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1. Introduction and contribu-
tions

The thesis proposes an autotuning controller
for power/performance/thermal management in
modern microprocessors — a matter that
emerged in quite recent years but is gaining so
much importance to rank among the enablers
for high-performance computing solutions, and
often to be vital for the safe operation of the
processors themselves.
The world of processors has in fact entered the
so-called “dark silicon era”, in which the thermal
power is so high that certain areas of the active
silicon – i.e., the portion of the chip that actually
performs operations – must remain unused, to
prevent the processor from overheating. And to
make the scenario even more complicated, the
heat generated is subject to enormous, sudden,
and hardly predictable changes. The resulting
challenge is so tough that some researchers even
cast doubt on a prosperous future – if not on
survival – for the multicore era [2].
The thermal dynamics of active silicon is incred-
ibly fast. Today it requires a control capable
of reacting at a millisecond scale, and the sit-

uation will most likely worsen with the advent
of three-dimensional architectures. For this rea-
son, the use of fixed rate controls is no longer a
viable option. Such fast, periodically computed
controls require a non-negligible amount of com-
putational power, and it is not clear where to
best integrate them: if they were allocated in
software, they would burden the operating sys-
tem by stealing computational power. If they
were implemented in hardware, they would re-
quire silicon area and power. In contrast, event-
based controls have the characteristic of acting
only when needed, mitigating the overall com-
putation and power demand.
As proven in the previous work [6], event-based
control is able to effectively manage tempera-
ture transients in a multicore system. The ob-
jective of this thesis is the development of a con-
troller with a methodological approach to tem-
perature management of individual cores in a
multicore context, and more specifically, to en-
dow such a controller with autotuning capabili-
ties, to be invoked typically at the time of a sys-
tem re-configuration, or if needed at each system
startup; this is the first contribution.
The second contribution, obtained by an accu-
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rate design and engineering, is an implementa-
tion of the said controller capable of running to-
gether with (a) a Modelica model of the heat
dissipation system connected to the addressed
CPU, and (b) a fine-grain chip simulator like
3D-ICE [9], This allows for a model-based de-
sign of cooling solutions comprehending the pro-
posed autotuner, testing the said design from the
viewpoints of both the thermal policies realised
aboard the CPU and the system-level heat dis-
sipation equipment.

2. Related work
The most effective way to counteract processor
overheating is to act on the clock frequency by
means of a mechanism called DVFS (Dynamic
Voltage and frequency Scaling). Alternatives
like task migration [3, 7, 8] can be considered,
but with the fast dynamics seen nowadays, at
least the co-presence of DVFS is inevitable [12].
This thesis builds on one side on the results pre-
sented in [6], where a fixed-parameters event-
based controller is proposed, and in [5], where a
mixed model- and relay-based autotuning tech-
nique is introduced to ensure model fidelity in
the vicinity of the cutoff frequency.
However, a peculiarity of the addressed problem
is that a core is always subject to disturbance
from the neighbouring ones on the silicon die,
which requires to bring into play relay identifi-
cation techniques capable of rejecting such un-
desired stimuli — a matter discussed e.g. in [4]
and in [1], on which the identification technique
presented in the thesis is based.

3. The proposed autotuner
The presented autotuner applies to the control
structure proposed in [6], which in turn relies on
a PI loop per core (thanks to the very loose inter-
core interactions observed at the time scale of
interest) equipped with an override signal com-
ing from the operating system governor, that
requests an operating frequency based on the
measured load and some configuration param-
eters. In a nutshell, as long as the core is cool
enough the governor rules the frequency, while if
the set temperature threshold is approached the
thermal controller takes over (and reduces the
frequency with respect to the governor request).
The autotuner is made (for each core, given the
adopted decentralised control approach) of the

following components:
• the low-level controller, that is, the PI with

override just mentioned;
• the exciter, devoted to managing the relay-

based identification phase;
• the analyser, with the task of turning relay

data into pointe of the frequency response
of the dynamics seen by the controller to
tune;

• the high-level controller, in charge of com-
puting the control parameters and manag-
ing the entire autotuning procedure.

