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Abstract

Tasks that requires decision-making under uncertainty are usually linked
with the well-known exploration-exploitation dilemma, i.e., the search for a
balance between exploiting the best possible option given the current knowl-
edge or exploring new alternatives for potential future benefit. The Multi-
Armed Bandit (MAB) framework offers an easy to use and theoretically
grounded option to solve this dilemma, and has been applied successfully in
a wide range of real-world problems. In this setting, an agent must choose,
at each time instant, among a finite set of actions, and gains an instan-
taneous reward drawn from an unknown distribution corresponding to the
chosen action. However, a number of real-world scenarios are not cased in
the standard MAB formulation, due to the fact that the reward correspond-
ing to an action is gained over multiple time instants following the action.
To handle such a scenario, we formalize a variation of the MAB problem,
namely MAB with Persistent Reward (MAB-PR), we developed algorithms
capable to tackle the addressed problem, and analyzed them from a theo-
retical perspective. Finally, we performed a thorough experimental analysis
that demonstrate the effectiveness of the novel algorithms both on synthet-
ically generated data and real-world data, coming from two applications of
recommender systems and dynamic pricing.
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Sommario

I problemi di scelta sequenziale in condizioni di incertezza sono spesso legati
ad un importante dilemma strategico noto in letteratura con il nome di explo-
ration/exploitation dilemma. Ciò consiste nel trovare il giusto compromesso
tra scegliere opzioni promettenti sulla base della conoscenza acquisita sino
ad ora (exploitation), o esplorare nuove opzioni alternative allo scopo di ot-
tenere un possibile beneficio futuro (exploration). Il modello Multi-Armed
Bandit (MAB) esemplifica e affronta questo dilemma in modo semplice ma
con una solida base teorica, infatti, è stato applicato con successo ad una
vasta gamma di problemi reali. Nel modello MAB, un agente, ad ogni istante
temporale, deve selezionare un’azione da un insieme di alternative valide.
La scelta di un’azione fa sì che l’agente guadagni istantaneamente una ri-
compensa estratta da una distribuzione sconosciuta corrispondente all’azione
scelta. Tuttavia, un grande numero di scenari reali non sono rappresentati
dal tale modello poiché, nelle loro natura, la ricompensa derivante dall’azione
è percepita dall’agente in modo distribuito nel tempo successivo all’azione
stessa. Al fine di gestire tali scenari, abbiamo formalizzato una variante del
modello MAB chiamata MAB con Persistenza nella Ricompensa (MAB-PR),
sviluppato algoritmi specifici per tale modello e li abbiamo analizzati da un
punto di vista teorico. Infine, abbiamo condotto un’analisi sperimentale che
dimostra l’efficacia dei nuovi algoritmi introdotti sia in configurazioni con
dati generati sinteticamente, sia in configurazioni con dati reali derivanti da
due applicazioni di sistemi di raccomandazione e dynamic pricing.
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Chapter 1

Introduction

Sequential decision making under uncertainty is one of the most important
challenges within the research field of artificial intelligence, as it describes a
wide variety of real-world scenarios. In many everyday situations, an agent,
or a decision maker, has to choose between alternatives to achieve his/her
goals. These situations vary from daily routine activities, such as go to
work or watch a movie, to complex problems, such as financial investment
or web content optimization. In particular, in the former, an agent has
to decide how to reach the workplace, and therefore, everyday he/she will
choose whether to take the car or go by public transport. Similarly, the latter
consists in selecting the best items to display for a given user visit (i.e., page
view) from a set of available options. In any case, what makes decision
making such a difficult task is the uncertainty of the outcome of a decision.
Furthermore, the outcome of a decision is usually affected by external factors
unknown by the agent. For example, under certain circumstances, driving
to work is generally quicker than taking the train, but the traffic conditions
could easily invert the situation. In the same way, a particular web content
could drastically change its attractiveness due to an abrupt change in social
trends. The outcome of a decision, which is typically a reward, is revealed to
the agent only after the decision has been taken. In the examples mentioned
above, the reward can be seen as the time saved on a particular trip from
home to work, or as the click-through rate (CTR) obtained by an item shown
on a web page. More precisely, consider a sequential decision problem with
discrete time and a finite set of actions. At each time step, an agent acting in
this environment has to choose an action from the action set, which results
in a reward associated with taking that action at that time step. The goal
of the agent is to accumulate as much reward as possible over a certain time
horizon. To achieve this goal, the agent will learn how to make good actions
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2 Chapter 1. Introduction

using the information about rewards acquired from the past actions.
In studying sequential decision making problems it is usually assumed

that the reward acquired after an action taken by the agent is a real number
provided to the agent after the action has taken place. While this assumption
is suitable in many cases, it does not allow the description of a large number
of real-world scenarios. For example, consider the wide area of subscription-
based services. The subscription business model is a business model in which
a customer must pay a recurring price at regular intervals to use a service.
When a company running this kind of business, such as a digital streaming
platform, an online magazine or a telephone company, enters into a contract
with a new customer, it is not able to immediately see the entire reward
deriving from that action. This is because the reward is earned over time as
a sequence of received payments depending on the period the user remains
in the service, which is unknown at the beginning of the contract. Similarly,
in a user engagement optimization task, we are interested in selecting the
best user interface from a set of alternatives to maximize the time spent by
a user in our system. By the nature of the problem, immediately after a user
interface is proposed, the reward is unknown. Indeed, the reward is persis-
tently acquired during time according to the engagement of the user with
the system. Another example comes from a typical motivating application of
this research field which is the optimal design of clinical trials experiments.
Consider a realistic experiment with the aim to find the therapy, among a
set of alternatives, that maximizes the patient compliance for a particular
chronic illness. Patient compliance describes the degree to which a patient
correctly follows the therapy, hence after a therapy is assigned we need to
take in consideration the level of compliance, which is our reward, obtained
at each step of the therapeutic process. We are interested in the type of sit-
uations depicted by the examples above in which the reward deriving from
an action is spread over the time following the taking of the action.

This thesis studies sequential decision making problems which involve
persistent rewards, where with the term persistent reward we are referring
to a reward that is persistently gained by an agent for a certain timespan
after an action has been taken. We design and analyze algorithms tailored
for tackle this problem. In particular, we focus our attention on the per-
formance advantage resulting from the exploitation of partial information
obtained during the reward acquisition process. We consider a special case
of the general problem described above called Multi-Armed Bandit (MAB)
problem. We formalize a variation of the classical MAB setting, namely
Multi-Armed Bandit with persistent reward (MAB-PR), suitable for han-
dling persistent reward scenarios. The precise problem definition is given in
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the coming sections.

1.1 Thesis Structure

The Thesis is structured in the following way:

• In Chapter 2 we present the standard MAB problem and the grounding
concepts of the thesis by reviewing the relevant literature.

• In Chapter 3 we formally define the MAB-PR problem and the perfor-
mance measures adopted. We provide some motivating examples and
the modelling of two real-world scenarios.

• In Chapter 4 we present in details the novel algorithms developed and
their theoretical guarantees.

• In Chapter 5 we perform the experimental analysis of the novel al-
gorithms developed. We include the settings with both synthetically
generated and real data.

• In Chapter 6 we draw conclusions. We summarize the main results of
our work and we propose some future developments.
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Chapter 2

Preliminaries

In this chapter, we present the standard Multi-Armed Bandit problem and
the grounding concepts of the thesis by reviewing the relevant literature. In
the first section we present the motivating exploration-exploitation dilemma.
Then, we give a formal definition of the Multi-Armed Bandit problem and we
show the most important policies. Finally, in the last section, we introduce
the concept of persistent reward and we make some observations regarding
the state-of-the-art.

2.1 The Exploration-Exploitation Dilemma

A popular disease does not have certified treatments yet, to treat patients
suffering from it a doctor has to choose among two experimental therapies: a
red pill and a blue one. So far, the doctor has treated a total of ten patients,
giving the red pill to some of them and the blue pill to the others. Some
patients healed and some did not, as shown in figure 2.1.

The red pill seems to perform slightly better than the blue one since it
has an efficacy around 43% (three out of seven patients healed) while the
other 33% (one out of three patients healed). Which strategy should the
doctor follow to treat the next patients? Is it optimal to assign the red pill
ignoring the blue one? Or the poor efficacy of the blue pill is due to chance
and the doctor has to try it a few more times? How many more times? This
illustrates the so-called exploration-exploitation dilemma. If the doctor will
assign the red pill to the next patient we say that he/she is exploiting the
knowledge acquired so far, since, apparently, the red pill is performing better.
On the other hand, if the doctor will assign the blue pill to the next patient
we say that he/she is exploring the other therapy to acquire new knowledge,
to have a better understanding of the overall situation and possibly to dis-

5



6 Chapter 2. Preliminaries

Patients 1 2 3 4 5 6 7 8 9 10
Red Pill 7 7 3 3 3 7 7

Blue Pill 3 7 7

Figure 2.1: Therapy assignment to the first ten patients. Those marked with
3healed, the others marked with 7 did not.

cover that the blue pill is better than the red one. The dilemma is that
neither exploration nor exploitation can be pursued exclusively to find the
optimal action. The doctor must try both the available therapies, managing
the trade-off between exploration and exploitation, progressively favoring
the one that appear to be best. The exploration–exploitation dilemma has
been intensively studied by mathematicians for many decades, yet it remains
unresolved (Sutton and Barto, 2018). Finding the right balance between ex-
ploration and exploitation is at the heart of the Multi-Armed Bandit problem
presented in the following section.

2.2 The Multi-Armed Bandit Problem

Consider the following learning problem. You are faced repeatedly with a
choice among K different actions. After each choice you receive a numer-
ical reward generated by the environment you are interacting with. Your
objective is to accumulate as much reward as possible over some time pe-
riod, for example, over 1000 action selections, or time instants. In a casino,
this kind of sequential decision making problem is obtained when a player
is facing many slot machines at once (a “multi-armed bandit”), and must
repeatedly choose where to insert the next coin. The name bandit refers
to the colloquial term for a slot machine (“one-armed bandit” in American
slang). There are three fundamental formalizations of the bandit problem
depending on the assumed nature of the reward process: stochastic, adver-
sarial (Auer et al., 1995), and Markovian (Anantharam et al., 1987). In this
thesis, we focus our attention on the stochastic setting that was first studied
by Robbins (1952). In a stochastic Multi-Armed Bandit (MAB) problem, at
each time instant t, an agent must pull (choose) an arm (action) aj from
an arm set A = {1, . . . ,K}. Pulling an arm aj at time t produces a reward
drawn from an unknown distribution vj with unknown expectation µj . The
rewards are defined by random variables Xj,t for 1 ≤ j ≤ K and t ≥ 1,
where each j is the index of an arm. Successive pulls of arm aj yield rewards
Xj,t1 , Xj,t2 , . . . which are independent and identically distributed random
variables with unknown expectation µj ∈ (0, 1). The goal of an agent acting
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in this environment is to maximize the cumulative reward of its action after
n time steps, i.e.,

∑n
t=1Xat,t, where at is the arm pulled at time t. The

number of time instants n is called time horizon. At each time instant an
agent faces the exploration-exploitation dilemma since he/she has to choose
between the current best arm (exploitation) or trying other alternatives to
have a better knowledge of the environment, hoping to discover a better arm
(exploration). To achieve the goal of maximizing the cumulated reward, an
agent follows a policy, that is, an algorithm that chooses the next arm to pull
based on the sequence of past pulls and obtained rewards. In the following
subsections we present three of the most important policies for the stochastic
Multi-Armed Bandit problem.

