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Abstract: The aeroacustic field of an organ pipe is investigated numerically. The
compressible Navier-Stokes equations are solved by employing a Large Eddy Simu-
lation turbulence model implemented in the open source library OpenFOAM. Then
to compute the far field noise we make use of the Ffowcs Williams and Hawkings
acoustic analogy. The objective of the thesis is to perform a computational sim-
ulation of a three-dimensional organ pipe. First, the computational methodology
is validated on a two-dimensional test case, namely the noise induced by a lami-
nar flow over a square cylinder. Then a 2D organ pipe model is considered where
the numerical setup is tested following Fischer et al. The two-dimensional case is
also used to study the fluid mechanisms that generate the sound, focusing on the
coupling mechanism and behavioural changes due to modifications of the geome-
try. The results obtained from the three-dimensional model are compared with the
two-dimensional case. The SPL-spectra of the acoustic far field are obtained using
an acoustic analogy and compared between the cases and with the measurements
on real organ pipes.
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1. Introduction

Aeroacoustics is the field of acoustics that studies the noise induced by fluid flows. It was first studied by
Lighthill [1, 2] in the mid-twentieth century, originally to address the noise generated by jet engines. First,
Lighthill derived an exact acoustic inhomogeneous equation from the mass and momentum compressible Navier-
Stokes equations that contained the noise generated by the flow. Then, the inhomogeneus wave equation was
solved by employing the Green function theory. Curle [3] considered the same wave equation but he employed
a generalised Kirchoff integral to obtain the solution. In this way only the noise generated by the aerodynamic
forces is considered. Later, Ffowcs Williams and Hawking [4] extended the Curle strategy in order to consider
moving surfaces.
A fascinating field in which aeroacoustic can provide more insight on the physical mechanism of sound generation
and propagation is musical acoustics. The air flow in musical instruments is a long standing problem in the field
of musical acoustics due to the highly complex underlying physics that often involves multi-physics problems
[5].
Musical instruments are usually classified by the way sound is produced: string, wind, percussion, and electronic
instruments. Wind instruments are typically grouped into two families: brass and woodwind. Nevertheless,
from a fluid dynamic point of view they are better classified as reed instruments and flue instruments. A reed is a
flexible element that oscillates due to a flow-induced vibration (flutter). Flue instruments are wind instruments
in which sound is produced by flow instability without significant wall vibration, and hence the wall can be
considered rigid [6]. In organ pipes the flow instability comes from an air jet impinging a sharp edge. This
creates an acoustical excitation that then propagates inside the organ pipe, which acts as an acoustic resonator
[7].
Since the 1960s [8–10], a phenomenological theory that characterises the behaviour of flue instruments has been
established in the field of musical acoustics. However, the theory created in the area of musical acoustics is
far from rigorous and contains numerous conceptual approximations, using semiempirical lumped models and
assuming an incompressible frictionless flow with singular vortical structures, such as vortex sheets or point
vortices [6]. Although such lumped models can be used to create virtual instruments, they cannot explain the
importance of the geometric details of the mouth for the playability and sound quality of musical instruments.
For flue instruments, a rigorous theory must be based on the Navier-Stokes equations of fluid dynamics and it
should take into account the function the flow field as a sound source in the intricate instrument architecture.
To best understand the sound generation and propagation mechanism, it was decided to study the process
through its fluid dynamics, using the traditional tools this field provides together with more ad hoc aeracoustics
numerical tools.
The final goal of this work is to study and validate the methodology to correctly perform a three-dimensional
computational experiment of the turbulent fluid flow and the coupled acoustic field created by a flue pipe
musical instrument, particularly an organ pipe. The main reference for this work are those developed by
Fischer et al. [11–13], in which a two-dimensional computational simulation of the fluid flow around a organ
pipe was compared with experimental results, analysing also the effect of the sound reflections due to changes
on the room geometry. A similar experiment was performed by Miyamoto et al. [14], studying the effects of jet
changes on the frequency of the sound on both two-dimensional and quasi-two-dimensional simulations. A more
complex simulation was done by Kobayashi et al. [15]: a three-dimensional case calculation of the compressible
turbulent flow around a flue-like instrument, in this case an ocarina.
The thesis is organised as follows. In Section 2, the methodology used is reviewed. First, the Navier-Stokes
equations are introduced, followed by a brief review of Large Eddy Simulation modelling and finishing with an
introduction to the aeroacoustic analogies. Section 3.2 consists of all the numerical results obtained, starting
with the validation of the methodology through a simple aeroacoustic case, namely the laminar flow around a
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squared cylinder. Next, we simulate the flow of a two-dimensional organ pipe, with comparison to the results
obtained by Fischer et al. [13]. We then consider the final three-dimensional organ pipe, where we employ the
same modelling and numerical strategy of the two-dimensional case. Comparisons between the cases and the
experiments are made to extract some validation and differences between the cases. Finally, Section 4 concludes
the thesis with a summary and the conclusions obtained from the obtained results.

2. Methodology

In this section, the theory and the methodology used in this work are reviewed. First, a recall of the basic
equations of fluid dynamics, followed by some basic LES turbulence modelling and finally introducing the main
aeroacoustic models and computational strategies.

2.1. Fluid dynamics

The flow in an organ pipe and its acoustic field are described by the general laws of motion of fluids, which
obey the fundamental laws of conservation, also known as the Navier-Stokes equations:

∂ρ

∂t
+∇ · (ρu) = 0 , (continuity)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇P , (momentum balance)

∂

∂t

[
ρ
(
e+

u2

2

)]
+∇ ·

[
ρu

(
e+

u2

2

)]
= −∇ ·

[
P · u+ q

]
, (energy balance)

(1)

where ρ is the fluid density, u is the flow velocity, e is the internal energy per unit mass, u is the speed, namely
u = |u|; q = −κ∇T is the heat flux, κ is the thermal conductivity and T the temperature, [16]. Finally,
P = pI − σ is the stress tensor, whose isotropic part pI corresponds to the effect of the hydrodynamic pressure
p = Pii/3, and its deviation from the hydrostatic behaviour σij = µ[ ∂ui

∂xj
+

∂uj

∂xi
− 2

3 (∇ · u)δij ] + µv(∇ · u)δij
corresponds in a simple fluid to the effect of viscosity. We define a simple fluid as a fluid for which σ is
symmetrical. µ is the dynamic viscosity, µv is the bulk viscosity and δ is the Dirac delta.
The flow is identified by employing non-dimensional numbers, such as the Reynolds number, defined as the
dimensionless ratio of inertial forces to viscous forces Re = ρUL

µ = UL
ν , the Prandtl number, defined as the ratio

of momentum diffusivity to thermal diffusivity Pr = ν
α =

cpµ
κ , and the Mach number, which is defined as the

ratio between the flow velocity and the speed of sound: Ma = U
c .

