1, respectively, coming from the input ports pc_0_from_mem and
pc_1_from_mem).
It is crucial to take note of a critical synchronization point in the process. Whenever
the code encounters a conditional or unconditional jump, it is imperative to assert the
stall_mem flag in order to avoid any changes to the input values of the Fetch stage.
This step allows the pre-decode logic to follow the correct logic path during the required
synchronization period. This period is guaranteed through the counter mentioned earlier,
and therefore it is important to ensure that the stall_fetch flag behaves similarly. It is
used to prevent multiple issues of valid jump instructions such as Jump And Link (JAL)
and Jump And Link Register (JALR).
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Algorithm 4.1 Pre-decode logic
if instruction[0].isbranch then

fetch(instruction[0]);
synch_frontend;

else if instruction[1].isbranch then
fetch(instruction[0]);
store(instruction[1]);
fetch_stored_instruction;
synch_frontend;

else
fetch(instruction[0], instruction[1]);

end if

function synch_frontend
for i = 0, i < synch_time, i++ do

stall_mem, stall_fetch = 1;
end for
stall_mem, stall_fetch = 0;

endfunction

The synchronization period represents the minimum number of clock cycles required for
time coherence of the front end, and is automatically extended when necessary jump
operands are not available right away. Once this period has passed, both stall flags are
de-asserted, and the next instructions are fetched in the same clock cycle.
This implies that the preliminary check of the pre-decode must also be performed inside
every pre-decode case themselves. This accounts for the presence of conditional or uncon-
ditional jumps inside the correct next bundle, and ensures that the process is operating
in a synchronized manner.

4.1.3. Decode and jump logic

After the instruction fetch stage, the next step in the pipeline is the superscalar Instruc-
tion Decode (ID) stage. This hardware stage is responsible for decoding 32-bit RISC-V
instructions, which can come from the I-, M-, and F-extensions. The ID stage has two
primary functions: decoding the instructions and resolving and calculating jumps.
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Figure 4.5: High-level view of the Decode stage of the superscalar CPU

The decode logic is responsible for processing the input fetched instructions and their
corresponding Program Counters through input ports fetched_ins_0, fetched_ins_1,
fetched_pc_0, and fetched_pc_1. The logic uses the 7 lower bits of the encoding, known
as "opcode," to determine the type of operation being represented. Additionally, it may
also inspect other parts of the encoding, such as the func3 and func7 fields, to accurately
identify the encoded operations.

Figure 4.6: Types of instruction encodings as described in the RISC-V specification [24]

Following instruction fetching, the system extracts useful information and generates a
decoded instruction (decoded_ins).
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Table 4.1: Structure of a decoded instruction (decoded_ins).

Entry name Logic Length (bits) Explanation

which_fu WHICH_FU_LEN Choose the FU

ctl_fu CTL_FU_LEN FU operation setup

op1_addr REG_IND_LEN Address of op1

op1_f_noti 1 ’0’ if op2 is integer

op2_addr REG_IND_LEN Address of op2

op2_f_noti 1 ’0’ if op2 is integer

imm ARCH_LEN Immediate value for op2

op2_i_notr 1 ’1’ if op2 is immediate

dest_addr REG_IND_LEN Address of the destination

dest_rob_id ROB_IND_LEN ROBid of the instruction

dest_f_noti 1 ’0’ if destination is integer

is_store 1 ’1’ if instruction is a store

is_load 1 ’1’ if instruction is a load

st_amt 2 bytes to be stored

exc 1 ’1’ if exception triggered

exc_code EXC_CODE_LEN Type of exception

valid 1 ’1’ if instruction is valid

Legend: WHICH_FU_LEN length of FU selector, CTL_FU_LEN length of the FU
setup vector, REG_IND_LEN length of the RF addresses, ARCH_LEN architectural

length, ROB_IND_LEN length of the ROBid, EXC_CODE_LEN length of the
exception code.

A decoded instruction consists of the addresses of the destination and operands, the ex-
tended immediate value (if required), the functional unit responsible for performing the
operation, the type of calculation to be performed, and flags that indicate whether the
instruction is a load or a store. Additionally, the offset immediate and byte amount
associated with store instructions and any exception flags are included in the decoded
instruction.
Once the instruction is decoded, the resulting decoded_ins is transmitted to either of the
output ports, decoded_ins_0 or decoded_ins_1, along with the corresponding Program
Counter, decoded_pc_0 or decoded_pc_1.
The jump logic is another crucial component of the system, which resolves and calculates
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jump operations. This logic first verifies the opcode and func3 fields of the fetched_ins_0
to distinguish between conditional and unconditional jump instructions. It then performs
different operations for each type.
For unconditional jumps, such as Jump and Link (JAL) instructions, the immediate value
is extracted, and a signed addition with the instruction PC is performed. On the other
hand, Jump and Link Register (JALR) instructions, which require a base address, un-
dergo an additional step. The jump logic first checks the RF for the availability of the
operand. A request is then propagated to the output to_rf_op1_addr. Once the operand
is ready, the immediate value is extracted, and a signed addition is performed.
For branch instructions, two operands are requested from the RF through to_rf_op1_addr
and to_rf_op2_addr, and their values are obtained from from_rf_op1 and from_rf_op2.
These values are then used to calculate the jump condition. If true, the next PC is calcu-
lated as the sum of instruction PC and jump immediate. Otherwise, the value of PC + 4
and PC + 8 is propagated. The calculated next program counters are communicated to
the Instruction Memory through the output ports next_pc_0 and next_pc_1, along with
the branch_taken flag. The decode_ready signal is propagated towards the Instruction
Fetch stage.
The jump logic must ensure synchronization with the front end. Whenever a conditional
or unconditional jump instruction reaches the Decode stage, the front end must be stalled
to keep the inputs of the Decode fixed. This ensures that the jump logic is given enough
time to re-enter the same logic path if the jump resolution takes more than one cycle,
as in the case where it waits for a non-ready operand. This synchronization results in a
minimum of one clock cycle latency whenever a jump is resolved.
The decode logic is implemented as a sequential positive edge-sensitive net. The jump
logic, on the other hand, requires the creation of a set of ports to propagate a read address
to the RF and receive from it the status of the requested register and its value. This is
done through combinatorial logic, which implements an asynchronous inter-module com-
munication that resolves the read request in a single clock cycle. The downside of this
solution is the high propagation delay of the logic, resulting in a limitation on the maxi-
mum achievable frequency.
The branch_taken signal is asserted every time a conditional or unconditional jump in-
struction reaches the Decode stage, changing the behavior of the Instruction Memory as
described in Subsection 4.1.1.
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4.1.4. Issue

Once a bundle has been decoded, it is then sent to the Issue (IS) stage. This stage is
responsible for dispatching instructions to the Execute stage and renaming operands to
ensure that operations are executed and completed correctly, in an Out-of-Order manner.
The fill queue logic is the first step for each instruction, after which the instruction is
dispatched through the double read operands logic.

