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Sommario
Le trasmissioni radio sono diventate parte importante del modo attuale
di comunicare. In origine un metodo intelligente per trasportare semplici
segnali e la voce umana, sono diventati un mezzo per trasportare dati
digitali e controllare ogni tipo di dispositivo. I protocolli più famosi
sono Wi-Fi e Bluetooth, ma ci sono molti protocolli personalizzati
per controllare dispositivi nell’ambito della domotica e dell’industria:
cancelli, automobili, droni, allarmi, robot, gru... Un comportamento
inatteso in questi dispositivi potrebbe causare problemi anche in termini
di sicurezza e privacy, e questo ha portato i ricercatori a studiare possibili
vulnerabilità e attacchi nei protocolli radio.

Con questo obiettivo, è stato sviluppato uno strumento flessibile
chiamato RFQuack. Esso rende possibile per i ricercatori ricevere, anal-
izzare, modificare e trasmettere pacchetti radio, così come implementare
routine ed exploit attraverso il linguaggio di programmazione Python.
Questa tesi presenta un’estensione di RFQuack, chiamata NetQuack, che
trasforma questo strumento in un sistema distribuito dove diversi utenti
possono contribuirvi caricando pacchetti radio ed eseguendo ricerche
su di essi in base al loro contenuto o altri parametri. In questo modo
abbiamo creato uno strumento utile per svolgere ricerche partendo da
una grande raccolta di segnali.
La principale sfida nell’implementazione di questo sistema risiede

nell’affidabilità e nella scalabilità e questi obiettivi sono stati raggiunti
usando l’infrastruttura cloud di Amazon Web Services. NetQuack è
stato testato con diversi carichi di lavoro e i risultati mostrano che può
gestire un flusso continuo di migliaia di pacchetti per ora.
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Abstract
Radio transmissions have become an important part of the modern way
of communicating. Originally a clever way to transport simple signals
and the human voice, they became a mean to transport digital data
and control all kinds of devices. The most famous protocols are Wi-Fi
and Bluetooth, but there are many custom protocols used to control
devices in home automation and industrial environments: gates, car
lockers, drones, alarms, robots, cranes... An unintended behavior in
these devices could cause problems also in terms of safety and privacy,
and this brought researchers into studying possible vulnerabilities and
attacks inside radio protocols.

With this objective, a flexible tool called RFQuack has been developed.
It makes it possible for a researcher to collect, analyze, modify, and
transmit radio packets, as well as to implement routines and exploits
through the Python programming language. This thesis presents an
extension of RFQuack, called NetQuack, which transforms this tool
into a distributed system where different users can contribute to it
by uploading radio packets and searching for them according to their
content or other parameters. This allows researchers to conduct surveys
on a large collection of signal captures.
The main challenge in the implementation of such a system resides

in reliability and scalability and these goals have been reached using
the cloud infrastructure of Amazon Web Services. NetQuack has been
tested with different workloads and results show that it can handle a
continuous stream of thousands of packets per hour.
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Introduction
In the last decades, remote-controlled devices through radio communi-
cation have become more and more widespread and this has brought
many innovations both in home automation and industrial environments.
These innovations increased the level of safety in workplaces, since dan-
gerous machinery can be controlled remotely without a human operator
physically involved. On the other hand, remote-controlled devices also
became a further target for attackers and cybercriminals, since these
technologies are also used to protect important assets. For example, an
attacker who knows how the device communicates could craft legit radio
packets and act as if he were the real operator. This can result in an
intruder capable of unlocking a car, turning off an alarm, or controlling
an industrial crane [13]. For this reason, radio communications and
protocols have been actively analyzed by cybersecurity specialists to
find possible vulnerabilities and exploits, while recommended practices
have been defined when designing a new radio protocol.

The analysis of radio protocols is possible through many tools, among
those the most common are Software Defined Radios and USB Dongles,
normally coupled with other software for reverse engineering, such as
GNU Radio and Universal Radio Hacker. Each one of these solutions
has its own pros and cons, which are quite known for cybersecurity
specialists. Software Defined Radios are universal, flexible radios and
they make signal analysis and reconnaissance easier, but they require a
deep knowledge of how signals work and serious ones are quite expensive.
USB Dongles have integrated hardware for the modulation of the signal,
simplifying many tasks, however they are not flexible. Each dongle is
specialized for a certain set of signals and is a system on its own, using
a specific radio chip, its own API, and a different way to communicate
with it. With these limitations in mind, a new tool has been developed,
namely RFQuack. Through a transceiver-agnostic firmware and a wholly
documented API, RFQuack behaves like a USB Dongle, but with way
more flexibility. It runs on any Arduino-compatible board and supports
the most common transceivers, translating into a cheap solution easy
to develop and deploy but as powerful as SDRs. Its flexibility relies
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also on the software side, since the firmware is entirely modular and
this feature makes the platform easily expandable and ready for new
scenarios.
RFQuack proves to be the best solution for a project consisting of

the collection of radio signals coming from a network of IoT devices.
These signals should be cataloged into a global database and be publicly
accessible for research purposes. A similar approach is already adopted
by some large scale data collection platforms, such as Shodan, Censys,
or WiGLE. As far as we know, there are no similar solutions in the
radio frequency domain, and for this reason, we have decided to build
such a platform using RFQuack as our ground base. We have designed,
implemented, and tested this platform using the enhanced capabilities
of cloud computing, which bases its nominal working on a network
of RFQuack dongles. Each node acts as a crawler for RF signals: by
running an automatic signal detection routine, a node can identify
and capture all signals traveling in the air in a matter of milliseconds,
demodulate them and send them to the cloud infrastructure, which
then takes care of storing these data and making them available for
querying. In the path of developing this platform, we always had to
keep in mind that it should be scalable in the context of thousands of
dongles transmitting data continuously. To demonstrate we reached this
goal, we made a scalability analysis on our application and the results
are encouraging: our platform can bear almost two million packets
incoming per hour by a half-million dongles. These limits are enforced
by the cloud infrastructure, but they can be further raised if necessary
with the cooperation of the cloud provider.

This thesis presents in a detailed fashion the journey which brought
us from the intention of building a distributed database of radio packets
until its effective implementation, which manifests itself in a cloud
application called NetQuack. In Chapter One we will dive into all
necessary background knowledge to understand the topics involved
in this work and the motivations around it. In Chapter Two we will
present a complete implementation of NetQuack with explanations of
each design choice. This is the core of our thesis. In Chapter Three we
will see the results of experiments aimed at measuring the cost and the
efficiency of NetQuack, then we will draw our conclusions on this new
tool in the cybersecurity landscape.
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1. Background and motivation
The goal of this work is the building and deployment of a large-scale
database of digital radio signals to be used for security purposes in
the radio-frequency domain. To better understand the motivations
which brought us to this idea and the tools we used to implement it,
we start showing the theoretical knowledge required to know how radio
communications work and how IoT devices communicate in the context
of a network. Then we will discuss several tools and solutions currently
used by researchers.
In the first section, we will present the basic properties of a radio

signal and how they are used to encode and transport information.
Then we will show how these signals can be composed to build more
high-level objects, such as packets and protocols. This will ensure the
necessary knowledge to understand the topic and it will also clarify
where security aspects reside in the field of radio communications.

In the second section, we will discuss the communication of devices in
a distributed network. In particular, we will describe the inner workings
of MQTT, a popular lightweight protocol suited for this purpose. It is a
protocol easy to explain, but its working should be known to understand
some implementation choices that we will present later.
The third section will describe the tools commonly used for analyz-

ing radio packets and detecting vulnerabilities, in particular Software
Defined Radios and hardware dongles, along with their differences, ad-
vantages, and disadvantages. This presentation will bring us discussing
RFQuack, an innovative framework which exploits the advantages of
both solutions and it is specifically designed with security research in
mind: one of its features, the automatic detection of frequency and bi-
trate of an unknown signal, is the basis for the development of NetQuack,
a central database to store radio packets detected by a net of dongles
controlled by users.
Finally, we will examine some popular applications based on dis-

tributed data collection and the contribution of its users. In our analysis,
we will show Censys and Shodan, two search engines for the Internet of
Things which can perform queries and look for connected devices match-
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ing some parameters, and then Wigle and pcapr, two global databases
storing Wi-Fi networks and pcap listings entirely fed by the contribution
of users. These applications are the inspiration of our project and we
investigated a platform suitable for its building and deployment: such
a platform is Amazon Web Services, a powerful and flexible set of tools
to build scalable applications in the cloud.

At the end of the chapter, we will have all the necessary basic blocks
to start developing NetQuack. That is the moment where we need to
focus on the goals of the project and the challenges to keep in mind
while developing it.
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1.1. Radio signals and protocols

1.1. Radio signals and protocols
Radio communications are a common way to transport information and
control remote devices without a physical connection or the presence of a
human operator. The connection is given by the possibility of controlling
an electromagnetic field and the two endpoints of the communication
link, the transmitting device (TX) and the receiving device (RX), must
agree on some parameters so that they can recognize their own signal
and interpret correctly its content.

1.1.1. Physical level
At the physical level, a radio wave can be described by some parameters,
which are also the very first information needed when performing the
reverse engineering of an unknown radio protocol. The primary param-
eter to define is the carrier frequency, that is the main frequency
used to encode data and to which the two endpoints must tune in.
Many devices communicate in sub-GHz bands, such as the popular and
free-of-usage 434 MHz and 868 MHz bands, but also the 2,4 GHz band
is quite populated and used by relevant protocols.
Then it is necessary to define the method to encode bits inside

the chosen frequency: this is called modulation. The most common
modulations are:

• Frequency Shift Keying (FSK) where symbols are encoded as
signals at different frequencies very close to the carrier frequency.
The most common variant is 2-FSK with two symbols (one for the
bit 0 and another for the bit 1), hence the use of two frequencies.
However, it is possible to encode more bits in a single symbol, as
it happens in the 4-FSK modulation where four frequencies are
used to encode the symbols 00, 01, 10, and 11.

• Amplitude Shift Keying (ASK) where the different bits are
encoded by varying the strength of the signal. Also in this case
the most common and simple variant is On-Off Keying (OOK)
where bit 1 is represented by the presence of the signal and bit 0
by its lack. It is still possible to find an amplitude modulation
based on more than two symbols.