UCB1

The policy UCB1 has a frequentist approach and it is based on the principle
of optimism in the face of uncertainty. This principle states that one should
act as if the environment is as nice as plausibly possible. For MAB, this
means using the data observed so far to assign each arm a value, called
upper confidence bound that with high probability it is an overestimate of
the unknown mean. An agent that follows the UCB1 policy, at each time
instant t, plays the arm aj that has the largest upper confidence bound uj(t).
The upper confidence bound uj(t) is computed as the sum of two terms:
the empirical mean reward obtained so far µ̂j(t) and the uncertainty of the
estimate, cj(t). Essentially, the empirical mean reward µ̂j(t) represents the
exploitation term of an arm: it says exactly what we obtained so far, when
the arm is played it increase or decrease according to the obtained reward.
On the other hand, the uncertainty cj(t) =

√
2 ln t
Tj(t) , where Tj(t) is the number

of times that the arm aj has been pulled up to time t, gives a contribution
in term of exploration since it increases slowly as long as the arm is not
pulled, then, as soon as the arm is pulled, it reduces more drastically. The
pseudo-code of the UCB1 policy is depicted in Algorithm 1. The first K
instants form the initialization phase where each arm is played once.

Auer et al. (2002) provided a theoretical guarantee for the policy UCB1.
Given any sub-optimal arm aj , it has been proved an upper bound on
E[Tj(n)], namely, the expected number of times a policy pulls the sub-
optimal arm aj up to time n.

Theorem 1. If policy UCB1 is run over a stochastic MAB setting, the ex-
pected number of pulls of a sub-optimal arm aj after n runs is at most:

E[Tj(n)] ≤ 8 lnn

∆2
j

+ 1 +
π2

3
,
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Algorithm 1 UCB1

1: for t ∈ {1, . . . ,K} do . init phase
2: pull arm at
3: end for
4: for t ∈ {k + 1, . . . , n} do . loop phase
5: for j ∈ {1, . . . ,K} do
6: compute µ̂j(t)
7: cj(t)←

√
2 ln t
Tj(t)

8: uj(t)← µ̂j(t) + cj(t)

9: end for
10: pull arm ai such that i = arg maxj uj(t)

11: end for

where ∆j = µ∗ − µj and µ∗ is the expected reward of the optimal arm.

Thompson Sampling

Thompson Sampling (TS) is a policy that adopts a Bayesian approach. It
was introduced by Thompson (1933) for the Bernoulli Bandit, and general-
ized by Agrawal and Goyal (2012) for the general stochastic Bandit. The
basic idea is to assume a simple prior distribution on the parameters of the
reward distribution of every arm, and at any time instant, play an arm ac-
cording to its posterior probability of being the best arm. For simplicity, we
provide the details of the Thompson Sampling algorithm for the Bernoulli
Bandit, i.e. when the rewards are either 0 or 1, and for arm aj the proba-
bility of success (reward = 1) is µj . We assume Beta distribution as priors
because it turns out to be a very convenient choice in this setting. Indeed,
Beta distribution is useful for Bernoulli rewards because if the prior is a
Beta(α, β) distribution, then after observing a Bernoulli trial, the posterior
distribution is Beta(α + 1, β) or Beta(α, β + 1), depending on whether the
trial resulted in a success or failure, respectively. The TS algorithm initially
assumes arm aj to have prior Beta(1,1) on µj , which is equivalent to the uni-
form distribution. At each time t, having observed Sj(t) successes and Fj(t)
failures, the distribution on µj are updated as Beta(Sj(t),Fj(t)). Then, for
each arm aj , it is sampled θj from the posterior distributions of µj , and the
arm having the largest θj is pulled. The exploration in Thompson Sampling
comes from the randomisation. If the posterior is poorly concentrated, then
the fluctuations in the samples are expected to be large and the policy will
likely explore. On the other hand, as more data is collected, the posterior
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Algorithm 2 Thompson Sampling

1: for j ∈ {1, . . . ,K} do . init phase
2: Sj ← 1, Fj ← 1

3: end for
4: for t ∈ {1, . . . , n} do . loop phase
5: for j ∈ {1, . . . ,K} do
6: sample θj(t) from the Beta(Sj ,Fj) distribution
7: end for
8: pull arm ai such that i = arg maxj θj(t) and observe reward rt
9: if rt = 1 then Sj ← Sj + 1 else Fj ← Fj + 1 end if

10: end for

concentrates towards the true value and the rate of exploration decreases.
The randomness of TS complicates a lot the theoretical analysis and a log-
arithmic upper bound on E[Tj(n)], the expected number of times a policy
pulls the sub-optimal arm aj up to time n, has been proved by Agrawal and
Goyal (2012) years later the original formulation. The pseudo-code of the
TS policy is depicted in Algorithm 2.

Bayes-UCB

Bayes-UCB is a Bayesian algorithm that could be seen as a variant of Thomp-
son Sampling without randomness. Indeed, it eliminates the randomness
present in TS by using the quantiles of the posterior distributions on µj
rather than drawing a sample from them. More precisely, let Q(1 − α, ρ),
with 0 < α < 1, be the quantile function associated to the distribution ρ

such that: Pρ(X ≤ Q(1 − α, ρ)) = 1 − α. At each time instant t, for each
arm aj , the Bayes-UCB algorithm computes an index qj(t) in the following
way:

qj(t) = Q(1− 1
t(logn)c , ρj(t)),

where ρj(t) is the distribution associated to µj at time t, n is the time horizon
and c is a parameter. The arm aj with the largest index qj(t) is pulled and
the distribution on µj updated according to the reward received. In the
derivation of theoretical guarantees the parameter c is set to c >= 5 but it
is set c = 0 to achieve better experimental results. We can see that Bayes-
UCB, at each time t > 1, for each arm aj , selects an upper bound of the
mean adopting the principle of optimism in the face of uncertainty. Similar
to the policy UCB1 described above, as long as an arm is not pulled its
upper bound grows. We provide the pseudo-code of the policy in Algorithm
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Algorithm 3 Bayes-UCB

1: for j ∈ {1, . . . ,K} do . init phase
2: Sj ← 1, Fj ← 1

3: end for
4: for t ∈ {1, . . . , n} do . loop phase
5: for j ∈ {1, . . . ,K} do
6: qj(t)← Q(1− 1/t(log n)c, Beta(Sj , Fj))

7: end for
8: pull arm ai such that i = arg maxj qj(t) and observe reward rt
9: if rt = 1 then Sj ← Sj + 1 else Fj ← Fj + 1 end if

10: end for

3 for the case of Bernoulli Bandit with Beta distribution as prior. Kaufmann
et al. (2012) proposed the Bayes-UCB algorithm and provided a logarithmic
upper bound on E[Tj(n)], the expected number of times a policy pulls the
sub-optimal arm aj up to time n.

2.3 Introducing Persistent Rewards

The motivation behind this thesis can be resumed in one straightforward
question: what does happen when the reward is not a number immediately
available, but it is spread over the time following the pull of an arm? This
is the case of many real-world scenarios as described in Chapter 1 or in the
Examples 1, 2, 3 provided in Chapter 3. The aim of our thesis is to study the
Multi-Armed Bandit problem with persistent reward, where with the term
persistent reward we are referring to a reward that is persistently gained by
an agent for a certain timespan after an arm has been pulled. From a certain
perspective, one could consider the reward as a single variable available after
the reward acquisition process is terminated. This consideration reduces the
persistent reward problem to a delayed reward problem. MAB problem with
delayed reward has been extensively studied in the literature. Our major in-
terest is to design methodologies which exploit the partial information during
the reward acquisition process without the need to wait its termination to see
the reward associated to the pull of an arm. Let us consider a subscription
business pricing problem where a seller, that repeatedly signs new contracts,
wants to discover which is the monthly price to assign to his/her service to
maximize the total reward. At this purpose, we want to develop algorithms
that constantly take in consideration the monthly payments made by the
user, avoiding to wait the end of the contract to see the total reward ac-
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quired thanks to that contract. To the best of our knowledge no previous
study addressed the Multi-Armed Bandit problem with persistent reward
depicted so far. Standard MAB methodologies can not be directly used in
the persistent reward setting. For this reason, we provide the formalization
of the Multi-Armed Bandit problem with persistent reward (MAB-PR) and
we propose new algorithms specifically designed to tackle this problem.

2.4 Related works

An overwhelming majority of the literature focuses on scenarios that assume
instantaneous rewards. Even such a simple model have been successfully
applied to a wide range of application scenarios, like advertising allocation
problems Gatti et al. (2015); Nuara et al. (2020, 2018), dynamic pricing
Trovò et al. (2018); Trovo et al. (2020), security scenarios Bisi et al. (2017),
and network routing Li et al. (2016). Nonetheless, in most common real-
world problems the feedback is not provided as the learner performs the
action, but it is provided with a given delay, e.g., Nuara et al. (2019), or
provided over a timespan, as mentioned above.

In the Bayesian MAB setting, the problem of delayed feedback was first
proposed by Anderson (1964). Joulani et al. (2013) studied Multi-Armed
Bandit problem under delayed feedback and proposed the Delayed-UCB1 al-
gorithm. Delayed-UCB1 is a modification of the standard UCB1 algorithm,
depicted in Algorithm 1, adapted to take in input delayed rewards. After
this work, the delayed setting has been extended to more complex bandit
scenarios, e.g., linear, contextual, non-stationary bandit under delayed feed-
backs and/or rewards (Vernade et al., 2020b,a; Gael et al., 2020; Pike-Burke
et al., 2018).

Another set of techniques are exploited to solve delayed feedback prob-
lems in specific real-world scenarios. For instance, some techniques focus on
solving the so called dynamic pricing problem. More specifically, each avail-
able price is an arm of a bandit, and the goal is to sell multiple units of the
same item maximizing the reward gained in the process. Dynamic pricing
has been studied as a bandits problem in the literature for both the stochas-
tic (Babaioff et al., 2015) and the adversarial setting (Amin et al., 2013).
These works overcome the classical assumption in the economic theory for
which the demand curve is known, using an online approach in which the
curve is learned using the interaction with the buyer, e.g., holding a posted
price auction, to determine the optimal price for the good. Notice that this
approach can be adopted only when there are multiple units on sale. On the
other side, when there is a unique item to sell, it is difficult to learn from
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the experience because of the limited interaction. Typically, in this scenario,
a worst-case competitive analysis is performed, as in (Babaioff et al., 2017;
Romano et al., 2020).