Figure 4.7: High-level view of the hardware Issue stage of the superscalar CPU

A bundle of decoded instructions is first processed by the fill queue logic. This logic checks
if the incoming instructions, through the input ports decoded_ins_0 and decoded_ins_1,
are valid. If they are valid, they are queued in a first-in, first-out structure called the
Issue Queue (IQ). The IQ has a configurable depth called ISSUE_DEPTH. Each entry in
the IQ has multiple fields, most of which mirror the composition of a decoded instruction.
These fields include the functional unit selector, operand 1 and 2 addresses, immediate
value (if expected by the decoded instruction), destination address, exception signals,
memory access-related signals, and a valid signal for the handshake.
The Issue Queue also includes two additional fields: the destination ROBid, which points
to the first free cell of the ROB, and the operand renamings, which are obtained from the
extended Register File.
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Table 4.2: Structure of an Issue Queue entry.

Entry field name Logic Length (bits) Explanation

which_fu WHICH_FU_LEN Choose the FU

ctl_fu CTL_FU_LEN FU operation setup

op1_addr REG_IND_LEN Address of op1

op1_f_noti 1 ’0’ if op2 is integer

op1_renamed ROB_IND_LEN Renaming of op1

op2_addr REG_IND_LEN Address of op2

op2_f_noti 1 ’0’ if op2 is integer

op2_renamed ROB_IND_LEN Renaming of op2

imm ARCH_LEN Immediate value for op2

op2_i_notr 1 ’1’ if op2 is immediate

dest_addr REG_IND_LEN Address of the destination

dest_rob_id ROB_IND_LEN ROBid of the instruction

dest_f_noti 1 ’0’ if destination is integer

is_store 1 ’1’ if instruction is a store

is_load 1 ’1’ if instruction is a load

st_amt 2 bytes to be stored

exc 1 ’1’ if exception triggered

exc_code EXC_CODE_LEN Type of exception

valid 1 ’1’ if instruction is valid

Legend: WHICH_FU_LEN length of FU selector, CTL_FU_LEN length of the FU
setup vector, REG_IND_LEN length of the RF addresses, ARCH_LEN architectural

length, ROB_IND_LEN length of the ROBid, EXC_CODE_LEN length of the
exception code.

The logic in question serves multiple purposes in addition to filling the queue. It is respon-
sible for writing the instruction PC, destination address, and the number of stored bytes
(in case of a store instruction) to the destination cell of the Reorder Buffer (ROB). This
ensures that all the necessary information is propagated through the output ports, specifi-
cally the reserve_rob_entries port. Furthermore, it writes a request on the do_renaming
port and updates the renaming field of the Register File (RF) entry. This is achieved by
writing the destination ROBid to the renaming field, which is pointed to by the destina-
tion address of the decoded instruction. The corresponding busy flag in the RF is not
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asserted at this point, to prevent an instruction from writing a register that is also its
operand, thus avoiding stalling indefinitely.
Finally, the busy flag for branches of the destination register in the RF is asserted to
make a subsequent jump instruction in the Decode stage stall if it requires the value pro-
duced by the current instruction. To simplify the explanation of this complex process,
the pseudocode provided below can be referred to.

Algorithm 4.2 Fill queue
if decodedins.valid then

issueq[wr_cnt] = decodedins;
get_renaming_fromRF(decodedins.op1, decodedins.op2);
reserve_rob_entry(decodedins.PC,decodedins.dest_addr,decodedins.store_amt);
if !decodedins.isstore then

rename_destination(decodedins.destaddr);
end if

end if

This routine is executed for both instructions in the bundle, but there are some differences
between instruction[0] and instruction[1], the two input instructions of the stage. Firstly,
the write counter used to fill the IQ is duplicated so that each instruction in the bundle has
its own counter. For example, for instruction[1], the counter is simply one position ahead
of the one for instruction[0], making it easier to fill the queue. The logic for incrementing
the write counters becomes more complex for the bundle than for a single instruction
since they must be incremented based on whether there is a single valid instruction or an
entire valid bundle. Another difference is in the steps to obtain the operand renamings. If
an operand of instruction[1] is produced by instruction[0], its renaming ROBid becomes
the value of the destination ROBid of instruction[0]. Otherwise, due to the one-cycle
delay in updating the contents of the extended RF, the second instruction would get
the wrong ROBid for one of its operands. The busy assertion, which corresponds to
the enabling of the renaming through the enable_renaming output port, is performed
when an instruction is dispatched. The double read operands function retrieves one
or two instructions from the Instruction Queue (IQ) in FIFO order. It checks if the
required operands are available in the Register File (RF) and the Re-Order Buffer (ROB),
dispatching them to the Execute stage. It also signals which functional unit (FU) needs
the operands, which operation it should perform, the destination ROBid, and whether
the operands are ready or not. The get_operand() function is executed only when both
dispatch_op1_ready and dispatch_op2_ready are asserted.
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Algorithm 4.3 Double read operands
if readop_en & pop_en then

get_value(issueins[0].op1_addr)
if decodedins.op2isreg then

get_value(issueins[0].op2_addr)
else if decodedins.op2isimm then

dispatchins[0].op2 = decodedins[0].imm;
end if
check_store(issueins[0]);
check_load(issueins[0]);
dispatch_instruction(issueins[0]);
enable_renaming;
//The same applies for instruction[1], with the differences highlighted in Algorithm
4.4

end if

function get_value(issueins.op_addr)
if rf_ready then

dispatchins.op = rf.data[issueins.op_addr];
else if rob_ready then

dispatchins.op = rob.data[issueins.op_addr];
else

dispatchins.ready = 0;
end if
endfunction

function check_store(issueins)
if issueins.is_store then

dispatch_st_imm(issueins.op1,issueins.op2);
update_disambbuff;

