
Executive Summary of the Thesis

DEEP NEURAL NETWORKS FOR TIME SERIES FORECASTING
BEYOND TRANSFORMERS

Laurea Magistrale in Computer Science Engineering - Ingegneria Informatica

Author: Riccardo Ughi

Advisor: Prof. Matteo Matteucci

Co-advisors: Eng. Eugenio Lomurno,

Academic year: 2021-2022

1. Abstract
Human culture has always wondered how to know
the future in advance. In recent years, a specific
subject of Machine Learning studies precisely this,
trying to grasp the future from the study of Time
Series with the use of neural networks. More pre-
cisely, it aims to find neural network models ap-
plicable to Time Series that are able to calculate
the trend of an unknown phenomenon from other
known parts of it.
In this context, Time Series are sequential data,
i.e., sequences of interrelated information in the
time domain. It is clear that if it were possible to
calculate Time Series values before knowing them
through real-world observation, it would mean be-
ing able to predict the future, and this would cer-
tainly have great appeal and obvious practical in-
terest. Time Series forecasting sets itself precisely
this goal, that of calculating the future.
There are numerous active lines of research deal-
ing with this using different techniques. In particu-
lar, numerous studies develop models derived from
the Transformer, a deep learning tool which was
originally invented for linguistic analysis. Several
researches foresee a growing complication of the
models, in a sort of emulation of what happened
in other areas, such as the classification of images

and Neural Language Processing (NLP) in which a
growing complexity of Deep Learning models can
correspond to a better Time Series forecasting sets
itself precisely this goal, that of calculating the fu-
ture!. We will show that this route is incorrect and
that simplified models have a higher prediction ca-
pability for all the datasets examined. The models
studied in this work are representative of situations
with different degrees of regularity, but for all of
them the conclusion is always that the complicated
models perform no better than the simplified ones.
We have also developed models capable of making
predictions for extremely long periods, up to 5376
values in some cases with quite good results.

2. Introduction
It can be assumed that various phenomena oc-
curring in nature or caused by human technology
can be represented by numerical Time Series. In
order to predict these phenomena, it is necessary
to find models capable of receiving sequences of
data as input and calculating numerical outputs
that represent the phenomena at successive times.
The ambition is to predict the unknown future
from the known past.
As a preliminary remark, it is noted that any
model that has the ability to predict the future

1

Executive summary Riccardo Ughi

must receive from the known past the information
necessary to know it.
There are many active machine learning research
fields that study new models or refine existing
ones. The Deep Learning models we are dealing
with are certainly an important part of all existing
ones. A significant proportion of the more recent
ones use models derived from Transformer [1],
which has proven to work quite well in computer
vision, linguistic analysis and more. Many re-
searchers have therefore found it natural to try
to extend its use to other areas and in particular
to Time Series in order to predict future trends.
The related techniques involve a training phase
in which a parametric function is identified that
represents the evolution of the phenomenon as a
function of time. This function must minimize the
differences between the function and reality with
sufficient approximation even when the input is
not part of those used during training.
This work aims to simplify the techniques cur-
rently in use to see if this can lead to improvements
in terms of both complexity and performance.

3. Releted works
The performance improvement of Deep Learning
models applied to Time Series, understood as
the ability to predict more exact and longer
unknown time sequences, is an active research
field. There has been in very recent times and
within a short time many researches which have
reported an improvement in the state of the art.
Different variants of the Transformer [1] have
affected different research groups. For example:
FEDformer, Autoformer, Informer, Pyraformer,
LogTrans and Reformer.
The Transformer was born for NLP problems and
in its original context it can be used to generate
texts, translate, and so on. To perform these
functions, the Transformer in NLP problems
normally has a final layer softmax which is used
to obtain a classification that, through a softmax
activation function, identifies a dictionary word
as the most probable. In the case of Time Series,
however, the output is a vector or matrix of
continuous values that never represents a classifi-
cation. Consequently in Time Series, the output is
never a one-hot vector. Instead, the ultimate goal
in Time Series problems is always to find a vector
of numerical values that are never a probability
distributionwithout final softmax layer.

