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Abstract

Rice cultivation is one of the most vital agricultural activities in the world for human
beings because it is a staple food for us. One of the ways to monitor the distribution
of this valuable grain and collect cultivation statistics is through rice-based detection of
cultivation patterns around the world or in smaller regions by government agency au-
thorities, by applying remote sensing-based rice detection algorithms to the region of
interest. SAR-based rice monitoring has shown remarkable results over time in distin-
guishing rice cropland from other types of land cover because of its high sensitivity to
flooded surfaces. For this study, a dataset with high spatial and temporal resolution was
used. Multi-temporal SAR data analysis is the best known approach for rice area analysis
and detection. The annual backscatter variation of rice acreage is higher than other crops
during the rice growing season, and this is the key principle behind the rice monitoring
algorithms.

In this thesis, we applied the algorithm developed by "Nguyen and Wagner" [40]" to SAR
multi-temporal VV and VH-polarised datasets from 2019 and 2020, aiming to distinguish
rice acreage distribution from the other crop types. We improved the parameterization
of the algorithm for the Po river catchment and obtained a rice map with about 88%
precision, 99% overall accuracy, 77% F1-score and 0.78 Kappa. Moreover, we demon-
strated that the VH-polarisation time series is more efficient than the VV-polarisation in
rice seasonality detection and mapping. We also developed further steps by analyzing the
local extrema by segmenting the rice growing season into subsections and analyzing them
separately to improve the original algorithm. This method was applied in the valleys
of the Po River located in northern Italy, which are rich in rice cultivation with a high
distribution of rice paddies.

Keywords: rice, paddy, remote sensing, remote sensing, SAR, Sentinel-1, polarization,
VV and VH polarization, temporal and spatial resolution, multi temporal, backscatter





Abstract in lingua italiana

La coltivazione del riso è una delle attività agricole più vitali al mondo per l’uomo, perché
è un alimento di base per noi. Uno dei modi per monitorare la distribuzione di questo
prezioso cereale e raccogliere statistiche sulla coltivazione è il rilevamento basato sul riso
dei modelli di coltivazione in tutto il mondo o in regioni più piccole da parte delle autorità
governative, applicando algoritmi di rilevamento del riso basati sul telerilevamento alla re-
gione di interesse. Il monitoraggio del riso basato sul SAR ha mostrato nel tempo risultati
notevoli nel distinguere le coltivazioni di riso da altri tipi di copertura del suolo, grazie
alla sua elevata sensibilità alle superfici allagate. Per questo studio è stato utilizzato un
set di dati ad alta risoluzione spaziale e temporale. L’analisi dei dati SAR multitemporali
è l’approccio più conosciuto per l’analisi e il rilevamento delle aree risicole. La variazione
annuale della retrodiffusione della superficie coltivata a riso è più elevata rispetto alle altre
colture durante la stagione di crescita del riso, e questo è il principio chiave alla base degli
algoritmi di monitoraggio del riso.

In questa tesi, abbiamo applicato l’algoritmo sviluppato da "Nguyen e Wagner" [40]" ai
dataset SAR multi-temporali VV e VH-polarizzati del 2019 e 2020, con l’obiettivo di dis-
tinguere la distribuzione della superficie coltivata a riso dagli altri tipi di colture. Abbiamo
migliorato la parametrizzazione dell’algoritmo per il bacino idrografico del Po e abbiamo
ottenuto una mappa del riso con una precisione dell’88% circa, un’accuratezza complessiva
del 99%, un F1-score del 77% e un Kappa di 0,78. Inoltre, abbiamo dimostrato che la
serie temporale con polarizzazione VH è più efficiente della polarizzazione VV nel rileva-
mento e nella mappatura della stagionalità del riso. Abbiamo anche sviluppato ulteriori
passi analizzando gli estremi locali, segmentando la stagione di coltivazione del riso in
sottosezioni e analizzandole separatamente per migliorare l’algoritmo originale. Questo
metodo è stato applicato nelle valli del fiume Po, situate nell’Italia settentrionale, ricche
di coltivazioni di riso e con un’elevata distribuzione di risaie.

Keywords: riso, risaia, telerilevamento, telerilevamento, SAR, Sentinel-1, polarizzazione,
polarizzazione VV e VH, risoluzione temporale e spaziale, multi temporale, backscatter
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1| Introduction

Rice is one of the extensively consumed food resources for humans. Accordingly, rice
cultivation occupies one of the first positions as an important agricultural activity in
the agricultural sector to produce a staple food for the growing world population in all
continents, based on their cultural and dietary habits. Nowadays, the agricultural sector is
facing great challenges due to various factors such as global demand for food, increasing
price competition due to the impact of globalization of markets and volatility of food
prices [45], and the need for more environmentally and economically sustainable farming
system in developed countries [46].

Stable and sustainable crop production requires information on where, when, how, and
what type of crops are grown. Therefore, the development of an up-to-date and accurate
information system on the distribution of agricultural fields and their species is not only a
study case for food security and agricultural planning, but is also important in the context
of other scientific disciplines, including water resource management, marketing, methane
emissions relevant to the greenhouse effect, and climate change.

Italy is the largest rice producer in Europe, accounting for more than half of the total
rice production in the European Union (EU) [54]. Therefore, the preliminary and precise
monitoring of rice is nowadays critical due to its importance for the governmental and
private interdisciplinary sectors directly or indirectly assiociated to rice cultivation from
an agronomic point of view. For this reason, nowadays many agricultural or cultivation
information systems have been developed by different organs at continental or national
level, a system that includes the subsystem of soil, plants, crops, pesticides and insects
subsystems, which assumingly converts solar energy, water, nutrients, labor and all other
variables into food, feed and fuel (FAO 1996 [13]). Accordingly, any type of record that
takes into account the temporal and spatial location of rice acreage is important infor-
mation for the economy and agricultural facets in all directions. Due to this reason, the
Food and Agriculture Organization of the United Nations (FAO) publishes annual and
monthly statistics on the production, import and export of various agricultural crops and
other food resources, as well as other useful statistics that can be used for decision-making



2 1| Introduction

and management (www.fao.org/faostat/). Another reference layer for rice acreage is the
classified maps of the Corine Land Cover (CLC) product with a spatial resolution of 100
m, which are updated every 4 years. Because of its low temporal and spatial resolution,
in most cases it does not meet the requirements of many users who desire very precise
and high quality analysis.

Most of the countries have developed their own customized information system to mon-
itor rice production, including Italy, by assessing the spatial distribution of rice acreage.
IRES (Italian Rice Experiment Station: www.ires.online/), AGEA or SIAN (Italian In-
formative Agricultural System: www.sian.it/portale-sian/home.jsp), and ersaf (Regional
Agency for Agricultural and Forestry Services [9] - is an institution of the Lombardy
Region) have been developed. The information system of these organizations has the
mission to carry out technical and promotional actions for the development of the agri-
cultural and forestry sector and rural territory, promoting transversality, multifunctional-
ity and integration. In addition, the Earth Observation Global Agricultural Monitoring,
GEOGLAM (https://earthobservations.org/index.php) was established to develop and
strengthen global crop production to increase market transparency and improve food
security by producing and disseminating relevant, annually updated, and actionable in-
formation on agricultural conditions and production prospects at the national, regional,
and global levels through the coordination of satellite observation systems in different
regions of the world.

Earth observation has proven to be a useful method for rice mapping at larger scales by
using geospatial data, e.g., remote sensing data, weather data, and in particular Synthetic
Aperture Radar (SAR) data, which is one of the most powerful remote sensing tools for
a variety of applications, including agricultural purposes and rice cropland monitoring
and detection. Unlike optical technology, synthetic aperture radar can make observations
through darkness, clouds, and rain to detect changes in habitat, water and moisture levels,
effects of natural or human disturbances, and changes in the Earth’s surface after events
such as earthquakes or the opening of holes in the Earth. Due to the day-night and
weather-independent data collection capabilities of the SAR sensors, they became one of
the most popular data sources to be consulted and used by researchers for a variety of
research topics. The launch of the European Space Agency (ESA) Sentinel-1A and B
missions with the SAR C-band sensor mounted on it, on April 3, 2014, and April 25,
2016, with a revisit period of 6 days, was a turning point in most studies and industries,
as it provided data with improved spatial and temporal resolution (images with a spatial
resolution of 10m approximately every 1 to 4 days over Europe). This is one of the reasons
why the data from SAR are best suited to monitor and map the distribution of rice fields
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and accelerate the progress by adopting appropriate strategies and algorithms. The main
advantage of SAR is the high temporal resolution (because clouds are no problem) and
the very characteristic low backscatter signal of flooded surfaces. This open-source data
is available free of charge through the Copernicus website.

In the context of remote sensing of rice croplands, many studies and papers have confirmed
that the use of dense SAR time series has very efficient impacts and results. To this end,
using multitemporal SAR datasets is a tactical idea to retrieve classified rice maps or the
rice growing cycle consistently at a larger scale, according to the temporal variation of
the SAR backscatter signal, Sigma-naught (σ0) [22]. Due to the fact that the temporal
variation of σ0 throughout the rice growing season for rice cropland is very high compared
to the other crops or land covers [20] i.e., the standing water typically contains a very
low backscatter value, which increases quickly as soon as there is vegetation. Many
classification algorithms have been introduced for rice identification so far. The main
principle of these classifiers is based on time series analysis of SAR backscatter values
for both cross-polarized (VH) and co-polarized (VV) or even the ratio of both (HH/VV,
HH/HV, or VV /VH) [51]. Most studies agree that cross-polarized (VH) backscatter
values are more strongly correlated with rice growth than the others.

The main objective of this thesis is to monitor and classify the distribution of rice fields in
the Po river catchment by applying a phenology-based classification algorithm developed
by "Ngyuen and Wagner" [41] [40] [39] [38], The functionality and transferability of the
original algorithm to our study area is evaluated by defining a specified and customized
rice growing calendar over this region. The final aim is to adjust the parameterization of
the original algorithm for optimal results in the Po river catchment. To achieve this goal,
we used a dense time series of SAR backscatter images for 2019 and 2020 in both VV
and VH polarization mode over the Po catchment, where contains very large area of rice
paddies in both Lombardy and Piedmont regions,with the highest rice production rates
in Italy Figure 2.3.
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Figure 1.1: Planted area of rice in Italy in 2018 according to istat website.

1.1. Statement of the Research Problem

One of the ultimate goals of this thesis is to introduce an already proposed algorithm for
the classification of rice by reapplying it to a particular area in Italy, important for us, in
order to make further decisions. By using C-band SAR time series as input and evaluat-
ing the applicability of the propounded phenology-based rice classification algorithm (first
proposed by "Nguyen et al" [39]) and readjusting it with our observed variables based
on the conditions over the study area. And finally, improving the algorithm by adding
extra steps in order to achieve higher reliability of the final results, using some validation
techniques with specific reference data for the rice growing layer. At the beginning of the
research, numerous questions initially emerged, including the following:

1) What type of dataset is more proficient for rice monitoring and mapping?

2) Is the choice of dataset dependent on the region, its characteristics, and scale?
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3) Why are SAR time series suitable for monitoring rice cultivation in this particular
area?

4) How can we process the SAR time series data in order to ensure the reliability of the
final results with high accuracy level?

5) What useful information or parameters can we extract from the stacked SAR dataset?

6) Why is a phenology-based algorithm applicable for rice paddy classification and anal-
ysis?

7) Which phenological parameters are suitable for monitoring and classification of rice?

8) Does this algorithm have shortcomings with the proposed methodology or what are
the main aspects that lead to typical errors in the final results?

9) Is this algorithm applicable at larger scales or is it better to limit to local or minuscule
scales.

There were many questions we asked ourselves during this research, and tried to find rea-
sonable answers to most of them from a researcher’s point of view, based on the experience
and information we gained during the conduction procedure, not only using the already
published works, but also by putting together all the gained knowledge and reasoning in
a rational way.

1.2. Physical Mechanism and Equations of Scattering

1.2.1. Radar-based remote sensing

A satellite-borne Synthetic Aperture Radar (SAR) scans the Earth’s surface using mi-
crowave radiation from a great height above the Earth (500-1000Km). The SAR antenna
emits electromagnetic pulses and receives the backscattered echo from the Earth’s sur-
face. Based on these echoes, high-resolution image data and other data products can be
generated.

Microwave remote sensing enables the use of electromagnetic radiation with a wavelength
between 1cm-1m. This application gives us the ability to discriminate between different
targets on the ground because the signal intensity is different for each specific object with
exclusive physical and chemical intrinsic properties. The time between the transmitted
signal and the received signal is used to measure the distance of the target, which is
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used in many analyses, for example, in the context of forest monitoring to monitor the
density of the canopy of different tree species. One of the most important measurements
is the strength of the backscattered signal, which plays the most important role in remote
sensing-based analyses. A system that operates in this way is called RADAR (the name
stands for RAdio Detection And Ranging) and can enable a "microwave image" of the
observed scene to be obtained. The received backscatter signal can be considered as
a combination of basic scattering mechanisms [38]. Different applications to different
targets within our field of interest require their own interpretation of the characterization
of the scattering mechanism. In our case study, rice acreage monitoring, we will use a
very specific scattering mechanism that will be discussed in more detail in the following
chapters.