end if
endfunction

function check_load(issueins)
if issueins.is_load then

if issue.mem_addr == disambbuff then
stall_instruction(issueins.op1,issueins.op2);

end if
end if
endfunction
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Before dispatching the instruction, the function checks whether it is a store or a load.
If it is a store, it writes the memory destination address to a cell in the Disambiguation
Buffer. This cell is emptied when the corresponding store instruction is committed. If it
is a load, the function checks if the memory address targeted by the load instruction is
currently being written by a store. In that case, it stalls the load until the needed memory
cell is written. These two functionalities are necessary to avoid Read-After-Write (RAW)
hazards on memory cells. The double read operands function treats instruction[0] and
instruction[1] differently. When instruction[0] produces an operand, an additional check
is performed while trying to read the operand from the RF. Since the renaming of a
register is enabled during the dispatch of an instruction targeting it, the Issue stage needs
to obtain the operand after instruction[0] exits from the Execute stage. Otherwise, it
may read an incorrect value. Once the double read operands function completes, the
dispatched instructions described in Algorithm 4.3 are transmitted to the Execute stage
through the to_exe_ins_0 and to_exe_ins_1 output ports.

Algorithm 4.4 Differences during double read operands
instr[0]:
if rf_ready then

...
end if
instr[1]:
if (rf_ready) & (instr[0].dest != instr[1].op_addr) then

...
end if

The double read operands is implemented as a combinatorial network because it requires
multiple subsequent checks to ensure availability of the required values. Similar to the
jump logic data request net mentioned in Subsection 4.1.3, there are two sets of asyn-
chronous interconnections for both the dispatched instructions. One set checks for the
availability of values inside the Register File, while the other looks inside the Reorder
Buffer. These networks impose an upper limit on the maximum achievable frequency,
just as it happens in the ID stage.



4| Methodology 47

4.1.5. Execute

The Execute (EXE) stage is responsible for producing the final result values. It consists
of a variable number of functional units (FUs), which can be selected during the design
phase based on the specific requirements of the application.

Figure 4.8: High-level view of the Execute stage inside the hardware superscalar CPU

The supported types of FUs are:

• ALU: performs integer arithmetic-logic operations. It can work on 32-bit words
performing sum, subtraction, bit shifts, and bitwise logical operations such as NOT,
AND, NAND, OR, NOR, XOR, XNOR, and CSR directives.

• MULDIV: executes different types of multiplications, divisions, and remainder,
such as MUL, DIV, REM, and their corresponding signed/unsigned variations.

• LSU: performs all the memory-related operations. Is capable of executing Load
and Store operations SW and LW, including the subset for Byte and Half-Word
instruction, like SB, LB, SH, and LH.

• FPU: it can execute floating-point operation. In addition, it is also used for particu-
lar instructions that require the single-precision property of Floating-Point numbers.

The needed FU can be selected through the WHICH_FU signal, and the operation to
perform through the CTL_FU, described in Subsection Decode and jump logic 4.1.3 and
propagated by the Issue stage together with the operands and their status.
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The first method implemented in the Execute stage is the get_operands, which is per-
formed by every FU and checks, in order: whether or not the instruction has already
been dispatched (to avoid unnecessary multiple iterations of the same operation), if the
operands are ready and if the target FU (WHICH_FU) corresponds to the functional
unit ID, an attribute unique to every type of unit. The proposed algorithm represents
the routine to get each of the dispatched instructions from the Issue stage.

Algorithm 4.5 Get Operands
if !instr_already_dispatched then

if instr_ready & (FU_id == dispatchins.which_fu) then
get_values(dispatchins);

end if
instr_already_dispatched = 1;

end if

function get_values(dispatchins)
fu_op1 = dispatchins.op1;
fu_op2 = dispatchins.op2;
fu_dest_addr = dispatchins.dest_addr;
fu_dest_rob_id = dispatchins.dest_rob_id;
fu_res_f_noti = dispatchins.res_f_noti;
fu_st_imm = dispatchins.st_imm;
fu_ctl = dispatchins.ctl_fu;

endfunction

To ensure proper execution of bundles requiring the same functional unit, a double dis-
patch mechanism is employed. This means that every type of functional unit must have
a queue. Whenever a bundle is created, a function named fill_exe_queue is called. This
function uses the values obtained through the get_operands function to fill the queue of
the FU. Otherwise, if a bundle contains instructions that go to the same FU, it would be
impossible to execute them. Each of these two methods is called twice by every FU, with
a different flag indicating the targeted instruction.



4| Methodology 49

Algorithm 4.6 Execute stage logic
functionalUnits = FU0, FU1, FU2, ...;

get_dispatched_ins(0);
get_dispatched_ins(1);
for FU in functionalUnits do

FU.exe();
end for

function get_dispatched_ins(bundle_position);
for FU in functionalUnits do

FU.get_operands(bundle_position));
FU.fill_exe_queue(bundle_position));

end for
endfunction

When the process reaches its final step, the method Exe is invoked. It is in charge of
identifying the type of operation that needs to be executed based on the CTL_FU signal.

Algorithm 4.7 Exe (Single-Cycle non-pipelined)
case fu_ctl:

00000 : exe_add(fu_op1, fu_op2, fu_dest_rob_id);
00001 : exe_sub(fu_op1, fu_op2, fu_dest_rob_id);
...

endcase;

function exe_add(op1, op2, dest_rob_id)
res_value = op1 + op2;
res_rob_id = dest_rob_id;
res_ready = 1;

endfunction

function exe_sub(op1, op2, dest_rob_id)
res_value = op1 - op2;
res_rob_id = dest_rob_id;
res_ready = 1;

endfunction
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In the case of a single-cycle operation, the method generates the output result, whereas, for
multi-cycle operations, the pipeline progresses, writing the corresponding output onto the
FUs output registers. Once the operation is finished, the corresponding FUs’ result_ready
flags are asserted by the method.
What is reported above in Algorithm 4.7 is an example of the pseudocode for a simplified
Exe method. This structure can be extended to cover other cases as needed. To achieve
the Multi-Cycle pipelined FUs, FIFO-like buffers are used. Algorithm 4.8, reported below,
is used to mimic the progress of the pipeline.