The high-level controller, that governs the oper-
ation of the entire system, operates according to
a finite state machine that distinguishes the var-
ious phases of an autotuning operation and acts
on the underlying low-level controller by means
of its modulating and logic input (for example,
to orderly replace the PI with the relay, the for-
mer is forced into tracking mode and the relay
output becomes the track reference); a synthetic
overview of the finite state machine just sketched
is reported in Figure 1.
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Figure 1: Finite state machine for the high-level
controller.

Peculiar to the presented autotuner are three
features. First, the exciter can make use of (i) a
pure relay, (ii) a relay with a cascaded integrator
and (iii) the technique suggested in [1]; this ba-
sically consists of augmenting the relay-process
cascade with a high-pass filter, devoted to reject-
ing matched disturbances (as those due to power
from adjacent cores on a measured temperature)

2



Executive summary Riccardo De Rosi

and with a low-pass filter devoted to recover the
correct process information by compensating for
the effect of the high-pass one.
Second, the analyser can be configured to em-
ploy the describing function approximation, a
widely used technique in relay-based autotun-
ing, or to employ a more complex method based
on Fourier analysis, that is capable of yielding
better precision at the cost of an increased com-
putational demand.
Third, the tuning procedure can employ the
standard IMC rule or the contextual one pro-
posed in [5]. The contextual technique tunes
a controller based on points of the process
Nyquist curve, thus well complementing relay-
based identification, and by using those points
to parameterise a transfer function model of the
process, allows for the use of model-based tun-
ing formulæto the advantage of readability, espe-
cially concerning the way specifications are stip-
ulated (in the addressed computer-centric do-
main, a settling time requirement is far bet-
ter understood than e.g. a phase margin one).
However, instead of first using the frequency re-
sponse point to parametrise a model and then
use this model to tune the controller, the equa-
tions corresponding to the two tasks just men-
tioned are solved jointly (or as the name says,
“contextually”). This implies that the model
used for the tuning is by construction “exact
at the cutoff frequency”, as this is taken (we
omit details here) to match one of the found
points, and has an important consequence: one
can use the closed-loop model formed with the
parametrised model and the tuned controller to
predict the behaviour of the controlled variable
reliably enough in the face of any input that en-
ters the control system in a position such that
its influence on the said variable depends only
on the loop transfer function, provided that the
tuning is made in such a way that at low fre-
quency (with respect to the cutoff) the loop fre-
quency response magnitude is “very large” — as
incidentally any controller with integral action
inherently guarantees.

4. Implementation
The proposed autotuner was implemented both
as an all-Modelica application and a C++ li-
brary, capable of running together with 3D-ICE,
and also suitable for future porting on the physi-

cal devices to address. The reason is that a com-
pletely Modelica realisation allows one to exploit
the powerful solution capabilities – variable-step
integration to mention just one – offered by the
language and its tools, while a C++ realisation
is necessary for the deployment-related reasons
just mentioned.
The package structure of the created Modelica li-
brary is shown in Figure 2, while Figure 3 shows
an example of the contained control schemes.

Figure 2: Overview of the created Modelica li-
brary.

Figure 3: block diagrams of the override PI con-
troller implemented in Modelica (top) and its
quadrupled version (bottom) for a quad-core.