Due to their wavelength, the interaction of microwaves the interaction of microwaves with
the target object, such as soil, water bodies, and plants, is very different from the other
frequencies of electromagnetic radiation, including infrared and optical waves.

1.2.2. Radar Equation

Theoretically, the radar equation describes the physical power budget of the signal scat-
tered by the satellite’s transmitters and received by the receivers, and their correlation
with the characteristics of the radar.

Pr =
PtGtAr

(4πRtRr)2
GsAs(1−Ka) (1.1)

Here P t and P r are the transmitted and received signal intensities of the antenna with
gain Gt. Ar is the effective aperture of the receiving antenna and As is the effective
area of the incident beam intercepted by the transmitter. Ka is the fraction absorbed
by the target with gain Gt. Rt is the distance between the radar transmitter and the
target. Rr is the distance between the target and the radar receiver [38]. After some
more signal processing steps on the transmitted and received signals, the formula for the
backscatter cross-section (the most important formula for processing the raw satellite
data) is expressed as follows:

σ0(dB) = 10 log σ0(m
2m−2) (1.2)

The coefficient σ0 is the scattering coefficient, the conventional measure of the strength



1| Introduction 7

of radar signals reflected from a distributed scatterer, usually expressed in dB, the last
value used in remote sensing data for further interpretation, and it expresses the reflective
backscattering properties of the surface.

In addition, the ratio of normalised and corrected signal intensity coefficient of a pixel,
also known as "Digital Number (DN)", is a dimensionless number that compares the
observed strength with that expected for an area of one square metre. Sigma-naught (σ0)
is defined with respect to the nominally horizontal plane and generally varies significantly
with the incidence angle, wavelength, and polarisation, as well as with the properties of
the scattering surface itself for further uses, using the following simplified formula:

σ0(dB) = 10 log(DN) (1.3)

which depends on the physical characteristics of the target surface, such as geometric
structure, surface roughness, and orientation; and on the electrical characteristics of the
surface, such as dielectric constant, conductivity of the matter, and moisture content; and
on radar characteristics, such as frequency, polarization (VV, VH, HH, and HV), and the
emitted incidence angle [56]. Finally, this σ0 is the very last parameter used to obtain the
required geophysical and biophysical parameters.

1.3. Rice Growing Characteristics

Each agricultural crop has a characteristic cropping pattern and many different algorithms
have been introduced to distinguish one from another, including rice. Rice cropland is
the most common agricultural land cover in the Lombardy and Piemont regions in Italy.
In general, rice cultivation includes 3 main cultivation phases: vegetative, reproductive,
and ripening (maturity) or harvesting phases [40]. The cultivated rice plant is an annual
grass and grows to a height of about 1.2 metres. Figure 1.2 briefly depicts the phases
that a rice plant goes through. The first phase, the vegetative stage, includes the sowing
(seeding), flooding, tillage, germination, and transplanting stages. The duration of the
vegetative stage varies by cultivar and depends on many factors such as temperature, soil
conditions, and rice variety, but usually ranges from 40 to 100 days or more. The second
phase that follows, the reproductive phase, includes panicle instigation (a panicle is a
cluster of flowers that grows at the end of a branch or shoot), head formation (heading),
and flowering, which takes approximately 35 days to complete. Irrigation continues during
this phase, but as the rice plants begin to flower and their stems elongate, the water surface
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disappears from view. Ripening is the final phase when the final product of rice, the white
grain, can be harvested. During this phase, irrigation is discontinued and water completely
disappears from the soil during harvest. This stage usually lasts 30 days depending on
different variables "Nelson et al, 2014 [37]" (Figure 1.2).

Figure 1.2: Rice growth phases (source: www.flickr.com). This scheme is the outline of
different physiological phases that the rice grain goes through during its growing season.
for the most part, the entire procedure takes 90 to 200 days or more, from sowing to
harvest. However it might vary from time to time and region by region (depending on so
many factors).

1.4. Remote Sensing of Rice Cropland

Rice is one of the staple food resources in Italy, economically, culturally and agricultur-
ally. Therefore, mapping and monitoring the distribution of this momentous crop is of
vital importance to the Italian government. This valuable grain goes thorough different
physiological phases during its cultivation, which makes it exclusive from other crops.
Determining these phases and detecting and mapping paddy fields requires analysis over
a dense time series, and the time series data from SAR accomplish this task. On the
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grounds that, Sentinel-1 has a low revisit time and weather-independent property, which
is exactly what we are looking for. One of the very first studies using SAR sensors to
map rice distribution was performed with the European Remote Sensing Satellite (ERS-
1) concluding highly accurate and promising results [1] [23]. The mechanism of active
remote sensing-based rice mapping works with the signal-plant-water interactions at dif-
ferent phases of rice cultivation, i.e., large dynamics of microwave backscatter values can
be observed and mapped in rice crops. These backscatter values change at different phases
from seeding and flooding to preharvest and harvest stages. The signal backscatter over
a flooded rice growing area is very low compared to a vegetated area, due to the fact
that water is an absorber of microwave signals and backscatter coefficients are very low
thanks to the specular reflection of the flooded area. With the evolving of the of the
vegetative, reproduction, ripening (maturity) and harvesting stages, a rapid increase in
radar backscatter values was observed, which can be attributed to the increasing of height
and density of rice plants in the rice paddies. These different stages of rice cultivation
process coincide with changes in the interaction of plants with radar backscatter and can
therefore be observed and mapped with an appropriate set of remote sensing data.

By putting all the pieces of the puzzle together [59] [58], we can reshape a general model
to explain and map rice acreage via backscatter measurements over time. The fact that
the annual backscatter dynamic range (i.e. MAX minus MIN backscatter) of rice is higher
than for other crops, is the theory and basis of most rice detection algorithms, including
our algorithm based on "Nguyen and Wagner" algorithm [39]. This is another reason why
we need a dense time series SAR data to capture this annual variation. After defining the
principles of the active remote sensing-based rice mapping model, the other important
step is the selection of an efficient dataset which is compatible with the study area and
the algorithm to be applied on.

1.5. Literature Review

Considering the vitality of rice from various aspects, monitoring of rice cultivation fields
over time by acquiring significant cropping patterns of this grain is indispensable to have
a well organized agricultural information system. There are many different methods that
have been developed long ago until today, including different types of data collection,
which is traditionally done by ground surveying the fields, which is labor intensive and
costly, covering a large area [44] [62]. These methods are not very convenient and the areas
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are not compatible with current market and information system requirements to monitor
the distribution of rice fields over time. With the development of complex remote sensing-
based algorithms and techniques, crop monitoring has been modernized over time and has
become more cost-effective with more reliable results over even larger continental scales.
More specifically, with various hyper-temporal and diverse remote sensing data, including
SAR, hyper-spectral, multirotor UAV and RGB digital cameras, and RGB-based remote
sensing through the collection of various indices over time [16], it became more automated
and efficient to monitor rice dynamics in a given area.

Abundant water is needed for rice cultivation, so everywhere in the world rice cultiva-
tion starts with direct seeding into the flooded soil or with flooding the soil prepared
by sowing (wet sowing and dry sowing). This important stage throughout the process
is the key principle of most remote sensing-based rice monitoring algorithms, including
"Nguyen and Wagner [39]" classifier. Rice fields are inundated at the beginning of the
growing season and remain so until the reproductive stage. However, for other crops such
as olives, wheat, and vineyards, the process is not the same and fields are not flooded as
frequently during the vegetative and reproductive phases. Therefore, by monitoring the
phases and identifying the flooding periods, it is possible to distinguish rice from other
crops. Rice growing phases coincide with spatial and temporal changes in plant growth.
Two main remote sensing data can be used to detect the cultivation phases: active remote
sensing and passive remote sensing. Changes in plant morphology during these phases
can be easily detected using different remote sensing methods. The noteworthy rule for
this circumstance is that the state of interaction between the plant and the signal (mi-
crowaves or light) can be observed and processed and mapped by logical principles. With
this main principle, we can demonstrate that each plant has its own exclusive pattern and
signature from the point of view of the algorithm. More specifically, here we can capture
different cultivation phases for different agricultural crops and plants, which would lead
to distinguish them from each other. To achieve this, it is not possible to capture the
cropping signature with a single imagery, since we consider time in our algorithms and
cropping patterns. For this reason, for an accurate and reliable rice detection, or even
for any kind of crop monitoring, we need a dense time series of remote sensing data to
dynamically monitor the cropping stages.

In optical remote sensing, one of the common methods is to obtain different indices
(such as NDVI and NDVWI) from the time series and discriminating different classes by
applying crop signature detection to them. However, optical remote sensing has some
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disadvantages compared to temporal use, e.g., it is not weather independent, is distorted
by the particles in the atmosphere, cannot be acquired during the night (there is no en-
ergy source, sun), etc. Numerous studies and researches have been conducted worldwide
on the application of optical sensors in monitoring a variety of land areas (water bodies,
agricultural crops, forestry, and various vegetation types) and their mapping. For exam-
ple, "Nguyen et al 2012 [43]" mapped the irrigated rice patterns of the Mekong Delta
in Vietnam through hyper-temporal SPOT NDVI image analysis. "Immerzee et al 2005
[17]" used harmonic analysis of SPOT VGT-S10 NDVI time series to understand precipi-
tation patterns and land use interactions in Tibet. "Gumma et al 2014 [15]" used MODIS
500 m data for 2010 to map the seasonal extent of rice cropland in Bangladesh with high
cropping intensity. "Fang et al 1998 [11]" estimated rice area year by year using NOAA
AVHRR and Landsat TM. "Martinez et al 2005 [30]" Mapped perennial cropping patterns
in small irrigation districts using time series analysis of Landsat TM imagery. Almost all
of these studies have used data with high temporal resolution for their studies and most
of them have not been able to identify the smaller paddy fields due to two main problems:
firstly, the low temporal-spatial resolution of the optical data used, and the atmospheric
effects due to existent of suspended particulate matter in the atmosphere and the cloud
cover. Secondly, the focus on a large area of study, because as the study area grows, the
variety of the land covers increase as well, and the ground might contain more classes
which makes it harder to distinguish between them.

Unlike the optical remote sensing, the microwave remote sensing techniques such as SAR
(Synthetic Aperture Radar) have tremendous ability to collect data regardless of weather
and day-night, which is a great advantage of electromagnetic microwave signals, and they
can detect the temporal backscatter pattern of different plants and crops. Backscatter is
the portion of the outgoing radar signal that the target (in this case, vegetation or agricul-
tural crops) redirects directly back toward the radar antenna. The received backscatter
is a function of the characteristics of the radar system, the topography, and the proper-
ties of the crops. Canopy structure of crop and water content vary depending on crop
type, growth stage, and its condition. These variations can be detected by SAR sen-
sors to distinguish between different crop types [10] [32] [33] [31]. In order to monitor
a particular crop and discriminate it from other classes of crops or ground covers, it is
beneficial to have a high level of knowledge and perception regarding the crop growing
calendar and its different phases during the growing season and use it in a rational way
to extract the classified map of our desired crop. "Nguyen et al 2015 [39]" proposed to
use a dense SAR stack of images throughout the entire rice growing season and extract
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the phenological parameters to classify the rice fields and achieve the best discrimina-
tion between the different types of plants in 8 different areas. "Xiao et al 2021 [60]"
implemented a similar algirithm in Mapping paddy rice with Sentinel-1/2 and phenol-
ogy, object-based algorithm in Hangjiahu Plain in China using GEE platform. "Busetto
and Casteleyn et al 2017 [5]" took the same direction in monitoring rice areas in Italy,
Spain and Greece in the ERMIS project "Downstream services for rice crop monitoring
in Europe: from regional to local scale". In another study by "Clauss et al 2018 [7]",
they performed rice mapping with Sentinel-1 time series using superpixel segmentation,
where they have segmented the study area into superpixels and applying almost the same
algorithm to classify rice fields. "Stroppiana et al 2019 [55]" mapped rice acreage and
inundation dynamics during the season using both optical and SAR satellite data. Their
approach relies on a priori knowledge of cropping dynamics to adjust TSD (Temporal
Spectra Descriptors) calculation time horizons and thresholds to local conditions. The
output products consist of maps of rice acreage, rice seeding practices (dry and flooded
rice), and flooding practices. They applied a more convoluted algorithm compared to the
other algorithms in other studies, but the idea behind it is still the same. "Planque et al
2021 [49]" applied a knowledge-based descriptive algorithm using Sentinel-1 time series for
a national crop mapping. "Onojeghuo et al 2018 [47]" has introduced another algorithm
for rice crop mapping by applying machine learning methods to multi-temporal Sentinel-1
and Landsat data. They also introduced a rice cultivation calendar for their algorithm.
"Mansaray et al [29]" mixed both active and passive remote sensing methods for mapping
rice fields in urban Shanghai city in southeast China, using Sentinel-1A and Landsat 8
datasets, which showed good results over a larger scaled area. Almost all the algorithms
we presented in this section from different publications used the inundation of rice fields
before crop establishment which is different from other types of land covers grown with
other types of crops. Backscatter values are very low during flooding in the vegetative
and transplanting phases, and higher during the early growth stages of the rice plant in
the reproductive and maturity stages. In summary, the rapid changes and high correla-
tions of backscatter values in the temporal SAR backscatter profiles provide a specific rice
pattern that we can use as a rice signature to determine rice distribution in our study area.

