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Abstract

The planetary landing problem is gaining relevance in the space sector, spanning
a wide range of applications from unmanned probes landing on other planetary
bodies to reusable first and second stages of launcher vehicles. It is therefore
crucial to assess the performance of novel techniques and their advantages and
disadvantages.

The purpose of this work is the development of an integrated 6DOF guidance
and control approach based on reinforcement learning of deep neural network
policies for fuel-optimal planetary landing control, specifically with application to
a launcher first stage terminal landing, and the assessment of its performance and
robustness.

3DOF and 6DOF simulators are developed and encapsulated in MDP-like
(Markov Decision Process) industry-standard compatible environments. Particu-
lar care is given in thoroughly shaping reward functions capable of achieving the
landing both successfully and in a fuel-optimal manner. A cloud pipeline to effec-
tively train an agent using a PPO reinforcement learning algorithm to successfully
achieve the landing goal is developed and the performance and robustness of the
obtained policy is assessed in an industrially-validated 6DOF simulator in the
presence of additional disturbances and uncertainties in the model parameters.
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Sommario

Il problema dell’atterragio planetario sta assumendo un ruolo sempre più cen-
trale nel settore spaziale, attraverso un ampio spettro di applicazioni, da sonde
autonome che atterrano su altri corpi celesti a primi e secondi stadi di lanciatori
riutilizzabili. E’ quindi essenziale valutare le prestazioni di nuove tecniche e i loro
vantaggi e svantaggi in queste applicazioni.

Lo scopo di questo lavoro è lo sviluppo di un approccio integrato di guida
e controllo a 6DOF basato sull’apprendimento di policy basate su deep neural
networks tramite reinforcement learning per ottenere traiettorie di atterraggio
planetario ottimale che minimizzino il consumo di carburante. In particolare è
studiata l’applicazione alla fase terminale di atterraggio del primo stadio di un
lanciatore e la valutazione delle sue prestazioni e della sua robustezza.

Due simulatori a 3DOF e 6DOF sono sviluppati e incapsulati in environment
basati sul concetto di MDP (Markov Decision Process), compatibili con gli stan-
dard industriali. Particolare attenzione è stata dedicata al modellare accurata-
mente funzioni di reward in grado di realizzare l’atterraggio con successo e in modo
ottimale dal punto di vista del carburante. Una pipeline cloud per addestrare ef-
ficacemente un agente che utilizza l’algoritmo di reinforcement learning PPO per
raggiungere con successo l’obiettivo di atterraggio è sviluppata e le prestazioni e
la robustezza della policy ottenuta sono valutate in un simulatore 6DOF validato
a livello industriale in presenza di disturbi aggiuntivi e incertezze parametriche
del modello.



VIII



Contents

Acknowledgments III

Abstract V

Sommario VII

List of figures XI

List of tables XV

1 Introduction 1

Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 learning-based-literature . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Reinforcement learning 9
2.1 Brief introduction to reinforcement learning . . . . . . . . . . . . 9

2.1.1 Elements of Reinforcement Learning . . . . . . . . . . . . 9
2.2 Reinforcement Learning algorithms classification . . . . . . . . . . 11
2.3 The Proximal Policy Optimization algorithm . . . . . . . . . . . . 13

2.3.1 Motivation for choice . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 The Trust Region Policy Optimization algorithm . . . . . 14
2.3.3 Algorithm description . . . . . . . . . . . . . . . . . . . . 15
2.3.4 NN-structure . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Dynamics of the problem 19
3.1 3DOF dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 6DOF dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Translational dynamics . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Rotational dynamics . . . . . . . . . . . . . . . . . . . . . 23



X CONTENTS

3.2.4 Forces and moments . . . . . . . . . . . . . . . . . . . . . 24
3.3 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . 26

4 Environment definition 29
4.1 Environment structure . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Observation Space . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Episode termination conditions . . . . . . . . . . . . . . . 33
4.3 initial-conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Reward functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5.1 Target velocity reward . . . . . . . . . . . . . . . . . . . . 37
4.5.2 Annealed reward function . . . . . . . . . . . . . . . . . . 39
4.5.3 Target acceleration reward . . . . . . . . . . . . . . . . . . 39

4.6 Software setup and execution pipeline . . . . . . . . . . . . . . . . 42
4.7 Environment validation . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Results 3DOF environment 45
5.1 Simplified initial conditions . . . . . . . . . . . . . . . . . . . . . 45
5.2 Realistic initial conditions . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Comparison of activation functions . . . . . . . . . . . . . . . . . 49

6 Results 6DOF environment 53
6.1 Simplified initial conditions . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Montecarlo analysis of the policy . . . . . . . . . . . . . . 54
6.2 Realistic initial conditions . . . . . . . . . . . . . . . . . . . . . . 61

6.2.1 Montecarlo analysis of the policy . . . . . . . . . . . . . . 61
6.3 Robustness to unmodeled dynamics and disturbances . . . . . . . 64

6.3.1 Sensitivity results . . . . . . . . . . . . . . . . . . . . . . . 67

7 Conclusions 73

Conclusions 73
7.1 Achieved objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Future development directions . . . . . . . . . . . . . . . . . . . . 77



List of Figures

1.1 CALLISTO G&C . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Structure of classical landing architectures: the navigation system

produces from sensors an estimate of the state ~̂x, which the guid-
ance block turns in a commanded trajectory ~xref . Finally, the con-
trol block transforms this in actuator commands ~ucmd. Each block
serves a specific function, making their individual design easier but
causing performance to suffer. . . . . . . . . . . . . . . . . . . . . 3

1.3 Steps in the development process: we first started from simplified
initial conditions for the landing going from a 3DOF case to a
6DOF one; then we moved to realistic initial conditions from Falcon
9 landing data, again moving from the 3DOF case to the 6DOF one. 8

2.1 RL algorithms overview . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Structure of the neural network (thicker arrows represent larger

weights for that link). . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Activation functions tested in the 3DOF scenario to select the one

with the best performance and stability. . . . . . . . . . . . . . . 18

3.1 Reference Frame 3DOF . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Depiction of inertial reference frame FI (in blue) and body fixed

reference frame FB (in black). The xI axis points upwards. . . . . 22

4.1 Schematic of the environment and its interfaces with the overall RL
framework: the simulator can have different dynamics and com-
municates with the environment, which employs standard APIs to
interface with the RL policies. This enables using standard RL
frameworks for training. . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Reward function steps . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Terminal rewards shape . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Training run continuous execution pipeline . . . . . . . . . . . . . 43
4.6 The errors between the validated and the developed simulator are

extremely low, showing that the dynamics are correctly represented. 43



XII LIST OF FIGURES

4.7 Errors between validated and developed simulator with ISA at-
mosphere. In this case the errors are slightly higher due to the
difference in atmospheric model, but still show that the developed
simulator faithfully represents the dynamics of the problem. . . . 44

5.1 Thrust and speed profiles 3DOF simplified IC . . . . . . . . . . . 46

5.2 Trend of RL training metrics through training (simplified initial
conditions), showing convergence to a policy maximizing mean re-
ward and minimizing episodic length. The spikes show the explo-
ration process of RL. . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Trajectory metrics during training (simplified initial conditions).
The position and velocity error steeply go down and the used mass
trends downwards when outliers are not considered. . . . . . . . 47

5.4 Trend of RL training metrics through training (realistic initial con-
ditions). The mean reward trends upwards with episodic length
going down to minimize propellant consumption. . . . . . . . . . 48

5.5 Trajectory metrics during training (realistic initial conditions). We
can notice that the velocity error does not go below a mean mini-
mum of about 5m/s. . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Comparison of different activation functions (mean reward through
a rollout) showing the higher convergence speed of ReLU but also
the need to limit the policy updates (through the KL-divergence
target) to avoid policy-unlearning . . . . . . . . . . . . . . . . . . 50

5.7 Effects of constraining the KL-divergence for ReLUs activation
functions: if left unconstrained the policy suffers an un-learning
behavior after reaching a maximum in the reward. . . . . . . . . . 50

6.1 Trend of trajectory metrics during training, showing successful con-
vergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Reinforcement Learning training metrics (simplified initial con-
ditions). In particular, the downward trend in episode duration
around 103 steps shows the strong minimization of fuel consump-
tion when the second reward phase begins. . . . . . . . . . . . . . 55

6.3 Montecarlo 1 simplified IC . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Montecarlo analysis distribution of terminal errors with the best
model in the 2nd training phase (simplified IC). The velocity
error decreases with respect to the first phase, but there is an
increase in position error. The used propellant mass is sharply
reduced with respect to the previous phase. . . . . . . . . . . . . 58



LIST OF FIGURES XIII

6.5 Trajectory of an episode using the optimal network. We can no-
tice the lander accelerating due to gravity in the first part of the
trajectory, reaching a maximum in velocity around 200m of height.
It then rapidly decelerates to achieve a soft landing with minimal
fuel consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.6 Trajectory metrics trend in the case of realistic initial conditions.
There is high exploration, so the need to isolate a good policy
arises. This is achieved by periodically evaluating the agent and
saving the policy with the highest mean reward. . . . . . . . . . . 62

6.7 Reinforcement learning training metrics. The upwards trend in
episodic reward show successful learning of a good policy. The de-
crease in training loss also signals convergence, as well as explained
variance showing that the agent has explored the environment. . . 63

6.8 Trajectory of an episode using the optimal network. We can notice
the decrease in velocity and the successful pinpoint landing. . . . 68

6.9 Target acceleration along the trajectory. We can notice at the end
a high target velocity due to the proximity to the landing site. The
agent learns to not strictly follow this command as it would require
leaning excessively. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.10 Montecarlo analysis distribution of terminal errors, showing monomodal
distribution of the errors. Low position error and terminal velocity
make this compatible with soft landing. . . . . . . . . . . . . . . . 70

6.11 Sensitivity to unmodeled dynamics and disturbances. The policy
proves to be robust by having low errors and dispersion in the
presence of different disturbances and uncertainties. . . . . . . . . 71

6.12 Dispersion plot with disturbances and unmodeled dynamics. Most
of the simulations result in a successful landing within a 20m ra-
dius, however there are a few significant outliers. . . . . . . . . . 72



XIV LIST OF FIGURES



List of Tables

2.1 Structure of neural networks . . . . . . . . . . . . . . . . . . . . . 18

4.1 Absolute and relative tolerances of the ODE45 integrator . . . . . 30
4.2 3DOF environment normalizer . . . . . . . . . . . . . . . . . . . . 32
4.3 Normalizer vector for 6DOF environment . . . . . . . . . . . . . . 33
4.4 Mean and range of simplified initial conditions for each state . . . 34
4.5 Mean and range of simplified initial conditions . . . . . . . . . . . 34
4.6 Mean and range of initial conditions . . . . . . . . . . . . . . . . 34
4.7 Mean and range of realistic initial conditions . . . . . . . . . . . . 34
4.8 Normalization values for the action . . . . . . . . . . . . . . . . . 35
4.9 Target velocity reward function coefficients . . . . . . . . . . . . . 38
4.10 Target velocity reward function parameters . . . . . . . . . . . . . 38
4.11 Annealed reward function coefficients . . . . . . . . . . . . . . . . 39
4.12 Target acceleration reward function coefficients . . . . . . . . . . 40

6.1 Terminal errors and used mass statistics, 1st phase (mean µ and
standard deviation σ). While the position error is reasonably low,
the velocity error is slightly too high at the end of this phase. . . 56

6.2 Terminal errors and used mass statistics, 2nd phase. The position
and velocity errors have reasonable values, however the velocity an-
gle at touchdown becomes high, meaning that there is a significant
horizontal component of the velocity. . . . . . . . . . . . . . . . . 56

6.3 Mean and range of initial conditions in the case of Monte Carlo
analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Terminal errors and used mass statistics . . . . . . . . . . . . . . 64
6.5 Propellant consumption comparison of the obtained policy, the

3DOF (point mass) optimal solution and 6DOF successive con-
vexification (SCVX) approaches . . . . . . . . . . . . . . . . . . . 64

6.6 Number of outliers, runs where there is divergence of the controller,
out of 100 runs for each disturbance. . . . . . . . . . . . . . . . . 68



XVI LIST OF TABLES



Nomenclature

FB Body-fixed Reference Frame

FI Inertial Reference Frame

� Hadamard division

u Control input vector

x State vector

y State vector (3DOF environment)

H∞ H-infinity synthesis

3DOF 3 degrees of freedom

6DOF 6 degrees of freedom

CoM Center of Mass

CoP Center of Pressure

COTS commercial off the shelf

IC Initial Conditions

ISA International Standard atmosphere

MPC Model Predictive Control

OCP Optimal Control Problem

ODE Ordinary Differential Equations

PID Proportional Integrative Derivative controller

CD Continuous Deployment

VM Virtual Machine



XVIII NOMENCLATURE

[ψ, θ, φ]lim Limit Yaw, Pitch and Roll angles

DRL Deep Reinforcement Learning

α Learning rate

θ Network parameters

ε Clipping parameter

E Expected value

A Action Space

L(θ,θk) surrogate advantage function

O Observation Space

π Policy

π∗ Optimal policy

τ Trajectories (also rollouts, episodes)

atarg Target acceleration

stk Environment state at time tk

Aπθk (s,a) Advantage function

DKL Kullback–Leibler divergence

J(π) Expected return over a trajectory

Q∗(s) Optimal Action-Value function

Qπ(s) Action-Value function

R(τ) non-discounted finite-horizon return

R(τ)inf discounted infinite-horizon return

R(s′, s,a) Reward function

rt Reward at time t

ReLU Rectified Linear Unit

S Entropy function

tanh Hyperbolic tangent



NOMENCLATURE XIX

V ∗(s) Optimal value function

V π(s) Value function

vtarg Target velocity

DDPG Deep Deterministic Policy Gradient

DNN Deep Neural Networks

ELM Extreme Learning Machines

GPU Graphic Processing Unit

MDP Markov Decision Process

POMDP Partially Observable Markov Decision Process

PPO Proximal Policy Optimization

RL Reinforcement Learning

SAC Soft Actor-Critic

TRPO Trust-Region Policy Optimization

ZEM Zero-Effort Miss

ZEV Zero-Effort Velocity



Chapter 1

Introduction

In this thesis an analysis of the feasibility of utilizing Reinforcement Learning
(RL) techniques for planetary landing is carried out. Emphasis is placed on the
case of reusable first stages of launch vehicles, as the work is developed in the
context of an internship within Deimos Space [1], a commercial company carrying
out several projects on this type of vehicles.

1.1 Motivation
The landing problem consists of achieving a successful touchdown on a planetary
body within a prescribed location and velocity with a certain attitude (usually
upright) and null terminal angular velocity. This goal can be optimized in terms
of time, propellant consumption and/or terminal errors’ minimization, depending
on the needs. This problem has been rising in relevance in the recent years, in
an effort to make space access more economically accessible by means of reusable
launcher vehicles. It is also relevant for the future planetary exploration goals of
space agencies, to have reliable, precise and efficient landings close to scientifically
relevant sites.