Regarding complexity, Transformer type architec-
tures based on the original model have quadratic
complexity with respect to the length of the
attention level input matrix. This is a significant
obstacle because as the length of the input in-
creases, spatial and temporal complexities that
are practically inaccessible are quickly reached.
Also for this reason most of the research works
have in mind the objective of reducing the com-
plexity from the quadratic one to a lower level.
In this work, an attempt will be made to modify
the Transformer to fit the Time Series. However,
in contrast to the aforementioned work, a radical
simplification of complexity will be undertaken
through the elimination of repeated Encoder and
Decoder layers and a reduction in the number
of parameters. It will be shown that with the
elimination of the number of modules and a
drastic reduction in the number of parameters,
the results will improve instead of deteriorating as
might be expected.

4. Models
This work initially examines a first Transformer
model adapted to the Time Series. Models are then
proposed that simplify this first Transformer-based
model by eliminating the Attention Modules, first
contained in the Decoder, then also in the Encoder.
The models then become much simpler FNN-type
neural networks. Furthermore, the results of a Per-
sistent model will be shown as a comparison.
The pre-processing phase which is necessary to all
the models examined during this work will be de-
scribed in detail below.

4.1. Standardization
Neural networks converge much faster if the
input data is normalized. All input series were
normalized by subtracting the population mean
from the population standard deviation:

xi =
xd
i−µ√
σ2+ϵ

This simple calculation reduces the ranges of fea-
tures.

4.2. Windows Input
The input during training is a sequence of numer-
ical vectors often called Windows Inputs. These
are Times Series data sequences characterised by

2

Executive summary Riccardo Ughi

a hyper-parameter that defines their length, which
is fixed. These windows overlap each other with
a single time interval to make the best use of the
available data.
It is absolutely necessary to use Windows Input be-
cause the input Transformers models always have
vectors or numeric matrices of a fixed size that are
processed one at a time. It is the very logic of the
Attention layer that works this way. Its purpose
in fact is to calculate the relationships between
the different parts of the input vector by marking
the most important ones with corresponding higher
values of the output matrix. Consequently, the
Transformer cannot work continuously by adding
input values one at a time, but works ’in blocks’ so
to speak, i.e. by adding vectors or matrices made
up of several values.
Data windows are computed together with the tar-
get vectors during the pre-processing phase.

4.3. Positional embedding
All Transformer models, both those applied to
NLP problems and those applied to Time Series,
must apply a positional embedding to inject into
the model the information relating to the order in
which the values are sequenced. This process is
critically important with Time Series because it is
clear that the order of values is just as important
as the number that represents them and it is
worthwhile to delve a little deeper into the sub-
ject. In the case of Transformer models applied
to Time Series, there is an absolute necessity for
the models interpreting them to be able to take
the position of the values into account. In fact,
in NLP ploblems, the inversion of some parts of
the text does not always change the translation
or meaning. In NPL, therefore, there is greater
flexibility and a certain tolerance towards errors
in the reconstruction of the sequence.
In the case of the present work and unlike the
classic Transformer and other works, the choice of
positional coding is an algorithm obtained from
Time2Vec [2] which was devised by its authors
with the aim of providing an embedding function
positional applicable to different models.
Time2Vec is a learnable vector representation (or
embedding) for time as a vector representation.

The ith of the Time Vector of time τ is:

t2v(τ)[i] =

{
ωiτi + ωi

F = (ωiτ + ϕi)

if i = 0

if 1 ≤ i ≤ k

where F (according with authors sin in the best
in order to capture periodic patterns) is a periodic
activation function, ω and ϕ are the frequency and
the phase-shift and are learnable parameters.
Time2Vec is inspired by positional-encoding used
in Transformer with embedding layer, but:
• represents continuous time instead of discrete

time
• is learnable
• is able to capture periodic behaviors which is

not the goal in positional encoding
• vector is a model input and is concatenated

rather than added to a vector

4.4. Output
In all the models examined in this work, including
ones based on Transformer, the output is a numeric
vector that directly constitutes the forecast and has
a variable length between 24 and 5376, therefore
with a very long forecast length. Note that in pre-
vious works, probably also due to the complexity
of the models and the limitations of the hardware
available to the researchers, the prediction has a
much shorter length, up to 720 values.
The last layer suitable for calculating a vector (or
a matrix) of the values that make up the output is
a Fully Connected Layer.