In this equations U is a fluid flow characteristic velocity, L is a geometrical characteristic length, ν = µ/ρ is
the kinematic viscosity, α is the thermal diffusivity, cp is the specific heat, and c is the speed of sound. At low
Reynolds numbers, the flow is said to be laminar. This behaviour is ordered, the flow structures are big and
periodic. Increasing the Reynolds number, the behaviour of the flow tends to be more chaotic and disordered.
Structures are smaller at larger Reynolds number. Here the flow is said to be turbulent. A main feature of
turbulence is, in comparison against laminar flow, its ability to transport and mix fluid much more effectively.
Although turbulent flows are very complex, they dominate most of the natural phenomena such as transport
and mixing of matter, momentum, and heat in flows; which is of great practical importance [17].

2.2. Turbulence modelling: Large Eddy Simulation

Doing a Direct Numerical Simulation or DNS of the Navier-Stokes equations, where all the length scales of the
fluid are solved, is too computationally expensive. The minimum grid space required to solve all the turbulent
length scales in a flow field scales as Re−9/4, and for high Reynolds number may be too small, creating a
computational grid with too many elements, and consequently computational expensive, for moderate Reynolds
numbers. The main objective of turbulent models is to reduce the scales that have to be explicitly resolved,
and model the smaller scales.
In Large Eddy Simulation (LES), smaller-scale motions are modelled, whereas the larger unsteady turbulent
motions are represented exactly. Since larger scales have to be resolved, while the smaller are modelled, the grid
employed in LES computation is coarser than the one required by a DNS, reducing the overall computational
cost. To achieve this, in LES a low-pass filtering operation is performed. The filtering is performed as follows:

ϕ = ϕ− ϕ′

ϕ(x, t) =

∫ +∞

−∞

∫ +∞

−∞
ϕ(r, τ)G(x− r, t− τ)drdτ
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where ϕ is the flow field being filtered with its spatial x and temporal t dependence, ϕ is the filtered field,
G is the specified filtering function, and ϕ′ is the residual field. LES avoids the need to rely on a closure
scheme to parameterise the large eddies, while simultaneously circumventing the restrictions imposed by the
high computational cost of the smaller ones.
Filtering the Navier-Stokes equations, one obtains:

∂ρ

∂t
+∇ · (ρu) = 0 , (continuity)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇P −∇τ , (momentum balance)

∂

∂t

[
ρ
(
e+

u2

2

)]
+∇ ·

[
ρu

(
e+

u2

2

)]
= −∇ ·

[
P · u+ τ · u+ q

]
, (energy balance)

τ = ρu⊗ u− ρu⊗ u . (subgrid-scale stress)

In order to close the equations for the filtered velocity, a model for τ is needed. Currently, the most popular
subgrid-scale model is the algebraic eddy viscosity model originally proposed by Smagorinsky [18]:

τij = −2νSGSDij +
1

3
δijτkk ,

where νSGS is the subgrid-scale eddy viscosity, and

Dij =
1

2

( ∂ui
∂xj

+
∂uj
∂xi

)
,

is the resolved scale strain rate tensor. For the modelling of τ in this work, the attention is focused on the
one-equation model of the transport of turbulent kinetic energy k developed from the work of Yoshizawa [19].
The turbulent kinetic energy is split up into a grid-scale term kGS , that is solved, and a subgrid-scale term
kSGS , objective of the turbulence model. The model equation for the subgrid-scale turbulent kinetic energy is:

τij = −2νSGSSij +
2

3
δijkSGS ,

νSGS = Ckk
1/2
SGS∆

−ρτij : Dij − Cϵ
ρk

3/2
SGS

∆
=
∂(ρkSGS)

∂t
+
∂(ρujkSGS)

∂xj
− ∂

∂xj

[
ρ(ν + νSGS)

∂kSGS

∂xj

]
,

−τij : Dij = −2

3
kSGS

∂vk
∂xk

+ νSGS
∂ui
∂xj

(
2Dij −

1

3
tr(2D)δij

)
, (production term)

where Cϵ = 1.048 and Ck = 0.094 are model constants, and ∆ is the grid resolution.

2.3. Computational fluid dynamics

Computational fluid dynamics or CFD is the analysis of systems involving fluid flow, heat transfer and associated
phenomena such as chemical reactions by means of computer-based simulation [20].
To deal with the CFD experiments of this thesis, the software OpenFOAM [21] was used, a C++ toolbox for
the development of customised numerical solvers. The finite volume method [22] is used for the discretisation.
The numerical solvers used in this thesis are:

• rhoCentralFoam: based on the central-upwind schemes of Kurganov and Tadmor, this solver is compress-
ible, transient, density based, and shock capturing [23].

• rhoPimpleFoam: Compressible, transient solver based on the PIMPLE algorithm, a combination of the
PISO (Pressure Implicit with Splitting of Operators) and SIMPLE (Semi-Implicit Method for Pressure
Linked Equations) algorithms [24].

The Dirichlet boundary conditions will be indicated as fixedValue, namely a value will be enforced on the
boundary. zeroGradient will denote a boundary condition that enforces a Neumann-like boundary condition.
The inletOutlet boundary conditions sets the value to the a specified fixed value for reverse flow and the
outflow is treated using a zeroGradient condition.
Acoustic (and also compressible) external problems require also particular non-reflecting boundary conditions,
in order to avoid spurious reflection that the boundary might induce. The waveTransmissive boundary condi-
tions impose a Poinsot-Lele-like [25] allows to properly transmit the outgoing wave. This boundary condition
determines the boundary value by solving the material derivative equation

Dϕ

Dt
=
∂ϕ

∂t
+U · ∇ϕ =

∂ϕ

∂t
+ Un · ∂ϕ

∂n
= 0 ,
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where ϕ is a flow field variable, n is the vector normal to the surface, and U is the advection velocity that can
be assumed to be normal to the surface as Un. This normal advection velocity is calculated as

Un =
ϕp
|Sf |

+

√
γ

ψp
.

where ϕp is face flux, ψp = ρ/p is the local compressibility, Sf is the face area vector, and γ is ratio of specific
heats.

2.4. Computational aeroacoustics

Computational aeroacoustics (CAA) aims to solve the aeroacoustic problems by employing numerical methods.
The compressible Navier-Stokes equations describe the fluid flow, and therefore the generated aeroacoustical
field, but when simulating turbulent flows the cost of the simulation is too much demanding. Hybrid methods
exist as a more affordable way to compute the acoustic far field. This methods first solve the flow field using
a standard CFD solver and they solve the acoustic problem through other methods most suitable and more
affordable computationally. Usually the acoustic solvers are based on integral methods, typically based on the
acoustic analogy.