Another significant example is the Interned advertising problem, in which
bandits techniques are widely applied (Badanidiyuru et al., 2013; Nuara
et al., 2018; Avadhanula et al., 2021). In this setting, the delayed feedback
comes from the fact that clicks can be observed within a few seconds after
an ad displays but the corresponding sale, if any, will take hours to happen.
This has been solved with a specific delay-feedback algorithm in Vernade
et al. (2017).

Notice that, to the best of our knowledge, there is not work specifically
addressing the setting in which the reward of a single pull of an arm spreads
over multiple time instants.



Chapter 3

Problem Formulation

In this chapter we formally introduce the Multi-Armed Bandit problem with
persistent rewards. After defining all the elements and details necessary to
depict the interaction between the learning agent and the environment, we
specify the performance measures adopted. Finally, we formalize two real-
world scenarios which will be deeply analyzed throughout the thesis.

3.1 The MAB-PR Problem

The MAB problem with Persistent Rewards (MAB-PR) that we are going
to analyze in this thesis is formalized in this section. Over a finite time
horizon, composed of N time instants, at each time instant t, an agent must
pull (choose) an arm (action) at from an arm set A = {1, . . . ,K}. When we
pull an arm aj at time t, the environment returns a realization of a random
variable Rj,t and one of a random vector Zj,t = (Zj,t,1, . . . , Zj,t,Tmax). The
vector Zj,t represents the persistency of the feedback Rj,t, meaning that
each component Zj,t,m describes which fraction of Rj,t the agent will collect
at the m-step. At each time instant from the pull of an arm, the learner will
collect a reward called instantaneous reward defined as follows:

Definition 1 (Instantaneous Reward). We define the instantaneous reward
achieved at time s, consequently to the pull of the arm j at time t, as:

rj,t,s = Rj,tZj,t,s−t+1 ,

where s ∈ {t, . . . , t+ Tmax − 1} and 1 ≤ j ≤ K, 1 ≤ t ≤ N , 1 ≤ m ≤ Tmax.

By setting the size of the vector Zj,t to Tmax, which is a fixed constant,
we impose that the lasting of the feedback can be at most Tmax steps. We
assume Tmax to be known to the agent. We do not have any preliminary

13
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knowledge regarding the distributions ofRj,t andZj,t, we only know thatRj,t
has support in [Rmin, Rmax] and Zj,t,m has support in [0, 1]. Each component
Zj,t,m is a random variable with expectation γj,m. Each realization of Zj,t

is characterized by the number of steps that we have to wait before having
a positive component Zj,t,m. We call this quantity delay and we formalize it
in the following way:

Definition 2 (Delay). We define the delay of a realization Zj,t as:

dj,t =

Tmax∑
m=1

1{Zj,t,m=0 ∧ ∀k<m Zj,t,k=0} .

We are also interested in the position of the last positive component of a
realization Zj,t. This quantity represents the true number of steps that we
need to wait to collect all the instantaneous rewards achievable after the pull
of an arm. For this reason, we call it true length and we define it as follows:

Definition 3 (True Length). We define the true length of a realization Zj,t

as:

lj,t =

Tmax∑
m=1

1{∃k k≥m | Zj,t,k>0} .

To better suit a variety of scenarios that require a persistence reward
framework, we devise two distinct configurations:

• General Persistency We do not assume anything regarding Zj,t.
This configuration turns to be suitable for scenarios in which the in-
stantaneous reward could be missing at a certain instant, Zj,t,m = 0,
and then reappear at a later time.

• Tight Persistency We impose that, giving a realization of a per-
sistency vector, every non-zero component must be adjacent. More
formally, we say that we are in Tight Persistency configuration if for
each realization Zj,t = (Zj,t,1, . . . , Zj,t,Tmax) the following condition
holds:

Tmax∑
m=1

1{Zj,t,m>0} = lj,t − dj,t .

We now present two examples derived from practical cases with the aim
to highlight the needs that motivate the two configurations mentioned above.

Example 1 (Pricing of a magazine subscription). We are the seller of an
online magazine that works via subscription. To have access to our service, a
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new user can stipulate a contract with a fixed duration and monthly fees. We
allow to suspend and restart the service at every moment during the contract,
simply stopping or making the monthly payments. Intuitively, we think that
high prices discourage a continuous usage of the service while low prices could
lead to stable subscriptions but with the risk of generating unsatisfactory
profit. We are facing the problem of finding the best monthly price to assign
at the service to maximize the revenue. This scenario can be directly modeled
as a MAB persistent problem in General Persistency. Each arm can be
assigned to a specific fee designed as a valid option. When the agent pulls
an arm the extracted feedback Rj,t will be the price related to that arm. The
persistency vector Zj,t, on the other side, will capture the adherence of the
user to the service and will have a size of Tmax equal to the number of months
of the contract. Every component of the vector will be a Bernoulli variable
that takes the value 1 if the user has made the payment for a certain month
or the value 0 in the opposite case.

Example 2 (Medical Trial). We want to conduct an ethical clinical trial to
define which is the best medical treatment for a specific chronic illness. Con-
sider the case where we have two options available, a red pill and a blue one,
hence we model them as two arms. Every day the agent must choose which
one of the two therapies administer to a new patient on the basis of previous
observations. Differently from prior MAB application for this task, in this
setting we want to consider also the life quality of a patient in addition to
his/her lifespan. For this reason after the treatment administration, a patient
is tested every day and an index of his/her health status is computed. We as-
sume that this index is ranging from 0 to 1, where 1 represents a perfect state
of health and 0 means that the patient is dead. This scenario could be easily
addressed as a MAB persistent problem in Tight Persistency configuration
with delay steps equal to zero for each realization of the persistency vector.
As a matter of fact, we can set Tmax at the maximum lifespan possible after
the diagnosis of the considered illness, and we can model every component
of the vector Zj,t as the health status index. For this scenario, Rj,t could be
fixed to a constant equal for each arm, letting the role of capturing the reward
only to the persistency vector Zj,t. The Tight Persistency condition holds,
as a matter of fact, it does not make sense to have a positive index health
status after the death of the patient.

The nature of the presented problem leads us to introduce two definitions
of reward achievable pulling an arm. In a straightforward manner, we call
Pull Reward the the sum of the instantaneous rewards gained thanks to the
pull. In both Example 1 and Example 2, the goal of the learning agent was
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to find the arm able to maximize this quantity. However, in some scenarios
could be reasonable to take in consideration also the time needed to collect
all the instantaneous rewards of a pull. In particular, we call Normalized
Pull Reward the sum of instantaneous rewards divided by the true length
of the persistency vector. This measure is particularly relevant when we
consider case studies in which we want to allocate resources and we must
take into consideration possible vacant periods, as outlined in Example 3.
Formal definitions of rewards are provided below.

Definition 4 (Pull Reward). We define the pull reward achieved pulling the
arm j at time t as:

Xj,t =

t+Tmax−1∑
s=t

rj,t,s .

Definition 5 (Normalized Pull Reward). We define the normalized pull re-
ward achieved pulling the arm j at time t as:

Yj,t =

∑t+Tmax−1
s=t rj,t,s

lj,t
.

We now give an example of a scenario in which we are interested in
maximizing the Normalized Pull Reward.

Example 3 (Pricing of a Cloud Computing Service). A cloud computing
company has a new set of servers at its disposal and is facing the problem
of deciding the daily price to rent a server. Once a specific price has been
chosen, the company will disclose its offer online and, later, will enter into
a contract of a fixed duration with the purchaser. Each day of the contract,
the user will pay a fixed cost concerning the rent, in addition to a variable
cost related to the resources usage. The company assumes that by publish-
ing an offer with an high price it will take a long time to find a buyer, on
the contrary, with a very low price it will immediately be able to rent it but
with little profit. In this scenario, we see how the unused server time affects
the income, therefore, not only the accumulated reward must be taken into
account but also the time necessary to find a buyer. The problem is well
modeled in Tight Persistency. Each arm aj is associated to a determin-
istic daily price Rj,t and the delay dj,t of each persistency vector Zj,t will
represent the days between the publication of the offer and the stipulation of
the contract. Hence, Rj,t can be seen as the price of one day of full use of the
service, and finally each positive component Zj,t,m will indicate the fraction
of Rj,t to be daily paid by the user. We are interested in finding the arm
that maximizes the Normalized Pull Reward, taking into account also the
penalty imposed by the vacant periods.
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Table 3.1: Configurations-Rewards scenarios. The combination General-
Persistency/Normalized Pull Reward leads to cases that are not of practical interest.

Pull Reward Normalized Pull
Reward

General
Persistency

Spotify Scenario
Example 1

Tight Persistency Example 2 Rent Scenario
Example 3

Successive plays of arm aj yield pull rewards Xj,t1 , Xj,t2 , . . . which are
random variables independent and identically distributed according to an
unknown distribution with unknown expectation µj . In the same way, we
assume that the normalized pull rewards Yj,t1 , Yj,t2 , . . . are random variables
i.i.d. with unknown expectation ηj . For the sake of simplicity, we will refer
to a generic reward of arm aj at time t as Xj,t, to adopt the same notation
of the standard MAB literature. However, the definitions stated below will
apply evenly to the Pull reward and the Normalized pull Reward, unless oth-
erwise specified.

3.1.1 Performance measures

The goal of a learning agent is to maximize its accumulated reward, the
pulling strategy adopted to accomplish this task is referred as policy. To
measure the performance of a policy, we compare its behaviour with the
one of a fictitious algorithm, called Oracle, which for any horizon of n time
steps constantly plays the optimal arm. For this purpose, we introduce the
concept of Regret.

Definition 6 (Regret). The Regret of a policy accumulated after n plays is
defined as:

rn = max
j={1,...,k}

n∑
t=1

Xj,t −
n∑
t=1

Xat,t ,

where at is the arm played by the learner at time t and the first term
maxj={1,...,k}

∑n
t=1Xj,t represents the reward accumulated by the Oracle up

to time n.

Since both the rewards and the player’s actions are stochastic, we intro-
duce a form of average regret called pseudo-regret.
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Definition 7 (Pseudo-Regret). The Pseudo-Regret of a policy accumulated
after n plays is defined as:

Rn = nµ∗ −
n∑
t=1

µat ,

where µ∗ = maxj={1,...,k} µj is the expected reward of the optimal arm and
µat is the expected reward of the arm played at time t.

For clarity, we explicate the definition of Normalized-Pseudo Regret in
the following way:

Definition 8 (Normalized Pseudo-Regret). The Normalized Pseudo-Regret
of a policy accumulated after n plays is defined as:

NRn = nη∗ −
n∑
t=1

ηat ,

where η∗ = maxj={1,...,k} ηj is the expected normalized pull reward of the
optimal arm and ηat is the expected normalized pull reward of the arm played
at time t.