• Phase Shift Keying (PSK) represents different symbols with
a change of wave phase. It is less common but still a basic
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1.1. Radio signals and protocols

modulation scheme.

There are many variants and more complex modulations, but they
are less common and often used only in limited scenarios. The great
majority of signals of our interest fall into OOK or 2-FSK modulation
which is compatible in all main transceivers.

Figure 1.1.. Different types of modulation: in order ASK, FSK, PSK

Finally, we define the bitrate, that is the number of bits per second,
necessary to synchronize bits with time. This value is in the order of
kbps in case of sub-GHz frequencies, while raises to some Mbps only in
the 2,4 GHz band. In the case of FSK modulation, another parameter is
also required, which is called frequency deviation and represents the
distance in hertz between the frequencies used to encode symbols. In
general, it is a small value in the order of kilohertz. When analyzing an
unknown protocol, all these values are initially unknown and they are
usually discovered by investigating the datasheet of the transmitting
device or by visual inspection of a spectrum analyzer.
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1.1. Radio signals and protocols

1.1.2. Protocol level
Once fixed the carrier frequency, the modulation, and the bitrate, two
devices can start sending signals to each other and recognize their
content. However, this works only in a scenario where there exist
only two devices using radio communication. In the real world, there
are thousands of such devices, normally unrelated to each other and
working for different purposes. By sending raw signals, there is no way
for a device to know if that signal is coming from its corresponding
transmitter or an unrelated one. Raw signals also deny the possibility
of creating a network of multiple related devices, since each node does
not have a way to identify itself to other members of the net. For this
reason, once defined the physical level of radio signals, it is necessary
to add another level of abstraction, in a similar way to what happens
on the TCP/IP stack in the case of Internet communication.

Figure 1.2.. General structure of a radio packet

In radio communication data are sent as packets, where each packet
brings some metadata in its header before the actual payload. The
exact structure of a packet varies across the different radio chips used,
but they generally have a similar structure which can be described as
follows:

• Preamble: it is a repeating sequence of alternating bits such
as 01010101... Its purpose is to warn the receiving device that
a valid packet is incoming. Without the preamble, the receiver
could not differentiate a real packet from background noise. Nor-
mally hardware dongles remove the preamble from packets before
delivering them, so it can be seen only by sniffing the radio band
with a spectrum analyzer.

• Sync words: a sequence of a few bytes (generally between two
and five) which identify the device that should receive the packet.
This field makes possible the realization of a working network
of nodes: each participant in the network should have a way
to differentiate its own packets from those addressed to other

16



1.2. MQTT: a protocol for the Internet of Things

participants and sync words solve exactly this problem. If a device
receives a packet with a sync word not matching the expected
one, the packet is just dropped.

• Payload: here is the effective content of the packet. The structure
of the payload entirely depends on the particular application and
it is here where vulnerabilities reside. There exists a vast range of
vulnerabilities involving radio communication [7], starting from
simple ones such as replay attack to more sophisticated methods,
such as RollJam [15] and MouseJack [17], which captured the
interest of researchers.

• CRC: a checksum performed by the receiving chip over both the
header and the payload to ensure the message arrived without
errors. It is calculated automatically by the radio and packets
with the wrong checksum are generally discarded.

Many radio chips can be set in promiscuous mode, so that they can
receive every packet, also those directed to other nodes. This is useful for
research purposes, since a promiscuous node can be used in a similar way
done with Wireshark, the famous tool for capturing TCP/IP packets.
However, the flexibility of this mode is limited by the hardware design
choices of the radio. For example, the popular CC1101 [14] chip can be
set in promiscuous mode by disabling the filtering based on sync words,
but this will also disable the filtering based on the preamble, causing
the radio to interpret background noise as legit packets. This problem
can be dammed since the CC1101 has also a filter based on RSSI. But
this is not possible with nRF24, a hardware radio for the 2,4 GHz band:
despite it does not support promiscuous mode officially, there is a trick
to make it behave that way [12]. However, the lack of filtering based
on RSSI causes the dongle to receive tons of packets which can not be
distinguished from noise in real-time.

1.2. MQTT: a protocol for the Internet of
Things

Message Queuing Telemetry Transport (MQTT) is a lightweight
network protocol used to transport messages between devices. Its
simplicity and scalability make it a suitable protocol in the context of

17



1.2. MQTT: a protocol for the Internet of Things

the Internet of Things, where a variable amount of devices are deployed
and continuously send messages.

The architecture of this protocol expects a central node, the broker,
which handles the routing of messages from the sender to the legit
receivers, and it is the element to which devices connect when they
want to join the network. The communication protocol follows a public-
subscribe architecture: each message is characterised by a topic and
the effective payload. The topic is a string that classifies the content
of the message and it has a directory-styled structure. For example in
a net of sensors distributed in different buildings and rooms, a sensor
which monitors the temperature of a room could send its measures in
a message with topic sensorA/buildingB/roomC/temperature. The
devices interested in receiving this information can subscribe to this
topic and it will be the broker’s job to forward these messages to them.
The strength of this protocol is that each device, be it a publisher or a
subscriber, does not need to store any information about other devices.

Figure 1.3.. Example of an MQTT communication with QoS = 0 [8]
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1.2. MQTT: a protocol for the Internet of Things

In MQTT there is a small number of commands used to dispatch
messages between the broker and the clients.

• CONNECT: it is sent by a client to the broker when joining the
network. Upon connecting, the client identifies itself through a
client ID, which is unique in every moment and is often used as a
prefix in the topic of each message sent by that client. The broker
answers the request with a CONNACK.

• SUBSCRIBE: when a client is interested in receiving messages
with a specific topic, the client sends a SUBSCRIBE request to
the broker with the topic as a parameter. The topic does not
need to be a fixed string, usually subscribe requests are made
over a family of topics and this can be done with some wildcards.
The character + is used as a placeholder for a single level in
the topic hierarchy. In the example of a network of sensors, a
client interested in the temperatures of all rooms in a building
could send a subscribe request for +/buildingA/+/temperature.
The character # is a placeholder for all levels at the end of the
hierarchy: the topic sensorA/# matches all messages with topic
starting with sensorA.

• PUBLISH: this is the command sent every time a client has a
message to deliver. It is sent along with the topic and the payload.
It is up to the broker to send back a PUBLISH message to all
clients subscribed to the topic.

• DISCONNECT: this is sent at the end of a session when a client
leaves the network.

This protocol proves to be very simple, yet useful in the context of a
distributed network. The protocol provides also three different levels of
Quality of Service (QoS), set by the client upon connecting.

• Level 0: the message is sent only once and the client and broker
take no additional steps to acknowledge delivery (at most once).

• Level 1: the message is re-tried by the sender multiple times
until acknowledgment is received (at least once).

• Level 2: the sender and receiver engage in a two-level handshake
to ensure only one copy of the message is received (exactly once).

19



1.3. Radio signal analysis

1.3. Radio signal analysis
In the context of radio signal analysis, a researcher willing to analyze
an unknown protocol needs a set of tools both hardware and software
to start with. In this section, we are going to present different solutions
to capture signals in the air, which are also generally coupled with a
related family of software. In the case of Software Defined Radios, the
most common software are GNU Radio and Universal Radio Hacker,
along with a variety of spectrum analyzers such as GQRX and SDR
Sharp. In the case of hardware dongles, there are fewer options and
often dependent on the specific kind of hardware: the most common
solution is RfCat along with a variety of derived versions.

1.3.1. Software Defined Radios
Software Defined Radio (SDR) are radio systems where all main
components used to elaborate a signal, such as filters, converters, mod-
ulators, and demodulators, are implemented via software instead of
hardware. This simple statement has interesting consequences, since it
is possible to receive and transmit a wide variety of signals at different
bands without replacing any piece of hardware. Their principle of
operation is quite simple: the SDR will capture a sequence of In-phase
and quadrature components (IQ) samples of every waveform it is tuned
on and these samples are sent to the host computer through USB or
Ethernet connection. The sample rate varies across specific models, but
it is always in the order of mega samples per second. Then the raw
signal must be demodulated and interpreted somehow by software.

Figure 1.4.. Example of two common SDRs: an R2832U [23] and a HackRF One [10]
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1.3. Radio signal analysis

One of the most versatile and popular software for signal processing
is GNU Radio, an open-source development toolkit able to create a
digital signal processing pipeline through block diagrams [2]. A radio is
implemented by creating a flowgraph, which is a composition of multiple
digital signal processing blocks. This job can be done by coding in
Python or using a handy graphical user interface. GNU Radio already
comes with a range of implemented and useful blocks, such as bandwidth
filters and waveform generators, and new blocks can be created by the
experienced user. With this application, an SDR can become a receiver
for GPS signals, Bluetooth communications, or even LoRa devices [6].

Figure 1.5.. The flowgraph of an FM receiver in GNU Radio

Another common tool aimed for security and reverse engineering of
protocols is Universal Radio Hacker (URH). The strength of this
tool is that it cares automatically about the digital signal processing part,
while giving the user useful features for protocol interpretation. Once a
signal has been recorded, a researcher can easily infer the modulation
and the bitrate by inspecting visually the raw signal and extract the
content as a string of bits. Then the software comes already with features
for reverse engineering, such as protocol fields inference, customizable
decodings, fuzzing components, and simulation environments [20].

Finally, a fast way to test SDRs and discover signals in the air is given
by spectrum analyzers, which are software able to show in real-time the
data received by the SDR on a waterfall diagram. They are the primary
way to discover the carrier frequency of a signal and they already come
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1.3. Radio signal analysis

Figure 1.6.. Extracting bits from a raw signal in Universal Radio Hacker

out with some analog demodulation schemes, such as AM, FM, and
Narrow FM. Famous examples in this field are gqrx, an open-source
spectrum analyzer powered by GNU Radio and Qt library, and SDR
Sharp, an alternative solution for Windows systems.

