
Executive Summary of the Thesis

Marketing infrastructures and tools designed for international expan-
sions

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Mohsen Pourshirazi

Advisor: Prof. Gianpaolo Cugola

Academic year: 2021-2022

1. Introduction
ProntoPro is a marketplace that connects people
and small businesses in need of a service with
artisans and professional workers offering that
service. To make it happen, ProntoPro needs to
find the people in need of a service as well as
the people capable of delivering such services.
In this project, we have focused on building and
maintaining tools to help ProntoPro persuade
people capable of delivering services to use Pron-
toPro as their marketing tool.
This project is conducted to help ProntoPro
with its goal of international expansion, focus-
ing on European countries by providing proper
infrastructures and tools to decide on when,
where, how and who to contact in order to find
potential customers.
Here you can find the description of some terms
used in the project:
Professionals: People specialized in providing
a particular service who possess the required
prerequisites and qualifications. Such as teach-
ers, plumbers, movers, etc.
Merchants: The professionals that have joined
ProntoPro’s platform and are paying for its ser-
vices.
Prospects: Professionals that could potentially
become future merchants.

This project is aimed to find as much informa-
tion as possible regarding prospects by crawling
the web and other internet resources and auto-
matically extracting and classifying relevant in-
formation.

2. Project overview
The project is divided into three main parts:

1. Gathering the data from the world wide web
using automated tools.

2. Preprocessing the data and ingesting it into
ProntoPro database.

3. Providing features and functionalities to use
the data from the database.

Figure 1 shows a high level abstraction of the
workflow adopted to achieve the ProntoPro ob-
jective.

1

Executive summary Mohsen Pourshirazi

Figure 1: High level workflow of the solution

2.1. Gathering the data
This task is carried out by designing and imple-
menting tools called web scrapers [2] which au-
tomatically extract data from various web sites.

For each of the targeted web sites, a customized
web scraper has been created using Python as
the programming language.
Below, you can find the libraries and frameworks
we used in this process:

1. Beautiful Soup
2. Selenium
3. LXML
4. Python Requests

We have targeted certain sources to extract in-
formation about prospects regarding their occu-
pation, location and ways to contact them.

2.2. Data preprocessing and ingestion
into the database

Taking advantage of the Python libraries and
frameworks called "pandas" [1], "re", "pho-
nenumbers", "difflib" and "requests", logical in-
consistencies are prevented and the extracted
data is reformatted to match the structure of
our designed database. Also the external taxon-
omy of professions and localities are mapped to
the internal taxonomy of ProntoPro.
Moreover, Contact information of each prospect
is validated with the help of third party services
like debounce.io and customer.io for validating
emails and phone numbers respectively.
Finally, prospects with duplicated contact infor-
mation are merged together while prospects with
no contact information are discarded before be-
ing pushed to the database.

2.3. Using the extracted data and ap-
plication features

A general overview of all the records in the
database is created using Tableau with a variety
of customizable filters and graphical representa-
tions.
A software application is designed to offer clients
with the following features through a graphical
user interface:

• Uploading scraped prospect information.
• Counting prospects with optional filters.
• Extracting prospects with optional filters

and the possibility to push the extracted
prospects to a CRM tool called customer.io.
This feature automatically flags the ex-
tracted prospects as "active" in order to
prevent them from appearing again in the
next extraction.

• Synchronization with other integrations

2

Executive summary Mohsen Pourshirazi

in order to update the prospects statuses
properly in cases they have (un)subscribed
from ProntoPro or requested to never be
contacted by ProntoPro again. (This fea-
ture is only available to admins)

An example of the graphical user interface is
given in the figure 2.

Figure 2: Main menu

3. Conclusions
With having more than 5.5 million prospects by
the end of this project, it has been observed that
the effect of such infrastructures and tools which
are designed to be used intuitively will result in
more informed decisions on markets activation
and more than 1.9 million distinct emails, 5.8
million phone numbers, and 2.5 million company
URLs have proved to be extremely useful when
taking actions based on those decisions.

References
[1] Wes Mckinney. pandas: a foundational

python library for data analysis and statis-
tics. Python High Performance Science
Computer, 01 2011.

[2] Vidhi Singrodia, Anirban Mitra, and Sub-
rata Paul. A review on web scrapping and its
applications. In 2019 International Confer-
ence on Computer Communication and In-
formatics (ICCCI), pages 1–6. IEEE, 2019.

3

Marketing Infrastructures and
Tools Designed For International
Expansions

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria In-
formatica

Author: Mohsen Pourshirazi

Student ID: 10632568
Advisor: Prof. Gianpaolo Cugola
Academic Year: 2021-22

i

Abstract

Lacking proper information and insights about potential customers might cause negative
results while companies are expanding internationally. This project aimed to design and
implement a system in which the relevant data denoting potential customer information
is gathered, processed, and stored in a database later to be utilized. The data acquisition
consists by multiple pieces of independent software commonly known as web scrapers or
web crawlers. Then the data is processed in order to be compliant with the designed
database structure alongside being mapped to the company’s internal taxonomy before
being ingested into the database. This project has been conducted within ProntoPro
for internal company needs in order to provide proper insights about different markets
for specific service-related businesses and locations that help ProntoPro with the process
of making the right decisions on where, when and how to activate those markets. The
final outcome of this project was an application capable of building a general overview of
markets and extracting potential customer information through a graphical user interface.

Keywords: Web scraping, Python, Marketing, Expansion, Data gathering and pre-
processing

Sommario

La conoscenza del mercato e dei suoi potenziali clienti è fondamentale per ogni azienda
che intenda espandersi internazionalmente e la mancanza di informazioni precise e pun-
tuali può portare al fallimento dell’azione di internazionalizzazione. Questa tesi mira alla
progettazione e implementazione di un sistema in cui i dati riguardo potenziali clienti
di un nuovo mercato vengono raccolti, elaborati e archiviati in un database per essere
successivamente utilizzati. Il processo di acquisizione dei dati è realizzato attraverso l’uso
di più software indipendenti, comunemente noti come web scraper o web crawler. Succes-
sivamente i dati vengono elaborati per essere conformi a quanto previsto dalla struttura
del database in uso e mappati alla tassonomia interna dell’azienda per poi essere effet-
tivamente inseriti nel database medesimo. Il presente lavoro è stato condotto all’interno
di ProntoPro, il maggiore marketplace per servizi locali d’Italia, per esigenze interne
all’azienda, al fine di supportare il processo decisionale che porterà PronotPro ad espan-
dersi in nuovi mercati esteri, aiutando a definire quali offerte dio servizio attivare nei vari
mercati di sbocco. Il risultato finale di questo lavoro è un’applicazione in grado di fornire
una panoramica generale dei mercati ed estrarre le informazioni sui potenziali clienti di
ProntoPro attraverso un’interfaccia grafica di facile utilizzo.

Parole chiave: Web scraping, Python, Marketing, Espansione, Raccolta dati e pree-
laborazione

v

Contents

Abstract i

Sommario iii

Contents v

Introduction 1

1 Database structure and design 5

2 Gathering the data 9
2.1 Web scraping . 9

2.1.1 Data Sources . 12
2.2 Legal aspects of scraping . 14
2.3 Legality of Web Scraping . 15

3 Data preprocessing and ingestion into the database 17
3.1 Data cleaning (Cleaner) . 17
3.2 Taxonomy mapping (Profiler) . 21

3.2.1 Profiling localities . 23
3.2.2 Profiling professions . 26

3.3 Data Validation (Data pipeline) . 28
3.3.1 Company URL checker . 28
3.3.2 Email Debouncer . 28
3.3.3 Email scraper . 29
3.3.4 Email guesser . 29

4 Using the extracted data and application features 31
4.1 Prospects market overview . 31
4.2 Count and extract modules . 32

4.3 Synchronization with other integrations . 33
4.4 User interface . 35

5 Conclusion and future work 37

Bibliography 39

A Appendix A 41

List of Figures 43

1

Introduction

ProntoPro is Italy’s largest local service marketplace. It helps millions of customers to
find a local service professional: covering over 600 services, ranging from wedding pho-
tographers over plumbers to guitar instructors. Within a few years, ProntoPro plans to
make it possible that booking a plumber or a painter online will become as effortless as
buying a book. Since 2019 it is in the process of international expansion, focusing on
continental Europe.
Even though ProntoPro is experiencing an advanced phase of growth, the startup agility
still guides their processes and decisions. ProntoPro has always been supported by suc-
cessful investors and entrepreneurs. Being a part of Immobiliare network lets them develop
innovative solutions without typical start-up risks. Their employees come from all over
the world - there are more than 16 different nationalities at ProntoPro.
In this project we are going to define some terminology and clarifications as follows:

• Professionals: People specialized in providing a particular service who possess the
required prerequisites and qualifications. Such as teachers, plumbers, movers, etc.