The Pseudo-Regret form is more suitable for the purpose of our analysis
respect to the Regret. Therefore, in what follows of the thesis we will evalu-
ate the algorithms in terms of Pseudo-Regret and Normalized Pseudo-regret
in the case we are considering Pull Reward or Normalized Pull Reward re-
spectively. In the next chapters, in order to simplify the notation, we will
omit the term pseudo.

3.2 Modeling of real-world scenarios

3.2.1 The Spotify Playlist Problem

Recommender systems represent user preferences for the purpose of suggest-
ing items to purchase or examine. They have become fundamental applica-
tions in electronic commerce and information access, providing suggestions
that effectively prune large information spaces so that users are directed to-
ward those items that best meet their needs and preferences (Burke, 2002).
One of the most common problems in recommender systems is the cold-start
problem. The cold-start problem typically happens when the system does
not have any form of data on new users and on new items (Bobadilla Sancho
et al., 2012). There are two distinct categories of cold start: the item cold
start and the user cold start. The new user case refers to when a new user
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enrolls in the system and for a certain period of time the recommender has
to provide recommendations without relying on the user’s past interactions,
since none has occurred yet (Moghaddam and Elahi, 2019). This problem is
particularly important when the recommender is part of the service offered
to users, since a user who is faced with recommendations of poor quality
might soon decide to stop using the system before providing enough interac-
tion to allow the recommender to understand his/her interests. Spotify is a
digital music service which has a great interest in recommender systems. In
2018 it was the organizer of the ACM Conference on recommender systems.
We model the problem of recommending a playlist to a new Spotify user as
a MAB-PR problem, proposing a new approach to mitigate the cold-start
problem.

Formulation

When a new user accesses the system, a playlist is proposed. Subsequently,
The user will start the reproduction of the playlist and for each song, in
any moment, he/she could decide to skip to the next song till the end of
the playlist. We are interested in finding the playlist that maximizes the
overall listening time. We model the problem as a MAB-PR problem with
the specifics reported below.

• Each playlist is a set of 20 songs.

• Each arm aj is associated to a playlist.

• The feedback Rj,t is fixed to a constant equal for each arm, since we
are only interested in finding the playlist with the best persistency.

• Based on an official dataset released from Spotify, it is known if a user
listened a song for the first 25%, 50%, 75% or 100% of its duration. This
granularity lead us to model each song with four adjacent components
of the persistency vector Zj,t, where each component Zj,t,m represents
a quarter of a song. Each component is a Bernoulli variable that takes
the value of 1 if the user has listened the song up to that quarter or 0 in
the opposite case. The persistency vector will capture the adherence
of the user during the playlist, hence its size Tmax will be equal to
the number of songs of a playlist times the granularity, in this case
Tmax = 4 × 20 = 80. An example of a realization of the persistency
vector is provided in figure 3.1.

• We want to find the playlist that give us the highest listening time,
hence we want to maximize the pull reward.
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1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0
song 1 song 2 song 3 song 4 song 5

Figure 3.1: Example of realization of the persistency vector in the Spotify Playlist
Problem. The persistency vector is truncated at the fifth song for visualization
purposes. Songs 1 and 3 were listened completely, while song 2 was listened to the
50% of its duration. Song 4 and Song 5 were skipped entirely.

3.2.2 The Rental Pricing Problem

A company owns a large number of rooms with the same characteristics.
These rooms are rented with fixed duration contracts and monthly fees.
Once the contract has been signed, the tenant can choose to stay until the
expiration date or to cancel, ending his stay before the expiry date. When
the company publishes the rental announcement, it is aware that by setting
a high fee for the room, it can have a long vacancy period. Furthermore,
a high fee could discourage the tenant from staying until the end of the
contract. At the same time, by setting a fee too low, the company could
make unsatisfactory profits. The problem of choosing the best fee is modeled
as a MAB-PR problem with the specifics reported below.

• Each arm aj is associated to a specific fee designed as a valid option.

• The feedback Rj,t is set equal to the fee of the arm aj . It is determin-
istic, meaning that Rj,t = Rj ∀t.

• The persistency vector Zj,t represents the period of time ranging from
the publication of the rental announcement to the deadline of the con-
tract. Each component of the vector Zj,t,m is a Bernoulli variable that
represents a month. It will take the value of 1 if the tenant has made
the payment for a certain month or 0 in the opposite case.

• Each realization of the persistency vector Zj,t is characterized by a
delay dj,t equal to the number of vacant months. The vacant months
represent the period between the publication of the announcement and
the signing of a new contract.

• We define the maximum delay as dmax and the maximum duration of
a contract as cmax. The size of the persistency vector Zj,t is Tmax =

dmax + cmax.

• We want to find the fee that allows us to maximize our profit keeping
in consideration the vacant periods, where we don’t receive payments.
For this purpose, we want to maximize the normalized pull reward.
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0 0 1 1 1 1 1 1 0 0

Figure 3.2: Example of realization of the persistency vector in the Rental Pricing
Problem. In this example Tmax = 10, the delay d = 2, the true length l = 8. The
contract last for six months, since we have six ones. The last two zeros are not
relevant, a possible interpretation could be that cmax = 6 and dmax = 4.

• We assume that once a contract is canceled, it is not possible to re-
enter. This implies that we are in tight persistency. A realization of
the persistency vector Zj,t will be a sequence of zeros representing
the delay dj,t, followed by a sequence of ones representing the actual
contract, followed by a sequence of zeros with length = Tmax− lj,t. An
example is provided in figure 3.2.
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Chapter 4

Novel Algorithms

In this chapter we present in details the novel algorithms and their theoret-
ical guarantees. In the first section, we give an overview of the MAB-PR
algorithms. Then, we describe the frequentist and the Bayesian policies de-
veloped.

4.1 Introduction to the Novel Algorithms

As outlined in White (2012), Multi-armed Bandit algorithms have to ac-
tively select which data you should acquire and analyze that data in real-
time. Indeed, bandit algorithms exemplify two types of learning: active
learning, which refers to algorithms that actively select which data they
should receive; and online learning, which refers to algorithms that ana-
lyze data in real-time and provide results on the fly. This means that to
evaluate algorithms we need to design a simulation environment where we
can mimic real-scenarios dynamics. Informally, we call bucket a realization
Zj,t = (Zj,t,1, . . . , Zj,t,Tmax) of the persistency vector and we call bin the
m-th element Zj,m,t of the persistency vector Zj,t. During the simulation,
each bucket will be parsed according to the experiment time t, meaning that
the learner can only visit the bin of the bucket containing the information
gathered in the past. As stated in Chapter 3, when at time t an arm aj is
played, the environment generates a bucket Zj,t and a feedback Rj,t that are
collected by the learner. Changing the point of view, we can say that, during
the experiment, each arm aj collects a sequence of pulls, characterized by
the extracted feedback-bucket pairs (Rj,t,Zj,t). The algorithms described
below have a structural difference from the standard ones designed for tradi-
tional Multi-armed Bandit. Indeed, in the presented framework, more than
one arm can have a set of non-terminated buckets (not totally parsed yet)

23
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Table 4.1: For each policy, we depict the operating characteristics: the family; the
reward maximized; the exploitation of the partial information deriving from buckets
not fully parsed. Note that the policies that do not exploit partial information are
considered as baselines.

Family Reward
Partial

Information
Exploit

Policy Frequentist Bayesian P.R. N.P.R. Yes No
PR-T-UCB-P x x x
PR-T-UCB-NP x x x
PR-BW-UCB-P x x x
PR-NT-UCB-P x x x
PR-T-TS-P x x x
PR-T-TS-NP x x x
PR-BW-BayesUCB-P x x x
PR-BW-BayesUCB-NP x x x

simultaneously. This parallelism implies that at each time instant we need
to update the terms of every arms and not only of the last one played. Some
of the algorithms presented will work without distinction with both pull re-
ward and normalized pull reward. For the sake of clarity, we define a generic
reward Wj,t with unknown expectation ωj that acts as a proxy variable. De-
pending on the setting addressed, Wj,t will represent the pull reward Xj,t or
the normalized pull reward Yj,t. The table 4.1 summarizes the algorithms
presented and their operating characteristics.

4.1.1 Farsighted and Myopic configuration

We can consider a bucket Zj,t terminated (fully parsed) according to two
different criteria: (i) Tmax time instants have passed since t; (ii) lj,t time
instants have passed since t. We say that the algorithm is in myopic and
farsighted configuration in the case we are adopting (i) or (ii) respectively.
More formally:

• In myopic configuration, at time t, we consider a bucket Zj,s termi-
nated if t ≥ s+ Tmax ;

• In farsighted configuration, at time t, we consider a bucket Zj,s termi-
nated if t ≥ s+ lj,s, where lj,s is the true length of the bucket Zj,s.
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Algorithm 4 Frequentist Policy

Require: arm set A = {a1, a2, . . . , ak}, time horizon N , update function U
1: function policy(A,N ,U)
2: for t ∈ {1, . . . , k} do . init phase
3: pull arm at
4: call U
5: end for
6: for t ∈ {k + 1, . . . , N} do . loop phase
7: pull arm ai such that i = arg maxj uj
8: call U
9: end for

10: end function

Table 4.2: For each policy, we report the order of the bound on the expected regret
when the number of pulls t→∞ . The policies are assumed in myopic configuration.

Policy Regret Bound Order
PR-T-UCB-P O(T 2

max ln(t))

PR-BW-UCB-P O(T 2
max ln(t))

PR-NT-UCB-P O(Tmax ln(t))

4.2 Frequentist Algorithms

To facilitate the understanding of the code, the algorithms described in this
section will be decoupled into two functions: the Policy and the Update.
The policy function will describe the interaction of the learner with the
environment and will require an update function passed as an argument. The
update function will be responsible to update the knowledge of the learner
coming from new data and compute the indices needed by the policy to take
decisions, concretizing the overall strategy. The pseudo-code of a generic
frequentist policy is depicted in Algorithm 4. The first k instants form the
initialization phase, during which each arm is chosen once. After the kth

time instant the loop phase begins. Here, at time t, the agent plays the arm
aj having the largest index uj , the upper confidence bound of the arm aj .
After the play of an arm, the update function U occurs. Algorithm 4 requires
in input an arm set A, the time horizon N , and an update function U . Below
we propose three update functions that can be passed in input to the generic
policy depicted in Algorithm 4, concretizing the following policies: PR-T-
UCB, PR-BW-UCB-P, PR-NT-UCB-P. The theoretical guarantees obtained
are summarized in Table 4.2.
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4.2.1 PR-T-UCB (Frequentist Baseline Algorithm)

PR-T-UCB (Persistent Reward - Terminated Buckets - UCB) is an algo-
rithm that extends the idea of the well known UCB1 algorithm in the case
of persistent reward. The reward is considered as a unique variable available
after the termination of the bucket. The pseudo-code is provided in Algo-
rithm 5. This algorithm takes inspiration from the work of Joulani et al.
(2013) on delayed feedback. Indeed, evaluating the reward only after termi-
nation of the bucket reduces the persistent feedback problem to a delayed
feedback problem. For this reason we consider it as a baseline algorithm
with which the other proposed strategies are compared. It works for both
the cases when we want to maximize the pull reward (ωj = µj) or when we
want to maximize the normalized pull reward (ωj = ηj). In the former we
will extend the name of the algorithm to PR-T-UCB-P, in the latter to PR-
T-UCB-NP. For each arm aj , the update function will detect the terminated
buckets according to the configuration (farsighted or myopic) adopted. At
each time t, for each arm aj , the algorithm computes: the empirical mean
reward ω̂j(t) obtained from the terminated buckets of the arm aj , ignoring
the non-terminated buckets (line 3); the exploration term cj(t) (line 4). Let
ε(t) =

√
2 ln t
Bj(t) , the exploration term cj(t) is computed in the following way.