Figure 1.7.. Demodulating audio signals in GQRX

1.3.2. Hardware Dongles
An alternative for radio signal analysis is given by hardware dongles:
they consist of an Micro Controller Unit (MCU) plus an embedded
transceiver chip. The MCU runs a firmware exposing an external API
so that a user can interactively configure and change the behavior of
the dongle, where this interaction happens through a command-line
interface running on a host computer. Unlike SDRs, where the device
provides only raw data to be demodulated, in hardware dongles the
whole process of capturing and demodulating happens on the chip, which
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1.3. Radio signal analysis

directly generates binary data. This is ideal in real-time scenarios, for
example when performing an attack that requires intercepting a packet,
modifying it, and resending it. Using a hardware dongle, the round
trip time for this operation is very low, while in an SDR there is a
long delay due to the demodulation process made in software. However
the potentiality of a hardware dongle is bounded to the transceiver
chip, which is fixed and soldered: if the chip can not tune in a certain
frequency band, there is no way to capture signals on that band, or
if the chip does not support a modulation scheme, there is no way to
reverse engineer a protocol using that modulation scheme. Furthermore,
when using a hardware dongle, it is necessary to know a priori the
characteristics of the signal, such as frequency, bitrate, and modulation,
in order to configure correctly the dongle.

Figure 1.8.. A Yard Stick One [11] and a PandwaRF dongle [5]

A tool commonly known in the case of hardware dongles is RfCat:
it is an open-source software which consists of a firmware to flash on
the dongle plus an interactive IPython used to control the chip. It
offers a vast set of functionalities, both high level (such as tuning to a
frequency or setting a modulation) and low level (reading and writing
RF registers) [21]. It supports dongles based on the CC1111 chip, such
as the Yard Stick One, and there are forks of it adapted for other
dongles: an interesting example is given by the PandwaRF project.

1.3.3. RFQuack
Another platform for radio signal analysis is the emerging framework
RFQuack, which tries to take the advantages of both SDRs and classic
hardware dongles in a unique solution. It is a firmware designed to
be flexible both in software and in hardware. The hardware flexibility
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is given by the exposure of a uniform API which is unaware of the
specific radio chip used, since all hardware-specific tasks are handled
by a driver. This way, it is possible to use RFQuack both for sub-
GHz band and 2,4 GHz band just by swapping the radio module
with the one necessary for our needs. Software flexibility is achieved
through modules, so that new features can easily be added to the
firmware. Since RFQuack is mainly designed for security purposes, it
already contains security-related features such as packet manipulation,
filtering, and retransmission. Thanks to the efficiency of hardware
radios, these functionalities can be used also in real-time contexts to
test vulnerabilities and exploits [22].

Figure 1.9.. An RFQuack dongle using Teensy as MCU and RF24 + CC1101 as radio
chips
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A generic RFQuack setup is composed of an MCU which hosts
the firmware plus one or more radio chips. The firmware has been
actively tested on ESP32 and ESP8266 using CC1101 and nRF24, and
it supports up to five different radios connected at the same time. It is
controlled by another host, handled by the user, running a command-
line IPython interface which enables scripting. The communication
between the host and the MCU can happen via serial or through
MQTT over a wireless link (cellular or WiFi). In the current version of
RFQuack, each exchanged message has a topic matching the structure
rfquack/[in|out]/[set|get|info]/<module_name>/<args> where
in is used for messages from the host to the MCU and out for the
opposite direction.

When a user sends a command from the Python client, the message
is serialized using Protobuf, a framework by Google which makes it
possible to preserve data-type consistency and validation among devices
using different programming languages. Since the firmware is written
in C and the command-line interface is written in Python, this is the
ideal use case for choosing Protobuf. The serialized message is handled
by the transport level, which is either a serial connection or wireless
communication over MQTT. Finally, when the message reaches the other
host, it is deserialized and the firmware performs an action according
to its content.

Figure 1.10.. The modular architecture of RFQuack
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Inside the firmware, each command traverses a series of user-defined
modules in a sort of software pipeline while each module is designed to
perform a specific task. For example, the packet filtering module allows
receiving packets only when matching one or more regex, while the
packet modification module changes the content of a packet according
to some rules before retransmitting it. Those two modules can be
combined sequentially so that a packet can be first filtered and then
modified. The module-based structure of the firmware makes it easy
for a developer to add new functionalities.
The firmware comes out with some already implemented modules

for common tasks and more specialized attacks, such as Roll Jam and
Mouse Jack. A quite interesting module is the Automatic Frequency and
Bitrate estimation. This module implements a handy feature consisting
of identifying the carrier frequency and the bitrate of an unknown
signal [13]. This feature can transform an RFQuack dongle into a sniffer
and can be used to crawl radio signals. This module is the base of
the distributed system NetQuack and it is the reason we have decided
to build this platform as an extension of RFQuack: the automatic
detection of signals transforms an RFQuack dongle into a device that
autonomously looks for packets and stores them. The next step is
defining the technology which will receive these packets and store them
in a database.

1.4. Applications based on data collection
In the era of big data, it is becoming easier and easier to find applications
relying on distributed data collection to perform their goals, where
these data can be obtained through crowdsourcing and the voluntary
participation of the users. In this section, we are going to present
some examples of applications based on data collection in the field of
information security along with their goals and we will present the
infrastructure we have used for the implementation of NetQuack.

1.4.1. Shodan and Censys
Shodan is a search engine for finding specific types of computers
connected to the Internet, such as webcams, routers, databases, and
so on. For this reason, it is often called "the search engine of the
Internet of Things". Launched in 2009 by John Matherly, it collects
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data about all major protocols used on the Internet, be they web servers,
FTP, SMTP, IMAP, or Real-Time Streaming Protocol, by crawling the
Internet for publicly accessible devices. Every time a server is contacted
by a new client, they often reply with metadata describing the service
they provide and this is the information Shodan is constantly searching
and cataloging [25].

It is used mainly by cybersecurity researchers and during its existence,
it helped find vulnerable systems and security flaws in various areas.
For example, a Forbes article in 2013 referenced Shodan claiming it was
used to find security flaws in TRENDnet security cameras [16], while in
2015 it was reported that a security researcher used Shodan to identify
accessible MongoDB databases on thousands of systems [1].

A similar platform is Censys: born in 2013, is conceived for security
professionals since it can find devices affected by a specific vulnerability.
It maintains three datasets through daily ZMap scans of the Internet and
by synchronizing with public certificate transparency logs, in particular
with hosts on the Public IPv4 Address Space, websites in the Alexa Top
Million Domains, and X.509 Certificates. It can perform queries meeting
certain criteria (for example IPv4 hosts in Germany manufactured by
Siemens or browser-trusted certificates for github.com), generate reports
on how websites are configured (what cipher suites are chosen by popular
websites?), and track how networks have patched over time [4].

1.4.2. Wigle and pcapr
Wigle is a website for collecting information about the different wireless
hotspots around the world. It can be queried to find WiFi and Bluetooth
hotspots by name, location, SSID, MAC address, and so on. In terms of
security, it has been useful to measure practically how much encryption
schemes are widespread and it boosted the awareness of the need for
encryption in wireless networks. Unlike Shodan and Censys, which work
by crawling the Internet, Wigle’s data are provided by users, who can
contribute just by using an app on their smartphone, which constantly
searches for hotspots in the neighborhood and uploads the discoveries on
Wigle. Currently, it stores information for 688 million Wi-Fi networks,
343 million Bluetooth devices, and 15 million cell towers [26].

Another platform is pcapr, an online database storing pcaps with tags
and categories, that is captured packets from network communication
through sniffing tools such as Wireshark. On this website, users can
upload their pcaps with a descriptive name or search for them by content.
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Figure 1.11.. The home page of pcapr

They are useful for all activities about networking, including diagnostics
and security [19].
All these platforms became popular and have been used in research

activities, but they have to face challenges to host and manage a heavy
load of data. Shodan and Censys can perform queries over millions
of devices in a fraction of a second, while Wigle and pcaps host data
for millions of hotspots and pcaps. In this work, we will see a new
distributed platform oriented to radio communications.

1.4.3. Amazon Web Services
As a consequence of the big data revolution, a technology that is becom-
ing more and more popular is cloud computing. Cloud computing is
the on-demand availability of computer system resources, which consist
mainly of computing power and data storage. The main advantage of
cloud computing is that the final user does not manage the resources
and the platform directly. A user only needs to configure the services he
needs and it is up to the cloud provider to scale accordingly. Platforms
on the cloud can host simple applications, but their strength shows up
when an application needs to scale for millions of users, requests, and
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tons of data to store and search. In this case, it is unlikely that a user
has all the resources to deploy such an application on his own, and this
is the scenario where cloud computing comes into play [24].
A protagonist long present in the market of cloud computing is

Amazon Web Services (AWS), born in 2006 it is the dominant
company in this field and offers all kind of services necessary to build
an application. It provides a service for data storage, more kinds of
databases (both relational and non-relational), computing power for
executing code, network configuration, and many other more specific
services. In particular, it offers a range of services for dealing with IoT
devices, including an MQTT broker, and the possibility to compose
these services and make them communicate among each other through
triggering events. For this reason, AWS is the preferred platform to
build the backend of NetQuack. Here is a brief description of the main
services we are going to use in the process of implementing NetQuack:

• Simple Storage Service (S3) is the primary service for data
storage. Data in S3 are divided into buckets, which are containers
for all kind of files. An AWS account can create up to 100 buckets
and each bucket has no limit in the number of files and size. What
we call files, in the AWS platform are referred to as objects and
they are identified by a key, which is something similar to the
concept of a directory. Actually, S3 does not have a hierarchical
system and it does not store "files". In the point of view of S3,
each file is just a bunch of bytes and the key is a simple string to
identify it. However, keys are often assigned in a way to reflect
a directory structure. Data can be accessed through common
HTTP requests such as PUT, GET, LIST, COPY, and DELETE.
The cost of this service depends both on the space used for storage
and the number of requests.

• IoT Core is the set of services and routines to deploy and control
remote devices in a network. It is possible to register, create, or
delete new devices, which can be monitored in real-time. Each
device can be assigned to a group and groups define the messages
that a device can send or receive through policy documents. Nat-
urally, this service is the one providing the MQTT broker and a
great feature is the possibility to take an action by calling other
services upon receiving a specific kind of packet. The cost of this
service depends on many aspects: the number of registered devices,
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the minutes of connection, the number of exchanged messages,
the number of rules triggered and actions executed.

• AWS Lambda is one of the most popular services in AWS and
it consists of executing a function without hosting it on a server
or managing an infrastructure. It is necessary only to define the
function with a name and a programming language, then just
write the code. It is possible to specify environment variables and
limits in memory usage and time (up to 3 GB and 15 minutes of
execution). AWS Lambda is paid per number of requests, time of
execution, and memory used.