2.4.1 Lighthill

The key idea of Lighthill [1, 2] is to manipulate the Navier-Stokes equations (1). By taking the time derivative
of the continuity, subtracting the divergence of the momentum balance equation, and subtracting the term
c20∆p

′, the equations turn into an inhomogeneous wave equation whose inhomogeneous term plays the role of
the source.

∂2ρ′

∂t2
− c20

∂2ρ′

∂x2i
=

∂2Tij
∂xi∂xj

(2)

in which the subscript ·0 indicates the undisturbed flow, ρ′ = ρ − ρ0 is the density acoustic perturbation,
defined as the difference between the density and the reference density of the undisturbed medium; Tij =
ρuiuj − σij + (p′ − c20ρ

′)δij is the Lighthill’s stress tensor; and σij = pδij − Pij is the deviation from the
hydrostatic behaviour, which corresponds in a simple fluid to the effect of viscosity.
Equation (2) can be solved analytically by employing a convolution between the source and a suitable Green
function. The Green’s function of the free field radiation reads:

G(x, t) =
δ(t− τ − r/c0)

4πr
, (3)

where τ is the retarded time and r is the distance between the observer and the source. By using the Green
function in Equation (3), it is possible to solve Equation (2) obtaining the following integral form:

ρ′ =
1

4πc20

∂2

∂xi∂xj

∫
Ω

Tij(y, τ)

|x− y|
dΩ(y)

where Ω is the control volume as the instant in which the acoustic radiation is emitted from the position y that
is where the sound source is placed.

2.4.2 Curle

Lighthill’s analogy can be generalised for flows in the presence of walls. Curle [3] modified Lighthill assumption
considering the presence of a solid boundary. A fixed surface Σ is considered with outer normal n and Green’s
theorem is applied to the volume Ω outside of Σ. By means of partial integration and utilising the symmetry
properties of the Green’s function:

p′ =
∂2

∂xi∂xj

∫
Ω

[ Tij
4πr

]
dΩ+

∫
Σ

[ ∂
∂t

( ρui
4πr

)
− ∂

∂xj

(Pij + ρuiuj
4πr

)]
nidΣ

2.4.3 Ffowcs Williams and Hawkings

Ffowcs Williams and Hawkings (FWH) introduced [4] some variations into Lighthill analogy, considering also
the presence of solid boundaries and the motion of a body. While Curle’s formulation discussed in the previous
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section assumes a fixed control surface Σ, the FWH allows the use of a moving control surface Σ(t). This is
achieved defining a volume Ω(t) enclosed by Σ(t) and a smooth function f(x, t) = 0 such that

f(x, t) < 0 if x ∈ Ω(t)

f(x, t) = 0 if x ∈ Σ(t)

f(x, t) > 0 if x /∈ Σ(t) ∧ x /∈ Ω(t) .


Now consider any physical quantity defined outside Ω(t), and extend its definition to all space by giving it a
value equal to zero inside Ω(t). This can be done multiplying the variable assigned to the physical quantity
by the Heaviside function H(f). Introducing this into the mass and momentum equations, following Lighthill’s
procedure, and applying Green’s theorem and using the free-space Green’s function, the FWH equation, as
originally proposed in [4], is:

□2p′ =
∂

∂t
(ρ0unδ(f))−

∂

∂xi
(p niδ(f)) +

∂2

∂xi∂xj
(H(f)Tij) (4)

where □2 is the D’Alambertian operator in three dimensional space, and f(x, t) = 0 describes the moving
surface. The symbol un denotes the local normal velocity of the surface. Finally, the Dirac and the Heavyside
delta functions are denoted δ(f) and H(f), respectively.

Figure 1: The definition of the moving surface implicitly as f(x, t) = 0. Note that ∇f = n where n is
the unit outward normal to the surface [26]. V⃗ is the velocity of the moving surface.

Farassat [27] and Brentner [28] developed integral representations of Equation 4 using the free-space Green’s
function given by Equation 3. Given geometry, motion, and surface loadings, these representation allow to
solve the acoustic problem. These integral representations are valid for general motions in both subsonic and
supersonic flow. Shown here is the equation for the FWH-Farrassat 1A formulation [26]:

4πp′(x, t) = 4π(p′T (x, t) + p′L(x, t)) =

∫
f=0

[ ρ0u̇n
r(1−Mr)2

+
ρunr̂iṀi

r(1−Mr)3

]
ret
dΣ+∫

f=0

[ρ0 c un(Mr −M2)

r2(1−Mr)3

]
ret
dΣ+

∫
f=0

[ ṗ cos θ

cr(1−Mr)2
+

r̂iṀip cos θ

cr(1−Mr)3

]
ret
dΣ+∫

f=0

[p(cos θ −Mini)

r2(1−Mr)2
+

(Mr −M2)p cos θ

r2(1−Mr)3

]
ret
dΣ

where the subscript ·ret indicates evaluation at the retarded time (when the source sends the information the
observer) respectively. r is the distance between source and observer, Mr is the Mach number in the radiation
direction, θ is the local angle between the normal to the surface and the radiation direction, r at the emission
time and c is the speed of sound. The superscripts ·̂ and ·̇ indicate unit vector and time derivative (with respect
to observer time).
The first two integrals correspond to the thickness noise p′T , whereas the last two integrals define the loading
noise p′L, which are monopole-like and dipole-like sources. The terms are separated into near field terms (1/r2)
and far field terms (1/r).
In this thesis, aeroacustics of the far field are computed using the third-party open-source library libAcoustics
[29] of OpenFOAM [21], which using the Farassat’s Formulation 1A of the FWH to compute the fluctuating
pressure obtained by an observer outside the domain.

6



3. Numerical Results

The aim of this thesis is to provide an understanding of the computational aeroacoustics obtained using Open-
FOAM in different cases of increasing complexity, studying the sound emission and propagation.

3.1. Square cylinder

The flow around a square cylinder is one of the typical problems of flow around bluff body, and a number
of studies on the flow around rectangular cylinders have been done both experimentally and computationally.
Inoue et al. [30] studied the generation mechanism of the sound in a uniform flow radiated by the flow past
this geometry, performing a Direct Numerical Simulation (DNS) of the two-dimensional unsteady compressible
Navier-Stokes equations. Ali et al. [31] performed a study on the sound generated by a square cylinder with a
splitter plate at low Reynolds number, using acoustic analogies to study the aeroacoustic flow in the far field.

