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1. Introduction
In the last decade machine and deep learning
have gained enormous popularity and they are
now used in many software applications. Their
widespread adoption is leading to a growing de-
mand for explanations regarding the reasons be-
hind the outputs of these systems, which are of-
ten black boxes. Users need to trust these sys-
tems to use them, especially in certain domains
such as medicine, and even regulations are start-
ing to introduce this requirement. Research in
eXplainable AI (xAI) is trying to meet this de-
mand by developing techniques that can bring
some light inside these black boxes. Despite
this, most of the currently used xAI methods
can help model developers to improve their sys-
tems, but are difficult to use for end users which
want to gain a clear understanding of a model’s
behavior. The main contribution of this work
is the development of a model which can gen-
erate textual explanations for a machine learn-
ing classifier. We also develop a prototype of a
question-answering (Q&A) system which could
be further expanded, arriving to a fully conver-
sational explainer. We integrate these models
into a web interface, where we show also other
elements which can help the users to understand
the behaviour of a classifier, and we use this in-
terface to perform a user study to evaluate our

models and the interface itself.
In Section 2 we briefly present the related work,
while in Section 3 we present the datasets we
have used and in Section 4 we discuss the eval-
uation methods. In Section 5 we present our in-
terface, in Sections 6 and 7 we discuss the expla-
nations model and the Q&A model, with their
results. Finally, in Section 8 we summarize the
results and the work which remains open.

2. Related work
In the last years xAI is becoming a trending
topic in research, there are many papers that
have been published on this topic and some tech-
niques have gained particular popularity. The
most popular techniques are feature attribution
methods, which aim to determine what is the
effect of the various input features on the out-
put, for a specific sample. Among them the
most famous are LIME and SHAP [1]. LIME
uses a model surrogate, i.e. it builds a linear
model which locally approximates the model to
be explained around the point, exploiting the
fact that a linear model can be easily explained
using its coefficients. SHAP instead is based on
the concept of Shapley values from cooperative
game theory, which is a measure of the contri-
bution of a player to its coalition. Lundberg and
Lee proved that SHAP is the only method of this
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category that can satisfy important theoretical
guarantees, such as the consistency property, i.e.
f(x) = ϕ0+

∑M
i=1 xiϕi, where ϕi are the Shapley

values.
Another type of xAI methods are those based on
examples and in particular the ones based on the
concept of counterfactual [2]. In the classifica-
tion context, a counterfactual is a sample which
is similar to the one to be explained, but with
enough differences to alter the prediction. Many
proposals have been done for the computation of
counterfactuals, considering even slightly differ-
ent definitions of counterfactual.
There are few works related to textual expla-
nations. One of them is [3], where Hendricks
et al. use an LSTM-based model to generate tex-
tual explanations for image classification. The
main limitation is that they base their work on
a dataset of textual descriptions of the images
and consequently their explanations do not seem
particularly correlated with the reasons behind
the classifier output, but more on the discrimi-
native elements of the various classes.
There are a couple of prototypes of chatbots for
explainable AI 1, but they are both very limited
in the interactions and in the type of answers
they can offer to the users.
Many works about the needs of the users in term
of xAI are present in the literature, we can men-
tion [4] and [5] among many. The main elements
which can be derived from them are the im-
portance of simple and intuitive explanations,
mainly local, the relevance of counterfactuals
and a demand for interactive explanations, pos-
sibly adapted on the type of user which is asking
them.

3. Datasets
We focus on the generation of explanations for
classification tasks, in particular in the medical
domain. The first dataset we consider is a car-
diovascular disease dataset available on Kaggle2.
We build our system on this dataset and then
we consider a second classification dataset, the
Pima diabetes dataset3, to see if and how our
model is able to generalize to different datasets.

1https://github.com/ModelOriented/xaibot
2https://www.kaggle.com/sulianova/

cardiovascular-disease-dataset
3https://www.kaggle.com/uciml/

pima-indians-diabetes-database

Another dataset that we use is the MedDialog-
EN dataset4, a large dataset of medical dia-
logues. We want to use a generative language
model, based on GPT-2, to produce the explana-
tions, due to the great capabilities of this model
in generating text which seems to be written by
humans. This dataset is useful to give a first
knowledge of the medical domain to our lan-
guage model, so we use it for pre-training.

4. Evaluation methods
To evaluate our results we consider both au-
tomatic metrics and a user study. Among the
many automatic metrics used in NLP, we con-
sider the following three:

1. BLEU, in particular the cumulative BLEU-
4 for explanations and the cumulative
BLEU-1 for Q&A

2. METEOR, whose ability to understand
synonyms is particularly useful

3. BLEURT, a different type of metric which
uses a transformer trained to predict human
judgment over a (candidate, reference) pair

The main problem of automatic metrics is that
they need a reference sentence and, in absence
of a classification dataset with textual explana-
tions, for us the reference can be only the expla-
nation that we automatically generate, but our
model may express the same concept in a differ-
ent, possibly better, way, achieving a low score.
METEOR and BLEURT have been chosen since
they can partially overcome this problem, but
the best evaluation is the one which comes from
the users. Due to the difficulties in performing
a user study, we leave it at the end of our devel-
opment process.

5. Interface
We build an interface for our user study that
can also be useful in general to show a classifier’s
output to the users, allowing them to better un-
derstand the reasons behind it.
A screenshot is reported in Figure 1, with some
of the following main elements:

1. The data of the current sample, together
with the classifier output

2. Distribution plots, showing the distribu-
tion of feature values in the dataset

4https://github.com/UCSD-AI4H/
Medical-Dialogue-System

2

https://github.com/ModelOriented/xaibot
https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://github.com/UCSD-AI4H/Medical-Dialogue-System
https://github.com/UCSD-AI4H/Medical-Dialogue-System


Executive summary Vittorio Torri

Figure 1: Screenshot of the TeXiML web interface used for the user study

3. Ceteris paribus plots showing what hap-
pens if the value of a feature changes, keep-
ing fixed all the other ones

4. A feature importance plot, showing the
effects of the various features on the result,
in terms of Shapley values

5. A counterfactuals table, with three
counterfactuals

6. Two textual explanations, one computed
by applying the automatic rules of our
grammar and the other by our language
model

7. An interaction form for the Q&A system
Users are presented with questions regarding the
completeness, correctness and clarity of the ex-
planations, plus a choice of the preferred one,
between the rule-based and the one produced by
GPT-2. If they use the Q&A they can also eval-
uate the answer. They see samples from both
datasets and at the end they are asked to answer
a series of general questions about the system.

6. Textual explanations
Our goal is to generate textual explanations for
the output of a black-box machine learning clas-
sifier on a given sample. This requires to define
what we want to represent in these explanations
and consequently on which basis they should be
computed. We progressively extend our expla-
nations:
• Version 1: we only express the three input

features which are more relevant for the re-
sult, using as measure the SHAP method,
due to its theoretical guarantees
eg: The prediction of disease is determined
by the systolic blood pressure (140) and by
the age of the patient. The BMI (29.3) also
contributes to the result.

• Version 2: we include additional informa-
tion on mean and standard deviation of nu-
merical features
eg: The prediction of disease is determined
by the systolic blood pressure (140), which is
one standard deviation above the mean [...].
The BMI (29.3), higher than the mean, also
contributes to the result.

• Version 3: includes also the description of
a counterfactual
eg: [...] If BMI was 27 and systolic blood
pressure was 130, then the prediction would
have been no disease.

• Version 4: includes also an explanation re-
lated to the information which comes from
the ceteris paribus plot
eg: The prediction of disease is determined
by the systolic blood pressure (140), which
is one standard deviation above the mean
and whose high values are associated with
cardiovascular disease. [...]

To build a training set for our language model we
use a grammar with some rules which compose
the explanations for our classification dataset on
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Figure 2: Schema of the training process for the textual explanations model

the base of the Shapley values, the feature val-
ues and the classifier output. In the final version
(V 4*), we extend this grammar, introducing
more variability in the text. We report a short
portion of the grammar in Appendix, while the
schema in Figure 2 represents the training pro-
cess for the textual explainer.

6.1. Input encoding
The input for the explanation model needs to
contain the sample to be explained, together
with the information which can allow the model
to understand how to produce an explanation
for it. We consider different alternatives for the
encoding of this data. After a comparison we
select the following one:

• input=[name=BMI, value=32, shap=0.1,
mean=25, std=3.2, cp_low=low,
cp_high=no]; [name=cholesterol,
value=normal, shap=0.2]; [...]; pre-
diction=no disease; cf=[name=age,
value=55] [name=BMI, value=37.2];
cf_pred=cardiovascular disease

In the first part we report the feature names and
values, including the Shapley values. For numer-
ical features we include also mean and standard
deviation (from Version 2 ) and a summary of
the ceteris paribus plot (from Version 4 ), with
two words related to its high and low values.
Then there is the classifier output (prediction)
and the information about the counterfactual
(from Version 3 ): the values which differ from
the current ones and its prediction.

6.2. Augmentation
To improve the variability of the training set and
avoid the language model to learn by hearth the
expressions of our fixed rules, we augment it us-

Ver. BLEU-4 METEOR BLEURT

V1 0.571 0.716 0.718
V2 0.604 0.732 0.721
V3 0.541 0.713 0.693
V4 0.590 0.756 0,670
V4* 0.527 0.713 0.640

Table 1: Results with automatic metrics of the
different explanation versions on the cardiovas-
cular disease dataset

ing BERT to replace randomly masked words in
the explanations (with the exclusion of feature
values and feature names). We consider the pos-
sibility of applying it multiple times. This leads
to a decrease of the metrics, which is partially
due to their difficulties in assessing the same
meaning behind different sentences, and some-
times it introduces also wrong terms in the ex-
planations, so we limit to one pass.

6.3. Results
We report in Table 1 the results with the au-
tomatic metrics of the various versions of the
explanations. We can observe how the inclusion
of the counterfactual (V3) and the extension of
the grammar (V4*) determine a reduction of the
values, since they increase the complexity of the
explanations. The same does not happen in the
transition from version 1 to 2 and from 3 to 4,
this is probably due to the fact that the infor-
mation coming from the distribution and ceteris
paribus plots are easier to add and they are ex-
pressed in a way more similar to the references.
In Table 2 we report the results on the diabetes
dataset, comparing our model trained on the
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Model BLEU-4 METEOR BLEURT

TL 0.239 0.413 0.393
FT 0.495 0.768 0.566

Table 2: Results on diabetes dataset (V4*) with
original model (TL) and fine-tuned model (FT)

Model Dataset Clear Compl. Corr.
Grammar Cardio 3.98 4.20 4.10
GPT-2 Cardio 4.10 4.01 3.73
Grammar Diabetes 4.07 4.12 4.09
GPT-2-TL Diabetes 3.32 2.37 1.97
GPT-2-FT Diabetes 3.56 3.52 3.25

Table 3: User study average evaluation of expla-
nations properties (scores in 1-5)

cardio dataset (TL) and the same model fine-
tuned on explanations for the diabetes dataset
(FT). There is a significant drop of the origi-
nal model which can be compensated with the
fine-tuning.
In Table 3 we report the average results of our
user study on the explanations. On the cardio
dataset the difference is small, while on the dia-
betes dataset there is a clear preference for the
grammar-based, even if the fine-tuned model is
not far. It is interesting to observe the answers
to the questions Which explanation do you pre-
fer? (Table 4) and Which type of explanation
did you find more natural, on average? (Fig-
ure 3). The users seem to appreciate more the
GPT2-based explanations on the cardiovascu-
lar dataset, despite the clarity/completeness/-
correctness scores do not give this clear indica-
tion.

7. Question Answering (Q&A)
Considering the demand for interactive explana-
tions expressed in the literature, we want to offer

Model Dataset Pref.
Grammar Cardio 39%
GPT-2 Cardio 61%
Grammar Diabetes 89%
GPT-2-TL Diabetes 11%
Grammar Diabetes 65%
GPT-2-FT Diabetes 35%

Table 4: Which explanation do you prefer?

Figure 3: What type of explanations did find
more natural, on average?

to the users the possibility to ask questions. We
focus on two types of questions:

1. Feature importance questions: What’s the
importance of age? What’s the relevance of
BMI?

2. What-if questions: What if age was 60?
What would happen if glucose was 100?

To develop the Q&A we use another GPT-2
based model. We build a dataset of (question,
answer) pairs for the samples of our cardiovascu-
lar disease dataset. For each sample we have two
pairs, one for each of the above types, created by
sampling a question template from a set of pre-
defined templates we wrote. The templates are
then filled randomly with a feature and, for the
second type, also with a feature value, drawn
from the dataset distribution of that feature.
The answer for the first type is again drawn from
a set of answers, depending on the Shapley value
of the feature. For the second type the proce-
dure is slightly different: we do not expect the
language model to be able to know the result of
the classifier when a feature is changed, but we
ask it to recognize the feature to be changed and
the new value. We train it to produce an output
of the type <WHAT_IF>feature=value. Then
from this output we can call the classifier on the
modified sample and return a textual description
of the result. We apply BERT augmentation for
questions and answers of the first type and for
questions of the second type.

7.1. Results
We report in Table 5 the results measured with
automatic metrics. In Table 6 there are the av-
erage scores given by the users to the answers,
divided by question type and dataset (for both
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Dataset/
Model

BLEU-1 METEOR BLEURT

Cardio 0.370 0.344 0.734
Diab/TL 0.308 0.269 0.441
Diab/FT 0.390 0.387 0.574

Table 5: Q&A results with automatic metrics

Dataset/Questions Clear Compl. Corr.
Cardio/F 3.63 3.13 3.13
Cardio/W 3.38 3.31 3.13
Diabetes/F 4.75 3.88 1.88
Diabetes/W 4.64 4.73 4.45

Table 6: User study average evaluation of an-
swers properties (scores in 1-5), W=What-if
questions, F=feature importance questions

datasets we’ve used the same original model in
the user study).
We can observe that the results are discrete for
the cardio dataset, while for the diabetes dataset
they are even better, except for the correct-
ness of feature importance questions, where the
model seems pretty weak.

8. Conclusions
We have demonstrated that it is possible to use a
generative language model to produce explana-
tions for a machine learning classifier. The per-
formances on the cardiovascular disease dataset
are pretty good, while it suffers more when it
is used on a different dataset, like the Pima dia-
betes dataset. With fine-tuning its performances
improve significantly, but they are still lower
than our baseline. We believe that further work
can be done to improve the generalization capa-
bilities of the model. A possibility could be the
training of the model on explanations for many
different datasets, preferably all in the same do-
main. The richness and variability of explana-
tions could be improved with a human-written
dataset of explanations, possibly collected via
crowdsourcing, which may be used for a final
fine-tuning.
The Q&A system achieved discrete results on
the types of questions on which it was trained
and it has better generalization capabilities, but
it has still a large margin of improvement, on
both the correctness of the answers and on the

variety of questions it can properly answer. We
strongly believe that it must be a key component
of an interactive explanation system.
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Appendix
A short portion of the grammar rules used to au-
tomatically generate the explanations dataset:

S → F SN T
F → The main reason why P has been

predicted as O1 is the EF
| The first element which

influenced the prediction of
O2 is the EF

| The most relevant factor for the
prediction of O2 is the EF

SN → . In addition , the EF also has a
significant influence

| . The EF is also an important
element

| . Moreover, the EF plays an
important role

T → and also the EF is relevant .
| , while the third factor is the

EF.
| . Finally , the EF also

influences the result .
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Abstract

In the last decade machine and deep learning have gained enormous popu-

larity and are now used in many software applications. Users need to trust

these systems to use them, especially in certain domains such as medicine,

and since most of them are black boxes there is a growing demand for expla-

nations regarding the reasons behind their outputs. Research in eXplainable

AI (xAI) is trying to meet this demand by developing techniques that can

bring some light inside these black boxes. Despite this, the currently most

used xAI methods are usually more helpful for model developers and experts

than for end users. The main contribution of this work is the development

of a system which can produce textual explanations for a machine learning

classifier. We automatically generate a dataset of textual explanations for a

classification problem and we use it to train the well-known GPT-2 model

to produce text to explain a classification model’s predictions. Considering

the large demand for interactive explanations, we introduce also a question

answering system (Q&A), able to answer questions about (the reasons for)

the model’s predictions. We build an interface, which can be easily used for

many classification tasks, where we present the textual explanations and the

Q&A system, together with other elements that can help the users to under-

stand and trust a classifier. We finally use this interface to collect evaluations

of our system through a user study. The results highlight the effectiveness

of our explanations on the dataset we have used for the development of the

system and the limitations of a direct porting on a different dataset, which

can be largely overcome with a fine-tuning process.

Keywords: explainable AI, textual explanations, interactive explanations,

xAI interface
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Sommario

Nell’ultimo decennio machine e deep learning hanno guadagnato un’enorme

popolarità e sono oggi usati in molti software. Gli utenti hanno bisogno di fi-

darsi di questi sistemi per usarli, specialmente in settori come quello medico,

ed essendo principalmente “scatole nere” vi è una crescente domanda di spie-

gazione delle ragioni dietro i loro output. Le ricerche sull’explainable AI

(xAI) stanno provando a rispondere a questa domanda sviluppando tecniche

che possono portare luce dentro queste “scatole nere”. Ciò nonostante, i

metodi xAI attualmente più usati sono spesso più utili per gli sviluppatori

di modelli che per gli utenti finali. Il contributo principale di questa tesi è lo

sviluppo di un sistema in grado di produrre spiegazioni testuali per un clas-

sificatore machine learning. Generiamo automaticamente un dataset di spie-

gazioni testuali per un problema di classificazione e lo usiamo per il training

del noto modello GPT-2, rendendolo in grado di produrre spiegazioni testuali

relative all’output di un classificatore. Considerando la grande richiesta di

spiegazioni interattive, introduciamo anche un sistema di question answering

(Q&A), in grado di rispondere a domande sugli output di un classificatore.

Costruiamo un’interfaccia, che può essere facilmente utilizzata per vari pro-

blemi di classificazione, dove presentiamo le spiegazioni testuali e il sistema

di Q&A, insieme ad altri elementi che possono aiutare gli utenti a compren-

dere l’output di un classificatore. Infine utilizziamo questa interfaccia per

raccogliere valutazioni sul nostro sistema. I risultati evidenziano l’efficacia

delle nostre spiegazioni sul dataset che abbiamo utilizzato per lo sviluppo

del sistema e le limitazioni di un porting diretto su un dataset diverso, che

possono essere in buona parte superate con un processo di fine-tuning.

Parole chiave: explainable AI, spiegazioni testuali, spiegazioni interattive,

interfaccia per xAI
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Chapter 1

Introduction

1.1 Research area

In the last decade artificial intelligence (AI) entered for the first time in our

everyday life: it is enough to think about voice-controlled devices, recommen-

dation systems which suggest us new contents to watch, image-recognition

systems, self-driving cars and many other services with which we interact

constantly (see Figure 1.1 for some examples).

Despite its recent spread, the concept of Artificial Intelligence has been

present since the birth of Computer Science, considering that its origin can

be tracked back to the 1956 Darmouth Conference:

“The study is to proceed on the basis of the conjecture that

every aspect of learning or any other feature of intelligence can

in principle be so precisely described that a machine can be made

to simulate it” [1]

The difficulties in overcoming certain mathematical problems and the

initial absence of the great results that were expected lead to the so-called

AI Winters (1973-1982, 1987-1997), but from the end of 1990s a new sum-

mer started, where new techniques, a larger amount of available data and

an increased computational power lead to the advent of Machine Learning

(ML) [2].

In a few years, starting with 2012 Krizhevsky’s AlexNet [3], Deep Learning

(DL) emerged with astonishing results that produced a new faith in the

1
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possibilities of AI, including the always dreamt idea of a general artificial

intelligence, capable of reproducing the human mind, even if we are still far

from this and there is a lack of consensus among experts about if and when

this will be achieved [4].

The solutions of the first AI era were mainly based on logic inference (eg:

All men are mortal AND Socrates is a man =⇒ Socrates is mortal) and

on rules (eg: If obstacle in front, then turn right) and because of this it was

relatively easy to explain the behaviour of those systems: it was enough to

list all the inferences or all the rules used to reach the final result. They

could be many, but they were interpretable by humans.

This is not the case for most of the Machine Learning techniques. Even

if there are some simple techniques, like decision trees or linear regression,

whose models can be directly interpreted by humans, they are too weak for

many tasks. Most ML models are black-boxes and it is hard to explain

their internal behaviour to a human. The situation becomes even worse with

Deep Learning: the simplest deep neural networks can already have tens

of millions of parameters, while the more complex ones can reach billions

of parameters (eg: AlexNet has 60 million parameters [3], GPT-2 has 1.5

billion parameters [6]). The need for understanding the reasons behind the

behaviours and the outputs produced by these complex models lead to an

area of research which goes under the name of eXplainable AI (xAI). Various

techniques have been developed in the last years, but the problem is far from

being fully solved.

The goal of this work is to explore the possibility of providing expla-

nations in natural language, easily understandable for non-technical users,

using generative models like GPT-2. Moreover, it aims to develop an inter-

face which can be used as a support tool for users of different classification

tasks, where the textual explanation is a key component but not the only

one.

We consider the state of the art in xAI and the limitations of the current

solutions, together with the needs expressed by the users of AI-based systems.

We focus on the classification problem, one of the most common in machine

and deep learning, and we develop a model able to provide natural language

explanations. This model is then embedded in a web interface which can

be easily used for different classification problems, showing to the users the
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Figure 1.1: A timeline of AI with some famous products. [5]
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data and the textual explanation, together with various elements which can

help in understanding the data used and the results produced by a machine

or deep learning model. We also investigate the possibility of an interaction

of the users with the explanation system.

1.2 Work description

The main type of models on which this work is focused are classification

models for datasets with numerical and/or categorical features. They are

one of the most common problems in machine and deep learning and there

are many examples of domains where they are used, like medicine or finance.