Through the years several techniques have been developed to address it, start-
ing from simple fixed-guidance solutions to advanced optimization techniques.
The first applications were the lunar landings during the first space race: one of the
most iconic solutions was the polynomial trajectory guidance for the Apollo mis-
sions. This consisted in describing the trajectory using polynomials split through
different phases of the landing profile [2], a solution adopted due to the limited
computational resources available.

To improve the fuel efficiency of the trajectory, optimal guidance laws have
emerged [3] for the case of point-mass dynamics, lacking however equally optimal
solutions in the atmospheric case and still needing a mapping to actuator actions
through a tracking controller.

These methods however lack the ability to optimize more complex dynamics
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and to enforce constraints. Recently, substantial gains in efficiency and flexibility
in the ability to handle constraints have been made by approaching the problem
with Second Order Cone Programming (SOCP) methods [4],[5]. These methods
manage to obtain optimal guidance solutions in the presence of linear dynamics
and convex inequality constraints. These methods exploit the fact that while non-
convex functions can have multiple local minima, convex functions have no more
than one minimum, making optimization much easier: they work by convexifying
non-convex constraints of the state and control inputs. They solve the convex
relaxed problem associated to the non-convex one by convexifying the non-convex
constraints. It has been proven that the optimal solution of the relaxed problem
coincides with the optimal solution of the non-convex one [6]. The great advan-
tage of this method is that it can compute a solution in bounded polynomial time,
making it suited to real-time applications. This approach is limited by the fact
that the dynamics that can be optimized must be linear and not all constraints
can be convexified. Furthermore, conical glideslope constraints are usually used,
and they might not be appropriate for trajectories which need to avoid steep ob-
stacles close to the landing pad. This approach can be applied to 3DOF guidance
problems, meaning that only the translational motion of the lander is optimized,
while the attitude needs to be controlled separately to track the required control
force: this is necessary as typical launcher vehicles are under actuated, as the
thrust vector is constrained to lie within a certain region by the attitude of the
system. An example of application of this method is the G-FOLD (Guidance for
Fuel Optimal Large Divert) algorithm developed at JPL [7], of which a real-time
implementation has been flight-tested on actual demonstrator vehicles by Masten
Aerospace.

To overcome some of these limitations, successive convexification (SCVX)
methods iteratively optimize convexified problems for guidance computation to
generate 6DOF optimal open-loop trajectories, such as [8],[9]. At each iteration
the convexification is repeated using as initial guess the solution from the previ-
ous time step, until convergence is reached. This approach requires an additional
controller to track the required thrust components using the thruster or a Model
Predictive Control approach re-optimizing the control sequence asthe trajectory is
recomputed at each time step, significantly increasing the computational burden.

To add a guarantee of stability and performance of the controller, robust con-
trol techniques have been used in the European space sector, usually in the form
of H∞ synthesis (either structured or unstructured), such as in [10],[11]. These
methods typically use cascade PID controllers, as in 1.1: an outer loop controller
receives a reference trajectory to track from a guidance algorithm; it then outputs
reference attitude angles to feed an inner loop controller controlling the actua-
tors. The performance of these methods however can suffer when dealing with
time-varying dynamical systems.

At present time the state-of-the-art approaches split the process in sequential
steps, first computing the guidance from an estimate of the state given by the
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Figure 1.1: The inner and outer loop controller architecture applied to the aero-
dynamic descent phase of the CALLISTO ESA reusable launcher demonstrator
[10]. The control inputs to the plant (δφ, δθ, δξ) are virtual deflections mapping to
the fins control angles through aerodynamic coefficients

NAVIGATION GUIDANCE CONTROL ACTUATORS

Figure 1.2: Structure of classical landing architectures: the navigation system
produces from sensors an estimate of the state ~̂x, which the guidance block turns
in a commanded trajectory ~xref . Finally, the control block transforms this in
actuator commands ~ucmd. Each block serves a specific function, making their
individual design easier but causing performance to suffer.

navigation subsystem and then tracking it with a controller, as shown in Fig.1.2.
This has several limitations, such as a difficulty in designing separately the

guidance and control blocks, the guidance block needing to ensure feasibility of
the generated trajectory and the possibility of the control being suboptimal and
incurring in saturations. Also, they could restrict the type of possible maneuvers
performed. In the present work it is assumed that the navigation subsystem
is capable of giving an accurate estimate of the state of the lander (which is
reasonable in the case of Earth landings) and the focus will be on Guidance and
Control.

1.1.1 Learning-based techniques for landing G&C
All these limitations of classical G&C architectures spur the question if an in-
tegrated approach to G&C design is possible and what level of performance (in
terms of both objective function minimization and robustness of the solution) is
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currently achievable. The limitations and range of applicability of the developed
solution also need to be assessed in order to inform adequately the G&C designers.
A promising answer for this question makes use of Artificial Intelligence learning
techniques to develop integrated Guidance and Control solutions.

As reported in [12] there have been several studies in the last decade applying
artificial intelligence and reinforcement learning to spacecrafts’ GNC problems.

Neural networks are used to approximate parameters of a controller with fixed
structure such as PID gains, tuning matrices for LQR or other types of param-
eters. The base controller can be developed through any standard control tech-
nique, such as PID, LQR, using Lyapunov control methods [13] or ZEM/ZEV
controllers where a network learns to output the optimal controller parameters
using reinforcement learning [14]. An interesting subcategory of this approach
are extreme-learning machines (ELM), neural networks with a single hidden layer
trained very quickly using an inverse parameters’ matrix rather than Stochastic
Gradient Descent [15] [16]. Similar approaches are also used for guidance tasks
[17], also with optimal control techniques using neural networks to generate good
initial guesses [18], [19].

Optimal Control solutions using Deep Neural Networks[20] address the high
computational burden of solving Optimal Control guidance problems in real-time
applications: to seek a feasible real-time solution a Deep Neural Network (DNN) is
trained using a large database of previously computed optimal solutions, to obtain
an approximator for the optimal solution of the problem. This means shifting
the computational burden to the offline training of the network. This results
in a quasi-optimal guidance law which can then be deployed easily on available
commercial off-the-shelf hardware (COTS) achieving a real-time performance. It
also addresses the need for a good initial guess to have convergence, as there could
be non-converging scenarios which would not output a control action: the neural
network allows to have a deterministic, guaranteed control output at each time
step.

Several studies use adaptive controllers which are either built from or expanded
with [21] neural networks. For example in [22] (in the context of sole attitude
control of a space station) the synthesis of a nonlinear robust controller in the
form of neural networks is performed and the parameters of the neuro-controller
are adaptively modified to account for a time-varying inertia matrix.

Other approaches yet explore using learned dynamics, training a neural net-
work from experimental data to obtain a quickly differentiable representation of
nonlinear dynamics, which can then be employed with more classical optimal
control techniques such as Model Predictive Control [23]. This allows for uncon-
strained model selection and GPU acceleration during optimization.

Reinforcement learning has also been studied in several fashions, using super-
vised learning to obtain the initial approximation for the neural network subse-
quently optimized with reinforcement learning methods [24] or through reinforce-
ment meta-learning[25], where the agent learns to act effectively not just in one
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task, but in a series of related tasks: in this way when facing a new task that has
never been encountered during training, the agent will still be familiar with the
situation and will be able to learn faster.

Deep Reinforcement Learning for direct control seeks to find a control policy
directly mapping the state of the system (or a partial observation of the state)
to a control action. This approach is highly flexible as it can take into account
actuator limitations and unmodeled dynamics while learning the mapping from
state observation to actuator action. This approach does not require pre-collected
data (either from simulations or real-data) but rather optimizes the policy (rep-
resented with a Deep Neural Network) by simulating the behavior of the system
and collecting information on the reward obtained at each time step. The reward
is a scalar number given by a reward function, which measures how close we are
to achieving an arbitrary objective. Using this information to learn the optimal
policy, mapping actions to take to the different states of the lander. Reinforce-
ment Learning makes this approach extremely versatile as the control function can
learn its own structure, not having to fit any predefined one. There are several
variations of this technique, but it can mainly be subdivided in model-based and
model-free: the first uses a model of the system to guide learning of the controller
while the second doesn’t. Previous applications to planetary landing problems
[26] show that it suits this kind of G&C problems.

Ultimately the decision was made to focus on Deep Reinforcement Learning
from state observations, as it allows maximum flexibility for representation of the
dynamics: the model-free approach has been chosen due to the increased flexibility
in modeling the nonlinear dynamics and its higher effectiveness and versatility.
Furthermore, there exists a gap in the application to launcher’s first-stage landing
scenario on Earth: previous studies [24], [14],[26] that approached the landing
problem using this technique focused on applications to other planetary bodies
rather than Earth, with less significant lower atmospheric effects.

In previous works[26], the focus was placed on narrowing down the landing
location from a wide spatial distribution of initial conditions, with limited disper-
sion on the initial mass. The existing works analyze cases where the command
vector is the force components to be generated by the actuator or the individual
thrust for each one of several fixed thrusters: no work employs direct control of
gimbaled thruster, which significantly changes the behavior of the lander. The
limitations of these approaches are in the long convergence times, sometimes of
about a week of training, which strongly limits the ability to iterate quickly on
the shape of the reward function informing the algorithm about the effectiveness
of the obtained trajectory.
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1.2 Objectives of the thesis
In this work an assessment of the maturity of reinforcement learning (RL) tech-
niques for development of integrated Guidance and Control policies is conducted.
The advantage compared to classical learning techniques is the possibility of higher
performance thanks to the integrated G&C approach, an increased flexibility in
the definition of goals and constraints, and the possibility of easily expanding or
modifying the actuators’ architecture. We aim to address the problem of long
run times for this type of algorithms to improve on the speed of design iteration.
Quantifying the robustness of the obtained control policy is also important, in par-
ticular in the case of unmodeled dynamics and/or uncertainty on the parameters.
Thus, the research objectives that we seek to address with this thesis are:

• Applying model-free reinforcement learning to consistently achieve success-
ful atmospheric landing by directly controlling the launcher’s actuators and
assessing its robustness to unmodeled dynamics.

• Developing a validated 6DOF simulation environment, expandable with
more actuators and including the relevant dynamics for atmospheric plane-
tary landing.

• Developing a training software pipeline that enables fast iteration on the
design of the integrated guidance and control policy.

The first step was the development of the simulator and environment, to be
used by the model-free Reinforcement Learning algorithm to learn a control policy.
The training software pipeline development was required due to the long training
times of the algorithm which would have prevented testing rapidly the changes to
the environment and the algorithm.

1.3 Structure of the thesis
This document is organized as follows:

• Chap.1 Introduction: an overview of the current state of the art for plan-
etary landing G&C is given, showing the classical architecture employed. An
overview on the applications of learning techniques in aerospace G&C is pre-
sented and the selection of Reinforcement Learning is motivated. Finally a
recap of the objectives of the thesis is shown.

• Chap.2 Reinforcement Learning description: a brief survey of ma-
chine learning techniques for control is provided and, after motivating the
choice of Reinforcement Learning, an overview of the most used techniques
is provided. Finally, the used algorithm (PPO) is explained and its choice
motivated.
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• Chap.3 Overview of the landing problem: the dynamics of the problem
are modeled, for both a planar 3DOF, and a full 6DOF case. The landing
problem is formulated and cast in a form suited to reinforcement learning
algorithms.

• Chap.4 Environment definition: the dynamics are wrapped in an envi-
ronment suited to RL and its structure is detailed. A thorough explanation
of how the constraints and goals are enforced through the reward function
is given. Finally, a description of the software setup used is provided and
validation of the developed simulator is highlighted.

• Chap.5 Results for 3DOF environment: the results obtained in terms
of performance of the algorithm are shown and a trade-off study across
different activation functions is carried out.

• Chap.6 Results for 6DOF environment: the results in a realistic envi-
ronment are presented. Monte Carlo analysis on the nominal environment
and a sensitivity analysis on an off-nominal environment (simulating previ-
ously unmodeled dynamics and uncertainties) are carried out to assess the
robustness of the obtained policy to unmodeled effects.

The problem has been approached through subsequently more general cases,
to gain deeper understanding of the interaction between the change in the reward
function used, the choice of hyperparameters and the convergence of the algorithm.
We have first addressed a 3DOF case with simplified initial conditions (lower
initial velocity and height, see Table 4.4), then moving to the 6DOF environment
as in Table 4.5. For this, two Python simulators were developed, one for the
3DOF problem and one for the 6DOF case. The second was validated using a
previously validated 6DOF simulator. After satisfactory results were obtained,
we moved to realistic initial conditions taken from the flight profile of a Falcon 9,
again first solving the problem in 3DOF (initial conditions in Table 4.6) and then
moving to 6DOF (see Table 4.7 for details). These steps are shown in order in
Fig.1.3. The whole training phase was greatly facilitated by the software pipeline
developed, that allowed easily training on Cloud Virtual Machines and monitoring
the training metrics through an interactive web interface.
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Figure 1.3: Steps in the development process: we first started from simplified
initial conditions for the landing going from a 3DOF case to a 6DOF one; then
we moved to realistic initial conditions from Falcon 9 landing data, again moving
from the 3DOF case to the 6DOF one.



Chapter 2

Reinforcement learning

Reinforcement Learning (RL) is a set of techniques through which it is possible
to learn policies to control the behavior of an agent, attempting to maximize
the amount of reward obtained from a certain environment. In this chapter we
show several classification domains for the different RL algorithms, explaining
mathematically and motivating the selection of the Proximal Policy Optimization
(PPO) algorithm.

2.1 Brief introduction to reinforcement learning
The environment is modeled as a Markov Decision Process (MDP) in case the
state of the system (i.e. all the variables controlling the system) can be observed
or a Partially Observable Markov Decision Process (POMDP), in which only an
observation of the state of the system is available. In the following the formulation
for MDPs is described and the terms state and observation are used interchange-
ably. There are several possible techniques to solve the reinforcement learning
problem (Dynamic Programming, tabular methods, Neural Networks etc. [27],
[28]) and in this work Deep Neural Networks (i.e. neural nets with more than 1
hidden layer) are used to tackle this problem.

2.1.1 Elements of Reinforcement Learning
There are several elements which make up the reinforcement learning [29]:

• action space A: which is the set of all possible actions a of the agent and
can be discrete if it has a finite number of actions or continuous.

• Observation space O (and state space S): is the set of all possible
observations o of the system state s and can again be discrete or continuous.
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• Policy: the policy π is a function controlling the behavior of the agent,
that is giving an action based on an observation received from the envi-
ronment. Since the policy controls the behavior of the agent often the two
terms are used to mean policy. In deep reinforcement learning the policy
is parametrized using a deep neural network, meaning that the weights and
biases of the neural network are used to parametrize it and is denoted as πθ
to indicate that the parameter vector θ is used.

• Trajectories (also called rollouts, episodes): they are a sequence of state
and action pairs Eq.2.1.

τ = (s0,a0, s1,a1, ...) (2.1)

The first state is sampled from an initial state distribution ρ0.