3.1.1 Flow specifications

A rigid square cylinder immersed in a compressible, unsteady, laminar flow at Mach number Ma = 0.2, with a
Reynolds number of Re = U∞D/ν = 150, a Prandtl number of Pr = 0.75, and a ratio of specific heats γ = 1.4
is considered. The fluid is considered a perfect gas ρ = p/(RT ), with R being the universal gas constant.The
problem is resolved by the finite volume discretisation approach on which OpenFOAM is based.

3.1.2 Numerical setup

Different studies [30] suggest than the three-dimensional disturbances that cause the transition from a two-
dimensional flow to a three-dimensional flow occur at Re > 160, therefore this case with Re = 150 can be
considered two-dimensional. The stationary flow is achieved after a non-dimensional computational time of
TU∞/D ≈ 400, using a non-dimensional time step of ∆tU∞/D ≈ 2 × 10−4 to keep the CFL number under 1.
The simulation is carried on using the solver rhoCentralFoam using the following numerical schemes:

• 2nd order backward scheme for temporal discretization (BDF2).

∂

∂t
ϕn =

1

∆t
(
3

2
ϕn − 2ϕn−1 +

1

2
ϕn−2) (5)

• For the convection term, a second-order central differences Total Variation Diminishing and Normalised
Variable Diagram scheme [32]. The face flux is calculated as the average of the two adjacent nodes.

• OpenFOAM uses bases all the schemes for the viscous term on the Gauss theorem. On top of that, the
chosen interpolation scheme is an unbounded, 2nd order (adds an explicit non-orthogonal correction to
maintain second-order accuracy), conservative linear scheme. An explicit non-orthogonal correction is
made for the non-isotropic part of the mesh.

Computational domain The computational domain is generated taking as origin the centre of the square
cylinder and extending in a circular shape to a radius of 150D. By looking at Figure 2 the air flows following
the direction of the positive x axis shown in Figure 2, crossing the square cylinder.

Boundary conditions To numerically solve the compressible Navier-Stokes equations used to model this
problem is necessary to define the boundary conditions for the pressure, velocity and temperature. For the
pressure, the inlet and the outlet are defined as non-reflective boundary conditions, and Neumann-like boundary
conditions are set for the cylinder. The velocity and the temperature have Dirichlet boundary conditions for
both the inlet and the cylinder, and a mix of Dirichlet-like and Neumann-like for the outlet. All the boundary
conditions are listed in table 1.

Inlet Outlet Cylinder
p waveTransmissive waveTransmissive zeroGradient
U fixedValue inletOutlet fixedValue
T fixedValue inletOutlet fixedValue

Table 1: Boundary conditions for the laminar square cylinder.
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Figure 2: Flow domain for the square cylinder laminar case. The inlet is in blue. The outlet is in red.
The square cylinder (white) is at the centre of the domain.

Mesh In this study, a grid with 800 × 675 cells is created, in the polar and radial directions respectively,
generating a completely structured grid of hexahedra. The grid is divided in two areas: from the outside
boundaries r = 150D until r = 25D the mesh is uniformly distributed in both the radial and polar coordinates;
from r = 25D until the square cylinder is reached, the cells get smaller the closer they are to the object, reaching
a smaller cell of size ∆y = 3.57 ·10−2D. To properly perform a DNS, the smallest cell size needed is proportional
to Re−3/4D, which for this case would be of ∆y = 2.33 ·10−2D, approximately 0.65 of the current smallest size.
It is important to have a fine mesh near the cylinder, as capturing the wake and the initial pressure waves is of
utter importance to get the correct results.

3.1.3 Results of the methodology assessment

The unsteady laminar flow crossing the square cylinder is characterised by separation starting from the upper
corners of the geometry. This phenomenon, at Re = 150, generates vortices in the wake of the cylinder, resulting
in the so called Von Karman street that can be seen in Figure 3a.

(a) (b)

Figure 3: Instantaneous non-dimensional vorticity and pressure fields around the square cylinder at
TU/D = 390.

From Figure 4a that, during the period TU/D ≈ 389 − 393, the lift coefficient Cl takes a negative value with
its peak at TU/D ≈ 390. The vorticity field in Figure 3a shows that a vortex is shed from the lower side of the
square cylinder during this period. The amplitude of the lift coefficient is larger than that of the drag coefficient
Cd (Figure 4a) and the frequency of the latter is twice as high as that of Cl (Figure 4b).
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The frequency of the pressure waves is the same as that of vortex shedding as well as the fluctuation frequency
of the lift force. Is it possible to define the Strouhal number as St = fD/U∞, where f is the Strouhal frequency.
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Figure 4: Time histories of drag and lift coefficient and single-sided amplitude spectrum of the force
coefficients.

Important obtained results of the simulation are on display on Table 2 compared with the literature. Here it
can be seen how similar the fluid dynamic quantities are. The computed mean drag and lift coefficient are in
agreement with the literature results. Also the peaks ∆Cl and ∆Cd match the reference. It is important to
mention the slight overshoot that the results have with respect to the DNS performed by Inoue et al..

Results Inoue et al. [30]
St 0.150 0.1512

Cd,mean 1.4850 1.414
∆Cd 0.0207 0.0204
Cl,mean -0.0083 0
∆Cl 0.4063 0.3923

Table 2: Comparison of the performed case with the previous study.

On Figure 5 the dimensionless acoustic pressure p′ = p−⟨p⟩
γU2

∞
flow field obtained can be seen, where ⟨p⟩ is the

time averaged pressure. The generated sound has a dipolar nature; and from the results shown on Table 2 it
can be seen that the lift dipole dominates the sound field.
A polar plot containing prms, the root mean square of p′, namely

√
⟨p′ 2⟩, is now shown to investigate the nature

of the sound in the far field. Specifically, the pressure directivities are shown in Figure 6, with data collected
from a total of 64 probes positioned on the flow field, equally separated on the polar coordinate at a radius of
75D from the centre of the square cylinder. Figure 6 show that the results of Inoue et al. have a directivity
of 95◦, where for the experimental results it is located at 99.7◦. It is clear that this approach ensures a good
reconstruction of the acoustic far field, with a difference in the direction of the maximum sound pressure level
of less than 5◦. The directivity pattern is that of a dipole, with only a slight overshoot of the sound intensity
with respect to the DNS from the literature, registering a maximum in prms of 37.2 dB against the 37.0 dB
of the reference, coinciding with that registered on Table 2. The small deviation in the upstream between the
results from Ali et al. is due to the Doppler effect (taken in the moving frame), which is not taken into account
in Ali et al.’s study [31].