4.5. Optimization
The output vector is computed from a final lin-
ear parameterized layer that directly outputs the
prediction vector. During the training phase this
vector is compared with the target vector which is
exactly the same size. The two vectors are applied
to the formula to calculate the Mean Absolute Er-
ror (MAE): ∑D

i=1 |xi − yi|

Two errors are commonly compared, the MAE and
the Mean Squared Error (MSE). However, even
looking at the Time Series works mentioned in this
document, MSE does not seem to add useful infor-
mation in order to find better performing models.
Consequently, to streamline the tables of results,
the choice was made to use only the MAE. The
MAE compared to the MSE has the advantage of
being linear with respect to errors with a conse-
quent more intuitive understanding.

3

Executive summary Riccardo Ughi

5. Model architectures
In this subsection a description of the peculiar
chosen Artificial Neural Network is reported.

• Encoder + Decoder: first model derived
directly from the Transformer. It is simplified
compared to the original Transformer with a
drastic decrease of the parameters. The final
layer (which in the original Transformer is a
softmax type layer) is a Fully Connected Neu-
ral Network.

• Encoder: this second model is the same as
the previous one but composed only of the
Encoder part.The purpose of the model is to
check whether the decoder module adds in-
formation capacity to the model and is there-
fore useful for improving the results. From an
interpretative point of view, this is not obvi-
ous because in Transformer models applied to
Time Series no activation phase is necessary.

• Multilayers: the third model is a Fully Con-
nected Neural Network with 3 layers. Each
layer has a ’relu’ activation function and a fi-
nal regularization of type L1 and L2. This
model with a further simplification compared
to the previous model, does not have the At-
tention module.

• One layer: it is a neural network with only
one layer with a further simplification com-
pared to the previous model. The purpose of
this model is to test whether a single linear
layer can perform against more complex net-
works with multiple levels or modules of at-
tention.

• Persistent: it is obviously not a Neural Net-
work because predictions are made simply by
assuming that the past can repeat itself. The
forecast consists of exactly the same number
of closest past values. It is used only as a basic
comparison.

• Liner regression: the Linear Regression
(without penalty) was calculated as a compar-
ison term for each prediction. This is an ex-
tremely simple model that differs from Deep
Networks.

6. Training
The proposed models are tested on the Time Series
shown in this section. Autocorrelations were calcu-
lated to represent the degree of periodicity present
in the dataset. It will be seen that the more auto-
correlation indicates a regular periodicity, the more

accurate the predictions are, with particular refer-
ence to long-term predictions. Conversely, the lack
of periodicity will lead to less accurate forecasts.
This work considere 13 dataset with a different
degree of periodicity (ETT three distribution of
electricity, DAX index, Bitcoin values, Venezia see
level, Airlines passengers, Temperature of Milan,
Traffic San Francisco freeways, hourly electricity
consumption, exchange rates of 8 countries, ra-
tio of patients seen with influenza-like illness and
the total number of the patients, 21 indicators of
weather).
The training phases were performed by applying
two different methods depending on whether it was
a multidimensional or one-dimensional study, ac-
cording to the methodology illustrated below:

• If the input is a multidimensional matrix, the
backpropagation step is performed for each
column of information for each epoch. This
means that as many backpropagation steps are
performed for each epoch as there are columns
in the input matrix. Each step works on a spe-
cific column, changing the value of the weights
each time to try to get closer to the optimal
values.

• In the case of one-dimensional dataset the
backpropagation phase is performed for each
dataset.

Calculations are performed on 50 epochs and the
baseline result is considered to be the one in which
the forecast on the valuation set is best.