• State transition function: the sequence of states is determined by the
state transition function which returns the successive state based on the
current state and the action taken (either in a deterministic or probabilistic
sense) as Eq.2.2.

st+1 = s′ = f(st,at) (2.2)

• reward and returns: at each transition a scalar reward is given to the
agent based on the state of the environment, the next state and the action
taken, according to a reward function2.3.

rt = R(s,a, s′) (2.3)

The goal of the agent is to maximize the amount of reward collected along a
trajectory, calculated as either the non-discounted finite-horizon return2.4,

R(τ) =
T∑
t=0

rt (2.4)

or the discounted infinite-horizon return2.5,

R(τ)inf =
∞∑
t=0

γtrt (2.5)

which computes the return discounting the value of future rewards, which
both guarantee convergence of the sum and can be tweaked to emphasize
obtaining a reward closer in time.

In order for the algorithm to solve the problem it is useful to understand the
value that a certain state has or the value that a state-action pair has. To do
these two types of value functions are employed:
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• Value function2.6: it measures the value that a specific state possesses as
the expected return starting in the state and following the policy π.

V π(s) = Eτ∼π [R(τ)|s0 = s] . (2.6)

This function has a respective optimal value function2.7

V ∗(s) = max
π

V π (2.7)

• Action-Value function2.8: gives the expected return being in a state s,
taking an arbitrary action a and then following the current policy

Qπ(s) = Eτ∼π [R(τ)|s0 = s,a0 = a] . (2.8)

Again there is an optimal action-value function, shown in Eq.2.9.

Q∗(s) = max
π

Qπ (2.9)

The key problem of reinforcement learning is to maximize the expected return of
the agent over a trajectory, that is the cost function in Eq.2.10,

J(π) = Eτ∼π [R(τ)] (2.10)

thus retrieving the optimal policy π∗ as Eq.2.11

π∗ = argmax
π

J(π) (2.11)

2.2 Reinforcement Learning algorithms classifi-
cation

There are several ways that RL can be employed to learn how to map control
actions to system observations (the so-called control policy π) to accomplish a
certain task. The first distinction has to be done between model-based and
model-free reinforcement learning. The first has either access or learns a baseline
model of the environment and this allows the algorithm to use the model to plan
and make predictions, allowing for an improvement in sample efficiency, meaning
that the algorithm requires less exploration to optimize the policy. However,
there is the downside that these algorithms actually require to have a model of
the environment (or to learn it) which might be too complex to achieve and thus
the model-free algorithms allow learning a policy without the need of modeling
the environment and generally are easier to implement and to tune, thus these
are the ones most used. The two main categories of model-free RL problems are
the policy-based methods and the value-based methods.
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• Q function-based methods Q function-based methods seek to estimate
the state-action value function giving the estimated future cumulative dis-
counted reward given that a certain state s is reached. The policy is then
retrieved by picking the actions that maximize the state-action value func-
tion as Eq.2.12.

π = argmax
a
Q(s, a) (2.12)

• Policy-Based methods are seeking to directly find an optimal control pol-
icy π∗(t) maximizing the rewards obtained. The policy is usually parametrized
according to some parameters θ (for example if we are using a neural net-
work the parameters would be the weights and biases of the network) and
then iteratively optimized by seeking the parameters that maximize the cost
function J by following the direction of the gradient of this function with
respect to the parameters as in Eq.2.13.

θ → θ + α∇θJ(θ) (2.13)

• Mixed methods are methods mixing both model-free and model-based
techniques. The so-called imagination-augmented [30] [31] method com-
bines model-based and model-free RL, learning to interpret environment
models to augment model-free decisions. This allows for flexibility in the
development of the DNNs as they are decoupled and ”makes use” of the
fact that the environment is constrained by its dynamics. The dynamic of
the system is modeled through ODEs and employed in the model-based part
of the controller to estimate (i.e. ’imagine’) future states. Even if it doesn’t
take into account stochastic events or the full dynamics of the launcher this
model can still aid in the generation of the control action by ’filtering’ the
model-free actions, in a way akin to MPC.

Another way to characterize RL algorithms is whether they learn only applying
the current policy or not, if they are respectively on-policy or off-policy:

• On-policy algorithms learn value functions using information obtained by
exploiting the current policy to explore the environment. An example of a
modern on-policy algorithm is Proximal Policy Optimization (PPO) [32].

• Off-policy These algorithms use observations obtained by previous policies
or an expert (’experience replay’). One of the most used off-policy solutions
are the Soft Actor-Critic (SAC) algorithm [33] and the Deep Deterministic
Policy Gradient (DDPG) [34].
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The main trade-off between the two methods is stability (i.e. convergence to
a solution in reasonable time) vs sample efficiency (i.e. making use of as much
data obtained as possible). The first is usually better for the on-policy algorithms,
and consequently also for policy-based algorithms that are optimizing directly the
policy as they are following a gradient ascent on a cost function, while the latter is
higher in the off-policy algorithms, due to the ability to re-use previous transitions.

A recap of the classification is shown in 2.1.

Figure 2.1: A recap of the classification of Reinforcement Learning domains. The
lines between them are not strict and there are techniques which overlap over
several domains [27]

2.3 The Proximal Policy Optimization algorithm
The Reinforcement Learning algorithm chosen to tackle the landing problem is
the Proximal Policy Optimization (PPO) algorithm, a type of on-policy, gradient-
based algorithm characterized by a high learning efficiency.

2.3.1 Motivation for choice
The PPO algorithm has been chosen due to his versatility and wall-clock perfor-
mance. It has been applied in the literature to many environments, demonstrating
state-of-the-art performance in many of these applications, with minimal hyper-
parameters tuning required [35]. This aspect is critical in the applied scenario
as convergence of the policy requires millions of episodes and significant wall-
clock time which make hyperparameters tuning infeasible due to limitations in
the computational resources available.
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If more resources were available it would become feasible to train several poli-
cies in parallel, sweeping over a broader range of hyperparameters to optimize
performance of the algorithm. Indeed, one way to do so could be performing the
hyperparameters sweep in the 3DOF environment and then use these optimized
hyperparameters to train the policy in the 6DOF environment similarly as how
tuning of the reward function has been performed (see Sec. 4.5).

Another reason for the selection is that it is an on-policy algorithm, iterating
and optimizing directly the policy network which result in a training that is more
stable and reliable. Indeed, the training stability is a critical limitation to the
exploitation of the designed reward function, as having an excessively unstable
training may result in not succeeding in finding the terminal reward. Training
instability could also result in not being able to exploit the reward information
due to diluting it too much with other episodes’ trajectories, thus not having
a strong enough learning signal to make the policy parameters converge to the
optimal ones.

2.3.2 The Trust Region Policy Optimization algorithm
The PPO family of on-policy algorithms are an evolution of the Trust Region
Policy Optimization (TRPO) which ease the computational burden of each update
step to speed up learning of the optimal policy. The TRPO algorithm uses a
constrained approach for the maximization of the advantage function Eq.2.14.

Aπθk (s,a) = Qπθk (s,a)− V πθk (s) (2.14)

This function measures how much better a given action is compared to taking
an action according to the current policy πθk

. The constraint limits the change in
policy at each update step. This can be written mathematical as the maximization
of the surrogate advantage function L(θ,θk), where θ and θk are respectively the
generic and previous parameters of the parametrized policy network πθ at a given
policy update iteration, subject to a constraint on the average KL-divergence of
the policies D̄KL(θ||θk), as shown in equation 2.3.2.

θk+1 = argmax
θ
L(θ,θk) (2.15)

s.t. D̄KL(θ||θk) ≤ δ (2.16)

In this equation the surrogate advantage function L(θ,θk)2.17 measures how the
generic policy πθ performs compared to the previous policy πθk

, weighted by how
much they differ and is computed as the expected value over the states and actions
(obtained through rolling out the previous policy πθk

) of the ratio between the

probabilities of the generic and previous policy rk =
πθ(a|s)
πθk

(a|s)
multiplied by the
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previous estimate of the advantage function Aπθk (s, a):

L(θk,θ) = Es,a∼πθk

[
πθ(a|s)
πθk

(a|s)
Aπθk (s, a)

]
(2.17)

The average KL-divergence of the two policies across the states visited under
the old policy πθk

is shown in Eq.2.18.

D̄KL(θ||θk) = Es∼πθk
[DKL(πθ(·|s)||πθk

(·|s))] (2.18)

where the KL-divergence measures how different the two policies are and is com-
puted as in Eq.2.19.

DKL(π||πθk
) = E

[
log

(
π

πθk

)]
(2.19)

This maximization problem is solved through a second-order optimization method
which requires computing the inverse of the hessian matrix of the network, which
can have millions of parameters. This computation is very expensive so the PPO
algorithm tries to enforce the constraint in the KL-divergence of the policies
through a clipped objective function, turning the constrained optimization prob-
lem into an unconstrained one which can be solved through first-order method,
resulting in a much lower computational burden.

2.3.3 Algorithm description
The PPO algorithm avoids having to solve the second-order maximization problem
of TRPO while constraining the new policy to not be too far from the old one.
There are two ways in which this can be achieved[29]:

• loss penalty term: a negative penalty term that grows (in absolute value)
with the increase in KL-divergence is added to the loss function that is
maximized, automatically adjusting the weight of this additional term at
each optimization iteration

• loss clipping: the loss function is clipped to incentivize the difference be-
tween policy update steps to be within a certain range

The first approach has two steps at each policy iteration:
• Using gradient descent, optimize the penalized objective2.20,

Lpenalty = E
[
πθ(a|s)
πθk

(a|s)
Â− βD̄KL(θ||θk)

]
(2.20)

• compute the expected value of the divergence d = E[D̄KL(θ||θk)] and update
the coefficient β in Eq.2.20 as (this coefficient controls how aggressive the
policy update step is).{

β ← β/2 if d < dtarg/1.5

β ← β/2 if d > dtarg × 1.5
(2.21)
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The second approach is the one commonly used as it is simpler and has similar
results. The policy is updated, as in TRPO, as:

θk+1 = argmax
θ

E
s,a∼πθk

[L(s, a,θk,θ)] , (2.22)

however now the loss function is computed as in Eq.2.23, being rk Eq.2.24 the
probability ratio between previous iteration and generic policies.

L(s, a,θk,θ) = min (rkA
πθk (s, a), clip (rk, 1− ε, 1 + ε)Aπθk (s, a)) (2.23)

rk =
πθ(a|s)
πθk

(a|s)
(2.24)

The clipping behavior is regulated by the ε parameter, usually selected as a
small value ε ' 0.1 ÷ 0.3. The algorithm can be summarized as in the following
pseudocode:

Algorithm 1 Pseudocode of the PPO-Clip algorithm, from OpenAI Implemen-
tation [29]

1: Input: initial policy parameters θ0, initial value function parameters φ0

2: for k = 0, 1, 2, ... do
3: Collect set of trajectories Dk = {τi} = {〈si,ai〉, } by running policy πk =
π(θk) in the environment.

4: Compute rewards-to-go R̂t =
∑T

t′=tR(st′ ,at′ , st′+1).
5: Compute advantage estimates, Ât (using any method of advantage esti-

mation) based on the current value function Vφk
.

6: Update the policy by maximizing the PPO-Clip objective:

θk+1 = argmax
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min (rkA
πθk (s,a), clip (rk, 1− ε, 1 + ε)Aπθk (s,a)) ,

(2.25)
via stochastic gradient ascent with Adam optimizer.

7: Fit value function by regression on mean-squared error:

φk+1 = argmin
φ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vφ(st)− R̂t

)2
, (2.26)

typically via gradient descent
8: end for

There is also the possibility of augmenting the loss function with an entropy
bonus, a term that increases with the entropy of the policy. This term makes
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the loss function bigger when the policy has a very narrow distribution, that is
when one action is much more likely than the others. This increase in the loss
function tries to avoid premature convergence of the policy to a local optimum
and is shown in Eq.2.27.

LCLIP+S(s, a,θk,θ) = E [L(s,a,θk,θ) + centropyS[πθ(s)]] (2.27)

The entropy S[πθ(s)] is multiplied by the coefficient centropy and is computed
as in Eq.2.28.

S[πθ(s)] = E[− log πθ(s)] (2.28)

2.3.4 Neural Network structures
The neural networks are used in the PPO algorithm to estimate the policy func-
tion and the value function. The network structure employed is a MultiLayer
Perceptron (MLP) and it is different depending on which of the two sets of initial
conditions is used (See Fig.1.3 for an overview on the two sets). This is due to
the need to learn a more complex policy in the case of realistic initial conditions
compared to the simplified ones, thus needing a network with more parameters.
The network is made by an input layer for the observation, two hidden layers with
sizes shown in Table 2.1 and an output layer for the action or the value, similar
to the one shown in Fig.2.2. Both value and policy network have this structure,
with the difference being the last layer, which outputs a single scalar value in the
value network case.

Figure 2.2: Structure of the neural network (thicker arrows represent larger
weights for that link).
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Simplified IC Realistic IC
Hidden layer 1 64 128
Hidden layer 2 64 64

Table 2.1: Structures of the used networks: the more challenging realistic initial
conditions require a bigger network to achieve convergence of the policy

The nonlinear activation function allows the network to be a universal approx-
imator. It is this nonlinearity that allows this behavior as having a simple linear
function of the input would result in the overall network being a linear function, as
linear combinations of linear functions would result in a linear function. There are
several kinds of activation functions, but in this work two in particular have been
tested: the first is the hyperbolic tangent shown in Eq.2.29 and depicted in Fig.
2.3a , a continuous function with the advantageous property of having mean close
to 0, while the second is the Rectified Linear Unit shown in Eq.2.30 and depicted
in Fig. 2.3b, a piece wise continuous function. The former has been developed to
improve convergence of the network, as it solves the exploding gradient problem
in back propagation, thanks to having derivative with value either 1 or 0 (with
other activation functions the chained multiplication of the gradients of each layer
results in the parameters of the first layers updating extremely slow).

tanh(x) =
ex − e−x

ex + e−x
(2.29)

ReLU(x) = max(0, x) (2.30)
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Figure 2.3: Activation functions tested in the 3DOF scenario to select the one
with the best performance and stability.



Chapter 3

Dynamics of the problem

In this chapter, the dynamics of the system is presented, both for the 3DOF and
6DOF cases, and a formulation of the landing problem suited to reinforcement
learning is developed.

Assumptions

The rocket is modeled as a rigid body, with aerodynamic effects and a uniform
gravitational field (a reasonable approximation due to proximity to Earth’s sur-
face).

The following assumptions are made:

• Center of mass (CoM) having a constant position in the body.

• Uniform and constant gravitational field.

• Negligible earth curvature and rotation effects.

• Fixed position of the center of pressure (CoP).

• Negligible change in thrust due to atmospheric pressure variation (from 2km
to sea level the difference would only be about 2% if the thruster were to
fire at maximum thrust).

• ISA atmospheric model Ref.[36] considered for atmospheric density.

• No sloshing in the propellant tanks.

• Pure drag aerodynamic force (no lift).

• No delays in the actuator’s response.