We analyze in detail the main techniques which have been proposed so

far in the literature to explain these types of models, in particular the black-

box ones, i.e. the ones which can be applied to any classification model. We

consider what has been done to realize systems which can help non-technical

users of these models to understand and trust (or mistrust when it is the

case) them.

Among the different techniques, we focus in particular on the use of the

concept of Shapley values, which originally comes from game theory, as pro-

posed by Lundberg and Lee [7], and on the idea of counterfactual expla-

nations. These tools will be the base for generating textual explanations in

natural language, which is the main innovative contribution of this work. We

initially consider a specific dataset in the medical domain, for which we gen-

erate in an automatic way the textual explanations. This dataset, with the

automatically-generated explanations, will be the training set for a language

model whose purpose is to generate textual explanations in the most natural

way possible. Later we apply the same methodology on another dataset,

comparing the results.

Finally, we embed these explanations in a web interface which is also used

to collect feedbacks from the users about the system and the explanations it

proposes.

Future research has to be made to extend the interaction with the users.

We propose a first prototype of a question-answering system, currently work-

ing only on very specific types of questions and that could be extended, until

the ideal point of having a fully conversational explainer.
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1.3 Document structure

The document is structured as follows:

• In Chapter 2 we present some background knowledge about the topics

of this thesis and the state of the art, showing the main techniques for

explainable AI and the researches which have been conducted about

the needs of the users in terms of explanations for machine learning

models.

• In Chapter 3 we present the research questions we want to address.

• In Chapter 4 we present the datasets we used in our work.

• In Chapter 5 we describe our approach, with the models and the tech-

niques we used.

• In Chapter 6 we show the results of our experiments, including a sub-

jective evaluation obtained through a user study.

• In Chapter 7 we summarize the goals of this work, we discuss the

answers that we have found for the research questions presented in

Chapter 3 and the work which remains open.

.
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Chapter 2

Background & Related work

2.1 Machine & Deep Learning

We provide a brief introduction to the very large fields of Machine and Deep

Learning, whose basic knowledge is necessary to understand this work.

2.1.1 Machine Learning

Machine Learning (ML) can be considered a subset of the broader field of

Artificial Intelligence (AI), particularly focused on building algorithms which

can improve their performances with the experience and in particular which

learn from data [8]. Learning from data is the key point which makes machine

learning different from the so called “traditional” AI.

Traditional AI was mainly based on knowledge bases of rules and axioms

and exploited logical reasoning on these knowledge bases to produce its “in-

telligent” behaviour. Machine Learning instead bases its “intelligence” on

the data. There are three main subfields of machine learning, depending on

the type of data which are used:

1. supervised learning: it is based on the use of a training set, i.e. a set

of annotated examples, from which it can learn a function which can

be used to predict the labels for previously unseen data. Its main tasks

are regression, where the labels are continuous numbers (eg: predict

the income of a company), and classification, where the labels are dis-

crete numbers (eg: distinguish patients affected or not from a certain

7



8 Chapter 2. Background & Related work

disease).

2. unsupervised learning: it is based on a set of unlabelled data, its

main tasks are clustering, where the data are divided into groups on

the base of some kind of similarity (eg: customer segmentation), and

dimensionality reduction, where the number of features (i.e. character-

istics, properties) of the data are reduced to keep only the most relevant

ones.

3. reinforcement learning: an agent has to learn a policy which governs

its behaviour in a certain environment on the base of the positive or

negative rewards it receives from the environment after each action.

In this work we will deal with supervised learning and in particular with clas-

sifications tasks. There are many machine learning models for classification,

we will use some of them, in particular Logistic Regression, XGBoost and

Random Forest.

2.1.2 Deep Learning

The main limitation of Machine Learning is related to the difficulty in finding

the best features which need to be given as input to the machine learning

model. In many cases the properties of the data that we can directly ac-

cess, i.e. their representation, are not necessarily the best direct input for a

machine learning model. There are various algorithms which allow to select

among the available features, but for many tasks the right features need to

be derived somehow from the raw data representation in non trivial ways.

An example where this is very simple to see are images: the pixels, which are

the raw representation of the input, are not particularly meaningful in them-

selves, but instead there are portions of the image which can be meaningful,

depending on the task, and it is quite hard to identify them.

Deep Learning solves this problem, providing models which are able to

work with the raw representation of the data and to solve complex tasks.

These models are called Artificial Neural Networks (ANN), or simply

Neural Networks (NN). A Neural Network is a mathematical model which

can be represented as a graph. There are different types of neural networks,
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in this section we describe only the simplest ones, Feed Forward Neural Net-

works (FFNN), but the idea behind more complex models (CNN, RNN,, ..)

is similar, with some extensions. Later we will briefly dicuss about RNNs

and a more advanced neural network model called Transformer.

Neural Networks are mainly used in a supervised learning way, even if

there are also unsupervised learning tasks which can be performed with neu-

ral networks. A FFNN is composed of a series of layers, in particular the first

one is the input layer and the last one is the output layer, while the others

are called hidden layers. Each of these layers has a certain number of units,

called neurons. Each neuron receives all the outputs of the neurons of the

previous layers, each of them with a certain weight. These weights are the

key components of the network, they are what is learnt during the training

phase. The i-th neuron in the j-th level computes its output as:

h
(j)
i (

K∑
k=0

w
(j−1)
ki · h(j−1)k )

where h
(j)
i is a function called activation function of the i-th neuron of

the j-th layer, K is the number of neurons of the previous layer, h
(j−1)
k is

the output of the k-th neuron of the previous layer and w
(j−1)
ki is the weight

connecting the k-th neuron of layer (j − 1) to the i-th neuron of layer j.

An example of a simple FFNN with a single hidden layer is presented in

Figure 2.1. A neural network for binary classification has typically a single

output, which corresponds to the probability of the “positive” class, while in

case of k-classes classification it has k outputs, one for each class, indicating

the probability of that specific class. For regression tasks they have an output

for each variable which has to be predicted.

The popularity of deep learning has exploded in the last decade, but its

origins can be traced back to the the 1950s, when Rosenblatt proposed a

model called Perceptron [9], the first model of an artificial neuron. This

model was still quite limited and it was only with the development of the

backpropagation algorithm [10] that it became possible to effectively use neu-

ral networks. An important result is the Universal Approximation Theorem,

firstly stated by Hornik et al. [11] but later extended, whose meaning is ba-

sically that for any function there is a FFNN which can approximate it with



10 Chapter 2. Background & Related work

Figure 2.1: A simple FFNN 1

any desidered degree of accuracy [12].

The factors which have allowed the recent success of deep learning are

mainly two:

1. the availability of big data: in the last decade the enormous amount

of electronic devices and services that have widely spread all over the

world has allowed to collect very large quantity of data, which are

fundamental for the performances of deep learning models

2. the increased computational capacity, in particular in term of GPUs

(Graphic Processing Units), which are necessary to train deep neural

networks in a reasonable amount of time

2.2 Language Models

Language models are the base of Natural Language Processing (NLP), their

purpose is to represent the joint probability of sequences of words. Since the

number of possible word sequences is enormous, traditional language models

are based on the concept of n-gram: they model the conditional probability

of a word given the n − 1 previous words. Considering that the number of

words in a language can be in the order of millions (106), a 10-gram would

1By Cburnett - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/

index.php?curid=1496812

https://commons.wikimedia.org/w/index.php?curid=1496812
https://commons.wikimedia.org/w/index.php?curid=1496812
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have to learn (106)10 probabilities, which is clearly unfeasible. Because of

this n is typically restricted to 2 or at most 3, even if this implies a stronger

assumption which reduces the performances.

To overcome the curse of dimensionality that is present in the simple bag

of words representation (where each words is represented with a binary vec-

tor whose length is the length of the dictionary), neural networks have been

used to develop a new type of word representations called word embeddings.

The idea behind these representations is to train a neural network to predict

the next word probability given the previous n-1 words (or the n-1 surround-

ing words) and then use the internal representation of the input obtained

in an hidden layer as a representation for the missing word. This allows a

continuous representation which takes into account the context in which the

word is present and which allows similar words to have similar representa-

tions. There are many word embeddings, the original idea is from Bengio

et al. [13] but the first successful implementation is Google’s Word2Vec [14].

2.2.1 Recurrent Neural Networks

When dealing with certain tasks it can be useful to have the ability of keeping

a memory of the previous input, i.e. a state. This is the reason behind

recurrent neural networks (RNN). RNNs are neural networks where there

are also recurrent connections : the neurons can receive in input also their

output at the previous step. Figure 2.2 shows the RNN architecture.

This can be useful in tasks like machine translation, where the input are

the various words of a sentence and we want to produce a translation of the

input in an another language: every output word is not only related to the

corresponding input word, but to the entire input sentence. In general all the

tasks where there is a sequence of inputs which affect the output can obtain

benefit by the concept of RNNs. Unluckily RNNs suffer of two technical

problems called vanishing and exploding gradient, which limited their use

until a new architecture called LSTM was proposed [15].

2.2.2 Transformer architecture

The transformer architecture [16] is an architecture which has been able to

overcome the limitations of memory-based architectures like LSTM, where
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Figure 2.2: A simple RNN on the left. The same RNN unfolded over time on the right2

.

it was hard to have parallelization during the training due to the sequential

nature of the model. Transformers-based models, like BERT [17] and GPT-

2 [6], are now the state of the art for many NLP tasks.

The transformer is composed of a stack of modules called encoders and

another stack of modules called decoders. Both types of modules are based

on the concept of attention, which was already introduced in LSTM and al-

lows to focus on specific portions of the input. The absence of the recurrent

connections could lose the order of the elements in the input sequence, but

this is avoided thanks to a positional encoding, which alters the input em-

bedding so to encode also the position of each element in the sequence. A

schema of the transformer architecture is in Figure 2.3.

2.2.3 GPT-2

GPT-2 [6] is a transformer-based language model which has demonstrated the

power of unsupervised training over an enormous corpus of text. The model

has been trained in a unsupervised way with 40 GB of text crawled from the

web following links from Reddit posts and it has been able to achieve relevant

results in many tasks, among which there are machine translation, question

answering and summarization, improving the state of the art in some of

them, without any fine-tuning. It is able to generate text that is often hard

to distinguish from human-written. Moreover, it has been used also as a

2By fdeloche - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/

index.php?curid=60109157

https://commons.wikimedia.org/w/index.php?curid=60109157
https://commons.wikimedia.org/w/index.php?curid=60109157
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Figure 2.3: The transformer architecture (from [16])
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base for more specific tasks, with fine tuning, like in [18] and [19]. Open-AI

has also develop its successor, GPT-3 [20]. Its architecture is very similar to

the one of GPT-2, but the size is increased, reaching 175 billions parameters

(vs 1.5 billions of GPT-2). Its source code has been exclusively licensed

to Microsoft and its not currently available, it can only be used via APIs,

previous authorization. This is the first reason why we use GPT-2, the second

one are the difficulties which arise in terms of computational requirements

for fine-tuning but also for doing inference with such large models.

2.3 eXplainable AI

As we have mentioned in Chapter 1, most of machine learning models and all

deep learning models are very hard to interpret and explain to a user. They

are typically seen as magic black-boxes which receive an input and produce

an output, without any information of what happens in the middle, and this

lead to a field of research called eXplainable AI.

Figure 2.4: xAI pipeline (modified from [21])

2.3.1 Origin of xAI

The field of explainable AI (xAI in short) has mainly developed in the last

decade, even if the idea of explainability was already present since the first

steps of AI in the previous century.

The first AI-based systems, called expert systems, were mainly based on

logical inference, starting from a knowledge base of axioms and rules. Thanks

to this structure they were inherently explainable: it was enough to follow the

reasoning procedure of the system and show it. Clearly there were different
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types of questions that could be asked to get explanations and it was not

always immediate to reconduct them to the reasoning of the system, but

there were proposals to make this simpler, like the EES Framework of Neches

et al. [22].

Another interesting example of explainability in a more recent expert

system is the one included in the Full Spectrum Command (FSC) simulator,

a kind of RTS videogame used to train US soldiers [23]. The behaviour

of the AI-controlled player is based on a series of rules derived from the

military tactics, with some simplifications. After each mission the game

includes a debriefing phase were the xAI module comes into play. During the

mission all the relevant events are recorded, then the user can ask questions

from a predefined set and the recorded events, together with the rules in the

knowledge base, allow to answer them. It is worth noting that the predefined

questions have been selected so to avoid to disclose to the user some tactics

followed by the AI which does not follow the US Army doctrine. The paper

about this system is also the first one where the term eXplainable AI has

been used, although it still required a few years to become a popular topic.

2.3.2 Development of xAI

The big increase of attention about xAI is related to the development of

Machine and Deep Learning, whose models are mainly black-boxes and so

their explanation is much more challenging. There are a few exceptions, like

decision trees, where the structure of the tree can provide an explanation of

the output, or linear regression, where the coefficients of the features can be

used to determine their effect on the output. Apart from these, the majority

of the models are not inherently explainable. In general there is a tradeoff

between interpretability and accuracy, depicted in Figure 2.5 . We can think

for instance to all the ensamble methods or to neural networks: they are far

too complex to explain their internal behaviour to a user. Because of this,

new methods have been developed by xAI researchers, to be able to provide

insights about their behaviour.

There are different types of methods which have been developed in xAI.

A first distinction has to be made between global and local explanations: a

global explanation is a general explanation of the behaviour of the model with

respect to the input it receives, while a local explanation is an explanation
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Figure 2.5: Interpretability vs Accuracy tradeoff in AI (from [2])

of the reasons behind the output for a specific input. Another distinction

has to be made on the base of the type of explanation. The majority of

xAI techniques are feature attribution methods, i.e. they assign to each

input feature a weight, possibly negative, which is somehow related to its

effect on the output. Other techniques instead are based on examples: they

explain the reasons behind a prediction providing similar examples from the

dataset which are classified in the same way or in the opposite way. Then

there are methods which produce plots from which a user can derive some

insights about the reasoning that is done by the model. In the next sections

we present the most important techniques, some of which are the base for

this work.

2.3.3 Feature attribution methods

LIME (Local Interpretable Model-agnostic Explanations)

LIME is a technique proposed by Ribeiro et al. in [21] to explain every type

of ML model building a local surrogate of the model. For a given data
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point LIME builds a local linear model around it and then this local linear

model is used to produce the explanation since, as we previously mentioned,

it is a simple model which is inherently explainable. LIME is based on a

binary representation of data points and from this representation it samples

other data points by perturbing the original one. It labels all these points

with the original model output for them and then it fits a local linear model

by optimizing the following type of expression, where f is the original model,

g is its local approximation, L is a loss function, π is a proximity measure

between the points and Ω is a measure of the complexity of the model, like

the number of non zero-weights:

argmin
g∈G

L(f, g, π) + Ω(g)

In particular they use a K-Lasso, where K is a fixed number of features

they want to obtain. This procedure selects the K features with Lasso and

then it fits a linear model with these K features, using a weighted least-

squares, where the weights are given by π, which is an exponential kernel

defined on a distance function which depends from the domain. Figure 2.6

depicts the local approximation made by LIME. LIME can be easily applied

also to text and images. This method is a local explanation technique, but

its authors propose also a procedure to derive a global explanation. They

consider the local explanation on each point of the dataset and they use a

particular pick procedure to select the B best features which explain more

instances.

Gradient-based methods and DeepLIFT

DeepLIFT (Deep Learning Important Features) is a technique proposed by

Shrikumar et al. in [24], which is an evolution of a series of techniques which

are all based on the concept of gradient and that can be applied to neural

networks [25] [26] [27].

The idea of this class of methods is to consider the gradient of the output

of a neural network with respect to the various input features and conse-

quently determine their importance for the prediction of the current sample.

Despite the simplicity of this idea, there are different problems which arise in

its implementation. In particular the backpropagation through a RELU can
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Figure 2.6: An example of the application of LIME. The big red cross is the point to be

explained, the smaller points are its perturbations used to fit the local linear model which

is represented by the dashed line. In the background there is the space partitioning of the

model which is being explained. (from [21])

be managed in different ways: zeroing it when the input to the RELU in the

forward pass was negative, zeroing it when the input in the backward pass

is negative, or both. These approaches are consequently unable to highlight

inputs which have a negative contribution to the output. Moreover, they

suffer of problems when there is a discontinuity in the gradient and when

there is a situation of saturation of a signal.

The approach of DeepLIFT is slightly different: it defines for each target

neuron a reference output t and then it computes the difference ∆t between

the current output and the reference output. The weights of the inputs are

such that their sum equals ∆t. The main advantages of this method is that

the weights assigned to the inputs remain continuous and that they can have

non-zero weights even when the gradient is zero. The reference output is

defined as the output obtained from the reference input. Consequently the

definition of reference input is the critical point.

In the paper the authors present some reference inputs for different datasets,

which are derived empirically comparing different possibilities. The absence
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of a way to automatically define this reference input is one of the main limi-

tation of this method. Moreover, it applies only to neural networks.

There are also gradient methods which can be applied to any classifier,

like [28] which uses Parzen windows to have an estimate of a local probability

function which can be derived, but it has still some limitations.

SHAP

SHAP (SHapley Additive Explanation) is a model-agnostic explanation method

proposed by Lundberg and Lee in [7]. It is an additive explanation method,

i.e. it satisfies the following property:

g(z′) = φ0 +
M∑
i=1

φiz
′
i

where the z′i are the simplified feature values (binary), φi is the weight, i.e.

the effect, of the simplified feature i, and g is an approximation of the model

f to be explained. The authors identify three reasonable properties which

can be asked to an additive feature attribution method:

1. Local Accuracy: f(x) = φ0 +
∑M

i=1 xiφi, i.e. g=f

2. Missingness: xi = 0 =⇒ φi = 0

3. Consistency: let fx(z
′) = f(hx(z

′)), where hx(z
′) is the mapping from

the simplified binary version z′ to the original version x, and let z′ \ i
the instance equal to z′ but with z′i = 0, then for any two models f and

f ′:

f ′x(z
′)− f ′x(z′ \ i) ≥ fx(z

′)− fx(z′ \ i) ∀z′ =⇒ φi(f
′, x) ≥ φi(f, x)

And there is a theorem which states that there is a unique solution which

satisfies all these three properties, which is the following:

φi(f, x) =
∑
z′∈x′

z′!(M − |z′| − 1)!

M !
[fx(z

′)− fx(z′ \ i)]

where the sum is over all the possible z′ which are subset of the non-zero

entries of x′, |z′| denotes the number of non-zero entries in z′ and M is the
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number of features. In practice this considers the effect which is due to the

addition of a certain feature, averaged over all the possible feature orderings.

In fact, the contribution of a feature to the model output depends on the

order in which we consider the features.

This theorem is a central result in cooperative game theory and these

values assigned to the features (which in cooperative game theory would be

the players of a coalition) go under the name of Shapley values [29].

The main problem with this method is the computation of the Shapley

values, which is quite expansive applying the above formula. There are differ-

ent ways in which this computation can be approximated. In [30] Štrumbelj

and Kononenko propose the method described by Algorithm 1.

Algorithm 1 Algorithm for approximated Shapley values computation,

from [30]

φi(x) = 0

for 1 to m do

select at random a permutation O of the features

select at random w ∈ X
build b1 as a copy of x for the features which precede i in O and also

for i, while instead it is a copy of w for the other features

build b2 as a copy of x for the features which precede i in O, while

instead it is a copy of w for the other features

φi(x) = φi(x) + f(b1)− f(b2)

end for

φi(x) = φi(x)
m

Another possibility proposed by Lundberg and Lee is the so-called Kernel

SHAP. The idea behind this algorithm starts from the observation that the

equation which is minimized by LIME is the one of an additive model. The

choice of L, π and Ω made by LIME does not lead to the Shapley values,

but since the above mentioned theorem guarantees that there exists a unique

additive method which satisfies the mentioned properties and that method

is SHAP, there must be a choice of L, π and Ω which leads to the Shapley

values. It turns out that L can be choosen to be a squared loss and Ω can

be set to zero. Using the kernel below it becomes possible to compute the
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Shapley values by solving a weighted linear regression problem:

πx′(z
′) =

M − 1(
M
|z′|

)
|z′|(M − |z′|)

The approximation which is still present is related to the fact that most

models do not allow to have missing values in input, so there is the follow-

ing assumption f(zs) ≈ Ezs [f(z)] ≈ f(zs, E[zs]), where zs are the missing

features, which implies the feature independence and the model linearity.

There are also some model-specific approximations and it can be demon-

strated that DeepLIFT can be seen as a way to approximate Shapley values

in a neural network.

A comparison between LIME, SHAP and DeepLIFT made in [7] shows

that SHAP is the one which provides the highest consistency with human

intuition.

2.3.4 Counterfactuals

A completely different class of explanations are the example-based explana-

tions, where one (or more) samples are produced to justify the output of the

current sample. In particular an important class of methods of this type for

classification problems are the so called counterfactual explanations. A

counterfactual is a data point which is classified in a different way with re-

spect to the current sample, but it is not far from it. In particular, it should

be as near as possible. The definition of counterfactual is not exactly unique,

often these points must belong to the original dataset, but sometimes this

request is relaxed.

An introduction to counterfactuals is presented by Wachter et al. in [31].

They propose a comparison between Euclidean and Manhattan distance, in

the unnormalized, normalized with standard deviation and normalized with

MAD (Median Absolute Deviation) versions. They suggest the use of the

Manhattan distance (L1 norm), since it induces sparse solutions, where only

a few features change their value, with respect to the Euclidean distance. The

normalization is important to avoid the effect of features with larger values

and the use of MAD instead of standard deviation makes the procedure less

sensible to outliers. They consider counterfactuals as one of the best way to

provide explanations which can work with any model and can be understood
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by every user. They also discuss about the GDPR “right to explanation”,

mentioned in the European law with reference to all the automatic decision-

making systems. Even if the text of the law is not very clear and precise

and not legally binding about this topic, they consider counterfactuals as a

possible way to satisfy its requests.