7. Results
The section just concluded was used to choose the
models to compare with those at the state of the
art (Table 1). This section will present experiments
related to the presented models and a representa-
tive selection of the previously described datasets.
Models in details are:

• Encoder + Decoder: The results of
the simplified Transformer are comparable to
those of the simple neural network, but with a
much higher spatial and temporal complexity
that makes them much less efficient. A similar
conclusion that considers Transformer-based
models of little use for analyzing Time Series
was already reached in [3]. They test and
compare FEDformer, Autoformer, Informer,
Pyraformer, LogTrans and Reformer. Each of
these models has considerable complexity, al-
though some authors explicitly state that they
have worked to reduce it. The realities and

4

Executive summary Riccardo Ughi

Table 1: Multivariate NLinear MAE - Bold shows the best results for each row

Dataset Forecast Persistent One
Layer Encoder Multi Encoder +

Decoder NLinear FEDFormer Autoformer Informer LogTrans

ETTh1 96 0.48 0.392 0.39 0.388 0.415 0.394 0.419 0.459 0.713 0.74

192 0.53 0.423 0.433 0.424 0.444 0.415 0.448 0.482 0.792 0.824

336 0.571 0.456 0.463 0.464 0.457 0.427 0.465 0.496 0.809 0.932

720 0.718 0.528 0.542 0.54 0.537 0.453 0.507 0.512 0.865 0.852

ETTh2 96 0.428 0.348 0.361 0.38 0.349 0.338 0.388 0.397 1.525 1.197

192 0.509 0.4 0.445 0.448 0.773 0.381 0.439 0.452 1.931 1.635

336 0.56 0.381 0.514 0.537 0.469 0.4 0.487 0.486 1.835 1.604

720 0.682 0.455 0.702 0.685 0.744 0.436 0.474 0.511 1.625 1.54

ETTm1 96 0.389 0.335 0.333 0.334 0.345 0.348 0.419 0.475 0.571 0.546

192 0.421 0.358 0.389 0.366 0.382 0.375 0.441 0.496 0.669 0.7

336 0.845 0.38 0.415 0.403 0.433 0.388 0.459 0.537 0.871 0.832

720 0.851 0.414 0.425 0.419 0.455 0.422 0.49 0.561 0.823 0.82

Electricity 96 0.477 0.217 0.218 0.21 0.221 0.237 0.308 0.317 0.368 0.357

192 0.372 0.242 0.236 0.233 0.242 0.248 0.315 0.334 0.386 0.368

336 0.435 0.277 0.296 0.297 0.311 0.265 0.329 0.338 0.394 0.38

720 0.561 0.383 0.363 0.371 0.397 0.297 0.355 0.361 0.439 0.376

Exchange 96 0.513 0.225 0.916 0.326 0.603 0.208 0.278 0.323 0.752 0.812

192 0.628 0.333 0.76 0.602 0.632 0.3 0.38 0.369 0.895 0.851

336 0.694 0.814 0.686 0.736 0.75 0.415 0.5 0.524 1.036 1.081

720 1.07 0.499 0.808 0.796 0.86 0.78 0.841 0.941 1.31 1.127

Weather 96 0.889 0.321 0.501 0.486 0.509 0.232 0.296 0.336 0.384 0.49

192 0.956 0.394 0.572 0.541 0.544 0.269 0.336 0.367 0.544 0.589

336 1.09 0.452 0.571 0.566 0.566 0.301 0.38 0.395 0.523 0.652

720 0.714 0.479 0.541 0.551 0.559 0.348 0.428 0.428 0.741 0.675

models of Transformer remain quite complex.
However, the results are worse than the simple
model proposed here.

• Multilayers: With this model in which the
Attention modules are removed altogether,
the results do not change substantially. There-
fore, the results show that it is the entire At-
tention module that does not add predictive
capability for all the datasets examined. This
is quite evident when looking at the results
and is certainly surprising.