Sentinel-1 consists of a constellation of two satellites, Sentinel-1A and Sentinel-1B, which
together have a revisit time of 6 days. The Sentinel-1 constellation provides us with high
spatial and temporal resolution, making this mission superior to other radar missions.
The C-band Sentinel-1 SAR provides land services and applications, such as crop moni-
toring, land cover mapping, and change monitoring, by offering an interferometric Wide
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(IW) swath, dual-polarization (horizontal (H) and vertical (V)) acquisition mode, and fine
spatial resolution data (20 m). Free data products are available in single-polarization (VV
or HH) and in cross-polarization (VV +VH or HH+HV) from the Copernicus platform
and can therefore be used to map different cropping patterns. To map different cropping
patterns, we have the possibility to use different polarizations that have different inter-
actions with different plants and crops due to multiple scattering caused by structures
(stems, leaves, fruits) within the crop volume [31].

Some studies use single polarization of backscatter data and others use multi-polarization
for mapping, depending on the plant types, the temporal density of the available dataset,
and the study area. "Nguyen et al [39]" utilized multi-polarization backscatter time
series to map rice fields and concluded that the best polarization for rice monitoring
is VH-polarization. "Bouvet et al 2009 [2]" algorithm recorded the change of intensity
backscattering coefficient of vertically or horizontally co-polarized data (VV or HH), they
evaluated the use of HH/VV polarization ratio and they had higher accuracy and required
less temporal coverage compared to single polarization for rice mapping. "Lasko et al 2018
[21]" used VV-only, VH-only, and both polarizations together and concluded by compar-
ing the final results that the data for VV/VH had the highest overall accuracy based on
the accuracy assessment, while VV had the lowest overall accuracy. "Nguyen et al 2016
[42]" used Sentinel 1A time series in dual-polarization (VV/VH) during the rice growing
season in the Mekong Delta to analyze the relationship between the growth cycle of rice
plants and the temporal variation of SAR backscatter at different polarizations. Their
results show that VH-backscatter is more sensitive to rice growth than VV-backscatter.
Furthermore, "Mansaray et al 2017 [29]" and "Nguyen et al 2017 [40]" also demonstrated
that VH-backscatter is more sensitive to rice growth pattern than VV-backscatter with
higher accuracy. "Clauss et al 2017 [7]" chose VH polarized data over VV due to the higher
dynamic range of backscatter over rice areas caused by agronomic flooding followed by
vertical plant growth, and by applying the algorithm to both VV and VV-backscatter
over six study sites in different rice growing regions. Last but not least, based on the
literature review conducted, we concluded that VH-polarization is more sensitive to rice
growth and classification more than the other polarizations.

Another vital point in remote sensing-based crop detection is the selection of an appro-
priate algorithm that is applicable to the selected study area and compatible with the
dataset used, taking into account the temporal density and the essence of the dataset.
So far, several remote sensing-based crop classifiers have been introduced. Some of the
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algorithms applied Deep Learning and Machine Learning algorithms to the Sentinel-1
time series to extract rice acreage from a wide range of agricultural crops or other land
covers, including Deep Recurrent Neural Network (RNN) by "Ndikumana et al [36]" and
"Zhang et al 2020 [61]", Support Vector Machine (SVM) and Random Forest (RF) Ma-
chine Learning classification algorithms by "Onojeghuo et al [47]", "Zheng et al 2015 [63]"
and " Gislason et al2006 [14]", K-nearest neighbours (KNN) by "Myint et al [35]" and the
application of a Decision Tree approach (DTs) by "Waheed et al 2006 [57]" were applied
with different results. The supervised classification algorithms require a set of training
data for classification, which is one of the limitations and difficulties of this type of clas-
sifiers. After training and testing the algorithm, the classifier may even be overfitted or
underfitted in the final classification product, so there is the challenge of choosing the
effective parameters as well.

The other types of remote sensing-based crop classification algorithms adopt a crop
phenology-based classifier by setting the decision nodes for the decision tree (a decision
rule-based classification) to detect and map rice patches using Sentinel-1A time series.
"Nguyen et al 2017 [40]" investigated a phenology-based approach to map rice crop at
a continental scale by using space-borne C-band SAR data. Mode S-1A IW time series
with a spatial resolution of 20m and VH-polarization were used, covering eight sites in the
Mediterranean region. The results of the publication show that the proposed approach is
efficient and operationally feasible to extract rice cropland areas with high accuracy at a
spatial resolution of 20m (single polarization) using S-1A time series.

A decision tree approach was used to map rice-growing areas in the Mekong Delta region
by extracting rice phenological parameters. This extraction by "Nguyen et al 2016 [42]"
study is the first Sentinel-1A-based analysis to map rice-growing areas and estimate phe-
nological parameters for rice at the regional scale, as reported by "Nguyen et al 2016".
Similarly, "Nguyen et al 2015 [39]" applied a crop phenology-based classifier to detect
and map single-, double- and triple-cropped rice areas with multi-year Envisat ASAR
data, also applied it to map rice fields using Sentinel-1A time series. Another publication
by "Nelson et al 2014 [37]" contributed to rice mapping and monitoring methods based
on multi temporal SAR data. It presented a new rule-based algorithm based on agro-
nomically relevant rules and parameters that classifies rice area with consistently high
accuracy across different rice environments and cropping practices (wet season and dry
season, irrigated and rainfed, direct-sown and transplanted, short- or long-duration vari-
eties). The study demonstrates that regularly acquired X-band imagery ( HH SAR ) is
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suitable for monitoring rice plants in major rice growing areas in South and Southeast
Asia. Many similar researches have applied the similar phenology-based algorithm to dis-
tinguish rice area from other crops with high accuracy, such as "Lopez et al [27]", "Inoue
et al 2013[18]", "Inoue et al 2002 [19]", "Salehi et al 2017 [50]", "Son et al [53]", "Dong
et al [8]", "Lopez et al [28]".

In this thesis we aim to monitor and detect rice acreage over northern Italy using Sentinel-
1A and B, VH and VV polarization time series. To do this, we use an existing phenology-
based classification approach by defining the decision-tree decision-nodes by extracting
the statistical backscatter parameters of rice, which is proposed by "Nguyen and Wagner"
[39] [40].

1.6. Research Objective and Outline

1.6.1. Research questions

This work aims to investigate the use of C-band SAR time series for monitoring rice
acreage and classification. It is motivated by some questions that have been revisited,
argued, and acknowledged during this thesis:

• The advantages of sentinel-1 time series in rice monitoring (pros and cons).

• Why is this algorithm applicable in our study region?

• Is Sentinel-1 one of the best types of data to map regional and continental rice
production and cultivation? And why?

• Which type of polarization provides the best results for rice monitoring and classi-
fication? VH or VV?

• What kind of rice phenology parameters can be retrieved from SAR time series?
And why are these specific parameters able to distinguish rice from other types of
land cover?

• Is this method - extraction of statistical backscatter parameters - suitable for mon-
itoring rice cropland? Why does this algorithm work well for rice?

• Are the results consistent with the provided reference data?

• Why can the SAR -based time series approach be used for large scale rice monitor-
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ing?

• Where does this algorithm usually tend to fail? And why?

• How and in what sense we improve the algorithm?

• What are the other parameters extracted from the dataset, and are they beneficial
enough to increase the accuracy of the monitoring? Why are they effective?

1.6.2. Research Hypothesis or Propositions

There are three main ultimate objectives for this study, with the following propositions:

objective 1:

Proposition 1.1. Which polarization(s), or combinations thereof, are superior to the
other polarizations in discriminating the temporal pattern or signature for different types
of crops, especially rice?

Hypothesis: VH-backscatter indicates the best polarization in our studies with the most
discriminatory temporal signatures of different cropping patterns when the different re-
sults of the different polarizations (VV and VH, VH/VV) are evaluated and compared.

objective 2:

Proposition 1.2. Does this specific classifier, "Nguyen and Wagner"[39] method [40]
provides us with convincing results of accuracy?

Hypothesis: This classifier is one of the appropriate rule-based algorithms in terms of good
discriminative ability with high precision and without the need for on-site data collection.

objective 3:

Proposition 1.3. Besides this classifier’s course of actions, is there any other strategy
to improve the current classifier to achieve a higher accuracy with reliable results?

Hypothesis: This affair was one of the most challenging phases throughout the study, with
much trial and error course of actions. The most recent hypothesis for this proposition is
the local extrema approach with a window size of 80 days for the entire rice growing season.
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1.7. Scientific Impact

Any kind of research in any sake has some influence on the direction of solving a problem,
even though if it is negligible. With our research in this area, we hope to contribute to
further research that would directly or indirectly initiate others in the scientific communi-
ties and interdisciplinary fields. The significant outcome that could contribute to a brief
review of this work from a scientific point of view are the following:

A SAR-based analysis over the entire rice growing season using preprocessed backscatter
time series (stack of σ0

normalized) in both VV and VH polarization modes by extracting
statistical backscatter parameters of rice, i.e., we call them statistical parameters because
these quantity maps tend to summarize or describe a certain aspect of the population
over time (temporally). And creating the decision nodes of our decision tree by defining
a rice growth calendar (i.e., beginning of the season, end of the season, and length of the
season of rice cultivation) compatible with our study area using the collected statistical
backscatter parameters. In deriving the final results and analyzing them through different
evaluation techniques, we found that the VH-backscatter coefficient is more sensitive to
rice growth than VV-polarization. This work is expected to provide reliable results even in
large areas with continental scales containing varied land covers, farms and croplands, but
will lead to errors in mountainous regions and forests with complex climatic and weather
situations. In addition, by comparing the captured results of two consecutive years 2019
and 2020, we achieved to almost similar results for both years in general. This indicates
e.g. that the parameters required for the decision tree can be robustly derived from one
year of data.
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2.1. Sentinel-1 Timeseries Dataset

Deciding on the type of dataset to use in this study was a substantial step. Analyzing
the different types of data and their objective applicability, the Sentinel-1 C-band SAR
sensor proved to be the best option for mapping rice. The L-Band is typically used
for environmental, positioning and communication purposes or for satellite navigation
and telecommunications with a frequency range of 1-2 GHz. The X-Band is generally
used by civilian, military and government agencies for weather monitoring, air traffic
control, maritime vessel traffic control, defense tracking and vehicle speed detection for
law enforcement with a frequency range of 8.0-12 GHz. Finally, the C-Band with a
frequency range of 4-8 GHz is primarily used for Earth observation and global mapping,
change detection, monitoring of areas with low to moderate penetration, higher coherence,
ice, and maritime navigation. Given these three options when choosing the data band,
we decided to proceed with the C-band in our investigations.

As mentioned earlier, dense time series datasets are best suited for rice monitoring. For
this reason, both Sentinel-1 A and B multi temporal images were used for this work.
In general, the SAR sensor generates weather- and time-independent data series every 6
replicate days for both missions and 12 revisit days for a single mission. For this reason,
monitoring time series is interesting and beneficial to us without the need for atmospheric
correction, preprocessing and the spatial resolution (20 m) is very good. The Sentinel-1
constellation with the SAR sensor has several polarization modes, including VV, VH, HH,
and HV. For our purposes, we can choose data with co-polarization (VV or HH) and with
cross-polarization (VH or HV) or a combination of them (VV /VH, HH/HV and etc).

In summary, the data from Sentinel-1 SAR provide the opportunity to obtain informa-
tion on plants with spatial resolution appropriate for individual rice fields and sufficient
temporal resolution to capture the growth profiles of different crop species for further
analysis.
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SAR Data Properties

dataset property

Satellite Sentinel-1 A and B

Sensor SAR C-Level

Product level GRD

Frequency 5.045 GHz

Polarization VV and VH

Mode Descending and Ascending

Image mode IW

Temporal resolution 6 days

Spatial resolution 20m

Incidence Angles of A 15, 88, 117, 161

Incidence Angles of B 66, 95, 139, 168

Table 2.1: Properties of the Sentinel-1 time series data used in this research.

2.2. Reference Data (existing survey data)

The reference data mainly used in this study is the rice fields layer of the European Corine
Land Cover2018 (CLC2018) product. In order to compare the classification results in our
study, over 9tiles are used (Figure 2.1: 9 segments of squares). This product is compiled
and assembled every 4-6 years in 44 classes and has a spatial resolution of 100 m for the
European continent. The latest version CLC2018, funded by Copernicus, was produced
in less than a year. The CLC product has a wide range of applications supporting various
community policies related to the domain of environment, agriculture, transport, etc. Due
to its coarse resolution, it may not meet all the users’ requirements seeking results with
very high accuracy. In our case study, we downscaled the CLC rice map from a resolution
of 100 m to 20 m. However, some details and features with a width of less than 50m are
lost, such as the channels between rice paddies or rivers with a width of less than 50 m.
In addition, during the optimization of the thresholds and in the evaluation phase, errors



2| Data and Study Area 21

can occur which are considerable and cannot be turn a blind eye and ignored. Another
problem of this product that we found during our analysis is that it contains some ar-
eas with a wrong classification of rice when compared to the local rice layer downloaded
from ersaf (Ente Regionale Per I Servizi All’agricoltura e alle Foreste), the website for the
analysis and monitoring of land use in the Lombardy region (www.ersaf.lombardia.it), a
data sort with high accuracy and reliability. Unfortunately, when searching for similar
websites, we could not find similar reference data for the Piedmont region. In order to
have consistent reference data for the entire Po catchment, we use the CLC2018 as main
reference despite the aforementioned drawbacks. Another source of discrepancies could
be the gap between the CLC2018 acquisition date and the SAR time series we have used
for 2019 and 2020.