The C++ implementation relies on an articu-
lated class hierarchy, represented in UML form
in Figure 4 and impossible to describe here in
detail.
As for 3D-ICE integration, the client-server
setup made available by that tool was exploited,
modifying the client in such a way as to allow
3D-ICE to accept the external control actions
computed by the autotuning controller.
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ATController

#d abs_P_min
#d abs_P_max
#d arg_P_min
#d arg_P_max
#phase_enum phase
#controller* controller
#experiment* experiment
#b ATRequest

+b ATRequest()
+d compute(d SP, d PV, d my_time)
+d compute(d SP, d PV, b ATRequest, d
my_time)

ATController-experiment

+v initialize(d CS, d e, d my_time)
+b is_timeout()
+d compute(d SP, d PV, d my_time)
+v get_freq_point(d *abs_P, d *arg_P)
+v set_params(controller* controller)

experiment

#exciter* exciter
#analyzer* analyzer
#controllerType controller type

+d compute(d SP, s PV, d my_time)
+b get_status_experiment()
+v associate_exciter(exciter* exciter)
+v associate_analyzer(analyzer* analyzer)
+exciter* return_exciter()
+analyzer* return_analyzer()
+v set_params(controller* controller)
+v get_freq_point(d *abs_P, d *arg_P)
+v initialize(d u_cen, d e, d my_time)
+b is_timeout(d my_time)

analyzer-experiment

+b analyze(in d PV, in d CS, in d my_time)
+v tune_params(in d &K, in d &Ti)
+v get_freq_point(in d &abs_P, in d &arg_P)

analyzer

#b ok_experiment
#d abs_P
#d arg_P
#d Ts
#i osc_count
#i max_oscillation
#exciterTypeAnalyzer exciter_type
#d period
#d pos_switch
#d pos_switch_1
#exciter* exciter
#d phase_margin
#d start_time
#d timeout

+analyzer(in i max_counter, in d phase_margin, in d timeout)
+b analyze(in d PV, in d CS, in d my_time)
+v associate_exciter(in exciterTypeAnalyzer exctiter_type, in exciter* exciter, in d Ts)
+v initialize()
+v initialize(in d my_time)
+v change_parameters(in i max_count, in d phase_margin)
+v tune_params(in d *K, in d *Ti)
+v get_freq_point(in d *abs_P, in d *arg_P)
+b get_experiment_status()
+b is_timeout(in d my_time)

Controller

+d compute(in d SP, in d PV, in d
f_g in d my_time)
+d compute(in d SP, in d PV,in d
f_g, in d ATreq, in d my_time)
+v bumpless(in d CS, in d SP, in
d PV)

controller-experiment

+ v set_params(in d *K, in d *Ti)

exciter-experiment

+ d compute(in d e)

exciter-analyzer

+b get_flag()
+v reset_flag()

PI controller

#CSmin
#Ts
#K
#Ti
#e
#ui

+PI_controller(in d Ts, in d CSmin, in d K, in d Ti)
+d compute(in d SP, in d PV, in d f_g in d my_time)
+d compute(in d SP, in d PV,in d f_g, in d ATreq, in
d my_time)
+v get_status(in d *e, in d *ui)
+v bumpless(in d CS, in d SP, in d PV)

ATController-controller

+d compute(in d SP, in d PV, in d f_g in d
my_time)
+d compute(in d SP, in d PV,in d f_g, in d
ATreq, in d my_time)
+v bumpless(in d CS, in d SP, in d PV)

RRFS_L

#d half_period
#d A
#d CS_L
#old_time

+RRFS_L(in d amp_1, in d hys_1, in d amp_2, in d hys_2, in i n_e, in d Ts,
in d A, in d ome_L)
+d compute(in d e, in d my_time)
+v set_half_period(in d half_period)

relay

#d amplitude
#d hysteresis
#d CS
#d u_cen
#b flag

+relay()
+relay(in d amplitude, in d hysteresis)
+d compute(in d e, in d my_time)
+v initialize(in d u_cen, in d e)
+b get_flag()
+v reset_flag()
+d get_amplitude()
+d get_hysteresis()
+v get_status(in d *cs)
+v get_status(in d *cs, in d *u_relay_cen)
+v desc_func_method(in d* abs_P, in d*
arg P in d osc amp in d omega)