• if we are maximizing the Pull Reward :

cj(t) = RmaxTmaxε(t) = RmaxTmax

√
2 ln t

Bj(t)
;

• if we are maximizing the Normalized Pull Reward :

cj(t) = Rmaxε(t) = Rmax

√
2 ln t

Bj(t)
;

where with Bj(t) we indicate the number of terminated buckets of the arm
aj at time t. The term ε(t) is the exploration term when the reward has
support in [0,1]. With cj(t) we indicate the exploration term considering the
support of the reward in our case.

Finally, the index uj(t) is computed by summing the current empirical
mean reward ω̂j(t) and exploration term cj(t) (line 5). In case an arm aj does
not have any terminated bucket, its index uj(t) is set to infinite. If we are
dealing with settings where the feedback Rj,t is deterministic (Rj,t = Rj for
each arm aj , for each t), we can replace Rmax with Rj in the computation of
the exploration term cj(t). This let us to have a smaller or equal exploration
term cj(t), and possibly, an improvement on the performances.
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Algorithm 5 PR-T-UCB (Frequentist Baseline)

Require: bucket size Tmax, maximum feedback Rmax

1: function update(Tmax,Rmax)
2: for each arm aj ∈ A do
3: compute empirical mean reward ω̂j from the terminated buckets
4: compute cj
5: uj ← ω̂j + cj
6: end for
7: end function

PR-T-UCB Theoretical Analysis

Joulani et al. (2013) provide the Delayed-UCB1 algorithm, a modification of
the UCB algorithm for MAB problem with delayed feedback. Delayed-UCB1
algorithm enjoys the same regret guarantees compared to its non-delayed
version, up to an additive penalty depending on the delays. We can rewrite
their result, adapting it to our setting with deterministic Rj , in the following
way:

Theorem 2. For K ≥ 1, if policy PR-T-UCB-P is run in myopic configura-
tion on K arms having deterministic feedback R1, . . . , RK , then the expected
regret after any number of pulls t is at most:

E[Rt] ≤
∑
i:∆i>0

[
8R2

i (Tmax − Tmin)2 ln t

∆i
+

(
1 +

π2

3

)
∆i

]
+

K∑
i=1

∆iE[G∗i,n],

where G∗i,n is the maximum number of missing feedbacks from arm i during
the first n time steps and ∆i = µ∗ − µi.

Notice that in the Persistent Reward setting G∗i,n < Tmax and we consider
Tmin = 0, therefore, in the worst case, the regret can be bounded by

E[Rt] ≤
∑
i:∆i>0

[
8R2

i T
2
max ln t

∆i
+

(
1 +

π2

3

)
∆i

]
+ Tmax

K∑
i=1

∆i.

4.2.2 PR-BW-UCB-P

The algorithm PR-BW-UCB-P (Persistent - Bin-Wise - UCB - Pull Reward)
is tailored for scenarios where we want to maximize Pull Reward and we
have a deterministic feedback Rj for each arm aj . Our goal is to exploit also
the information given by the non-terminated buckets using bin-wise upper
confidence bounds. The idea behind Algorithm 6 is to estimate the average
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Algorithm 6 PR-BW-UCB-P
Require: bucket size Tmax

1: function update(Tmax)
2: for each arm aj ∈ A do
3: for m ∈ {1, . . . , Tmax} do
4: compute zj,m from the available buckets
5: cj,m ←

√
2 ln t/|Vj,m(t)|

6: end for
7: uj ← Rj

∑Tmax
m=1 min(1, zj,m + cj,m)

8: end for
9: end function

bin value zj,m(t) given by the m-th bins of the buckets gained by pulling
the arm aj . To compute zj,m(t), the algorithm considers only the buckets
gained by aj that have been already parsed at position m (informally called
"available buckets" at line 4). We indicate with Vj,m(t) the set of buckets
Zj,s that at time t have been already parsed at position m. Depending on
the configuration adopted, we say that:

• In myopic configuration Zj,s ∈ Vj,m(t) if t ≥ s+m− 1;

• In farsighted configuration Zj,s ∈ Vj,m(t) if t ≥ s+m−1∨ t ≥ s+ lj,s.
As a matter of facts, the farsighted configuration allow us to consider
a bucket Zj,t fully parsed after that it has been parsed at position true
length lj,t.

At each time t, for each arm aj , for each position m, the algorithm com-
putes zj,m(t) and cj,m(t) (line 4 and line 5 respectively). zj,m(t) is computed
in the following way:

zj,m(t) =
1

|Vj,m(t)|
∑

Zj,s∈Vj,m(t)

Zj,s,m .

Finally, for each arm aj , the upper confidence bound uj(t) is calculated
by multiplying the feedback Rj with the sum, over m, of the average bin
value zj,m(t) and the exploration term cj,m(t) (line 7). Each element of the
summation is upper bounded to 1. This is a help we give to the learner to
speed up the learning process. Indeed, this is known a priori considering
that each bin has support in [0,1].
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PR-BW-UCB-P Theoretical Analysis

Theorem 3. For K ≥ 1, if policy PR-BW-UCB-P is run in myopic con-
figuration on K arms having deterministic feedback R1, . . . , RK , then the
expected regret after any number of pulls t is at most:

E[Rt] ≤
∑
i:∆̃i>0

(
8R2

i T
2
max ln t

∆̃i

)
+ Tmax

(
1 +

π2

3

)
K∑
i=1

∆̃i

where ∆̃i = R∗
∑Tmax

m=1 γ
∗
m −Ri

∑Tmax
m=1 γi,m.

Proof of Theorem 3 We summarize the notation as follows:

• t is the current time;

• z̄si,m,t = zi,m(t) is the average bin-value given by the m-th bins gained
by the arm i at time t, after that it has been pulled si times;

• csi,m,t is an exploration term associated to z̄si,m,t;

• nsi,m,t = |Vi,m(t)| is the number of buckets whose m-th element is
already parsed at time t;

• γi,m is the expectation of zi,m;

• Ti(n) is the number of pulls of the arm ai at time n.

Starting from the proof of UCB1 provided by of Auer et al. (2002) we
can rewrite:

Ti(n) ≤ `+

∞∑
t=1

t−1∑
s=`

t−1∑
si=`

{
R∗

(
Tmax∑
m=1

z̄∗s,m,t + cs,m,t

)
≤ Ri

(
Tmax∑
m=1

z̄si,m,t + csi,m,t

)}
.

(4.1)

Note that R∗
(∑Tmax

m=1 z̄
∗
s,m,t+cs,m,t

)
≤ Ri

(∑Tmax
m=1 z̄

∗
si,m,t+csi,m,t

)
implies

that at least one of the following must hold:

R∗(z̄∗s,m,t − γ∗m + cs,m,t) ≤ 0 ∀m = 1 : Tmax (4.2)

Ri(z̄si,m,t − γi,m − csi,m,t) ≥ 0 ∀m = 1 : Tmax (4.3)

R∗
Tmax∑
m=1

γ∗m −Ri
Tmax∑
m=1

(
γi,m + 2csi,m,t

)
< 0. (4.4)

For all m = 1 : Tmax, we bound the probability of event (4.2) using
Hoeffding bound and cs,m,t =

√
2 ln(t)
ns,m,t

:
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P(R∗(z̄∗s,m,t − γ∗m + cs,m,t) ≤ 0) =

P(z̄∗s,m,t ≤ γ∗m − cs,m,t) ≤

e−2ns,m,tc2s,m,t =

e
−2ns,m,t

2 ln(t)
ns,m,t =

e−4 ln(t) = t−4. (4.5)

Similarly, for all m = 1 : Tmax, we bound the probability of event (4.3)
using Hoeffding bound and csi,m,t =

√
2 ln(t)
nsi,m,t

:

P(Ri(z̄
∗
si,m,t − γ

∗
m + csi,m,t) ≤ 0) ≤ t−4 (4.6)

Now we look for a nsi,t so that inequality (4.4) does not hold. This is
equivalent to find a solution such that:

R∗
Tmax∑
m=1

γ∗m −Ri
Tmax∑
m=1

(
γi,m + 2

√
2 ln(t)

nsi,m,t

)
≥ 0. (4.7)

We denote R∗
∑Tmax

m=1 γ
∗
m −Ri

∑Tmax
m=1 γi,m by ∆̃i. Notice that:

∆̃i − 2Ri

Tmax∑
m=1

√
2 ln(t)

nsi,m,t
≥

∆̃i − 2Ri

Tmax∑
m=1

√
2 ln(t)

max {0, nsi,t −m+ 1}
≥ (4.8)

∆̃i − 2Ri

Tmax∑
m=1

√
2 ln(t)

max {0, nsi,t − Tmax + 1}
≥ (4.9)

∆̃i − 2RiTmax

√
2 ln(t)

max {0, nsi,t − Tmax + 1}
. (4.10)

Assuming that nsi,t ≥ Tmax, we find the following bound for nsi,t:

∆̃i − 2RiTmax

√
2 ln(t)

nsi,t − Tmax + 1
≥ 0

nsi,t ≥ Tmax − 1 +
8R2

i T
2
max ln(t)

∆̃2
i

. (4.11)
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The bound on the average number of time we pull suboptimal arm i is
the following:

E[Ti(n)] ≤

⌈
Tmax − 1 +

8R2
i T

2
max ln(t)

∆̃2
i

⌉

+
∞∑
t=1

t−1∑
s=1

t−1∑
si=`

Tmax∑
m=1

P(R∗(z̄∗s,m,t − γ∗m + cs,m,t) ≤ 0) (4.12)

+ P(Ri(z̄si,m,t − γm + csi,m,t) ≤ 0)

≤ Tmax +
8R2

i T
2
max ln(t)

∆̃2
i

+
∞∑
t=1

t−1∑
s=1

t−1∑
si=`

Tmax∑
m=1

2t−4

≤ Tmax +
8R2

i T
2
max ln(t)

∆̃2
i

+
∞∑
t=1

t−1∑
s=1

t−1∑
si=`

2Tmaxt
−4

≤ Tmax +
8R2

i T
2
max ln(t)

∆̃2
i

+ Tmax
π2

3

≤ 8R2
i T

2
max ln(t)

∆̃2
i

+ Tmax

(
1 +

π2

3

)
.