• Kinesis Firehose is a service designed for stream applications,
where data are not incoming as a unique chunk but as a continuous
stream. It acts as a buffer that stores all incoming data until
reaching a space or time limit and then it stores all the aggregated
data as a unique big object into S3. During this process, Kinesis
Firehose can also transform data from one format to another or
filter data that we want to discard. It is paid for gigabyte of data
ingested and proves to be efficient and cheap.

• AWS Athena is a service which makes possible to perform
queries on data stored on S3 using standard SQL. This proves to
be useful when storing a great amount of data in JSON or CSV
format and we need a way to extract information from them. With
AWS Athena this becomes simple since data can be retrieved with
the classic SELECT ... FROM ... WHERE syntax. It is paid for
gigabyte of data scanned, but there are ways to optimize this
metric, for example through data partition.

• DynamoDB is a No-SQL database which demonstrates to be
very fast and flexible. However it is more expensive than Athena
and S3, so this is not our main choice for storing packets as we will
see later. Anyway, it has a role in NetQuack, since DynamoDB
is a good solution for storing little quantity of support data that
needs to be accessed frequently.

• API Gateway is the service which lets the user build a publicly
accessible API. These APIs can be created according to various
models, including a classic REST API, defining resources and
methods over them. Each method can be linked to an AWS service,
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generally a Lambda function, making the backend accessible to
external users. API Gateway also gives the possibility to export
or import the API definition in a YAML document, making it
easy to transfer and document.

1.5. Goals and challenges
With the knowledge about the firmware RFQuack and the cloud provider
Amazon Web Services, we have the two main blocks to build a dis-
tributed system for collecting and storing radio signals. The idea at
the base of NetQuack is simple but powerful: an RFQuack dongle
is deployed by the user and set to run the automatic frequency and
bitrate detection module. Every time the dongle discovers a packet, it is
forwarded to the backend which takes care of storing it. Connecting the
dongle to the cloud backend is simpler than it seems. The user controls
the dongle using a wireless connection over MQTT and generally, the
MQTT broker runs on the user machine itself. In this case, instead of
using a local MQTT broker, we use the one provided by Amazon Web
Services which, upon receiving a packet, triggers a set of events with
the purpose of storing its content.
In the next chapter, we will see in detail how this system is imple-

mented: how the firmware has been modified to support data collection,
which services are used in the backend and how they communicate.
During the process of designing and development, we had to face some
issues and decisions. In particular, we had to keep in mind that the
goal was building not only a distributed system of dongles that collect
radio packets, but also we intended the system to be scalable. This
is important to consider when choosing a service from a set of similar
ones. Amazon Web Services is very rich and supplies many alternative
services for the same objective, but differing in some aspects which can
be crucial. Also, the cost factor must be considered: Amazon Web
Services has the advantage of being pay-per-use, and this implies that
each decision must be translated in terms of the expected cost.
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2. Implementation
In this chapter, we will present a detailed implementation of NetQuack.
As stated previously, we are using a set of RFQuack nodes as crawlers
detecting packets in the air, which are intercepted and then stored by
a cloud infrastructure hosted by Amazon Web Services. For each key
feature of NetQuack, we will describe how it has been implemented in
the backend with the help of a specific cloud service, along with the
rationale which brought us to such a choice.
The first half of the chapter will deal mainly with the backend

implementation, that is the choice of cloud services and how they
cooperate with each other. We will investigate in detail the interception
of radio packets, their storage, and the subsequent way of querying over
them. This journey will be completed with a description of the API
used to interface to this system and its capabilities.

The second half will deal with the interface created for a user-friendly
experience. NetQuack has been published with a web interface and
we will present the framework chosen for its development along with a
demonstration of its usage for central tasks: registering a new device,
contributing to the database, and performing queries.
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Figure 2.1.. A summary of the architecture of NetQuack
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2.1. Data collection
The first step for the implementation of NetQuack is building a com-
ponent capable of recognizing packets from the air and forwarding
them to another component that will handle their storage. For this
aim we remind the architecture of an RFQuack node: it is composed
not only by a hardware dongle with an MCU and a radio chip, but
also by an interactive IPython shell controlled by the user to configure
the radio. The shell and the dongle communicate through the MQTT
protocol. Thanks to this fact, transposing an RFQuack node from a
local environment to a distributed one is straightforward: the MQTT
broker, instead of running locally on the user machine, is hosted on
the cloud. This is done through the IoT Core platform on Amazon
Web Services, which provides a handy environment for deploying and
managing a distributed network of connected devices.
However, this brings some issues we have to deal with, in particular

about security. Since the MQTT broker is shared on the whole network
and the command-line interface of RFQuack can potentially control
every connected dongle, we need to find a way such that a user can
control and configure only the dongles he owns. IoT Core can help us
with two features: certificate-based authentication and policy documents.
Certificate-based authentication enforces that only registered devices can
connect to the network and each device must prove its identity through
a certificate which is issued by Amazon root CA upon registration.
Policy documents are JSON-formatted documents that describe which
actions a device can perform. In particular, it defines which client ID a
device is allowed to use when connecting and the messages it can send,
receive, and subscribe to according to the topic. This is exactly what
we need to reach the objective that a user can control only his own
dongle using the shell.

Before showing the policy document we used in NetQuack, it is useful
to remind how the communication happens between the dongle and the
shell. Normally all messages flowing from the shell to the dongle match
the topic rfquack/in/#, while all messages coming out from the dongle
match the topic rfquack/out/#. So we have a way to distinguish the
source of a message, but this works in a scenario with only one dongle.
In a distributed environment with multiple dongles, how can we know
which device sent a specific message? This problem can be solved by
exploiting some features of IoT Core: this service not only forces each
device to have its own certificate, but all devices must be registered
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with a unique name, and it is possible to use this name as a prefix in
the topic. So if we have two dongles, we can register the first one as,
for example, TheBigEar and the second one as TheSmallEar, then
configure them to send messages matching the topics TheBigEar/out/#
and TheSmallEar/out/#, letting us distinguish which one has sent
a message, instead of a generic rfquack/out/#. Implementing this
feature is very simple and required a small change in the RFQuack
firmware: by default, all messages were sent with rfquack as prefix
topic. We changed this so that the topic of each message starts with the
client ID of the dongle, that is the identifier the device used to register
itself on IoT Core.
However, this solution is not complete yet, since we had to face

another tricky problem: both the shell and the dongle use the same
prefix topic, which coincides with the client ID, but since the shell and
the dongle act as two different devices, they cannot connect at the same
time using the same client ID. This has been solved in a hacky but
effective way: in IoT Core, upon registering a new object, it is possible
to assign attributes to it, that is a set of key-value pairs, and reference
them inside the policy document. This way, when registering a new
dongle in the system, let us call it SampleName, two objects are created
inside IoT Core: one has the real name SampleName, while a second
object is created with the name SampleNameShell, that is the name we
have chosen plus the string "Shell". This fictitious object is also assigned
an attribute dongle=SampleName, which is an attribute with the name
of the actual dongle. With this trick, the shell controlling the dongle
SampleName will need to use SampleNameShell as client ID, but it will
be able to send messages with a topic matching SampleName/out/#,
thus controlling its legit dongle. Here is the policy document assigned
to both the dongle object and the shell object in IoT Core.

1 {
2 " Version ": "2012 -10 -17",
3 " Statement ": [
4 {
5 " Effect ": "Allow",
6 " Action ": "iot: Connect ",
7 " Resource ": "arn:aws:iot:eu -central -1:123456789: client /${iot:

Connection .Thing. ThingName }"
8 },
9 {

10 " Effect ": "Allow",
11 " Action ": "iot: Subscribe ",
12 " Resource ": [
13 "arn:aws:iot:eu -central -1:123456789: topicfilter /any/in/*",
14 "arn:aws:iot:eu -central -1:123456789: topicfilter /${iot:
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Connection .Thing. ThingName }/in/*",
15 "arn:aws:iot:eu -central -1:123456789: topicfilter /*/ out /*"
16 ]
17 },
18 {
19 " Effect ": "Allow",
20 " Action ": "iot: Receive ",
21 " Resource ": [
22 "arn:aws:iot:eu -central -1:123456789: topic/any/in/*",
23 "arn:aws:iot:eu -central -1:123456789: topic/${iot: Connection .

Thing. ThingName }/in/*",
24 "arn:aws:iot:eu -central -1:123456789: topic/${iot: Connection .

Thing. Attributes [ dongle ]}/ out /*"
25 ]
26 },
27 {
28 " Effect ": "Allow",
29 " Action ": "iot: Publish ",
30 " Resource ": [
31 "arn:aws:iot:eu -central -1:123456789: topic/${iot: Connection .

Thing. ThingName }/ out /*",
32 "arn:aws:iot:eu -central -1:123456789: topic/${iot: Connection .

Thing. Attributes [ dongle ]}/ in/*",
33 "arn:aws:iot:eu -central -1:123456789: topic/any/in/set/ping/

rfquack_VoidValue /ping"
34 ]
35 }
36 ]
37 }

Listing 2.1. Policy document for devices connecting to MQTT on Amazon Web
Services

By configuring the policy document in Listing ?? and enabling MQTT
over SSL on RFQuack we were able to bring the MQTT broker on the
cloud and make it usable by different nodes without interfering with
each other. The next step is to find a way to sniff the radio packets
detected by the dongle before storing them. Also in this case, IoT Core
comes with a useful feature: we can set rules that are triggered upon
receiving messages with a certain topic and as a result, they initiate
some actions. In the RFQuack firmware, when the radio detects a
packet, it is transported to the shell on a message with a topic matching
+/out/get/+/rfquack_Packet/packet. We can set a rule on this topic
so that the backend sniffs it and stores its content in a database. The syn-
tax used in the packet filtering feature of IoT Core is based on SQL and
it allows to add further information besides the payload. In particular,
we use this rule inside NetQuack: SELECT topic() AS topic, en-
code(*,’base64’) AS payload, timestamp() AS timestamp FROM
’+/out/get/+/rfquack_Packet/packet’

Hence every message bringing the content of a radio packet is marked
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with the topic, the payload in Base64, and the timestamp: this infor-
mation is aggregated into a JSON object and forwarded to a service of
our choice. In this case, the object is put in a buffer handled by Kinesis
Firehose.