Another proposal about counterfactuals has been done by Rathi [32]. He

proposes the use of SHAP (see 2.3.3) as a base for calculating counterfactu-

als. Given the class to which the counterfactual should belong, this method

computes the Shapley values of the current sample with respect to that class.

Then it considers the features which have negative Shapley values: these are

the ones which should be altered to obtain the desidered counterfactual class.

In particular, it considers a neighbourhood of the current sample and it tries

to modify subset of these features values, in the current data point, with the

values of the points in its neighbourhood, until it finds a mutation which is

predicted with the desired class. The author considers as a positive element

the fact this method is able to generate counterfactuals which are not present

in the original dataset, but this is a risk: it may generate points which are

not realistic. The mutation approach should limit this possibility, but it still

may happen.

Poyiadzi et al. present an algorithm for counterfactual generation called

FACE (Feasible and Actionable Counterfactual Explanations) [33]. They take

into account constraints which can be imposed on the variation of certain

features and they build a weighted graph of the dataset where the weights

depends on the constraints, on the distance and also on the density of the

path. They consider better counterfactuals the ones which can be reached

with a path of high density.

Depending on the application domain these considerations may be worth-

while or not. In particular, it depends on the purpose of the counterfactual

explanation: if we want to suggest to a user something s/he could change to

alter the prediction, then it makes sense to impose constraints on what can

be changed, but if instead we want just to give an (indirect) explanation of

the reasons behind the current output, this is not necessary.

Another technique to generate counterfactuals is proposed by Looveren

and Klaise [34]. They propose to find counterfactuals by minimizing a func-
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tion of the following form:

L = c · Lpred + β · L1 + L2 + LAE + LPROTO

where

• c·Lpred is related to the difference between the prediction of the original

class and the counterfactual class for the counterfactual point

• β ·L1 +L2 is related to the distance between the original point and the

counterfactual

• LAE is related to an autoencoder reconstruction error, to penalize coun-

terfactuals out of the original distribution

• LPROTO is related to the distance between the counterfactual and a

prototype instance of the counterfactual class

They also propose to remove the Lpred term, speeding up the computation,

since the LPROTO can already lead the counterfactual to belong to the ap-

propriate class.

The main limitation of this algorithm is the need for an autoencoder

trained on the dataset to compute the reconstruction error, even if the au-

thors propose also an alternative method based on kd-trees.

They also propose two interpretability measures for counterfactuals, based

on reconstruction errors of different autoencoders, but they are not used for

a direct comparison with other counterfactual generation methods.

2.3.5 Users’ needs

A key question to ask when dealing with explainable AI is: what are users’

needs? This question is fundamental and it implies another question: who

are xAI’s users? The answer to the latter is not unique, it depends from the

specific application or use case. It can be that explanations are directly used

by model developers and testers to help them in understanding the behaviour

of their models, or it can be that explanations are used by end users of an

application, or both. Once the answer to this question has been defined, then

it becomes possible to find the answer to the first question and consequently

determine the type of explanations and the way in which they are provided.
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It is clear that certain types of explanations, like feature attribution methods,

can be very useful for model developers which can easily understand them,

but it may be that they are not enough clear for a non-technical user. One

of the current limitations of xAI is that many of its methods have been

developed having in mind only machine learning developers.

Adadi and Berrada [35] distinguish four different motivations which can

drive explanations:

1. justify: this is mainly referred to end-users of a system, which need to

understand the reasons behind the output

2. control: this refers to model debugging by developers

3. development: this refers to the improvement of the model by devel-

opers

4. discover: this refers to the the possibility of discovering interesting

rules and patterns which are learnt by the model and that are previously

unknown

Ribera and Lapedriza [36] support a user-centric approach to xAI, with

different types of explanations and evaluations, depending on the users to

which the explanations are produced for. Their considerations are summa-

rized in Figure 2.7. We can note the presence of counterfactuals and plain

language for lay users.

Liao et al. [37] try to identify user needs in term of explainability by

asking not directly to AI end-users, but to UX and design practitioners. The

idea is that there is currently a gap between algorithmic xAI and what can

be usefully presented to an end-user, and these “men in the middle” could

help to identify needs and solutions. Among the main highlights they found

in their interviews there are the following:

• numerical metrics, like the confidence of a prediction or the accuracy

of a classifier, are hard to interpret for many users, they do not know

if a certain number means they can trust the system or not. Despite

this, an explanation system should try to inform the user about the

limitations in the abilities of the AI system.
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Figure 2.7: User-centric explanations proposed in [36]

• there is the need for a balance between providing the users with enough

information to trust the system and not overwhelming them

• explanations should be interactive, in a kind of conversation where

the users can ask for more information depending on their needs and

their prior knowledge

• users are not particularly interesting in global explanations about how

the system works, they are more interested in local explanations for

a specific input

• what-if and counterfactuals explanations can be a valuable tool to

help the users

Miller [38] presents an interesting research on xAI characteristics and

needs from the social sciences point of view. A first highlight is that explana-

tions must be constrastive, i.e. they should not simply tell why something
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happened but also why something else did not happen. Even if the users do

not explicitly ask for this, they always have it in mind and they appreciate

this kind of explanations. We can see a clear reference to the counterfactuals

that we presented in Section 2.3.4. Another point is that often the reasons

behind a result can be many, but people are used to consider a small subset of

them, selected according to certain criteria. These criteria are not uniquely

determined, but in general necessary conditions, or necessary and sufficient

when they exist, are preferred, even if also the robustness, i.e. the persistency

of the result if that factor is kept unchanged despite of the rest, is somehow

taken into consideration. Miller also highlights the importance of the way in

which explanations are communicated: they should follow a conversational

model, which does not necessarily mean exactly a chatbot-like conversation,

but a way of interacting with them which allows the user to explore and get

further information if s/he finds this useful.

The idea of a conversational model is also present in the proposal of

Dazeley et al. [39]. They believe that a strong explanation system should be

based on a conversation between the system and the users, where the system

should first of all identify the type of user that it is interacting with and

then start to answer his/her questions with high-level explanations, which

can be further detailed with more information until the user seems to be

satisfied. While this proposal is certainly interesting, there is no real clue on

how this should be implemented, and not even examples of explanations at

the different levels or of the different types of users which could be identified

by the system.

An interesting analysis on the needs of AI users in the medical domain

is presented in [40]. The authors analyze the past and the present of medical

AI and consider the possible future scenarios, highlighting the high level of

disillusion which is present among clinicians when speaking about AI. While

the rest of the world emphasizes the recent progresses of AI, clinicians have

already seen the results of the first (expert systems) and the second (machine

learning) era of AI and they have found them too poor, in the first case, or

too opaque, in the second one. Doctors (and patients) cannot use black

box models, they need to trust the models and to check their behaviour,

understanding the reasons behind it, from both an ethical and a legal point

of view. There are only two possible solutions: the use of white-box models,



2.3. eXplainable AI 27

whose performances have never been particularly good, or the use of post-

hoc explanations on black-box models. They argue that AI systems should

not be validated only in terms of performance metrics like accuracy or recall,

but in terms of “descriptive accuracy”, i.e. ability to explain themselves, and

“relevancy” of their explanations with respect to users’ needs.

2.3.6 Textual explanations

There is not much research work related to systems able to produce textual

explanations. A position paper about the importance of textual explana-

tions, together with visual explanations, is [41]. Sevastjanova et al. discuss

the importance of text as an additional and complementary element to visual

explanations, they consider the different ways in which textual explanations

could be provided (eg: on demand, on user exploration of certain details, as a

repetition of graphically encoded information or as a summary of them or as

source of additional information) and they highlight the importance of inter-

active explanations, possibly including dialogue systems. They also mention

counterfactual elements as something which could be easily integrated in

textual explanations.

An interesting attempt is the one of Kim et al. [42] which developed a

system to produce textual explanations for the behaviour of self-driving cars.

Despite the good idea, the system seems more similar to a video captioning

system than a real explanation system. In their system the car controller

receives as input the video from the car camera and it produces as output

the signals which control the vehicle behaviour, together with the computed

attention over the video frames, then both the car controller output and input

are given as input to the explainer, using two different attention models for

the explainer, which are compared in the paper. The main problem of this

approach is the training of the explainer: it is trained with data annotated

by users, which receive video frames from the car camera and are asked to

write a description of the car behaviour and a reason for it. In this way

they are basically describing a possible reasonable motivation for a certain

car behaviour, but they do not have any information about the reasoning of

the self-driving car. There is no evidence that this textual explanations are

really correct, and in the human-evaluation procedure is not exactly clear if

and how the judges use the attention maps.
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Another work on textual explanations has been produced by Hendricks

et al. [43] in the context of image classification. They train an LSTM-based

model to produce textual explanations for an image classifier, starting with

a dataset of bird images, image class labels and image textual descriptions

(which are not explanations). In this way the LSTM model produces a text

which is actually a description, not really an explanation, but they force this

description to highlight the relevant elements which determined the image

label by using two particular loss functions for the explainer: a discriminative

loss function and a relevance loss function. The latter favors words which are

associated to that class in the ground truth of descriptions, while the first

one favors sentences which are relevant to discriminate between classes, and

so potentially to explain that class. In particular, this is done by using an

LSTM-based classifier, which predicts the class on the base of a description,

and using its output to compute this loss: a discriminative sentence should

produce a correct class label on the LSTM classifier. This LSTM classifier

is trained on the ground truth sentences, and this is a first weakness, since

these sentences are not necessarily discriminative and in fact it achieves an

accuracy of 22%. Another weakness is related to the evaluation. In the

automatic evaluation they measure the similarity of an output sentence with

the ground truth descriptions of the images belonging to the same class, to

assess the class relevance of the sentence. In the human-evaluation, they ask

to evaluate the explanations produced by different models, considering how

they think they are correct in highlighting the discriminative elements for

that class. In both the automatic and the human-based evaluation there is no

real assessment of a correspondence between the elements highlighted by the

textual explanation and the ones really used by the the image classifier. An

explanation should explain the reasons which determine the model output,

not the reasons which would determine the “human output”, since there is no

guarantee of a correspondence between the two. Apart from the evaluation,

the explanation generation procedure seems to suffer of the same problem,

there is not a strong connection between the classifier reasoning and the

explainer training. Another consideration is that this system has been trained

and tested on bird images, with classes corresponding to different bird species.

In this case there could be (but this should be verified) a link between image

description and classifier’s output explanation, but this may be much less
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true for other datasets, where images contains more elements, which may be

absent in a generic description but may be crucial for a classifier.

2.3.7 Interactive explanations

We have found two examples of chatbots for explanations of machine learning

models. The first one is a prototype developed by Kuźba and Biecek [44]

using the Google’s Dialogflow framework. They train a classifier on a dataset

and they initially train the dialogue system with a small set of (question,

intent) pairs. Then they collect additional data through a user study and

they retrain it. The system is basically able to provide only three types of

interactions:

1. build of a sample, predicting its output

2. breakdown plots in response to feature importance questions

3. ceteris paribus plots in response to what-if questions

The main limitation is the fact that the system answers mainly with plots

to users questions, and only with two types of plots. The demo which is

currently available online seems to have problems in understanding user’s

sentences, even simple ones like My age is 20 or I am 20 years old. The main

purpose of their work is in fact to discover the users’ needs, they observed

that the main types of questions asked by the users are why, what-if and

feature importance questions, which again confirm the analysis of Section

2.3.5.

Another attempt is the one of Werner [45], which developed a first proto-

type of a conversational interface called ERIC (Rule-based Interactive Con-

versational agent for Explainable ai). After having collected the user data it

can offer the following types of explanations:

1. textual rules corresponding to the boundaries of the classifier in the

feature space

2. SHAP force plots

3. ceteris paribus plots
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Figure 2.8: Screenshot from the ERIC system

The system computes a similarity between the user sentence and a set of

predefined sentences to recognize the rule to apply. It avoids the problem

of entity and values recognition through a very rigid series of questions that

it asks so that the user has to answer with a specific value (eg: What is

your gender? ) and suggesting to the user the possible valid answers on the

interface. A screenshot from the system is in Figure 2.8. The main limitations

are the interaction, which is very rigid, and again the explanations that it

offers, which are not easy to understand for non-technical users.

2.3.8 Interfaces for xAI

In [46] Liao et al., continuing the work started in [37], propose a question-

driven process for the development of an xAI system, considering a real use

case scenario of a system for the identification of patients at high risk of

adverse events in a hospital. Their development process is driven by the

users’ questions, traced back to the ones they identified in their previous

work. These questions can be grouped in 4 categories:

1. Why

2. How to be that, i.e. what could change the outcome

3. Information on the training data
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Figure 2.9: The interface shown in [46]

4. Information on specific conditions on which the system may have lower

performances

The resulting interface is shown in Figure 2.9. They do not detail exactly how

the various components are built (eg: which feature importance measure is

used?) because the system is proprietary. They collected positive feedbacks

about the process from UX Designers, but there is no mention of feedbacks

from end users.

The interface that we develop in our work has some elements in common

with the one shown in this work, but also important differences (see Section

5.4).

There are various tools and libraries which have been released with the

purpose of offering a ready-to-use interface to explain ML models. A first

example is Shapash3, whose interface is in Figure 2.10. Another one is Ex-

plainer Dashboard4, for which we show a screenshot in Figure 2.11. Both

3https://github.com/MAIF/shapash
4https://github.com/oegedijk/explainerdashboard

https://github.com/MAIF/shapash
https://github.com/oegedijk/explainerdashboard
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Figure 2.10: The interface of Shapash
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Figure 2.11: The interface of Explainer Dashboard
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these two tools can be for sure useful instruments for an xAI practitioner

to better understand how a model is working, but they cannot be a tool for

an end user. They are basically a collection of plots which can show many

different aspects of the model and a non-technical user may be more con-

fused than helped by this kind of visualization. They lack a clear and simple

explanation of what is going on during a model prediction. Some of their

elements can be useful, but they should be provided to the user in a simpler

way, with additional explanations and possibly without showing everything

directly, but keeping some elements on demand.
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Research questions

The purpose of this work is to answer the following research questions:

1. Is it possible to produce textual explanations for a black-box classifier

using a generative language model?

Many systems are now based on machine/deep learning classifiers, but

users need to have an understanding of what they are doing to fully

exploit their power. They need to trust these black-box systems and

they also need to understand when and why they are making mistakes.

The problem of explainability in AI is an active field of research and

many techniques have been proposed in the last years, but no one,

to the extent of our knowledge, produces an explanation in natural

language which can be easily understood by a user, with a generative

model like GPT-2. Since its release GPT-2 has been a revolutionary

tool in NLP and we believe it has still potential which has not been

fully exploited. The construction of a system of this type opens other

non trivial questions:

(a) What should the basis of these textual explanations?

(b) How can we build a dataset with these explanations to train the

generative model?

(c) What kind of input should be given to the generative model?

2. How can we evaluate explanations in natural language?
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Given an explanation in natural language, it is non-trivial to define an

appropriate evaluation metric. On the one side, correctness, clearness

and completeness may seem to be the most relevant properties, but

they are hard to measure in an automatic way. On the other side,

typical numerical metrics used in NLP may not be able to capture

relevant properties.

3. Is it possible to allow the users to interact with a natural language

explainer?

A user may not be fully satisfied by a specific explanation, s/he may

want to ask something more to understand better the reasons behind

the output s/he sees. It seems reasonable that a perfect explanation

system would have to allow its users to interact with it.

4. Which elements of an interface can help users to understand the be-

haviour of a black-box classifier?

There are many elements that can be shown when speaking about a

classifier and a dataset. Which ones are useful for a user, especially

a non-technical user, to understand better the data and the model?

Textual explanations may be a key component, but not necessarily the

only one.
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Datasets

4.1 MedDialog dataset

The MedDialog dataset [47] consists of a set of 3.4 million dialogues between

patients and doctors in Chinese language and of a set of 260,000 dialogues

between patients and doctors in English language. We consider only the En-

glish subset, since we are interested in training models which speak English.

To our best knowledge it is the largest dataset of medical dialogues in En-

glish. This dataset is used for a pre-training of our language model, before

training it on the explanations dataset that we automatically generate and

augment. In the same way it is used to pre-train the language model for the

Q&A system.

4.2 Cardiovascular disease dataset

Our system aims to explain the output of black-box classifiers on datasets

with numerical and categorical features. The first dataset that we select

for our experiments is a cardiovascular disease dataset freely available on

Kaggle1. This dataset is originally composed of 70,000 samples, with 11

features and a binary target, described in Table 4.1.

We apply some preprocessing to this dataset:

1. remove samples where systolic blood pressure is outside the range [80-

250]

1https://www.kaggle.com/sulianova/cardiovascular-disease-dataset/

https://www.kaggle.com/sulianova/cardiovascular-disease-dataset/
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Feature Type Categories

ap lo Integer

ap hi Integer

age (days) Integer

height (cm) Integer

weight (kg) Floating Point

gender Categorical Male, Female

cholesterol Categorical Normal, Above Normal, Well Above Normal

glucose Categorical Normal, Above Normal, Well Above Normal

smoke Categorical Yes, No

alcohol Categorical Yes, No

physical activity Categorical Yes, No

cardio Binary output Cardiovascular disease, No cardiovascular disease

Table 4.1: Structure of the cardiovascular disease dataset

2. remove samples where diastolic blood pressure is outside the range [40-

120]

3. convert age in years (as floating point)

4. replace weight and height with BMI (BMI = weight(kg)/height(m)2)

5. remove samples where BMI is outside the range [5-50]

The ranges which have have been used are quite large on purpose: we wanted

to keep all the meaningful values, even if they are outliers, since they could

be interesting to explain. We removed only those values which are clearly

due to errors in measurements or reporting. The conversion of age in years

makes it easier to be understood by a user, without loosing information.

The replacement of weight and height with the BMI is done because this is

a more reasonable element to determine the risk of cardiovascular disease for

a patient than the height or weight alone. This may not be a problem for a

good classifier, but again this makes the results easier to be interpreted by a

user.

After these operations the dataset contains 68,407 samples, almost per-

fectly balanced between the two classes.
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Feature Type

Age Integer

Pregnancies Integer

Glucose Integer

Blood Pressure (diastolic) Integer

Skin Thickness (mm) Integer

Insulin (U/ml) Integer

BMI Decimal

Diabetes Pedigree Function Decimal

Outcome Binary output

Table 4.2: Structure of the Pima diabetes dataset

4.3 Pima diabetes dataset

The second dataset that we consider, to understand the generalization ca-

pabilities of our models, is the Pima Diabetes dataset2. It is again a binary

classification dataset, related to the prediction of diabetes. It is much smaller

than the cardiovascular disease dataset, containing 768 samples. The data

are all related to the Pima indian heritage, from which the name of the

dataset. Its structure is described in Table 4.2. The diabetes pedigree func-

tion is a value related to the familiarity of diabetes, so that the higher it is

the higher is the risk of diabetes.

We apply some preprocessing, following the same rationale of the cardio

dataset preprocessing:

1. remove samples where insulin is higher than 400

2. remove samples where diastolic blood pressure is outside the range [40-

120]

3. remove samples where BMI is higher than 50

4. replace the missing values, present in various columns, with the median

of their column

After these operations the dataset contains 737 samples.

2https://www.kaggle.com/uciml/pima-indians-diabetes-database
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Chapter 5

Approach

In this chapter we explain in detail our approach for the generation of textual

explanations and for the Q&A system. In addition, we show our interface,

which is also used for the user study presented in the next chapter. In

Section 5.1 we show the classification models we have considered. They are

the models that we want to explain with our system. In Section 5.2 we

detail the different types of textual explanations that we have progressively

considered and how we have built a model for their generation, including

the construction of the training set and the input encoding. In Section 5.3

we discuss the development of the Q&A model, with the construction of its

training set and its input and output formats. Finally, in Section 5.4 we

show our interface, discussing the main elements which compose it.

5.1 Classifiers

We use different classifiers, all treated as black-box models by our explanation

system, to demonstrate that our approach works independently from the

underlying model. In particular, we consider the following classifiers:

• XGBoost

• Random Forest

• Logistic Regression

• A Feed Forward Neural Network with 2 hidden layers and a sig-

moidal output
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Figure 5.1: Schema of the architecture to train the textual explanations model

Their results are compared in Chapter 6, but we consider them all since the

focus of this work is the ability to explain them, even when they are wrong,

so that a user can understand it. Our system can work with any classifier,

in particular our demo can work with any model respecting the Scikit-learn

interface1. For neural networks there are wrappers like the KerasClassifier

that we have used.

5.2 Explanations

A schema of the architecture used in the training of our explanation model

is in Figure 5.1. The main purpose of our system is to produce textual

explanations with a generative language model and this requires a dataset of

samples and associated textual explanations to train the language model. A

dataset of this type does not exist and this is the first challenge we have to

face.

The first point to consider is how to define the textual explanations.

What should they contain? On what basis should they be formulated? There

are different possibilities, related to the the research that has been done so

far in the field of xAI. Initially, in the first version of our explainer, we

decide to focus on simple explanations which show to the user which are

the most important features that determine the output for the sample. This

means that the textual explanations have to be based on some measure of the

importance of the features for the specific sample. Which measure should we

1https://scikit-learn.org/stable/developers/develop.html

https://scikit-learn.org/stable/developers/develop.html
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use? There are again different possibilities, focusing on the model-agnostic

ones we can consider LIME , SHAP or the approach of Baehrens et al. [28].

We decide to use SHAP because of its solid theoretical guarantees, already

mentioned in Section 2.3.3. We use the Dalex python library [48] to compute

the Shapley values. Among the various methods to compute the Shapley

values they use an approximation similar to the one of [30].

For a given sample and a classifier we compute the Shapley values, then

we consider the three features with the highest positive Shapley values (in

rare cases there may be only two or one) as a base for our textual expla-

nations. After the first basic version, we expand it progressively, including

more information:

• Version 1: only the most relevant features

eg: The prediction of disease is determined by the systolic blood pressure

(140) and by fact that he is a smoker. The BMI (29.3) also contributes

to the result.