4.2.3 PR-NT-UCB-P

PR-NT-UCB-P (Persistent - Non-Terminated Buckets - UCB - Pull Reward)
is an algorithm tailored for scenarios where we want to maximize Pull Reward
and we have a deterministic feedbackRj for each arm aj . With this algorithm
we want to exploit all the information of the buckets acquired during the
learning process, considering both the terminated and non-terminated ones.
To do that, at each time instant t, for each arm aj , we fill the non-terminated
buckets with fake realizations (line 5). To fill a non-terminated bucket Zj,s

means that we impose each component Zj,s,m not-parsed yet to be equal to
a fake realization. At this point, we consider the altered bucket Zj,s fully
parsed. We fill half of the non-parsed components of a bucket with ones and
half with zeros. At each time instant t, for each arm aj , the exploration term
cj(t) and the index uj(t) are computed in the following way (respectively at
line 8 and at line 9):

cj(t) =

√
2Tmax ln t

nj(t)
+
Tmax(Tmax − 1)

2nj(t)
,

uj(t) = Rj

(∑t
s=1

∑Tmax
m=1 Zj,s,m

nj(t)
+ cj(t)

)
=

∑t
s=1Xj,s

nj(t)
+Rjcj(t),
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Algorithm 7 PR-NT-UCB-P
Require: bucket size Tmax

1: function policy(Tmax)
2: for each arm aj ∈ A do
3: for each bucket Zj,s do
4: if Zj,s is not terminated then
5: fill Zj,s with fake realizations
6: end if
7: end for
8: compute cj
9: compute uj

10: for each bucket Zj,s do
11: remove fake realizations from Zj,s if any
12: end for
13: end for
14: end function

where nj(t) is the number of pulls totalized by the arm aj at time t. The
index uj(t) is the sum of two terms: (i) the average Pull Reward computed
considering all the acquired buckets; (ii) the exploration term. Once uj(t)
has been computed, all the fake realizations are removed from the buckets
(line 11).

PR-NT-UCB-P Theoretical Analysis

Theorem 4. For K ≥ 1, if policy PR-NT-UCB-P is run in myopic con-
figuration on K arms having deterministic feedback R1, . . . , RK , then the
bound on the expected regret, when the number of pulls t → ∞, is of order
O(Tmax ln(t)).

Proof of Theorem 4 It is possible to show that any algorithm that uses
an arbitrary combination of zeros and ones achieves a regret bound of the
same order. When we fill half of the non-parsed components with ones and
half with zeros we get the best regret bound, however, it differs from the
worst-case bound only by a small multiplicative constant. Therefore, in the
following, we analyze the case in which we substitute ones. Notice that the
same proof can be extended to any other algorithm substituting combinations
of zeros and ones.

Simplifying the notation, we consider the bucket zi = (zi,1, . . . , zi,Tmax).
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We denote with ni the number of pulls of the arm i.

φ(z1,1, . . . , z1,Tmax , . . . , zni,1, . . . , zni,Tmax) =

ni∑
j=1

Tmax∑
k=1

zj,k.

sup
z1,1,...,z1,Tmax ,...,zj,k,zj′,k′ ,...,zni,1

,...,zni,Tmax

|φ(z1,1, . . . , z1,Tmax , . . . , , zj,k, . . . , zni,1, . . . , zni,Tmax)−
φ(z1,1, . . . , z1,Tmax , . . . , zj′,k′ , . . . , zni,1, . . . , zni,Tmax)| ≤ 1.

We apply McDiarmid’s Inequality (Rio et al., 2013):

P(φ− E[φ] ≥ ε̄) ≤ exp

(
−2ε̄2∑niTmax

`=1 12

)
= exp

(
−2ε̄2

niTmax

)
,

P
(
φ

ni
− E[φ]

ni
≥ ε
)
≤ exp

(
−2ε2ni
Tmax

)
.

Function φ is the approximation of the true function φv. Function φ

sums the fake elements used to complete the vectors, while φv uses the
true realizations. Notice that, when filling the missing elements with ones,
E[φ] ≥ E[φv].

We need to bound the probability of the following events:

• φ
ni
− E[φv ]

ni
≤ −ε;

• φ
ni
− E[φv ]

ni
≥ ε.

We fix the exploration term ε as:

ε = ct,ni =

√
2Tmax ln t

ni
+
Tmax(Tmax − 1)

2ni
,

so that the probability can be bounded as shown below.
For the first event we show that:

P

(
φ

ni
− E[φv]

ni
≤ −ε

)
≤ P

(
φ

ni
− E[φ]

ni
≤ −ε

)
≤ exp

(
− 2ε2ni
Tmax

)
≤

(4.13)

exp

(
−

2
(√

2Tmax ln t
ni

)2
ni

Tmax

)
≤ exp(−4 ln t) ≤ t−4. (4.14)
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Second event:

P

(
φ

ni
− E[φv]

ni
≥ ε

)
= P

(
φ

ni
− E[φ]

ni
≥ ε+

E[φv]

ni
− E[φ]

ni

)
≤ (4.15)

exp

(
−

2
(
ε− E[φ]−E[φv ]

ni

)2
ni

Tmax

)
≤ exp

(
−

2
(
ε− Tmax(Tmax−1)

2ni

)2
ni

Tmax

)
≤

(4.16)

exp

(
−

2
(√

2Tmax ln t
ni

)2
ni

Tmax

)
≤ exp(−4 ln t) ≤ t−4. (4.17)

In the bound at line 4.16 we use the maximum difference between E[φ]

and E[φv]. Assuming that ni ≥ Tmax, the worst-case scenario is when arm i

has been pulled Tmax consecutive times. In this scenario there is a maximum
number of missing elements equal to Tmax(Tmax−1)

2 , that are all replaced by
ones and summed in φ. In the worst case the true realizations of are all equal
to zero.

Now we compute a ni such that the probability of event φ∗

ni
− φi

ni
−2ε < 0

is equal to zero. We denote φ∗

ni
− φi

ni
by ∆i.

ni ≥
1

∆2
i

(
∆iTmax(Tmax−1)+4Tmax ln(t)+

√
16T 2

max ln2(t) + 8∆iT 2
max(Tmax − 1) ln(t)

)

Notice that as t→∞, the bound is of order O(Tmax ln(t)).

4.3 Bayesian Algorithms

In this section we present the novel algorithms that adopt a Bayesian ap-
proach. We developed the following policies: PR-T-TS-P, PR-T-TS-NP,
PR-BW-BayesUCB-P, PR-BW-BayesUCB-NP.

4.3.1 PR-T-TS-P (Bayesian Baseline Algorithm)

PR-T-TS (Persistent - Terminated Buckets - Thompson Sampling - Pull Re-
ward) is an algorithm that extends the idea of the well known Thompson
Sampling algorithm in case of persistent reward and deterministic feedback
Rj , where we want to maximize the pull reward. Similarly to Algorithm 5,
PR-T-TS considers the reward as a unique variable available after the termi-
nation of the bucket. The pseudo-code of PR-T-TS is provided in Algorithm
8. The algorithm, for each arm aj , has a Beta distribution representing the
persistency pj =

µj
RjTmax

. At each time t, having observed Sj(t) successes
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Algorithm 8 PR-T-TS

Require: arm set A = {a1, a2, . . . , ak}, time horizon N , bucket size Tmax

1: function policy(Tmax)
2: for each arm aj ∈ A do . init phase
3: Sj ← 1 and Fj ← 1

4: end for
5: for t ∈ {1, . . . , N} do . loop phase
6: for each arm aj ∈ A do
7: sample θj from the Beta(Sj ,Fj) distribution
8: end for
9: pull arm aj such that j = arg maxi θiRi

10: for each arm aj ∈ A do . update phase
11: for each bucket Zj,s do
12: if Zj,s is terminated then
13: compute pj,s
14: Perform a Bernoulli trial with success probability pj,s

and observe output r
15: if r = 1 then
16: Sj ← Sj + 1

17: else
18: Fj ← Fj + 1

19: end if
20: end if
21: end for
22: end for
23: end for
24: end function

and Fj(t) failures, the distributions on pj are updated as Beta(Sj(t), Fj(t)).
For each arm aj , it is sampled θj from the distributions on pj . The arm
having the largest θjRj is pulled. Note that pjRjTmax = µj , hence we are
trying to pull the arm that has the best expected reward based on the previ-
ous successes and failures (we do not consider Tmax in the choice of the arm
since it is a constant). When a bucket Zj,s of the arm aj is terminated, the

persistency pj,s is computed as follows: pj,s =
∑Tmax

m=1 Zj,s,m

Tmax
. At this point,

the success and failures counters are updated based on a Bernoulli trial with
success probability pj,s. This implementation allows us to adopt the idea
behind the stochastic TS algorithm proposed by Agrawal and Goyal (2012).
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4.3.2 PR-T-TS-NP (Bayesian Baseline Algorithm)

PR-T-TS-NP (Persistent - Terminated Buckets - Thompson Sampling - Nor-
malized Pull Reward) is an algorithm that extends the idea of the well known
Thompson Sampling algorithm in case of persistent reward. It is tailored for
scenarios where we want to maximize the normalized pull reward and we
have deterministic feedback Rj . It differs from PR-T-TS-P, previously de-
scribed, only for the definition of the persistency pj . Since we are dealing
with the normalized pull reward, we consider pj =

ηj
Rj

. When a bucket Zj,s

is terminated, pj,s is computed as follows: pj,s =
∑Tmax

m=1 Zj,s,m

lj,s
, where lj,s is

the true length. the pseudo code of PR-T-TS-NP is depicted in Algorithm
8.

4.3.3 PR-BW-BayesUCB-P

PR-BW-BayesUCB-P (Persistent - Bin-Wise - BayesUCB - Pull Reward)
is an algorithm based on the BayesUCB algorithm proposed by Kaufmann
et al. (2012). It maximizes the pull reward and assumes deterministic feed-
back Rj . We want to exploit the partial information deriving from the non-
terminated buckets, trying to learn the distribution of each single bin of
a bucket. More precisely, for each arm aj , we maintain a Beta distribu-
tion for each bin Zj,m with m = 1, . . . , Tmax. At each time t, having ob-
served Sj,m(t) successes and Fj,m(t) failures, the distributions of Zj,m are
updated as Beta(Sj,m(t),Fj,m(t)). At each time t, we compute qj,m(t) =

Q(1− 1
t , Beta(Sj,m(t), Fj,m(t))), where with Q(α, ρ) we indicate the quantile

function associated to the distribution ρ. The arm aj which has the largest
µ̃j(t) = Rj

∑Tmax
m=1 qj,m(t) is pulled. The counters Sj,m(t) and Fj,m(t) are

updated every time a component Zj,s,m is parsed. More precisely, depending
on the configuration we will have that:

• in myopic configuration: Zj,s,m is parsed when: t = s+m− 1;

• in farsighted configuration: Zj,s,m is parsed when: t = s+m−1∨ (t =

s+ lj,s − 1 ∧m ≥ lj,s).