3.2. Two-dimensional organ pipe

The aeroacoustic behaviour of an organ pipe is now considered. It is important to understand and visualise
the fluid dynamic mechanisms by which flue instruments generate sound and the generated frequency. Fabre
et al. establish the necessity of studying particularly this type of instruments, as reasonable analytical models
are available for reeds, lips, and vocal folds, but not for flue instruments, as their complex behaviour escapes a
simple universal description [6].
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Figure 5: Dimensionless acoustic pressure at TU/D = 400.
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Figure 6: Directivities of the dimensionless root mean square sound pressure.

Different computational experiments have been made to study the aeroacoustics and the flow of this instruments.
Those of particular interest are the two-dimensional CFD simulations performed by Fischer et al. [13], in which
this section of the thesis is based, Miyamoto et al. [14], and Sorini’s Master thesis [33].
The scope of this section is to create and study a two-dimensional model before moving into the more complex
and difficult three-dimensional case.

3.2.1 Flow specifications

The geometry that the flow traverses is obtained from a stopped wooden organ pipe, produced by the German
organ builder Alexander Schuke Orgelbau GmbH [34] and obtained from the study performed by Fischer et al.
[13]. In particular, the two-dimensional computational grid consists of an inlet of 0.6 mm with a distance of
5.5 mm between the jet and the leading edge of the pipe’s resonator. This last part has a length of 106 mm
and a height of 9.5 mm. The resonator has solid walls of 6 mm of width, as seen in Figure 7. Initially, the
flow is static, with an initial pressure of p0 = 101325 Pa, a temperature of T0 = 293 K, a kinematic viscosity
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of ν = 1.53 · 10−5 m2/s. From the inlet, the flow jet velocity is 18 m/s, corresponding to a Mach number of
Ma ≈ 0.052, in a direction parallel to the resonator. The reference length for this problem is assumed to be
the distance between the inlet and the leading edge, regarding to the free propagation length of the jet. The
fluid is considered a perfect gas ρ = p/(RT ). The simulation lasts for 100 ms, time enough to skip the initial
transient of the flow and study the interested data to validate the results.
With this values the Reynolds number is estimated as Re = Ul/ν ≈ 6470 and a Prandtl number of Pr = 0.72.
For the considered regime, we expect a weak turbulence behaviour. The vortex shedding frequency in the
mouth region is caused by the oscillations of the jet. The hypothesis is that the vortex shedding frequency
will synchronise with the frequency fixed by the resonator that corresponds to the fundamental frequency of
the operating organ pipe, namely f = 700 Hz. The Strouhal-number is estimated at St = fl/U ≈ 0.214.
Again, the problem is resolved using OpenFOAM, comparing the results with those obtained numerically and
experimentally by Fischer et al. [13].

3.2.2 Numerical setup

With respect to the previous laminar case, a turbulence model is now employed. The model considered is a
one equation eddy-viscosity model, that employs a balance equation to simulate the behaviour of k [19], as
explained in Section 2.2. The employed time step is ∆t = 1 · 10−7 s. The simulation is carried on using the
solver rhoPimpleFoam (compressible, transient, pressure based) using the following numerical schemes:

• 2nd order backward scheme for temporal discretization (BDF2).
• For the convective term, he combination scheme of the 2nd order linear scheme and the 1st order upwind

scheme based on blending function was applied by the so called filteredLinear2. This scheme basically
behaves as the 2nd order linear scheme. However, when the flux difference in control volume exceeds the
criterion, this scheme is automatically blended with the upwind scheme to suppress numerical oscillation
[35].

• For the turbulence, the limitedLinear scheme was used, total variation diminishing schemes, which is
bounded with a variation of the well-known Sweby limiter [36]. This scheme recovers to the 2nd central
difference scheme when the limiter equals 1, and reduces to the 1st upwind scheme when the limiter equals
0 [37].

• Unbounded, 2nd order, conservative linear scheme for the viscous term.

Computational domain The computational domain is contained in a rectangle of 260× 180 mm, as seen
in Figure 7a. The pipe is positioned 24 mm away from the bottom wall and 75 mm away from the right wall,
with the resonator parallel to the latter. In Figure 7b a detailed view of the mouth of the pipe can be seen,
with the air inlet highlighted in blue.

(a) (b)

Figure 7: Two-dimensional computational domain of the organ pipe and detail of the mouth area.
Figure 7a shows the inlet (light blue), the walls of the pipe (black), and the outlet (red). Figure 7b
has represented the averaging line Γ.

Boundary conditions Table 3 contains the boundary conditions chosen for the computational experiment.
In Figures 7a and 7b the boundaries of the domain are highlighted. In particular, all the outside walls form
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the outlet of the flow, highlighted on red on Figure 7a. The walls of the organ pipe are coloured black on both
images. Lastly, the inlet is highlighted in blue, better seen in Figure 7b. For the pressure, the inlet and the
organ pipe are defined as Neumann-like boundary conditions, and non-reflective boundary conditions for the
outlet. The velocity, the temperature, and the turbulent kinetic energy have Dirichlet boundary conditions
for both the inlet and the organ pipe walls, and a mix of Dirichlet-like and Neumann-like for the outlet. The
turbulent kinematic viscosity and the turbulent thermal diffusivity have Neumann-like boundary conditions for
the three boundaries.

Inlet Outlet Wall
p zeroGradient waveTransmissive zeroGradient
U fixedValue inletOutlet fixedValue
T fixedValue inletOutlet fixedValue
k fixedValue inletOutlet fixedValue
νt zeroGradient zeroGradient zeroGradient

Table 3: Boundary conditions for the two-dimensional organ pipe.

Mesh The computational domain previously explained was meshed using a total of 1.26× 105 cells, seen in
whole in Figure 8a. Near the mouth area and near the leading edge of the resonator is where the smallest cells can
be found, with sizes ∆y = 1.5·10−5 m. On a turbulent flow is important to estimate the Kolmogorov microscales
to evaluate the grid size and computational time step in this case the Kolmogorov microscale η = (ν3/ϵ)1/4 m,
with ϵ ∼ U3/l, result in a η ≈ 7.6 · 10−6. Compared with this, the grid size is way too large, and therefore
the small turbulent structures cannot be resolved and have to be modelled, rising the need for the correct LES
model.

(a) (b)

Figure 8: Two-dimensional computational mesh of the organ pipe and detail of the mouth area.

3.2.3 Results of the standard case

Before starting to comment the obtained results, the sound mechanism of an organ pipe is described. In
particular, we focus on two different sound generation mechanisms [38].

• Edge tone. The jet of air impinges against the leading edge of the organ pipe and generates vortices
(Figure 11a), which create the sound defined as the edge tone.

• Pipe tone. The air column inside the pipe is periodically vibrating due to the jet’s impulse and their
interaction (Figures 10a to 10i). The pipe tone is then defined as the acoustic resonance that turns small
pressure perturbations into periodic oscillations with large amplitudes.