Figure 2.1: According to CLC2018 classification the red area is the class of rice fields in
north part of Italy located in Lombardy and Piedmont regions (9 tiles of data).

2.3. Study Area

Our study area is located in the northern part of Italy (Po Valley), crossing Lombardy and
Piedmont regions (Figure 2.2). These two regions are the most important rice-growing
and producing areas in Italy, with a high percentage of rice paddies. This territory is
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an intensive agricultural region with an area of approximately 11,200 Km2 where various
crops such as corn, olives, soybeans and rice are grown (Figure 2.3). According to the
Eurostat website (Figure 2.4), rice cultivation in Italy (Figure 2.4 refers to all of Italy)
covers more than 2000 km2. Rice fields are distributed around the Po River between
the provinces of Milan, Vercelli, Mortara, Novara and Pavia, representing about 90% of
the total area under rice cultivation in Italy and 40% in all of Europe. The Po Valley
is one of the prominent and momentous agricultural and subsequently industrial areas
in Europe. The particular reason for this circumstance is existence of flat lands and the
abundant water supplies from the Po River for various purposes, mainly for the irrigation
of agricultural crops, especially rice, which requires a lot of water.

Figure 2.2: Location of the study area. The inset shows the Po river and the agricultural
lands around it in yellow

Annual temperature varies between 10 and 30°C during the rice growing season, i.e., from
April to November, and average precipitation exceeds 950 mm/year, with peaks in spring
and autumn in this region. The altitude of the valley through which the Po River flows,
excluding its tributaries, varies from about 4m to approximately 2100m, i.e. there is a
huge difference in altitude, which gives rise to a different climate and vegetation. Italy
is well known for its different varieties of rice, especially Japonica and Indica, which are
cultivated in this area. Unlike many other countries where rice cultivation is scattered, in
Italy it is denser in a particular region.
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Figure 2.3: Planted area of rice in Italy in 2018 according to istat website

The Italian rice cultivation system exerts the flooding technique for paddy irrigation at
the beginning of the rice growth season. In the study area, there are three different
phases of cultivation: Planting (vegetative), or more precisely sowing, begins in early
April and lasts until mid/late May, i.e. when the rice fields are flooded with abundant
water using a sophisticated irrigation system to prepare them for seeding subsequently,
the flooded water is maintained until a certain time in different levels. After the rice
plants are firmly established in the water and soil, precipitation regularly maintains to a
certain level. This phase is important, among other reasons, because this is the time when
the rice reproduction and ripening happens approximately around early June to mid/late
September. During this phase, the fields begin to turn green and the water slowly and
leisurely disappears, and then the harvesting phase starts. The last phase, known as
harvesting begins roughly around September/October and lasts until November, which
depends on many factors, including temperature (during this phase the soils gets dried
and the rice turns into a white grain as an end product). In Italy there is only one harvest
per year, which typically takes place in September/October.
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Figure 2.4: Total cultivated area for the production of rice in Italy from 2008 to 2020
according to Eurostat website (ec.europa.eu)

This rice cultivation pattern is exclusive in this area and very compatible with the algo-
rithm presented in this work, which is elaborated in more detail in the following chapters
through various arguments.

2.4. Rice Cultivation Calendar in Study Area

Rice cultivation has different phases similar to those of most rice-growing regions. Par-
ticularly, Italian rice cropping system applies the flooding technique for paddy irrigation
at the beginning of the rice growing season by sowing directly into the flooded areas or
sowing directly before the flooding phase. Looking at the rice cultivation in detail on the
Sentinel-hub website (www.sentinel-hub.com/explore/sentinelplayground/) and in the lo-
cal references [5], referring to the Sentinel-2 L1C mission and the NDWI (based on the
combination of bands B3 - B8 / B3 + B8) and SWIR (based on bands 12, 8A, 4) indices we
can recognize that in the Po River basin, the normal growing season begins in early/mid-
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April, when the rice fields are submerged with the help of a sophisticated irrigation system
towards the channels between the rice fields. Seeding takes place accordingly in early or
mid-April and lasts until late May or early July. Once the rice plants are planted, the
water starts to disappear from the irrigation system and the rice seeds enter the germi-
nation phase and become green plants. Conventionally, we have chosen to call this phase
the vegetative or pre-harvest phase, during vegetative irrigation continuously, but as the
rice plants begin to grow and turn green, we will have the specular backscatter effect that
causes the higher backscatter values during data collection than the flooding phase. This
phase begins in this region in June/July and lasts until late-August/September. The next
important phase for rice field mapping is the rice harvest phase when the soils are dry
and the rice plants have turned into white grains as the final product, which is exactly
when the backscatter values (σ0) reach their high values (Figure 2.6).

Figure 2.5: Temporal backscatter variation of rice during the growing season. This scheme
facilitates the gasp of rice backscatter dynamics at each stage. During the flooding phase,
the backscatter values of the rice pixels are very low due to the irrigation and presence
of abundant water on the surface. Backscatter levels begin to increase as the rice harvest
reaches its final stage and the water vanishes from the soil.

The harvest phase takes place at the end of September/October or October/November,
depending on when the floods began, and varies in the small regions of the Po River
basin.In Europe, rice cultivation usually begins with direct seeding into the flooded soil
(hydroseeding) or into the dry soil (dry seeding), but in the Po River basin the first
method was usually used. In both cropping methods, the inundation water is retained
until harvest time (the flooding phase contains minimum σ0 values, and harvest contains
maximum σ0 values) Figure 2.6. Another reason why our dataset and algorithm are
applicable in this region.
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Figure 2.6: Derived rice cultivation calendar by obtaining the mean backscatter values
for a rice classified pixel.

The harvesting phase takes place at the end of September/October or October/November,
depending on when the floods began, and varies in the small regions of the Po River
basin.In Europe, rice cultivation usually begins with direct seeding into the flooded soil
(hydroseeding) or into the dry soil (dry seeding), but in the Po River basin the first method
was usually used. In both cropping methods, the inundation water is retained until harvest
season (the flooding phase contains minimum σ0 values, and harvest contains maximum
σ0 values) Figure 2.6. Another reason why our dataset and algorithm are applicable
in this region. In April and May, there may be problems with emergence due to lower
temperatures that limit germination of rice seeds.

During the vegetative phase in the hottest months of the year around July and August,
precipitation increases, which increases the risk of rice blast infections, so rice fields are
constantly irrigated. At the end of July/beginning of August, the rice grains begin to
flower, so that the harvest of the plants begins in September/October/November. The
average timing of the phases and yield is influenced by variety of variables, and may vary
each year depending on cultivation and irrigation conditions. In this study, we analysed
everything in detail and tried to announce a logical rice cultivation calendar compatible
with the Po River basin, cultivation techniques and climatic conditions.



2| Data and Study Area 27

2.5. Software and Tools

Software and tools used for managing big and heavy data, data processing and completing
thesis conduction are as follows:

Tools used during the thesis

Tool/Software Version Purpose

Python 3.6 SAR imagery processing, data
cube construction, obtaining the
statistical backscatter parameters,
threshold optimization, valida-
tion, classification, graphing, sta-
tistical analysis

SNAP
Tool

8.0.0 SAR time series preprocessing

Qgis 3.18.2 Threshold defining, results visual-
ization, resampling, etc

Sentinel-
hub

Online Defining the consistent rice grow-
ing calendar to the study area

LaTeX
(Overleaf)

Online Writing the manuscript of thesis

Table 2.2: Software and tools used while completing entire thesis conduction.

2.5.1. Methods and data analysis

Preprocessing was performed using the SNAP sentinel-1 toolbox, including application of
the orbit file, radiometric correction, geocoding, resampling, and dB conversion.
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The entire process of structuring the data cube, data smoothing, orbit correction, phe-
nological parameters (σ0

MIN , σ0
MAX , σ0

MMD, DoS, DoM, LoS), acquisition, threshold op-
timization, validation, classification, time series analysis, and plots was performed and
completed in Python, using different packages for each process:

• Yeoda: (your earth observation data access) a well designed package by Geo-department
of TUwien, for lower and higher level data cube classes to work with well defined
and structured earth observation data.

• Gdal

• Numpy

• Pandas

• Geo-pandas

• Matplotlib

• Geopathfinder

• Xarray and Data-array

• Sklearn

Qgis was used to visualize the results during each procedure, especially for the decision
nodes that define or evaluate the thresholds we set.

Sentinel-hub playground is a very useful online tool that uses the Sentinel Hub technol-
ogy to facilitate the discovery and exploration of Sentinel-1, Sentinel-2, Landsat-8, DEM,
and MODIS imagery in full resolution, as well as access to Earth observation (EO) data
products. It is a graphical interface to a complete and daily updated Sentinel-2 archive,
a comprehensive resource for anyone interested in the Earth’s changing surface, whether
natural or man-made. With visualization of various indices and insight and inspect into
time and rice growing season, we have defined a comprehensive and informative rice grow-
ing calendar for further applications.
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Figure 3.1: Methodology flowchart, the initial sketch.
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In the Figure 3.1, parameters σ0
MAX and DoM refer to the backscatter values and the

date when the backscatter reaches a maximum value and is defined as the global maxima
in σ0

smooth time series. The σ0
MIN and DoS values are the backscatter values and the date

of the beginning of the season, and defined as the global minima in σ0
smooth time series.

σ0
MMD refers to the correlation between the global minima and maxima during the rice

growing season, which is also called the sensitivity. LoS is the length of the season, defined
as the number of days difference between DoM and DoS.

3.1. Approach Methodology

Various classification algorithms have been introduced in different studies so far. Most
of them have utilized machine learning methods or index-based classification techniques
to classify rice acreage from other classes. The time series algorithm used in this work,
unlike the other algorithms, deals with the inherent characteristics of the cultivation of a
particular crop by analyzing it during its growing season, and the modality of interaction
of microwave radiation with different targets, i.e., mainly rice and water. Moreover, this
algorithm was introduced by "Nguyen et al [39]" and we applied the similar procedures
in the workflow with some additional steps.

The flowchart of the algorithm is shown above Figure 3.1. The algorithm of "Nguyen et
al" includes 5 main modules as follows:

1. Preprocessing of Sentinel-1 data and organization of data.

2. Temporal filtering and orbit correction.

3. Extraction of statistical parameters from the backscatter coefficients.

4. Identification of rice-fields (rice classification) using a knowledge-based decision-tree
approach.

5. Validation and evaluation of accuracy using the reference data (CLC2018).

Sentinel-1A and B Synthetic Aperture Radar (SAR) in IW (Interferometric Wide swath)
acquisition mode were imaged over the study area in C-band for rice classification purposes
and further analysis. We used time series of images covering years 2019 and 2020 with
two available polarizations over land; vertically transmitted, horizontally received (VH)
and vertically transmitted and received (VV) for both.

Beforehand, to obtain a usable homogeneous dataset, the imagery was preprocessed in
Level-1 GRD format and converted to a geocoded backscatter coefficient for the terrain.
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The GRD product is a multi-looked product and is projected onto the ground range. The
goal of preprocessing is to enhance the image data, suppressing unwanted noise and distor-
tion and enhancing some image features that are important for further applications in the
processing phase. The steps of the preprocessing section (3.2) were applied by TUWien
colleagues and provided by them for this work. From (3.2) onward the entire analysis was
implemented by the author. The preprocessing workflow includes the following steps:

3.2. Preprocessing

3.2.1. Apply Orbit File

The orbit of a satellites can deviate over time, no matter how well the satellite is adjusted.
There are many reasons for this, such as the imperfect sphere of the Earth, other massive
objects in the solar system that perturb their orbits with their gravity, solar winds, at-
mospheric drag, etc. Consequently, when these discrepancies occur, either the dataset or
the satellite mission itself must be periodically adjusted. Therefore, it is indispensable to
have amended orbital files that notify where the satellite is exactly located. The orbital
positions are processed by the Copernicus Precise Determination (POD) service, and the
files are delivered within 20 days of data acquisition in space with an accuracy of 5cm [3].
Sentinel-1 orbit information can be found on the ESA website.

Normally we use the orbit state vectors provided in the metadata information of the prod-
ucts from SAR, which are not accurate enough. The exact satellite orbit is calculated
only after a few days after the product is generated. We update the orbit metadata with
a restituted precise orbit file which is available in the software SNAP. This software auto-
mates the downloading and updating of the orbit state vectors for each SAR scene in its
metadata by providing accurate satellite position and velocity information and improving
geocoding [12].