+1

relay_plus_integrator

#d Ts
#ui

+relay_plus_integrator(in d amp, in d hys
, in d Ts)
+d compute(in d e, in d my_time)
+v initialize(in d u_cen, in d e)
+v initialize(in d u_cen, in d e)
+v desc_func_method(in d* abs_P, in d*
arg P, in d osc amp, in d omega)

describing function

#d PV_cen
#d Max
#d  Min
#d osc_amp
#d PV_1

+describing_function(in i max_counter, in d
phase_margin, in d timeout)
+b analyze(in d PV, in d CS, in d my_time)
+v tune_params(in d &K, in &Ti)
+v get_status(in d *PV_cen, in d *Min, in d *Max, in d
*osc_amp, in d *period, in d *osc_count)

exact_method

#d mi
#d T
#d L
#d lambda
#d omega
#b ok_oscillation
#d int_u
#d int_y
#d int_uw[2]
#d int_yw[2]
#d P_0
#tunerType tuner_type

+exact_method(in i max_counter, in d phase_margin, in d timeout,
in d lambda, in tunerType tuner_type)
+b analyze(in d PV, in d CS, in d my_time)
+v initialize()
+v intialize(in d my_time)
+tune_params(in d *K, in d *Ti)
+v get_status(in d *int_u, in *int_y, in d *int_uw, in d *int_yw, in b
*ok oscillation, in i *osc count, in d *period, in d *P 0)

exact_method_ome_l

#d ome_L
#d int_uw_L[2]
#d int_yw_L[2]
#d abs_P_L
#d arg_P_L
#i extra_osc
#b extra_time

+exact_method_L(in i max_counter, in d phase_margin, in d timeout, in d lambda,
in d ome_L)
+b analyze(in d PV, in d CS, in d my_time)
+v tune_params(in d *K, in d *Ti)
+void get_status(in d *int_u, in d *int_y, in d *int_uw, in d *int_yw, in d *int_uw_L,
in d *int_yw_L, in d *abs_P_L, in d *arg_P_L, in b *ok_oscillation, in i *osc_count,
in d *period, in d *P_0)

RRFS

#relay r1
#relay_plus_integrator r2
#i n_e
#d e_record[n_e]
#d tau_f

+RRFS(in d amp_1, in d hys_1, in d amp_2, in d hys_2, in i n_e, in d Ts)
+d compute(in d e, in d my_time)
+v initialize(in d u_cen, in d e)
+v get_status(in d* cs_r1, in d* cs_r2, in d* u, in d* u_rel_cen, in d* e_rec)
+v desc_func_method(in d* abs_P, in d* arg_P, in d osc_amp, in d omega) +1

Exciter

+d compute(in d e, in d
my_time)
+v initialize(in d u_cen, in d
e)
+v reset_flag()
+b get_flag()
+v desc_func_method(in d*
abs_P, in d* arg_P, in d
osc_amp, in d omega)

Figure 4: UML representation of the proposed autotuner as realised in C++.

5. Testing
The testing activity constitutes a relevant part
of the thesis work. At present it was done only
in simulation, since porting to physical devices
is envisaged as a future activity, and was aimed
at the following objectives.

1. Experiment – though in a somehow still
idealised setting – with the different op-
tions implemented for excitation, analysis
and tuning, in a view to critically compare
them.

2. Assess the correct operation of the Modelica
and the C++ implementations of the auto-
tuner, as well as their mutual consistency.

The first set of experiments was carried out in
Modelica with a 3-capacities model of a quad-
core processor; tests were carried out with var-
ious combinations of the proposed stimulation,
analysis and tuning policies, as well as in the
presence of constant and time-varying thermal
disturbances from the cores adjacent to the con-
trolled one. Figure 5 shows an example of the
obtained transients, in detail reporting the be-

haviour of the controlled temperature and the
control signal during and after a tuning oper-
ation; after the tuning, evidenced by the relay
excitation, a step set point modification and a
step disturbance were applied (the latter by act-
ing in open loop on the powers dissipated by
the adjacent cores) to show the behaviour of the
obtained controller.