• Merchants: The professionals that have joined ProntoPro’s platform and are pay-
ing for its services.

• Prospects: Professionals that could potentially become future merchants.

ProntoPro’s marketing team includes two major sub-teams that were mostly involved in
this project:
SEO: This team is responsible for making the company’s website to appear more often
in the SERP (Search Engine Results Pages) when people search for certain services. In
other words, they are responsible to provide higher demand as well as supply.
ProAcquisition: This team is responsible for finding and persuading prospects to join
the platform by running classical acquisition and growth channels, such as Email mar-
keting, SMS, job boards, LinkedIn, influencer Collaborations and others. In other words,
they are responsible for providing the supply.
This project is mainly affecting the ProAcquisition team by providing them with suffi-
cient and reliable data. Finding legal and reliable contact information and establishing a

2 | Introduction

system to give people at ProntoPro an overall perspective over the potential markets is
one of the main goals of the project.
Expanding to different markets on an international level requires enough information in
order to make good estimations and forecasts. Also, the possibility of reaching out to
potential customers is essential. As one can imagine, the world wide web provides a wide
range of facts and data sources established by humans [20], and if a business can realize
how to make good use of it, as a result, a higher revenue is expected. The business model
of ProntoPro is defined in a way that paying customers are the people who possess the
necessary skills to offer different services such as "Electricians", "Plumbers". You can
find the full list of all services covered by ProntoPro at Appendix A.
Building automated tools for extracting and storing relevant data from the web is the
initial step of this project, however there are multiple challenges along the way. As any
other company, ProntoPro has its own taxonomy to address different things such as cus-
tomer classification and geographical location for the sake of organizational matters. And
since the data gathered from external sources have a high chance of being misaligned with
these taxonomies, the mapping between data points is one of the major challenges. Also
designing, maintaining or replacing the tools integrated in the project is very important.
The reasons may vary from changes regarding architecture or organization structure of
the whole company, to matters of efficiency, developing user needs, etc.
Figure 1, illustrates a high level abstraction of how the project is constructed. In the
following, you can find brief descriptions of what happens in each process.

Figure 1: High level workflow of the solution

• Scrape data: This is where the process of scraping the web and extracting the raw
data takes place.

• Data preprocessing and ingestion to the database:

– Clean: Cleaning the scraped data to be compliant with our database struc-
tures while excluding logical inconsistencies which is done by the cleaner mod-

| Introduction 3

ule.

– Profile: Mapping taxonomies of external sources to the internal taxonomy of
ProntoPro. The module responsible for this process is called profiler.

– Validate: Making sure the data regarding the contact information is reliable.
Actions are sequentially placed in a module called data pipeline to carry out
this process.

– Upload: Managing duplications and the process of uploading the profiled and
validated data to the database.

• Prospect market overview: A general overview of all the prospects stored in the
database presented graphically in certain dashboards alongside customizable filters
for clients’ needs.

• Extract/Count: Getting insights about certain prospects and extracting the re-
quired information to contact them properly.

• Synchronization with other integrations: Synchronization process to guaran-
tee concurrency between databases of different departments.

5

1| Database structure and design

Before initiating the data gathering process, we need to start with the architecture of
our database. The most straightforward option would be using a traditional tabular
database (also known as relational database). Since it is also the approach which almost
all the other departments of ProntoPro have selected, we decided to take advantage of
the existing subscriptions and infrastructures for hosting our database. As one can also
contemplate, integration with other departments is necessary, especially regarding the
task of tracking and monitoring the prospects who have been converted into merchants.
The tool used for the process of setting up and maintaining the database is DBeaver, a
free multi-platform database tool for developers, database administrators, analysts and all
people who need to work with databases. It also supports all popular databases such as:
MySQL, PostgreSQL, SQLite, Oracle, DB2, SQL Server, Sybase, MS Access, Teradata,
Firebird, Apache Hive, Phoenix, Presto, etc.
In Figure 1.1, we can see the ER (Entity Relationship) diagram representing the connec-
tion between the tables and their corresponding columns.
The database consists of three layers:
First layer is the "prospect" table which is the main table of our database, all the relevant
information about the prospects that might come handy to the ProAcquisition team is
stored here. Each prospect can have multiple contact points of different types, which
leads us to the next layer.
The second layer, is the contact layer which consists of three tables:

• contact_email

• contact_phone

• contact_company_url

Each of these contact tables represent the potential way to contact a prospect. Taking
contact_email table as an example: each record is associated with an email address
presumably belonging to a prospect.
There are four columns that contain timestamps in order to help us classify each of our
contact points:

6 1| Database structure and design

• status_ready_at: is the timestamp indicating the time that the prospect with
this particular contact point is created.

• status_active_at: is the timestamp indicating the time that the prospect is ex-
tracted and most probably contacted by a member of ProAquisition team. More
information about this process is given in section 4.2.

• status_invalid_at: is the timestamp that express the time of a contact point be-
ing considered as unusable due to a reason which can be found in the invalid_reason
column.

• status_subscribed_at: is the timestamp showing the time that the prospect
associated with this contact point is subscribed to the ProntoPro platform. More
details in section 4.3

The last layer is the activity layer. Each of the contact tables are connected to an activity
table that in short stores the history of how each record of the corresponding contact
table is used. Each time a prospect is extracted with specifying an activity, an activity
is created in this table for the related contact point. As explained before, each contact
point can be classified into four different categories. We call these categories, "status" in
order to avoid any misunderstandings with the categories in the ProntoPro’s taxonomy.
(e.g., "Home Improvement" is a category consisting of different professions)
Below, we have listed all the statuses that a contact point can be classified into:

• Ready: The contact is newly uploaded to the database and is ready to be used.

• Active: The contact has been reached out to through a ProAcquisition channel.
(pending)

• Invalid: The contact is unusable due to one of the following reasons:

– The prospect does not want to be contacted by ProntoPro. (black listed)

– The contact is unusable. (unreachable)

• Subscribed: The prospect has already subscribed to ProntoPro. (merchant)

Each prospect can be flagged based on its contacts; as an example, if a prospect associated
to one contact point classified as "ready", it can be deduced that this prospect is ready
to be used.
Consequently, the status flags are derived from the contact tables and are not explicitly
included in the prospect table, this is due to the fact that we can contact prospects through
different channels and invalidity of one does not necessarily mean the invalidity of all the

1| Database structure and design 7

others. For instance, if a prospect is unreachable via its company URL, maybe it is possible
to contact it through its phone number(s). However, if a prospect is blacklisted or has
already subscribed to the platform, it should be considered as invalid. In this project,
a Python SQL toolkit and Object Relational Mapper (ORM) that enables application
developers to have full power and flexibility of SQL, called "SQLAlchemy" has been used.

Figure 1.1: ER diagram

9

2| Gathering the data

According to the projects’ goals, we have to find prospects belonging to specific occupa-
tions in specific locations which usually goes by the term "market".
In the last decade, the drastic growth of data accessibility through the world wide web
opens a window for companies to grasp the opportunity to reach out to customers in
a faster and more practical manner [12]. Practical in the way that the selectivity and
relevancy of services offered to the right people at the right moment would makes it more
likely for companies to increase the chance of being profitable through marketing target
strategies. Thus, making it possible for companies to discover as much information as
they can about their potential customers, in order to contact them regarding their inter-
ests. For example, by contacting a personal trainer in the city of Milan with an email in
Italian offering them the possibility of finding clients though our platform will result in a
higher conversion probability, or in other words, encouraging them to choose ProntoPro
as their marketing tool.
With all that being said, finding good sources of information and collecting them will be
the steppingstone in the process. However, manually browsing through websites and gath-
ering useful data from them is not feasible. This led us to invest our time in automating
this task using a technique called Web Scraping.