• Version 2: additional information on mean and standard deviation of

numerical features

eg: The prediction of disease is determined by the systolic blood pressure

(140), which is one standard deviation above the mean, and by the

fact that he is a smoker. The BMI (29.3), higher than the mean, also

contributes to the result.

• Version 3: includes also the description of a counterfactual

eg: The prediction of disease is determined by the systolic blood pressure

(140), which is one standard deviation above the mean, and by the

fact that he is a smoker. The BMI (29.3), higher than the mean, also

contributes to the result. If BMI was 27 and systolic blood pressure was

130, then the prediction would be no disease.

• Version 4: includes also an explanation related to the information

which comes from the ceteris paribus plot (see Section 5.4.3), a plot

showing how the result changes when we change only a certain feature

eg: The prediction of disease is determined by the systolic blood pressure

(140), which is one standard deviation above the mean and whose high
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values are associated with cardiovascular disease, and by the fact that

he is a smoker. The BMI (29.3), which is higher than the mean and

whose high values increase the likelihood of cardiovascular disease, also

contributes to the result. If BMI was 27 and systolic blood pressure was

130, then the prediction would be no disease.

5.2.1 A grammar for automatic generation

To build the training set for our generative language model we need to define

a grammar and some rules to compose explanations in an automatic way. We

start with a basic grammar for the first version of the explanations, which is

presented below, with {f} as a placeholder for the feature name and {v} as

a placeholder for the feature value:

S → F SN T

F → The main reason why P has been predicted as O1 is the EF

| The first element which influenced the prediction of

O2 is the EF

| The most relevant factor for the prediction of O2 is

the EF

SN → . In addition , the EF also has a significant influence

| . The EF is also an important element

| . Moreover, the EF plays an important role

T → and also the EF is relevant .

| , while the third factor is the EF.

| . Finally , the EF also influences the result .

P → he | she

O1 →having no cardiovascular disease | having a cardiovascular

disease

O2 →no cardiovascular disease | cardiovascular disease

EF → AGE | OTHER NUM | PA | ALCOHOL | GENDER |
SMOKING | GLUCOSE | CHOLESTEROL

AGE →fact that patient is elderly | fact that patient is young

| fact that the patient is middle−aged

PA → physical activity of the patient | inactivity of the

patient
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ALCOHOL →use of alcohol | absence of use of alcohol

SMOKING →fact that the patient is a smoker | fact that the

patient is not a smoker

GLUCOSE →{v} level of glucose

CHOLESTEROL →{v} level of cholesterol

OTHER NUM →value of {f} ({v})

Here the rules to select the production to apply in the various non-

terminal symbols are straightforward, based on the type of output, on the

feature name or on the feature value. For the first non-terminals instead

there is no fixed rule to follow, the selection is random.

For the second version of the explanations the previous grammar is ex-

panded in the following way, where {n std} corresponds to the number of

standard deviations that the value is above or below the mean:

OTHER NUM →value of {f} ({v}) DIST

DIST →, which is {n std} standard deviations above the mean,

| , which is {n std} standard deviations below the mean,

| , which is higher than the mean,

| , which is lower than the mean,

The third version requires a further expansion to include the information

about the counterfactual:

S → F SN T CF

CF →FIRST CF F CF F

FIRST CF F →If CF F DESC

CF F →, CF F DESC | ε
CF F DESC →ALCOHOL CF | SMOKE CF | GENDER CF |

OTHER CF

ALCOHOL CF →the patient drank alcohol | the patient did not

drink alcohol

SMOKE CF →the patient was a smoker | the patient was not a

smoker

GENDER CF →the patient was a male | the patient was a female

OTHER CF →{f} was {v}

Here only the features which are changed are shown, and in particular

for numerical features we highlight only the changes higher than 5% of the
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range, since very small changes may be irrelevant and due to the fact that

there is not another sample in the dataset which keeps the values precisely

identical.

For the last version we need to add a non terminal WHY after the de-

scription of each feature, which has the following productions:

WHY →, where high values of this attribute are associated with

a high probability of cardiovascular disease |
, where high values of this attribute are associated with a low

probability of cardiovascular disease |
, where low values of this attribute are associated with a high

probability of cardiovascular disease |
| , where low values of this attribute are associated

with a low probability of cardiovascular disease ,

| ε

In particular, to determine which of the above descriptions has to be used,

we pick the following points from the ceteris paribus plot: (min + range/6),

(min+2*range/6), (min - range/6), (min - 2*range/6). If the value is higher

than the mean we consider the last two points (high values), otherwise we

consider the first two (low values). If the value in the considered points

is higher than 0.7 we say that they are associated with high probability, if

instead it is lower than 0.4 we say they are associated with low probability.

At the end we consider also an extended version of the grammar, which

adds more variability to the text:

S → F SN T CF

F → The main reason why P has been predicted as O1 is the EF

| The first element which influenced the prediction of

O2 is the EF

| The most relevant factor for the prediction of O2 is

the EF

| The first motivation for the prediction of O2 is the

EF

| The O2 outcome is primarily determined by the EF

| The first cause determining the outcome of O2 is the

EF
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| The EF is a significant factor which determines the

outcome of O2

| Of primary importance for predicting O2 is the EF

| The EF is important for predicting O2

| The diagnosis of O2 for this patient is based on the EF

SN → . In addition , the EF also has a significant influence

| . The EF is also an important element

| . Moreover, the EF plays an important role

| . The second important element is the EF

| . Another important feature is the EF

| . Furthermore, the EF has a considerable effect

| . A second factor to consider is the EF

| . The EF also has a significant effect

| . The EF is another major factor

T → and also the EF is relevant .

| , while the third factor is the EF.

| . Finally , the EF also influences the result .

| and the EF also affects the prediction

| and the EF also contributes to the result

| . The result is also affected by the EF

| . The EF is third factor which determines the outcome

| . It is important to mention the EF as well

| . The EF is also worth mentioning among the causes

5.2.2 Generative language model

For the generative language model we use the well known GPT-2 model, a

transformer-based model which has been widely used in NLP since its release.

Considering that we want to focus on the medical domain we start to train it

on the MedDialogue-EN dataset, so to make it used to the medical language.

5.2.3 Input encoding

In Figure 5.2 we show the schema of the procedure with which our model

produces the textual explanation for a given sample, on a given classifier.

Given a sample and the related information, we need to encode it in some
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Figure 5.2: Schema of the procedure followed by our system to produce a textual expla-

nation

way. The input for the the GPT-2 model during the training is of the form:

encoded sample <END> textual explanation <|endoftext|>

while at inference time it receives an input of the form

encoded sample <END>

and it has to produce the corresponding textual explanation. There are

many possible ways in which we can encode the information which is needed

to produce the textual explanation, we consider different possibilities for the

first version of the explanations and we keep the one which performs better.

The following are the four candidates, shown via examples:

• Encoding 0: age=52; gender=Male; ap hi=100; ap lo=70; choles-

terol=Normal; gluc=Well Above Normal; smoke=No; alco=No; ac-

tive=Yes; BMI=40.1; pred=no disease; firstF=ap hi; secondF=ap lo;

thirdF=age;

where at the end we report the three most important features according

to the Shapley values

• Encoding 1: input=[age=52; gender=male; ap hi=100; ap lo=70;

cholesterol=normal; gluc=well above normal; smoke=no; alco=no; ac-
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tive=yes; BMI=40.1], prediction=no disease, explanation=[ap hi∼0.1;

ap lo∼0.2; age∼0.1]

where at the end we report the three most important features, together

with their Shapley values

• Encoding 2: input=[name=age, value=52, shap=0.1]; [name=gender,

value=male, shap=-0.0]; [name=ap hi, value=100, shap=0.2]; [name=ap lo,

value=70, shap=0.0]; [name=cholesterol, value=normal, shap=0.0]; [name=gluc,

value=well above normal, shap=0.0]; [name=smoke, value=no, shap=-

0.0]; [name=alco, value=no, shap=0.0]; [name=active, value=yes, shap=0.0];

[name=BMI, value=40,1, shap=0.0]; prediction=no disease; explana-

tion=[ap hi; ap lo; age]

• Encoding 3: input=[name=age, value=52, shap=0.1]; [name=gender,

value=male, shap=-0.0]; [name=ap hi, value=100, shap=0.2]; [name=ap lo,

value=70, shap=0.0];[name=cholesterol, value=1, shap=0.0]; [name=gluc,

value=3, shap=-0.0]; [name=smoke, value=false, shap=0.0]; [name=alco,

value=false, shap=0.0]; [name=active, value=true, shap=0.0]; [name=BMI,

value=40,1, shap=0.0]; prediction=no disease;

which is the same of Encoding 2 but without providing explicitly the

three most important features

We compare the results with the different encodings (see Chapter 6) and

then we keep Encoding 3.

For the second version of the explanations we need to encode also the infor-

mation about mean and standard deviation. We consider two alternatives:

• Encoding 3.1

[name=BMI, value=32, shap=0.1, mean=25, std=3.2] where we

include the mean and standard deviation for every numerical feature

• Encoding 3.2

[name=BMI, value=32, shap=0.1, mean=higher, std=2] where we

include an indication of the fact the sample is below or above or near

the mean and we include directly the number of standard deviations it

is above/below the mean, for every numerical feature
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The results of the experiments make us choose the first one.

In the third version we need to encode also the counterfactual (see Section

5.2.4 for details on its computation), so we modify Encoding 3.1 by adding

a description of the relevant changes that are present in the counterfactual,

together with the counterfactual class name:

input=[name=age, value=52, shap=0.1]; [name=gender, value=male, shap=-

0.0]; [name=ap hi, value=100, shap=0.2]; [name=ap lo, value=70, shap=0.0];

[name=cholesterol, value=1, shap=0.0]; [name=gluc, value=3, shap=-0.0];

[name=smoke, value=false, shap=-0.0]; [name=alco, value=false, shap=-

0.0];[name=active, value=true, shap=0.0]; [name=BMI, value=40,1, shap=-

0.0]; prediction=no disease; cf=[name=age, value=55][name=BMI,

value=37.2]; cf pred=cardiovascular disease

For the last version we need to encode somehow the information of the ce-

teris paribus plot. We consider two possible variations of the input encoding

of numerical features:

• Encoding 3.1.1

[name=age, value=0.52, shap=0.1, mean=40, std=3.5, cp 1=0.3,

cp 2=0.35, cp 3=0.6, cp 4=0.8]

where we explicitly provide the 4 y-values of the plot, corresponding to

x=[(min+ range/6), (min+ 2∗ range/6), (max− range/6), (max−2∗
range/6)]

• Encoding 3.1.2

[name=age, value=0.52, shap=0.1, mean=40, std=3.5, cp low=low,

cp high=no]

where we add two words, one for low values and one for high values,

which can assume the values low, high or no, where no means that

there is not a clear behaviour

At the end we keep the second version.

5.2.4 Counterfactuals

For the computation of counterfactuals we base mainly on the approach

of Wachter et al. [31], i.e. the idea of using a certain distance measure,
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normalized by MAD, searching in the neighbourhood of our current sample,

so to be sure to produce realistic counterfactuals.

We consider three different possible distance measures:

1. Manhattan distance, the one suggested in [31]: d(x, y) =
∑

i |xi − yi|

2. Euclidean distance d(x, y) =
∑

i(xi − yi)2

3. Chebyschev distance, also known as max-norm or infinity-norm

d(x, y) = maxi |xi − yi|

They can be all reasonable distance measures, the Manhattan distance

has the well-known property of minimizing the number of altered features,

which is particularly useful in the context of counterfactuals, but also the

Chebyschev distance could be interesting to avoid points which are too far

in a specific direction (i.e. feature), even if that is the only different feature

(or one of the few different ones), and we consider also the classic Euclidean

distance to assess the difference with the other two.

In our interface we show three counterfactuals to the users, one for each

of the above distance measures. The information provided by a single coun-

terfactual may in fact be not enough to have a full understanding of the

behaviour of the classifier. For instance, if a feature is changed in a counter-

factual we may consider that feature important for the classification of the

current sample, but this importance is always relative to the other feature

values, it may be that a change in two other features without a change in

this feature can lead to a different counterfactual, not necessarily worse. Nev-

ertheless, it may happen that different distance measures lead to the same

counterfactuals. An example of a sample with its counterfactuals is in Table

5.1.

We performed an analysis in term of number of changed features, over

a random subset of 1000 samples of the cardiovascular disease dataset, the

result is in Table 5.2 .

We can notice how the Manhattan distance is the one which determines

less feature changes, but the Euclidean distance is not far from it. Anyway, as

we have already mentioned, this is not necessarily the best metric to evaluate

counterfactuals and because of this we keep all the three distance measures

in our interface, while when we have to consider a counterfactual for the

textual explanations we use the one computed with the Manhattan distance.
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Metric Age BMI Gender BP High BP Low Cholest. Glucose Smoke Alco. P.A. Prediction

46 32.0 Female 110 70 Normal Normal No No No No Disease

Scaled

Manhattan

50 33.1 Female 100 70 Normal Normal No No No Disease

Scaled

Euclidean

45 29.0 Female 110 70 Well

Above

Normal

Normal No No Yes Disease

Scaled

Chebyschev

47 32.8 Male 110 70 Above

Normal

Above

Normal

No No No Disease

Table 5.1: Example of a sample with counterfactuals computed with different distance

metrics

Metric Changed Features Changed feat. (change > 5%)

Scaled Manhattan 1712 410

Scaled Euclidean 1823 453

Scaled Chebyschev 2609 1069

Table 5.2: Total number of changed features on the counterfactuals for 1000 samples from

the cardiovascular disease dataset

5.2.5 Augmentation

We consider different augmentation techniques to increase the variability of

the training set. A first possibility is a synonym replacement using dictionar-

ies or word embeddings, but a better technique is to use a language model

like BERT [17] which is able to predict a masked word in a sentence, tak-

ing into account the entire sentence. Another technique which can be used

to augment text is the so-called Round Trip Translation (RTT), where we

translate the text into a different language and then we translate it back to

the original language. RTT present some problems, first of all the limitations

of the translation APIs, but also the fact that often it does not lead to any

augmentation, producing the exact same sentence from which it started. Its

results depend on the choosen languages, but also on the number of steps in

translation chain, the more they are the more likely it is to observe a differ-

ence, but every step is an additional cost. Because of these reasons we focus

on augmentation with BERT.

In particular, for each explanation we mask a single word, excluding the

stop words present in the nltk English stop words dictionary, the name of

the features, which we want to keep unchanged to be sure that the user un-
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Figure 5.3: Schema of the architecture to train the Q&A model

derstands what we are referring to, and the numerical values of the features.

Then the masked words are replaced with the prediction proposed by BERT.

This operation can also be repeated multiple times. We experiment with it

up to three rounds.

5.3 Question answering system (Q&A)

We would like to offer to the users the possibility of an interaction with the

explainer, which seems to be a common request according to the researches

discussed in Section 2.3.5. The idea is to offer the possibility of asking some

questions to the system. We continue to use a generative model for the Q&A

system, whose training architecture is similar to the one we have used for

the explanations. We show it in in Figure 5.3, while in Figure 5.4 we show

the schema of the procedure used by our system to produce an answer for a

question on a given sample, on a given classifier.

We start to consider questions like How important is age?, What is the

importance of BMI?, related to the importance of the various features.

We build a training set with a (question, answer) pair for each sample

of the cardiovascular disease dataset. We consider the following questions,

where {f} is the name of a feature:

1. What is the importance of {f}?

2. How about {f}?
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Figure 5.4: Schema of the procedure followed by our system to produce an answer

3. Is {f} relevant?

4. How important is {f}?

5. What can you say about {f}?

6. How does {f} affect the prediction?

For each sample we choose a feature randomly, we select randomly one

of the questions and we determine the type of the answer on the base of the

Shapley value of that feature for that sample: positive, negative or neutral.

Given the type of the answer, we randomly choose it from the set of answers

of the corresponding group.

Positive answers:

1. {f} is relevant for the prediction

2. {f} has a positive contribution to the prediction

3. {f} is one of the reasons for the result

Neutral answers:

1. {f} has a negligible effect on the prediction

2. {f} has very low influence on the result
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3. {f} is not relevant for the prediction

Negative answers:

1. {f} has a negative contribution to the result

2. {f} leads to the opposite prediction

3. {f} would be a reason for the opposite result

This dataset of questions and answers is augmented with the same pro-

cedure used for the textual explanations.

The training set for the GPT-2 model is composed of elements of the

following format:

encoded input; question=How important is age? <END> answer <|endoftext|>

The second type of questions that we consider are what-if questions, like

What if age was 60? or What would change if BMI was 25?. Again we

consider this type of questions because they have been mentioned multiple

times in the works about the users’ needs in term of xAI.

Similarly as before, we define a set of question templates, for each sample

we create a (question, answer) pair drawing a question template and filling

it with a feature name and with a value, drawn from the distribution of the

values for that feature in the dataset. This is the set of template questions

that we consider:

1. What if {f} was {v}?

2. What would change if {f} was {v}?

3. How would it be if {f} was {v}?

4. Would the result change if {f} was {v}?

5. What would be the prediction if {f} was {v}?

The difference is in the answers: we cannot directly express the answers,

we do not expect that the GPT-2 model becomes able to predict what would

happen by changing a particular value of a sample in a certain way. Instead

we want to make the language model able to recognize the feature and the

value to change, producing an answer with the following format:
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<WHAT IF>{f}={v}<|endoftext|>

For this purpose we explicitly add the <WHAT IF> token to the GPT-

2 tokenizer. Given this output we can parse it, modify the sample, call

the classifier model on the modified sample and produce a textual answer

containing the classifier output. Initially we develop and test two separate

models for the two types of questions, then we develop a single model able

to answer both types of questions. Details on experiments and results are in

the next chapter.

5.4 Interface

We develop an interface to show to the users our textual explanations, to-

gether with the Q&A and other useful information. It is a web interface,

with a Python Flask backend.

In developing the interface we proceed driven by the needs and consider-

ations expressed in Sections 2.3.5 and 2.3.8. We want to build an interface

which is clear and complete for an end-user of a classification system. At

the same time, this interface must allow us to collect feedbacks about the

textual explanations and the Q&A system. In the interface a single sample is

shown, together with the prediction of the model and its confidence. For our

user-study we allow the users to select between two datasets and different

classification models for each dataset. A screenshot of the interface with its

main elements is shown in Figure 5.5.

In the top of the interface there is a table which shows the feature val-

ues and the model output. Hovering with the mouse (or tapping in mobile

devices) on the feature values the user can see the distribution plots and the

ceteris paribus plots, which are discussed in the following sections. In the

bottom there are the feature importance plot and the textual explanations,

together with the form which allows to collect the user evaluation and the

form which allows to try the Q&A system.

5.4.1 Feature importance plot

The feature importance plot is a bar plot showing the Shapley values of the

features, highlighting their positive or negative contribution. The bar plot
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Figure 5.5: Screenshot of the interface with its main elements
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Figure 5.6: Feature importance plot for a sample of the cardiovascular disease dataset

shows in detail values of the first four more relevant features, i.e. the ones

with highest absolute values of Shapley values, and then it groups the effect

of the remaining ones in a single bar. The starting point of the bars, on the

x-axis, is the average probability output over the entire dataset. An example

of feature importance plot for the cardiovascular disease dataset is in Figure

5.6.

5.4.2 Distribution plots

Distribution plots are shown when the user moves over a feature name or

value. Their aspect is different depending on the type of feature:

• numerical features: the plot is an histogram with a KDE (kernel

density estimation). The height of the bins is the probability density.

The KDE is the Scipy ’s gaussian KDE, where the bandwith is choosen

according to the Scott’s rule [49]: n−1/(d+4) where n is the number of

data points and d is the number of dimensions (in our case always

one). The width of a bin is computed as 2 ∗ σ/(n0.25), which is the

formula used as default by the Plotly library, which is a slight variation

of Scott’s rule [50]. The value of the current sample is highlighted by

a red cross. An example of distribution plot for a numerical feature is

in Figure 5.7.

• categorical features: the plot is an histogram with a bin for each

category, with the height representing the probability distribution. The
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Figure 5.7: An example of distribution plot for a numerical feature, in this case Age in the

cardiovascular disease dataset

Figure 5.8: An example of distribution plot for a categorical feature, in this case Cholesterol

in the cardiovascular disease dataset

value of the current sample is highlighted by a red cross. An example

of distribution plot for a categorical feature is in Figure 5.8.

5.4.3 Ceteris Paribus plots

Ceteris paribus plots, or what-if plots, show how the model outcome changes

for a specific sample when a certain feature is changed, keeping all the other

values unchanged. They are illustrated by Biecek and Burzykowski in [51].

We initially use their Dalex python library [48] to compute them, but we

obeserve that the result obtained in this way is not optimal for numerical

features and we modify their implementation. In the case of numerical fea-

tures the plot is a line which shows the model outcome on the y-axis while

the value of the selected feature changes on the x-axis. In particular the
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Figure 5.9: Ceteris paribus plot, in the version computed by the Dalex library, for the BP

High of a sample of the cardiovascular disease dataset, with XGBoost classifier

Figure 5.10: Ceteris paribus plot for the Cholesterol of a sample of the cardiovascular

disease dataset

values to consider on x-axis for the calculation of the profile are 100, taken

uniformly in the range. An example of a ceteris paribus plot, in the version

computed by the Dalex library, for a numerical variable, is in Figure 5.9. In

the case of a categorical feature the plot is a bar plot, with a bar for each

category, showing how the prediction is altered if the value of the feature is

changed in that way. An example of ceteris paribus plot for a categorical

variable is reported in Figure 5.10.

The plot shown in Figure 5.9 highlights the problem with numerical fea-

tures: it is very irregular and it can easily confuse a user. This type of

result is common with ensamble models, while it is clearly not the case of

logistic regression, but even neural networks have a more regular behaviour.