2.2. Data storage
So far we are able to detect packets arriving from a network of RFQuack
nodes. Our next step is to collect these data and store them in an
efficient way. In the previous section, we have cited Kinesis Firehose, a
fully managed service for delivering real-time streaming data to other
destinations. It is suitable for our use case, since radio packets are a
small piece of data which arrive continuously, much as it happens with
a video streaming transmission. To better understand why we need this
service, let’s imagine for a moment what we would do if it were not
used in NetQuack.
As we already know, radio packets are intercepted by the MQTT

broker of IoT Core and they are supposed to be stored in an S3 bucket,
the main service used in AWS for data storage. In the absence of an
intermediary service, such as Kinesis Firehose, every time a packet is
detected, a new object would be created on S3 containing only the newly
received packet. This behavior would not scale at all in a scenario of
thousands of packets per second and its cost would increase dramatically:
PUT requests on S3 are paid 0,0054 $ every 1000 requests and receiving
1000 packets per second will result in a cost of 19,44 $ after only one
hour. Furthermore, a huge quantity of small files is enormously less
efficient to query than a unique giant file. For these reasons, it is rational
to insert an intermediary service between IoT Core and S3 with the
objective of buffering small data and aggregating them in a unique file
before delivering it to S3.
Kinesis Firehose can be configured so that it flushes its content

after reaching a specific size or a timeout expires. We have set these
parameters to their maximum allowed values, that is 128 megabytes for
the buffer size and 900 seconds for the timeout. This choice minimizes
the cost at the expense of a delay between the reception of a packet
and its storage.

Another useful feature in Kinesis Firehose is the automatic conversion
of data from standard JSON format to Apache Parquet. Apache Parquet
is a free and open-source column-oriented data storage format of the

37



2.2. Data storage

Hadoop ecosystem. This format claims to be highly efficient in terms of
compression and query, since data are organized in a columnar format
and they do not need to be wholly scanned when executing a query.
However, the conversion to this format does not come for free and
has a cost in terms of gigabytes of data converted, moreover it is a
binary format working only in the Apache environment. After some
experiments we stated that Apache Parquet is truly efficient and can
break down the storage cost of various orders of magnitude, hence it is
a reasonable choice to store packets in this format.

1 def transformation (event , context ):
2 locations = dict () # cache for dongle locations
3 output = []
4

5 for record in event[’records ’]:
6 message = json.loads( base64 . b64decode ( record [’data ’]))
7

8 # retrieve topic , payload and timestamp
9 topic = message [’topic ’]

10 payload = base64 . b64decode ( message [’payload ’])
11 timestamp = message [’timestamp ’]
12 # deserialize the packet
13 pb_packet = rfquack_pb2 . __dict__ .get(" Packet ")()
14 pb_packet . ParseFromString ( payload )
15 # extract dongle and location
16 dongle = topic.split(’/’)[0]
17 if dongle in locations :
18 latitude = locations [ dongle ][0]
19 longitude = locations [ dongle ][1]
20 else:
21 dynamodb = boto3. resource (’dynamodb ’)
22 table = dynamodb .Table(’dongle ’)
23 result = table.query( KeyConditionExpression =Key("name").eq(

dongle ),
24 FilterExpression =" attribute_not_exists (

to_time )")
25 # should never happen
26 if result ["Count"] == 0:
27 output . append ({
28 ’recordId ’: record [’recordId ’],
29 ’result ’: ’ProcessingFailed ’,
30 ’data ’: record [’data ’]
31 })
32 continue
33 # extract location
34 latitude = float( result [’Items ’][0][ ’latitude ’])
35 longitude = float( result [’Items ’][0][ ’longitude ’])
36 # save in cache
37 locations [ dongle ] = (latitude , longitude )
38 # extract fields
39 packet = dict ()
40 packet [’data ’] = pb_packet .data.hex ()
41 packet [’timestamp ’] = timestamp
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42 packet [’latitude ’] = latitude
43 packet [’longitude ’] = longitude
44 packet [’carrierFreq ’] = pb_packet . carrierFreq
45 packet [’bitRate ’] = pb_packet . bitRate
46 packet [’modulation ’] = pb_packet . modulation
47 packet [’syncWords ’] = pb_packet . syncWords .hex ()
48 packet [’frequencyDeviation ’] = pb_packet . frequencyDeviation
49 packet [’RSSI ’] = pb_packet .RSSI
50 packet [’model ’] = pb_packet .model
51 packet [’dongle ’] = dongle
52

53 output . append ({
54 ’recordId ’: record [’recordId ’],
55 ’result ’: ’Ok’,
56 ’data ’: base64 . b64encode ( (json.dumps( packet ) + ’\n’). encode ()

)
57 })
58

59 return {
60 ’records ’: output
61 }

Listing 2.2. The transformation routine which processes data in a format compliant
for Apache Parquet

In Kinesis Firehose it is possible to alter data after it has been received
so that it can be transformed, filtered, or uncompressed before being
stored in S3 or, in our case, being converted into Apache Parquet.
This process of data transformation is even mandatory in the case
of converting data into Apache Parquet, since the conversion routine
expects each record to be in JSON format with specific fields. However,
our packets must be converted in any case, since the payload of a packet
is firstly generated as a binary Protobuf string and then converted into
Base64 by IoT Core. For each packet, our custom transformation routine
(which is nothing else than a Lambda function) needs to decode the
Base64 string, deserialize its content into a Protobuf object and finally
convert this thing into a JSON object following the specifications of
Apache Parquet. In this process, we also add the geographic coordinates
of the dongle which received the current packet. Due to limitations
in the input and output size of Lambda functions imposed by AWS,
the transformation routine is called every time Kinesis’ buffer ingests 3
megabytes of data. Here is the code of the transformation routine.
Finally, we can set a prefix for the key of the S3 object that will be

stored. We have chosen a timestamp-based prefix, that is
date=!timestamp:yyyy-!timestamp:MM-!timestamp:dd/. The rea-
son for this choice will be more clear in the next section, where we will
discuss how to query these data.
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2.3. Query
At this point, we reached the goal of storing packets coming from a
network of dongles. Our next objective is to perform queries, which is
the most interesting part of our application. We anticipated that we
were going to use AWS Athena for this task, an interactive query service
that makes it easy to analyze data stored in S3 using standard SQL.
Through this service, we can make queries with classic SQL without
worrying about the format of our data, which can be JSON, CSV, or
more exotic ones such as Apache Parquet.

2.3.1. Partitioning
This service is paid for gigabyte of data scanned, and if data are imported
without any structure or optimization, the cost and average execution
time for a query could be very high, because Athena would be obliged to
scan the entire database. Fortunately, there are many tricks to improve
the performance and reduce the impact on the bill, one of the most
common is partitioning. If data are partitioned according to a certain
field, every query involving a filter over this field is boosted significantly,
since Athena can immediately skip all data not matching the filter
on the partition field. The problem is deciding the field to use as a
partition.
Initially, we thought to use a multilevel partition, with the first

field being the date of detection of the packet, then the geographic
location, and finally the frequency. This seemed to be a good choice
because most queries on radio packets would contain a date range, a
location, and a frequency band. Despite this is technically possible,
it showed not to be as optimal as we thought. Having too many
partitions would cause an overhead that nullifies the expected benefit,
while partitioning makes sense only over fields with discrete values:
this is true in the case of dates, but certainly it is not in the case
of locations and frequencies (which are described by floating-point
numbers). Moreover, we found on AWS documentation that Athena
supports a limited number of 20000 partitions. With such a fine-
grained partitioning, this limit would be exceeded rapidly. So finally we
opted for a simpler solution where partitioning is based only on date:
it is a discrete value and creates a reasonable number of partitions.
This choice explains why Kinesis Firehose stores data on S3 using
date=!timestamp:yyyy-!timestamp:MM-!timestamp:dd/ as a prefix
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as stated in the previous section: the prefix is used to assign an object
to a specific partition.
Another way to optimize queries in Athena is the format used to

store data. In our case, data are stored in Apache Parquet and this
format is more efficient to query with respect to JSON for a number
of reasons. The first one is that data in Apache Parquet are heavily
compressed, and since Athena is paid per gigabyte of data scanned, if
data are compressed in the first place every query will be less expensive
even in the worst case where all data are scanned. Moreover, Apache
Parquet is a columnar format, so that Athena can directly skip all fields
not used as filters resulting in faster and further cheaper queries. This
format even keeps track of minimum and maximum values for each
numeric field, resulting in another source of optimization for Athena.

1 CREATE EXTERNAL TABLE ‘${var. DATABASE_PACKETS }‘.‘${var. TABLE_PACKETS
}‘(

2 ‘timestamp ‘ string ,
3 ‘latitude ‘ float ,
4 ‘longitude ‘ float ,
5 ‘carrierFreq ‘ float ,
6 ‘bitRate ‘ float ,
7 ‘modulation ‘ string ,
8 ‘syncWords ‘ string ,
9 ‘frequencyDeviation ‘ float ,

10 ‘RSSI ‘ float ,
11 ‘model ‘ string ,
12 ‘dongle ‘ string ,
13 ‘data ‘ string )
14 PARTITIONED BY (‘date ‘ date)
15 STORED AS PARQUET
16 LOCATION ’s3 ://${ aws_s3_bucket . bucket_packets . bucket }/’
17 TBLPROPERTIES (" parquet . compression "=" SNAPPY ");

Listing 2.3. Definition of the table used in S3 to store packets

With all this information in our hands, we can see and understand
the SQL command in Listing 2.3 used to generate the table along with
all fields stored for each packet.