2.1. Web scraping

Web scraping (also known as Screen Scraping, Web Data Extraction, and Web Harvest-
ing etc.) is the process of automatic extraction of data from the web, instead of doing a
manual copy of it [20]. In the procedure of web scraping technique, we find meaningful
data from the HTML source of websites to be extracted and later be stored into a central
local database or spreadsheet. In our case, the data is structured into certain shapes and
then stored in files with CSV (Comma-separated values) format.
Operation of web harvesting is performed by web scrapers which are software applica-
tions. This software can either be assembled in a customizable way for extracting data
from particular web pages or can be of the kinds that are designed for a generic use, by

10 2| Gathering the data

organizations.
Some web scraping procedures can be listed as HTTP programming, HTML parsers and
DOM (Document Object Model) parsing which is generating an internal structure in
memory that is a DOM document object containing all the information of an XML doc-
ument, and the client applications get information of the original XML document by
invoking methods on this document object; DOM Parser has a tree-based structure. The
generated data is later used for retrieving or analytical tasks. It is a big advantage as it
grants us with error-free data as well as saving our time in giving super quick results and
most importantly for us, to find and stores all the data we need at once.
Web scraping is currently utilized on various fields including online price comparison,
weather data monitoring, website change detection, web mashup, web research and web
data integration.
Although some websites offer APIs to obtain required information, it is not always the
case.
The prevalent practices in the developing of web data scrapers can be categorized in three
main groups: [20]

1. Libraries for general-purpose programming languages: As mentioned briefly,
method commonly used by bioinformaticians is composed of implementation of in-
dividual web data scrapers with the help of using a known programming language,
such as Python, Perl, etc. Generally, third party libraries allow us to access the site
with the implementation of client side of the HTTP, while the processing of the re-
trieved elements is done by utilizing the built-in string processing and manipulation
functions like comparison of regular expression, tokenization and trimming. Third
party packages can also grant us the possibility to use complicated type of parsing
such as HTML tree construction or XPath matching.

2. Frameworks: While using general-purpose programming languages for creating
scraper robots, we might encounter several limitations. Sometimes, different li-
braries are dependent on integrations to APIs for accessing the Web to retrieve
useful information from HTML documents. Furthermore, robots are known to be
delicate software, strongly affected by the alteration of HTML of extracted resources,
thus forcing us to modify them frequently. For the software developed in compiled
languages such as Java, instead of recompiling and redeploying the total applica-
tion, one can refer to scraping agendas which might illustrate extra explanation. For
example, Scrapy, a framework in Python, outlines agents as classes originated from
"BaseSpider" class, and introducing a handful of "parsing" functions and "starting
URLs" to be used for every web iteration. During the process of parsing Web pages

2| Gathering the data 11

for extracting contents, using XPath expressions is inevitable. alternative agendas
might give away domain-specific languages (DSL), designed for particular domains
resulting in robots to be considered as peripheral and self-governing objects. For
example, Web-Harvest which is a Web scraping agenda for Java programming lan-
guage, in which the procedure of extraction is defined with XML and is contained
of several pipelines, comprised of procedural commands, such as defining variables
as well as loops and many other primitives.

3. Desktop-based environments: In this type of instruments, conception and main-
tenance of robots have been enabled by graphically designed environments. Nor-
mally, users navigate through the target web page using a browser and collabo-
ratively select the elements which they desire to be extracted. The major issues
regarding these types of tools, are their commercial regulations with limited API
access which prevents us from embedding scrapers inside other software applications
(which is our need) [8].

Classification of automated web scraping methods can be listed as follows: [7]

1. Syntactic Web Scraping:
In this method, information is found by parsing the HTML, CSS and other web
languages.
Here you can find some of the common methodologies in this approach:

• Content Style Sheet selectors: characterization of illustrative aspects of HTML
elements can be used as one of the ways to select and extract data.

• XPath selectors: similar to CSS selectors, XML can be employed to find the
desired HTML nodes.

• URI patterns: finding web resources which respect the pattern of a certain
regular expression. Unlike CSS or XPath which are used to find elements at
document stage, URI patterns allow selection of credentials as well.

• Visual selectors: HTML nodes are associated with some properties to be visu-
alized in a browser. Web designers usually use comparable visual properties to
help with identifying elements.

2. Semantic Web Scraping:
The data extracted using syntactic web scraping techniques can be compared with
resources from the semantic web in order to achieve elevated demonstration and
purposes. To attain this, various structures such as Resource Description Framework
(RDF) and the Web Ontology Language (OWL) can be utilized. However, the

12 2| Gathering the data

practice of this method is less frequent.

3. Computer vision web-page analyzing:
Using machine learning and computer vision technologies, the process of identifying
and extracting of data can be done by artificial intelligence agents that are designed
to roughly observe and understand the websites, similar to humans that can later
be related with CSS selectors [25]. As an example, we can reference "Diffbot", a
service that crawls the entire public web and provides a searchable knowledge graph
[4].

Developing customized scraper software for different websites can be accomplished using
Python as the programming language. There is a wide variety of options to choose from
in Python libraries and frameworks that can be utilized to build the proper web scrapers
which can be used to gather the needed relevant information from different websites. Some
of the more common and well-known ones are listed below:

• Beautiful Soup

• LXML

• MechanicalSoup

• Python Requests

• Scrapy

• Selenium

• Urllib

The tools used in this project are mostly Beautiful Soup, LXML, Python Requests, and
Selenium.
Selenium: Selenium is a powerful tool for controlling web browsers through programs
and performing browser automation.
Beautiful Soup: Beautiful Soup is a Python library for pulling data out of HTML and
XML files. It works with your favorite parser to provide idiomatic ways of navigating,
searching, and modifying the parse tree.

2.1.1. Data Sources

In order to create functional and useful scrapers, defining and studying good sources to
be used as our targets is an important step.
By investigating similar service providing web pages, finding prospects who are eager to

2| Gathering the data 13

use Internet as their marketing tool would be beneficial. Some of the sites that are used
in this project are listed below:

• https://www.google.com/maps

• https://www.yellowpages.com/

• https://www.dasoertliche.de/

• https://www.dastelefonbuch.de/

• https://www.doctoralia.es/

• https://doncontacto.com/

• https://www.gelbeseiten.de/

• https://guiademicroempresas.es/

• https://www.houzz.com/

• https://www.indexacompany.com/

• https://www.milanuncios.com/

• https://www.misterwhat.com/

• https://www.paginasamarillas.es/

• https://www.thesaurus.com/

• https://www.topdoctors.it/

• https://www.werkenntdenbesten.de/

For each of the data sources, we have constructed a proper scraper. In order to navigate
the page and find the needed data, selenium is used to simulate the behavior of a website
user in the process of finding and loading all the intended result pages and then by taking
advantage of beautiful soup, we can extract the data into their corresponding fields.
We can comprehend more details in the following scenario:

1. Open the main page of the web site for a given URL. (Selenium)

2. Select the search bar and fill in the text with the relevant query. (Selenium)

3. Click on the search button. (Selenium)

4. Scroll down to load all the needed data in the result page. (Selenium)

14 2| Gathering the data

5. Extract data from the downloaded page and fill out the necessary fields in a struc-
tured dictionary. (Beautiful Soup)

6. Save the dictionary into a .CSV file which will be delivered to the upload module.

Or alternatively:

1. Create the proper URLs.

2. Load the pages. (Python Requests/LXML)

3. Extract the entire content of the each page. (Beautiful Soup)

4. Parse the HTML and fill out the necessary fields in a structured dictionary. (Beau-
tiful Soup)

5. Save the dictionary into a .CSV file which will be delivered to the upload module.

Considering the fact that each of the targeted web sources has its own specific design and
regularities which requires us to behave and interact differently with each of them, we
establish unique scraper tools for each source.
Taking advantage of the empirical tests and historical results from the ProntoPro SEO
team, the most effective method to find relevant results in most of the usual platforms and
websites is searching for the combination of “business” followed by a “locality” (city name)
in the target country language; as an example, for finding best results for electricians in
Milan, the most promising query for good results would be “Elettricista Milano”. As ex-
pected, the SERP will contain a variety of valuable information which must be structured
and classified in order to comply with the design of the database as well as our intended
input and output.