Figure 5.11 shows examples of ceteris paribus plots for logistic regression

and neural network classifiers. To avoid to show to the users these irregular
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Figure 5.11: Ceteris paribus plots, in the version computed by the Dalex library, for the BP

High of a sample of the cardiovascular disease dataset, with a) neural network classifier,

b) logistic regression classifier

plots which may be confusing, we adopt a smoothing procedure based on

LOESS [52]. LOESS is a local regression technique, which can be used to

smooth plots. It fits a local polynomial at each point, using weighted least

squares, where weights are inversely proportional to the distance from the

point. This weighted least square is also repeated for many iterations, adjust-

ing the weights on the base on the residuals, so to ensure more robustness.

LOESS is typically used with polynomial degree equal to 1 or 2. We try

both and we decide to use a degree of 2, since it produces smoother plots.

A comparison of an original ceteris paribus plot together with the smoothed

versions with degree 1 and 2 is in Figure 5.12. To compute the smoothed plot

we use the LOESS 1D routine of Cappellari et al. [53], which implements the

univariate robust LOESS algorithm of Cleveland [52], but we extend it to

compute also a confidence interval around the smoothed plot. We compute

the pointwise confidence interval with the usual formula:

f̂(x0)± zα/2 · σ̂(l(x0))

where f̂(x0) is the result of the robust LOESS fitting in x0, σ̂(l(x0)) is the

estimated variance of the robust LOESS fitting in x0 and zα/2 is the percentile

of the normal distribution of order 1 − α/2, in particular we take α = 5%

to achieve a 95% confidence interval. Moreover, we also show on the plot

the original points from which the smoothed line has been computed. In this

way the users can have an immediate view of the smoothed line, which allows

an easy understanding of the general effect of the feature on that sample,

but then they can also understand more precisely the effective behaviour of

the model by looking at the original points and the confidence region. An
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Figure 5.12: Comparison of different versions of the ceteris paribus plot for BP High

feature of a sample of the cardiovascular disease dataset. In a) the original version, in b)

the smoothed version with degree=1, in c) the smoothed version with degree=2
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Figure 5.13: Ceteris paribus plot for the BP High of a sample of the cardiovascular disease

dataset, complete with the smoothed line (dark blue), the confidence region (light blue)

and the original points (grey dots). The red dot highlights the current value.

example of a ceteris paribus plot for a numerical feature, with smoothed line,

confidence region and original points is in Figure 5.13.

5.4.4 Counterfactuals

Below the table with the data of the current sample there is the VIEW

COUNTERFACTUALS button which shows to the user a pop-up contain-

ing a table where the current sample is compared with three counterfactuals.

The different values are highlighted and the confidence of the prediction is re-

ported for the counterfactuals. The three counterfactuals are computed with

the three distance measures previously mentioned (Manhattan, Euclidean

and Chebyschev), but the order in which they are shown is random. This

view offers the possibility to understand which minimal changes could alter

the prediction and so which values are more critical for the current output.

The counterfactual table is shown in Figure 5.14.

5.4.5 Textual explanations & user evaluation

We show to the users two textual explanations, the first one is generated au-

tomatically using the grammar we defined, while the second one is produced

by our generative language model. The users are not aware of the different
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Figure 5.14: Counterfactual view for a sample of the cardiovascular disease dataset
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sources of the two explanations. We ask the users to compare them, rating

both of them with a value in [1-5] for each of the following properties:

1. clarity

2. completeness

3. correctness

Then we ask them to indicate which one they prefer. This is explicitly asked

because, despite the evaluation of the above properties, there may be other

factors which make them prefer one instead of the other. Then we ask them

if they want to edit the second explanation. This is not mandatory, but we

encourage them to do so, since it could be useful for us to see which kind of

modifications the users would like to do. An example of this form is shown

in Figure 5.15.

5.4.6 Q&A form

We propose the Q&A system to the users showing the form of Figure 5.16,

where they can evaluate the answer for correctness, completeness and clarity

and they can possibly edit it. It is not always shown, but only on the third,

fifth, seventh and ninth samples and then, after the tenth sample, randomly

with a probability of 20%.

5.4.7 Interface evaluation form

After the tenth sample we show an additional form with some questions to

evaluate the interface, the system in general and to have a general comparison

of the two types of explanations (baseline vs gpt2) on the two datasets. This

form is shown in Figure 5.17.
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Figure 5.15: The form with the textual explanations and the user evaluation
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Figure 5.16: Q&A form
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Figure 5.17: Final evaluation form



Chapter 6

Experiments and evaluation

In this chapter we present the results of our experiments, including the user-

study. In Section 6.1 we report the results of the different classifiers we

have considered on the two classification datasets (the models we want to

explain). In Section 6.2 we briefly detail the training parameters of our

language models, while in Section 6.3 we discuss how we evaluate them. In

Section 6.4 we present the results of the experiments and of the user-study

for the explanations model and in Section 6.5 we present the same results for

the Q&A model. Finally, in Section 6.6 we present the results related to the

evaluation of the interface.

6.1 Classifiers

The results of the various classifiers that we use as black-box models to be

explained are measured in terms of accuracy with 10-fold cross-validation.

They are reported in Table 6.1 for the cardio dataset and in Table 6.2 for the

diabetes dataset. In both cases the results are in line with those reported

by Kaggle users on the datasets pages. More details on the training are in

Appendix A.

6.2 Common aspects of GPT-2 trainings

We use the HuggingFace’s Transformers library to train all the GPT-2 mod-

els in our experiments. The optimizer is AdamW [54], with default parame-
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Model CV Accuracy

XGBoost 0.752

Random Forest 0.688

Logistic Regression 0.728

Neural network 0.735

Table 6.1: CV results for different classifiers on the cardiovascular disease dataset

Model CV Accuracy

XGBoost 0.750

Random Forest 0.766

Logistic Regression 0.770

Neural network 0.763

Table 6.2: CV results for different classifiers on the pima diabetes dataset

ters β1 = 0.9, β2 = 0.999, ε = 10−8, lr = 5·10−5 and a linear scheduler. These

values are suggested by HuggingFace as optimal1. We use the small version

of GPT-2, due to hardware limitations and considering that our dataset is

not particularly large. We split the dataset between training and validation

as 90%/10%.

We initially pre-train our language models on the MedDialog-EN dataset,

so to give them a basic knowledge of the medical domain. We train them

until the validation perplexity stops improving (Figure 6.1).

6.3 Evaluation of explanations and Q&A

In this section we present the methods that we use to evaluate our models.

In Section 6.3.1 we discuss the different automatic metrics that we have

considered, while in Section 6.3.2 we motivate the use of a user-study for the

final evaluation of the system.

1https://huggingface.co/transformers/main_classes/trainer.html#

transformers.TrainingArguments

https://huggingface.co/transformers/main_classes/trainer.html#transformers.TrainingArguments
https://huggingface.co/transformers/main_classes/trainer.html#transformers.TrainingArguments
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Figure 6.1: GPT-2 Pre-training on MedDialog-EN dataset

6.3.1 Automatic metrics

For both the textual explanations and the Q&A system we consider some

metrics that we can compute on the validation set to understand the per-

formances of different versions of our model, different input encodings and

different output generation methods. In particular we consider the cumula-

tive BLEU score [55], the METEOR score [56] and the BLEURT score [57].

The BLEU score was proposed for machine translation, but it can be used

for many NLP tasks, wherever there is a comparison between a reference and

a candidate. The BLEU score in its basic form is a modified precision over

the n-gram matching between a candidate sentence and one or more reference

sentences. Its cumulative version is the geometric mean of the basic n-gram

versions with n from 1 to N, where N is typically 4, multiplied by a brevity

penalty.

The METEOR score instead computes the best word-alignment between

the candidate and a reference, considering also stemming and synonyms from

the WordNet dictionary, and then it measures a parametric armonic mean

of precision and recall on this alignment. Finally this result is multiplied by

a penalty relative to the order of the words.

The BLEURT is representative of a different class of methods: embedding-

based models, trained to evaluate text. They use BERT, with a training set
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composed of tuples of the type (reference, candidate, human score) and a

linear layer over BERT so to make it predict the score. Since the human-

annotated dataset is very small, a key point is a pre-training over a large

dataset of pairs of (sentence, automatically perturbed sentence), where the

reference score is also automatically calculated on the base of the type of

perturbation.

We consider BLEU with N=4, since it is the most used metric in NLP, and

METEOR, since it takes into account synonyms, which can be particularly

relevant for our task, and it has been seen to have a better correlation with

human judgement with respect to BLEU. We take into account BLEURT

so to have a different type of metric and also because there is an analysis

on a (small) dataset of explanations which highlights a better correlation

of BLEURT with human judgement with respect to BLEU, METEOR and

other metrics [58].

We can observe with an example how the different metrics behave with

two different sentences (reference and candidate) which have the same mean-

ing, but expressed using different words:

• The glucose is also an important element for the result.

• In addition, glucose has a significant effect on the diagnosis.

The results are the following: BLEU-4 = 0, METEOR=0.150, BLEURT=0.674 .

It is clear that BLEURT has a better ability of recognizing the meaning be-

hind the sentences, and this is also partially present in METEOR, while

BLEU is really focused on the words. Nevertheless, we will see a general

agreement between the three metrics during the comparisons of different

versions/encodings, not in the absolute values but in the rankings they de-

termine.

We use the same metrics for the the Q&A system, with the only difference

that we use the cumulative BLEU-1 instead of the cumulative BLEU-4, since

the answers of the second type are very short and they typically do not reach

a 4-gram, making impossible to use BLEU-4. We use BLEU-1 since it is more

meaningful to assess the single words which compose the encoded answer in

this case.

When we have to perform significance tests to assess the difference be-

tween two models/versions, we use the approximate randomization technique
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presented in [59], where we shuffle the test output of the two models, we mea-

sure the difference in the metric values and we compute the p-value as the

the fraction of iterations in which the difference results to be higher than the

one originally measured between the two versions. This type of test avoids to

make the independence assumption typical of many statistical tests, which is

often violated in many NLP tasks [60], like ours, where we compare similar

models or identical models with different input formats.

6.3.2 User study

None of these automatic metrics is perfect and considering that our purpose

is to develop textual explanations that aim to be particularly useful for end-

users, we include also a user-study to evaluate the performances. Another

important reason for the user study is that we can use all these automatic

metrics only in a comparison between our generative model output and the

baseline grammar output, but this is not a very good way of judging it, since

we would like to obtain better performances than the baseline grammar and

this is hard to capture by automatic metrics which take the grammar output

as a reference, even if some of them should be able to understand a certain

level of variability which keeps the same meaning of the reference sentence.

Instead, users can express their evaluations and compare the results according

to their opinions, which is what we are truly interested in. At the same time

we cannot avoid to use automatic metrics because of the difficulties related

to a user study, that we can perform only at the end of our development

process. Our user study exploits the interface presented in Section 5.4 and

the details on its results are presented in the next sections.

6.4 Textual Explanations

In this section we present the results for the textual explanations, considering

different input encodings, explanation versions and augmentation levels. We

use the automatic metrics discussed in the previous section on the cardio-

vascular disease dataset, we compare these results with the ones on diabetes

dataset and we present the results of the user study on the final version of

the system, for both datasets.
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6.4.1 Experiments

In this section we refer to the various encodings that we have presented in

Section 5.2.3. We briefly summarize their characteristics:

• Encoding 0: all feature values with the names of the three most

relevant features at the end

• Encoding 1: similar to Encoding 0, but it separates more clearly the

features values and it reports also the Shapley values of the three most

important features

• Encoding 2: adds the Shapley values to every feature

• Encoding 3: Encoding 2 without the list of the three most important

features

• Encoding 3.1: includes mean and standard deviation for each numer-

ical feature

• Encoding 3.2: includes an indication of the position of the value with

respect to the mean (higher/lower/similar) and the number of standard

deviations it is above/below the mean, for each numerical feature

• Encoding 3.1.1: includes 4 y-values of the ceteris paribus plot, for

each numerical feature

• Encoding 3.1.2: includes 2 words to describe the high and low values

of the ceteris paribus plot (which can be high, low or without a clear

behaviour), for each numerical feature

Version 1: Feature importance

In the first version of the textual explanations we focus on communicating

to the user the most relevant features which determine the output. We start

to consider Encoding 0 and we measure BLEU, METEOR and BLEURT to

determine the number of epochs for the training. The results are in Table

6.3. Since all the metrics are reducing we decide to stop at the first epoch.

These results have been obtained with the GPT-2 generation parameters

listed in Table 6.4. We run a grid search over the various GPT-2 generation
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N. Epochs BLEU METEOR BLEURT

1 0,408 0,587 0.680

2 0,401 0,494 0.673

3 0,395 0,477 0.671

Table 6.3: Performances on validation set with encoding 0

Repetition Penalty 1,5

No Repeated n-gram size 2

Top k 125

Top p 0.92

Temperature 0.85

Table 6.4: GPT-2 generation parameters used during the first test with encoding 0

hyperparameters to determine the best values, with the ranges reported in

Table 6.5, in addition to beam and greedy search.

Repetition Penalty [1, 1.5]

No Repeated n-gram size [0, 1, 2]

Top k [10, 50, 100, 1000]

Top p [0.90, 0.93, 0.96, 0.99]

Temperature [0.7, 0.8, 0.9]

Table 6.5: Ranges for GPT-2 parameters grid search

We report all the results in Appendix B. There are two combinations of

parameters that are the best for both BLEU and METEOR and near the

best for BLEURT. We pick the one which makes the generation procedure

simpler: repetition penalty = 1, no repeated n-gram size = 0, top-k = 10,

top-p = 0.9, temperature=0.7.

Considering these generation parameters, we now compare the four dif-

ferent encodings proposed in Section 5.2.3. The results are in Table 6.6. As

we can see there is no difference between Encoding 2 and 3, while their re-

sults are clearly better than Encoding 0 and Encoding 1. We decide to use

Encoding 3, since in absence of differences we prefer the simplest one.

We consider also a variation of Encoding 3 where we rename the fea-

tures with more appropriate names (Table 6.7). This new version improves
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Encoding BLEU METEOR BLEURT

0 0,443 0,621 0.680

1 0,445 0,628 0.691

2 0,470 0,658 0.718

3 0,469 0,661 0.718

Table 6.6: Comparison between different encodings on version 1 of the explanations

Original Name New Name

ap lo diastolic blood pressure

ap hi systolic blood pressure

gluc glucose

active physical activity

alco alcohol

smoke smoking

Table 6.7: Features renaming

significantly both BLEU and METEOR, which reach 0.582 and 0.722, re-

spectively, and also BLEURT is increased to 0.730. Considering this, we

keep the renaming of the features for all the following experiments.

To increase the variability of the training set we apply the augmentation

based on BERT, randomly masking a word from the explanation and replac-

ing it with the one predicted by BERT. We avoid to mask the feature values,

which could not be predicted by BERT, and also the feature names, whose

change may confuse the users. We compare the results obtained by applying

this technique one, two or three times in Table 6.8.

Augmentation BLEU METEOR BLEURT

No augmentation 0.582 0.722 0.730

BERTx1 0.571 0.716 0.718

BERTx2 0.554 0.705 0.704

BERTx3 0.536 0.696 0.695

Table 6.8: Comparison of different augmentations on version 1 with encoding 3

In Table 6.9 we show the effect on the dataset of the various augmentation

levels, in terms of number of changed samples and in term of average Lev-
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enshtein distance, a measure of distance between strings, corresponding to

the minimum number of characters which need to be changed to move from

one to the other, considering insertion, deletion and substitution as atomic

operations [61].

Augmentation % of different samples Avg Lev. Dist.

Base vs BERTx1 53% 3.92

Base vs BERTx2 76% 7.67

Base vs BERTx3 88% 11.29

BERTx1 vs BERTx2 51% 3.76

BERTx2 vs BERTx3 49% 3.65

Table 6.9: Effect of augmentation steps on the dataset

The augmentation seem to reduce the performances, but this is not sur-

prising, since we are introducing more variability in the dataset and it is not

necessarily negative. The difference between no augmentation and BERTx1

is significant at 5% for BLEU and METEOR, but not for BLEURT, while the

difference between BERTx1 and BERTx2 is significant for all. Considering

that the augmentation sometimes can damage the explanations, introducing

some words which are not very appropriate (eg: noxious disease instead of

cardiovascular disease), and that the effect of the various augmentation lev-

els in term of number of changed samples progressively reduces, we decide to

limit the augmentation at BERTx1.

Version 2: Including Statistics Information

In the second version of our explanations we include an additional description

related to the values of numerical features. In particular, we would like to

make our system able to tell when a value is particularly high or low with

respect to the mean, in term of number of standard deviations. This is

basically a description of the information encoded by the distribution plots

of our interface (see 5.4.2). We compare the two encodings proposed in

Section 5.2.3, applying the BERT augmentation, and we report the results

in Table 6.10. Considering the similarity of the results, we decide to keep

Encoding 3.1 which is simpler.
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Encoding BLEU METEOR BLEURT

3.1 0.604 0.732 0.721

3.2 0.606 0.735 0.732

Table 6.10: Comparison of two encodings for version 2

BLEU METEOR BLEURT

0.541 0.713 0.693

Table 6.11: Results on version 3

Version 3: Including Counterfactual

In the third version of our explanations we also include the description of a

counterfactual, highlighting what small changes could be made to alter the

result. This requires to encode in the input the counterfactual, in particular

we use the Manhattan counterfactual and we encode only the features which

present a minimal change (> 5% of range for numerical features) with respect

to the current sample. We encode it as proposed in Section 5.2.3. Results

for this version are in Table 6.11.

Version 4: Including Ceteris Paribus Information

In the final version of the interface we would like to include also a motivation

for the effect of a certain feature, exploiting the information encoded in the

ceteris paribus plot. It is often the case that the plot allows to say that

high/low values of a feature, for the current sample, are associated with a

high/low probability of disease. We try to add this to our explanations.

Moreover, we also extend the grammar to introduce more variability.

The comparison of the two variants, without extended grammar, is in

Table 6.12, while the results with the extended grammar are in Table 6.13.

Both with extended and non-extended grammar the difference between the

two encodings is not statistically significant at 5%, we decide to use the

second one.

The extended grammar reduces the values of metrics, but we decide to

keep it in the final version because it gives more variability to the text and this

reduction is partially due to the various forms in which the same explanations
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Encoding BLEU METEOR BLEURT

v4.1 0.590 0.756 0.670

v4.2 0.587 0.754 0.669

Table 6.12: Comparison of two encodings for version 4

Encoding BLEU METEOR BLEURT

v4.1 0.519 0.705 0.633

v4.2 0.527 0.713 0.640

Table 6.13: Comparison of two encodings for version 4 with extended grammar

can be expressed, which may not always matched by the automatic metrics,

even when their meaning is exactly the same.

Results on diabetes dataset

We compare now the results on the pima diabetes dataset, considering the

same model used so far, trained only on the explanations for the cardiovas-

cular disease dataset, and the same model fine-tuned on explanations for the

diabetes dataset, generated with the same rules. We summarize the results

in Table 6.14.

We can observe the big difference which is present between the two mod-

els. The base model, trained only on cardio explanations, exhibits poor

performances on this dataset and it often speaks about features which do

not exist in it, trying to find reference to its known features of the cardio-

Version
Base Model FT Model

BLEU METEOR BLEURT BLEU METEOR BLEURT

1 0.197 0.384 0.410 0.430 0.608 0.567

2 0.233 0.378 0.420 0.484 0.644 0.568

3 0.182 0.390 0.413 0.408 0.611 0.578

4 0.282 0.460 0.377 0.495 0.768 0.566

4* 0.239 0.413 0.393 0.584 0.688 0.522

Table 6.14: Results on the diabetes dataset for the base model (trained only on cardio

explanations) and the fine-tuned one. Version 4* is the v4 with extended grammar
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vascular disease dataset. Instead with fine-tuning, even if the fine-tuning

dataset is very small (hundreds of samples vs tens of thousands of the cardio

dataset), the results are quite good and not far from the ones achieved by

the original model on the cardio dataset. This highlights a limitation of the

model, but also its ability to perform well when it is fine-tuned. We report

below an example of explanations generated by the original model and by the

fine-tuned model, to give an idea of the big difference that can be present:

• Original model: The most relevant factor for the prediction of no

disease is the fact that the patient is young, where low values of this

feature are associated with a low probability of cardiovascular disease.

The value of systolic blood pressure (120) is also an important element,

where low values of this feature are associated with a low probability of

cardiovascular disease. The normal level of cholesterol is also a cause.

If BMI was 23 and age was 39 then the classifier would have predicted

cardiovascular disease.

• Fine-tuned model: The main reason why he has been predicted as

having absence of disease is the value of BMI (26), which is lower than

the mean, where low values of this feature are associated with a low

probability of diabetes. The value of glucose (111), which is lower than

the mean, plays an important role, where low values of this feature are

associated with a low probability of diabetes, and the value of age (24),

which is lower than the mean, also contributes to the result, where low

values of this feature are associated with a low probability of diabetes.

If age was 34.0, insulin was 79.0, glucose was 130.0, skin thickness was

23.0, blood pressure was 78.0 and diabetes pedigree function was 0.325

the opposite would have been predicted.

In this example the first one is completely wrong, while the second one is

correct.