• Diagonal inertia matrix.
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3.1 3DOF dynamics
The system is first studied on a simplified 3DOF model of the rocket shown in
Fig.3.1, modeling a planar trajectory. The dynamics equations are reported in
equations 3.1, assuming also that:

• Only the axial force is considered (no normal force);

• Inertia computed using an average value for the mass;

• Gravity is uniform.

mÿ = Tsin(θ + δ)− A sin θ −mg (3.1)
mẍ = Tcos(θ + δ)− A cos θ (3.2)
Iω̇ = −T sin δ (xT − xCoM) (3.3)

ṁ = − T

g0Is
(3.4)

Figure 3.1: Reference frame used for the 3DOF dynamics and diagram of the
forces acting on the launcher: weight mg (applied in XCoM), thrust T (gimbaled
by an angle δ and applied in XT ) and the aerodynamic axial force A (applied at
the center of pressure). The Y axis points upwards.

Equations 3.1 are all expressed in the inertial reference frame. It is important
to highlight that the 3DOF dynamics are expressed in a reference frame where
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the y axis is the vertical one (i.e. the one expressing the altitude of the rocket)
rather than the x axis as in the 6DOF dynamics.

The equations describing the dynamics of the system are assembled in a state
space formulation describing the dynamics of the time-invariant system as in
Eq.3.5

ẋ = f (x,u) (3.5)
with the state vector x and the control vector u being:

x =


x
y
θ
vx
vy
m

 u =

[
δ
T

]
(3.6)

3.2 6DOF dynamics
In the second part of the thesis the 6DOF dynamics and environment are devel-
oped. This environment allows to train the agent in a realistic scenario, with both
translational and rotational dynamics modeled.

3.2.1 Reference frames
Two reference frames are employed to define the equations of motion and the
dynamics of the system, as depicted in Fig.3.2:

• Inertial reference frame FI = [xI , yI , zI ]: it is the non-accelerating frame
fixed with the world, with the origin in the landing site and the x-axis
pointing upward, the z-axis pointing north and y-axis pointing eastward.

• Body-fixed reference frame FB = [xB, yB, zB]: this reference frame is
fixed with the vehicle’s body, centered at its center of mass (CoM) and it
is aligned with its x-axis along the longitudinal axis of the vehicle, pointing
towards the opposite end with respect to the thruster (i.e. towards the tip
of the launch vehicle). The other two axes are perpendicular with respect
to the x-axis but do not actually have a specific direction as the body of the
rocket is assumed cylindrical.

If a generic vector u is expressed in a certain reference frame a it is denoted as
ua while a generic rotation matrix R from the reference frame a to the reference
frame b is denoted as Ra→b (so converting a vector xa in frame a to the same
vector in frame b would be xb = Ra→bxa).

Due to the choice of the reference systems in order to achieve a successful
landing the condition to be met is to simply overlap the x-axis of reference frame
FB with FI .
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Figure 3.2: Depiction of inertial reference frame FI (in blue) and body fixed
reference frame FB (in black). The xI axis points upwards.

3.2.2 Translational dynamics
The translational dynamics are defined in the inertial reference frame FI by the
following system of differential equations:

ṙI = vI (3.7)

v̇I =
1

m(t)
F I + gI (3.8)

ṁ = −||TI ||
Ispg0

(3.9)

where:

• rI is the position vector of the center of mass in the inertial reference frame;

• vI is the velocity vector of the center of mass;

• m(t) is the time-varying mass of the vehicle (due to propellant consumption);

• Isp is the specific impulse of the engine;

• g0 is the standard gravitational constant at sea level;
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• gI = [−g0 0 0] is the gravitational acceleration vector;

• F I is the summation of the forces acting on the vehicle expressed in the
inertial reference frame, detailed in 3.2.4.

In the following, the subscript I for the position and velocity vectors is dropped
to simplify notation.

3.2.3 Rotational dynamics
The rotational dynamics are computed through Euler’s rigid body equation and
the kinematics are parametrized using the quaternion representation in the scalar-
first convention:

q =


qs
qx
qy
qz

 =



cos θ
2

isin θ
2

jsin θ
2

ksin θ
2


(3.10)

In Eq.3.2.3 the angle θ represents double the rotation around the rotation axis
expressed by the vector part of the quaternion [qx, qy, qz].

The rotation matrix from the inertial to the body reference frame can be
computed from the elements of the quaternion as:

RI→B =

1− 2(q22 + q23) 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 1− 2(q21 + q23) 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) 1− 2(q21 + q22)

 (3.11)

The dynamics is expressed in the body-fixed reference frame and the quaternion
parametrization thus represents the attitude of the body-fixed frame FB with
respect to the inertial reference frame FI . The kinematics and dynamics equations
are respectively Eq.3.12 and Eq.3.13.

q̇ =
1

2
Ωq (3.12)

ω̇B = J−1(MB − ωB × JωB) (3.13)

with the terms being:

• ωB =
[
ωx ωy ωz

]T the angular velocity vector expressed in body coordi-
nates;
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• MB the summation of the moments acting on the rocket expressed in the
body frame;

• J the inertia matrix of the rocket, computed at the beginning of each episode
depending on the initial mass m of the system (which is an initial condition
with a certain variability), the length of the rocket l and its base radius r:

J =

1
2
mr2 0 0
0 1

12
m(l2 + 3r2) 0

0 0 1
12
m(l2 + 3r2)

 (3.14)

• Ω the skew-symmetric matrix mapping the angular velocity and the current
attitude quaternion to the derivative of the attitude quaternion.

Ω =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 (3.15)

3.2.4 Forces and moments
The two forces considered to be acting on the launcher are the control force T I and
the aerodynamic force AI , with the subscript I indicating that they’re computed
in the inertial reference frame FI . The two forces are actually first computed in
the more natural body reference frame FB and then expressed in the inertial one
through a rotation:

F I = RB→I (TB +AB) (3.16)

Control force

The rocket engine provides the necessary control force, gimbaling about the zB
body axis of an angle δY (in the negative direction) and about the yB body axis
of an angle δZ (in the positive direction). The rotation matrix RT→B rotates the
thrust vector T T = [T, 0, 0]T from the thrust frame (i.e. the frame fixed with the
nozzle axis) to the body frame:

RT→B =

cos(δy)cos(δz) −sin(δy) −cos(δy)sin(δz)sin(δy)cos(δz) cos(δy) −sin(δy)sin(δz)
sin(δz) 0 cos(δz)

 (3.17)

such that the thrust vector in the body frame FB can be computed as:

TB = RT→BTT (3.18)
The engine is modeled after the Merlin 1D of the Falcon 9 [37], it has satura-

tions both in the gimbaling range being restricted to δz, δy ∈ [−20◦,+20◦] and in
the thrust magnitude having an upper bound at the maximum thrust achievable
by the engine T ∈ [0, 9.61kN ].
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Aerodynamic force

The simulator includes a model of the aerodynamic force, computed as:

AB = −1

2
ρ||vI ||SACARI→BvI (3.19)

with ρ = ρ(x) being the atmospheric density, vI the velocity in the inertial refer-
ence frame FI , SA the reference surface (in this work the base area of the rocket
is used), CA the aerodynamic coefficients matrix and RI→B the rotation matrix
from the inertial reference frame to the body frame FI → FB.

The aerodynamic coefficients’ matrix is a diagonal matrix with coefficients for
each body axis:

CA =

cx 0 0
0 cy 0
0 0 cz

 (3.20)

The aerodynamic coefficients are chosen to be equal, reflecting the so-called
spherical aerodynamic model, in which the only aerodynamic force is the drag
force. If the model had different aerodynamic coefficients for each axis then the
aerodynamic force would not be exclusively antiparallel to the velocity vector,
but there would also be the generation of a lift component (elliptical aerodynamic
model) [8].

The atmosphere is modeled as having decaying density, which is computed
according to the International Standard Atmosphere [36], considering the layer to
be non-isothermal (as is the case in the altitude range selected):

ρ = ρb

[
Tb

Tb + (h− hb)Lb

](1+ g0M
R∗Lb

)
(3.21)

with the sea level density ρ0 = 1.225kg/m3, the standard temperature Tb =
288.15K, the layer base height hb = 0m, the lapse rate Lb = −0.0065K/m, the
universal gas constant R∗ = 8.314 Nm

molK
, the standard gravitational acceleration

g0 = 9.8067m/s2 and the molar mass M = 0.02897kg/mol. The height h is
actually the geopotential height but as the assumption is of constant gravity this
can be considered as the actual geometric height.

State space formulation

As in the 3DOF case, the system is put in the nonlinear state space formulation
with the state x and the control vector u being:
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x =


r
v
q
ω
m

 u =

δyδy
T

 (3.22)

The differential equations governing the dynamics of the system are thus repre-
sented as

ẋ = f (x,u)

3.3 Formulation of the problem
The planetary landing problem consists of reaching, starting from a certain set of
initial conditions x0 of the system, a final state xf with prescribed position and
attitude and null terminal translational and rotational velocity. This should be
achieved minimizing propellant consumption, in order to avoid carrying excessive
propellant on the ascent phase of the mission (or the necessity of in-orbit refuel-
ing). In mathematical terms, the optimization problem in the 6DOF case can be
expressed with the following system:

minimize
u(t)

∆m =

∫ tf

t0

dm = m0 −mf (3.23a)

subject to ẋ = f (x,u) (3.23b)
with b.c. x(t0) = x0 (3.23c)

r(tf ) = rf (3.23d)
v(tf ) = vf (3.23e)
q(tf ) = qf (3.23f)
ω(tf ) = ωf (3.23g)

with initial conditions sampled from a uniform distribution within a certain
specified range ρx0

(detailed for each run in the results section) and with the final
conditions specified as:

rf [m] vf [m/s] qf [−] ωf [rad/s]
0 0 [1, 0, 0, 0] 0

For the 3DOF case the formulation is the same, with the usage of the respective
dynamics equations and the reduction in dimensionality of the vectors, moving
from a quaternion parametrization of the attitude to just the angle θ.
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minimize
u(t)

∆m =

∫ tf

t0

dm = m0 −mf (3.24a)

subject to ẋ = f 3DOF (x,u) (3.24b)
with b.c. x(t0) = x0 (3.24c)

x(tf ) = xf (3.24d)

with the final state:

rf [m] θf [rad] vf [m/s] ωf [rad/s]
0 0 0 0

In a reinforcement learning setting the constraints of the problem are not
enforced in a strict way, but rather are hinted more or less strongly with the
reward function, which is detailed in Section 4.5. This means that the landing
problem can be expressed with a formulation employing soft constraints as:

• Minimize the used propellant mass ∆m, the final position error ||rf ||, the fi-
nal translational and rotational velocity error (||vf || and ||ωf || respectively)
and the final attitude error [ψ, θ, φ]f (the attitude error is expressed in Euler
angles as detailed in 4.5);

• With the lander subject to the dynamics equation ẋ = f (x,u);

• With specified initial conditions x0.

This formulation is used as the foundation to develop the appropriate reward
function which enforces the constraints by strongly penalizing their violation.



28 Dynamics of the problem



Chapter 4

Environment definition

In reinforcement learning the environment is a Markov Decision Process - MDP
(or sometimes a Partially Observable Markov Decision Process - POMDP, if only
an observation of the state is accessible), consisting of a set of possible states S,
a set of possible actions A, a set of rewards R, a transition function s′ = f(s,a)
mapping the next state s′ to both the previous state s and the action taken a
and a reward function assigning a scalar reward at each transition R(s′, s,a).

4.1 Environment structure
The OpenAI Gym environment specification is employed to have a standardized
environment in which the application to the rocket landing problem is tested. This
offers the advantage of speeding up the development project as the interfaces are
already defined. The core of the implementation is the environment defining both
the state transition function (the dynamics of the rocket integrated through time)
and the reward function.

The environment is built to be compliant with OpenAI Gym APIs [38], pro-
viding the following standardized methods:

• .step() : simulates the system dynamics for one time step and provides
as output an observation, a reward (float), a done flag (boolean, 1 if the
environment has reached a terminal state) and an info dictionary (utility
variable to output useful information);

• .reset() : initializes the environment and returns an initial observation;

• .render() : output method that is used to provide to the user a visualiza-
tion of the current condition of the environment (i.e. 3d graphic, plots,…);

• .close() : terminates and cleans-up the environment.
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action

 
(controller) 

.get_action()

RKT SIMULATOR 

3DOF ✔
(linearized 3DOF?)

6DOF
...

observation 
reward 
done 

 
Methods: 

.step()
.reset()

.render()
.close()

Figure 4.1: Schematic of the environment and its interfaces with the overall RL
framework: the simulator can have different dynamics and communicates with
the environment, which employs standard APIs to interface with the RL policies.
This enables using standard RL frameworks for training.

A schematic of how the environment interacts with the policy can be seen in
The dynamics equations are integrated using a variable-step RK45 ODE integra-
tor from the Python package SciPy [39]. The relative and absolute tolerances
(respectively εrel and εabs) are reported in Table 4.1

Type εrel εabs
Value 0.001 1e-06

Table 4.1: Absolute and relative tolerances of the ODE45 integrator

and the quaternion q is normalized at each integration step. The state transi-
tion function mapping the current state-action pair (s,a) to the next state s′ can
then be written as:

s′ = fODE45 (s,a) (4.1)
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The environment .step() method advances the simulation at a fixed timestep
∆t while using the event function feature of SciPy’s ODE45 integrator to check if
zero height is reached; if so, the integration is stopped and the function outputs
a zero height signal.

4.2 Observation Space
The observation space of the environment contains all possible values of its ob-
servations; similarly the state space is the set of all possible system states. In
the case of the problem studied in this thesis, these are continuous spaces as the
variables are real-valued. This type of space is supported by default by Gym, in
the form of Box spaces. To improve convergence of the RL algorithms it is good
practice to bound, if possible, the observation space to lie within a certain range
and to normalize it.

Observation space normalization and bounding

In the defined environment some variables have natural bounds while others are
theoretically unbounded. The state space (and thus the observation space) is nor-
malized so that the bounds for each of its elements are [−1,+1]. Some reasonable
bounds have been selected for each, while allowing exploration within a reasonable
range of states.

The normalization vector is selected considering reasonable maximum values
for each variable:

• Free fall time: the free fall time is used to have a heuristic for the duration
of the episode in order to compute the other maximum values and is simply
computed as

tfree fall =
−vx(t = 0) + 2

√
vx(t = 0)2 + 2 · 9.81 · x(t = 0)

g0

• maximum velocity: it is considered to be twice the terminal velocity of
the rocket in an atmosphere-less environment at a time equal to tfree fall

vmax = 2 · 9.81 · tfree fall

as the rocket would have a significant part (∼ 100 ÷ 50%) of its velocity
directed in the downward component at the beginning of each episode (due
to the nature of the landing problem) and would not accelerate further in
this direction using its thrusters (if this were to be the case it would be
better to terminate the episode prematurely as it would mean the rocket is
upside down and thrusting downwards, an unfeasible scenario)
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• maximum angular velocity: is considered as the maximum angular ve-
locity that the rocket would achieve if it were to thrust for the free fall time
at the maximum gimbal angle and maximum thrust of the engine:

ωmax =
Tmax sin(δ

max
y )||rthrust

B ||
5Jxx

tfree fall

with Jxx being the minimum inertia moment (around the xB body axis) and
rthrust
B being the vector in body coordinates between the center of mass of

the rocket and the engine gimbal point.