3.2.2. Radiometric Calibration

The objective of radiometric calibration is to convert the digital pixel values (DN) stored
in the SAR image products into calibrated SAR backscatter values. The Look Up Tables
(LUTs) included in the Sentinel-1 Level-1 products can be used for this conversion. Again,
a vector called the calibration vector is embedded within the metadata of the product
that performs the conversion of the digital numbers (DNs) of the SAR images into sigma-
naught values σ0. This mechanism is automated in SNAP. It automatically determines
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what kind of product we insert as input and what conversion to apply to the product[24]
product. The value of sigma-naught depends on many factors, including wavelength, an-
gle of incidence, target properties, and polarization.

3.2.3. Range Doppler Terrain Correction (Geocoding)

SAR products are usually captured from different viewing angles which causes some dis-
tortions in the end product. By applying the terrain corrections we can compensate the
appeared distortions in our product, so we can achieve products with high conformity to
the real world. customarily Rage Doppler terrain correction is used to negate the effect of
the geometric distortion caused by topography [34]. The geometric distortions are caused
by the shadows, angular orientation with respect to the ground, altitude during data
acquisition, foreshortening, layover, and using the digital elevation model to correct the
location of each pixel [12]. The Range Doppler approach is the most appropriate way to
perform the geometric correction. The method needs information about the topography
(normally provided by a DEM) as well as orbit satellite information to correct the topo-
graphic distortions and derive precise geolocation for each pixel of the image. The Range
Doppler correction operator in SNAP implements the Range Doppler orthorectification
method for geocoding SAR scenes from images in radar geometry [52].

Geometric correction and radiometric calibration are mandatory to compensate the effect
of different variables such as incidence angle, acquisition with different sensors, temporal
ramifications, or effects that causes the appearance of different values for the same loca-
tion that restricts us in comparing the products.

3.2.4. Resampling (Speckle Filtering)

Resampling is a way to manipulate the digital image and transform its pixel values to
other values due to many reasons including terrain correction in our case the reason was
mainly related to the high volume of the dataset and intensity of the calculation with
huge Sentinel-1 dataset which was time-consuming. We can also consider resampling as
one of the sections of the terrain correction, but here we tend to separate it from the
geometric correction phase because by resampling our dataset we could able to reduce the
speckle noise in a way by going from 10m resolution to 20m resolution. In SNAP software
while doing the geometric correction the operator allows us the selection of the image
resampling method and the target pixel spacing in the target CRS. This step has to be
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done after geocoding in order to be able to reach satisfactory results. The main denois-
ing step has done in the next section named filtering in order to acquire spotless products.

3.2.5. Conversion to dB

Finally, after applying all the above processes on the whole dataset with two different
polarization (VV and VH) separately, in the last step of preprocessing by exerting a
logarithmic transformation, the unitless SAR backscatter coefficients are converted to dB
(decibel).

σ0(dB) = 10 log(DN) (3.1)

This last phase generates the end product for further classification and analysis steps.

3.3. Orbit correction

As part of Sentinel-1, two solar-synchronous, polar-orbiting satellites (S-1A and S-1B)
provide day and night radar images regardless of the weather. A cycle for each satellite
lasts 12 days, with 175 orbits per cycle for each satellite. Both Sentinel-1A and Sentinel-
1B orbit on the same orbital plane, but with a phase difference of 180°. For each cycle
of the Sentinel-1 satellites, we would have observations with different orbits, likewise
the observations will represent different incidence angles as well [26]. As far as this
work is concerned, the orbits are in two general modes: ascending and descending with
corresponding incidence angles of 15, 88, 117, and 161 for the ascending mode and 66,
95, 139, and 168 for the descending mode, for both VV and VH polarization. The key
point to elaborate on is that the data taken at different incidence angles have different
strengths of the radar backscatter signals. Similarly, the consideration of the influence of
the incidence angle on the backscatter values in our studies and analyzes is noteworthy.

There is a certain behavior that can be decoded by examining the same area but using
different images with different incidence angles, and that is that the strength of the radar
backscatter signal gradually decreases as the incidence angle increases. The influence of
the incidence angle may not be as great in the flat-lands or arable and agricultural lands
as it is in mountainous areas, but it is beneficial to take it into account. In addition, it
is practical to point out that the strength of the backscatter, especially in a co-polarized
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situation, depends to a large extent on the specular double-bounce effect. Ergo, by con-
sidering the incidence angle effect we could somewhat neglect the double-bounce effect.
Two main solutions have been proposed to account for the incidence angle effect. One of
them was the optimal solution, which was used for the rest of the calculations.

The first and simplest solution was to separate the dataset according to its incidence
angle and the acquisition mode. Comprehensively, we proposed not only the use of a
single decision-rule tree for the entire database cube, but also the application of different
decision-rule trees with different thresholds for the entire scene and for each incidence
angle separately. As well as extracting the phenology parameters for each incidence angle
separately. In such a case, instead of 6 backscatter parameters, we would have 48 parame-
ters (6 parameters for 8 orbits). Theoretically, this method seems very easy to understand
and apply, but when it comes to the computational part, it is very time consuming and
tedious to prosecute the further steps. To be more precise, implementing threshold opti-
mization with 48 parameters manually and then validating all the results and rerunning
the threshold calculation is a very intensive and lengthy procedure that requires a lot of
energy, effort and time. Therefore, we have found another solution to correct this effect
using a simple normalization technique.

To mitigate the effect of the incidence angle, we used a method introduced by "Lievens
et al, 2019". To minimize the effect of incidence angle on the backscatter values (σ0),
we separated the backscatter values by their orbits in a 12 days cycle and repeated this
for all current cycles with identical incidence angles for each of the orbits. Alongside,
We calculated the mean of the backscatter over the total σ0 values and the static bias
between the σ0 values from different orbits. The static bias was then removed by rescaling
the mean σ0 of each orbit to the overall mean and applying this mean correction to the
individual σ0 measurements [25]. This method helped us attenuate and normalize the
orbital effect on the entire Sentinel-1 dataset.

3.4. Time Series Smoothing

The main purpose of filtering the Sentinel-1 backscatter time series is to remove the effects
of various types of noise in the collection of the data, such as speckle noise, in both the
spatial and temporal dimensions, and to reduce the short-term effects of the environmental
conditions [40]. A rolling average window was applied to the data cube with a window size
of 7 days (e.g., a window size of 25 days is considered to form the averages for smoothing).
The rolling function is used to look at the moving average line of a pixel. In order to find
the optimal value of the window size, we examined the time series diagrams using the
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trial-and-error method and concluded that the appropriate value for temporal smoothing
is 7. For the selection of the window type, we decided to use the "Hamming window".
The Hamming window function has a sinusoidal shape and results in a broad peak with
small side lobes and does not reach zero, so the signal still has a slight discontinuity. The
Hamming window suppresses the nearest side lobe better, but is worse at suppressing
all others. These window functions are useful for noise measurements (lumen.ni.com).
At the end of this process, we obtain a smoothed backscatter time series (σ0

V H−smoothed

and σ0
V V−smoothed), which is used as the main input for further calculations, including the

extraction of the backscatter parameters and subsequent analysis. As a result of this
process, we selected some random control points, one inside the Mediterranean Sea and
the other in the rice field using CLC2018, to plot the differences in temporal backscatter
values before (Figure 3.2) and after (Figure 3.3) the application of time series filtering.
As evident in the graph, the results were normalized and we obtained quite prosperous
outcomes at the end of the smoothing process.

Figure 3.2: σ0
V H/V V time series graph of a random point inside the ocean, before temporal-

filtering and orbit-correction.

Figure 3.3: σ0
V H/V V−smoothed time series graph of a random point inside the ocean, after

temporal-filtering and orbit-correction.
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As it is delineated, the preprocessing and processing results for the VH-backscatter (σ0
V H)

are intriguing. The fluctuations of the blue line could be due to many changing factors
in the environment, including temperature, humidity, and other variables. Nevertheless,
since this is an open-water, it is most likely the effect of wind and waves that causes
the dynamics. By exploiting these graphs (Figure 3.3), it has been concluded that the
VH-polarization time series is the most advisable and sensitive kind of data for the sake
of dynamics analysis and classification of a surface containing water.

Figure 3.4: σ0
V H/V V time series graph for a random rice pixel, before temporal-filtering

and orbit-correction.

Figure 3.5: σ0
V H/V V−smoothed graph time series for a random rice pixel, after temporal-

filtering and orbit-correction.

It is intuitive that the backscatter values and the time series trend of a rice pixel is totally
different than a spot inside the open water because of many variables, including the level
and volume of water on the surface. In general, VV-backscatter values are higher than
VH-backcsatter values, but the trend of the dynamics and the fluctuations are almost
similar. By observing the σ0

V H−smoothed time series (the blue line), we can perceive that
the soils of the rice paddies are dried at the beginning of the season. Following that, the
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first abrupt drop of the σ0
V H−smoothed line, which is equivalent to the global minima, implies

that the first flooding of this rice field occurs by early-May. As complementary, another
local minima is the second irrigation of the field by late-May. Despite the fact that the
σ0
V V−smoothed backscatter values produce completely different results, the global minima of

VV-backscatter values transpire by late-March (Figure 3.5). This result is not realistic, in
accordance with the Italian rice cultivation calendar, especially in the Lombardy region.
We were not convinced and did not find it sufficient to draw a conclusion by just looking
at these results, so we inquired more about rice pixels by comparing their VH and VV
backscatter values by setting them side by side. However, we hypothesized that the
classification with the VV-backscatter values engenders a considerable number of false
positives. Therefore, we came up with the idea of not reckoning with the VV-polarised
data at the core of our conclusions, but just as an ancillary contributing component. The
main goal of plotting these graphs is to capture a distinctive pattern or a signature for the
rice pixels from the time series in different polarizations and incidence angles in different
locations, in order to be able to classify the rice pixels.

Figure 3.6: Graph of σ0
V H−A/D time series of a random rice pixel for separated ascending

and descending modes, before temporal-filtering and orbit-correction.

Figure 3.7: Graph of σ0
V H−A/D−smoothed time series of a random rice pixel for separated

ascending and descending modes, before temporal-filtering and orbit-correction.
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The subsequent proposal made by the author was to treat the backscatter values individ-
ually, separated by their incidence angles’ mode in descending and ascending modes, to
generate a unique temporal signature for the rice (Figure 3.7) in different locations. By
deeply analysing the time series graph of both the descending and ascending modes, we
can perceive that the trend of the dynamics of both lines is similar during most of the
timestamps. However, there are still some vertex points in which the opening directions of
the parabolas are opposite to each other (e.g., in figure 3.5, at the beginning of October
and by late-September, where the red and orange parabolic lines show different direc-
tions). These abrupt changes in the magnitude of VH-backscatter has a direct relation
with the nature of VH-backscatter values (σ0

V H−A/D) and the SAR geometry e.g., inci-
dence angle. Consequently, for a deeper analysis, we decided to examine the backscatter
values separated by their orbits or incidence angles.

Figure 3.8: Graph of σ0
V H−A/D time series of a random rice pixel for separated orbits,

before temporal-filtering.

Figure 3.9: Graph of σ0
V H−A/D−smoothed time series of a random rice pixel for separated

orbits, before temporal-filtering.

Sentinel-1 data are influenced by their incidence angle, as the incidence angle increases,
the strength of the radar backscatter signal decreases gradually. The dynamic range over
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different locations varies due to different incidence angles and farming activities. During
the reproductive phase in August/September/early-Novemver, backscatter values contin-
uously increase until they achieve the maximum value in September/November. During
the reproductive phase, VH-backscatter values of σ0

V H−smoothed oscillate between -18 and
-12 dB, which is influenced by variations in incidence angle, water level in the fields, dif-
ferent cultivation activities, or rice varieties. The temporal sampling of S-1A and S-1B
together is 5-6 days (the revisit time). Despite the temporal gaps introduced in Sentinel-1
data acquisitions, in order to provide convincing spatial/temporal information, to com-
pensate different agricultural effects, incidence angle and acquisition mode effect and the
regions with complex conditions such as the mountainous regions, we recommend to use
the temporal-smoothing and orbit-correction in tandem over the entire VH-backscatter
values (σ0

V H).

3.5. Extraction of the statistical parameters of the

Sentinel-1 backscatter

The statistical parameters of rice were defined according to the paper "Nguyen et al,
2017". Previously determined dataset over the entire study area for 2019 and 2020 was
used to determine these parameters. These parameters are defined as follows:

1 - σ0
MAX : Maximum backscatter value during the rice growing season for each pixel. This

parameter was acquired by applying the maximum function over the study area, pixel by
pixel along the temporal dimension of the smoothed dataset σ0

smoothed Figure 3.10. In
the C-band images from Sentinel-1, the vegetation pixels have higher backscatter values
compared the water body pixels. This is due to the fact that water reflects microwave
radiation in specular direction, i.e., away from the sensor, while vegetation as well as
the soil surface scatters a proportion of the microwave radiation back to the sensor. It
is expected that the σ0

MAX values are most likely, occur at the end of the vegetation
period with higher values. The particular reason for the circumstance is that at the end
of the growing season, all the flooded water from the irrigation disappears from the rice
fields and the soils are dry and the rice plants begin to appear on the surface as a final
product. In this case, the σ0

smoothed values begin to increase. The vegetative or agricultural
surfaces are assumed to have their maximum backscatter values. From Figure 3.10, which
shows the maximum backscatter values for each pixel during the growing season, we can
demonstrate that the regions with yellow color are the areas that do not contain water or
at least less amount of water, with moderate σ0

smoothed values. Consequently, these regions
have a high possibility to considered as forestry or other croplands. The areas with blue
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color are water bodies with very low σ0
smoothed values, and the areas with red color are

urban areas with a very high σ0
smoothed value. Our target rice is included inside the green

area. This map is informative, but still we cannot distinguish between different types of
vegetation and crops. The only useful information we can extract is the elimination of
the urban areas and the water bodies.