2.2. Legal aspects of scraping

Discovering and exploiting large amounts of data from the web, is followed by some
serious technical, legal and ethical challenges. Although much advancement can be seen
in designing proper tools and technologies aimed at developing web scrapers [17], legal
and ethical aspects of gathering data from the web are still to be found in "grey areas"
[18]. Unlike some legal frameworks which are practiced to some extent, ethical problems
are usually bound to be ignored. To mention some of these legal frameworks, we can point
out the ones that have been applied in court cases, such as: breach of contract, copyright,
trespass to chattels, trade secrets and illegal access and use of data. It is crucial for us to
be mindful of legal and ethical problems that might be caused by web scraping in order
to evade very costly lawsuits alongside any other potential damage to the reputation of

2| Gathering the data 15

ProntoPro. It has been concluded that there exists an inherent paradox related to data
in the web, which complicates the extraction and analysis of it from a legal point of view
[12]. Web data was intended to be available to the public which has affected the business
model of a lot of companies. for example, higher revenue for a website owner, caused
from a wider user base accessing available data on their website due to this openness.
However, this data is an important property for the owner of the website which needs to
be protected, thus they prefer to consider this data as propriety, which means it is owned
by the people or entities behind the website containing this data.
This ownership comes with some complications, as the website is owned by the owner
which does not necessarily indicate the fact that generated data by the website users also
belongs to the owner [5]. As of now, no web scraping legislation has been developed so far,
this can be due to the novelty of the web harvesting process or the complications regarding
the data ownership. Nonetheless, there is a set of legal frameworks and principles in other
contexts that can be considered as guidelines. Law and ethics are distinct concepts;
however, they are complementary to each other [16]. In the topic of web scraping, more
ethical controversies exist than the legal ones [12].

2.3. Legality of Web Scraping

As stated previously, no direct legislation addresses web data extraction directly. This is
the reason behind why people involved in such activities are not always certain of their
actions.
In the following, you can find some detailed information about some of the fundamental
legal theories applied to web scraping: In many cases in courts, the main focus has been
on whether the "Terms of Service" of websites forbids web scraping or not. But violation
of the "Terms of Service" alone, might not be enough to be considered basis for liability
under the CFAA (The Computer Fraud and Abuse Act) [6].
Availability of access might be taken away and become authorized, in cases when the
website owner sends a cease-and-desist letter to the entity responsible for crawling the
website [3]. Even so, there has been a court that did not hold the web scraper liable under
the CFAA, with only the cease-and-desist letter [23]. Some courts have noted that web
harvesting publicly accessible data does not violate the CFAA [9].
Generally, users need to agree on "Terms of Service" (e.g., clicking on a checkbox), in
order to be considered liable in case of violating them which may lead to a "breach of
contract" on the website’s user side [1]. Therefore, forbidding web scraping on the web-
site does not necessarily mean the prohibition of web crawling from a legal point of view.
Also, for the website to be successful on a breach of contract claim, it needs to prove that

16 2| Gathering the data

they have encountered material damages as the result of crawlers violating their "Terms
of Service".
Extracting and publishing data that have been explicitly copyrighted, might result in a
"copyright infringement" case. Particularly in cases when scraped data is used for finan-
cial benefits [5]. But there would be no restriction from the copyright law, if the data
is just being collected, and we have to keep in mind that the data does not necessarily
belong to the website. Especially when it is generated by the users.
It has also been a topic in courts, whether inexistence of authorization mechanisms in
websites, can be considered a permission to copy scraped data or not. One of these mech-
anisms is the robot’s exclusion protocol or simply robots.txt protocol which contains all
the instructions about what areas of the website should not be processed or scanned [19].
Nevertheless, in scenarios that the data on the website does not belong to the website
owner, creating an implied license by the robots.txt file is not possible [2]
Damaging websites or web servers by overloading it, can result in holding the person who
caused the damage to be held liable under the “trespass to chattels” theory [5]. However,
this damage must be material and provable in courts for financial compensation [10],
which is rarely the case [24].
Web users are not obliged to obey the instructions given in the robot.txt protocol by any
legal restrictions, but by not doing so, web crawling might lead to unintended damage to
the website users and owners (e.g., privacy concerns).
From an ethical point of view, upon publication of personal and sensitive data, users
might have some expectations regarding the protection and privacy of their data. For
instance, web crawling can be the tool used by security and law enforcements officials
in order to identify individuals and prosecuting them [26]. Additionally, users publish
certain data, assuming they will be used in a particular context, and when they are used
for other purposes, this will raise concerns regarding their privacy and consent.
The process of gathering information should always be one of the most cautious pro-
cesses, since finding and storing private information of people without their consent can
be considered as an illegal act. Based on that reason in particular, the extraction logic
for finding contact information in sources that requires us to carry on with the process of
registering and creating a profile which can be later used to login and access the needed
information has been limited to the company URL and the landing page in which we have
found the prospect that can be later used as a contact point or as a clue on where to
find the contact information. It is also necessary to keep track of the time when scraping
emails, phone numbers or any other private information has taken place, since we need
to reach out to those people and ask their consent to store their information in a certain
time period.

17

3| Data preprocessing and

ingestion into the database

After the process of crawling the web, the acquired data must be processed in order to
be useful for the company before being uploaded to the database.

3.1. Data cleaning (Cleaner)

In this module, we start by organizing the raw files provided by our scrapers in a compliant
way to our database architecture, meaning we structure them into predefined columns with
the correct values. In other words, missing columns are going to be added and extra ones
are going to be discarded. Also, we need to enforce the insertion of some particular fields,
such as source (clue on where the data was scraped), country code, locality, and at least
one keyword related to professions, because all of these fields are necessary to create and
upload a new prospect to the database.
Making use of a Python library called "pandas", which includes very rich data structures
as well as functionalities to integrate projects with structured data sets usually used in
statistics, finance and social sciences [15], appeared to be an interesting option for this
task.
Having the data in pandas "dataframe" objects (2-dimensional labeled data structure
with columns of potentially different types), enables the possibility to perform common
data manipulations and analysis.
One of the responsibilities of the cleaner module is transforming the content of each
different field to a clean version. Clean, in the sense that they would be relevant and
usable for the processes we might apply over them later. To simplify and guarantee
the process of cleaning, having a particular structure for the raw scraped data alongside
specifying the data type of each column in the dataframe, is very helpful. Nevertheless,
bear in mind that this process was partially done in the scraper modules, however the
necessity of having a more advanced cleaner module while keeping the complexity of the
scrapers limited to the task of extracting data, encouraged us to develop a separate module

18 3| Data preprocessing and ingestion into the database

for the cleaning process.
After introducing the intended data types for every field, we can utilize different strategies
to clean and organize them.
For columns which were identified as type "string" (e.g., company name), we must find
and remove all the emojis, as they are of no use to us and may cause issues related to
other processes in the future.
In the following, you can find brief definitions which might aid us understand the situation
better:

• Unicode: The unicode standard is an encoding of characters and texts which is
done universally and is defined by Unicode Consortium (legally Unicode, Inc.). It
offers the possibility to exchange data internationally which is one of the foundations
of developing software globally [22].

• Unicode block: A unicode block is structured from ranges of adjacent Unicode
characters. Each of these blocks usually is used to provide glyphs for at least one
specific language or some generic application area, like mathematics.

• Emoticons: A unicode block that contains emojis (graphical representation of
faces, hand gestures, etc.).

• Regular expressions: Regular expressions, also known as regex, regexp and ra-
tional expression, is a series of characters that identifies a particular search pattern.