State Normalizer
x 1.5|x0|
y 1.5|y0|
θ 2π
vx vmax
vz vmax
ω 2ωmax

m m0 +∆m

Table 4.2: Normalizer vector ynormalizator for the state in the 3DOF problem

3DOF state space normalization

In the 3DOF Gym environment the state returned by the simulator is normalized
at each step by dividing element-wise the state by the maximum of the absolute
value of the state bounds, i.e. a normalization vector as shown in Tab.4.2. Thus,
the normalized state vector can be computed as Eq. 4.2.

y ← y � ynormalizator (4.2)
The Observation Space is enforced by terminating the episode if any of the values
of the state exceeds the state bounds.

6DOF state space normalization

In the 6DOF environment the normalizer vector xnormalizer for the 6DOF envi-
ronment is thus defined in Table 4.3, by using the previous maximum values,
considering that each quaternion component has at most value of 1 and that the
rocket has maximum mass at the beginning of each episode (m0 +∆m0 with ∆m0

being the range of variation of m0), before firing its engine.
Considering that some of its elements could be zero, the actual normalizer

vector is updated by taking the element-wise maximum between the vector itself
and 1, as in Eq.4.3.
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r x : 1.2 ∗ |x(t = 0)| y, z : 1.5|y(t = 0)|, 1.5|z(t = 0)|
v [vmax, vmax, vmax]
q [1, 1, 1, 1]
ω [ωmax, ωmax, ωmax]
m m0 +∆m

Table 4.3: Normalizer vector for 6DOF environment

xnormalizer ← max(xnormalizer, 1) (4.3)

Then, the state vector is normalized by dividing element wise by the normalizer
vector as Eq.4.4.

x← x� xnormalizer (4.4)

4.2.1 Episode termination conditions

Each episode is run until either a time limit is reached or one of several early
termination conditions are reached. The early termination due to the time limit
is enforced by using the TimeLimit wrapper of the Gym library, which outputs
a done signal if the number of steps is greater than a set limit. Furthermore, the
episode is prematurely terminated if one of the following conditions is met:

• Zero height is reached during the integration;

• The upper or lower position bounds are reached, which for the 6DOF are
selected to be ±0.9max(rnormalizer, 200) except for the lower position bound
on the x axis (vertical height), which is set as xmin = −30m, as the episode
would be terminated anyway when the rocket reaches zero height by the
event function. The position bound limit rnormalizer is taken from the obser-
vation normalized defined in Table 4.3.

4.3 Initial conditions
Two training sets of initial conditions have been used to test the algorithm: first
a set of simplified initial conditions (lower height, lower velocity, velocity directed
only downwards) and then a second set of initial conditions sourced from historic
flight data of the Falcon 9, collected by flightclub.io [40]. This second set of data
simulates landing on a downrange location, such as a barge in the middle of the
ocean or a downrange landing pad.
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Simplified initial conditions

For the simplified initial conditions the mean and range are reported in 4.4 in the
case of the 3DOF environment and in 4.5 for the 6DOF case.

r θ v ω m

µx0
[50, 500] m π rad [0,−50]m/s 0 rad/s 41e3 kg

∆x0 [5, 50] m 0 rad [0, 0]m/s 0 rad/s 1000 kg

Table 4.4: Mean and range of simplified initial conditions for each state

r [m] v [m/s] q [−] ω [rad/s] m [kg]

µx0
[500, 100, 100] [−50, 0, 0] [1, 0, 0, 0] [0, 0, 0] 41e3

∆x0 [50, 10, 10] [10, 10, 10] [0.1, 0.1, 0.1, 0.1] [0.1, 0.1, 0.1] 1e3

Table 4.5: Mean and range of simplified initial conditions

Realistic initial conditions

The realistic initial conditions are shown in 4.6 in the 3DOF case and in 4.7 for
the 6DOF.

r θ v ω m

µx0
[−1600, 2000] m 3

4
π [180,−90]m/s 0 41e3 kg

∆x0 [200, 10] m 0.1 [30, 30]m/s 0.05 1000 kg

Table 4.6: Mean and range of initial conditions

r [m] v [m/s] q [−] ω [rad/s] m [kg]

µx0
[2000,−1600, 0] [−90, 180, 0] [0.866, 0, 0,−0.5] [0, 0, 0] 41e3

∆x0 [10, 200, 0] [30, 30, 0] [0.1, 0.1, 0.1, 0.1] [0.05, 0.05, 0.05] 1e3

Table 4.7: Mean and range of realistic initial conditions

4.4 Action Space
The action space comprises the space of all possible actions the agent can select.
The actions are sampled from the policy πθk

, which outputs a mean value µ and a
standard deviation σ: the action is then sampled from a normal distribution such
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Action vector element ||Tmax|| δz δy
Selected bound 9.61 kN 20 deg 20 deg

Table 4.8: Normalization values for the action

as a = N (µ, σ). In reinforcement learning implementations it is preferred to have
each term of the action bound in the interval [−1,+1] to facilitate convergence
of the algorithm: this means that each time the policy is sampled it will return a
value between these bounds for each element. In the case studied, it is simple to
enforce this condition as the action vector comprises three terms:

• thrust ||T ||, which is limited to the range ||T || ∈ [0, 9.61] kN

• gimbal angles δz and δy, which are limited in the range [−20 deg,+20 deg]

The action space then simply becomes:

A =
{
a ∈ R3 : ai ∈ [−1,+1] , i = 1, 2, 3

}
(4.5)

The action is denormalized when used in the simulator by simply multiplying it
by the bounds vector.

4.5 Reward functions
One of the most important elements in the reinforcement learning paradigm is the
reward function R(s′, s,a). This function maps a tuple of next state s′, current
state s and action taken a to a scalar value r. This scalar value is used to map the
value of each state and consequently to make the policy π converge to the optimal
one π∗. One of the biggest issues in reinforcement learning is choosing a reward
function that is reasonably descriptive for the problem at hand, meaning that it is
not too sparse, otherwise this would make it impossible to map correctly the value
of each state. Indeed, if in the landing problem the reward is only given upon
landing in a state within the correct bounds the algorithm fails to converge to a
policy different from a random one. Several iterations of the reward function have
been tested to reach a satisfactory result, based on the idea of giving the agent
a hint of the correct behavior in order to reach the final goal state and getting
a bonus when this goal is achieved, while trying to minimize fuel consumption.
The reward functions where first developed and tested on the 3DOF environment,
allowing to quickly iterate its shape thanks to the lower run times of the algorithm
in this environment, and then it is fine-tuned on the 6DOF environment to reach
a satisfactory behavior in terms of convergence and performance of the obtained
policy. In the following sections both versions are detailed.
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Reward function development progression

Different reward functions were developed and tested, starting from the ones de-
veloped in [26] and [14]. The first rewards the agent for following a target velocity
aiming for the landing site and giving a final bonus in case of successful landing.
The second reward function has been developed as a subsequent step in the train-
ing of the neural network to be performed after convergence of the first training
run: the agent learns first to land correctly by using the target velocity reward
function and then a second optimization is performed by swapping the previous
reward function for an annealed reward function, that rewards the agent mainly
for achieving a successful landing while minimizing fuel consumption, without giv-
ing hints on the translation motion of the vehicle; in this way the first training run
allows the agent to learn how to successfully land and only once the value func-
tion learns of the existence of a final bonus the minimization of fuel consumption
is performed. Finally, to achieve a successful landing in a more realistic case of
initial conditions a reward function based on following the acceleration command
resulting from the energy-optimal solution of a simplified optimal control problem
is developed. A recap of the steps is shown in Fig.4.2

Figure 4.2: Steps in the development of reward functions: starting from targeting
a heuristic velocity aiming for the landing site, we move to a two phases training
to optimize more the fuel consumption. Finally, we move to a different reward
function as the environment becomes more challenging

Attitude limits definition

In the 6DOF environment Euler angles are employed to define a negative reward
for violating certain attitude bounds, in order to guide the agent towards a suc-
cessful policy. The zyx extrinsic order of rotation convention is used, meaning
that there is a first rotation around the inertial z axis of an angle ψ, then a ro-
tation around the inertial y axis of an angle θ and finally a rotation around the
x inertial axis of an angle φ, as shown in Fig.4.3. These bounds are defined by
the θlim (limit angle) and θmgn (management angle) angles in the 3DOF case and
by the [ψ, θ, φ]lim limit angles in the 6DOF environment. These are not strict
constraints and their purpose is to avoid the agent exploring excessively states
which are unlikely in the optimal solution.
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Figure 4.3: Euler angles rotation convention used in reward function to penalize
exceeding certain attitude limits.

4.5.1 Target velocity reward
The first reward function that has been tested is the one from [26] and follows a
Line-of-Sight heuristic to have at each time step a target velocity to hint both the
direction in which the rocket should go and its speed. The reward then incentivizes
strongly a successful landing by giving a final bonus when the landing conditions
are satisfied and gives a penalty on thruster usage to minimize fuel consumption.

Both the 3DOF and 6DOF versions are shown in Eq.4.6 and Eq.4.7 respec-
tively.

r =α||v − vtarg||+ β||TB||+ γ(|θ| > θlim)− δ ·max(0, |θ| − θmgn) + η

+ κ(z ≤ 0 and ||rf || < rlim and ||vf || < vlim and |ω| < ωlim and |θ| < θlimf
)

(4.6)

r =α||v − vtarg||+ β||TB||+ γ · any([|ψ|, |θ|, |φ|] > [ψ, θ, φ]lim) + η

+ κ(x ≤ 0 and ||rf || < rlim and ||vf || < vlim and all(ω < ωlim)

and all([ψ, θ, φ]f < [ψ, θ, φ]limf
))

(4.7)

Each term of the reward function is weighted and has a specific meaning:

• α: rewards having a velocity vector v close to the target velocity vtarg;

• β: penalizes usage of the thrust, in order to reduce propellant consumption;

• γ: penalizes exceeding the limits on the Euler angles for attitude;

• η: this is a positive constant to avoid early termination by the agent (as all
other rewards except for the terminal one are negative);

• δ: this term, present only in the 3DOF case (Eq.[4.6]), gives the agent a
hint that it is approaching a limit in the attitude, defined by the θmgn angle;
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Coefficient α β γ δ κ η τ1 τ2
Value −0.01 −1e− 7 −10 −5 10 0.05 20s 100s

Table 4.9: Target velocity reward function coefficients

Coefficient |θlim| θmgn ωlim rlim vlim [ψ, θ, φ]lim [ψ, θ, φ]limf

Value 360◦ 180◦ 0.2rad/s 30m 10m/s [85, 85, 360]◦ [10, 10, 360]◦

Table 4.10: Target velocity reward function parameters

• κ: multiplies the terminal reward term, given to the agent only if the final
landing conditions are satisfied.

For a more detailed overview of each term the reader is referred to [26].
The weights have been carefully tuned through subsequent runs of the algo-

rithm starting from the values in [26], and the two scaling times τ1 and τ2 are
taken from the reference implementation. Their values have been tweaked aim-
ing to have each term with the same order of magnitude, except for the terminal
bonus coefficient k, and are detailed in Table 4.9. The values of the attitude and
final landing state parameters are shown in Table 4.10.

The target velocity magnitude follows a decaying exponential shape as shown
in Eq.4.8 starting from the initial velocity v0 = ||v(t0)||, based on the time-to-go
computed in 4.9 dividing the distance to the landing pad by the speed at a given
time. This target velocity targets a waypoint at zwaypoint = 50m and is made to
be only vertical when below this waypoint height thanks to the shape of r̂ as in
Eq.4.10 and of v̂ as in Eq.4.11. The decay speed is controlled by the scaling time
τ which also changes in value at the waypoint, as in 4.12

vtarg = −v0
(

r

||r̂||

)(
1− exp

(
−tgo
τ

))
(4.8)

tgo =
r̂

v̂
(4.9)

r̂ =

{
r − [0 0 zwaypoint] , if rz > zwaypoint

[0 0 rz] , otherwise
(4.10)

v̂ =

{
v − [0 0 2] , if rz > zwaypoint

v − [0 0 1] , otherwise
(4.11)

τ =

{
τ1, if rz > zwaypoint

τ2 otherwise
(4.12)
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Coefficient ξ γ κ δ η
Value 0.004 -10 10 -5 0.05

Table 4.11: Annealed reward function coefficients

4.5.2 Annealed reward function

To improve the fuel efficiency of the solution a second training run is performed
by retraining the model which converged using the target velocity reward function
with a different reward function without the target velocity term, which penalizes
fuel consumption and rewards successful landings. This allows the agent to first
discover the final bonus in the first training run and then, once it achieves the
goal conditions consistently the shaped part of the reward function is removed, to
incentivize only the minimization of fuel consumption. The terms that penalize
excessive flight path angles are kept to avoid instabilities in the training process.
The function is shown in the 3DOF version in Eq.4.13 and in its 6DOF version
in Eq.4.14. The coefficients for this reward function are shown in Table 4.11.

r = ξ(||T ||) + γ(|θ| > θlim)− δ ·max(0, |θ| − θmgn) + η

+ κ(z ≤ 0 and ||r|| < rlim and ||v|| < vlim and |ω| < ωlim and |θ| < θlimf
)

(4.13)

r = ξ(||T ||) + γ · any([|ψ|, |θ|, |φ|] > [ψ, θ, φ]lim)+

+ κ(x ≤ 0 and ||r|| < rlim and ||v|| < vlim and all(ω < ωlim)

and all([ψ, θ, φ]f < [ψ, θ, φ]limf
))

(4.14)

4.5.3 Target acceleration reward

The target velocity reward function turns out to work well in the simplified initial
conditions case but does not reach a successful landing in the case of realistic
initial conditions, with an excessive vertical component of the velocity vector and
a landing tilt angle too high. A different reward based on a target acceleration
has been developed to reach a correct landing with these initial conditions. The
reward function gives a hint to the agent to follow a target acceleration atarg,
which acts as a proxy to obtain a quasi-optimal policy and is detailed in the
following paragraphs.

The reward function has been selected as Eq.4.15 for the 3DOF case and as
Eq.4.16 for the 6DOF case:
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Figure 4.4: Shape of the terminal reward bonuses: as the terminal position and
velocity errors decrease the bonus increases up to 1, as the two functions are
multiplied together, and is then multiplied by a scaling weight wf .