Figure 3.10: σ0
MAX or Maximum backscatter value during the rice growth season.

2 - σ0
MIN : Minimum backscatter value of each pixel during the rice growing season

(backscatter at the beginning of the growing season). This parameter was collected by
applying a minimum function over the temporal dimension of the smoothed dataset Fig-
ure 3.11. As we mentioned earlier, water has a very low scattering power and absorbs a
large amount of microwave radiation. This actively demonstrates that the σ0

MIN values
are expected to be very low σ0 at the beginning of the rice growing season, since this is
the time when the rice growing areas are flooded, thus there is a very high amount of
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water on the surface of the rice fields. As time passes, the water level decreases so the
σ0 values begin to increase dramatically. Intuitively in the Figure 3.11, the blue area
has higher σ0

MIN , which means that red and yellow areas have very low σ0
MIN values.

Therefore, these areas are most likely the places that contain water on the surface, e.g.,
rice paddies, arable lands, irrigated farmland, rivers, ocean and the mountainous regions
filled with snow. This map provides us with insightful information to distinguish general
agricultural lands from the other classes. In the next steps, we are going to be able to
make more detailed distinctions in order to extract the rice class.

Figure 3.11: σ0
MIN or Maximum backscatter value during the rice growth season.

3 - σ0
MMD: Maximum Minimum Difference or the amplitude backscatter, is the deviation

parameter, the difference between maximum and minimum backscatter values during the
rice growing season Figure 3.12. This map is a key parameter in the classification process
to extract useful information. It is expected that the sensitivity of rice regions is very
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high, because the backscatter values vary greatly from the flooding phase to the post-
harvest/harvest phase (end of the rice growing season), i.e. there is a larger range and
discrepancy during the growing season in the rice regions, so the difference will be high.
The blue colored regions are assumed to be the areas with higher sensitivity or higher
deviation, with higher possibility to be classified as rice. The red, green and yellow regions
have lower sensitivity or deviation of σ0

smoothed values, for this reason they will be classified
as non-rice class.

Figure 3.12: σ0
MMD or the deviation map. All agricultural regions have high σ0

MMD than
e.g. forest, water or urban areas.

4 - DoM : Date of Maximum backscatter at the end of the rice growing season, when
the rice plant reaches its final stage post-harvest/harvest Figure 3.13. This map depicts
the day of the year (DOY) with the maximum σ0

smoothed value. Thus, we expect the peak
of σ0

smoothed rice fields (within one rice-growing cycle) to occur at the end of the growing
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season by September/October or October/November. The blue regions in the map have
a high DoM value, so they are more likely to be classified as rice. Red, green and yellow
areas have lower DoM, meaning that their σ0

MAX occur earlier than expected date during
the start of rice growing season, which contradicts our rules, so we will classify them as
non-rice. The queries in this map are intuitive, so we cannot rely only on this map to
extract the rice pixels. We need to combine the other information and maps with this
map to achieve a successful classification.

Figure 3.13: The date when the backscatter coefficient reaches a maximum value is defined
as the global maxima in σ0

smoothed time series, during the rice growing season. This date
must come after the date of the start of the season, where it reaches its global minima.

5 - DoS: Date of the beginning of rice growing season (flooding and seeding) or the date
within the rice growing season when the pixels have their minimum backscatter values
Figure 3.14. This map represents the day of the year (DOY) with the minimum σ0

smoothed
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for each pixel. We assume that the rice pixels have their minimum values at the beginning
of the growing season by April/May/June due to the flooding and presence of water in the
rice fields. The green and yellow areas on the map have very low DoS and are potentially
rice growing areas. The red and blue areas have their minimum values at the middle or
the end of the growing season, so they are classified as non-rice. therefore, by setting a
threshold, we separated the rice growing areas from the rest of the land covers.

Figure 3.14: During the growing season, the date of the beginning of season is defined as
the global minima in σ0

smoothed time series.

6 - LoS: Length of the Season, is the difference between the start of rice cultivation
and the end of the season for each pixel, i.e. the number of days between DoM and DoS
(Figure 3.15). This map shows the number of days from the beginning of the cultivation
(flooding/seeding) till the harvest phase, i.e., it shows the past days between two main
deviations of backscatter values or days between the 2 global extremas. According to the
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rice cultivation calendar, the rice area have a lower seasonality compared to the other
crops (the minimum is 50 days and the maximum is 3 months). In the figure 3.15, the
areas with blue and green colors are meant to be rice, with a lower LoS (Length of the
Season) number compared to the yellow and red regions, with a higher length of the
season, so we classify it as non-rice.

Figure 3.15: The length of the season is defined as the number of days difference between
DoM and DoS.

Finally, after calculation of all the 6 parameters for both VH and VV polarized datasets
and for 2019 and 2020 separately, we can delineate the "rice" area which meets all of our
conditions and set of rules according to the defined rice cultivation calendar and expertise
knowledge in combination with the "Nguyen and Wagner" algorithm [40], and classify
the rest of the regions in a general "non-rice" class. To eliminate unrealistic peaks, a
threshold for VH-backscatter is required.
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3.6. Parameters Definition and Temporal Rice Clas-

sification

After extracting the corresponding statistical parameters and delineating a precise rice
cultivation calendar for both years 2019 and 2020, we determined the primary threshold
values for identifying the potential rice cultivation areas. Here, we perform a pixel-
based classification with moderate thresholds from an agronomic point of view, without
optimising the thresholds (this stage was performed in the next steps to achieve higher
levels of accuracy, here we only want to detect the potential rice growing areas).

We start by using the same parameter thresholds as suggested by "Nguyen et al, 2017"
and then update them according to our estimated rice cultivation calendar and obtained
performance metrics for 2 subsequent years. The value of the thresholds may change due
to the different irrigation methods in different locations, different geographical location,
different growing seasons, the accuracy we want to achieve in the end, the reference data
(their resolutions and accuracy, i.e. how reliable they are, which has many shortcomings
in our case), the smoothing method and the parameters we choose for smoothing the
dataset and orbit correction method, and so on. Since rice may have different seasonality,
the established thresholds can change each year. This is a crucial point to consider by
providing different rice growing calendars for different years and updating the thresh-
olds of the corresponding parameters accordingly. Based on the visual interpretation of
the parameters (done via Qgis) and the basic preliminary information that we have, the
thresholds that we established considering the article of "Nguyen et al, 2017" and our rice
cultivation calendar are presented in the following table 3.1.
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Initial thresholds chosen from the knowledge-based decision rules, customised
with the study area (Po catchment) and "Nguyen & Wagner"

Thresholds description

σ0
MAX -17 < σ0

MAX < -13 The peak of VH-backscatter (global
maxima) at the end of the growing sea-
son.

σ0
MIN σ0

MIN < -23 The valley of VH-backscatter (global
minima) at the begin of the growing
season.

σ0
MMD 8/8.5/9 < σ0

MMD Deviation map or amplitude backscat-
ter, the difference between the date of
maximum backscatter and the begin of
the growing season.

DoM 210 < DoS < 330 Day of Maximum backscatter, The
rice harvesting phase in Septem-
ber/October or October/November.

DoS 90 < DoS < 180 Day of the beginning of the season,
when the flooding and seeding starts.
In Italy it usually starts from early/mid
April till June.

LoS 50 < LoS < 210 Temporal distance or number of days
difference, has to be greater than the
shortest possible rice growing cycle and
smaller than the longest possible rice
growing cycle.

Base-
Line

20 dB Temporal evolution of the backscat-
tering coefficients derived from VH-
polarization (where, σ0

V H is base line)

Table 3.1: Defined threshold values by "Nguyen et al, 2015, 2016, 2017, 2018". The units
of the thresholds are mentioned in dB and DOY (Day Of Year).
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By applying the generalized thresholds as components of our decision-rule tree to the 6
extracted statistical parameters, we obtain the primary results of the classification map
with "rice" and "non-rice" classes (see the following Figure 3.16).

Figure 3.16: first generated rice map by defining the thresholds on the statistical param-
eters of rice.

The first thresholding step was done according to our expert knowledge and referring to
"Nguyen et al, 2017 [40]". "Nguyen et al, 2017 [40]" introduces the selection of generalized
threshold values for the identification of potential rice growing areas over eight different
study areas on a small scale. In their case study, according to the high backscatter signal
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variability in 8 different areas, they were trying to introduce the best generalized thresh-
old values that could classify the rice croplands with the highest possible precision in
all the study areas. In our case study, due to the high temporal variability in the SAR
backscatter signal across the big-scaled data, the raw output from the general thresh-
olding of phenological parameters contained some noisy pixels. This implies that most
fields were not fully classified as rice or non-rice. In this case, to reduce the number of
false positive pixels, the thresholds must be optimized considering the data acquisition
and the constraints of the local rice cultivation calendar. The following step is known as
"threshold optimisation".

Figure 3.17: Zoomed in rice map with the details.

Extracting the statistical parameters of a random rice pixel

σ0
MAX σ0

MIN σ0
MMD DoM DoS LoS

16.8 -25.3 9.6 187 162 109

Table 3.2: A rice pixel that complies with all the threshold-based conditions set out.
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For validation of potential rice fields after a general thresholding of the dynamic range
backscatter parameters to identify image pixels that change more than the defined thresh-
old, we compared the results with the Corine Land Cover 2018 map, which is our refer-
ence data. While comparing the acquired rice map with the reference data (CLC2018),
we found some inconsistencies between the two maps. For example, some pixels in the
mountain region were misclassified as rice this could be due to the complex weather sit-
uation in the alpine mountains. The other misclassified pixels refer to arable cropland
and other agricultural fields due to the regular and seasonal irrigation in these regions,
so our algorithm was not able to distinguish them from rice fields because they behaved
similarly at the previously defined thresholds. To remove these misclassified pixels, we
need to be more precise and go through the details of the rice growing calendar. In addi-
tion, we can use a threshold optimization phase to distinguish rice paddies from all other
classes. According to "Nguyen et al", a generalized threshold for rice fields can only be
determined if the optimal SAR data collection is guaranteed, otherwise the thresholds
should be optimized by considering the data and the rice cultivation calendar [38] [39]
[40].

Validation results of the generalized threshold phase:

Precision-score = 28.20%
Recall-score = 73.80%
Accuracy = 92%
F1-score = 40.80%

The results are not satisfactory because the accuracy is very low (the Precision-score is
about 28% and this is not the accuracy we want). In the next steps we will see that the
results improve as well.

3.7. Threshold Optimization (decision-rule setting)

The thresholds we have determined must be optimized by taking into account the data
acquisition and the constraints of the local cultivation calendar for rice, by attempting
to minimize the error and increase the overall accuracy. Optimum decision-rules setting
employs the same parameters and thresholds as in the previous section are used at the
beginning. Then the thresholds are changed and updated in each iteration, trying to
converge the error set to zero. The way we can distinguish rice may vary. We tried to
analyze 6 backscatter statistic parameters separately to structure the decision-rule tree
by adding rules at each analysis. By manually setting the thresholds and calculating
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the precision value for each trial, we were able to obtain the following results with the
thresholds. All these steps were done separately for both 2019 and 2020 and VV and
VH polarization, so we would end up introducing 4 different rice maps with different
thresholds.

Original optimized thresholds by "Nguyen & Wagner" in eight region

VH - Thresholds

σ0
MAX -19 < σ0

MAX < -13 (dB)

σ0
MIN σ0

MIN < -20 (dB)

σ0
MMD 8.5 < σ0

MMD

DoM 210 < DoM < 330 (DOY)

DoS 90 < DoS < 180

LoS 50 < LoS < 120

Table 3.3: Defined threshold optimization vales for σ0
V H−smoothed by Nguyen et al [40].

Thresholds after the optimization phase in Po catchment

VH - Thresholds

σ0
MAX -18 < σ0

MAX < -11.5

σ0
MIn σ0

MIN > -22.5 (dB)

σ0
MMD 9 < σ0

MMD < 18

DoM 220 < DoM < 333 (DOY)

DoS 95 < DoS < 180

LoS 55 < LoS < 220

Table 3.4: Defined threshold optimization vales for σ0
V H−smoothed backscatter coefficients.
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Thresholds after the optimization phase in Po catchment

VV - Thresholds

σ0
MAX -15 < σ0

MAX < -5.5 (dB)

σ0
MIn -25 < σ0

MIN < -12

σ0
MMD 6 < σ0

MMD

DoM 92 < DoM < 333 (DOY)

DoS 92 < DoS < 180

LoS 92 < LoS < 333

Table 3.5: Defined threshold optimization vales for σ0
V V−smoothed backscatter coefficient.