The edge tone sound is weaker and shorter in duration than the pipe tone. The edge tone jet initiates the
subsequent pipe tone and pairs with it to produce a louder, more harmonically rich, and more stable audible
sound. For flue instruments like the one described in this project, with an attached pipe resonator, there are
two feedback mechanisms acting on the oscillating jet of air leaving the inlet.

• Hydrodynamic feedback. The jet collides with the leading edge of the pipe, forming a dipole-type
acoustic source, since most of the noise is inducec by the force fluctuations on the leading edge. The
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fluctuating stream is parted by the leading edge, breaking into asymmetric vortex sheets, growing larger
on both sides of the leading edge. The obstruction of the flow that the solid boundary creates changes
the velocity and the pressure of the air around it. Fluid particles with lower velocity, and therefore higher
pressure, will move towards those particles with smaller pressure, resulting in collisions between vortices.
The frequency of the audible edge tone is about equal to the frequency of a selected particle of the vortices
that pass through one side of the edge. This sound creates a very small perturbation on the jet, creating
the fluctuations that start again the hydrodynamic feedback loop.

On Figure 9a the turbulent kinetic energy k can be seen on the final instant of the simulation, representing the
increased turbulent flow due to the oscillating jet and the vortex sheets that form the hydrodynamic feedback
loop.

• Acoustic feedback. The fluctuating edge tone helps the growing of the vortices introducing vorticity
through the shear layer. Before the increasing pressure is sufficient to excite the resonance of the pipe,
the oscillation frequency of the edge tone is lowered until it reaches the frequency of the normal modes
of the pipe. The vortices that the leading edge sheds travel down the pipe, which leads to a complicated
flow disturbance that either gives to or gets energy from the resonant acoustic field within the pipe.
Simultaneously this perturbation interacts with the beginning of the pipe and affects the creation of new
vortices in the shear layer, closing the acoustic feedback loop.

The complex flow formed due to the existence of a vortex sheet travelling down the resonator can be visualised
on Figure 9a, whereas Figure 9b show the tendency that vortices have to travel towards the end of the pipe.is
this complex flow that interacts with the acoustic field presented on Figures 10a to 10i.

(a) (b)

Figure 9: Turbulent kinetic energy (m2/s2) and mean velocity at t = 100 ms, visualised on a logarithmic
scale.

The first stages of the flow are defined by the displacement of the initial perturbation across the domain, as
pictured on Figures 10a to 10i, where the perturbation wave can be seen travelling through the colour-coded
pressure field. On the open air the sound wave propagates in a circular shape, expanding consistently in all
directions. Meanwhile, it travels linearly over the resonator with a velocity of ∼ 341 m/s, consisting on a planar
wave front followed by the wall reflections, marked in red and yellows that signal its high pressure values. The
sound wave propagates until it reaches the end of the resonator, where it gets reflected and travels back to the
mouth (Figures 10c to 10e). When this wave returns to the mouth, it is reflected back into the resonator and
starts the propagation of another circular wave front into the free space (Figures 10g to 10i).
On Figures 11a and 11b the final instantaneous velocity and its mean value are shown, respectively. In the first
one the oscillating jet impacts with the resonator’s leading edge, creating vortices in the free space and at the
entrance of the resonator. Meanwhile, the mean velocity shows the average direction of the jet splitting over
the edge, forming a strong vortex on the beginning part of the resonator.
To validate the methodology used to develop this part of the thesis, a comparison was made with the results
obtained by Fischer et al. [12, 13], as it is the source of the geometry of the organ pipe. To get consistent results
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Sequence of a numerical simulation of an operating stopped wooden organ pipe, from 0.05
ms to 0.85 ms. The pressure initial perturbation is shown through the pressure (Pa) field.

with the reference, the same methodology was used. The physical quantities of relevance in this case were both
two-dimensional components of the velocity of the flow, VX and VY , and the pressure. The reference axis are
those represented in Figure 7b. The sample sets were spatially averaged over Γ, as seen in Figure 7b, a spatial
expansion of 27.2 mm divided in 300 points, sampling the data with a time-step of ∆t = 0.1 ms.
Figure 12 pictures the time evolution of the mean velocity components obtained through this method, compared
to those obtained by the reference. VY , almost perpendicular to Γ, has a strong periodicity, matching the
theoretical 700 Hz expected from the organ pipe.VX , parallel to the direction of the incoming jet carries the
flow velocity with its high fluctuations in amplitude, whereas VY is more stable in frequency, carrying the
acoustic field. It is in the latter where the influence of the interaction between the fluctuating jet and the strong
periodicity of the acoustic field inside the pipe is shown.
The similarity between both results is evident, with similar behaviours in both velocity components, with only
a small divergence in their respective mean values: ⟨VY ⟩ has a 3% difference and the more chaotic ⟨VX⟩ has a
8%.
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(a) (b)

Figure 11: Instantaneous and mean velocity (m/s) at t = 100 ms.
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Figure 12: Mean velocity signals obtained over Γ, compared to those obtained from the reference.

The SPL-spectrum recorded over Γ is represented in Figure 13, compared with experimental data obtained by
Fischer et al. [13]. Labelled are the peaks of the acoustic pipe mode frequencies (1st, 3rd and 5th), but also the
even (2nd, 4th and 6th) harmonics for the closed end pipe.
The deviation of the experimental data is only of 5% in frequency, which is considered a good result taking into
account the averaged values used and the short simulation time. The experimental data was obtained using a
microphone located at 0.5 m from the mouth area, which explains the difference in the values of the amplitude.
It should also be considered that a two-dimensional simulation is not expected to perfectly represent a real
three-dimensional case.
Finally, a computation of the fluctuating pressure outside of the computational domain using the FWH acoustic
analogy was also performed. Figure 14b pictures the non-dimensional fluctuating pressure obtained both on a
probe in the far field inside the computational domain, and through the FWH acoustic analogy on an observer
located outside the computational domain. Figure 14a shows the SPL obtained through both methods. Again,
the FHW observer registers a lower amplitude with respect to the far field probe because it is positioned further
away from the mouth of the instrument. The shape of the SPL is similar between both results, with similar
valleys and peaks, with a more notable peak on the second harmonic (∼ 1400 Hz) on the FWH observer
compared with the probe.

3.2.4 Modified geometries

Following the study and validation of the standard geometry, another set of simulations were performed mod-
ifying the geometry of the organ pipe. The scope of this section is to observe the change in behaviour of the
aeroacoustic flow when changing the distance between the leading edge and the inlet jet.
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Figure 13: SPL of the two-dimensional organ pipe over Γ. The experimental data was shifed by −100
dB by Fischer et al. [13].
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Figure 14: Comparison of the SPL and the non-dimensional fluctuating pressure obtained from the
computational experiment and through the FWH acoustic analogy.