Algorithm 4.8 Exe (Multi-Cycle pipelined)
case fu_ctl:

00000 : exe_add(fu_op1, fu_op2, fu_dest_rob_id);
...
res_value = value_fifo[read_cnt];
res_rob_id = dest_rob_id_fifo[read_cnt];
res_ready = 1;
read_cnt = read_cnt + 1;

endcase;

function exe_add(op1, op2, dest_rob_id)
value_fifo[write_cnt] = op1 + op2;
dest_rob_id_fifo[write_cnt] = dest_rob_id;

endfunction

Once the Execute stage produces a result, the commit process is managed by a Priority
Multiplexer, which verifies every FU that has the res_ready signal asserted and writes
the result of two operations on the Reorder Buffer (ROB). If more than two operations
are finished in the same clock cycle, the remaining ones are stored in a small buffer and
become the next ones to be committed. When more than two operations are ready to be
committed, the priority is given to load and store instructions to speed up the availability
of results. These results are often required by subsequent instructions. The algorithm
outlines the high-level description of what happens for each of the two committing oper-
ations.
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Algorithm 4.9 Priority Multiplexing
if LSU.res_ready then

rob.data[LSU.res_rob_id] = LSU.res_value;
rob.res_ready[LSU.res_rob_id] = LSU.res_ready;
buffer = other_FUs_ready_results;

else if !buffer.empty then
rob.data[LSU.res_rob_id] = buffer.res_value;
rob.res_ready[LSU.res_rob_id] = buffer.res_ready;
buffer = other_FUs_ready_results;

else if FU0.res_ready then
rob.data[FU0.res_rob_id] = FU0.res_value;
rob.res_ready[FU0.res_rob_id] = FU0.res_ready;
buffer = other_FUs_ready_results;

else if FU1.res_ready then
rob.data[FU1.res_rob_id] = FU1.res_value;
rob.res_ready[FU1.res_rob_id] = FU1.res_ready;
buffer = other_FUs_ready_results;

else if FU2.res_ready then
rob.data[FU2.res_rob_id] = FU2.res_value;
rob.res_ready[FU2.res_rob_id] = FU2.res_ready;
buffer = other_FUs_ready_results;

else if FU3.res_ready then
rob.data[FU3.res_rob_id] = FU3.res_value;
rob.res_ready[FU3.res_rob_id] = FU3.res_ready;
buffer = other_FUs_ready_results;

end if
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4.1.6. Re-order Buffer and Commit Router

The Reorder Buffer (ROB) is a FIFO-like structure with a parametric depth (ROB_DEPTH).
Entries are composed of multiple fields, described in table 4.3. Its main function is to
commit instructions towards either the Register File or the Data Memory.

Figure 4.9: High-level view of the hardware Reorder Buffer stage of the superscalar CPU

Table 4.3: Structure of a Reorder Buffer entry.

ROB entry field name Logic Length (bits) Explanation

ins_pc PC_LEN Instruction PC

res_ready 1 ’1’ if the result is ready

res_value ARCH_LEN Value of the result

res_f_noti 1 ’0’ if result is integer

res_addr REG_IND_LEN Address of the destination register

is_store 1 ’1’ if instruction is a store

store_amt 2 Amount of stored bytes

mem_dest MEM_IND_LEN Data Memory address

exc 1 ’1’ if exception triggered

exc_code EXC_CODE_LEN Type of exception

Legend: PC_LEN length of the PC, ARCH_LEN architectural length,
REG_IND_LEN length of the RF addresses, MEM_IND_LEN length of the Data

Memory addresses, EXC_CODE_LEN length of the exception code.
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First of all, the values produced by the Execute stage are committed on the ROB thanks
to a sequential logic which checks for the validity of the result and writes it in the
dest_rob_id cell, asserting the corresponding res_ready flag. All the values and ac-
cessory signals necessary for the commit on ROB are included in the commit_on_rob_0
and commit_on_rob_1 input ports for simplicity of representation.

Algorithm 4.10 Commit on ROB
if commit_enable[0] then

rob.res_value[dest_robid_0] <= commit_on_rob_0_data;
rob.res_ready[dest_robid_0] <= 1’b1;

end if
if commit_enable[1] then

rob.res_value[dest_robid_1] <= commit_on_rob_1_data;
rob.res_ready[dest_robid_1] <= 1’b1;

end if

The Reorder Buffer (ROB) plays a pivotal role in maintaining program order in Out-of-
Order completion architectures. Its primary role is to commit the results of completed
instructions by using signals such as rob.data[head] and rob.data[head+1]. Consequently,
the ROB must generate the result and additional information for the head instructions
inside it. This is accomplished through a sequential logic that verifies if the res_ready flags
of the head cells are asserted and propagates everything needed for the commit towards
a module called the Commit Router. Each Commit Router directs one of the committing
instructions towards the Register File or the Data Memory, depending on the is_store
flag of the ROB entry. It drives the output signals to_rf_commit_0, to_rf_commit_1,
to_mem_commit_0, and to_mem_commit_1.
To simplify the explanation, Algorithm 4.11 models the production of the committing
instructions from the ROB and the routing process. Additionally, there is a combinatorial
logic used to send the value requested by the double read operands in the Issue stage.
This logic must be realized in a combinatorial way to obtain the exact value at the same
clock cycle the data is required, which results in a higher area occupation.
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Algorithm 4.11 Commit from ROB
if rob.res_ready[head] then

if !is_store_0 then
to_rf_commit_0 <= rob.data[head];

else
to_mem_commit_0 <= rob.data[head];

end if
end if
if rob.res_ready[head + 1] then

if !is_store_1 then
to_rf_commit_1 <= rob.data[head+1];

else
to_mem_commit_1 <= rob.data[head+1];

end if
end if

4.1.7. Register File

The last pipeline stage of the superscalar CPU is the Register File (RF), which stores
the values of all the registers required by the ISA.

Figure 4.10: High-level view of the hardware Register File stage of the superscalar CPU

The dimensions of the RF (register file) are defined by different parameters, in particu-
lar: REG_IND_LEN defines the RF depth, and ARCH_LEN its data field width. In
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addition to this basic field of the RF, an extension is added to allow renaming. For this
purpose, ROB_IND_LEN + 2 bits are added to the initial ones, creating the BUSY and
B_BUSY fields. These are needed to store the ROBid of the operation targeting that
register and to indicate whether the register value is updated or not.

Figure 4.11: Structure of the extended Register File

Upon the ROB committing an instruction on the RF inputs denoted by to_rf_commit_0
and to_rf_commit_1 and subsequently receiving a valid assertion, a routine is initiated.
The first step of this routine involves the data being committed onto the RF cell, fol-
lowing which the renaming pertaining to the targeted address is reversed. This process
effectively clears all RF extensions associated with the aforementioned renaming.