Figure 5: Autotuning operation simulated in
Modelica: controlled variable (top, red, limit set
to 55◦C), temperatures of the other cores (top,
green and blue) and control signal (bottom).
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Based on the obtained results we conclude that
the describing function and the Fourier analysis
are both viable approaches, that the former is
less accurate as expected, but also that the lat-
ter provides its better accuracy at the cost of an
increased number of required points — i.e., of
a smaller sampling time. We also conclude that
none of the proposed tuning policies significantly
outperforms the others, hence CLA can be used
if maximum simplicity is a must, while the con-
textual IMC is preferable in a view of the future
extensions envisaged thanks to its capabilities
of providing reliable forecasts of the controlled
variable.

The second set of experiments involves co-
simulation with 3D-ICE, exploiting its so-called
“pluggable heat sink” capability [11] to employ,
together with a fine-grained chip description,
also accurate heat sink models. The purpose
of these experiments is twofold: (i) verify that
the behaviour of the C++ autotuner implemen-
tation reasonably matches that of the Modelica
one – of course from a qualitative standpoint,
as the processor model used in 3D-ICE is dif-
ferent from the 3-capacities Modelica one, and
far more accurate as it also includes a detailed
representation of the heat sink; (ii) check the
co-simulation capabilities of the proposed C++
realisation. An example of the obtained results,
with a Cuplex waterblock as sink, is shown in
Figure 6. The shown time scale is short as the
simulation is more computing-intensive than the
all-Modelica case; note however that the time
scale of tuning and responses do correspond.

Figure 6: Autotuning operation in co-simulation
with 3D-ICE (tuning, set point change, distur-
bance step).

In addition, to show the added value of co-
simulating with 3D-ICE, in Figure ?? we show a
thermal map of the chip (4 cores in a square 2×2
layout) at the end of the tuning operation (the
simulation produces a sequence of such maps to
help evaluate the spatial behaviour of tempera-
ture over time).

Figure 7: Thermal map obtained from an auto-
tuning co-simulation with 3D-ICE.

The activity carried out indicates first that the
C++ implementation of the autotuner operates
correctly, and as a consequence that it can be
used in conjunction with 3D-ICE (or in principle
with any tool capable of co-simulation) for the
intended integrated studies aimed at a joint ver-
ification of heat dissipation equipment and on-
chip thermal policies, as envisaged e.g. in [10].

6. Conclusions and future work
We presented an autotuning controller conceived
for joint power/performance/thermal control in
modern microprocessors. The necessity of such
controls is nowadays testified by the increasing
importance of the “dark silicon” problem, and
as quenching thermal stress inherently comes at
the cost of reducing performance, the said con-
trols must be capable of limiting that detriment
to the minimum required. In turn, given the
various installation settings and ambient condi-
tions that a microprocessor can experience, the
need for so effective control performances calls
for adaptation capabilities.
An autotuning controller is therefore highly de-
sired, but needs to be (i) very simple so that
computer (not control) personnel can operate it,
(ii) not too invasive to not upset the operation of
the overall system where it resides, (iii) robust in
the face of disturbances from neighbouring parts
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of that system such as adjacent cores, and (iv)
computationally light so as to make it possible
to invoke it e.g. at every system startup.
The proposed solution, thanks to the combi-
nation of purpose-specific stimulation, analysis
and tuning policies, fulfills all the needs just set
forth. After a theoretical motivation, it was re-
alised both as a Modelica library, for system-
level testing, and as a C++ application, for
experimentation with fine-grain chip simulators
like 3D-ICE and to run in conjunction with
other on-chip policies such as load-based fre-
quency/voltage governors, so as to be assessed
as ready for porting on a real device.
The autotuner realisation on a physical pro-
cessor is thus the first activity planned for
the future, together with refinements of the
tuning procedure and further assessment in
simulation, for example within studies aimed
at a joint design, based on virtual prototyp-
ing, of heat dissipation equipment and on-chip
power/performance/thermal policies.
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