Coefficient α β γ δ η wf vmax
f vmax

f κ

Value −0.01 −1e− 8 −1 −5 0.1 50 50m/s 100m/s 10

Table 4.12: Target acceleration reward function coefficients

r = α||a− atarg||∆h + β||T ||+ η

+ γ(|θ| > θlim)− δ ·max(0, |θ| − θmgn) + η

+ wf ·max

(
1− rf

rmax
f

, 0

)
·max

(
1− vf

vmax
f

, 0

)
+ κ(x ≤ 0 and ||r|| < rlim and ||v|| < vlim and and |ω| < ωlim and |θ| < θlimf

)

(4.15)

r = α||a− atarg||∆h + β||T ||+ η

+ γany([|Y aw| |Pitch| |Roll|] > [Y aw PitchRoll]lim)

+ wf ·max

(
1− rf

rmax
f

, 0

)
·max

(
1− vf

vmax
f

, 0

)
+ κ(x ≤ 0 and ||r|| < rlim and ||v|| < vlim all(ω < ωlim)and all(q < qlim))

(4.16)

This approach tries again to achieve a balance between giving the agent a hint
to achieve a successful landing and minimizing fuel consumption. The reward
coefficients are detailed in Table 4.12.
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In this case to improve convergence there are also two terms which give a
linearly decaying reward as the final velocity and position errors increase within
a certain interval. They are multiplied together and scaled by the weight wf and
their plots are shown in Fig.4.4. Other kind of functions have been tested to
shape the terminal reward, such as quadratic and exponential functions but the
linear ones resulted in the smallest landing errors. The target acceleration reward
term is given down to a certain waypoint height and then set to 0 to let the agent
explore more, in fact this can be modeled as being multiplied by a step function
of the height ∆h (in the 3DOF case the height variable is z rather than x):

∆h =

{
1 if x >= waypoint

0 if x < waypoint
(4.17)

The waypoint is set to x = 50m The target acceleration atarg is the solution of
the simplified problem minimizing the energy performance index in Eq 4.18.

J =
1

2

∫ tf

t0

aTa dt (4.18)

subject to the following dynamics:

ṙ = v (4.19)
v̇ = g + a (4.20)

a =
T I

m
(4.21)

(4.22)

In the case studied, both terminal position and velocity are null, thus rf = 0 and
vf = 0 resulting in the following boundary conditions:

r(t0) = r0 r(tf ) = rf = 0 (4.23)
v(t0) = v0 v(tf ) = vf = 0 (4.24)

(4.25)

This problem has the analytical solution:

atarg = −
6r

t2go
− 4v

tgo
− g (4.26)

with the time-to-go tgo computed as the real positive solution of the quartic equa-
tion

g2t4go − 4||v||2t2go − 24rTvtgo − 36||r||2 = 0 (4.27)

This problem does not account for the presence of the atmosphere and is not fuel-
optimal, however it is used as a proxy to achieve a successful landing by computing
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the optimal acceleration at each time step and using it as a target to balance the
other terms of the reward function. To avoid an excessive acceleration command
for the engine the actual target acceleration is computed as:

atarg = satTmax/m(atarg) (4.28)

where the saturation function is:

satU(q) =

q if ||q|| ≤ U

q
U

q
if ||q|| > U

(4.29)

A detailed solution to the problem can be found in [41]. This target acceleration
has been exploited also in [14], albeit with a different action space and a different
learning algorithm.

4.6 Software setup and execution pipeline
The PPO implementation used is the one from Stable Baselines3 [42], which has
been validated against the relevant papers to ensure a robust implementation of
the algorithm. This library also provides several useful tools to monitor the train-
ing runs such as a wrapper for the environment to log relevant data to cloud
services and functions to check the functionality and adherence to the Gym stan-
dard of the developed environment.

The training runs were initially executed on local machines but when the
computational burden became more relevant the training runs have been scaled
up to be run in parallel on virtual machines (VMs) provisioned by Google Cloud.
A pipeline to continuously check and run new experiments pushed to a specific
branch of the GitHub repository was set up using GitHub Actions, a CI/CD
(Continuous Integration/Continuous Deployment) framework.

Both the local machine (used for development and testing) and the Cloud
VMs run the software in a Conda Python environment which isolates all the
libraries and package dependencies to ensure reproducibility across machines and
to increase reusability of the code.

In the end all the artifacts, i.e. the results from the training run (Neural
Network model, trajectory plots, reward and state vector plots, etc.) are uploaded
to Wandb (Weights and Biases [43]), a crucial tool used to visualize in any web
browser the results of the training runs. This tool has several useful features,
being able to create a dashboard of metrics and plots on the base of which it
is possible to evaluate an experiment and compare several training runs. The
execution pipeline for each training run is detailed in Fig.4.5.

Furthermore, the .render() method has a full visualization of the environ-
ment state, using in the 3DOF case the 2D visualization library Pygame and in
the 6DOF [44], a full 6DOF OpenGL rendering engine with support for arbitrary
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Code development & 
test on local machine

Deployment to GitHub
cloud-run branch

Artifacts uploaded to
Wandb

Execution on Google
Cloud VM

Figure 4.5: Training run continuous execution pipeline; this pipeline allows to
quickly deploy an experiment to the Cloud VM and analyze the results of the
training run when it is complete.

meshes, lighting and shadows effects and much more. These visualization tools re-
vealed to be priceless when debugging the environment and designing the reward
functions.

4.7 Environment validation
The dynamics of the environment and the integrator have been validated using
as baseline the simulator developed in [9] which had in turn been validated using
the FES flight environment simulator internal software from Deimos Space. The
validation was performed simulating several trajectories with different control ac-
tions applied and checking the error between the two simulators. The samples
shown hereafter input a constant actuator command (constant gimbal angles and
thrust u =

[
5◦ 5◦ 98000N

]T ) and are shown to highlight a worst-case sce-
nario in terms of trajectory, as extremely high rotational velocities are reached.
Other trajectories were tested to validate the behavior on more realistic test cases
(low angular velocities) and the errors are several orders of magnitude lower the
(already small) ones reported here. Overall the simulator manages to capture
faithfully the relevant behavior of the launcher.

(a) Absolute error (b) Relative error

Figure 4.6: The errors between the validated and the developed simulator are
extremely low, showing that the dynamics are correctly represented.
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To validate the simulator the same atmospheric model used in [9] is first em-
ployed in order to correctly assess the magnitude of the errors. Both the relative
and absolute errors are plotted for all state variables in Fig.4.6. The relative and
absolute errors are quite tiny and through a deeper analysis it’s assessed that the
difference stems mainly from differences in the normalization of the quaternion.
This reflects in a slight discrepancy in the rotational behavior which is however
emphasized in this validation run due to the nature of the trajectory employed: the
launcher is accelerating to an extremely high angular velocity due to the constant
gimbaled thrust, a behavior which would actually result in premature termination
of the episode by the environment.

(a) Absolute error (b) Relative error

Figure 4.7: Errors between validated and developed simulator with ISA atmo-
sphere. In this case the errors are slightly higher due to the difference in atmo-
spheric model, but still show that the developed simulator faithfully represents
the dynamics of the problem.

The simulator employed for the training phase uses a more appropriate at-
mospheric model (ISA atmosphere), thus another validation has to be performed
in order to assess the difference between the two models. As shown in Fig.4.7
the atmospheric model does not have a significant effect on the behavior of the
launcher and the error from the validated simulator is still low. In particular
from Fig.4.7b is evident that the relative errors are small, as expected due to the
small difference in density difference (∼ 3÷ 5% at most, with a reduction in the
difference as altitude decreases).



Chapter 5

Results 3DOF environment

In this chapter the results of the 3DOF case are shown, quantifying both the
performance of the Reinforcement Learning algorithm and the performance of the
obtained trajectory.

The planetary landing problem was first studied on a planar case, in which the
dynamics considered are constrained on a plane and there are only 3 degrees of
freedom: 2 translational and 1 rotational. Two training runs are shown: first for
a set of simplified initial conditions (lower height, lower velocity, velocity directed
only downwards) and then a second set of initial conditions sourced from historic
flight data of the Falcon 9, collected by flightclub.io [40]. This second set of
data simulates landing on a downrange location, such as a barge in the middle of
the ocean or a downrange landing pad. Furthermore, initially in this simplified
environment a discrete action space was tested, to test the algorithm’s behavior on
a simpler problem. This incremental approach was critical in reaching successful
results in the more general, continuous case, in particular for iterating quickly on
the shaped reward function and the hyperparameters.

5.1 Simplified initial conditions
For the simplified initial conditions a lower initial height and initial velocity are
selected. Furthermore, the velocity is nominally in the vertical direction only.
The mean and range of the distribution are reported in Table 4.4.

It is interesting to analyze the profiles of velocity, in Fig.5.1b, and thrust, in
Fig.5.1a, of a sample episode after convergence.

The two figures two show that the agent tries to maximize the reward by using
the thrusters at a minimum level, thus gaining speed, and then performing a high-
thrust final burn. This reflects the ideal thrust profile, as the launcher avoids
having high gravity losses during the landing burn by employing the atmospheric
drag to do part of the work required along the trajectory.

In Fig.5.2 the convergence behavior of the algorithm is highlighted. Due to
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(a) Thrust profile of a sample episode (b) Speed profile of a sample episode

Figure 5.1: Thrust and velocity profiles of the converged policy, showing the agent
using a bang-bang profile to minimize gravity losses during the final burn.

(a) Mean episodic reward
(b) Mean episodic length (time step ∆t =
0.1s)

(c) Approximate KL-divergence (d) Training loss (i.e. of the NN)

Figure 5.2: Trend of RL training metrics through training (simplified initial condi-
tions), showing convergence to a policy maximizing mean reward and minimizing
episodic length. The spikes show the exploration process of RL.

the multiphase training process there are discontinuities in the mean reward and
episodic lengths at the 1k Step mark. The exploratory behavior of the algorithm
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results in spikes due to deviation from the locally optimal policies, which are
crucial to improve the performance of the policy and converge towards the global
optimum.

The convergence can also be analyzed by looking at the end-of-episode metrics
(i.e. the terminal errors and used propellant mass). These are shown in Fig. 5.3
and show quick convergence towards low terminal errors in both position (Fig.
5.3c), velocity (Fig.5.3d) and attitude (Fig. 5.3a), with a gradual optimization of
the used propellant mass as shown in Fig.5.3b.

(a) Terminal attitude error (b) Used propellant mass

(c) Position error (d) Velocity error

Figure 5.3: Trajectory metrics during training (simplified initial conditions). The
position and velocity error steeply go down and the used mass trends downwards
when outliers are not considered.
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5.2 Realistic initial conditions
In this training run the initial conditions were sampled from a mean µx0

and a
range ∆x0 reported in Table 4.6.

In Fig.5.4 the training metrics measuring the performance of the algorithm
are shown. There is rapid convergence to a good value of mean reward, evaluated
periodically from a batch of trajectories runs during training. By good values it
is meant a reward value close to the theoretical maximum, which can be approxi-
mated by considering a case in which the target acceleration is tracked perfectly,
and the thruster is not used (clearly this is not actually achievable, but it is useful
to provide an upper bound), thus receiving only the terminal bonuses.

(a) Mean reward at evaluation (b) mean episodic length

(c) Approximate KL-divergence (d) Training loss (i.e. of the NN)

Figure 5.4: Trend of RL training metrics through training (realistic initial con-
ditions). The mean reward trends upwards with episodic length going down to
minimize propellant consumption.

While the previous metrics assess the performance of the algorithm it is also
important to assess how this reflects on the quality of the trajectory that is ob-
tained employing the trained policy. This can be assessed by looking at the
terminal errors and the used mass. These two metrics, combined with the reward
trend, helped in tweaking the reward function.

The algorithm manages to converge to a robust policy, with low terminal
velocity Fig. 5.5d and position errors Fig. 5.5c. The attitude error at touchdown



5.3 Comparison of activation functions 49

(a) Terminal attitude error (b) Used propellant mass

(c) Terminal position error (d) Terminal velocity error

Figure 5.5: Trajectory metrics during training (realistic initial conditions). We
can notice that the velocity error does not go below a mean minimum of about
5m/s.

is also acceptable. Overall all parameters are within reasonable bounds to consider
the landings successful, and the dispersion is reasonably low. During training there
are spikes in the errors due to the exploratory behavior, however the policy quickly
converges again to low terminal errors.

5.3 Comparison of activation functions
Two types of activation functions have been tested with this environment: the
Rectified Linear Unit (ReLU) and the Hyperbolic Tangent (tanh), both detailed
in Section 2.3.4. Using ReLUs results in quicker convergence as seen in Fig.5.6,
however there is a curious behavior of policy unlearning in which the reward peaks
after a certain amount of training steps. This effect can be overcome by sampling
the mean reward obtained by the policy and saving the best model, through
periodic evaluation of the policy. Otherwise, the ReLU activation function requires
limiting the KL-divergence, as not doing so would make the policy diverge. This
aims to limit the change in policy parameters at each update, by using early
stopping of the neural network optimizer. A good value for the limit has been
empirically found to be KLtarg = 0.01, which does not slow down excessively the
learning process but still allows it to reach the maximum episodic reward. These
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tests are shown for the realistic initial conditions case in Fig.5.7. If monotonic
behavior in training is desired, it can be (roughly) obtained by limiting the KL-
divergence.

Figure 5.6: Comparison of different activation functions (mean reward through a
rollout) showing the higher convergence speed of ReLU but also the need to limit
the policy updates (through the KL-divergence target) to avoid policy-unlearning

(a) Mean reward at evaluation

(b) Mean reward through a rollout (c) Approximate KL-divergence

Figure 5.7: Effects of constraining the KL-divergence for ReLUs activation func-
tions: if left unconstrained the policy suffers an un-learning behavior after reaching
a maximum in the reward.

Overall the advantages ReLUs have in regard to speed of convergence present
also the downside of convergence instability. For the 6DOF environment some
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tests were performed with this activation function, but it was found that the
instability in convergence prevented successfully finding good policies. Thus, the
decision was made to use the hyperbolic tangent activation function.
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Chapter 6

Results 6DOF environment

In this chapter the results for the 6 degrees of freedom (6DOF) environment are
presented. As in chapter 5 two training runs are shown: the first for a set of
simplified initial conditions (lower height, lower velocity, velocity directed only
downwards), then a set of initial conditions sourced from historic flight data of
the Falcon 9 [40] is analyzed. This second set of data simulates landing on a
downrange location, such as a barge in the middle of the ocean or a downrange
landing pad.

6.1 Simplified initial conditions

The first case studied is the one of simplified initial conditions: the launcher starts
from a lower height and with a lower downward-only mean velocity. The vector
of mean initial conditions µx0

and its range ∆x0 are reported in Tab.4.5.
In this case the policy entropy coefficient in 2.27 is set to centropy = 0.01 to

encourage exploration and avoid premature convergence of the policy to a local
optimum. As can be seen in Fig. 6.1 the algorithm first converges to a model in
the 1st training phase, then around time step 800 the change in reward function
kicks off a second exploratory phase, resulting in convergence to a more efficient
(in terms of propellant used) policy with a lower terminal velocity.

The lower consumption of propellant is also highlighted by the sharp reduction
in average episodic length, as shown in Fig. 6.7b.

The behavior of some metrics of the PPO algorithm can be assessed to ver-
ify convergence from an algorithmic perspective. In particular the mean reward
has an increasing trend, with a dip at training step 800 due to the switch in re-
ward functions (this implies that there will be a different maximum achievable
reward) and the explained variance converging to a value of 1 mean shows a good
approximation of the value function by the value network.
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(a) ||rf ||

(b) ||vf || (c) m(tf )−m(t0)

Figure 6.1: Trend of trajectory metrics during training, showing successful con-
vergence.