The CLC2018 map is used to validate and express the compartment boundaries of the
pixels’ changes below and above the thresholds, which are classified as potential rice crop-
land areas.

3.8. Validation and accuracy assessment

After building the classification model in order to increase the evaluation of our model
in terms of accuracy in the threshold optimization phase, and for accuracy evaluation
and validation of the final classification results (rice and non-rice), standard accuracy
metrics were used. We calculated the standard confusion matrix to obtain the values of
other accuracy metrics, including precision-score, recall-score, F1-score, commission error,
omission error, and Kappa coefficient.

Precision: Appropriate when minimizing the false positives is the focus.

Recall: Appropriate when minimizing the false negatives is the focus.

F1-score: Appropriate when minimizing the total accuracy is the focus.
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4.1. Final Results

Rice cultivation is one of the most fateful sectors amongst other agricultural branches in
Italy for the entire European Union because rice is a primary source of food for more
than half of the world’s population. Accordingly, the evaluation and monitoring of rice
distribution with up-to-date and accurate results is essential and ubiquitous not only for
rice monitoring purposes but also for other related research topics and study areas. Every
year, many projects and research are carried out on rice monitoring and analysis in dif-
ferent regions, introducing new algorithms or updating the previous ones to obtain better
results with higher accuracy. To this end, we decided to conduct our thesis on rice acreage
monitoring in one of the largest European rice producing countries, Italy. Through the
temporal assessment of two consecutive years using data acquired by the Sentinel-1A B
satellites with a C-band SAR (Synthetic Aperture Radar) sensors mounted on it,launched
by ESA (European Space Agency). Thanks to the high spatial, temporal resolution (20
meters and 6 days, respectively) and cross-polarized (VH) data collected by the Sentinel-1
satellites (which has a high capability in rice classification), we are able to investigate and
analyze the whole rice growing season with an acceptable accuracy and finally improve
and strengthen a predefined classification algorithm by "Nguyen et al, 2017" to preferen-
tially distinguish the rice growing areas from the other classes.

The method of "Nguyen et al" adopts a phenology or rule-based plant classifier by using
phenological parameters derived from Sentinel-1 VH backscatter time series as input to
the decision-rule based classifier [39] [40]. Here, we renamed the phenological parameters
to backscatter statistics and recorded them as mentioned in Chapter3. We preprocessed
the entire dataset for two consecutive years (2019 and 2020) separately, applied orbit
correction and temporal filtering, and structured the dataset in a way that makes it easier
to run further processes and perform various analyzes using Python libraries such as
numpy, pandas, geopandas, gdal, xarray, netCDF, and yeoda, etc. In the end, we have
obtained a neat and proper set of data with a clear and concise structure that is easy
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to maneuver. To scrutinize the results, our first analysis step was the interpretation of
selected pixel time series that are certainly located in rice fields as well as in the other
agricultural fields. The depicted plots show that we have achieved the desired results.
The graphs are shown as follows.

Figure 4.1: σ0
V H−preprocessed and σ0

V V−preprocessed values of a single random pixel to be
classified as rice before applying orbit correction and temporal filtering.

Figure 4.2: σ0
V H−smoothed and σ0

V V−smoothed values of the same pixel to be classified as rice
after applying the entire preprocessing and processing phases. As you can see, the time
series values are smoothed and do not contain keen fluctuations anymore.

Figure 4.2 shows the temporal-orbital smoothed backscattering values (σ0
smoothed) of a

pixel classified as rice. By analysing this graph, we capture two important anomalies that
represent one of the key points of our analysis. The two valleys (local minima) of the time
series graph, one during mid-May and the other around mid-June, which corresponds to
the inundation/seeding phase in our rice growing calendar. The second local minima is
most likely due to the second irrigation of the fields. Then, the backscatter values begin to
gradually increase until it reaches the vegetative phase, which occurs in August/September
(first peak) according to the rice cultivation calendar. Finally, the harvesting phase during
October/November or sometimes in December, when the backscatter values reach their
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maximum values, as shown in the graphs. In the vegetative phase, backscatter value
increases with the growth of vegetation and finally the images from SAR sensor show no
significant difference between rice and other agricultural fields or other vegetated lands.
Furthermore, during the post-harvest or harvest season, the growth of rice plants in rice
fields and the absence of water minimize the double-bounce effect of SAR signals, which
explains the decrease in backscatter values during this phase. During this period, VH-
backscatter values fluctuate between the range of -17 and -13dB according to "Nguyen et
al". This phenomenon can also be observed in our VH curve Figure4.2.

The reference dataset we used is Corine Land Cover2018 (CLC2018), which has a coarouse
resolution compared to our main dataset and therefore does not include details related to
the channels between rice paddies or the gaps between two widely separated paddies. In
addition, we found that CLC2018 has some inconsistencies with the real world when we
analyze the data in Sentinel Hub pixel by pixel (referring to the Sentinel-2 L1C mission
and the NDWI (based on the combination of bands B3 - B8 / B3 + B8) and SWIR
(based on bands 12, 8A, 4) indices). And by acquiring more data from the local websites
of the Piedmont and Lombardy municipalities (www.ersaf.lombardia.it), we understood
that there are a lot of discrepancies. And as long as the data acquired from the local
municipalities were fragmented and had some shortcomings, since some localities did
not cover our whole study area, we could not use them as reference maps for further
evaluation. But we referred to these maps in our analysis to identify and justify the
places where our algorithm fails compared to CLC2018 by further reasoning. In this
case we continued working with the same CLC2018 reference data. Nevertheless, we
already knew that the final results we would collect would be less accurate because of the
problems mentioned above. The threshold optimization phase is closely related to the
reference data (CLC2018) that we present, and it is almost the phase where we introduce
the final thresholds by evaluating them at each iteration with the CLC2018 rice map.
consequently, we change the thresholds when the rice map we get matches CLC2018 or
not, in order to achieve higher accuracy. In other words, this reference map plays a vital
role in the whole process. If it is problematic for some reason, we might lose part of the
accuracy by ending up with different values for threshold optimization.

The classification results were evaluated using the CLC2018 product with an overall ac-
curacy (accuracy = (tp + tn) / (tp + tn + fp + fn)) more that 84% for the extracted rice
cultivated regions, and 97% for the entire study area. Respectively, recall score (recall
= tp / (tp + fn)) equal to, 76% and 52%. As predicted before, the final result of the
evaluation might be less accurate than the situation if we had more reliable reference
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data with the same spatial resolution (20m). Overall, Sentinel-1 based classification maps
reveal much more details compared to the rice field class acquired from CLC2018 data
[40]. However, our final results are convincing and acceptable as follows.

Figure 4.3: Classification results of σ0
V H−smoothed after masking the mountains and limiting

the area by cropping the dataset to a smaller region where contains rice fields rather than
other crops for comparison purposes (Figure 3.17)

Figure 4.4: Classification results of σ0
V H−smoothed of the entire region with 225M pixels

over 9 tiles (Figure 2.1).

Figure 4.5: Classification results of σ0
V V−smoothed of the entire region.
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Figure 4.6: The defined confusion matrix for our case study.

Tables 4.3, 4.4, 4.5 represent the confusion matrix, which includes the values of True-
Positive (true rice), False-Positive (false rice), False-Negative (false non-rice) and True-
Negative (true non-rice) 4.6, by counting the number related to each component of our
rice-map. The rows refer to the actual values and the columns are related to the predicted
ones. The goal is to make a trade off between recall and precision or increase the amount
of F1-score in general. In addition, the producer accuracy and the user accuracy are
computed from the confusion matrix values. The final accuracy of each table is computed
as follows:

Table 4.3 : F1-score = 75% Accuracy = 84% Precision = 73.2% Recall = 76%
Table 4.4 : F1-score = 54% Accuracy = 97% Precision = 57.0% Recall = 52%
Table 4.5 : F1-score = 30% Accuracy = 90% Precision = 20.0% Recall = 68%

According to the final evaluation results (Figures 4.4 and 4.5), the cross-polarised (VH)
data were used for the further classification approaches due to the superior rice classifica-
tion abilities of the SAR cross-polarised measurement, compared to the co-polarised (VV)
data with promising accuracy, with Kappa equal to 0.6 and 0.72. To assess the representa-
tiveness of the presented rice cultivation pattern and algorithm, the classification accuracy
obtained from the VV-polarized data was meager and did not meet our conditions and
expectations in the evaluation context, with a Kappa equal to 0.25, which is negligible,
and we would like to achieve a higher kappa and precision. We strongly illustrate that
the Sentinel-1 time series with VH-polarisation will provide satisfactory results for the
development of an operational continental-scale rice monitoring and mapping system.
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4.2. Comparison to Nguyen and Wagner’s Approach

In this thesis, a method developed by "Nguyen and Wagner, [40]" for the Po River basin
in northern Italy was applied and further developed to accurately distinguish rice fields
from fields with other crop types. The study by "Nguyen and Wagner" was conducted for
multiple, relatively small test areas in the Mediterranean region. We focus on northern
Italy, more specifically the Po River basin. "Ngyuen and Wagner" used Sentinel-1A data
from 2015, and here we will apply the algorithm to Sentinel-1A and Sentinel-1B data
from two years (2019 and 2020). We start with the same phonological parameters and
thresholds as proposed by "Nguyen and Wagner", but update them according to our rice
growing calendar and obtained performance metrics. By applying the final algorithm to
data from two seasons, it will be possible to evaluate the robustness of the classification
and interpret any differences in the results of the two seasons. Finally, a local extrema
approach was implemented and tested to further improve the classification accuracy (this
further step will be discussed in more detail in the next chapters). The collected results of
the confusion matrix for Italy only and the accuracy according to the method of "Nguyen
and Wagner" are presented in the following figure 4.8.

Figure 4.7: The confusion matrix of the classification obtained by "Nguyen & Wagner".

Accuracy = 83.9% Recall = 79.8% Precision = 98.4% F1-score = 86.2%

Figure 4.8: Rice classification map obtained by "Nguyen & Wagner".
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In the algorithm of "Nguyen and Wagner", they have defined the threshold parameters
using the seasonal VH time series and the results of the smoothed backscatter profiles of
Italy. And we defined the threshold by analysing different indices of various dynamic maps
from the sentinel-hub playground website (www.sentinel-hub.com/explore/sentinelplayground/),
including the NDWI index of the Sentinel-2 L2A mission. For this purpose, we analysed
the different days during the rice growing season in Italy by inspecting the region around
the Po Valley, and we were able to define a rice cultivation calendar that we previously
introduced 2.3. When comparing the study area of "Nguyen et al, 2017" with ours, they
have employed a small part of northern Italy in relation to the area where we conducted
the work, which includes nine tiles, as shown in the Figure 4.9 with yellow and white
colours, respectively.

Figure 4.9: Comparison of the study area. The yellow rectangle refers to the area in the
Nguyen et al. paper and the white rectangle refers to our study area.

4.3. Improving the Classification Approach by the

Analysis of Local Extrema

plants within the regions of our study sites (by inspection at the sentinel hub playground).
Local minima and their subsequent local maxima were grouped into pairs for further cal-
culation. For each pair, we considered the backscatter difference between a local maxima
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and the preceding local minima. The difference between the local extrema must exceed
6.5 dB to be considered as a rice area. The last classification criterion is satisfied by the
threshold between the local minima and the local maxima. If these three decision-tree
nodes were fulfilled by any pair of extremes within the time series, the object was classified
as rice [6].

At the beginning of the main methodology, our decision tree consists of six decision
nodes (annual minimum or global minima, maxima or global maxima, and the deviation
between global minima and maxima). In the previous stages, we realized that these 6
decision nodes are suitable to distinguish seasonal vegetation, such as crops and deciduous
forests, from the land covers with a constant low backscatter, such as water bodies and
permanently irrigated areas, or high backscatter, such as urban areas [40] [64] [48].

Then we proceeded with the improvement phase by defining the local extrema parame-
ters by applying the exact same functions not on the whole data cube but segmenting it
into three subsets of 80 days each and performing the same procedures for each subset
separately. In this way, we were able to determine six different local parameters for three
segments. After a more detailed visual and quantitative analysis of each parameter, we
decided to use the local maxima and local minima of the first two segments for our cal-
culations, since we could recognize some distinct pattern in the case of rice plots, as the
flooding and heading stages of rice plants can be clearly determined in smaller time peri-
ods with higher deviations. We calculated the local extrema of our time series within 80
windows, because the temporal interval was chosen based on the shortest possible growing
season for rice plants within our study area according to the Italian rice growing calendar.
The final classification criterion is met if either the local minima is less than -24.6 / -25
dB or the local maxima is between -20.1 and 16 dB / -19 and -15.4 dB in two consecutive
windows. If these three decision tree nodes were satisfied by any extrema pair within the
time series, the object was classified as rice because at least one crop in the year could be
considered as rice.
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5.1. Logic behind the algorithm

This classification method introduced by "Nguyen et al" uses the time series images of
SAR to map rice growing areas based on their temporal variations, taking into account
the specific and unique behaviour of rice plants. This algorithm focuses mainly on rice
cultivation in Europe over 8 different regions located in 8 different countries, under the
flooding conditions and the period when the flooding stops and, reciprocally, the rice
plants start to grow until the harvesting season. This actively demonstrates that the
annual variation of σ0 of rice fields is greater than that of other vegetative land covers or
agricultural crops. The backscatter coefficients of the cross-polarised data show a signifi-
cant correlation with rice plant development. "Schmitt and Brisco, 2013" also found that
the cross-polarised data has produced the best relationship with the rice age after plant-
ing [4]. This algorithm is compatible with our study area because of the rice cultivation
technique exerted in northern Italy, which is direct seeding in flooded soil (water seeding).
So, in this case, we have captured the seasonal variations of the backscatter values with
the SAR imagery, which was very satisfactory during this study.