By identifying the emoticons and using regular expressions to find and remove them
from strings, we can accomplish the task mentioned above. We can use the "re" (regular
expression) library in Python which provides all the operations required for finding certain
patterns such as the following unicode blocks:

• "\U0001F600-\U0001F64F" for emoticons

• "\U0001F300-\U0001F5FF" for symbols & pictographs

• "\U0001F680-\U0001F6FF" for transport & map symbols

• "\U0001F1E0-\U0001F1FF" for flags (iOS)

By using the "re.compile" method, we can compile these unicode ranges into regular
expression pattern objects, then replace character sequences that match these patterns
with an empty string (practically, removing them), using the "re.replace" method. We
can also use the same approach for discarding non-words. Luckily the non-word pattern
("\W+") is already available in the Python "re" library. It is also helpful to delete all the
stop-words from string type fields. An example for one such field is the address. However,

3| Data preprocessing and ingestion into the database 19

commonly, each country has its own language and the stop-words are going to be different
correspondingly. For this reason, we have constructed certain dictionaries containing most
of the stop-words for the following languages: English, Italian, German, Spanish, and
French. Improving these dictionaries can lead to better results, especially in times when
some processes for string matching are involved. We can see the necessity of this process
in 3.2 "profiler" module since the chance of finding two strings to match will increase
drastically when some stop words are discarded. Taking advantage of the features and
functionalities included in a Python library called "texthero", a toolkit that facilitates
working with text-based dataset which is designed to be used on top of "pandas", we
can do some preprocessing in order to remove stop-words, whitespaces, brackets and
punctuations and then lowercase all the letters in the strings. Validating the format of
email addresses, phone numbers and URLs is one of the most important tasks that is
carried out in the cleaner module:

• Emails:
Email addresses must comply with some certain rules; each email address should
consist of a local and a domain part [11]: "local-part@domain". Therefore, a re-
strictive filter can be put in place in a way that only email addresses that fall in
with the valid email address pattern can be considered. Once again, we can use the
Python "re" library to define valid regular expression patterns for emails, in order
to filter out (remove) the content that does not follow these rules.

• Phone numbers:
Although the format of valid phone numbers may be different for each country, the
International Telecommunication Union (ITU) provided some recommendations for
defining the format and the length of phone numbers. Also benefiting from the
Python library called "phonenumbers" which is supported by Google, we can use
the "parse" method, which takes two input arguments as a string, one representing
the phone number (in any format such as E164, national, international, etc.), while
the other represents the country. It neglects all the punctuations and white-spaces
and removes all the non-number bits and returns a phone number object. By using
the "format_number" method on this phone number object, we can produce the
phone numbers in our desired format. We have selected "E.164" which is an inter-
national standard and ITU-T Recommendation. According to this standard, the
phone number must contain only digits split as: 1 to 3 digits representing the coun-
try code followed by subscriber number which is limited to maximum 12 digits, for
example: +00 111 222 33 44. Meaning 00 being the country code and 1112223344
being the subscriber number. There are also other features we can use from this

20 3| Data preprocessing and ingestion into the database

library, such as getting extra information about the location associated with phone
numbers which will come handy when double checking the localities assigned to
prospects.

• URLs:
A reference to a web resource in technical terms, is called a Uniform Resource
Locator (URL), it also specifies the location of the resource on a computer network.
A URL is a particular type of Uniform Resource Identifier (URI). According to
World Wide Web Consortium or W3C (2009), URLs are generally being used to
reference pages (http), file transfer (ftp), email (mailto), access to database (JDBC)
and so on. The standard format of a URI, which would also be the case for URLs
by definition, is given below [14]:
URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment]

– Scheme: protocol used to reach the resource on the world wide web, such as
http.

– Host name: also called the domain name of the host where the resource is
located.

– Port number: since servers offer more than one service, specification of the
required service is indicated by the port number.

– Path: which pinpoints the specific resource inside the host required by the
user.

– Query string: the parameters of the search that are needed to be given to the
server-side scripts.

– Fragment identifier: which specifies a particular location on a web page.

It is also important to consider the fact that the scheme and the host name parts
are not case-sensitive, however the path and query string are case-sensitive. It is
common practice to specify the whole URL in lower case.
For example: https://www.example.com/users?id=1#line=10
According to all the information we can see above, establishing an admissible pat-
tern for the URLs can be done once more, using the regular expressions that filter
out the non-valid formats of URLs. Finally, considering the fact that prospects pos-
sessing no valid contact information such as emails, phone numbers, and company
URLs, present no possible way of identification, making it difficult to decide whether
they are unique or not. This will cause an issue with regards to having duplicated
prospects and will later introduce a large bias in analysis of the prospects. There-

3| Data preprocessing and ingestion into the database 21

fore, another responsibility that falls upon the cleaner module is, list and categorize
all the contact information of each prospect, and drop the records that have no
values in these lists.

3.2. Taxonomy mapping (Profiler)

Due to having synonyms in almost every language, addressing different businesses offering
services might raise various complications. Take the term "electrician", a person who
installs and maintains electrical equipment, as an example. One can interpret terms
such as lineman, electrical technician, electrical expert, etc., with the same concept and
meaning.
The vast diversity of how we can address an occupation, motivates the idea of fabricating
organized dictionaries with a mapping logic to relate all similar terms to one specific
occupation. This type of process of classifying and categorizing is commonly referred to
as "taxonomy".
Based on the needs and capacity of each department of ProntoPro, different taxonomies
have been established.
We can outline these taxonomies through a practical example:
A potential client living in the city of Milan is trying to find someone who has the ability
and skills to fix the malfunctioning water heating system of their house. Imagine the
case that they would do so, by searching a solution to their problem on the Internet, it is
going to be more likely for them to address their needs more specifically; in other words,
they would not search for the word "plumbers" on the search engines, instead they would
insert a statement similar to "repairing water heating system in Milan". In the taxonomy
of ProntoPro SEO department, the descriptions used to reference intended landing pages
related to these queries are called "Business Class". Business classes are usually obtained
from consulting with Google as they are the most commonly used search engine provider
across the globe according to statista (86.64 percent in September 2021).
In order to reference detailed and specific tasks and activities done in a certain line of
work, the concept of "Tag" is created. As examples, both “water heater installation
or replacement” and "Unblocking drains" are tags. A group of coherent tags construct
another concept called "Service", and related services are grouped together and form the
concept of "Service Groups", also known as "Professions". Finally, the related professions
are classified in another entity called "Category".
To clarify the definition, as well as the relation between these concepts and taxonomies,
consider the following example:
A customer searches for "fixing water boiler Milano" in Google, this query will result

22 3| Data preprocessing and ingestion into the database

to land on a page that has been created and mapped to the certain business class of
"Heat pump installation" which in turn is related to the tag "water heater installation
or replacement"; This tag is mapped to the service called "Plumbing and heating" which
belong to the service group "plumbers" in the category of "home improvement".
All these procedures and organizational designs are making it possible to link a request
to a merchant possessing necessary skills and adequacy to completely solve the problem
of clients.
Figure 3.1, illustrates the relationship between taxonomy of professions in ProntoPro:

Figure 3.1: Profession taxonomy

Similar to professions, localities (or cities) are also presented in a particular taxonomy.
Generally, countries are divided into regions, and regions consist of provinces. In each
province, there are multiple cities.
For taxonomy of professions, there exists corresponding tables of business class, tag, ser-
vice, profession, and category; while for taxonomy of localities, tables of locality, province,
and region have been established. The taxonomy tables of each country are separated
due to language differences. After the extracted data is cleaned and ready, different pro-
cedures must be carried out in order to map the values to the corresponding records in
ProntoPro taxonomy and modify them accordingly. From now on we will reference this
mapping procedure as "profiling".
The task of profiling is divided into two separate tasks. One being the profiling of the
locality fields and the other, profiling of the profession fields.
In order to profile localities and professions of the extracted data, we must consider
whether there exists a taxonomy for each of the records, according to their country.
Therefore, it is necessary to include certain fields which are required in the profiling pro-

3| Data preprocessing and ingestion into the database 23

cess. These necessary fields are: country code, locality, profession or keywords (used for
profiling professions).