• Encoder: This model is the same as before,
adapted for not having the decoder. It can
be seen by examining the results that models
without the Decoder perform very similarly to
those without. Removing the Decoder module
obviously does not change the quality of the

results. The interpretative conclusion is that
the Decoder module obviously does not add
its own ability to improve the information.

• One layer: Looking at the results, this
simple single-layer neural network often ob-
tains slightly better results than more complex
models. The difference is often minimal and
may mean that the models are quite similar
in their results. This is certainly surprising.
From an interpretative point of view, the fact
that simple neural networks perform as well
as, or even better than, more complex neural
networks may lead to the uncomfortable con-
clusion that neural networks are unable to in-
terpret the complexity of Time Series datasets.
In fact, if the opposite were true, a higher
complexity of the input dataset should corre-

5

Executive summary Riccardo Ughi

spond to a higher complexity of the model for
good prediction, as happens in image analysis
or with NLP and image recognition problems.
But for Time Series this does not happen.
Instead, the exact opposite happens, namely
that extremely simple networks perform bet-
ter, and this regardless of the complexity of
the dataset. The work of increasing the com-
plexity of models for Time Series to improve
results apparently does not work. This obser-
vation leaves a future line of research open and
it is clear that there is much work to be done
to find an eventual solution in this field.

• Persistent: It can also be observed that
the Persistent forecasting model which has no
hyperparameters and which acts as a refer-
ence has, in some cases, results comparable
to the trailed models studied here, but bet-
ter than the results obtained by the Informer.
The approximation with which the Persistent
model approaches the exact values is not uni-
form and again depends on the regularity of
the dataset. The conclusion that the Persist
model does better than the Informer model
(and LogTrans) is surprising considering the
efforts made to make such complex models
work.

• Linear: The linear model clearly fails and
its predictions are worse than Deep learning.

8. Conclusion
This work has set itself the goal of verifying the
actual ability of certain Neural Network models
to predict the trend of Historical Series even for
very long-term forecasts. Starting from a very
simplified Transformer-based model with respect
to the original Transformer, even more simplified
models are introduced.
The first conclusion of some relevance concerns
the impact on the goodness-of-fit results of the
presence or absence of the Attention modules. The
conclusion is that models containing Attention
modules applied to Time Series do not seem to
add predictive power and their presence. does
not bring benefits. However, it is also predictably
observed that the model is able to adapt to their
presence making the Attention module almost,
but not quite, irrelevant.
Twelve different datasets were studied. These
datasets have a very different periodicity from

each other. They range from the dataset rep-
resenting the tide level in Venice to the model
that has a clear and constant periodicity over
tens of years to datasets such as the DAX that
do not actually have any periodicity that can be
measured by the auto-correlation index. For all
of them, however, the conclusions regarding the
Transformer’s inability to do better than simple
linear models are valid.
Several models have been studied that starting
from a Transformer model progressively eliminated
parts and ended up defining an extremely simple
linear model consisting of a single layer
The rather unexpected conclusion is that all these
models have a similar predictive capacity. The
differences between the results obtained are not so
significant. However, a slightly better predictive
ability, on average, can be noted in the simpler
models.
Furthermore, it has been shown that for data sets
with regular periodicity, the simple model consist-
ing of a single linear layer retains the predictive
capability even for very long periods, and we
have demonstrated this for long periods of up to
5376 values. The conclusion is that simple neural
networks are able to repeat periodic patterns and
are able to anticipate the future, even with the
limitations we have tried to highlight.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar,

Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. arXiv:1706.03762, 2017.

[2] Seyed Mehran Kazemi, Rishab Goel, Sepehr
Eghbali, Janahan Ramanan, Jaspreet Sahota,
Sanjay Thakur, Stella Wu, Cathal Smyth,
and Pascal Poupart andMarcus Brubaker.
Time2vec: Learning a vector representation of
time. 2019.

[3] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang
Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504,
2022.

6

	Abstract
	Introduction
	Releted works
	Models
	Standardization
	Windows Input
	Positional embedding
	Output
	Optimization

	Model architectures
	Training
	Results
	Conclusion