The update is done according to a Bernoulli Trial with success proba-
bility Zj,s,m. The pseudo-code of the PR-BW-BayesUCB-NP is provided in
Algorithm 9.

4.3.4 PR-BW-BayesUCB-NP

PR-BW-BayesUCB-NP (Persistent - Bin-Wise - BayesUCB - Normalized
Pull Reward) is an algorithm based on the BayesUCB algorithm. It max-
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Algorithm 9 PR-BW-BayesUCB-P

Require: arm set A = {a1, a2, . . . , ak}, time horizon N , bucket size Tmax

1: function policy(Tmax)
2: for each arm aj ∈ A do . init phase
3: for each m ∈ (0, . . . , Tmax) do Sj,m ← 1 and Fj,m ← 1 end for
4: end for
5: for t ∈ {1, . . . , N} do . loop phase
6: for each arm aj ∈ A do
7: for each m ∈ (0, . . . , Tmax) do compute qj,m end for
8: end for
9: pull arm aj such that j = arg maxi

∑Tmax
m=1 qi,mRi

10: for each component Zj,s,m parsed at time t do . update phase
11: Perform a Bernoulli trial with success probability Zj,s,m and

observe output r
12: if r = 1 then
13: Sj,m ← Sj,m + 1

14: else
15: Fj,m ← Fj,m + 1

16: end if
17: end for
18: end for
19: end function

imizes the normalized pull reward and assumes deterministic feedback Rj .
The pseudo-code of PR-BW-BayesUCB-NP is provided in Algorithm 10.
Similarly to the pull reward version (PR-BW-BayesUCB-P) previously de-
scribed, we want to exploit the partial information deriving from the non-
terminated buckets. More precisely, for each arm aj and for each m =

1, . . . , Tmax, the algorithm maintains a Beta distribution for the delay dj,m
and one for the bin Zj,m. At each time t, having observed Sj,m(t)d, Sj,m(t)z

successes and Fj,m(t)d, Fj,m(t)z failures, the distributions of Zj,m are up-
dated as Beta(Sj,m(t)z,Fj,m(t)z) and the ones of dj,m are updated as Beta(Sj,m(t)d,Fj,m(t)d).
At each time t, we compute:

• qj,m(t)zucb = Q(1− 1
3t , Beta(Sj,m(t)z, Fj,m(t)z));

• qj,m(t)zlcb = Q( 1
3t , Beta(Sj,m(t)z, Fj,m(t)z));

• qj,m(t)dlcb = Q( 1
3t , Beta(Sj,m(t)d, Fj,m(t)d)).

With Q(α, ρ) we indicate the quantile function associated to the distribution
ρ. At this point, a lower confidence bound of the true length l̃j(t) is computed



38 Chapter 4. Novel Algorithms

Algorithm 10 PR-BW-BayesUCB-NP

Require: arm set A = {a1, a2, . . . , ak}, time horizon N , bucket size Tmax

1: function policy(Tmax)
2: for each arm aj ∈ A do . init phase
3: for each m ∈ (0, . . . , Tmax) do Szj,m ← 1 and F zj,m ← 1 end for
4: for each m ∈ (0, . . . , Tmax) do Sdj,m ← 1 and F dj,m ← 1 end for
5: end for
6: for t ∈ {1, . . . , N} do . loop phase
7: for each arm aj ∈ A do
8: for each m ∈ (0, . . . , Tmax) do compute qzucbj,m , qzlcbj,m , q

dlcb
j,m end

for
9: end for

10: pull arm aj such that j = arg maxi η̃i
11: for each component Zj,s,m parsed at time t do . update phase
12: Perform a Bernoulli trial with success probability Zj,s,m and

observe output r
13: if r = 1 then
14: Szj,m ← Szj,m + 1

15: else
16: F zj,m ← F zj,m + 1

17: end if
18: if m ≤ dj,s then
19: Sdj,m ← Sdj,m + 1

20: else
21: F dj,m ← F dj,m + 1

22: end if
23: end for
24: end for
25: end function

as l̃j(t) =
∑Tmax

m=1 qj,m(t)zlcb + qj,m(t)dlcb . Finally, an upper confidence bound

on the normalized pull reward is computed as η̃j(t) =
Rj

∑Tmax
m=1 qj,m(t)zucb

l̃j(t)
. At

each time t, the arm aj having the largest η̃j(t) is pulled. The update of
the failures and success counters is done in the same way of the algorithm
PR-BW-BayesUCB-P, with the required adaptation for the delay dj,m (line
11 - 22).



Chapter 5

Experimental Analysis

In this chapter, we present the experimental results of our analysis. In par-
ticular, we run all the policies considered so far in a variety of configurations
and compare their performance in terms of pseudo-regret and normalized
pseudo-regret. In the first section, we describe the settings of our synthetic
experiments and the corresponding results. In the second and third section,
we present the analysis of the two real-world scenarios formalized in Chapter
4.

5.1 Synthetic Experiment Settings

All the synthetic experiments analyzed are in tight persistency with delay
dj,t = 0 for each realization Zj,t = (Zj,t,1, . . . , Zj,t,Tmax) of the persistency
vector, where each component Zj,t,m is a Bernoulli variable. The feedback
Rj,t is assumed to be deterministic for each arm aj , therefore we will omit the
index t. We assume that Tmax is known by the learner. For each experiment,
we want to maximize the accumulated Pull Reward, so we will evaluate the
results in terms of Pseudo-Regret (the smaller the better). In this scenario,
a generic realization of the persistency vector, informally called bucket, will
be a sequence of Tmax elements composed by a sub-sequence of ones followed
by a sub-sequence of zeros. Note that, given a bucket Zj,t, since the delay
dj,t is assumed to be 0 and we are in tight persistency, the length of the
sub-sequence of ones is equal to the true length lj,t.

To generate synthetic data, at each time instant t, we sample the true
length lj,t of a new bucket Zj,t from a distribution associated to the pulled
arm aj . More specifically, each arm aj is associated with a distribution
Beta(αj ,βj), where the parameters αj and βj are specified according to the
considered setting. The expected pull reward µj of an arm aj is computed

39
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Table 5.1: Experimental Analysis Summary.

Persistency Reward
Experiment name General Tight P.R. N.P.R.
synthetic A,B,C x x
Spotify Scenario x x
Rent Scenario x x

1 1 1 1 1 0 0 0
1 Tmax

Figure 5.1: Example of bucket in synthetic setting. In this example the length of
the vector is Tmax = 8. The first 5 components are successes (1), meaning that the
true length of the vector is l = 5.

in the following way:

µj = Rj

Tmax∑
i=1

i

(
Fj

(
i

Tmax

)
− Fj

(
i− 1

Tmax

))
,

where Fj is the cumulative distribution function of the Beta(αj ,βj). Below
we present three significant settings analyzed: Synthetic A, Synthetic B, and
Synthetic C.

All the synthetic settings presented are designed as to exemplify real
problems. We tested all the algorithms developed tailored to maximize pull
reward, in both the myopic and farsighted configurations. We consider as
baselines the ones that do not exploit partial information. The list of the
tested algorithms is the following: PR-T-UCB-P, PR-BW-UCB-P, PR-NT-
UCB-P, PR-T-TS-P, PR-BW-BayesUCB-P. Where PR-T-UCB-P and PR-
T-TS-P are the algorithms considered as baselines.

5.1.1 Synthetic A

In this setting, the value of the true length lj,t is sampled from a Beta
distribution with parameters aj = bj = 1, for each arm aj , for each time
instant t. In this configuration the Beta distribution is equivalent to the
uniform distribution. The feedback Rj is set incrementally for each arm
aj . Here, the best arm is the one with maximum feedback Rj . Indeed, the
magnitude of Rj does not influence the true length lj,t which is generated
uniformly at random. We set Tmax = 50. The experiment is repeated for 50

independent runs. The full description of the arms is provided in Table 5.2.
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Table 5.2: Description of the arms in setting Synthetic A.

Arm a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

R 1 2 3 4 5 6 7 8 9 10
µ 25.5 51 76.5 102 127.5 153 178.5 204 229.5 255

Table 5.3: Description of the arms in setting Synthetic B.

Arm a0 a1 a2 a3 a4 a5

R 1 1 1 1 1 1
α 2 4 6 8 10 12
β 8 8 8 8 8 8
µ 10.50 17.17 21.93 25.50 28.28 30.3

This setting is analysing the case in which the rewards are uniformly spread
over the Tmax time instants subsequent to the selection of an arm.

5.1.2 Synthetic B

In this setting, for each time instant t, the true length lj,t is sampled from
a Beta distribution depending on the pulled arm aj . For each arm aj , the
feedback is Rj = 1. This implies that the best arm is the one which is
associated to the Beta with the highest mean. We set Tmax = 50. The
experiment is repeated for 50 independent runs. The full description of
the arms is provided in Table 5.3, and a visual representation of the Beta
distributions considered are provided in Figure 5.2. This setting could be
seen as a simplified version of the Medical Trial problem proposed in Example
2, where we are interested in capturing only the lifetime of a patient.

5.1.3 Synthetic C

In this setting, we model the common situation where high feedback dis-
courage long persistency, as previously discussed in Chapter 3. At each time
t, the true length lj,t is sampled from a Beta distribution depending on the
pulled arm aj . For each arm aj , the feedback is Rj is set such that to higher
Beta mean corresponds lower feedback. We set Tmax =∈ {50, 100, 150, 200}.
For each Tmax adopted, the experiment is repeated for 50 independent runs.
The full description of the arms is provided in Table 5.4, where with µTmax we
indicate the expected pull reward in the configuration where Tmax is adopted.
The visual representation of the Beta distribution is provided in Figure 5.2.
This settings exemplifies a case of dynamic pricing of a subscription-based
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Figure 5.2: Probability density function and cumulative distribution function of the
Beta distributions considered in settings Synthetic B and Synthetic C.

Table 5.4: Description of the arms in setting Synthetic C.

Arm a0 a1 a2 a3 a4 a5

R 6 5 4 3 2 1
α 2 4 6 8 10 12
β 8 8 8 8 8 8
µ50 63.00 85.83 87.71 76.50 56.55 30.50
µ100 123.00 169.16 173.43 151.50 112.11 60.50
µ150 183.00 252.50 259.14 226.50 167.67 90.5
µ200 243.00 335.83 344.85 301.50 223.22 120.50

service. Indeed, large prices corresponds short time in terms of the subscrip-
tion, and viceversa.

Results on Synthetic Datasets The experimental results of the the set-
tings Synthetic A and Synthetic B, depicted in Figure 5.3 and 5.4, respec-
tively, show that the frequentist algorithms which exploit partial information
outperforms the frequentist baselines. Similarly, for the Bayesian algorithms
the baselines have worse performance compared to the algorithms that ex-
ploit partial information, where the difference is less evident. Synthetic A
and Synthetic B settings, despite having different characteristics, obtain the
same ranking in terms of algorithms: PR-BW-BayesUCB-P is the best over-
all, and PR-NT-UCB-P is the best among the frequentist ones.