3.2.1. Profiling localities

Certain cities might be known and called by different names. This can happen due to
language differences, such as the city of Milan which is called Milano in Italian language,
or other factors, such as the case for the city Palma which is also known as Palma de
Mallorca.
It can be expected that in the locality taxonomy of ProntoPro, cities are known by the
official names given to them by national governments. However, it might be the case that
the sources we have crawled and scraped the data from, use different names to reference
localities.
Not profiling the localities to the ProntoPro taxonomy, eliminates our chance of having
accurate and organized information to be used for analytical and marketing purposes.
One of the things that can be of aid to undergo this task is the zip code. Also known
as postal code, a zip code is a series of numbers communicating information about peo-
ple within different geographic groupings. Looking at official governmental sources, zip
code libraries can be found that include useful attributes such as city name, coordinates,
province and region names for each zip code. By creating aggregated lookup tables that
are formed from the mapping between these zip code libraries and ProntoPro locality tax-
onomy, we can expect faster and more reliable results to find and profile localities given
in our scraped data.
We have considered three different possibilities that a city can be called in these aggre-
gated lookup tables to increase the rate of successfully profiled records.
To compare two string values in Python, equality (==) and comparison (<, >, !=, <=,
>=) operators can be utilized. But we have to consider that capital letters “A” and
lowercase “a” are not equal according to the equality operator, in other words, they are
case-sensitive. Thus, we have to compare the two strings after some modifications have
been applied to them; On the other hand, some characters in a string value do not provide
any useful information and are often considered as noise, such as brackets ([,]).
By using a Python application called "Python-slugify" on string values, we can transform
them into strings that are trimmed, lowercased, etc. Also, white-spaces are going to be
replaced by hyphens (-). In order to have higher time efficiency, slugifying the three ver-
sions of the localities has been included in the process of creating the aggregated lookup
tables.
A different method of comparing two string values in Python can be done by using a class

24 3| Data preprocessing and ingestion into the database

called "SequenceMatcher" from the "difflib" library. This module provides various classes
and functions designed for comparing sequences. A method in the "SequenceMatcher"
class is the "ratio", which returns a measure of the sequences’ similarity as a float number
between the range of 0 to 1. This value is computed from the following formula (3.1):

Ratio = 2× M

T
(3.1)

Where T is the total number of elements in both sequences, and M is the number of
matches. This value is going to be 1 if sequences are identical and 0 if they have nothing in
common. Based on empirical evidence and many trials, an acceptable ratio for considering
two strings similar to each other is between 0.80 to 0.85.
The process of profiling localities will iterate through each record of the scraped data,
comparing their locality field with the records in the aggregated lookup tables.
Algorithm 3.1 describes the operations and procedures of the process.
The algorithm checks whether a record in the input file (scraped and cleaned data) having
the same locality has already been profiled by the algorithm. If so, we propagate the
same profiling results to the current record and move on to the next iteration. This step
will increase the speed of the algorithm drastically, due to the fact that scraped data is
commonly extracted in batches that have the same localities. Also by using zip codes, we
are limiting the number of comparisons needed to find a match.

3| Data preprocessing and ingestion into the database 25

Algorithm 3.1 Profiling Localities
i : input,
lookupSet : all three version of slugyfied localities of the lookup tables,
profiledSet : profiled records of the input file,
propagate(record) : profile the record according to the already profiled ones with the same
locality,
similar(record) : rows from lookup tables with the same zip code as record.zip,
profile(record, set, operators) : compare record.locality with all elements of a given set
using the specified operators and profile the record accordingly. returns True in case of
success.

1: for record ∈ i do
2: if record ∈ profiledSet then
3: propagate(record)

record → profiledSet

continue

4: else
5: slugify(record.locality)

6: sameZipSet = similar(record)

7: if sameZipSet ̸= ∅ then
8: if profile(record, sameZipSet, (equality, SequenceMatcherratio)) then
9: record → p

continue

10: else
11: Go to 14
12: end if
13: else
14: if profile(record, lookupSet, (equality, SequenceMatcherratio)) then
15: record → p

continue

16: else
17: Flag the record as un-profilable.
18: end if
19: end if
20: end if
21: end for

26 3| Data preprocessing and ingestion into the database

3.2.2. Profiling professions

Similar to the process of profiling locality fields, specific aggregated lookup tables are
essential for profiling the professions.
Different inter-related taxonomies across departments of ProntoPro that are related to
professions, can be used to generate the proper aggregated lookup tables. Contemplating
on the structure and relations between these taxonomies, led us to design these lookup
tables with the logic of taking business classes, services, and tags as keywords related to
their correlated profession. Once again, to speed up the process, we store the slugyfied
form of both the professions and keywords in the aggregated lookup tables.
The scraped data must contain some content regarding the potential occupation of the
prospects, these contents will usually be store in a column called keywords. Although, it
might be observed, that some of the sources used for scraping data, almost use similar
taxonomy to reference a line of work. We can take advantage of this opportunity to
speed up the process of profiling professions by storing them in a column called profession
which will have a higher priority to be compared to the actual professions in ProntoPro
taxonomy.
Same as profiling localities, the process of profiling professions will iterate through each
record of the scraped data, comparing their keywords or profession fields with the records
in the aggregated lookup tables.
In algorithm 3.2, you can find details about the process of profiling the profession fields.
Once again, propagating the profiling results of an already profiled record in the same
input file leads to speeding up the process.

3| Data preprocessing and ingestion into the database 27

Algorithm 3.2 Profiling Professions
i : input,
professionSet : slugyfied professions of the lookup tables,
keywordSet : slugyfied keywords of the lookup tables,
profiledSet : profiled records of the input file,
propagate(record) : profile the record according to the already profiled records with the
same keywords and profession,
profile(record, set, operators) : compare record.profession with all elements of a given
set using the specified operators and profile the record accordingly. returns True in case
of success,
elect(record, set, operators) : compare all record.keywords with all elements of a given set
using the specified operators and profiles the record if the most frequent profession associ-
ated with the matched keywords has a higher frequency than the existing profileRanking
otherwise profile the record with its highest profileRanking

1: for record ∈ i do
2: if record ∈ profiledSet then
3: propagate(record)

record → profiledSet

continue

4: else
5: slugify(record.profession)

6: if profile(record, professionSet, equality) then
7: record.profileRanking = 10

8: else
9: if profile(record, professionSet, SequenceMatcherratio) then

10: record.profileRanking = 5

11: else
12: Go to 16
13: end if
14: end if
15: slugify(record.keywords) → keywords

16: elected = elect(record, keywordSet, (equality, SequenceMatcherratio))

17: if elected then
18: record → profiledSet

continue

19: else
20: Flag the record as un-profilable.
21: end if
22: end if
23: end for

28 3| Data preprocessing and ingestion into the database

3.3. Data Validation (Data pipeline)

As already mentioned, having prospects that contain no contact information, limits our
ability to identify them uniquely which will reduce the accuracy of analysis on them
and eliminates the possibility to reach out to all prospects stored in our database. This
problem is dealt with in the cleaner module in section 3.1; however, validity of contact
information still remains undetected.
Contact information such as phone numbers and email addresses, are invalid if they do
not exist in their specified domains.
By establishing a series of modules for filling out missing contact information and validat-
ing them using proper tools, we can make sure more reliable information is being collected
and uploaded to the database. The name "Data pipeline" has been given to these series
of modules which are briefly described in the following:

3.3.1. Company URL checker

Using an elegant and simple HTTP library for Python called "requests", one can easily
send HTTP requests. Each scraped, cleaned, and profiled record might have a value in
their company URL field. By passing this URL as an argument to the "get" method of
the "requests" library, a response object is returned. From this object, we can access the
status code of the response. If this value is equal to 200, it means that the request was
successful, that can be interpreted as the URL being valid to us.

