
Executive Summary of the Thesis

Bayesian Personalized Ranking sampling techniques

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Matteo Moreschini

Advisor: Prof. Paolo Cremonesi

Co-advisor: Cesare Bernardis

Academic year: 2020-2021

1. Introduction
Recommender Systems (RS) play a crucial role
in a wide variety of domains. E-commerce web-
sites as Amazon or Alibaba provide users with
personalized suggestions for products that they
may like, music streaming services like Spotify
recommend to each user songs that are close to
their taste and the same thing is done by Netflix
and YouTube with visual content. Nowadays,
most of the data that can be gathered in such
systems is not explicit, meaning that the con-
tent providers are able to collect general infor-
mation about whether a user interacted with an
item on the platform but they have no possibil-
ity of directly measuring whether the interaction
was a positive or negative one. In fact, even if
there are few systems, such as Amazon or Net-
flix, that let users rate their content (generally
in a predefined scale, like 1 to 5 stars on Ama-
zon), only a small percentage of the total users
of these platform are willing to rate the content,
generally due to their laziness. Moreover, apart
from those systems, most of the interactions is
totally implicit and it is tracked automatically:
clicks, views, add to carts or add to playlist etc.
In such situations, named implicit feedback sce-
narios, it’s often very difficult to be able to in-
fer the user preference over both the rated and

unrated items. In this setting, Bayesian Per-
sonalized Ranking (BPR) is a very popular and
widely discussed criterion that, as opposed to
its predecessors, treats the top-n recommenda-
tion task as a ranking problem. In the context of
the BPR learning algorithm, negative sampling
is the task of selecting negative instances that a
user has not rated to learn the model parame-
ters. Several works discussed how the negative
sampling quality affects the model recommen-
dation accuracy and, among them, recent ones
focused their attention on weighting each sample
differently according to the difficulty of a nega-
tive item.
In our thesis, we analyzed the state of the
art negative sampling techniques to detect each
strategy’s benefits and drawbacks and we pro-
posed an item similarity based negative confi-
dence that can be used as a sample weighting
strategy which takes into account the probabil-
ity of the negative item of becoming positive in
the future. The experimental results obtained
on four popular research datasets show how our
proposed technique is able to improve all the
methods taken into consideration reducing the
impact of the updates of negative samples that
have a high chance of becoming positive in the
near future.

1

Executive summary Matteo Moreschini

2. BPR
As our work focuses on part of the Bayesian Per-
sonalized Ranking (BPR) learning algorithm,
let’s first give a brief overview of the BPR cri-
terion. The criterion, proposed by Rendle et
al. [3], is formulated for implicit feedback set-
tings, where only positive feedback is observable
and the non-observed content is a mixture of
missing and negative data. Classical techniques
deal with the top-n recommendation problem
by predicting a user-specific score for each user-
item pair, which should reflect the preference
of the user for the item; moreover, the com-
mon machine learning approach is to adopt the
missing as negatives assumption, so that in the
training set (i) the positive label is assigned to
the observed interactions while (ii) all the non-
observed data have negative label. The problem
with this approach is that the model is not able
to distinguish between the two layers, negative
and missing. To solve this issue, Rendle et al.
proposed to create the training data DS as a
set of triples (u, i, j) where u is a user, (u, i) is
an observed interaction and (u, j) is an unob-
served one. The idea is to use DS to learn the
model parameters by pairwise learning, trying
to optimize the ranking between item pairs for
each user. This approach is totally different from
the traditional ones because, instead of trying to
score each single item for every user, it is directly
optimized for ranking as its goal is to maximize
the probability of correctly ranking the unseen
items of a user. The definition of the BPR opti-
mization criterion is derived from the Bayesian
formulation of the recommendation task, as the
maximization of the following posterior proba-
bility:

p (Θ |>u) ∝ p (>u| Θ) p(Θ) (1)

where Θ represents the parameter vector of an
arbitrary model class and >u is the desired la-
tent personalized ranking for user u. Assuming
that (i) users act independently from one an-
other and (ii) the ordering of each pair is inde-
pendent from the ordering of every other pair,
Equation 1 can be rewritten as product of the
densities:

∏
u∈U

p (>u| Θ) =
∏

(u,i,j)∈DS

p (i >u j | Θ) (2)

In order to define a total ordering between all
the pairs, we have to define a measure of the
preference of a user over an item. In particular:

p (i >u j | Θ) := σ (x̂uij(Θ)) (3)

where σ is the sigmoid function and x̂uij(Θ) is a
real valued function in the parameters Θ which
models the user’s preferences between the two
items i and j. A very interesting point is that
x̂uij is a generic and totally arbitrary function,
that can be a Matrix Factorization model rather
than a kNN. We should note that, since DS

is composed by triplets, the pairwise preference
x̂uij is indeed the difference between the individ-
ual scores x̂ui and x̂uj . Assuming as prior den-
sity p(Θ) a normal distribution with zero mean,
we can finally formulate the BPR optimization
criterion maximizing the logarithm of the poste-
rior probability in Equation 1:

BPR-OPT :=
∑

(u,i,j)∈DS

lnσ (x̂uij)− λΘ∥Θ∥2 (4)

In order to optimize the model parameters us-
ing the BPR criterion in Equation 4, Rendle et
al. also proposed a stochastic gradient-descent
algorithm [3], called LEARN-BPR (Algorithm 1).