Algorithm 4.12 Commit on RF
if valid_0 then

data[dest_addr_0] <= res_value_0;
end if
if valid_1 then

data[dest_addr_1] <= res_value_1;
end if

To ensure a responsive and accurate renaming mechanism, a sequential logic has been
implemented to manage both the execution and reversal of register renaming. This
is necessary because a committed instruction may attempt to undo the renaming of a
cell that has been targeted by the fill queue during the same clock cycle. Additionally,
two asynchronous combinatorial networks have been added to the Register File to fulfill
operand requests from the double read operands logic in the Issue stage (req_ins_0_op
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and req_ins_1_op) and the jump logic of the Decode stage (from_decode_op). These
networks transmit the busy status and value of requested registers and can be found at
the bottom-left part of Figure 4.1. The busy status and register values are communicated
to the Issue stage through the ins_0_op, ins_1_op, and to_decode_op outputs. While
this allows for the resolution of a read request in a single clock cycle, it also becomes the
primary constraint on the maximum attainable frequency.

4.1.8. Data Memory

Regarding the Data Memory, the only detail worth discussing is the eviction of the Dis-
ambiguation Buffer cell during the commit of a store instruction. The Algorithm that
follows is a high-level representation of the routine performed by the testbench to commit
a store instruction on the Data Memory.

Algorithm 4.13 Commit on Mem
function commit_on_mem(res_value, mem_dest, st_amt)

case st_amt
1 :
mem[mem_dest] = res_value[7:0];
2 :
mem[mem_dest] = res_value[7:0];
mem[mem_dest + 1] = res_value[15:8];
4 :
mem[mem_dest] = res_value[7:0];
mem[mem_dest + 1] = res_value[15:8];
mem[mem_dest + 2] = res_value[23:16];
mem[mem_dest + 3] = res_value[31:24];
endcase
clear_disambbuff (mem_dest);

endfunction

function clear_disambbuff(mem_dest)
for i = 0, i < DISAMB_LEN, i++ do

if mem_dest == ISSUE.disambbuff[i] then
ISSUE.disambbuff[i] = 0;

end if
end for

endfunction
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4.2. Examples of execution

This section presents examples of execution to better illustrate the features and capabili-
ties of the superscalar CPU, as well as its limitations. The examples are divided into three
subsections, based on the presence of data dependencies and jump instructions, whether
conditional or unconditional. Multiple graphs are presented to describe the pipeline’s
temporal advancement in terms of clock cycles (cc). The "Ideal" graphs show a theoret-
ical behavior where RAWs (Read After Write) are not considered a problem, while the
"Real" graphs account for the delay created to resolve these dependencies.
Two CPUs are compared: a single-issue scalar and a dual-issue superscalar. Both have
two single-cycle ALUs and one three-cycle pipelined LSU functional units. The results of
a FU become available after the end of the Execute stage. The only difference between
the architectures is the size of the instruction bundle, which is one for the scalar and
two for the superscalar. This allows for a coherent comparison, highlighting the possible
benefits gained by going superscalar.
Regarding the examples featuring conditional or unconditional jump instructions, it must
be noted that every branch is considered to have its operands ready immediately, in every
case where the values are not produced by any reported instruction, leading to a penalty
of only 2 cc. In reality, this is only the base value of the penalty and is extended by
the number of clock cycles needed to make the required operands become available. This
assumption is made for simplicity of discussion and doesn’t change the behavior of the
architectures in any way. Also, every register involved in a branch condition is considered
to have a value such that every branch condition is true. This simplification, while it
doesn’t faithfully represent every possible scenario, is useful to show particular behaviors
in the following examples.
Finally, arrows between instructions are used to highlight the data dependencies, while
stalls are indicated by "(s)" following the name of the stage where the instruction is
stalled.
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4.2.1. Examples with no data dependencies

1. In this example, no dependencies among instructions are taken into account. As
a result, the superscalar architecture gains an advantage from dual-issue and the
immediate dispatch of additional instructions to the EXE stage. This translates
into a two-clock cycle execution improvement for the superscalar architecture.

Figure 4.12: Example 1.1 - Independent single-cycle instructions
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2. In this particular case, the code contains an instruction that takes multiple cycles to
execute, but there are no data dependencies. In the "SUPERSCALAR" execution,
the instruction 1 writes its result to the ROB at cc 4 before instruction 0, which
writes to the ROB at cc 6. However, the Reorder Buffer ensures that the correct
program order is maintained, resulting in both instructions committing together to
the RF at cc 7. Thanks to the dual-issue property and lack of data dependencies in
the code, the superscalar execution finishes two clock cycles earlier than the scalar
one.

Figure 4.13: Example 1.2 - Independent single-cycle and multi-cycle instructions
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4.2.2. Examples with data dependencies

1. This example is an extension of Example 1.1 (refer to Figure 4.12). In this case, each
instruction has a Data Dependence with the previous one. This scenario demon-
strates the limitation of the superscalar architecture when dealing with multiple
consecutive RAW dependencies. Consequently, the improvement obtained through
the dual-issue capability is nullified, as shown in the "SUPERSCALAR REAL"
graph.

Figure 4.14: Example 2.1 - Single-cycle instructions with data dependencies
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2. In this example, there is a data dependence between instruction 0 and instruction 1
in the code. As a result of the dependence, both scalar and superscalar executions
experience a decrease in performance. However, the superscalar architecture has a
dual dispatch capability that allows it to dispatch both instruction 1 and 2 at cc
6, as shown in the "SUPERSCALAR REAL" graph. This leads to a 1-clock cycle
improvement compared to the "SCALAR REAL".

Figure 4.15: Example 2.2 - Single-cycle and multi-cycle instructions with data dependen-
cies
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3. This example explains the behavior of the Disambiguation Buffer. In an ideal sce-
nario, instruction 1, which uses the destination address of the previous store as a
base for the "lw" instruction, can be issued and dispatched without considering
any memory disambiguation problems. However, in reality, it needs to be stalled
until the WB (Write Back) of the store is completed. As a result, in the "SU-
PERSCALAR REAL" graph, instruction 1 is stalled for 5 cc (clock cycles) in the
IS (Instruction Scheduler), waiting for the completion of instruction 0. Although
this substantial reduction in performance is not ideal, it is necessary to ensure the
correct execution of the instructions.