6.4.2 User study results

We have collected a total of 235 annotations on explanations, coming from

34 users. Not all users have completed the 10 requested samples, we have

145 annotations on samples from the cardiovascular disease dataset and 90
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EXPL TYPE DATASET 1 2 3 4 5 AVG

GRAMMAR Cardio 1% 5% 16% 50% 28% 3.98

GPT-2 Cardio 3% 5% 19% 27% 47% 4.10

GRAMMAR Diabetes 0% 2% 20% 47% 31% 4.07

GPT2 - TL Diabetes 21% 11% 18% 16% 34% 3.32

GPT2 - FT Diabetes 6% 15% 25% 25% 29% 3.56

Table 6.15: Clarity rates for textual explanations

EXPL TYPE DATASET 1 2 3 4 5 AVG

GRAMMAR Cardio 1% 8% 12% 30% 50% 4.20

GPT2 Cardio 1% 5% 23% 34% 37% 4.01

GRAMMAR Diabetes 0% 7% 16% 37% 41% 4.12

GPT2 - TL Diabetes 42% 8% 26% 18% 5% 2.37

GPT2 - FT Diabetes 8% 12% 27% 29% 25% 3.52

Table 6.16: Completeness rates for textual explanations

over the pima diabetes dataset, of which 52 using the fine-tuned model and

38 with the model trained only on cardio explanations.

For every sample we have asked the users to evaluate clarity, completeness

and correctness of both the grammar based and the gpt-2 based explanation.

We report the results in Tables 6.15, 6.16 and 6.17 and we show them with

plots in Figures 6.2, 6.3, 6.4, 6.5, 6.6 and 6.7, with distinction on the diabetes

dataset between GPT2 - FT for the fine tuned model and GPT2 - TL for

the model trained only on cardio dataset.

We can observe that on the cardio dataset the gpt-2 based explanations

result slightly more clear and slightly less complete than the grammar-based

EXPL TYPE DATASET 1 2 3 4 5 AVG

GRAMMAR Cardio 1% 7% 14% 35% 42% 4.10

GPT2 Cardio 5% 8% 28% 28% 31% 3.73

GRAMMAR Diabetes 1% 4% 18% 38% 39% 4.09

GPT2 - TL Diabetes 61% 8% 13% 11% 8% 1.97

GPT2 - FT Diabetes 13% 17% 17% 35% 17% 3.25

Table 6.17: Correctness rates for textual explanations
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Figure 6.2: Clarity rates on explanations for cardio dataset

Figure 6.3: Clarity rates on explanations for diabetes dataset
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Figure 6.4: Completeness rates on explanations for cardio dataset

Figure 6.5: Completeness rates on explanations for diabetes dataset
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Figure 6.6: Correctness rates on explanations for cardio dataset

Figure 6.7: Correctness rates on explanations for diabetes dataset
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Figure 6.8: Preferred explanations (Which explanation do you prefer?)

explanations. For the correctness the grammar-based have a higher score, but

the result of the gpt-2 based is near. On the diabetes dataset the transfer

learning approach, using the model trained only on cardio, has poor per-

formances, in particular for correctness. The completeness and clarity are

reduced with respect to the previous results, but we think this is more a con-

sequence of the incorrectness. The fine-tuned model achieves better results,

it is above 3 in all the three scores and even above 3.5 in two of them, but it

is still lower than the grammar-based.

We analyze then the answers to the question Which explanation do you

prefer?, whose results are in Figure 6.8. For the cardiovascular disease dataset

the users seem to prefer more the gpt-2 based explanation, while for the pima

diabetes dataset they definitely prefer the grammar-based if it is compared

with the one produced by the original model, while they still prefer it, but

with a smaller difference, when compared to the one produced by the fine-

tuned model. This is in line with what we expected, we were more uncertain

only about the results to expect from the fine-tuned model on the diabetes

dataset, since it is not bad but not as good as the original model is on the

cardio dataset.

We can observe also the answers to the questions Which explanations

did you find more natural , on the average, on the cardio/diabetes dataset?,
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Figure 6.9: Most natural type of explanation on the two datasets according to the users

who completed 10 samples

which are plotted in Figure 6.9. Here the number of answers is lower, 18,

since this is the number of users who completed at least 10 samples, which

is the moment when these two questions are asked.

The users were also asked to edit the second explanation, if they wanted

to improve or correct it. We have recorded 70 editings, 41 of which are on the

cardiovascular disease dataset, 9 are on the pima diabetes with the cardio

model and the remaining 20 are on the pima diabetes with the fine-tuned

model. 7 editings are not presenting any difference (eg: just a space at the

end). For the cardio dataset we have:

• 15 minor changes (punctuation, substitution of a word)

• 6 feature deletions (the users wanted to remove one of the features

which are mentioned in the explanation, not necessarily wrong features)

• 5 feature changes (all verified as correct)

• 2 feature additions (the users added additional fetures in the explana-

tion)

• 5 corrections on the counterfactuals (4 of which are correct)
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• 1 change of the classifier output (correct)

• 2 values corrections (both correct)

• 1 counterfactual removal

• 1 addition of explanations for the counterfactual

• 3 comments which are not really an explanation editing

For the diabetes dataset with transfer learning we have:

• 1 minor change

• 6 comments on the fact that the explanation is completely wrong

• 2 rewritings of wrong explanations

For the diabetes dataset with fine-tuning we have:

• 5 minor changes

• 2 feature deletions

• 3 feature changes (all verified as correct)

• 2 feature additions

• 1 change of the classifier output (correct)

• 2 values corrections (both correct)

• 2 changes of features order (both correct)

• 1 comment which is not really an explanation editing

Many of this editings are interesting and highlight the types of errors that

sometimes are made by the models.

We report an example of grammar-based, gpt2-based and user-edited

explanations:
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• Grammar: The first element which influenced the prediction of car-

diovascular disease is the value of BP high (140), which is 1 standard

deviation above the mean, where high values of this feature are associ-

ated with a high probability of cardiovascular disease. In addition, the

value of BMI (37), which is 2 standard deviations above the mean, also

has a significant influence, where high values of this feature are associ-

ated with a high probability of cardiovascular disease, and also the value

of Age (59), which is 1 standard deviation above the mean is relevant,

where high values of this feature are associated with a high probability

of cardiovascular disease. If Age was 52 and BP high was 120 the result

would have been no disease.

• GPT-2: The first element which influenced the prediction of cardio-

vascular disease is the value of systolic blood pressure (140), which is

1 standard deviation above the mean, where high values of this feature

are associated with a high probability of cardiovascular disease. Further-

more, the fact that the patient is middle-aged has a considerable effect,

and the value of BMI (37.0), which is 2 standard deviations above the

mean also affects the prediction, where high values of this feature are

associated with increased likelihood of cardiovascular disease. If systolic

blood pressure was 120, age was 52 then the classifier would have not

diagnosed the disease.

• User: The heaviest element which influenced the prediction of cardio-

vascular disease is the value of systolic blood pressure (140), which is

enough higher than the mean, where high values of this feature are as-

sociated with a high probability of cardiovascular disease.

In this case there is not a big difference between the first two, the user

preferred the second one, probably because it is a bit more fluent, but then

in her/his editing s/he completely rewrote it, leaving only a very simple

explanation. This is not common, but it remembers us that we should not

overwhelm the users with too much information, since they may prefer a

simpler explanation, even if it is not complete.

A final question asked the users to leave a feedback or a comment on the

interface, the explanations or their experience with the system in general.
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Only 4 users gave a meaningful answer, these are the main elements they

highlighted about the explanations:

1. Explanations of type 2 often contain the correct features on the cardio

dataset, but not in the exact order of importance

2. Explanations of type 2 do not work well on the diabetes dataset

3. Sometimes the counterfactual expressed by explanations of type 2 is not

exactly coherent with the ones in the VIEW COUNTERFACTUALS

table

4. Some explanations contrast with common knowledge, should we trust

them?

5. The classifier sometimes seems to be wrong

6. It seems that both explanations try to say the same thing, but if a doctor

would tell it to me with the first one I would be a bit worried, while the

second one calms me down more. Is this wanted?

7. There are counterfactuals, even in VIEW COUNTERFACTUALS ta-

ble, whose prediction is not realistic. Maybe there should be a check

to avoid unrealistic predictions (eg: a patient with 200 systolic blood

pressure predicted as no disease).

Some of these comments repeat points we have already mentioned, like

the performances of gpt-2 based explanations on the diabetes dataset. Others

are more interesting, like the one which highlights a particular counterfac-

tual whose prediction is not realistic: this may seem out of scope, since it

depends on the classifier, but it has a relationship with the way in which

counterfactuals are computed. A manual inspection that we performed did

not found any example of counterfactuals with unrealistic predictions, so it

should be a rare case, but it could be worth to consider other counterfactuals

generation methods among the one we mentioned in Section 2.3.4, in partic-

ular [34] includes a term which takes into account the class representativity

of the counterfactual. It could be useful for this problem, but it should be

adopted with care, because it may lead to counterfactuals which are too far

from the current sample.
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Augmentation BLEU-1 METEOR BLEURT

No 0.550 0.548 0.697

BERT 0.440 0.453 0.544

Table 6.18: Results for Q&A version 1

Particularly interesting is the comment about the trustness determined

by the explanations if pronounced by a doctor, this somehow confirms that

the gpt-2 based explanations sound more natural to the users.

6.5 Question Answering (Q&A)

In this section we present the results for the question answering system,

considering three different versions with different types of questions. We use

the automatic metrics discussed in Section 6.3.1 on the cardiovascular disease

dataset, we compare these results with the ones of the diabetes dataset and

we present the results of the user study on the final version of the system,

for both datasets.

6.5.1 Experiments

Version 1: Feature Importance Questions

In the first version of our Q&A system we consider only questions related

to the relevance of the various features for the outcome of the classifier. We

also augment the Q&A pairs with BERT, the results are compared in Table

6.18.

The great majority (84%) of questions are altered by the augmentation,

with an average Levenshtein distance of 6.27, and 75% of the answers are

altered, with an average Levenshtein distance of 5.83. There is the usual

negative effect of the augmentation, but, as for the explanations, we know

this is partially due to the difficulties of automatic metrics in detecting the

differences, and we want our model to be able to understand a larger set

of questions (and possibly to produce more various answers), so we use the

augmented version.
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Augmentation BLEU-1 METEOR BLEURT

No 0.362 0.312 0.890

BERT 0.362 0.310 0.889

Table 6.19: Results for Q&A version 2

Augmentation BLEU-1 METEOR BLEURT

No 0.421 0.384 0.809

BERT 0.370 0.344 0.734

Table 6.20: Results for Q&A version 3

Version 2: What-if Questions

In the second version we focus on the what-if questions, like What if BMI was

30?. In this case we want the model to produce an encoded output which can

be used to create the new sample to give to the classifier. We apply BERT

augmentation, only on questions in this case, and we compare the results in

Table 6.19.

We do not notice any relevant difference. After having verified that 68%

of samples are actually changed by the augmentation procedure, with an

average Levenshtein distance of 3.7, we keep the augmented version, since

it allows for more variability in the questions. The absence of difference is

probably due the fact that here only the questions are augmented, with a

lower effect.

Version 3: Feature Importance and What-if Questions

In the third version we want to include both types of questions of versions

1 and 2, so we use their same training set generation procedures, generating

two (question, answer) pairs for each sample of the dataset, the first one with

the procedure of version 1, the second one with the procedure of version 2.

Results are in Table 6.20

The results confirm the discrete ability of the model to tackle both types

of questions, so this is the model that we use at the end.
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Version
Base Model FT Model

BLEU-1 METEOR BLEURT BLEU-1 METEOR BLEURT

1 0.319 0.278 0.487 0.370 0.349 0.551

2 0.130 0.111 0.572 0.236 0.175 0.865

3 0.308 0.269 0.441 0.390 0.387 0.574

Table 6.21: Results on the diabetes dataset for the base model (trained only on cardio

questions) and the fine-tuned one (FT).

Results on diabetes dataset

We assess the results on the pima diabetes dataset, considering the mod-

els trained only on the question-answer pairs for the cardiovascular disease

dataset and the same models fine-tuned on question-answer pairs for the di-

abetes dataset, generated and augmented in the same way. We summarize

the results in Table 6.21.

There is a clear improvement in the fine-tuned version, but it is much

higher on the second version. This is probably due to the fact that the

name-entity recognition task becomes harder with certain previously unseen

features (eg: diabetes pedigree function).

6.5.2 User study results

In our user study we propose the Q&A system only 4 times on 10 samples,

two over the cardio dataset and two over the diabetes dataset. We always use

the same model, the one trained only on cardio dataset, since otherwise we

would not have enough annotations for both models, considering that the use

of this tool is optional for the users. On 87 times that it was shown, it was

used 55 times. 3 of these 55 questions were never sent to the system (the user

did not press the ASK button), so we have 52 evaluations for the answers.

Among the 55 questions we have 31 what-if questions, 2 of which involve

more than one feature, 16 questions about the importance or the effect of

a certain feature on the result, 4 questions which are related to the system

but out of the classes which are known to the Q&A system, 2 questions

which are completely out of topic and 2 questions which are comments to

the explanations and not real questions.

We report the answer evaluation for the 45 questions which belongs to the
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SCORE CLEAR COMPLETE CORRECT

1 0% 25% 25%

2 13% 13% 0%

3 38% 13% 38%

4 25% 25% 13%

5 25% 25% 25%

AVG 3,63 3,13 3,13

Table 6.22: Q&A results for feature importance questions on cardio dataset

SCORE CLEAR COMPLETE CORRECT

1 31% 31% 38%

2 0% 6% 6%

3 19% 13% 6%

4 0% 0% 6%

5 50% 50% 44%

AVG 3,38 3,31 3,13

Table 6.23: Q&A results for what-if questions on cardio dataset

what-if (29) and to the feature importance (16) classes which have been an-

swered. In particular 25 of these questions are for the cardiovascular disease

dataset (17 what-if and 8 feature importance) and 20 are for the diabetes

dataset (12 what-if and 8 feature importance). In Tables 6.22, 6.23, 6.24 and

6.25 there are the results divided by question type and dataset. In Figures

6.10, 6.11 and 6.12 they are summarized, divided by dataset.

We can observe that for the cardio dataset there are no particular dif-

ferences between the two types of questions, both reach sufficient but not

excellent scores. For the diabetes dataset instead we have higher scores on

average, which may be surprising considering that the model has been trained

only for the cardio dataset, but there is a very low score on the correctness

of the feature importance questions. It is likely that the model is confused

by the different features names to look for in the encoded input, being used

only to the ones of the cardio dataset, and consequently it produces wrong

answers. The what-if questions instead involve a somehow simpler task of

name-value recognition and it seems able to perform well even on this previ-
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SCORE CLEAR COMPLETE CORRECT

1 0% 13% 50%

2 0% 13% 25%

3 0% 0% 13%

4 25% 25% 13%

5 75% 50% 0%

AVG 4,75 3,88 1,88

Table 6.24: Q&A results for feature importance questions on diabetes dataset

SCORE CLEAR COMPLETE CORRECT

1 0% 0% 0%

2 0% 0% 9%

3 9% 9% 0%

4 18% 9% 27%

5 73% 82% 64%

AVG 4,64 4,73 4,45

Table 6.25: Q&A results for what-if questions on diabetes dataset

Figure 6.10: Correctness rates for Q&A
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Figure 6.11: Clarity rates for Q&A

Figure 6.12: Completeness rates for Q&A
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ously unseen dataset, even if this contradicts the results of automatic metrics.

We trust more the users’ evaluation, but we also have to consider that the

number of annotations on the diabetes dataset is lower, so the results are a

bit less reliable. Our manual tests make us believe that the results depend

on the features: simpler features, more similar to the one already present in

the cardio dataset, seem to achieve better results than the others.

The users are also asked to edit the answers if they want to correct errors

or rewrite them in a better way. For the cardiovascular disease dataset we

have collected 7 editings: 3 are on questions which are not of the categories

known to the model, 3 are on feature importance questions and 1 is on a what-

if question. For the feature importance questions we have one correction of

a wrong answer, one editing with minor changes and one editing which adds

the reason for the answer. The editing of the what-if answer is rephrasing

the question after a wrong answer produced by the model. For the diabetes

dataset we have 6 editings: 5 on feature importance questions and 1 on a

what-if question. For the feature importance 3 of them correct the wrong

level of importance of the feature in the model answer and 2 change the

wrong feature name reported in the model answer. The editing on the what-

if question removes the confidence on the result.

It is interesting to observe the questions that are not in the feature im-

portance or what-if classes but that are still on topic:

1. What is a healthy BMI at age 61?

2. What is a healthy systolic blood pressure?

3. What is the most common cause of cardiovascular disease?

4. Does he smoke?

Apart from the last one, the other three are interesting and they should

be taken into consideration in the future development of the system.

6.6 Interface

For the interface evaluation there are no automatic metrics, the only mean-

ingful way to evaluate it is through a user-study. In this section we report

the results of our-study related to the interface.
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Questions/Ratings 1 2 3 4 5 AVG

DIST PLOT 0% 11% 28% 22% 39% 3.89

CP PLOT 6% 17% 17% 28% 33% 3.67

CF TABLE 11% 6% 33% 33% 17% 3.39

FEAT. IMP. PLOT 0% 0% 6% 33% 61% 4.56

INTERFACE 0% 0% 11% 33% 56% 4.44

Table 6.26: Answers to the final questions related to the interface

Figure 6.13: Ratings for the various elements of the interface and the entire interface

6.6.1 User study results

In the user study we present some questions regarding the interface only after

the user has annotated 10 samples. These questions ask the users to provide a

1-5 rating for the various components of the interface, considering how useful

and clear they found them, and a 1-5 general rating for the entire interface.

Only 18 users reached this point, we report their answers about the various

components and on the whole interface in Table 6.26 and in Figure 6.13.

We can observe a general positive rating for the interface. The most

appreciated element is the feature importance plot, as we expected, since it

is the one which is simpler to be used and that provides the most important

information about feature importance. We are slighlty surprised by the lower



98 Chapter 6. Experiments and evaluation

score achieved by the counterfactual table, it may be that the users have not

fully understood the need to use the table to cross-check that portion of the

textual explanations, or that these ones were in general coherent with the

table in most cases and so they found the table useless.

In the final comments of the users there is only one related to the interface,

which suggests to explain more in detail how to use it. We have observed

some difficulties in a few users in understanding how to use the various plots,

in particular the distribution plots and the ceteris paribus plots, which may

need additional explanations when they are given to non-technical users. In

an ideal version of the interface for real users where we have a very good

textual explanation, we may even think of removing them if the users of that

specific system do not find them useful.
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Conclusions

In this thesis we have developed a model able to produce textual explanations

for a machine learning classifier and a rule-based baseline, comparing their

results. We have also developed a first prototype of a question-answering

system, related to the explanations, and we have embedded these models in

a web interface, together with other elements which can help the users to

understand the classifier behaviour and to evaluate the textual explanations.

We have finally used this interface to perform a user study, with two classifi-

cation datasets: the one used to build the explanation system and a different

one, both in the medical domain.

In Chapter 3 we have presented our initial research questions and we can

now answer them:

1. Is it possible to produce textual explanations for a black-box classifier

using a generative language model?

We have demonstrated that this is possible and that it can produce

more natural explanations than a rule-based system, even if our model

has limitations in the ability to generalize. Considering the positive

effect of the fine-tuning on diabetes dataset, we believe that these lim-

itations may be overcome if the model was trained on explanations for

samples from a variety of datasets.

2. How can we evaluate explanations in natural language?

We have considered different automatic metrics during the develop-

ment process (BLEU, METEOR and BLEURT) and at the end we
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have validated our system through a user study. Despite the effort

of the NLP community in developing new metrics, more aligned with

human evaluation, we believe that currently a user study is the best

way of evaluating textual explanations. It is hard to cast into an auto-

matic metric the preferences of users, which may even be quite different

among them. For our development process this was particularly dif-

ficult due to the absence of a set of reference explanations evaluated

as good by users. During the development, when it is not possible to

perform a user study, we believe that it’s better to consider different

metrics, so to verify their agreement. The BLEURT metric is partic-

ularly interesting and we have observed that it seems to be able to

give high scores to sentences which are quite different but with similar

meaning, differently from other metrics like BLEU. Hence it should be

taken in consideration, even if it is much more expensive to compute.

3. Is it possible to allow the users to interact with a natural language

explainer?

Our prototype of the Q&A system demonstrated that it is possible.

There are still large margins of improvement, in both the correctness

of the answers and the type of questions that it is able to answer, but

the results are already sufficient and it suffers less of the generalization

problem encountered by the explanations model.

4. Which elements of an interface can help users to understand the be-

haviour of a black-box classifier?

According to the results of our user study, users have particularly ap-

preciated the feature importance plot, based on Shapley values. The

distribution plots and the ceteris paribus plots seem to be useful, but

some users had some problems in understanding them. The counterfac-

tual table has achieved the lower score (3.4/5), but it is still a sufficient

score. We believe that it could possible to show it in different ways

which may result to be simpler for the users. The general rating for

out interface is pretty high (4.44) and we consider it as a useful starting

point for a good xAI interface which can help end-users of a classifica-

tion system.
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7.1 Future perspectives

There are different aspects of the system that can be further developed.

First of all it is important to extend the generalization capabilities of the

explainer, so that it can manage in a better way different and previously

unseen datasets. This could be achieved by training it on data coming from

different datasets, but further tests need to be done to verify this.

A second point could be the extension of the explanations, making them

even more varied than they currently are. This may be achieved with a

dataset of human-written explanations, possibly built via crowdsourcing, ex-

ploiting the same interface we used for our user study, but asking the users to

provide their own explanations, based on the other elements of the interface,

without showing them our textual explanations.

A final important point is the extension of the Q&A system, which could

be made able to answer more types of questions, until the ideal point of a fully

conversational explainer, where we do not even start with an explanation,

but we only answer to the user’s questions until s/he is satisfied. This would

be an ideal result, but at the moment it’s not clear how it could be achieved,

more investigations need to be done on this path.
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Appendix A

Notes on classifiers training

A.1 Cardiovascular disease dataset

A.1.1 Random forest

For the random forest classifier we compare the 10-fold CV results on different

number of estimators, they are reported in Table A.1. Considering them we

keep the model with 50 estimators.