The results for the setting Synthetic C, provided in Figure 5.5, shows an
interesting situation. Indeed, in this setting the PR-NT-UCB-P algorithm
performances degrades more than the other we analysed as the value of
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Figure 5.3: Pseudo regret plot of the experiment Synthetic A.

Tmax increases. In Figure 5.5 we notice that, when Tmax = 50, PR-NT-
UCB-P is the best frequentist algorithm, but as Tmax increases, it performs
worse than the others. Conversely, for the other algorithms we have a result
comparable to the one obtained in Synthetic A and Synthetic B. Nonetheless,
extending the time horizon, as depicted in Figure 5.6, we notice that, with
an adequate time horizon, PR-NT-UCB-P still outperforms all the other
frequentist algorithms. This is in line with our theoretical results summarized
in Table 4.2, telling that this algorithm should improve in this setting over
the others for its linear dependence w.r.t. Tmax.

The experimental results show that an algorithm in farsighted configura-
tion performs better than the corresponding myopic one. This was expected
since the farsighted configuration anticipates information to the learner.
However, this improvement is significant only in a few cases, for example for
PR-T-UCB-P in Figure 5.3, and PR-BW-BayesUCB-P in Figure 5.5 with
Tmax = 200. A final note is that in all the analyzed synthetic settings, the
policies that adopt a Bayesian approach achieves better performance com-
pared to ones adopting the frequentist approach. This is a well-known fact
from the bandit literature, even if in principle their theoretical guarantees
are the same.
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Figure 5.4: Pseudo regret plot of the experiment Synthetic B.

Figure 5.5: Pseudo regret plots of the experiment Synthetic C. From the top: Tmax ∈
{50, 100, 150, 200}.

5.2 Spotify Playlist Problem Setting

We perform an experimental analysis of the problem formalized in Section
3.2.1. At each round t the buckets Zj,t is sampled from a portion of an official
dataset released by Spotify (Brost et al., 2019). More precisely, we extract
from the dataset the listening sessions corresponding to K = 6 playlists,
which are our arms. Then, at each round t, we sample a listening session
of the pulled playlist and we encode the bucket as indicated in the formal-
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Figure 5.6: Pseudo regret plot of the experiment Synthetic C with Tmax = 200 and
extended time horizon n = 105. The plot represents the pseudo-regret achieved in a
single run experiment.

Table 5.5: Description of the arms in The Spotify Playlist Problem Setting.

Arm a0 a1 a2 a3 a4 a5

µ 38.59 52.35 38.44 43.89 23.48 36.20
σ(µ) 21.83 20.11 23.09 23.14 23.48 23.8

ization. The expected pull reward of the seven playlists selected and the
relative standard deviation are depicted in Table 5.6. Since we are in gen-
eral persistency setting and we want to maximize the pull reward, we test
all the algorithms tailored for the pull reward in myopic configuration. We
evaluate the averaged pseudo regret obtained in 50 independent runs.

Results for the Spotify Setting We recall that differently from the
aforementioned synthetic settings, the Spotify Playlist problem is in general-
persistency, therefore there are no assumption on the bucket composition.
While the tight persistency condition impose that every positive bin must be
adjacent, the general persistency condition does not impose any constraints
on how the bins are distributed in the bucket. The results of the Spotify ex-
periment are provided in Figure 5.7. Among the frequentist algorithms PR-
BW-UCB-P is really close to the baseline PR-T-UCB-P and, in the Bayesian
ones, the baseline PR-T-TS-P overtakes PR-BW-BayesUCB-P. This result
suggests that the bin-wise approach suffers in the general-persistency setting.
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Figure 5.7: Pseudo regret plot of the experiment Spotify Playlist Problem.

As a matter of facts, while in the synthetic settings the reward is concen-
trated at the start of the buckets as depicted in Figure 5.1, in this scenario the
reward is uniformly distributed over the bucket. This greatly undermine the
advantage of the bin-wise approach. The PR-NT-UCB-P algorithm, which
exploit the non terminated buckets filling them with fake realizations, does
not suffer the issue of the reward distribution along the bucket and outper-
forms both the baseline PR-T-UCB-P and the bin-wise frequentist algorithm
PR-BW-UCB-P. As a final remark, since some of the presented algorithms
are able to learn quickly the best playlist, it could be interesting to compare
the MAB-PR strategy with other solutions that mitigate the cold users issue.

5.3 Rental Pricing Problem Setting

We perform an experimental analysis of the problem formalized in Section
3.2.2. For this scenario we use a dataset provided by a company that works
in the rental room business containing information about past rental con-
tracts, whose information are retained for NDA reasons. Once an arm, which
represents a fee, is pulled, a bucket is encoded sampling a contract from the
sub-set of the dataset which contains the contracts characterized by the
pulled fee. We identify a set of K = 8 different fees. A description of the
arms is provided in Table 5.6. We test all the algorithms suitable for max-
imizing the normalized pull reward and we evaluate the results in terms of
normalized pseudo regret. We evaluate the averaged pseudo regret obtained
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Table 5.6: Description of the arms in The Rental Pricing Problem Setting.

Arm a0 a1 a2 a3 a4 a5 a5 a5

R 550 560 570 580 590 600 610 630
η 477 462 490 483 466 512 530 445

Figure 5.8: Normalized pseudo regret plot of the experiment Rental Pricing Problem.

over 50 independent runs.

Results for the Rental Pricing Setting The Rental Pricing problem
described in Section 3.2.2, appears more difficult than the other settings.
This is evident looking at Figure 5.8, where both the frequentist and Bayesian
baselines are not able to identify the best arm quickly, since their regret do
not curve in the normalized pseudo-regret plot. Nonetheless, the PR-BW-
BayesUCB-NP algorithm is the one outperforming the others even in this
scenario.
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Chapter 6

Conclusions

The Multi-Armed Bandit model is an important framework for decision mak-
ing under uncertainty, as it presents one of the clearest examples of the
trade-off between exploration and exploitation. In problems of this type, an
agent, at each time instant, is required to choose an action among a given
set. Each action, when chosen, generates a reward for the agent. The goal
of the agent is to maximize the cumulative reward over a finite time horizon.
Although the standard bandit model assumes that the reward is a real num-
ber immediately available after an action has been taken, this assumption is
inappropriate for a variety of real-world scenarios. In this thesis, motivated
by real-world application needs, we studied the specific case in which the
reward deriving from an action is spread over the time following the taking
of the action. Applications that fall under persistent reward include, for
example, dynamic pricing, web content optimization, recommender systems,
and adaptive clinical trials.

We firstly formalized a new bandit model, namely Multi-Armed Bandit
with Persistent Reward (MAB-PR), suitable to handle the persistent reward
scenarios. Then, we designed a set of algorithms, following the Bayesian
and frequentist framework, tailored to tackle this novel bandit model. Our
major interest was to develop and analyze novel algorithms able to exploit
the partial information obtained during the reward acquisition process. For
this purpose, we introduced two different approaches: the bin-wise approach
and the non-terminated approach. The former one takes advantage of the
fact that the total reward deriving from an action can be seen as a sum of
smaller rewards (bins) acquired at each time instants after the take of the
action. Conversely, the latter one exploits the not yet terminated reward
acquisition processes considering them terminated by faking the part of the
process not yet occurred with fictitious information. The algorithms that
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base their operating criteria on these approaches have been compared with
those that evaluate the reward as a unique variable available only at the
end of the acquisition process that, namely the so called delayed bandit
algorithms. Indeed, to consider the reward as a number available after that
the acquisition process is terminated, reduces the persistent reward problem
to a delayed reward problem.

For the frequentist algorithms we provided theoretical guarantees which,
under mild conditions, state that both the delayed and the bin-wise algorithm
PR-BW-UCB-P achieve a regret bound of the order of O(T 2

max ln t) in our
setting. Furthermore, we proved that the algorithm PR-NT-UCB-P, which
relies on the non-terminated approach, achieves a regret bound of the order
of O(Tmax ln t), improving over the previous one of a multiplicative factor of
Tmax.

We performed a thorough experimental analysis of the developed algo-
rithms which includes both synthetically generated and real-world data. The
experimental results show that, in the large majority of the settings ana-
lyzed, the novel algorithms that exploit partial information achieved better
results compared to their corresponding baselines. Furthermore, the the-
oretical results are perfectly reflected in the outcome of the experimental
analysis, where, for each addressed scenario, the algorithm PR-NT-UCB-P
outperforms all the other frequentist algorithms when a sufficiently large
time horizon is provided. Moreover, experimental evidence shows that the
way in which the reward is distributed over the time severely affects the per-
formance of the algorithms. More specifically, if a large portion of the total
reward generated by an action is concentrated immediately after that the
action has taken place, the advantage of capturing this information without
waiting is significant. Conversely, if the reward is uniformly distributed over
the timespan following the take of an action, the advantage gathered from
an early evaluation is limited. In the worst case, it can even be misleading
to exploit partial information if, in an initial phase, these are not representa-
tive of the total reward deriving from the take of an action. In our analysis,
the Bayesian algorithms always achieve better performance compared to the
frequentist ones. We show experimentally that the Bayesian way to manage
the exploration exploitation trade-off is the best in the persistent reward
scenario. This confirms what we expected since previous works shows that
Thompson Sampling, which inspired our Bayesian algorithms, is more robust
under delayed feedback thanks to its randomness (Chapelle and Li, 2011).

The main future directions of this work is to prove theoretical bounds
for all the algorithms which have not been theoretically analyzed here, in
particular the ones using the Bayesian approach. Our experimental results
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highlighted how the persistent reward settings is sensible to the the way in
which the reward is distributed along its acquisition process. An interesting
research line could be to theoretically formalize this aspect and to devise
new strategies which explicitly exploits this information. Alternatively, could
be also interesting to prove criteria that, based on the reward distribution
along its acquisition process, determine when it is convenient to approach
a specific persistent reward scenario with an algorithm that exploits partial
information.

Extending the PR-MAB framework to handle more complex scenarios
is another interesting development of the current work. In particular, we
believe that the two most limiting assumptions for our setting are: (i) the
absence of side information; and (ii) the stationarity of the reward. Indeed,
these two assumptions are very significant in a lot of real problems that could
be modeled as MAB-PR problem. For example, in a recommendation task,
the absence of side information means that the algorithm considers that all
the users to be served are identical, or, in a dynamic pricing problem, the
stationarity of the reward implies that the algorithm is not able to react
to the market variations. Indeed, could be interesting to mix our MAB-
PR model with Contextual Bandits (Agarwal et al., 2014) or non-stationary
Bandits (Trovo et al., 2020; Di Benedetto et al., 2020) to cope with (i) and
(ii), respectively.
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