6.1.1 Montecarlo analysis of the policy
In order to test the robustness of the policy a Montecarlo analysis is carried out. In
this run, since two different reward functions have been used for the training phase,
it is interesting to compare the difference between the best model obtained during
the 1st phase (the one with the shaped reward) and the model obtained after
the 2nd phase of training (without the target velocity reward). The Montecarlo
analysis is performed on mean initial conditions and range of initial conditions as
shown in Tab.6.3.

The distribution of position, velocity, attitude and angular velocity terminal
errors can be seen in Fig. 6.3a, b, c and d for the first phase and in Fig. 6.4a,
b, c and d for the second, along with the distributions of the used propellant
mass (Fig. 6.3e, Fig. 6.4e) and the terminal velocity angle (Fig. 6.3f, Fig. 6.4f),
computed as Eq. 6.1. This angle measures the deviation of the terminal velocity
from the vertical at touchdown, which would nominally be directed downwards to
prevent the lander from tipping over.

φ = 180− arcsin

(
vx(tf )

||v(tf )||

)
(6.1)

An approximation of the probability distribution function (pdf) is overlapped to
the histograms, computed using a kernel density estimation with Gaussian kernels
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(a) Evaluation mean episodic reward (b) Mean episodic length

(c) Approximate KL-divergence (d) Training explained variance

Figure 6.2: Reinforcement Learning training metrics (simplified initial conditions).
In particular, the downward trend in episode duration around 103 steps shows the
strong minimization of fuel consumption when the second reward phase begins.

and automatic bandwidth determination (implemented by the Pandas library).
The statistic for the terminal errors of phase 1 and phase 2 are reported in

Tab.6.1 and Tab.6.2.
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Position Velocity Attitude Angular velocity Used mass Velocity angle
µ 12.5m 13.9m/s 4.3◦ 0.01◦/s 3214 kg 4.6◦

σ 4.3m 0.3m/s 2.7◦ 0.01◦/s 96 kg 1.4◦

Table 6.1: Terminal errors and used mass statistics, 1st phase (mean µ and stan-
dard deviation σ). While the position error is reasonably low, the velocity error
is slightly too high at the end of this phase.

Position Velocity Attitude Angular velocity Used mass Velocity angle
µ 25.1m 6.78m/s 3.6◦ 0.03◦/s 2467 kg 48◦

σ 3.5m 1.2m/s 2.0◦ 0.0◦/s 88.4 kg 9.9◦

Table 6.2: Terminal errors and used mass statistics, 2nd phase. The position and
velocity errors have reasonable values, however the velocity angle at touchdown
becomes high, meaning that there is a significant horizontal component of the
velocity.
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(a) Position error (b) Velocity error

(c) Attitude error (d) Angular velocity error

(e) Used mass (f) Terminal velocity angle

Figure 6.3: Montecarlo analysis distribution of terminal errors with the best model
in the 1st training phase (simplified IC). The errors show a mono modal dis-
tribution, however the terminal velocity is a bit high to have a soft touchdown.

It is quite interesting to analyze the differences between the two controllers.
Comparing the position errors (Fig. 6.3a,Fig. 6.4a), the velocity errors (Fig.
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(a) Position error (b) Velocity error

(c) Attitude error (d) Angular velocity error

(e) Used mass (f) Terminal velocity angle

Figure 6.4: Montecarlo analysis distribution of terminal errors with the best model
in the 2nd training phase (simplified IC). The velocity error decreases with
respect to the first phase, but there is an increase in position error. The used
propellant mass is sharply reduced with respect to the previous phase.
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6.3b,Fig. 6.4b) and the used mass (Fig. 6.3e,Fig. 6.4e) it’s clear that the first
controller aims to minimize the terminal position error while having a relatively
high velocity error and propellant consumption, while the second controller min-
imizes successfully the used propellant mass (using about 30% less propellant),
lowering at the same time the average velocity error to about 6.5m/s, down from
about 14m/s. This is however detrimental to the position error which grows from
an average of 14m to about 26m. Furthermore, the terminal velocity angle in-
creases to about 4◦ to an average value of 50◦, although given the low terminal
velocity this might not affect the stability of the lander. Both attitude and angu-
lar velocity errors have comparable statistics across the two training phases and
are within the acceptable bounds for the landing.

A sample trajectory from the second model is shown in Fig. 6.5. The lander
first rotates to thrust in the landing direction, then when a sufficiently low altitude
is reached the thruster performs a burn to reduce the velocity and finally once over
the landing pad a vertical attitude is reached and successful landing is achieved.
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Figure 6.5: Trajectory of an episode using the optimal network. We can notice
the lander accelerating due to gravity in the first part of the trajectory, reaching
a maximum in velocity around 200m of height. It then rapidly decelerates to
achieve a soft landing with minimal fuel consumption.
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6.2 Realistic initial conditions
In the case of realistic initial conditions the vector of mean initial conditions of
the state µx0

and its range of dispersion ∆x0 are reported in Tab.4.7.
In this case two important hyperparameters to tweak were the batch size and

the number of steps per rollout. Due to the increased length of the average episode
and the size of the action space these had to be increased significantly, to have a
larger number of samples available, capable of stabilizing the update of the policy
and value networks.

In order to pick a robust policy a periodic evaluation of its behavior is per-
formed, running it for 15 episodes and computing the mean reward. The highest
mean reward will correspond to the lowest final position and velocity errors, due
to the high terminal bonus given based on them, and thus to the best overall
policy.

Convergence requires significant more episodes, clocking in at around 24h of
runtime, due to the need for the algorithm to explore a much larger action and
observation space.

The convergence behavior of the algorithm can be analyzed in Fig. 6.7 and Fig.
6.6. In Fig. 6.6 a more detailed interpretation of the convergence behavior can
be drawn. Comparing the mean episodic reward Fig. 6.7a with the other metrics
it is evident that the algorithm first explores tracking the target acceleration,
then around step 1500 it discovers the terminal bonus, successfully landing with
low speed and position errors. Then there is an exploratory phase in which it
attempts to further optimize the reward, finally converging to a solution with
higher terminal reward due to the decrease in used mass.

The robustness of the PPO algorithm is evident in the trends of its training
metrics Fig. 6.7. The explained variance, measuring the accuracy of the value
function in predicting the cumulative rewards reaches almost 100%, showing how
the reward landscape is thoroughly sampled and quantified.

It can be seen that the behavior is noisy and that there are spikes in the
terminal errors. This could be caused both by an excessive residual degree of
exploration or by the need for the policy to be more robust, and could benefit
from further increasing the batch and sample sizes.

It is possible to visualize the trajectory of an episode with good landing be-
havior Fig. 6.8. It can be seen that the rocket manages to reach successfully the
landing zone (yellow circle in the figure) with low terminal velocity and a vertical
profile for the terminal descent.

6.2.1 Montecarlo analysis of the policy
In order to test the robustness of the policy a Montecarlo analysis is carried out
on the best-performing policy network. The Montecarlo is performed on mean
initial conditions and range of initial conditions as shown in Table 6.3.
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(a) ||rf ||

(b) ||vf || (c) m(tf )−m(t0)

Figure 6.6: Trajectory metrics trend in the case of realistic initial conditions.
There is high exploration, so the need to isolate a good policy arises. This is
achieved by periodically evaluating the agent and saving the policy with the high-
est mean reward.

r v q ω m

µx0
[2000,−1600, 0] [−90, 180, 0] [0.866, 0, 0,−0.5] [0, 0, 0] 41e3

∆x0 [100, 200, 50] [30, 30, 10] [0.1, 0.1, 0.1, 0.1] [0.05, 0.05, 0.05] 1e3

Table 6.3: Mean and range of initial conditions in the case of Monte Carlo analysis.

The histogram of the distribution of the terminal errors can be seen in Fig.
6.10.

The statistic for the terminal errors are reported in Tab.6.4.
The performance of the controller is compared to a baseline obtained by solv-

ing the fuel-optimal problem disregarding the rotational dynamics of the problem,
meaning that the body is treated as a point mass and the constrained (null ter-
minal velocity and distance from landing pad) optimization problem is solved. In
this context 3DOF is intended as translational degrees of freedom only (differently
than in the previous chapters).

The RL solution is also compared to a successive convexification MPC ap-
proach. The results, reported in Table 6.5 highlight that the optimal solution is
about 25% more efficient than the Reinforcement Learning one. This is due to
both the acceleration-tracking shaping and the need to perform attitude control
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(a) Evaluation mean episodic reward (b) Evaluation mean episodic length

(c) Approximate KL-divergence (d) Training loss L

(e) Training explained variance

Figure 6.7: Reinforcement learning training metrics. The upwards trend in
episodic reward show successful learning of a good policy. The decrease in training
loss also signals convergence, as well as explained variance showing that the agent
has explored the environment.

as well. In fact the RL controller requires only about 60% of the propellant used
by the successive convexification solution, thus being significantly more efficient.
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Position Velocity Attitude Angular velocity Used mass Final velocity angle
µ 10.0m 9.42m/s 4.7◦ 0.06◦/s 4219 kg 18.9◦

σ 4.3m 2.3m/s 2.7◦ 0.04◦/s 4219 kg 9.5◦

Table 6.4: Terminal errors and used mass statistics

RL controller (6DOF) 3DOF optimal solution SCVX (6DOF)
|m0 −mf | 4250 kg 3545 kg 7525 kg

Table 6.5: Propellant consumption comparison of the obtained policy, the 3DOF
(point mass) optimal solution and 6DOF successive convexification (SCVX) ap-
proaches

6.3 Robustness to unmodeled dynamics and dis-
turbances

The policy obtained is analyzed to quantify its robustness to unmodeled dynamics
effect and external disturbances. These are:

• Error in the position of the CoM

• Flexible modes of the structure

• Uncertainty in the inertia moments

• Real dynamics of the actuators

• Misalignment of the thrust

• Wind gusts

• Wind layers model

Error in the position of the CoM

The center of mass’ position of the dry vehicle xdry
CG is taken to be within a range

of ±3% of the nominal position of 15m.
Furthermore, the shift of the center of mass due to propellant consumption has

been modeled. It is computed by taking into account the variation in propellant
mass split between the oxidizer and fuel through the mixture ratio parameter
O/F .

The center of gravity location (CG) is computed at each instant through Eq.6.2

xCG =
mdryx

dry
CG +moxx

ox
CG +mfuelx

fuel
CG

mdry +mox +mfuel

(6.2)
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The position of the center of mass of both fuel (xfuel
CG) and oxidizer (xox

CG) and
their masses (mox and mfuel) are time-varying due to their consumption, with their
behavior controlled by the change in propellant mass and the mixture ratio, as
described in equation 6.4 and 6.3 respectively.

mprop = m(t)−mdry

mfuel =
mprop

1 +O/F

mox = mprop
O/F

1 +O/F

(6.3)

xfu
CG = xfu

CG(t0)
mfuel(t)

mfuel(t0)

xox
CG = htank + (xox

CG(t0)− htank)
mfuel(t)

mfuel(t0)

(6.4)

Flexible modes of the structure

To model the dynamics and kinematics of the lander the rigid body assumption is
made. To analyze the effects of flexibility due to the flexing modes of the structure
a perturbing force and torque are introduced. The dynamics of these modes is
computed and the values of force and torque are fed to the rigid-body simulator.

To model the flexural dynamics of the vehicle the modal variables qi about
the y and z axes are integrated from Eq.6.5, with ωi being the eigenfrequency
associated to each i − th mode, ξ its damping coefficient and tp,i a structural
parameter.

q̈yi = −ω2
i q

y
i − 2ξωiq̇

y
i − Tytp,i

q̈zi = −ω2
i q

z
i − 2ξωiq̇

z
i − Tztp,i

(6.5)

The forces and torques about the zB and yB body axes are computed respec-
tively as 6.6 and 6.7, being xCG the longitudinal position of the center of mass
and rp,i a structural parameter.

F y
flex = Ty

∑
i

rp,iq
y
i

F z
flex = Tz

∑
i

rp,iq
z
i

(6.6)

My
flex = −Tz

∑
i

(rp,ixCG + tp,i)q
z
i

M z
flex = Ty

∑
i

(rp,ixCG + tp,i)q
z
i

(6.7)
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Uncertainty in the inertia moments

While in training the inertia matrix is assumed to be constant throughout each
episode (being computed at the beginning using the initial mass), in the sensitivity
analysis it is recomputed at each time step to account for the change in propellant
mass, thus being time-varying.

The inertia moments are going to have some uncertainty, so an error in the
range of 1% is sampled from a uniform distribution and multiplies the time-varying
inertia moments Ixx, Iyy, Izz.

Real dynamics of the actuators

The actuators will have their own dynamics that will result in delays between the
commanded variables (denoted by the superscript ·cmd) and their actual output.

The TVC gimbal actuators are modeled as second order low pass filters, with
ωact and ξact respectively the natural frequency and the damping coefficient of the
actuator. The transfer function from the commanded gimbal angle δcmd

i and the
output one is 6.8.

δi
δcmd
i

(s) =
ω2

act
s2 + 2ξactωact + ω2

act
(6.8)

Furthermore, the thruster will have a certain delay in producing the required
thrust [45] and has been modeled as a first order low pass filter with characteristic
time τthrust = 2s, and thus natural frequency ωthrust =

2π
τthrust

. Its dynamic response
is shaped by equation 6.9.

||T ||
||T cmd||

(s) =
ωthrust

ωthrust + s
(6.9)

Misalignment of the thrust

Slight misalignment of the thruster can be expected in real-life launch vehicles. To
account for this the thrust vector is multiplied by a rotation matrix Rε modeling
a slight offset εi around each of the three axis, with i ∈ x, y, z:

Rε =

 cos εy cos εz cos εy sin εz − sin εy
− cos εx sin εz + sin εx sin εy cos εz cos εx cos εz + sin εx sin εy sin εz cos εy sin εx
sin εx sin εy + cos εx sin εy cos εz − sin εx cos εz + cos εx sin εy sin εz cos εx cos εy


(6.10)

The misalignment angles are sampled from a uniform distribution with zero
mean and range εi ∈ [−0.5◦, 0.5◦].
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Wind gusts

Wind gusts are a relevant disturbance in the considered height range, due to
phenomena such as thermal inversion, down wash etc. A simple cosinusoidal
model has been employed, with the values for the magnitude and height range of
the gusts sourced from [46].

They’re modeled as sinusoidal gusts with an amplitude specified by the vector
Agust = [15, 15, 15] m/s. In the simulation each gust is taken to have a height of
∆h = 100m, between h1 = 1.5 and h2 = 1.6km, and they’re computed as:

V gust = Agust

(
1− cos

(
π(x− h1)
0.5∆h

))
(6.11)

Wind layers model

To implement zonal and meridional winds, the Horizontal Wind Model 14 block
of Simulink has been used, implementing the U.S. Naval Research Laboratory
model.