2.3.2. Caching
Finally, there is a further optimization we can do to avoid scanning in
vain, which is caching. Athena does not implement caching natively,
because it is decoupled from the actual storage, so it has no way to
understand if cached data are still valid or out-of-date. However, Athena
still saves the results of each query on a separate S3 bucket and we can
exploit this to implement caching manually. Since our database is a
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set of radio packets which accumulate over time and are partitioned
by date, we know for sure that if a query has a filter on the date and
this date is set in the past (whereby "past" we mean any date before
today) then it is guaranteed that the query will always provide the
same result. Moreover, the function which requests a query to Athena
in AWS SDK does not reply directly with the query result, but with an
identifier named "query execution id". The results are retrieved through
a different function which takes the query execution id as a parameter.
This way caching becomes easy to implement: first, we force each

query made by users to contain a filter on the date, then before per-
forming the query, we check if that query has been already executed
(for this purpose we use a support table on DynamoDB containing for
each query the corresponding SQL code and the query execution id).
If so, we do not ask Athena to compute it again, but we reply directly
with the query execution id. If not, we execute the query, but before
returning the query execution id, we store it in the support table. Of
course, this process is done only if the query happens on a date range
in the past. Unfortunately, query results can not be stored indefinitely,
since Athena automatically deletes past queries after 60 days. For this
reason, each query is cached along with a timestamp and a periodic
routine deletes old queries from the support table.

1 def make_query (query , cache):
2 athena_client = boto3. client (’athena ’)
3

4 if cache:
5 dynamo_client = boto3. resource (’dynamodb ’)
6

7 query_hash = hashlib . sha256 (query. encode ()). hexdigest ()
8 table = dynamo_client .Table(os. environ [" QUERY_TABLE_DYNAMO "])
9 result = table. get_item (Key ={’hash ’: query_hash })

10

11 # cache hit
12 if ’Item ’ in result :
13 return {
14 " query_execution_id ": result ["Item"][" query_execution_id "]
15 }
16

17 # There is no Lambda trigger , when the query terminates
18 def poll_status (qei):
19 while True:
20 result = athena_client . get_query_execution ( QueryExecutionId =

qei)
21 state = result [’QueryExecution ’][’Status ’][’State ’]
22

23 if state == ’SUCCEEDED ’:
24 return result
25 elif state == ’FAILED ’:
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26 return result
27

28 time.sleep (1)
29

30 response = athena_client . start_query_execution (
31 QueryString =query ,
32 QueryExecutionContext ={
33 ’Database ’: os. environ [" DATABASE_PACKETS "]
34 },
35 ResultConfiguration ={
36 ’OutputLocation ’: ’s3 :// ’ + os. environ [" BUCKET_QUERY "] + ’/’
37 }
38 )
39

40 query_execution_id = response [" QueryExecutionId "]
41 result = poll_status ( query_execution_id )
42

43 if result [’QueryExecution ’][’Status ’][’State ’] == ’SUCCEEDED ’:
44 if cache:
45 table = dynamo_client .Table(os. environ [" QUERY_TABLE_DYNAMO "])
46 table. put_item (
47 Item ={
48 ’hash ’: query_hash ,
49 ’query_execution_id ’: query_execution_id ,
50 ’timestamp ’: Decimal (str(time.time ()))
51 }
52 )
53 return {
54 " query_execution_id ": query_execution_id
55 }
56

57 return {
58 ’message ’: ’database error ’
59 }

Listing 2.4. The query routine checks if the results already exist in cache

With this mechanism, we finally reached the milestone of a system
that collects radio packets from a network of dongles, stores them in
the cloud, and allows the execution of queries. So far we have seen a
detailed implementation of the backend, but there is no way for a user
to effectively interface to it, since we have not presented yet how to
register a new device in the network and how to execute queries. In the
next section, we will show the external API offered by NetQuack and
an interface built around it.

2.4. API description
The next objective of our application is to make it accessible to external
users, so that they can make use of its services and features. With
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this goal, Amazon Web Services presents API Gateway, a cloud service
for creating, publishing, maintaining, monitoring, and securing both
REST and HTTP APIs at any scale. Using this service is pretty
straightforward: with the intuitive web interface, it is possible to create
a new REST API ready to be filled with resources and methods. Each
method can then be linked to other services to execute its business logic
(generally a Lambda function) and decorated with input parameters
and output schemas.

Since the main features we need to offer are the registration of a new
dongle and the possibility to perform queries, we created two REST
resources: one called "dongle" for device management and another called
"query". At the moment, the operations available in the API are the
following:

• GET /dongle takes no parameters and returns a list of all deployed
nodes along with their name and geographic location.

• POST /dongle is used to register a new dongle: it takes as pa-
rameters the name of the device and the geographic location. If
the requested name is available and the coordinates are valid,
NetQuack registers the device by creating two objects in IoT
Core (one for the dongle and another for the shell, as explained
previously) and issuing a certificate necessary to the device for
connecting to the MQTT broker. The method replies with the
certificate plus the public and private key which must be flashed
into the RFQuack firmware.

• PUT /dongle is a method for updating an existing dongle. If a
user wants to change the location of a device, he needs to call
this method with the name of the device, the new geographic
location, and a token which is the result of running sha256sum
on the private key file. This is a way to limit this operation to
the legit owner of the dongle without the need of registering users
and managing passwords.

• POST /query performs a request for a query. Its parameters are
the fields of the query, in particular a date range, a location area,
frequency, bitrate, modulation, and packet content. The method
validates the parameters (notable is the limit on the date range
which can not be longer than seven days) and if they are valid, it
replies with a query execution id. It is not guaranteed that the
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query is actually executed, since the method will look for eventual
cached results.

• GET /query is used to fetch the results of a query given the
query execution id as parameter. The method replies with at
most 100 results in CSV format along with a string called "next
token". This token is an additional parameter to send alongside
the query execution id for fetching the following 100 results. It
is a convenient way to achieve pagination and it is implemented
natively by Athena.

Both resources also exhibit an OPTIONS method which is necessary
to implement Cross-Origin Resource Sharing (CORS), a mechanism
that allows those resources to be requested from a web page hosted on a
different domain. Finally, API Gateway allows to insert descriptions for
each resource, method, and parameter serving as documentation and
the whole API can be exported in an OpenAPI compliant format. This
way the API can be easily documented as it gets updated in the future.

2.5. Web interface
Once we have defined a public API to access the backend of NetQuack,
we can build some user-friendly interfaces which interact with this API.
We wanted to create a web-interface, since by this time the browser is
the most common way to interact with any application. All modern web
applications are highly dynamic and built with the support of frontend
frameworks, hence the first decision to make consists of the choice of
the framework to use. With some research, we obtained a list of the
most popular ones and we restricted our choice to one of these three:
Angular, React and Vue. All of them are currently very popular and
constantly updated, so we needed to evaluate many aspects to make a
fair decision. We finally came up choosing React [9].

The reason for this choice is that we wanted to create a minimalistic
web interface and React seems the most suitable for this kind of task: it
is a lightweight framework that is easy to learn and develop with, as well
as widely supported and documented for the most common use cases.
Also, its structure based on component hierarchy makes applications
easy to maintain, document, and further develop. Along with it, we
have used two other libraries for web development: React Bootstrap
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for an easy definition of the CSS [3] and OpenLayers, a library for the
insertion and manipulation of maps based on OpenStreetMap data [18].

2.5.1. Structure
Since the most important features to implement are the registration of
a new dongle and the execution of queries, we thought about organizing
the web interface with a tab structure. The user can choose the operation
to perform by selecting it on a navigation bar which is situated on the
top of the web page. Upon clicking on the navigation bar, an input
form related to the selected operation appears on the screen and the
user just needs to fill the form and submit the request. In both cases of
registering a dongle and executing a query, the user could need to insert
some geographic coordinates, which are pairs of latitude and longitude
(for example when querying for packets received in a certain area).

Since raw geographic coordinates are unfriendly and counter-intuitive,
we decided to accompany the forms with a map to simplify the process
of inserting these coordinates. If a user needs to register a new dongle,
he just clicks the desired location on the map: the application will show
a marker on the selected point and will automatically fill the form with
the correct coordinates. While if the user wants to perform a query in
a specific area, he just zooms to that area on the map, and also in this
case the form will be filled automatically with the right coordinates.
Moreover, upon loading the page, the map is filled with markers that
indicate the position of deployed RFQuack dongles. This is useful to
see visually where nodes are located and to know in advance where it is
possible to find some radio packets.

Figure 2.2.. Registering a new device into NetQuack on the Web interface
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Figure 2.3.. Home page of NetQuack
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Figure 2.4.. A query and its results on the Web interface of NetQuack
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2.5.2. Design
React is a framework primarily designed for building user interfaces.
Its basic blocks are components: a component is a JavaScript class
with a render() method which returns an HTML representation of the
component. This representation is not static, but it is generated through
some internal logic, so that a component can change the visual aspect
during its lifetime. Each component has some properties, which can
be classified either as props or state: props are read-only values fixed
during the initialization of the component, while state is a writable
object. Every time the state object changes, the render() method
is automatically called, thus the graphical aspect on the web page is
updated. Moreover, a component can contain other components in their
HTML representation, creating a hierarchy tree.
This pattern in the strength of React and it allows the creation of

dynamic interfaces with little effort. The limitation of this workflow is
that state management is not easy to handle: state can naturally flow
from parent components to children ones, while the opposite direction is
not immediate and can be done using callbacks. For this reason, React
is generally coupled with other libraries (in particular Redux) for state
management. However in our case, we have only a few variables to keep
track of, and therefore we decided to rely only on React without any
support for state management. Of course, this scenario can change in
the future if the web interface will need to host new features.

Figure 2.5.. The hierarchy of React components used in the Web interface of NetQuack
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The web interface of NetQuack has six components and they are
arranged as in Figure 2.5.

• App: the root component. Every React application has a root
component which is commonly called App.

• OLMapFragment: it contains the map and all variables neces-
sary to describe it, such as the list of markers.

• RegisterTab: the form for registering a new dongle.

• RegisterOutput: the component which hosts the response after
submitting the form in RegisterTab.

• QueryTab: the form for querying.

• QueryOutput: the component which contains the query results.

The application can be hosted on any web server, which ideally just
needs to provide the web page, while all requests to the API are done
by calling directly the API itself without using the webserver as an
intermediary. Unfortunately, this is true only for query requests, while
the registration of a new dongle is actually performed using the web
server as a proxy. This happens so that a user can obtain a zip file
with all the needed certificates as a response. However, this is not an
obstacle for scalability: registering a dongle is an operation performed
sporadically and it is hardly executed by many users concurrently. On
the other hand, querying is a more intensive operation and it is likely
to be performed concurrently, but this operation is requested directly
to the API without the participation of the web server, which then does
not act as a bottleneck.
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2.6. Summary
In this chapter, we have discussed in detail the implementation of
NetQuack and its internal workings, with a major interest in the overall
architecture. Now we are aware of the path undertaken by a radio
packet, from being captured in the air until being stored in a cloud
database. The backend system is publicly available and can be replicated
by anyone owing an AWS account through a Terraform declaration file.
After the creation of a working system, we want to know how it behaves
in a realistic scenario and this is achieved by some experimental analysis
that we will present in the next chapter.