Mesh The different geometries studied were created by moving the leading edge of the resonator. Figure 15
shows the different configurations studied: in blue, the reference position of the organ pipe. Red marks the
geometry of the close edge. The next considered edge is marked in yellow, indicated as far edge. Finally, purple
marks the furthest edge geometry.
Table 4 gathers the main difference from the change in geometry: the distance d between the inlet and the
edge and the number of cells that compose the mesh. The flow specifications and the rest of the numerical
parameters stay the same in all the cases.

d Number of cells
Standard edge 5.5 mm 1.26× 105

Close edge 3.0 mm 1.22445× 105

Far edge 10.0 mm 1.31895× 105

Furthest edge 15.0 mm 1.39005× 105

Table 4: Difference in geometry between the cases.

Results For these cases the results were analysed using different probes located over the domain, see Figure
7a. Probe A is positioned near the area of the mouth of the pipe. Probe B is towards the end of the resonator.
Probes C and D are positioned in the middle of the flow, with probe C having the biggest distance from the
mouth.
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Figure 15: Leading edge positioning for the different geometries.

The time history of the obtained pressures is shown in Figure 16. For all cases the amplitude recorded by the
probes follows the same logic. Probe B is the one that records the highest pressure amplitudes, being positioned
in the resonator. The other probes’ pressure amplitude decreases as they are put far away from the mouth.
The close edge case is the case with the highest and more chaotic pressure values near the mouth area, as the
closer the leading edge is to the inlet, the more and more intense vortices are created. The further away the
leading edge is from the inlet, the more pressure is captured by the probes. Less and weaker vortices are formed,
and a weaker sound wave is propagating on the resonator.
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(a) Standard edge.
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(b) Close edge.
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(c) Far edge.
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(d) Furthest edge.

Figure 16: Fluctuating pressure history for probes A, B, C, D for the different problem configurations.

Figure 17 shows the SPL-spectrum of the different leading edge configurations. Compared to the standard
configuration, the close leading edge has the first harmonic on a lower frequency. Moving the edge closer to the
inlet, makes the actual length of the resonator longer, and therefore the frequency of the first harmonic is the
smaller of all the configurations. Conversely, when the position of the leading edge is pushed away from the
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inlet, the resonator is effectively shorter and therefore register a higher frequency for the first harmonic.
Another behaviour of organ pipes can be found here. Similar to the edge tone (first hydrodynamic mode), for
lower values of the jet velocity there is a proportional relation between itself and the frequency of produced by
the instrument. When the latter reaches the value of the fundamental frequency of the pipe, synchronisation
happens. The value of the recorded frequency is locked to the this fundamental frequency until the edge tone
frequency is close to the third harmonic, and as closed pipes only develop odd harmonics it works as the second
acoustic pipe mode frequency. This second synchronisation causes a jump in the registered frequency to the
second resonance [14].
This phenomenon happens on the organ pipe configuration with the close leading edge of the resonator. As
the edge is closer, the second acoustic pipe mode is reached with a lower jet velocity than the standard case.
For this reason, on Figure 17 it can be seen how the dominant frequency for the close edge case is the third
harmonic.
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Figure 17: Comparison of the SPL of probe C for the different edges. The results for the modified
geometries have offsets of −25 dB for the close edge, −50 dB for the far edge, and −100 dB for the
furthest edge.

3.3. Three-dimensional

In this section the results of the three-dimensional simulation are shown and commented. Being LES turbulence
model designed for three-dimensional problems, the results are expected to have a significant variation with
respect of the two-dimensional case.

3.3.1 Flow specifications

In Figure 18 the whole three-dimensional model of the organ pipe can be seen. For the flow, a static flow with
an initial pressure of p0 = 101325 Pa, a temperature of T0 = 293 K, a kinematic viscosity of ν = 1.53 · 10−5

m2/s, and a jet velocity of 18 m/s. The fluid is considered a perfect gas ρ = p/(RT ). The simulation is also
set to last for 100 ms.

Figure 18: Three-dimensional representation of the organ pipe tube.

As the geometry and the domain were created using the blockMesh utility of OpenFOAM [21], a slight change
in the geometry of the edge had to be done, as seen on Figure 19, where this part of the organ pipe is see, in
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red for the three-dimensional geometry and in blue for the two-dimensional case. This change was done to be
able to create the mesh properly without the use of non-hexahedrical cells.

Figure 19: Difference in the geometry of the edge between the two-dimensional and three-dimensional
case.

3.3.2 Numerical Setup

The following numerical schemes are set for the three-dimensional case.
• 2nd order backward scheme for temporal discretization.
• 2nd order unbounded limited, namely filteredLinear2 in OpenFOAM, for the convective term and

1st/2nd order unbounded limitedLinear for the turbulence.
• Unbounded, 2nd order, conservative linear scheme for the viscous term.

Computational domain In Figure 20 is the computational domain is shown.The external domain is
contained in a prism of 125 × 36.5 × 51.5 mm. This box extends through all the length of the organ pipe, 15
mm over it, and extends for another 15 mm over each lateral.

(a) (b)

(c)

Figure 20: Computational domain of the three-dimensional computational experiment of the organ
pipe.

Boundary conditions Following the same logic previously stated, the boundary conditions are the same
of the two-dimensional case, contained on Table 3. The new boundaries that appear on the domain after adding
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the third dimension to the experiment follow the same logic as for the previous case, where the walls of the
organ pipe follow the Wall boundary condition and the external boundaries are considered Outlet.

Mesh The mesh, seen in Figures 21a to 21d for the three-dimensional case is created using the two-dimensional
case as a reference. The centre of the mesh, which covers the entirety of the resonator, is an extension of the two-
dimensional case. The rest of the mesh extends from here, following the rest of the geometry of the instrument
and covering the whole computational domain. For this, a total of 6.4416 × 106 cells where employed, more
than 50 times those used for the previous case. Similarly to Section 3.2.2, turbulence modelling is required, as
the minimum cell size is of ∆y = 1.5 · 10−5 m, bigger than the Kolmogorov microscales.

(a) (b)

(c) (d)

Figure 21: Mesh of the three-dimensional computational domain from different perspectives.