5.2. Rice Cropland Mapping Final Results

After applying the local extrema approach in addition to the previous steps and results,
we mapped the rice distribution with an overall accuracy, precision and recall of 99%, 88%
and 68.2%for the whole Po catchment in Lombardy and Piedmont region, table 5.1. For
the rice class, the producer’s accuracy is 88% and this is a quite satisfactory performance.
For the non-rice land cover class, a value of 99% is calculated, which indicates how often
the real land features are correctly represented on the classified map, or the probability
that a certain land cover of an area (here rice and non-rice) is classified as such on the
ground. The producer’s accuracy is the complement of the omission error, so our omission
error for the rice and non-rice is 12% and 1%, respectively. The user’s accuracy of the
study area for the rice and non-rice classes is 68.2% and 99%, respectively. In other
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words, the user’s accuracy essentially tells how often the class on the map will actually
be presented on the ground and it is a complement to the commission error.

Figure 5.1: Confusion matrix of accuracy assessment related to 2020 VH-backescatter
data after applying the local extrema approach for further enhancement.

Figure 5.2: Comparing the CLC2018 map (white) to the local rice reference data (purple)
we can see many differences between two maps that make CLC2018 less reliable.

The user’s accuracy for the rice class is lower than we expected. By examining the
whole procedures and the datasets used, we suspected that this low rice user’s accuracy is
related to our reference data CLC2018, as we demonstrate that it has a very low spatial
resolution (100m) and has many inconsistencies with respect to the real world (Figure
5.2), by analysing and comparing it with the local classified agricultural data collected
from the municipalities of each region. This fact leads us to obtain many false negative
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pixels (false non-rice pixels),that contributes to the misclassified pixels as rice (Figure
5.3). Had we had more accurate reference data than CLC2018 with better resolution, the
user’s would have increased dramatically to approximately 90-80% (Figure 5.2).

Figure 5.3: Map of false negatives. The blue areas are the truly classified regions, and
the red spots are the misclassified regions.

Figure 5.4: Rice-paddy classification based on 2020 Sentinel-1 time series in Po catchment.
The white areas are classified as rice, the black areas as non-rice.
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The map of rice fields throughout the northern region of Italy from the Sentinel-1 time
series is shown in a larger scale in Figure 5.4, and the detailed map in Figure 5.5. As it
has been depicted in This figure, the details such as the channels between the rice paddies
are misclassified. Our classifier classified these details as non-rice, which is in fact cor-
rect, but based on the CLC2018 map those areas must have been classified as rice, which
contradicts our assumption.

Figure 5.5: The classified rice fields in more details at a lower scale.
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Figure 5.6: (a) rice-paddy classification based on 2019 Sentinel-1 time series in Po catch-
ment. The white areas are classified as rice, the black areas as non-rice. (b) The rice
fields in details at a lower scale.

By analysing and comparing the final maps, Figure 5.4 with the one we acquired previ-
ously, Figures 3.16 and 3.17, we can obviously see the misclassified pixels in the other
agricultural fields have been removed and fixed. Our method achieved the highest clas-
sification accuracy after applying the local extrema approach on this specific study area.
Conversely this also means that our method introduced some limitations applied on dif-
ferent areas with less prominent field boundaries but by adding the ultimate step at the
end of the procedures we could succeed to some extent disregarding other mentioned lim-
itations during this work.

5.3. Flaws, Failures and Limitations of this Decision-

Rule-Based Algorithm

In this study, we aim to present an existing automatic method (Nguyen et al) for iden-
tifying rice growing areas by extracting statistical parameters after performing an orbit
correction to VH-backscatter time series. The results are expected to show that the ap-
plication of a decision-rule based classification approach using smoothed VH-backscatter
time series and optimal incidence angle normalization can accurately classify rice and
non-rice fields. This algorithm fails at classifying the rice and non-rice pixels from moun-
tainous regions (alpine ranges) due to the complex conditions at higher elevations during
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different seasons. Different agricultural activities during the growing season (rice vari-
eties, water level in the fields, density of rice plants in the fields), SAR acquisition period
can lead to this kind of misclassification. Also, the northern part of Italy is rich in a
variety of agricultural fields, different vegetation and permanently irrigated lands, so mis-
classification may occur due to temporary or permanent irrigation. Another problem that
can affect and interfere the collection of statistical parameters, thresholds, and rice maps
is unexpected rainfall, which leads to misclassification because the non-rice pixels are
considered rice due to the water supply caused by rainfall on the soil surface.

We used a conventional classification technique with manually optimized thresholds to
classify the rice fields. The challenge of the threshold-based approach is to find appropriate
thresholds for our dataset, and this was one of the difficulties we faced.

The Sentinel-1 data are affected by the incidence angle, whereas the strength of the SAR
backscatter signal gradually decreasing as the incidence angle increases. For adjusting
this problem, we used 2 different methods. The first one is to apply an orbit correction
algorithm (Lievens et al, 2019 method) to our dataset to compensate the orbital effect,
which showed better results compared to the second solution. The second method is to
separate the dataset by its orbits and visualize the time series graphs separately, which
was computationally intensive and time consuming.

We chose this method as the classification algorithm because it has high accuracy and
is relatively easy to implement. This algorithm does not require a training dataset or in
situ data collection, so it is not computationally intensive in itself. The only challenge we
faced was dealing with a large amount of data, which resulted in long processing times
due to the high spatial and temporal resolution and the size of the study area.

5.4. Polarization Comparison and Selection

In this study, different sets of data with two polarizations, VV and VH, were used and
the results were compared to each other. Another goal of this work is to decide which
polarisation (VH or VV or both at the same time, VV/VH) gives the best results and is
suitable for rice detection and classification. The polarisation comparison was done based
on the backscatter coefficients over time during the rice growing season over sample plots
and by comparing the final results of the evaluation phase.

One of the comparison methods we used was to extract the preprocessed temporal backscat-
ter coefficients of some random points for VV and VH separately and record them for
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further analysis.

Figure 5.7: Sample plot of σ0
V V−smoothed for three random points in 3 different classes:

water, rice and non-rice.

Figure 5.8: Sample plot of σ0
V H−smoothed for three random points in 3 different classes:

water, rice and non-rice.

As shown in the graphs above, figure 5.7 is plotted with the temporal backscatter coeffi-
cients for three points in three different classes, it exhibits very high dynamics with many
fluctuations that by analysing more points we were not able to capture a singular pattern
unique to the Rice class, Instead, by analysing the graph of VH-backscatter, we recognize
that each class we have defined exhibits specific behaviour. For example, in the case of
water bodies, the blue graph line is almost the same throughout the year, but with small
fluctuations around the same mean value, which is due to the different backscatter values
caused by different incidence angles. In the orange graph line related to a rice pixel, we
can simply show that the flooding of the rice field occurs in May and the second one in
June, by the local minima in the curve.

After the preliminary results of the rice classification by applying the threshold optimiza-
tion on VV and VH polarizations separately, the obtained confusion matrices, producer’s
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accuracy, user’s accuracy, and Kappa were presented in the tables 4.5 and 4.4. Conse-
quently, the producer accuracy for the rice class on VV-polarization was very low com-
pared to what it was on VH-polarization. This means that by using the VV-backscatter
coefficients for classification, we have introduced a large number of false-positives and a
smaller number of true-positives than the expected number, which is very important for
us. The Kappa value for VV-polarization was calculated to be 0.25, which is very low.
On the other hand, the calculated Kappa value for VH-polarization was 0.6, which was
accepted in this case to take further steps, such as the mentioned local extrema approach.
In the bargain, according to "Schmitt and Brisco, 2013", the backscatter coefficients of
the cross-polarized data have a significant correlation with the development of the rice
plants and give the best relationship with the rice age after the transplanting stage [51].

Last but not least, due to the better rice classification abilities of cross-polarized (VH)
measurements of SAR compared to the co-polarized (VV) data, a dense Sentinel-1 cross-
polarized (VH) dataset was used for the rest of the calculations and for further consid-
erations and proceeds, because it has more promising significance in discriminating rice
from other land types.

5.5. Comparing 2 years time series (2019 & 2020)

By analysing the time series plot of a random rice pixel for both time series of 2019 and
2020 (Figure 5.9) we could depict that the backscatter values are approximately similar
to each other during the year, and bot plots align each other.

Figure 5.9: Time series plot of two consecutive years 2019 and 2020

The same procedures applied to the 2020 data were also applied to the 2019 time series,
the only difference being the thresholds. During the preparation of the rice growing
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calendar, we noticed that the rice cultivation stages were slightly different from those for
2020. This difference was negligible, and the thresholds we used after the optimization
step only had decimal differences, that was something we could ignore because it did not
dramatically affect the final results of the Kappa coefficient, 0.74 for the entire study area
and 0.7 for just the rice region.

Figure 5.10: confusion matrix of derived rice region from σ0
V H−smoothed in a lower scale for

2019.

Figure 5.11: confusion matrix of the entire study area from σ0
V H−smoothed for 2019.

When we look at the results of both time series and compare them, we can conclude that
this unique algorithm is very well suited to map rice and that it can be used to differentiate
rice from other agricultural crops. And ultimately, from the comparison of 2019 and 2020
tables 5.11 and 5.1, indicating that the parameters required for the decision tree can be
robustly derived from one year of data, due to the similar retrieved accuracy.

Kappa2019 = 0.74
Kappa2020 = 0.78
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developments

This study was mainly conducted based on remote sensing data, an archive of Sentinel-1A
and B time series with a spatial resolution of 20 meters with VH and VV polarization
in 2019 and 2020, without using an in situ dataset, to detect and map the distribution
of rice cultivation areas in the Po catchment in the northern part of Italy at a large
scale. We have demonstrated that rice-growing areas with a given agronomic inundation
and seeding can be mapped by determining the statistical backscatter parameters using
a decision rule-based technique. We can apply this method to different areas by adjust-
ing and customizing the thresholds using the rice cropping calendar of each region and
visually examining the dataset and parameters from an agronomic perspective. Defining
the decision-tree nodes and their thresholds was one of the most important parts of the
whole procedure. Reliable and accurate reference data with high resolution is essential
to optimize the selected thresholds. In other words, the final optimized rice map and the
chosen thresholds are highly correlated with the reference data, from which we do the
temporal validation at each iteration. We proved that less accurate reference data can
lead to misclassified pixels and reduce the classification accuracy by producing many false
positives. To validate the performance of the decision trees and calculate the accuracy
of the classifier, we used the overall accuracy, precision, F1-score, and kappa values. In
each case, the calculated metrics are 84.06%, 97.98%, 52.33% and 0.78 respectively, for
the entire study area in 9 tiles.

Another objective of this study was to find out which polarization is the most appropriate
to distinguish rice paddies from other classes. In other words, which of the VV and VH
polarizations show discriminative behavior in the case of rice? We proved that VH is
the most suitable to classify rice due to its lower fluctuations and oscillations in the
water bodies (VH shows a more robust effect on water despite VV, which shows sudden
fluctuations and oscillations). We do not say that VV is not a suitable signature for
classifying rice. Other studies have also used VV-polarization either for enhancement or
classification, but with different methods and algorithms.
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Our method not only proved the robustness of the algorithm proposed by "Nguyen et al".
but also increased the accuracy of the final results by adding an additional procedure,
using the local extrema approach, and defining new thresholds for the newly calculated
statistical parameters based on the rice growing calendar. This step is particularly efficient
in distinguishing different types of cropland from each other.

Despite the mentioned deficiencies and limitations, this study has shown that the proposed
approach is capable of detecting and mapping the distribution of rice cropping areas using
Sentinel-1 time series images with high resolution and the corresponding rice cropping
calendar by obtaining feasible results at the end. Our results have shown that the SAR
data cube with an appropriate temporal density over time plays a crucial role in this study
for mapping rice fields or detecting and monitoring rice cultivation in the agricultural
sectors or beyond.

In conclusion, it is noteworthy to mention that the recommendations proposed in this
study could be considered in future studies to generalize and adapt the algorithm to
achieve better accuracy and be applicable to larger continental scales. And collecting
more information regarding the exact timing of irrigation, water supply, and soil prepa-
ration are also key factors for improving our rice growing calendar and, consequently, the
classification results.
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Rt Distance Between Radar Transmitter and Target

Rr Distance Between Target and Radar Receiver
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V H Stack of VH-Backscatter Time-Series

σ0
V V Stack of VV-Backscatter Backscatter Time-Series
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normalized Stack of Preprocessed Backscatter Time-Series
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LoS Length of the Season
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