Figure 4.16: Example 2.3 - Store and load instructions targeting the same memory address
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4.2.3. Examples with branches

1. In this example, we observe the behavior of the front end when the first instruction
of a fetched bundle is a branch. Figure 4.17 illustrates that when instruction 0 is a
branch, instruction 1 is flushed when the jump instruction is decoded at cc 1 of the
"SUPERSCALAR" graphs. Once the time needed for the jump to be solved (2 cc)
has elapsed, the pipeline restarts with the IF of the instruction determined by the
PC calculated by the "NEXT PC LOGIC" present in the ID.

Figure 4.17: Example 3.1 - Branch as first instruction of the bundle
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2. In the current scenario, the branch instruction comes second in the fetched bundle,
which is made up of instructions 0 and 1. As depicted in Figure 4.18, the first
instruction 0 is sent to the ID stage, which stores instruction 1 because it is a branch.
After 1 cycle, the stored instruction is processed alone, and the Jump Calculation
begins, resulting in instruction 2 being flushed at cycle 3. The pipeline restarts at
cycle 4 with the correct PC, but as shown in the "SUPERSCALAR REAL" graph,
there is no advantage to using a superscalar architecture over a scalar one since
there is only one LSU responsible for handling load and store operations.

Figure 4.18: Example 3.2 - Branch as second instruction of the bundle, with no data
dependencies
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3. In this example, the first set of instructions performs a task that generates a result
required by the subsequent branch instruction. As shown in Figure 4.19, the branch
instruction has to pause in the ID stage because it can’t be executed until the
previous instruction produces the necessary result. The penalty for this jump is
more than the base 2 clock cycles since it takes an additional 2 cc to produce the
result required for the branch instruction.

Figure 4.19: Example 3.3 - Branch as second instruction of the bundle, with data depen-
dence
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4.3. Spike-based Verification Infrastructure

A functional ISA simulator is a software application capable of executing a compiled
program and simulating the corresponding machine state step-by-step. It doesn’t simulate
the whole pipeline behavior at every clock cycle, but only the commits. Every simulator
step exposes a new instruction result, following the program order of the application.
The objective is to verify the correctness of execution of the architecture described in
section 4.1. To achieve this objective, three approaches were considered: checking the
whole machine state at the end of execution, checking it at periodic checkpoints, or
monitoring it at every instruction commit.
To obtain automatic verification during a simulation, we had to establish communication
between the ISA simulator and the testbench. This communication was established using
a socket between the testbench and the ISA simulator. This made it possible to send
commands from the testbench and receive useful data back to perform the verification
routine. The details about the verification process will be described in section 4.3.3, while
the implemented functionalities will be discussed in subsection 4.3.2.

Figure 4.20: High-level view of the communication used for the verification functionalities

4.3.1. Choice of the ISA simulator

We opted to use Spike, a simulator for RISC-V ISA [9], as it is considered to be the
golden model for this Instruction Set Architecture. Spike is an open-source functional
simulator and is based on the GNU Toolchain for RISC-V [10]. It is written in C++ and
can be modified as per our requirements. Spike can run programs via a Proxy Kernel or
as bare-metal applications. By default, it executes the input executable from beginning
to end. With the enable_commitlog directive, it is possible to expose the details about
the committed instruction step-by-step. Spike also supports a debug mode, in which the
simulator accepts commands such as the number of steps it needs to run or which values
to expose.
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4.3.2. Customization of the ISA simulator

In order to enable interactivity, the Spike debug mode had to undergo some modifications
to allow it to receive commands from a client and send back necessary data. The sim-
ulation is launched from the terminal and Spike sets up a socket communication on the
server side to wait for the client connection. The native interactive() function, already
present in the base version of the simulator, now waits for commands communicated by
the client instead of listening to the terminal. When a run command is received, the ex-
ecution proceeds by the specified number of steps, and after each step, Spike sends back
the disassembly of the committed instruction and the commitlog, which includes the PC,
instruction encoding, destination register, and result.
Additionally, the simulator has other native utility functionalities such as the reg and mem
commands. These commands respectively provide the content of a targeted register and
memory location. These values are sent to the client in a single communication, without
the need for disassembly, as they do not imply a committing instruction.
We also added a new functionality called expose_rf, which exposes the whole RF by
printing it on the terminal and sending the register values to the client one-by-one. The
client.cpp file contains a set of functions used to send the commands described above and
control the simulation.

4.3.3. Verification

After successfully establishing communication on Spike’s side, we needed to cross-compile
the client.cpp file using the cross-compiler in Vivado TCL console, as described in the
reference user guide [13]. This allowed us to use the functions of the C++ client in the
testbench, enabling control of Spike during the simulation. The functions we used were
‘connect_client ‘ to establish communication with the server, client_send to send specific
commands, and client_disassembly and client_read to receive data from the server.
To keep the testbench organized, we created a package that defined some SystemVerilog
(SV) functions. These functions were based on the ones in the C++ client, but also took
care of manipulating the sent and received data. After receiving the commit information,
we converted the ‘char* ‘ arrays into strings and then into logic values, making them easily
comparable to the architectural signals.
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Figure 4.21: Scheme of the Verification process

To perform the verification, first of all, Spike must be started in interactive debug mode
and told which application to run. It will then wait for a connection with the client.
Then, in the testbench, the architectural instruction and data memory are initialized with
the content of the application objdump, then the client-side connection is established with
the DPI function connect_client. After the architecture and the functional Execute have
simulated one clock cycle, the TB checks if one or two new commits occurred. If they did,
it tells Spike to simulate one step through the spike_step SV function, and then compares
the PC, destination and result coming from the golden model with the ones produced by
the architecture, interrupting the simulation in case of a mismatch in any of them. In case
of a store instruction, the TB also calls the spike_mem SV function, which tells Spike to
expose the content of the memory address that was just written. This must be done since
the commitlog for stores is not automatically produced.
A final check is for equality between the committed PC and a target final PC, a parameter
that must be set according to the dump of the executed application: if they match, the
simulation ends and the verification is successful.

Figure 4.22: Temporal advance of the verification process
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The focus of this chapter is on the experimental results obtained using a specific setup as
detailed in Section 5.1. Subsequently, these results are discussed and analyzed to derive a
comprehensive view of the quality metrics attributed to the presented CPU. The analysis
of these results provides crucial insights that are indispensable for a better understanding
of the CPU’s capabilities. The following sections provide a detailed account of the analysis,
which aids in the examination of the CPU’s performance, reliability, and overall quality.