6.3.1 Sensitivity results
In some episodes the control action was unable to make the trajectory converge to
the landing site. These runs, defined as outliers, were excluded from the statistic
as they would otherwise make the mean and standard deviation lose relevance,
and their number is reported in Tab.6.6. To understand better the reason for the
divergence, these outlier trajectories are analyzed, and a pattern is noticed: in
all of them the vehicle first gets to the landing site with very high accuracy (a
position error in the order of a few meters) and then the vertical velocity reaches
zero when it is a few meters above the pad. The control action then keeps the
rocket hovering or propels it upwards, making it land far away in an uncontrolled
manner. This behavior could be addressed either during training by modifying
the reward function to penalize an upwards velocity below a certain threshold or
by employing a landing mode controller when the rocket reaches a waypoint a few
meters above the surface.

Overall the controller is robust to the uncertainties in the specified ranges,
having position and velocity errors in ranges comparable to the ones without
these effects, as shown in Fig. 6.11 and compatible with a successful landing, as
can be seen in the dispersion plot, Fig. 6.12.
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Disturbance outliers
Center of mass error 0

flexible modes 0
inertia moments error 1

offset CoM 1
real actuator dynamics 2

thrust misalignment 0
wind gusts 0

wind layers model 1

Table 6.6: Number of outliers, runs where there is divergence of the controller,
out of 100 runs for each disturbance.

Figure 6.8: Trajectory of an episode using the optimal network. We can notice
the decrease in velocity and the successful pinpoint landing.
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Figure 6.9: Target acceleration along the trajectory. We can notice at the end a
high target velocity due to the proximity to the landing site. The agent learns to
not strictly follow this command as it would require leaning excessively.
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(a) Position error (b) velocity error

(c) attitude error (d) angular velocity error

(e) used mass

Figure 6.10: Montecarlo analysis distribution of terminal errors, showing
monomodal distribution of the errors. Low position error and terminal velocity
make this compatible with soft landing.
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(a) Final position error

(b) Final velocity error

Figure 6.11: Sensitivity to unmodeled dynamics and disturbances. The policy
proves to be robust by having low errors and dispersion in the presence of different
disturbances and uncertainties.
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Figure 6.12: Dispersion plot with disturbances and unmodeled dynamics. Most of
the simulations result in a successful landing within a 20m radius, however there
are a few significant outliers.



Chapter 7

Conclusions

In this thesis a Reinforcement Learning controller is developed for the task of
landing a reusable launcher’s first stage and its robustness is quantified. Several
aspects of this novel control technique are analyzed, starting from how parameters
selection affects convergence behavior and how the reward and activation functions
influence performance.

There are three main contributions made with this thesis, following the objec-
tives in 1.1.1:

• A model-free RL algorithm (PPO) is applied to develop an integrated G&C
controller. The effects of different reward functions, hyperparameters and
network structures are assessed and quantified. An important novel aspect is
the assessment of the robustness of the obtained control policy to unmodeled
dynamics and parametric uncertainties not present during training.

• A modular and easily expandable nonlinear 3DOF and 6DOF simulators
for launchers/landers control is developed, compatible with standard RL
frameworks and validated. This simulator is publicly released 1 to enable
researchers to use a standardized and validated environment in the future.

• An easy-to-use pipeline for cloud-accelerated RL training is created, inte-
grated with web-based metrics visualization tools. This allows to scale the
training algorithm in the future to speed up its run time and to easily in-
terpret and compare the results of each training run.

7.1 Achieved objectives
Simulation environment development Two different simulators and envi-
ronments with de-facto standard OpenAI Gym APIs compatibility have been
developed.

1Available on PyPi https://pypi.org/

https://pypi.org/
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A 6DOF environment, validated on the Simulink simulator developed in [9],
featuring RK45 integration of the equations of motion, realistic 3D rendering,
realistic lower ISA atmospheric model (easily extensible to the upper layers to
simulate the full mission profile).

A 3DOF environment (two translational degrees of freedom plus one rota-
tional) was developed and used to inform the choice of reward functions for the
6DOF environment and to familiarize with the problem.

Two key elements of the environment that proved key in achieving conver-
gence are normalizing both the action and the observations it gets respectively
as input and output, and to set appropriate termination conditions to terminate
the episodes after a certain amount of time or when the agent gets outside certain
bounds.

Reinforcement learning algorithm Both environments have been trained
using the PPO (Proximal Policy optimization) algorithm, which suits best the
problem for its ability to use continuous action and state/observation spaces and
its high sample efficiency.

This algorithm shapes a policy neural network which outputs an action to
execute for each observation it gets. The aim is to shape the neural network as to
maximize the total discounted reward over episodes, given by a reward function.

The PPO algorithm achieves successfully convergence to a good policy, how-
ever some tweaking of hyperparameters was necessary. In particular the batch
size of state transitions used for the optimization steps was found to be key in
obtaining low terminal speed and position errors. Sensitivity with respect to this
parameter was high in the 6DOF case, while being low in the simpler 3DOF case.
Being aware of the shape of the reward function was important to inform the
selection.

Different topologies and activation functions for the networks have been tested.
The activation function has shown to have a key role on the convergence’ behavior,
however once convergence is achieved, performance in terms of mean episodic
reward was similar. The topology of the network was also influential: while at
first a small network architecture (two hidden layers with 64 neurons each) was
employed and obtained good performance in the 3DOF case, moving to a 6DOF
scenario caused it to reach the limit of its learning abilities, resulting in poor
performance. Doubling the first layer unlocked the ability to learn better policies,
however, doubling also the second hidden layer or adding a third layer resulted
again in poor performance. We hypothesize that this is due to the difficulty of
training larger networks due to increased number of parameters.

Experiment setup and execution pipeline The results in both environment
are presented, both starting from two different sets of initial conditions:

• A simplified set, starting from a lower altitude and lower initial velocity,
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with the latter being nominally vertical

• A Realistic set, using a range of initial conditions sourced from historic flight
data of the Falcon 9 launch vehicle. This set is representative of real-world
conditions for the terminal landing burn of a modern 2-stages launch vehicle.

Training is performed on Virtual Machines on the cloud, through a Continuous
Deployment pipeline that allows to quickly deploy several revisions of the reward
function to make experiments. This has proved critical to properly shape the
reward function in a reasonable time and to achieve reasonable run times for
training. Indeed, without this setup, training would have taken a full day (at least)
on local machines, dramatically slowing down the investigation on the effects of
the hyperparameters and the reward function.

Reward function development and analysis Two different reward functions
have been employed:

• The first one, denominated target-velocity based, follows a (heuristic) target
velocity aiming in the direction of the Line-Of-Sight (LOS) to the landing
target, with magnitude decreasing exponentially as the lander approaches
ground. The lander also obtains a terminal bonus for achieving landing suc-
cessfully. This reward function has been employed in a two-phase approach:
once the policy consistently achieves landing, the reward function is ablated,
with the target-velocity deviation penalty term being dropped. This ap-
proach, that we named reward annealing, should encourage the agent to
minimize fuel consumption while still achieving the terminal landing bonus
discovered in the first exploratory phase. In the case of the simplified initial
conditions this is achieved, while it is not successful for the realistic ones.
Obtaining a policy that achieves, in the first phase of training, the termi-
nal bonus for successful landing more consistently could solve this problem
by better engraining the correct behavior in the policy before the heuristic
target velocity is removed from the reward signal.

• The second reward function, denominated target-acceleration based devel-
oped aims to closely track a target acceleration, which is computed as the
solution of the simplified (no atmospheric effects) 3DOF-translational land-
ing problem that minimizes the integral of the square of the acceleration
over the trajectory. This target acceleration should act as a proxy to hint
the thrust-optimal trajectory to the agent, with further reward terms that
incentivize the agent to minimize propellant consumption. This approach is
more robust than the target-velocity reward and achieves a successful land-
ing also in the 6DOF environment with realistic initial conditions. However,
this approach could be pushing the agent excessively to aim for a control
action that tracks the target acceleration, not letting it explore more fuel-
efficient trajectories. In other words the agent could learn to be too greedy.
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Both reward functions have in common the presence of penalty terms to penal-
ize exceeding attitude bounds and a penalty for the usage of the thruster, aiming
to minimize the propellant mass used to attempt a hover-slam maneuver.

Also present in both is a significant landing bonus term, that informs the agent
of the achievement of a successful landing, defined in terms of position, velocity
and attitude errors at touchdown.

The two different reward functions, developed in detail in 4.5, have different
trade-offs, specializing better to different initial conditions. The two-step approach
tested has proven promising in terms of optimization, but improvements on its
convergence behavior are needed to expand its generalization capabilities, as it
fails to work in more challenging initial conditions. One reason for this could be
that the first phase of training would need to run longer, to have the policy learn
how to consistently obtain the terminal landing bonus, which is the main reward
term remaining in phase two.

Evaluation of different activation functions The different activation func-
tions, hyperbolic tangent (tanh) and Rectified Linear Unit (ReLU), tested in
2.3.4 show trade-offs between speed of convergence and stability, with the first
converging more consistently but also more slowly, and the second showing a
faster convergence but with an un-learning behavior (the network tends to for-
get the learned weights after reaching a quasi-optimal policy, leading to a decay
of the mean episodic return). A study on the hyperparameters that affect these
two aspects would help clarify if the increased speed of convergence of the ReLU
function can be exploited more consistently, without having to limit its rate of
convergence in order to prevent the un-learning behavior.

Exploration of hyperparameters space The hyperparameters of the algo-
rithm have proven important in convergence of the policy. The default hyper-
parameters’ values of [42] have proven to be mostly appropriate, however an in-
creased number of transitions in the replay buffer and a higher number of episodes
before each policy update phase turned out to be critical for the algorithm to sta-
bilize the direction of update of the parameters and consistently maximize the
episodic return. We hypothesize that this is due to the sparse reward landscape
(the terminal bonus is given only on the final transition), which means that a low
number of transitions cannot capture the final bonus consistently, leading to the
update step getting stuck in local minima.

Policy performance The policies developed for both sets of initial conditions
and both environments reach a satisfactory performance, compatible with a suc-
cessful landing. The performance is better for the simplified set of initial condi-
tions with the two-phases training process, resulting in a lower terminal velocity
and position errors and a very aggressive control action. In particular as shown
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in Fig.5.1a for the 3DOF case, the thrust profile has almost a bang-bang shape,
which would be optimal to minimize fuel consumption. A similar profile appeared
for the 6DOF case. In the case of realistic conditions, the terminal velocity and
position errors were higher, although still compatible with a successful landing.
It is interesting to notice that in the 3DOF case the errors are lower, thus there
is room for improvement in the policy for the 6DOF environment.

For the 6DOF environment with realistic initial conditions, using a terminal
reward that is shaped rather than piece wise significantly improves convergence.
Overall the controller developed results in having a trajectory with fuel consump-
tion close to the optimal one. The controller is quite robust to uncertainty in
the dynamics of the plant and to external disturbances, hinting that the neural
controller has successfully learned to achieve the terminal goal rather than simply
associating a certain action to a state in an open-loop fashion.

Quantification of architecture robustness Policy robustification has been
implemented during training through domain randomization, aiming at training
the agent starting from a variety of samples of initial conditions from an initial
conditions space. The proposed architecture for direct control of the gimbaled
thruster and the learned neurocontroller has proven to have a significant level of
robustness in the trained scenarios, with a narrow distribution for both terminal
position and velocity errors. It is important to highlight however the presence of
a low number of outliers: in these episodes the lander reaches ground significantly
outside the safe landing bounds. These outliers should be addressed for the policy
to be deployable on real hardware.

Reinforcement learning proves to be a promising approach to solve the plane-
tary landing problem in a novel way. It brings an advantageous integrated G&C
paradigm, capable of successfully achieving pinpoint landing in a fuel-efficient
manner. The obtained policy can be deployed in a straightforward way to COTS
microcontroller/embedded computers to perform real-time control of the vehicle.

A key takeaway is that the reward function is critical in obtaining a good
solution and is the most difficult part of the algorithm to optimize. Furthermore,
hyperparameters must be set appropriately in order to have good convergence be-
havior and should, when possible, be tweaked beforehand. It would be interesting
to analyze whether the optimal hyperparameters found in this work generalize to
other vehicle architectures and different dynamics (still using the PPO algorithm).

7.2 Future development directions
Several key areas are open to be explored, and it can be done so by employing
the tools developed in this thesis.
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Different algorithms In future work it would be interesting to compare the
performance and robustness of model-based approaches exploiting the intrinsic dy-
namics of the vehicle, possibly using simplified or learned models and integrating
them with model-free augmentations, such as with imagination-augmented algo-
rithms [30], which would be able to exploit knowledge of a simplified version of the
system dynamics to speed up convergence of the policy, retaining a good degree
of exploration through the model-free pathway.

Another type of algorithm which has proven interesting is Hindsight Experience
Replay (HER) [47], which avoids the need to heavily shape the reward by being
more sample-efficient in simulations.

Training parallelization During training, it could be noticed that the CPU
was used only up to about 30% of its maximum load. This is due to the fact
that the training algorithm was running on a single one of its multiple cores. A
potential future avenue to cut down on the long training times could be to employ
parallelization to train faster, by running the rollouts on all the CPU cores. This
type of approach is employed in frameworks such as Nvidia’s Isaac Gym [48].

Reward functions A crucial role in shaping the reward was the ability to vi-
sualize and compare across different experiment runs how adding and removing
terms and tweaking its coefficients impact convergence and the resulting trajec-
tories obtained using the optimized policy.

Indeed, further optimization of the reward function or usage of different, pos-
sibly learned reward functions (i.e. from 3DOF optimal trajectories computed
using non-linear optimizers) could lead to improved fuel efficiency and faster con-
vergence times. In particular for the latter, it would be helpful to have dense
reward functions, capable of hint the agent throughout the episode how to achieve
a fuel-optimal landing.

Policy robustification The policy proves to be fairly robust to unmodeled
disturbances and parametric uncertainties of the model, however the presence of
some outliers needs to be addressed, either by further tuning of the reward function
or by introducing more uncertainties in the training process, such as action noise
or random parameters noise, to robustify the policy. This is critical to achieve a
high-reliability implementation and to transition towards real-life testing of such
type of controllers.

Explainability An important aspect to be addressed is to understand how the
controller selects actions to perform. This property, named in the AI community
explainability, is critical for aerospace applications and for future certification.
There are several ways to do this, such as ablating the input given to the network
to isolate the features of the observations that are key for the controller to compute
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the action, performing ablation studies on the neural network produced by the
Reinforcement Learning algorithm and employing reachability analysis to define
a reachable set from the uncertain starting set [49].

Additional control actuators Given the modular nature of the developed
Python environment it would be interesting to evaluate the impact of additional
actuators (grid fins, RCS control thrusters, etc.) on the convergence behavior
of the algorithm and the performance of the obtained trajectory, assessing the
trade-off of fuel savings for additional complexity and cost. This effort is ongoing
as an implementation of a grid-fin enabled simulator is underway.

Expanded range of initial conditions Development of a single controller
for the whole descent profile could be carried out by using techniques such as
reinforcement meta-learning, leveraging on the developed work on a single phase
of the descent trajectory.

This approach to the development of a guidance and control solution proved
to be very promising and could allow higher flexibility for future missions due
to the possibility of controlling a wide range of dynamics using several control
architectures in a straightforward manner and the capability of defining both
high and low-level goals for the agent to achieve.
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