51



3. Experimental analysis
During the development of NetQuack, we had to keep in mind that our
goal was not only the creation of a working system, but also the creation
of a system able to scale for thousands of nodes, each one receiving
thousands of packets every second. To demonstrate this achievement,
we performed a scalability analysis where we stressed the system by
sending to it huge quantities of fake packets. The results are encouraging
and by repeating the stress test with different parameters we have been
able to describe parametrically the usage of each cloud service.

The other aspect to consider when developing a cloud infrastructure
is the monetary cost and its effective workload. Also in this case, we
have set an experiment with a real dongle receiving packets for a specific
period of time and then calculated the effective usage of cloud services
along with their cost. The results are not precise, since the crowding
of a frequency band varies depending on the location, but it is still a
reasonable way to know the order of magnitude of the real usage of
each resource, making it possible to predict the cost of the system.
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3.1. Cost analysis
As the first experiment we wanted to perform on the system, it concerns
the estimation of the workload for a dongle looking for real packets
and the expected cost of storing these data. Before describing the
experiment and its results, it is necessary to know how much each
service in AWS is paid and how to calculate the expected cost. AWS
services are paid on demand and the cost of each service can depend on
many parameters. The detailed description of these costs is listed in
Table 3.1. These data are valid at the time of writing for the region
Europe (Frankfurt), which is the one we worked on.

Table 3.1.. Cost overview of AWS services
Service Cost
S3
Storage $ 0.023 for each GB
PUT requests $ 0.0054 for 1000 requests
GET requests $ 0.0043 for 10000 requests
Lambda
Requests $ 0.20 for 1 million requests
Execution $ 0.0000166667 for second and GB
Athena
Query $ 5 for GB of scanned data
DynamoDB
Storage $ 0.306 for each GB
Read Units $ 1.525 for 1 million read units
Write Units $ 1.525 for 1 million write units
IoT Core
Deploy devices $ 0.12 every 1000 registered devices
Connectivity $ 0.096 for 1 million minutes of connection
Messages $ 1.20 for 1 million messages
Rules $ 0.18 for 1 million activated rules
Actions $ 0.18 for 1 million actions executed
Kinesis
Data ingestion $ 0.033 for each GB of data ingested
Conversion $ 0.02 for each GB of data converted

The majority of the services listed above have a cost directly dependent
on the quantity of ingested packets, while only a few are related to
registering devices and querying data, in particular Athena, storage and
write units in DynamoDB, and the deployment of services in IoT Core.
For this reason, those services are not considered by our experiment.
For estimating the system cost, we have deployed an RFQuack node
powered by an ESP32 and equipped with a CC1101. We then run the
Automatic Frequency and Bitrate detection module eight hours a day
for seven days and we registered the consumption of each service. At
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the end of the week, we translated these consumptions into a total cost.
During this week, we have stored 158444 packets into 221 files in S3
and a total of 36 MB, while the cost of this operation amounts to $
0.31. The detailed results can be read in Table 3.2.

Table 3.2.. Cost analysis for one dongle running eight hours a day for seven days
Service Consumption Cost
S3
Storage 36 MB $ 0.000828
PUT requests 221 requests $ 0.001193
Lambda
Requests 427 requests $ 0.000085
Execution 326 GB/seconds $ 0.00543
DynamoDB
Read Units 110.5 read units $ 0.000169
IoT Core
Connectivity 3360 minutes $ 0.000323
Messages 158,444 messages $ 0.19
Rules 158,444 rules $ 0.02825
Actions 158,444 actions $ 0.02825
Kinesis
Data ingestion 1.143 GB $ 0.03772
Conversion 1.143 GB $ 0.02286
Total — $ 0.31

From these results, it is visible that the major contribution to cost is
given primarily by the number of messages exchanged with the MQTT
broker. Another notable portion of the cost is given by Kinesis Firehose
and the other parameters of IoT Core. All these metrics are directly
proportional to the number of received packets, so they vary based on
the crowding of the radio spectrum. Conversely, the contribution given
by the storage on S3 and the execution of Lambda functions is negligible.
In the case of storage, this is the outcome of using a highly compressed
format such as Apache Parquet. In fact, this same experiment has
been done previously also with a different configuration of AWS services
where packets were stored in plain JSON without any transformation.
The results can be seen in Table 3.3.

In this case, the total cost is $ 1.11. In this second experiment it
is worth noting that, in front of a quadrupled number of packets, the
cost of storage in S3 is more than ten times higher due to the lack of
compression. This can seem a little achievement in terms of absolute
value, however there are two facts to consider: storage cost is the only
metric which does not depend on the crowding of the radio spectrum,
conversely it is a fixed cost which becomes bigger and bigger with time
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Table 3.3.. Cost analysis of a previous version of NetQuack
Service Consumption Cost
S3
Storage 466 MB $ 0.010718
PUT requests 662 requests $ 0.003575
GET requests 331 requests $ 0.000142
Lambda
Requests 338 requests $ 0.000068
Usage 428 GB/seconds $ 0.007133
DynamoDB
Read Units 165.5 read units $ 0.000252
IoT Core
Connectivity 5040 minutes $ 0.000484
Messages 633,305 messages $ 0.76
Rules 633,305 rules $ 0.114
Actions 633,305 actions $ 0.114
Kinesis
Data ingestion 3 GB $ 0.099
Total — $ 1.11

since the database accumulates data stored indefinitely. Hence lowering
the cost of storage is an important goal in the long term standpoint.
Secondly, the Athena query service is paid for gigabytes of data scanned:
if data are compressed, a query would cost less than the same query
performed on uncompressed data. This analysis explains quantitatively
why Apache Parquet has been a reasonable choice when configuring
Kinesis Firehose.

3.2. Scalability analysis
In order to measure how the system behaves in front of a variable
workload, we have performed a scalability analysis which consists of
sending an intended quantity of radio packets and measuring the use
of each service as a response. The purpose is to understand how the
utilization of each service grows as a function of the number of received
packets until its upper limit. The parameters which determine the
workload are mainly the rate of received packets for an hour, but also
the average length of the packets and the number of deployed dongles.
In our experiment, we deployed a dongle and set it up to send a specific
quantity of packets in the span of one hour. We repeated this experiment
multiple times changing the length of the packets and their total quantity
by different orders of magnitude. Hence the results can be interpolated
to extract a function of packet length and packet rate. On the other
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hand, measuring the impact of the number of dongles is harder, since we
do not have physically the possibility to deploy hundreds or thousands
of dongles to repeat the experiment. However, we have good reasons to
state that the number of dongles has a limited impact on the resources,
as will be explained later.
The experiment has been performed with a wide variety of packet

rates, in particular 10, 100, 1000, 3600, 10000, 100000, 230000, and
360000 packets per hour. Each one of these rates has been tested with
three different packet sizes, which are 64 bytes, 128 bytes, and 250 bytes.
The raw numerical results representing the activity of cloud resources
for each experiment are available in Appendix A.

If we plot the results into some graphs, we can easily see the relation-
ship between our fixed parameters (packet rate and packet size) and
the consumption of each service. In particular, the graphs below show
the storage space in S3 in kilobytes as a function of packet rate and size
after an hour of execution. Of course, the packet size increases storage
by a little factor, but the interesting fact is that storage space has a
slightly sublinear increment with regard to packet rate. The number of
PUT requests is harder to determine: according to the architecture of
NetQuack, a PUT operation on S3 is performed every time the buffer in
Kinesis Firehose reaches a timeout of 15 minutes or it is filled with 128
MB of data. In our experiments we never reached the point of filling
the whole buffer with 128 MB in less than 15 minutes, so ideally we
should execute only 4 PUT requests in an hour. As we can see from
the results, however, packets are often split into 5 or 6 files instead of 4.
This happened for two reasons: firstly the experiments did not have an
exact duration of one hour, but they likely took one hour plus a few
seconds or minutes. This is enough for having one more PUT request.
Secondly, it looks like Kinesis Firehose has some internal logic which
causes some packets to be stored into S3 in the next batch instead of
the current one, probably for some optimization reasons. This explains
the presence of 6 PUT requests in one hour. The only way to have
more than 6 PUTs in one hour is to fill the buffer with more than 128
MB: it can be done roughly with at least one million packets per hour.
Some limitations imposed by AWS (which will be explained later) did
not allow us to test this possibility.
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The next graph plots the execution time of a Lambda function and
the number of requests to it. The function which is executed during the
data collection phase is the one employed to transform packets from the
Protobuf format into JSON. Differently from the PUT operation, this
Lambda function is called every time the buffer of Kinesis Firehose is
filled with only 3 MB of data. This explains why the function is called
only five times when the rate is below 100000 packets per hour: it never
fulfills 3 MB in less than 15 minutes. Then it starts being executed more
often, with the number of invocations increasing linearly with the packet
rate. It is worth noting that the read units of DynamoDB are exactly
half the number of executions of the Lambda function. This is explained
by the fact that the transformation routine needs calling DynamoDB
to tag each packet with the geographic location of the dongle which
detected it. Since in our experiment, we used only one dongle, and
each call to DynamoDB requires a half-read unit, this explains why the
read units of DynamoDB are half the number of Lambda invocations.
This is the only scenario where the consumption of a service depends
directly on the number of deployed dongles. Despite we could not
measure it experimentally, we can infer that the consumed read units
of DynamoDB are half the number of Lambda invocations multiplied
by the number of deployed dongles.
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Finally, the last graph is related to data ingested by Kinesis Firehose.
In this case, there are no particular surprises. The quantity of data
processed by Kinesis Firehose is calculated deterministically when the
number of received packets and their size is known and fixed. The same
is valid for the quantity of data converted into Apache Parquet: they
coincide with the totality of received data.
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Another service that is consumed when collecting data is IoT Core.
However, we have not listed it in the previous tables because it is
completely deterministic. The consumption of IoT Core is based on four
parameters. Three of these (namely the number of messages, the number
of triggered rules, and the number of executed actions) coincides with
the number of packets received. The fourth parameter is the connection
time to the broker: also in this case, the value is calculated analytically.
If the experiment lasts one hour and we have N dongles deployed, the
connection time consumed is just N hours.