5.1. Experimental setup

The design is written in SystemVerilog. Synthesis and implementation are carried out on
Vivado 2022.2, targeting an AMD Xilinx Artix-7 75 FPGA (xc7a75tftg256-1), which pro-
vides 47200 Lookup Tables (LUTs), 94400 Flip-Flops (FFs), 105 BlockRAMs (BRAMs)
and 180 Digital Signal Processing units (DSPs). The target frequency of the implementa-
tion is 77 MHz. For the verification, the used Spike version is 1.0.0. Everything is hosted
by a machine running Linux OS distribution Ubuntu 22.04.
All the bare-metal elf executables were compiled using the riscv32-unknown-elf-gcc com-
piler based on the GNU RISC-V 32-bit Toolchain [10] and were provided by the official
riscv-test [12] repository or WCET website [14]. The utilized benchmarks are multiply,
towers and median from the riscv-test repository for verification, while for the perfor-
mance evaluation bsort, cnt, crc, fdct, jfdctint, prime, select, fac, janne_complex, lcdnum
and matmult from the WCET suite.
Regarding the interface between Vivado and Spike, DPI(Direct Programming Interface)
is used and all the C functions are compiled through the xsc compiler. For the evalua-
tion, the chosen configuration of the pipeline parameters is the following: RV32I base ISA
with M and F extensions, 2 ALUs with one cycle of latency, 1 MULDIV with 5 cycles of
latency, 1 FPU with 5 cycles of latency, 1 LSU with 3 cycles of latency, 16 entries deep
Issue Queue, 64 entries deep ROB, 32 bit wide and 210 entries deep Instruction Memory,
32 bit wide and 216 entries deep functional Data Memory. For the rest of this Chapter,
the configuration of the architecture described in Section 4.1 is referred to as ViVit.
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To initialize the architectural Instruction Memory, the 32-bit encodings and Program
Counters present in the objdump of the target executable are utilized. For the purpose of
verification, the corresponding bare-metal application is executed by Spike in interactive
debug mode, as described in Section 4.3.3. Several metrics are taken into consideration
to evaluate the overall quality of the architecture.

• Perfomance
The evaluation of performance is determined by the total execution time and the
percentage of instructions that utilize the superscalar feature of the architecture.
These values are generated within the testbench and are subsequently presented on
the TCL console upon completion of the execution process.

• Area
The process of area evaluation is conducted by Vivado during the implementation
phase, where the primary focus is on the utilization of resources such as LUTs
and FFs. This phase is critical in analyzing the overall resource consumption of a
digital circuit and is an essential step in ensuring optimal performance. By providing
comprehensive data on the utilization of resources, Vivado enables designers to make
informed decisions and to optimize their designs for maximum efficiency.

• Power
Upon completion of the implementation process, a power estimation report is gener-
ated, which not only highlights the total value but also provides detailed information
on the power consumption of individual blocks. This report offers valuable insights
into the performance of the system and helps in identifying areas that require opti-
mization to achieve energy efficiency.

Two different sets of benchmarks are used for different purposes.
The verification of the correctness of the architecture, as described in section 4.3.3, is
based on multiple applications part of the official riscv-tests [12] suite. On the other
hand, the performance evaluation is done executing the WCET [14] benchmarks.
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5.2. Experimental results

This section presents an analysis and explanation of the numerical results derived from
simulation, synthesis, and implementation.

5.2.1. Performance results

To obtain performance results, Vivado simulation can be used. The simulation results
for each of the benchmarks from the WCET suite are presented in the tables below. For
Table 5.1, a method similar to the verification process is used, except that Spike is not
used to verify every instruction. Instead, a counter on the testbench is incremented at
every clock cycle.

Table 5.1: Performance of ViVit (Superscalar) in terms of number of clock cycles

WCET ViVit

bsort100 5699

cnt 7975

crc 65796

fdct 2438

jfdctint 3761

prime 14303

select 2505

fac 538

janne_complex 487

lcdnum 379

matmult 43330

In order to examine the Worst Case Execution Time (WCET), several benchmarks were
utilized as described in the [14]. The benchmarks provided information on the total
number of commits, single and double commits, and the percentage of double commits in
relation to the total. This information allowed for an assessment of the "superscalarity"
of the system. As shown in Table 5.2, the majority of the benchmarks were able to exploit
the superscalar features of the architecture, with the exception of the prime benchmark
which was hindered by its nested data dependencies and jumps, thereby preventing the
use of the dual-issue and dual-commit functionality. This emphasizes the importance of
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a significant amount of instruction level parallelism in the program code for a superscalar
architecture to be beneficial. In the case of the prime benchmark, only 3x2 instructions
were able to exploit the double commit feature.
Conversely, the matmult WCET benchmark had the highest percentage of instructions
that exploited the double commit feature over the total, with a percentage of 72.7%. This
was due to the code’s suitability for a dual-issue architecture, allowing for the creation of
bundles of independent instructions in the majority of cases. This benchmark created a
scenario where a dual-issue CPU could exploit its superscalar feature, obtaining the best
percentage between the reported applications.
For the remaining benchmarks, the percentage of double commits oscillated around an
average value of 47%. This meant that the architecture was able to fully exploit the
dual-issue and dual-commit features almost half of the time.

Table 5.2: Numbers of commits and percentage of exploitation of the superscalar property

WCET Total Single Double Double/Tot

bsort100 1237 617 310 50,1%

cnt 2006 872 567 56,5%

crc 21186 11986 4600 43,4%

fdct 1363 637 363 52,3%

jfdctint 1748 860 444 50,8%

prime 1754 1748 3 0,3%

select 845 533 156 36,9%

fac 124 76 24 38,7%

janne_complex 77 57 10 25,9%

lcdnum 101 79 11 21,7%

matmult 12156 3312 4422 72,7%
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5.2.2. Power consumption

The post-implementation feature "Report Power Utilization" in Vivado offers a useful
tool for analyzing power consumption of individual modules. By generating a hierarchical
view, this feature provides a detailed breakdown of power consumption relative to the
total CPU power budget. With percentages provided for each module, this report can
help identify areas of high power consumption and inform power management decisions.

Table 5.3: Power estimation after implementation. The percentages are referred to the
total CPU power budget.