3.3.2. Email Debouncer

An integration to an email validation service called debounce.io has been implemented in
this module, which offers straightforward API access for various programming languages
including Python. For each email address of each record of prospects, an API call can be
made which returns a response object of the "requests" library. Using the "load" method
from the "json" library in order to convert the response into a Python dictionary, we can
access the result code which indicates the status of the inserted email address. In case of
it being equal to 5 (deliverable), we consider the email as valid.
Since this service is not provided for free and might take a long time, it is necessary
to store the results of each API call with its corresponding email address in a database
table called email lookup dictionary. This will reduce the overall cost of email address
validation. To elaborate the reason behind this choice, imagine the same prospect with
the same email address has been extracted from two different sources, one API call to
check the validity of this prospect’s email address is sufficient.

3| Data preprocessing and ingestion into the database 29

In conclusion, for each scraped, cleaned, and profiled record, we initially check the email
lookup dictionary, if the email address exists in this file and is indicated as valid (or
deliverable), it is considered as valid. In case it is specified as invalid, if the latest validity
check is more than 1 year old, we make another API call and update the record in the
email lookup dictionary; if not, we consider the email as invalid.

3.3.3. Email scraper

There is a high chance of finding email addresses on a company website. For prospects
that have company URLs but are missing email addresses, scrapping might be a good
solution. Process starts by searching through the company websites trying to find email
addresses using regular expressions, then validating the scraped emails by searching them
in the email lookup dictionary or using the email debounce API on them before updating
the email lookup dictionary. To be practical, the process of scraping for emails will have
a time limit of 5 seconds.

3.3.4. Email guesser

Based on other information available for each prospect that is missing email addresses,
generating email addresses might be a good option. However, this process is utterly
challenging and only a prototype of the supposedly functional module is implemented in
a way that only for prospects containing company URLs and no email address, company
domain is extracted and later used to generate an email address like info@domain. The
validity of the generated email address is checked by using the email lookup dictionary or
the email debounce API.

31

4| Using the extracted data and

application features

In this chapter, you can find how the extracted data is being utilized. Also various features
of the application is introduced.

4.1. Prospects market overview

By having the cleaned and profiled records collected in the database, it is possible to design
insightful dashboards and graphs to visualize this data. These graphical demonstrations
can be used to make better and more accurate business decisions.
Instead of implementing custom tools for having these graphical visualizations, we decided
to benefit from ProntoPro’ s subscription at Tableau.
Tableau is a visual analytics platform transforming the way we use data to solve problems,
empowering people and organizations to make the most of their data. As the market-
leading choice for modern business intelligence, their analytics platform makes it easier
for people to explore and manage data, and faster to discover and share insights that can
change businesses and the world [21].
In order to avoid having misleading information in our visualizations, it is required to take
some necessary actions; One is being the process of flagging the prospects status. This
process is done by designing proper SQL queries to flag the prospects according to their
contact tables (email, phone, company_url); The importance of this process is the result
of being limited to not having a live connection between our database and the Tableau
data source since the data is too large which makes the process costly. It is also important
to avoid pushing private contact information of prospects to the Tableau. The data is
pushed to the Tableau once a week.
Another useful feature of the Tableau is being able to design customizable filters which will
later give the clients the possibility to manage and manipulate the graphical visualizations
according to their needs. In Figure 4.1, you can see an example of the prospects market
overview. Also, in Figure 4.2, you can see the distribution of the prospects over the map

32 4| Using the extracted data and application features

categorized by their status. Clients can easily navigate through the profession or locality
of their interests to obtain the visualizations they are looking for.

Figure 4.1: Prospects market overview

Figure 4.2: Prospects market overview map

4.2. Count and extract modules

The data stored in the database must be provided to the ProAcquisition team which has
the responsibility to contact and attract potential merchants through different channels
such as email addresses or phone numbers. Each prospect might have multiple contact in-
formation with different statuses (ready, active, invalid, subscribed). The ProAcquisition
team is interested in extracting prospects via their contact points flagged as ready that
will be later used in their marketing campaigns. This is also expected that they need a

4| Using the extracted data and application features 33

tool to have an overall view on how many contact points are available before they decide
on how many of which profession or locality to use. The "count" module is implemented
to provide them with this insight; While the "extract" module is responsible for both re-
trieving and setting the extracted contact point statuses as active since they presumably
are going to be used as soon as they are extracted.
The following example will help to understand the process better:
Client uses the "count" feature with arguments contact=email, status=ready, country=IT,
and profession_id=1. The result is the number of ready prospects reachable through an
email address residing in Italy that are assigned with profession_id equal to 1 which is
"Organizzazione eventi e feste" or "Organization of events and parties".
Based on the number of available prospects which satisfy these requirements, clients can
extract the desired amounts of prospects which automatically results in changing their
email statuses to "active". Keep in mind that changing the status of a contact belonging
to a prospect does not necessarily change the overall status of that prospect. In ProntoPro
website, each merchant sign-up page is designed specifically for every profession and local-
ities, thus when extracting prospects from the database, it would be incredibly helpful to
provide URLs to access the relevant sign-up pages according to the prospects profession
and locality. The corresponding sign-up URLs are created by the "extract" module. This
feature is proven to be very useful when extracting prospects for digital email marketing
or DEM, the sign-up page URLs will be provided to our potential customers which makes
the process of the signing up easier. The results of the extract module will be stored in
files with .csv format. Also, an integration with a CRM (Customer Relationship Man-
agement) tool called Customer.io is accomplished in which the process starts by the user
inserting a .csv file containing all the filter conditions and information needed to execute
the "extract" module. Iterating through all the inserted queries and pushing the results
of each extraction to the CRM tool using the provided APIs, improves both the time
efficiency and the reliability of the process.

4.3. Synchronization with other integrations

As previously discussed, contact points of prospects can belong to one of the following
classes:

1. Ready: when the prospect is newly uploaded to the database via a specific contact
point.

2. Active: when the prospect is extracted via a specific contact point.

3. Invalid: when the contact point cannot be used anymore.

34 4| Using the extracted data and application features

4. Subscribed: when the prospect associated with the contact point has subscribed
to ProntoPro.

There exist various reasons that are sufficient to consider a contact point as invalid.
One of which is the blacklisted. A contact point is blacklisted if the person who has the
ownership of the contact information does not give their consent to us keeping their contact
or personal information. To solve this problem, their contact information is irreversibly
encrypted and kept in a table in the database called blacklist. Whenever a prospect is
being uploaded, their encrypted contact information will be compared to the content of
this table. The prospects with blacklisted contact points will be discarded.
Moreover, a prospect must be flagged as invalid, if they turned down the offer to join
ProntoPro after being contacted. Also, when merchants unsubscribe from ProntoPro
platform, they should not be contacted again, thus must be considered as invalid. A
contact point is considered to be "subscribed" when the prospect associated to it has
signed-up to ProntoPro and is known as a merchant now. In this case, all the other
contact point associated to this prospect should be flagged as "subscribed" and must not
appear in extract module results.
Another important scenario takes place when a prospect has been extracted and its contact
point has been flagged as active for more than 30 days, but no response has been received
from them yet. This contact can potentially be flagged as ready in order to be extracted
and contacted again. However, the maximum number of times a contact can change from
active to ready must be limited, the threshold decided for this restriction is equal to five.
Figure 4.3 represents the status life cycle of a contact point.

Figure 4.3: Contact status life cycle

All the procedures that are necessarily required to change the status of contact points
or overall status of the prospects, are implemented in the "sync" module. It can be

4| Using the extracted data and application features 35

anticipated that multiple continuous integrations with other departments of ProntoPro
must be done in order to achieve the goal of consistency and reliability. The task of
updating dictionaries regarding the taxonomy profiling has been included in the "sync"
module as well. The "sync" module is scheduled to be executed daily, every 4 hours. It
is being hosted on an internal server machine at ProntoPro.

4.4. User interface

Having an intuitive user interface is essential to increase the usability of almost all software
applications of any sort. By using the Python toolkit called "tkinter" to implement a
graphical user interface (GUI), we have simplified the usage of the application. The colors
and fonts used to shape the GUI has been provided by the design team of ProntoPro.
In Figures 4.4 and 4.5, you can see the final results for the main and the extract menu
respectively.