The results we have seen so far rely on only one measurement, which
can make them look not precise. However, there are some aspects to
consider. First, each measurement requires one hour of sending data:
repeating the same experiment more times (for example ten times)
would require a whole day just for filling one column of those tables.
Secondly, we know that the majority of those metrics are deterministic
or they have a little variance, hence repeating the same experiment
multiple times would bring almost identical results. The only metrics
which can change in front of identical conditions are the execution time
of the Lambda routine and, to a lesser extent, the storage space, since
data are compressed and the compression rate depends on the internal
structure of the received packets. To demonstrate this and make the
experiment more robust, we repeated the experiment ten times only in
the worst case, that is a packet rate of 360000 packets per hour and a
size of 250 bytes. In Table 3.4 we can see a comparison between the
real results and the expectation based on the previous measurement.

Table 3.4.. Comparison between expected and real results
Packets per hour Expected Real
S3
Storage [KB] 7112 6957
PUT requests 45 44
DynamoDB
Read Units 130 129,5
Lambda
Requests 260 259
Execution time [ms] 1,099,280 1,113,700
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3.2. Scalability analysis

Finally, we want to explain the reason why the maximum rate used
in the experiments is 360000 packets per hour. This is a limit imposed
by AWS and stated in their documentation. If we explore these limits
further, we discover that:

• The MQTT broker handles up to 20000 messages per second by
all connected dongles.

• A single device can transmit up to 100 messages per second.

• IoT Core can evaluate up to 20000 rules per second.

• The MQTT broker can manage 500000 simultaneous connections.

• Kinesis Firehose can store in its buffer no more than 1000 messages
per second.

If each message represents a packet, we can see that a single node can
transmit no more than 360000 packets in one hour, while the whole
network of nodes is bounded by 72 million packets per hour. However,
Kinesis Firehose can not handle this traffic and it is limited by 3,6 million
messages per hour. Messages exceeding this limit are just discarded.
Nevertheless, there are ways to increase this limit: if the services are
placed in a region among US East (Virginia), US West (Oregon), and
Europe (Ireland), the limit for incoming packets in Kinesis Firehose
is by default 5000 messages per second. This translates to 18 million
packets per hour. A further increase of this limit is possible, but it must
be requested manually to the Support Center of Amazon Web Services.
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4. Conclusions and future
works

In this conclusive chapter, we evaluate the results achieved by this
project and compare them with the goals we set at the beginning of the
thesis. We also discuss its limitations and propose some future work to
improve the effectiveness of NetQuack and its environment.
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4.1. Future works

4.1. Future works
In this section, we highlight some limitations of our approach and
propose some solutions that could be further investigated.

• Variable number of fields for a packet: so far packets are
stored in an S3 bucket with a tabular format which resembles the
tables of relational databases. In other words, each packet has a
fixed set of attributes along with their type, as it happens in a
SQL-like database. This is the drawback of a service like AWS
Athena, which makes it possible to query data stored on files, but
it expects these data to have a fixed structure. If in the future we
want to add new fields for newly stored packets, we need a new
bucket and a new table to query them. An improvement for this
scenario is the automatic handling of different "versions" of packet
structure to lighten the impact of this limitation.

• Noise filtering: upon testing the correct functioning of NetQuack
with a real dongle, we often received many packets which are
actually just noise. While the majority of these packets can be
removed simply by raising the RSSI threshold level on the dongle,
this is not enough in all situations, since it also happened that the
fake packets were the result of a weak but existing signal which
resulted in packets composed only by 0xFF or 0x00 bytes. A way
to detect possible fake packets would be great to avoid polluting
the database with useless data, especially if performed directly on
the RFQuack firmware, since it would avoid sending a message
which uselessly consumes bandwidth and IoT Core resources. A
general approach could be based on payload entropy, however, a
more specific solution would require in-depth analysis and further
experimentation.

• Cost and resource optimization: from the analysis we per-
formed about cost and scalability, we discovered that the number
of sent messages constitute the majority of the system cost and
they represent the main limit to the overall scalability. Since at
the current state each MQTT message is used to send a single
packet, a possible improvement in the RFQuack firmware would
be grouping more packets in a single message if they are received
in a short amount of time. This optimization would reduce the
cost and further improve the scalability of the system, however
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Chapter 4. Conclusions and future works

it should not limit those scenarios where packets must be re-
ceived immediately, something usually required in cybersecurity
use cases.

• Integration of other modulations: currently the automatic
signal detection routine of RFQuack, which takes care of discover-
ing and sending packets to the NetQuack infrastructure, works
only with signals modulated in OOK. An improvement that would
benefit the usefulness of NetQuack for example is the recogni-
tion of signals in other modulations, such as the common 2-FSK.
Another notably useful improvement would be the compatibility
with the LoRa modulation, which would allow NetQuack to re-
ceive packets generated by the LoRaWAN network, attracting
considerably the interest of researchers.

4.2. Conclusions
We began this thesis by discussing the main tools used by cybersecu-
rity researchers in the field of radiofrequency analysis and presenting
some examples of applications based on distributed data collection for
cybersecurity purposes. We wanted to create a large-scale catalog of
digital radio signals fed by a network of radios and as a first step, we
were looking for the best choice to implement this network. We have
chosen RFQuack due to its automatic signal recognition routine, which
transforms every dongle in a crawler of RF signals. After this important
step, we have designed and built the backend architecture intended
for storing and querying these data coming from the network. Then
we made this backend accessible through a public API and we built
a handy web interface that makes use of its services. Once the whole
infrastructure has been created, we measured experimentally the cost of
its maintenance and its upper limits in terms of scalability. The results
are encouraging and demonstrated that the system can already handle
a large quantity of data. The experiments also suggested some aspects
that could be improved to reach even higher efficiency and scalability.
We believe this system can evolve into a vast network of nodes scanning
the spectrum and contributing to a database that will be useful for
researchers, while many enthusiasts will join the project and give their
contribution.
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A. Appendix

Table A.1.. Scalability analysis results for 64 bytes long packets (Part 1)
Packets per hour 10 100 1000 3600
S3
Storage [KB] 9 12.3 19.5 37.4
PUT requests 4 5 5 5
DynamoDB
Read Units 2 2.5 2.5 2.5
Kinesis
Data ingestion [byte] 2450 24,500 245,000 882,000
Conversion [byte] 2450 24,500 245,000 882,000
Lambda
Requests 4 5 5 5
Execution time [ms/req] 500 543 685 1157
Execution time [ms] 2000 2715 3425 5785

Table A.2.. Scalability analysis results for 64 bytes long packets (Part 2)
Packets per hour 10000 100,000 230,000 360,000
S3
Storage [KB] 77.4 658.8 1290 1800
PUT requests 5 6 6 6
DynamoDB
Read Units 2.5 7 17 28
Kinesis
Data ingestion [byte] 2,450,000 24,500,000 56,350,000 88,200,000
Conversion [byte] 2,450,000 24,500,000 56,350,000 88,200,000
Lambda
Requests 5 14 34 56
Execution time [ms/req] 2376 6000 6020 5979
Execution time [ms] 11880 84000 204680 334824
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Table A.3.. Scalability analysis results for 128 bytes long packets (Part 1)
Packets per hour 10 100 1000 3600
S3
Storage [KB] 11 14.8 22 39.9
PUT requests 4 5 5 5
DynamoDB
Read Units 2 2.5 2.5 2.5
Kinesis
Data ingestion [byte] 3300 33,300 333,000 1,198,800
Conversion [byte] 3300 33,300 333,000 1,198,800
Lambda
Requests 4 5 5 5
Execution time [ms/req] 5040 554 702 1213
Execution time [ms] 2160 2770 3510 6065

Table A.4.. Scalability analysis results for 128 bytes long packets (Part 2)
Packets per hour 10000 100,000 230,000 360,000
S3
Storage [KB] 80.6 669.1 1460 1900
PUT requests 5 5 6 6
DynamoDB
Read Units 2.5 12.5 20.5 33
Kinesis
Data ingestion [byte] 3,330,000 33,300,000 76,590,000 119,880,000
Conversion [byte] 3,330,000 33,300,000 76,590,000 119,880,000
Lambda
Requests 5 25 41 66
Execution time [ms/req] 2517 5288 5362 5146
Execution time [ms] 12585 132,200 219,842 339,636
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Table A.5.. Scalability analysis results for 250 bytes long packets (Part 1)
Packets per hour 10 100 1000 3600
S3
Storage [KB] 14.9 19.6 26.8 44.6
PUT requests 4 5 5 5
DynamoDB
Read Units 2 2.5 2.5 2.5
Kinesis
Data ingestion [byte] 4970 49,700 497,000 1,789,200
Conversion [byte] 4970 49,700 497,000 1,789,200
Lambda
Requests 4 5 5 5
Execution time [ms/req] 510 539 728 1200
Execution time [ms] 2040 2665 3640 6000

Table A.6.. Scalability analysis results for 250 bytes long packets (Part 2)
Packets per hour 10000 100,000 230,000 360,000
S3
Storage [KB] 88.9 711.2 1623 2200
PUT requests 5 6 6 6
DynamoDB
Read Units 2.5 13 29,5 45,5
Kinesis
Data ingestion [byte] 4,970,000 49,700,000 114,310,000 178,920,000
Conversion [byte] 4,970,000 49,700,000 114,310,000 178,920,000
Lambda
Requests 5 25 41 66
Execution time [ms/req] 2876 4228 4369 4365
Execution time [ms] 14,380 109,928 257,771 397,215
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Acronyms
ASK Amplitude Shift Keying
FSK Frequency Shift Keying
PSK Phase Shift Keying
OOK On-Off Keying
MQTT Message Queuing Telemetry Transport
QoS Quality of Service
SDR Software Defined Radio
URH Universal Radio Hacker
IQ In-phase and quadrature components
MCU Micro Controller Unit
AWS Amazon Web Services
S3 Simple Storage Service
CORS Cross-Origin Resource Sharing
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