3.3.3 Results

The main drawback of performing a computational three-dimensional experiment is the increased computational
cost with respect to the two-dimensional case. In this case, the three-dimensional computational domain is
shorter than its two dimensional counterpart in both the x and y directions. Nevertheless, adding the z axis
causes a total increase of the total number of cells by a factor of 50. The numerical simulations were calculated
in parallel on the computational cluster of the Department of Mechanical Engineering of Politecnico di Milano,
using 4 computational cores for the two-dimensional case and 40 cores for the three-dimensional case. As a
result, the time needed to computationally simulate the 100 ms of each case goes from approximately 28 hours
in the two-dimensional case, to over 31 days on the three-dimensional case.
The initial perturbation expansion is again shown, in Figures 22a to 22i in a two-dimensional way, showing
the pressure field of a slice of the xy plane of the computational domain passing through the middle of the
resonator, and again in Figures 23a to 23i through pressure contours. The same behaviour explained on Section
3.2.3 can be seen here, with the acoustic wave travelling on the resonator with a planar front and propagating
as a spherical wave on the free space, as seen in Figure 23a. The speed of propagation can be estimated from
this images as ∼ 341 m/s. It is worth mentioning that this simulation is influenced by the relatively small size
of the computational domain, as some weak reflections caused by the boundaries can be seen on Figure 22b.
The pressure wave registers a lower pressure with respect to the two-dimensional case, as turbulent dissipation
is stronger on three-dimensional cases.
Figure 24 shows the time history of the pressure obtained by probe A (positioned as seen in Figure 7a). The
three-dimensional case shows a smaller amplitude for the pressure, but more stable oscillation. Due to turbulence
being mainly a three-dimensional effect, in two-dimensional cases, vortex structures are more robust and rolled
up eddies survive longer than in three-dimensional cases.
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(d) (e) (f)

(g) (h) (i)

Figure 22: Sample plane of the numerical three-dimensional simulation of an operating stopped wooden
organ pipe, from 0.05 ms to 0.85 ms. The plane shown here coincides with the centre of the organ pipe
(z = 4.75 mm)
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Figure 24: Time history of the pressure obtained from probe A in both organ pipe cases.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 23: Three-dimensional sequence of the three-dimensional model of an operating stopped wooden
organ pipe, from 0.05 ms to 0.85 ms.

Figures 25a and 25b show respectively the mean velocity field obtained from the two-dimensional and three-
dimensional models. In this images the difference in strength between the velocity field clearly show that
robustness that the two-dimensional case shows on the vortex line situated at the beginning of the resonator
against the three-dimensional case.

(a) Two-dimensional (b) Three-dimensional

Figure 25: Mean velocities (m/s) at t = 100 ms for both the two-dimensional and three-dimensional
cases.
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Figure 26 shows the SPL obtained on the same probe. For every harmonic, but more specifically for the first one
(the one located at 700 Hz) the SPL value is almost identical. For the rest of the spectra, the three-dimensional
model registers lower dB. Being this case more stable than the two-dimensional case, the peaks relative to the
different harmonics (the 1st, 3rd and 5th that are the natural harmonics of the closed organ pipe, but also the
2nd, 4th and 6th) are more notable.
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Figure 26: SPL obtained from probe A in both organ pipe cases.

Due to the high computational cost of the three-dimensional simulation, only the last 28.7 ms of simulation were
able to be used to calculate the far field acoustic data through the FWH acoustic analogy. Figure 27 shows the
obtained results and plots them together with the experimental results of Fischer et al. [13]. Even with a visible
difference in shape due to the difference on values taken, the FWH aeroacoustic analogy captures correctly the
shape of the SPL, with the higher peak situated at the corresponding 700 Hz of the first harmonic, with the
rest of the peaks greatly defined.
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Figure 27: Comparison between the SPL of the far field of the three-dimensional case and Fischer et
al. experiment [13]. The experimental data was shifed by −100 dB by Fischer et al..

4. Conclusions

The main result of this study is the use of the FWH aeroacoustic analogy over a LES simulation of the flow
caused by a three-dimensional model of an organ pipe, using the OpenFOAM C++ toolbox to create and
perform the CFD simulation of the flow.
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First, the noise induced by a squared cylinder was considered, The obtained results helped validating the
methodology and understanding the behaviour of the acoustic field. The compressible and laminar simulation
well reproduce the aerodynamic forces that cause the aeolian tones, as seen in Table 2, and the acoustic field,
proven through the directivities plot in Figure 6.
Next, a two-dimensional model of an organ pipe is considered. The flow is modelled via LES and the results
follow well the expected behaviour for the generation of sound, as seen in Figures 9a and 9b. In Figure 12
there is a comparison between the model and the reference is made, obtaining not only a validation and the
knowledge that the acoustic field is carried on the exiting component of the velocity. The acoustics have also a
good representation on this model, obtained both directly from the flow field and through the FWH acoustic
analogy. It was also proven that the obtained acoustic from the two-dimensional model behave correctly on
changes of geometry.
Finally, the three-dimensional model shows similar results as the two-dimensional case. Differences are present
due to the nature of the two-dimensional flow and the effects of turbulence. Regardless, the three-dimensional
case is more stable and capture betters the acoustics both through the flow field and through the FWH acoustic
analogy. Nevertheless, the high computational cost of the three-dimensional simulation with respect the two-
dimensional model do not compensate the quality of in the results.
The use of the FWH analogy is validated, getting booth result for the acoustic pressure outside the computational
domain. Both in the two-dimensional an three-dimensional models, its use provides good understanding on both
the harmonics and in the amplitude.
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Abstract in lingua italiana

Il campo aeroacustico di una canna d’organo viene studiato da un punto di vista numerico, risolvendo le
equazioni di Navier-Stokes comprimibili e modellando la turbolenza con Large Eddy Simulation utilizzando
la libreria open source OpenFOAM e l’analogia acustica di Ffowcs Williams e Hawkings. L’obiettivo della
tesi è quello di eseguire una simulazione di un modello tridimensionale di una canna d’organo. Per valutare
la metodologia viene studiato il rumore indutto da un flusso laminare su un cilindro quadrato, confrontando i
risultati con Inoue et al.. Per validare i risultati sulla canna d’organo viene utilizzato un modello bidimensionale,
riprendendo il lavoro di Fischer et al.. Il caso bidimensionale viene utilizzato anche per studiare i meccanismi
fluido dinamici che generano il suono, concentrandosi sull’accoppiamento e sui cambiamenti di comportamento
dovuti a modifiche della geometria. I risultati ottenuti dal modello tridimensionale vengono confrontati con il
caso bidimensionale. Gli spettri SPL del campo acustico lontano sono ottenuti utilizzando un’analogia acustica
e confrontati con le misurazioni su canne d’organo reali.

Parole chiave: Aeroacustica, OpenFOAM, canne d’organo, Ffowcs Williams and Hawkings, FWH, 3D,
CFD, Formulazione LES, libAcoustics
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