A.1.2 XGBoost

For the XGBoost classifier we do a small grid search on two of its various

hyperparameters, the one which influence more the bias/variance tradeoff:

the max depth of the tree and the min child weight, i.e. the minimum number

of samples in a node of the tree. We consider the values [3, 6, 9] for the first

one (where 6 is the default) and [1, 3, 5] for the second one (where 1 is the

Number of estimators CV Accuracy

10 0.679

30 0.685

50 0.688

100 0.688

Table A.1: Comparison of different numbers of estimators for RF classifier on cardio

dataset
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MaxDepth MinChildWeight CV Acc

3 1 0,735

3 3 0,735

3 5 0,735

6 1 0,732

6 3 0,733

6 5 0,733

9 1 0,726

9 3 0,728

9 5 0,729

Table A.2: Grid-search for XGBoost on cardio dataset

default). The results with 10-fold CV are in Table A.2. We use the (3,1)

version.

A.1.3 Logistic Regression

For logistic regression we compare L2 penalty, L1 penalty and no penalty. For

the L1 and L2 penalty we also search the value of C in the set [0.01, 0.1, 1, 10, 100].

It results that the model does not show any difference with all these config-

urations, as shown in Table A.3. We keep the version with L2 penalty and

C=1.

A.1.4 Feed Forward Neural Network (FFNN)

For the FFNN we consider a two layers network and we try different numbers

of units in the layers. The network is trained with Adam optimizer, using

early stopping with patience=3 to determine the number of epochs. For the

learning rate we compare the results with 10−3 and 10−4. The 10-fold CV

results are reported in Table A.4. Considering them we keep the model with

10 units, trained with initial learning rate = 10−4.
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Penalty C CV Acc

L2 0,01 0,728

L2 0,1 0,728

L2 1 0,728

L2 10 0,728

L2 100 0,728

L2 1000 0,728

L1 0,01 0,727

L1 0,1 0,728

L1 1 0,728

L1 10 0,728

L1 100 0,728

L1 1000 0,728

none n.a. 0,728

Table A.3: Grid-search for logistic regression classifier on cardio dataset

N. units LR CV Accuracy

10 10−3 0.733

25 10−3 0.734

50 10−3 0.734

10 10−4 0.735

25 10−4 0.735

50 10−4 0.731

Table A.4: Comparison of different numbers of units and lr for FFNN classifier on cardio

dataset
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Number of estimators CV Accuracy

10 0.751

30 0.766

50 0.766

100 0.758

Table A.5: Comparison of different numbers of estimators for RF classifier on diabetes

dataset

MaxDepth MinChildWeight CV Acc

3 1 0,750

3 3 0,729

3 5 0,734

6 1 0,747

6 3 0,729

6 5 0,736

9 1 0.750

9 3 0,750

9 5 0,728

Table A.6: Grid-search for XGBoost on diabetes dataset

A.2 Pima diabetes dataset

A.2.1 Random forest

The same comparison for the diabetes dataset is reported in Table A.5. Con-

sidering it we select the model with 30 estimators.

A.2.2 XGBoost

For XGBoost we repeat the same grid search and we report the results in

Table A.6. We keep the (3,1) version.

A.2.3 Logistic Regression

We do the same grid search of the cardio dataset, with the results reported

in Table A.7. We select the version without penalty.
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Penalty C CV Acc

L2 0,01 0,758

L2 0,1 0,766

L2 1 0,767

L2 10 0,770

L2 100 0,770

L2 1000 0,770

L1 0,01 0,721

L1 0,1 0,768

L1 1 0,768

L1 10 0,768

L1 100 0,770

L1 1000 0,770

none n.a. 0,770

Table A.7: Grid-search for logistic regression classifier on diabetes dataset

A.2.4 Feed Forward Neural Network (FFNN)

The same comparison for the diabetes dataset is reported in Table A.8. Con-

sidering it we choose the model with 10 units, trained with initial learning

rate = 10−4.

N. units LR CV Accuracy

10 10−3 0.758

25 10−3 0.760

50 10−3 0.757

10 10−4 0.763

25 10−4 0.755

50 10−4 0.759

Table A.8: Comparison of different numbers of units and learning rates for FFNN classifier

on diabetes dataset
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Appendix B

Grid search results for GPT-2

B.1 Explanations model

We report in Table B.1 the results of the grid search over the gpt-2 generation

parameters for explanations. We report also the results for greedy and beam

search:

• Greedy: (0.408 0.587 0.675)

• Beam (n beams=2): (0.401 0.586 0.678)

• Beam (n beams=5): (0.395 0.577 0.671)

Table B.1: Grid search for GPT-2 generation parameter

Rep Pen NRNGS Topk TopP Temp BLEU-4 METEOR BLEURT

1 0 10 0,9 0,7 0,443 0,621 0,680

1 0 50 0,9 0,7 0,439 0,617 0,681

1 0 100 0,9 0,7 0,440 0,618 0,682

1 0 1000 0,9 0,7 0,442 0,619 0,681

1 0 10 0,93 0,7 0,440 0,619 0,680

1 0 50 0,93 0,7 0,440 0,619 0,680

1 0 100 0,93 0,7 0,439 0,619 0,680

1 0 1000 0,93 0,7 0,440 0,618 0,680

1 0 10 0,96 0,7 0,437 0,616 0,679

1 0 50 0,96 0,7 0,442 0,619 0,680

117
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-4 METEOR BLEURT

1 0 100 0,96 0,7 0,439 0,617 0,680

1 0 1000 0,96 0,7 0,439 0,618 0,680

1 0 10 0,99 0,7 0,437 0,614 0,676

1 0 50 0,99 0,7 0,440 0,618 0,678

1 0 100 0,99 0,7 0,440 0,616 0,677

1 0 1000 0,99 0,7 0,437 0,616 0,678

1 0 10 0,9 0,8 0,442 0,619 0,678

1 0 50 0,9 0,8 0,439 0,617 0,681

1 0 100 0,9 0,8 0,438 0,617 0,679

1 0 1000 0,9 0,8 0,441 0,618 0,680

1 0 10 0,93 0,8 0,436 0,615 0,679

1 0 50 0,93 0,8 0,436 0,614 0,678

1 0 100 0,93 0,8 0,442 0,619 0,678

1 0 1000 0,93 0,8 0,440 0,618 0,681

1 0 10 0,96 0,8 0,437 0,615 0,677

1 0 50 0,96 0,8 0,436 0,613 0,677

1 0 100 0,96 0,8 0,439 0,615 0,678

1 0 1000 0,96 0,8 0,435 0,612 0,678

1 0 10 0,99 0,8 0,435 0,613 0,675

1 0 50 0,99 0,8 0,437 0,614 0,676

1 0 100 0,99 0,8 0,434 0,611 0,676

1 0 1000 0,99 0,8 0,437 0,614 0,675

1 0 10 0,9 0,9 0,436 0,614 0,678

1 0 50 0,9 0,9 0,436 0,612 0,677

1 0 100 0,9 0,9 0,440 0,618 0,678

1 0 1000 0,9 0,9 0,435 0,612 0,677

1 0 10 0,93 0,9 0,436 0,614 0,677

1 0 50 0,93 0,9 0,436 0,613 0,676

1 0 100 0,93 0,9 0,438 0,616 0,676

1 0 1000 0,93 0,9 0,434 0,611 0,676

1 0 10 0,96 0,9 0,435 0,612 0,674
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-4 METEOR BLEURT

1 0 50 0,96 0,9 0,432 0,611 0,674

1 0 100 0,96 0,9 0,434 0,612 0,674

1 0 1000 0,96 0,9 0,439 0,615 0,676

1 0 10 0,99 0,9 0,433 0,609 0,673

1 0 50 0,99 0,9 0,431 0,609 0,673

1 0 100 0,99 0,9 0,433 0,609 0,673

1 0 1000 0,99 0,9 0,431 0,609 0,674

1 1 10 0,9 0,7 0,438 0,618 0,680

1 1 50 0,9 0,7 0,437 0,618 0,682

1 1 100 0,9 0,7 0,439 0,619 0,682

1 1 1000 0,9 0,7 0,442 0,621 0,681

1 1 10 0,93 0,7 0,440 0,618 0,680

1 1 50 0,93 0,7 0,439 0,618 0,679

1 1 100 0,93 0,7 0,441 0,619 0,682

1 1 1000 0,93 0,7 0,443 0,621 0,681

1 1 10 0,96 0,7 0,439 0,617 0,679

1 1 50 0,96 0,7 0,438 0,617 0,680

1 1 100 0,96 0,7 0,442 0,619 0,680

1 1 1000 0,96 0,7 0,436 0,615 0,681

1 1 10 0,99 0,7 0,437 0,615 0,677

1 1 50 0,99 0,7 0,437 0,615 0,678

1 1 100 0,99 0,7 0,443 0,620 0,679

1 1 1000 0,99 0,7 0,439 0,616 0,679

1 1 10 0,9 0,8 0,443 0,620 0,679

1 1 50 0,9 0,8 0,437 0,615 0,678

1 1 100 0,9 0,8 0,438 0,616 0,679

1 1 1000 0,9 0,8 0,438 0,616 0,681

1 1 10 0,93 0,8 0,438 0,615 0,678

1 1 50 0,93 0,8 0,439 0,616 0,677

1 1 100 0,93 0,8 0,435 0,613 0,678

1 1 1000 0,93 0,8 0,438 0,615 0,679
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-4 METEOR BLEURT

1 1 10 0,96 0,8 0,438 0,616 0,677

1 1 50 0,96 0,8 0,436 0,614 0,677

1 1 100 0,96 0,8 0,438 0,615 0,677

1 1 1000 0,96 0,8 0,439 0,617 0,679

1 1 10 0,99 0,8 0,434 0,612 0,674

1 1 50 0,99 0,8 0,435 0,612 0,675

1 1 100 0,99 0,8 0,438 0,615 0,675

1 1 1000 0,99 0,8 0,437 0,613 0,677

1 1 10 0,9 0,9 0,439 0,616 0,678

1 1 50 0,9 0,9 0,438 0,615 0,678

1 1 100 0,9 0,9 0,440 0,616 0,679

1 1 1000 0,9 0,9 0,441 0,618 0,678

1 1 10 0,93 0,9 0,436 0,613 0,675

1 1 50 0,93 0,9 0,434 0,612 0,676

1 1 100 0,93 0,9 0,441 0,617 0,677

1 1 1000 0,93 0,9 0,435 0,612 0,676

1 1 10 0,96 0,9 0,435 0,612 0,674

1 1 50 0,96 0,9 0,436 0,614 0,674

1 1 100 0,96 0,9 0,435 0,612 0,675

1 1 1000 0,96 0,9 0,435 0,612 0,676

1 1 10 0,99 0,9 0,435 0,612 0,672

1 1 50 0,99 0,9 0,434 0,612 0,672

1 1 100 0,99 0,9 0,436 0,612 0,672

1 1 1000 0,99 0,9 0,433 0,610 0,674

1 2 10 0,9 0,7 0,439 0,619 0,681

1 2 50 0,9 0,7 0,440 0,618 0,681

1 2 100 0,9 0,7 0,441 0,619 0,682

1 2 1000 0,9 0,7 0,439 0,618 0,682

1 2 10 0,93 0,7 0,441 0,620 0,680

1 2 50 0,93 0,7 0,438 0,616 0,682

1 2 100 0,93 0,7 0,439 0,618 0,680
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-4 METEOR BLEURT

1 2 1000 0,93 0,7 0,438 0,617 0,679

1 2 10 0,96 0,7 0,437 0,615 0,678

1 2 50 0,96 0,7 0,440 0,618 0,679

1 2 100 0,96 0,7 0,440 0,618 0,681

1 2 1000 0,96 0,7 0,438 0,616 0,680

1 2 10 0,99 0,7 0,436 0,615 0,676

1 2 50 0,99 0,7 0,439 0,616 0,678

1 2 100 0,99 0,7 0,436 0,616 0,677

1 2 1000 0,99 0,7 0,436 0,615 0,678

1 2 10 0,9 0,8 0,441 0,619 0,679

1 2 50 0,9 0,8 0,439 0,617 0,679

1 2 100 0,9 0,8 0,439 0,618 0,680

1 2 1000 0,9 0,8 0,439 0,617 0,679

1 2 10 0,93 0,8 0,438 0,616 0,678

1 2 50 0,93 0,8 0,438 0,615 0,678

1 2 100 0,93 0,8 0,436 0,613 0,679

1 2 1000 0,93 0,8 0,437 0,615 0,679

1 2 10 0,96 0,8 0,435 0,614 0,678

1 2 50 0,96 0,8 0,438 0,616 0,678

1 2 100 0,96 0,8 0,435 0,613 0,678

1 2 1000 0,96 0,8 0,440 0,616 0,677

1 2 10 0,99 0,8 0,438 0,614 0,674

1 2 50 0,99 0,8 0,434 0,612 0,674

1 2 100 0,99 0,8 0,436 0,613 0,676

1 2 1000 0,99 0,8 0,433 0,612 0,675

1 2 10 0,9 0,9 0,436 0,613 0,677

1 2 50 0,9 0,9 0,436 0,614 0,679

1 2 100 0,9 0,9 0,438 0,615 0,678

1 2 1000 0,9 0,9 0,437 0,615 0,677

1 2 10 0,93 0,9 0,440 0,617 0,674

1 2 50 0,93 0,9 0,433 0,610 0,675
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-4 METEOR BLEURT

1 2 100 0,93 0,9 0,439 0,615 0,676

1 2 1000 0,93 0,9 0,440 0,617 0,677

1 2 10 0,96 0,9 0,437 0,614 0,676

1 2 50 0,96 0,9 0,436 0,612 0,676

1 2 100 0,96 0,9 0,434 0,611 0,674

1 2 1000 0,96 0,9 0,435 0,611 0,674

1 2 10 0,99 0,9 0,434 0,611 0,671

1 2 50 0,99 0,9 0,433 0,611 0,672

1 2 100 0,99 0,9 0,433 0,610 0,675

1 2 1000 0,99 0,9 0,436 0,612 0,674

1,5 0 10 0,9 0,7 0,324 0,517 0,577

1,5 0 50 0,9 0,7 0,326 0,519 0,576

1,5 0 100 0,9 0,7 0,322 0,514 0,575

1,5 0 1000 0,9 0,7 0,325 0,516 0,576

1,5 0 10 0,93 0,7 0,324 0,517 0,576

1,5 0 50 0,93 0,7 0,328 0,520 0,577

1,5 0 100 0,93 0,7 0,323 0,517 0,576

1,5 0 1000 0,93 0,7 0,323 0,514 0,574

1,5 0 10 0,96 0,7 0,327 0,519 0,575

1,5 0 50 0,96 0,7 0,324 0,516 0,574

1,5 0 100 0,96 0,7 0,325 0,517 0,575

1,5 0 1000 0,96 0,7 0,322 0,515 0,574

1,5 0 10 0,99 0,7 0,323 0,514 0,573

1,5 0 50 0,99 0,7 0,322 0,515 0,573

1,5 0 100 0,99 0,7 0,320 0,514 0,573

1,5 0 1000 0,99 0,7 0,320 0,512 0,571

1,5 0 10 0,9 0,8 0,325 0,517 0,576

1,5 0 50 0,9 0,8 0,320 0,512 0,574

1,5 0 100 0,9 0,8 0,324 0,516 0,574

1,5 0 1000 0,9 0,8 0,326 0,517 0,576

1,5 0 10 0,93 0,8 0,321 0,514 0,574
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-4 METEOR BLEURT

1,5 0 50 0,93 0,8 0,317 0,510 0,573

1,5 0 100 0,93 0,8 0,318 0,512 0,573

1,5 0 1000 0,93 0,8 0,321 0,513 0,575

1,5 0 10 0,96 0,8 0,321 0,513 0,572

1,5 0 50 0,96 0,8 0,320 0,513 0,572

1,5 0 100 0,96 0,8 0,321 0,514 0,572

1,5 0 1000 0,96 0,8 0,318 0,511 0,572

1,5 0 10 0,99 0,8 0,318 0,509 0,571

1,5 0 50 0,99 0,8 0,319 0,512 0,572

1,5 0 100 0,99 0,8 0,320 0,512 0,569

1,5 0 1000 0,99 0,8 0,319 0,512 0,570

1,5 0 10 0,9 0,9 0,320 0,513 0,573

1,5 0 50 0,9 0,9 0,317 0,510 0,574

1,5 0 100 0,9 0,9 0,319 0,513 0,573

1,5 0 1000 0,9 0,9 0,317 0,509 0,571

1,5 0 10 0,93 0,9 0,320 0,514 0,573

1,5 0 50 0,93 0,9 0,317 0,510 0,571

1,5 0 100 0,93 0,9 0,316 0,510 0,570

1,5 0 1000 0,93 0,9 0,318 0,512 0,571

1,5 0 10 0,96 0,9 0,320 0,513 0,570

1,5 0 50 0,96 0,9 0,315 0,509 0,570

1,5 0 100 0,96 0,9 0,315 0,509 0,570

1,5 0 1000 0,96 0,9 0,317 0,511 0,569

1,5 0 10 0,99 0,9 0,314 0,507 0,569

1,5 0 50 0,99 0,9 0,317 0,509 0,566

1,5 0 100 0,99 0,9 0,313 0,505 0,567

1,5 0 1000 0,99 0,9 0,313 0,505 0,566

1,5 1 10 0,9 0,7 0,324 0,515 0,575

1,5 1 50 0,9 0,7 0,323 0,515 0,574

1,5 1 100 0,9 0,7 0,322 0,517 0,574

1,5 1 1000 0,9 0,7 0,328 0,519 0,576
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-4 METEOR BLEURT

1,5 1 10 0,93 0,7 0,323 0,515 0,575

1,5 1 50 0,93 0,7 0,324 0,516 0,575

1,5 1 100 0,93 0,7 0,323 0,514 0,576

1,5 1 1000 0,93 0,7 0,320 0,513 0,574

1,5 1 10 0,96 0,7 0,326 0,517 0,576

1,5 1 50 0,96 0,7 0,323 0,516 0,575

1,5 1 100 0,96 0,7 0,324 0,516 0,573

1,5 1 1000 0,96 0,7 0,324 0,516 0,573

1,5 1 10 0,99 0,7 0,323 0,516 0,572

1,5 1 50 0,99 0,7 0,318 0,512 0,574

1,5 1 100 0,99 0,7 0,319 0,512 0,572

1,5 1 1000 0,99 0,7 0,321 0,513 0,573

1,5 1 10 0,9 0,8 0,322 0,515 0,575

1,5 1 50 0,9 0,8 0,323 0,515 0,575

1,5 1 100 0,9 0,8 0,323 0,516 0,574

1,5 1 1000 0,9 0,8 0,323 0,517 0,575

1,5 1 10 0,93 0,8 0,323 0,515 0,574

1,5 1 50 0,93 0,8 0,321 0,515 0,574

1,5 1 100 0,93 0,8 0,322 0,515 0,575

1,5 1 1000 0,93 0,8 0,323 0,517 0,573

1,5 1 10 0,96 0,8 0,322 0,514 0,573

1,5 1 50 0,96 0,8 0,320 0,512 0,573

1,5 1 100 0,96 0,8 0,320 0,513 0,573

1,5 1 1000 0,96 0,8 0,318 0,510 0,572

1,5 1 10 0,99 0,8 0,316 0,509 0,571

1,5 1 50 0,99 0,8 0,319 0,513 0,570

1,5 1 100 0,99 0,8 0,318 0,511 0,571

1,5 1 1000 0,99 0,8 0,320 0,512 0,571

1,5 1 10 0,9 0,9 0,320 0,514 0,573

1,5 1 50 0,9 0,9 0,319 0,513 0,573

1,5 1 100 0,9 0,9 0,320 0,513 0,572



B.1. Explanations model 125

(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-4 METEOR BLEURT

1,5 1 1000 0,9 0,9 0,316 0,510 0,573

1,5 1 10 0,93 0,9 0,318 0,511 0,571

1,5 1 50 0,93 0,9 0,317 0,511 0,571

1,5 1 100 0,93 0,9 0,322 0,515 0,573

1,5 1 1000 0,93 0,9 0,320 0,513 0,572

1,5 1 10 0,96 0,9 0,318 0,511 0,570

1,5 1 50 0,96 0,9 0,316 0,510 0,571

1,5 1 100 0,96 0,9 0,319 0,514 0,572

1,5 1 1000 0,96 0,9 0,318 0,511 0,569

1,5 1 10 0,99 0,9 0,318 0,511 0,569

1,5 1 50 0,99 0,9 0,314 0,507 0,567

1,5 1 100 0,99 0,9 0,315 0,509 0,568

1,5 1 1000 0,99 0,9 0,316 0,509 0,567

1,5 2 10 0,9 0,7 0,325 0,516 0,576

1,5 2 50 0,9 0,7 0,326 0,520 0,575

1,5 2 100 0,9 0,7 0,320 0,515 0,574

1,5 2 1000 0,9 0,7 0,323 0,515 0,576

1,5 2 10 0,93 0,7 0,321 0,513 0,574

1,5 2 50 0,93 0,7 0,321 0,513 0,574

1,5 2 100 0,93 0,7 0,323 0,515 0,576

1,5 2 1000 0,93 0,7 0,323 0,514 0,575

1,5 2 10 0,96 0,7 0,323 0,515 0,575

1,5 2 50 0,96 0,7 0,324 0,517 0,574

1,5 2 100 0,96 0,7 0,321 0,514 0,575

1,5 2 1000 0,96 0,7 0,323 0,516 0,574

1,5 2 10 0,99 0,7 0,321 0,515 0,574

1,5 2 50 0,99 0,7 0,321 0,515 0,575

1,5 2 100 0,99 0,7 0,320 0,513 0,572

1,5 2 1000 0,99 0,7 0,322 0,514 0,573

1,5 2 10 0,9 0,8 0,322 0,516 0,575

1,5 2 50 0,9 0,8 0,324 0,518 0,575
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-4 METEOR BLEURT