DUT Module Total [mW] Module/CPU [%]

CPU 251

Fetch 1 0,4%

Decode 4 1,6%

Issue 46 18,4%

ROB 160 63,9%

RF 40 15,7%

In order to identify the module that has the highest power consumption in the processor,
each module’s power consumption was analyzed. As per the results presented in Table
5.3, it is evident that the Reorder Buffer consumes the highest power between the stages,
accounting for 63.9% of the total power budget with a power consumption of 160 mW.
The structure of the Reorder Buffer is the primary reason for the high power consumption
of this module. Its entries are composed of various fields, each of which is accessible from
different logic networks. For instance, the fill queue of the Issue stage writes the desti-
nation, program counter, and store amount, while the Execute stage commits a result.
The Issue stage accesses these results for the double read operands logic. The Commit
Router, along with the commit on ROB and commit from ROB, does not significantly in-
fluence the power metrics. Furthermore, the double read operands combinatorial network
contributes significantly to this high power consumption.
With an average power consumption of 40 mW, the Register File is the second module
with the highest power consumption. The power consumption of the Issue stage, which is
46 mW, is highly impacted by the double read operands logic and its correlated combina-
torial networks. The Issue stage’s renaming logic and combinatorial network contribute
significantly to the power consumption of the Register File. The renaming logic must per-
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form many nested checks to prevent problems in limit cases where an instruction commits
to a register that is being renamed.
The Fetch and Decode stages have a combined total power consumption of 5 mW, which
is significantly lower than the other modules in the processor. The simplicity of the logic
nets implemented in these stages led to this low power consumption, despite their exten-
sion.
In summary, the Reorder Buffer and Register File are the modules with the highest power
consumption in the processor, with the double read operands logic and combinatorial net-
works contributing significantly to their power consumption. On the other hand, the Fetch
and Decode stages have a significantly lower power consumption due to the simplicity of
their implemented logic nets.

5.2.3. Area and timing Results

While simulation has the ability to provide performance results, the quality metrics that
are of utmost importance, such as resource utilization and timing, can only be extracted
after synthesizing and implementing the design using Vivado. To obtain these metrics,
we have created a table that displays all the results, with a particular emphasis on the
percentage of target FPGA utilization. We began by extracting the number of overall
CPU resources utilized. Subsequently, we conducted an out_of_context implementation
for each module to collect the same set of data. The Worst Negative Slack (WNS) of each
module was obtained using the same CPU clock frequency, which is reported in the Fmax
column.

Table 5.4: Resource and Timing report after implementation. The percentages are referred
to the total number of resources available on the target FPGA.

DUT Module LUT FF WNS Fmax

CPU 26298 (55,7%) 13593 (14,4%) 0.594 ns 77 MHz

Fetch 299 (0,6%) 322 (0,3%) 6.196 ns

Decode 973 (2,1%) 302 (0,3%) 5.940 ns

Issue 2524 (5,3%) 2134 (2.3%) 1.626 ns

ROB 16204 (34,3%) 9491 (9.6%) 2.729 ns

RF 6233 (13,2%) 1280 (1,4%) 3.962 ns

The data presented in Table 5.4 indicates a significant utilization of LUTs by the ROB.
This can be primarily attributed to the two complex combinatorial networks that facilitate
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communication with the Issue stage. One of these networks is responsible for retrieving
values during the Read Operands, while the other inserts PC, destination, and store
amount during the fill queue. It is noteworthy that these networks must access every cell
of the ROB in a single clock cycle without a synchronous read port, which significantly
increases their complexity.
Regarding the utilization of FFs, it is mainly due to the ROB’s structure itself, which
consists of different and sometimes wide fields. A portion of the FFs is also used to
implement the Issue Queue in the Issue stage. The high number of LUTs is justified by
the presence of three heavy combinatorial networks. These include one used to gather
operands from the RF and ROB, one to perform and enable renaming in the extension
fields of the Register File, and the last one to implement the double read operands logic
itself.
In terms of the RF, FFs are mainly utilized to implement the extended Register File. The
utilization of LUTs is not due to the logic used for the commit of the instructions but to
the net used to perform enabling and disabling of the renaming. It is worth noting that
the CPU does not use any DSP and BRAM resources.
The CPU can run up to a maximum frequency of 77 MHz, with a Worst Negative Slack
(WNS) of 0.594 ns. The Issue module represents the critical path for the architecture,
having a large combinatorial net that limits the timing performance of the stage. The
total CPU WNS is much lower than that of the limiting stage since it considers the totality
of the interconnections between blocks.
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6| Conclusions

The present thesis delves into the intricate design of a superscalar RISC-V dual-issue CPU
and examines its potential for significant advancements in modern processor design. The
architecture’s ability to execute two instructions per clock cycle provides an unprecedented
level of efficiency gains and underscores the significance of adopting the RISC-V instruc-
tion set architecture. The research offers insightful observations on optimizing parallelism
and resource utilization, paving the way for enhanced performance in future computing
systems. The ViVit CPU aims to address a specific market need for a high-performance
processor with medium-low area occupation and power consumption, complemented by its
custom verification tool and infrastructure. The CPU is the result of a well-crafted combi-
nation of hardware and software techniques, optimized for performance, power efficiency,
and functionality. As a future improvement, it is suggested that the hardware implemen-
tation of the Execute stage and compiler technologies be refined for better exploitation
of the dual-issue capabilities. Incorporating advanced branch prediction techniques and
an enhanced instruction fetch mechanism can reduce pipeline stalls and improve over-
all execution efficiency. Further, employing more sophisticated Out-of-Order execution
mechanisms and advanced scheduling algorithms can unlock greater parallelism within
the processor, leading to improved performance in diverse computational workloads. In
addition, exploring the possibility of specialized accelerators or co-processors for specific
tasks can augment the overall capabilities of the superscalar RISC-V dual-issue CPU. This
can enhance the CPU’s performance in specific applications while minimizing power con-
sumption. In future developments, power efficiency and scalability are crucial aspects that
need to be taken into account. Techniques for dynamic voltage and frequency scaling, as
well as advanced power gating strategies, can contribute to creating more energy-efficient
processors without compromising performance. The continuous evolution of the super-
scalar CPUs necessitates ongoing research and development efforts. Future improvements
should address both hardware and software aspects to unlock the full potential of this
architecture and meet the ever-growing demands of modern computing. By considering
all aspects of the CPU’s design and development, it can be ensured that it remains a
relevant and highly sought-after technology for years to come.
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