Figure 4.4: Main menu

36 4| Using the extracted data and application features

Figure 4.5: Extract menu

37

5| Conclusion and future work

The final result of this project appeared to be as useful as expected both for high level
decision making as well as using the acquired data in order to communicate properly with
the prospects. There are more than 5,546,972 prospects in the database having 1,928,418
distinct emails, 5,841,910 phone numbers, and 2,570,226 company URLs in their respective
tables.
However, certain measures needed to be taken in order to increase the usability of the
application such as improving the time efficiency of all the modules.
For processes that include the task of iterating through a dataframe, using the "itertuples"
method of the "pandas" was a suitable choice; You can find the result of some benchmarks
in Figure 5.1 [13]. Concurrency can also be used to improve the performance. We used
"concurrent.futures" for this purpose.

Figure 5.1: Benchmark iteration time

Also, in order to decrease the query time of the database, pre-calculated overall prospect
statuses seemed to be helpful for some cases such as prospect market overview.
There seems to be a great opportunity to improve the profiling logic by using artificial

38 5| Conclusion and future work

intelligence techniques such as NLP (Natural Language Processing) in order to map the
external taxonomies to the internal ones. Additionally, implementing a decision support
system (DSS) using recommender systems can make it possible to make better informed
decisions in a shorter time.

39

Bibliography

[1] Alan Ross Machinery Corporation v. Machinio Corp., 2018.

[2] Associated Press v. Meltwater US Holdings, Inc., 2013.

[3] Craigslist, Inc. v. 3Taps Inc., 2013.

[4] diffbot, 2019. URL http://www.diffbot.com/.

[5] A. J. Dreyer and J. Stockton. Internet “data scraping”: A primer for counseling
clients. New York Law Journal, pages 1–3, 2013.

[6] Facebook, Inc. v. Power Ventures, Inc., 2016.

[7] J. I. Fernández-Villamor, J. Blasco-García, C. A. Iglesias, and M. Garijo. A semantic
scraping model for web resources-applying linked data to web page screen scraping.
In International Conference on Agents and Artificial Intelligence, volume 2, pages
451–456. SciTePress, 2011.

[8] D. Glez-Peña, A. Lourenço, H. López-Fernández, M. Reboiro-Jato, and F. Fdez-
Riverola. Web scraping technologies in an api world. Briefings in bioinformatics, 15
(5):788–797, 2014.

[9] hiQ Labs, Inc. v. LinkedIn Corp., 2019.

[10] Intel Corp. v. Hamidi, 2003.

[11] J. Klensin et al. "simple mail transfer protocol,", 2008.

[12] V. Krotov and L. Silva. Legality and ethics of web scraping. Communications of the
Association for Information Systems, 2018.

[13] S. Kumar. Here’s the most efficient way to iterate through your pandas
dataframe, 2021. URL https://towardsdatascience.com/search?q=Here%

E2%80%99s%20the%20most%20efficient%20way%20to%20iterate%20through%

20your%20Pandas%20Dataframe.

40 5| BIBLIOGRAPHY

[14] R. T. F. Larry Masinter, Tim Berners-Lee. Uniform resource identifier (uri): Generic
syntax, 2005.

[15] W. Mckinney. pandas: a foundational python library for data analysis and statistics.
Python High Performance Science Computer, 01 2011.

[16] J. Mingers and G. Walsham. Toward ethical information systems: The contribution
of discourse ethics. MIS quarterly, pages 833–854, 2010.

[17] S. Munzert, C. Rubba, P. Meißner, and D. Nyhuis. Automated data collection with
R: A practical guide to web scraping and text mining. John Wiley & Sons, 2014.

[18] D. Possler, S. Bruns, and J. Niemann-Lenz. Data is the new oil–but how do we
drill it? pathways to access and acquire large data sets in communication science.
International Journal of Communication (19328036), 13, 2019.

[19] A. Sellars. Twenty years of web scraping and the computer fraud and abuse act. BUJ
Sci. & Tech. L., 24:372, 2018.

[20] V. Singrodia, A. Mitra, and S. Paul. A review on web scrapping and its applications.
In 2019 International Conference on Computer Communication and Informatics (IC-
CCI), pages 1–6. IEEE, 2019.

[21] Tableau, 2003. URL https://www.tableau.com/why-tableau/what-is-tableau/.

[22] the Unicode Consortium; edited by the Unicode Consortium. — Version 14.0, 2021.

[23] Ticketmaster LLC v. PRESTIGE ENTERTAINMENT, 2018.

[24] M. L. Zachary Gold. Robots welcome? ethical and legal considerations for web
crawling and scraping. Wash. JL Tech. & Arts, 2018.

[25] Z. Zhou and M. Mashuq. Web content extraction through machine learning. Stand-
ford University, pages 1–5, 2014.

[26] S. Zuboff. Big other: Surveillance capitalism and the prospects of an information
civilization. Journal of Information Technology, 30(1):75–89, 2015.

41

A| Appendix A

Here you can find all the services offered by ProntoPro:
’Lawyer’, ’Building manager’, ’Travel agency’, ’Marketing and advertising agency’, ’We-
bagency and graphic design’, ’Mason’, ’Rental of premises and equipment for events’,
’Event entertainer’, ’Antenna technician’, ’Architect’, ’Craftman’, ’Insurer’, ’Financial
Advisor’, ’Personal Assistant’, ’Driving School’, ’Carpenter’, ’Catering’, ’Food delivery
and cooking teacher’, ’Energy certifier’, ’Life coach’, ’Pool constructor’, ’DJ, Musician
or Musical Group’, ’Dentist’, ’Developer and programmer’, ’Dietitian and nutritionist’,
’Fashion designer and fashion school’, ’Electrician’, ’Cleaning company’, ’Vehicle rental
company’, ’Construction company’, ’Security and surveillance company’, ’Endocrino’,
’Personal Trainer’, ’Shipping and transport’, ’Specialist in thermal insulation and humid-
ity’, ’Pest control specialist’, ’Health Specialist’, ’Tourism and hotel specialist’, ’Beau-
tician’, ’Stylist’, ’Art expert’, ’Renewable and environmental energy expert’, ’Spanish
language expert’, ’Glass and glazing expert’, ’Curtain maker’, ’Window and door man-
ufacturer’, ’Physiotherapist’, ’Plumber’, ’Photographer’, ’Funeral services’, ’Blacksmith
and/or Locksmith’, ’IT’, ’Elevator installer’, ’Flooring installer’, ’Painter’, ’Dance In-
structor’, ’Yoga and Pilates instructor’, ’Martial arts and boxing instructor’, ’Aviation
instructor’, ’Sport coach’, ’Swimming coach’, ’Interior designer’, ’Gardener and Land-
scaper’, ’Vehicle cleaner’, ’Massage therapist’, ’Mechanic’, ’Mover’, ’Naturopath’, ’No-
tary’, ’Event organizer or agency’, ’Drone pilot’, ’Chiropodist’, ’Video Maker’, ’German
teacher’, ’Singing teacher’, ’Chinese teacher’, ’Korean teacher’, ’French teacher’, ’Greek
and Latin teacher’, ’Guitar teacher’, ’Languages teacher’, ’Computer science and pro-
gramming teacher’, ’English teacher’, ’Musical instrument teacher’, ’Japanese teacher’,
’Sign language teacher’, ’General Music Teacher’, ’Norwegian teacher’, ’Piano teacher’,
’Portuguese teacher’, ’Russian teacher’, ’Violin teacher’, ’Arabic teacher’, ’Private teacher
and tutorships’, ’Psychologist’, ’Psychiatrist’, ’Chiropractor’, ’Sewer repairer’, ’Printing
services’, ’Animal Services’, ’Bicycle services’, ’Home appliance repairer’, ’Upholsterer’,
’Tattoo and piercings’, ’Dry Cleaning and Laundry’, ’Surveyor’, ’Translator and inter-
preter’, ’Veterinary’, ’Plasterer’

43

List of Figures

1 High level workflow of the solution . 2

1.1 ER diagram . 7

3.1 Profession taxonomy . 22

4.1 Prospects market overview . 32
4.2 Prospects market overview map . 32
4.3 Contact status life cycle . 34
4.4 Main menu . 35
4.5 Extract menu . 36

5.1 Benchmark iteration time . 37