1,5 2 100 0,9 0,8 0,321 0,514 0,574

1,5 2 1000 0,9 0,8 0,323 0,516 0,575

1,5 2 10 0,93 0,8 0,322 0,515 0,575

1,5 2 50 0,93 0,8 0,322 0,515 0,571

1,5 2 100 0,93 0,8 0,320 0,512 0,574

1,5 2 1000 0,93 0,8 0,324 0,515 0,575

1,5 2 10 0,96 0,8 0,320 0,514 0,574

1,5 2 50 0,96 0,8 0,322 0,514 0,571

1,5 2 100 0,96 0,8 0,319 0,513 0,573

1,5 2 1000 0,96 0,8 0,318 0,512 0,573

1,5 2 10 0,99 0,8 0,323 0,516 0,570

1,5 2 50 0,99 0,8 0,317 0,510 0,571

1,5 2 100 0,99 0,8 0,318 0,511 0,570

1,5 2 1000 0,99 0,8 0,319 0,512 0,571

1,5 2 10 0,9 0,9 0,322 0,514 0,571

1,5 2 50 0,9 0,9 0,320 0,513 0,574

1,5 2 100 0,9 0,9 0,322 0,515 0,573

1,5 2 1000 0,9 0,9 0,316 0,511 0,573

1,5 2 10 0,93 0,9 0,321 0,515 0,574

1,5 2 50 0,93 0,9 0,318 0,511 0,572

1,5 2 100 0,93 0,9 0,320 0,514 0,572

1,5 2 1000 0,93 0,9 0,318 0,513 0,571

1,5 2 10 0,96 0,9 0,315 0,509 0,570

1,5 2 50 0,96 0,9 0,317 0,508 0,570

1,5 2 100 0,96 0,9 0,317 0,510 0,568

1,5 2 1000 0,96 0,9 0,316 0,509 0,570

1,5 2 10 0,99 0,9 0,318 0,511 0,568

1,5 2 50 0,99 0,9 0,319 0,512 0,569

1,5 2 100 0,99 0,9 0,317 0,507 0,566

1,5 2 1000 0,99 0,9 0,315 0,507 0,566
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B.2 Q&A model

We report in Table B.2 the results of the grid search over the gpt-2 gener-

ation parameters for the Q&A. None of these parameters combinations for

sampling is better than the greedy search, which results in (0.190, 0.453,

0.574)

• Beam (n beams=2): (0.189, 0.447, 0.570)

• Beam (n beams=5): (0.169, 0.417, 0.572)

Table B.2: Grid search for GPT-2 generation parameters for Q&A

Rep Pen NRNGS Topk TopP Temp BLEU-1 METEOR BLEURT

1 0 10 0,9 0,7 0,165 0,409 0,520

1 0 50 0,9 0,7 0,163 0,412 0,520

1 0 100 0,9 0,7 0,164 0,412 0,521

1 0 1000 0,9 0,7 0,170 0,415 0,523

1 0 10 0,93 0,7 0,169 0,415 0,521

1 0 50 0,93 0,7 0,167 0,415 0,521

1 0 100 0,93 0,7 0,165 0,411 0,518

1 0 1000 0,93 0,7 0,165 0,411 0,519

1 0 10 0,96 0,7 0,160 0,405 0,515

1 0 50 0,96 0,7 0,170 0,417 0,521

1 0 100 0,96 0,7 0,156 0,404 0,516

1 0 1000 0,96 0,7 0,167 0,410 0,521

1 0 10 0,99 0,7 0,159 0,407 0,516

1 0 50 0,99 0,7 0,155 0,404 0,515

1 0 100 0,99 0,7 0,163 0,409 0,518

1 0 1000 0,99 0,7 0,162 0,407 0,516

1 0 10 0,9 0,8 0,157 0,404 0,514

1 0 50 0,9 0,8 0,162 0,409 0,516

1 0 100 0,9 0,8 0,170 0,412 0,521

1 0 1000 0,9 0,8 0,161 0,404 0,515

1 0 10 0,93 0,8 0,158 0,402 0,514

1 0 50 0,93 0,8 0,164 0,410 0,518
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-1 METEOR BLEURT

1 0 100 0,93 0,8 0,159 0,403 0,515

1 0 1000 0,93 0,8 0,163 0,409 0,518

1 0 10 0,96 0,8 0,156 0,402 0,511

1 0 50 0,96 0,8 0,156 0,400 0,511

1 0 100 0,96 0,8 0,159 0,404 0,517

1 0 1000 0,96 0,8 0,161 0,406 0,515

1 0 10 0,99 0,8 0,162 0,406 0,516

1 0 50 0,99 0,8 0,156 0,400 0,514

1 0 100 0,99 0,8 0,156 0,400 0,511

1 0 1000 0,99 0,8 0,154 0,399 0,512

1 0 10 0,9 0,9 0,165 0,407 0,515

1 0 50 0,9 0,9 0,162 0,406 0,515

1 0 100 0,9 0,9 0,157 0,402 0,510

1 0 1000 0,9 0,9 0,162 0,402 0,512

1 0 10 0,93 0,9 0,150 0,395 0,508

1 0 50 0,93 0,9 0,168 0,412 0,516

1 0 100 0,93 0,9 0,152 0,397 0,510

1 0 1000 0,93 0,9 0,158 0,399 0,512

1 0 10 0,96 0,9 0,149 0,399 0,511

1 0 50 0,96 0,9 0,150 0,395 0,506

1 0 100 0,96 0,9 0,152 0,394 0,508

1 0 1000 0,96 0,9 0,150 0,397 0,509

1 0 10 0,99 0,9 0,144 0,390 0,507

1 0 50 0,99 0,9 0,149 0,396 0,511

1 0 100 0,99 0,9 0,153 0,399 0,511

1 0 1000 0,99 0,9 0,144 0,391 0,508

1 1 10 0,9 0,7 0,195 0,417 0,546

1 1 50 0,9 0,7 0,189 0,415 0,545

1 1 100 0,9 0,7 0,195 0,417 0,547

1 1 1000 0,9 0,7 0,190 0,422 0,548

1 1 10 0,93 0,7 0,185 0,410 0,543
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-1 METEOR BLEURT

1 1 50 0,93 0,7 0,101 0,419 0,548

1 1 100 0,93 0,7 0,195 0,415 0,546

1 1 1000 0,93 0,7 0,191 0,414 0,545

1 1 10 0,96 0,7 0,199 0,420 0,547

1 1 50 0,96 0,7 0,190 0,424 0,547

1 1 100 0,96 0,7 0,188 0,415 0,543

1 1 1000 0,96 0,7 0,197 0,416 0,546

1 1 10 0,99 0,7 0,191 0,416 0,544

1 1 50 0,99 0,7 0,188 0,414 0,544

1 1 100 0,99 0,7 0,196 0,419 0,545

1 1 1000 0,99 0,7 0,188 0,412 0,543

1 1 10 0,9 0,8 0,188 0,412 0,543

1 1 50 0,9 0,8 0,198 0,417 0,546

1 1 100 0,9 0,8 0,191 0,413 0,545

1 1 1000 0,9 0,8 0,188 0,409 0,543

1 1 10 0,93 0,8 0,193 0,415 0,545

1 1 50 0,93 0,8 0,195 0,416 0,545

1 1 100 0,93 0,8 0,184 0,419 0,547

1 1 1000 0,93 0,8 0,194 0,412 0,545

1 1 10 0,96 0,8 0,188 0,411 0,544

1 1 50 0,96 0,8 0,194 0,416 0,545

1 1 100 0,96 0,8 0,187 0,410 0,543

1 1 1000 0,96 0,8 0,190 0,411 0,544

1 1 10 0,99 0,8 0,190 0,412 0,544

1 1 50 0,99 0,8 0,188 0,412 0,541

1 1 100 0,99 0,8 0,192 0,415 0,543

1 1 1000 0,99 0,8 0,194 0,416 0,544

1 1 10 0,9 0,9 0,197 0,414 0,545

1 1 50 0,9 0,9 0,194 0,415 0,546

1 1 100 0,9 0,9 0,190 0,418 0,547

1 1 1000 0,9 0,9 0,191 0,415 0,546
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-1 METEOR BLEURT

1 1 10 0,93 0,9 0,187 0,410 0,543

1 1 50 0,93 0,9 0,190 0,420 0,546

1 1 100 0,93 0,9 0,193 0,414 0,545

1 1 1000 0,93 0,9 0,190 0,408 0,544

1 1 10 0,96 0,9 0,187 0,408 0,542

1 1 50 0,96 0,9 0,185 0,407 0,541

1 1 100 0,96 0,9 0,191 0,409 0,543

1 1 1000 0,96 0,9 0,185 0,408 0,542

1 1 10 0,99 0,9 0,193 0,410 0,544

1 1 50 0,99 0,9 0,196 0,416 0,544

1 1 100 0,99 0,9 0,196 0,416 0,547

1 1 1000 0,99 0,9 0,186 0,411 0,543

1 2 10 0,9 0,7 0,167 0,413 0,521

1 2 50 0,9 0,7 0,164 0,410 0,522

1 2 100 0,9 0,7 0,167 0,410 0,521

1 2 1000 0,9 0,7 0,163 0,409 0,520

1 2 10 0,93 0,7 0,163 0,413 0,519

1 2 50 0,93 0,7 0,166 0,412 0,521

1 2 100 0,93 0,7 0,162 0,408 0,517

1 2 1000 0,93 0,7 0,162 0,410 0,520

1 2 10 0,96 0,7 0,165 0,411 0,517

1 2 50 0,96 0,7 0,169 0,412 0,521

1 2 100 0,96 0,7 0,156 0,403 0,519

1 2 1000 0,96 0,7 0,156 0,407 0,515

1 2 10 0,99 0,7 0,161 0,406 0,517

1 2 50 0,99 0,7 0,162 0,409 0,518

1 2 100 0,99 0,7 0,160 0,408 0,516

1 2 1000 0,99 0,7 0,163 0,410 0,518

1 2 10 0,9 0,8 0,168 0,411 0,519

1 2 50 0,9 0,8 0,159 0,405 0,516

1 2 100 0,9 0,8 0,172 0,415 0,519
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-1 METEOR BLEURT

1 2 1000 0,9 0,8 0,160 0,408 0,517

1 2 10 0,93 0,8 0,159 0,404 0,515

1 2 50 0,93 0,8 0,167 0,412 0,518

1 2 100 0,93 0,8 0,160 0,403 0,514

1 2 1000 0,93 0,8 0,159 0,401 0,514

1 2 10 0,96 0,8 0,158 0,404 0,514

1 2 50 0,96 0,8 0,153 0,402 0,513

1 2 100 0,96 0,8 0,155 0,405 0,514

1 2 1000 0,96 0,8 0,164 0,403 0,514

1 2 10 0,99 0,8 0,154 0,399 0,511

1 2 50 0,99 0,8 0,155 0,405 0,514

1 2 100 0,99 0,8 0,161 0,404 0,514

1 2 1000 0,99 0,8 0,159 0,404 0,514

1 2 10 0,9 0,9 0,155 0,400 0,510

1 2 50 0,9 0,9 0,159 0,401 0,513

1 2 100 0,9 0,9 0,159 0,401 0,513

1 2 1000 0,9 0,9 0,167 0,410 0,517

1 2 10 0,93 0,9 0,150 0,398 0,511

1 2 50 0,93 0,9 0,151 0,400 0,510

1 2 100 0,93 0,9 0,163 0,404 0,514

1 2 1000 0,93 0,9 0,158 0,401 0,512

1 2 10 0,96 0,9 0,146 0,392 0,508

1 2 50 0,96 0,9 0,148 0,397 0,508

1 2 100 0,96 0,9 0,155 0,398 0,511

1 2 1000 0,96 0,9 0,147 0,395 0,509

1 2 10 0,99 0,9 0,160 0,404 0,512

1 2 50 0,99 0,9 0,148 0,396 0,507

1 2 100 0,99 0,9 0,151 0,395 0,510

1 2 1000 0,99 0,9 0,152 0,395 0,510

1,5 0 10 0,9 0,7 0,141 0,408 0,561

1,5 0 50 0,9 0,7 0,139 0,404 0,560
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-1 METEOR BLEURT

1,5 0 100 0,9 0,7 0,143 0,407 0,559

1,5 0 1000 0,9 0,7 0,144 0,409 0,559

1,5 0 10 0,93 0,7 0,138 0,401 0,560

1,5 0 50 0,93 0,7 0,140 0,404 0,559

1,5 0 100 0,93 0,7 0,139 0,407 0,561

1,5 0 1000 0,93 0,7 0,140 0,405 0,557

1,5 0 10 0,96 0,7 0,138 0,404 0,560

1,5 0 50 0,96 0,7 0,137 0,404 0,559

1,5 0 100 0,96 0,7 0,140 0,406 0,559

1,5 0 1000 0,96 0,7 0,137 0,405 0,559

1,5 0 10 0,99 0,7 0,138 0,407 0,557

1,5 0 50 0,99 0,7 0,140 0,409 0,555

1,5 0 100 0,99 0,7 0,137 0,405 0,557

1,5 0 1000 0,99 0,7 0,136 0,404 0,557

1,5 0 10 0,9 0,8 0,136 0,403 0,558

1,5 0 50 0,9 0,8 0,136 0,403 0,558

1,5 0 100 0,9 0,8 0,137 0,404 0,556

1,5 0 1000 0,9 0,8 0,137 0,405 0,558

1,5 0 10 0,93 0,8 0,133 0,402 0,555

1,5 0 50 0,93 0,8 0,137 0,405 0,556

1,5 0 100 0,93 0,8 0,133 0,401 0,555

1,5 0 1000 0,93 0,8 0,137 0,405 0,555

1,5 0 10 0,96 0,8 0,133 0,402 0,555

1,5 0 50 0,96 0,8 0,135 0,404 0,555

1,5 0 100 0,96 0,8 0,137 0,405 0,556

1,5 0 1000 0,96 0,8 0,137 0,405 0,555

1,5 0 10 0,99 0,8 0,135 0,406 0,554

1,5 0 50 0,99 0,8 0,133 0,403 0,554

1,5 0 100 0,99 0,8 0,137 0,405 0,555

1,5 0 1000 0,99 0,8 0,134 0,403 0,554

1,5 0 10 0,9 0,9 0,135 0,403 0,555
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-1 METEOR BLEURT

1,5 0 50 0,9 0,9 0,130 0,401 0,553

1,5 0 100 0,9 0,9 0,134 0,403 0,554

1,5 0 1000 0,9 0,9 0,134 0,403 0,554

1,5 0 10 0,93 0,9 0,132 0,401 0,553

1,5 0 50 0,93 0,9 0,129 0,400 0,553

1,5 0 100 0,93 0,9 0,133 0,403 0,553

1,5 0 1000 0,93 0,9 0,133 0,404 0,554

1,5 0 10 0,96 0,9 0,130 0,402 0,553

1,5 0 50 0,96 0,9 0,131 0,403 0,552

1,5 0 100 0,96 0,9 0,132 0,402 0,552

1,5 0 1000 0,96 0,9 0,132 0,405 0,554

1,5 0 10 0,99 0,9 0,133 0,402 0,551

1,5 0 50 0,99 0,9 0,131 0,402 0,552

1,5 0 100 0,99 0,9 0,132 0,403 0,552

1,5 0 1000 0,99 0,9 0,129 0,401 0,551

1,5 1 10 0,9 0,7 0,124 0,418 0,566

1,5 1 50 0,9 0,7 0,124 0,416 0,565

1,5 1 100 0,9 0,7 0,120 0,412 0,566

1,5 1 1000 0,9 0,7 0,127 0,418 0,566

1,5 1 10 0,93 0,7 0,125 0,416 0,566

1,5 1 50 0,93 0,7 0,128 0,421 0,565

1,5 1 100 0,93 0,7 0,123 0,415 0,566

1,5 1 1000 0,93 0,7 0,121 0,414 0,564

1,5 1 10 0,96 0,7 0,126 0,418 0,565

1,5 1 50 0,96 0,7 0,124 0,416 0,564

1,5 1 100 0,96 0,7 0,119 0,412 0,563

1,5 1 1000 0,96 0,7 0,125 0,416 0,565

1,5 1 10 0,99 0,7 0,122 0,416 0,563

1,5 1 50 0,99 0,7 0,118 0,412 0,563

1,5 1 100 0,99 0,7 0,124 0,416 0,563

1,5 1 1000 0,99 0,7 0,121 0,414 0,563
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-1 METEOR BLEURT

1,5 1 10 0,9 0,8 0,119 0,412 0,564

1,5 1 50 0,9 0,8 0,125 0,416 0,566

1,5 1 100 0,9 0,8 0,120 0,415 0,565

1,5 1 1000 0,9 0,8 0,125 0,418 0,565

1,5 1 10 0,93 0,8 0,120 0,414 0,565

1,5 1 50 0,93 0,8 0,126 0,418 0,565

1,5 1 100 0,93 0,8 0,122 0,414 0,563

1,5 1 1000 0,93 0,8 0,122 0,414 0,565

1,5 1 10 0,96 0,8 0,121 0,415 0,562

1,5 1 50 0,96 0,8 0,123 0,416 0,563

1,5 1 100 0,96 0,8 0,122 0,413 0,563

1,5 1 1000 0,96 0,8 0,118 0,411 0,562

1,5 1 10 0,99 0,8 0,121 0,414 0,562

1,5 1 50 0,99 0,8 0,120 0,413 0,561

1,5 1 100 0,99 0,8 0,119 0,411 0,561

1,5 1 1000 0,99 0,8 0,118 0,411 0,560

1,5 1 10 0,9 0,9 0,119 0,413 0,562

1,5 1 50 0,9 0,9 0,121 0,415 0,563

1,5 1 100 0,9 0,9 0,121 0,414 0,564

1,5 1 1000 0,9 0,9 0,121 0,413 0,561

1,5 1 10 0,93 0,9 0,120 0,413 0,561

1,5 1 50 0,93 0,9 0,118 0,411 0,560

1,5 1 100 0,93 0,9 0,119 0,412 0,561

1,5 1 1000 0,93 0,9 0,120 0,412 0,561

1,5 1 10 0,96 0,9 0,117 0,409 0,561

1,5 1 50 0,96 0,9 0,119 0,413 0,560

1,5 1 100 0,96 0,9 0,116 0,408 0,560

1,5 1 1000 0,96 0,9 0,117 0,409 0,561

1,5 1 10 0,99 0,9 0,117 0,408 0,560

1,5 1 50 0,99 0,9 0,115 0,409 0,569

1,5 1 100 0,99 0,9 0,116 0,409 0,568

1,5 1 1000 0,99 0,9 0,118 0,410 0,566
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-1 METEOR BLEURT

1,5 2 10 0,9 0,7 0,138 0,411 0,505

1,5 2 50 0,9 0,7 0,142 0,412 0,507

1,5 2 100 0,9 0,7 0,143 0,416 0,504

1,5 2 1000 0,9 0,7 0,144 0,412 0,505

1,5 2 10 0,93 0,7 0,138 0,405 0,504

1,5 2 50 0,93 0,7 0,136 0,405 0,501

1,5 2 100 0,93 0,7 0,140 0,411 0,503

1,5 2 1000 0,93 0,7 0,138 0,409 0,503

1,5 2 10 0,96 0,7 0,138 0,408 0,502

1,5 2 50 0,96 0,7 0,139 0,409 0,502

1,5 2 100 0,96 0,7 0,134 0,403 0,502

1,5 2 1000 0,96 0,7 0,142 0,412 0,503

1,5 2 10 0,99 0,7 0,135 0,408 0,501

1,5 2 50 0,99 0,7 0,135 0,408 0,501

1,5 2 100 0,99 0,7 0,140 0,415 0,503

1,5 2 1000 0,99 0,7 0,136 0,408 0,502

1,5 2 10 0,9 0,8 0,134 0,405 0,501

1,5 2 50 0,9 0,8 0,137 0,409 0,501

1,5 2 100 0,9 0,8 0,137 0,411 0,502

1,5 2 1000 0,9 0,8 0,135 0,408 0,499

1,5 2 10 0,93 0,8 0,136 0,410 0,501

1,5 2 50 0,93 0,8 0,131 0,406 0,498

1,5 2 100 0,93 0,8 0,137 0,409 0,500

1,5 2 1000 0,93 0,8 0,136 0,411 0,498

1,5 2 10 0,96 0,8 0,132 0,407 0,499

1,5 2 50 0,96 0,8 0,134 0,409 0,499

1,5 2 100 0,96 0,8 0,129 0,402 0,495

1,5 2 1000 0,96 0,8 0,133 0,404 0,500

1,5 2 10 0,99 0,8 0,135 0,412 0,499

1,5 2 50 0,99 0,8 0,132 0,407 0,497

1,5 2 100 0,99 0,8 0,127 0,402 0,496
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(continue)

Rep Pen NRNGS Topk TopP Temp BLEU-1 METEOR BLEURT

1,5 2 1000 0,99 0,8 0,132 0,407 0,497

1,5 2 10 0,9 0,9 0,132 0,404 0,496

1,5 2 50 0,9 0,9 0,139 0,411 0,499

1,5 2 100 0,9 0,9 0,127 0,403 0,497

1,5 2 1000 0,9 0,9 0,133 0,405 0,497

1,5 2 10 0,93 0,9 0,131 0,402 0,496

1,5 2 50 0,93 0,9 0,136 0,409 0,498

1,5 2 100 0,93 0,9 0,134 0,409 0,497

1,5 2 1000 0,93 0,9 0,131 0,407 0,497

1,5 2 10 0,96 0,9 0,128 0,403 0,495

1,5 2 50 0,96 0,9 0,127 0,405 0,496

1,5 2 100 0,96 0,9 0,125 0,402 0,493

1,5 2 1000 0,96 0,9 0,127 0,404 0,493

1,5 2 10 0,99 0,9 0,127 0,403 0,495

1,5 2 50 0,99 0,9 0,128 0,406 0,492

1,5 2 100 0,99 0,9 0,130 0,409 0,493

1,5 2 1000 0,99 0,9 0,129 0,400 0,495
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