Algorithm 1 LEARN-BPR
1: initialize Θ
2: repeat
3: draw (u, i, j) from DS

4: Θ← Θ+ α
(

e−x̂uij

1+e−x̂uij
· ∂
∂Θ x̂uij + λΘ ·Θ

)
5: until convergence
6: return Θ̂

The equation at line 4 of Algorithm 1 is exactly
the stochastic gradient descent single update for
the model parameters, obtained by computing
the gradient of the BPR-OPT with respect to the
model parameters.
As we can see from the pseudocode, at each it-
eration the LEARN-BPR procedure draws a sam-
ple from DS ; this task is known as sampling.
More in details, in the original proposal Rendle
et al. suggest a bootstrap sampling approach
with replacement for the positive interactions
and a uniform sampling for the negative items.
This means that first a positive interaction (u, i)

2

Executive summary Matteo Moreschini

is drawn from the observed data and then a neg-
ative one is chosen randomly among the list of
non-observed pairs (u, j). The task of selecting
the negative item j is commonly defined as neg-
ative sampling.

3. Uniform Sampling Issues
Although the original BPR paper did not put
too much stress on the sampling aspect, the
task of drawing informative negative samples
was demonstrated to be vital for the learning
process of the algorithm so that Rendle pub-
lished a second paper that directly focuses on
this [2]. Looking once again at the LEARN-BPR
algorithm, we can observe that, at each itera-
tion, the gradient ∂

∂Θ x̂uij is multiplied by a fac-
tor that can be rewritten as:

e−x̂uij

1 + e−x̂uij
= 1− 1

1 + e−x̂uij

= 1− σ (x̂uij) = 1− σ (x̂ui − x̂uj)

= 1− p (i >u j) = ∆uij

(5)

This quantity depends on how the model is able
to discern between the positive item i and the
negative one j for user u. In particular, ∆uij rep-
resents the probability of incorrectly ranking the
pair of items i and j, so it will be close to 0 if the
model correctly assigns a larger score to item i
and close to 1 if, on the contrary, j is incorrectly
assigned a larger score than i. In other words,
∆uij represents the gradient magnitude, which
can be viewed as a measure of the influence that
the sample (u, i, j) has in updating the model
parameters Θ. The crucial aspect is that if ∆uij

is close to 0, then the model parameters are
practically not affected by the update of sample
(u, i, j), that is to say that the model isn’t able to
learn anything from (u, i, j) because the gradient
vanishes. This analysis suggests that, in order
for the model to be able to continue the learning
process, the triplets (u, i, j) have to be difficult
and informative, meaning that the model should
be uncertain in the ranking of two items. Ren-
dle et al. [2] argued that the originally proposed
uniform negative sampler is not able to draw
such negative instances. This relates to the fact
that item popularity in RS usually follows the
long tail model, with most of the interactions in-
volving a small portion of the total items. Since
(u, i) is a positive interaction, a uniform negative
sampler that randomly extracts a negative item

from the whole dataset is likely to draw non-
popular negative instances j, which will gener-
ally have a much lower score with respect to the
positive one. In this case, σ (x̂ui − x̂uj) will be
close to 1 and, consequently, the gradient mag-
nitude will be close to 0, thus preventing the
model from learning anything from the sample,
since the pair (i, j) is too easy to rank.

4. Sampling Techniques
From the previous analysis, it should be clear
that the negative sampling plays a very impor-
tant role in the model training. Several tech-
niques have been proposed to improve the sam-
pling strategy; among them, we can identify the
following classes:

– Static - Dynamic: this distinction is based
on whether the sampling probability of a
negative item is fixed or it changes at each
iteration of the learning process. In the first
case, the sampler is said to be static, in the
other case it is called dynamic. Dynamic
samplers usually define the sampling proba-
bility for an item at iteration k as a function
of the model scores at that iteration (in this
case, the sampler is also called adaptive).

– Global - Context-dependent : in global sam-
pling techniques, the probability of an item
to be sampled is independent from the cur-
rent user and positive item in the triple
while, on the contrary, context-dependent
strategies employ the context in the sam-
pling process, meaning that the sampling
probability distribution of a negative in-
stance is different for every user (or even
for each different pair (u, i)).

– Heuristics - Model Based : we can name
a sampler heuristic if it defines the nega-
tive sampling probability of the items using
heuristics (e.g. the item popularity). Many
recent sampling (that we call model based)
methods instead delegate the job of select-
ing the negative items to external models;
in particular, the most popular and dis-
cussed ones make use of GANs. Although
these techniques seem particularly appeal-
ing, they pose several challenges in the com-
putational complexity, they need a incredi-
ble amount of training samples and are of-
ten very difficult to tune thus it’s tricky to
really understand their performance.

3

Executive summary Matteo Moreschini

5. Related Work
Among the existing techniques, many of them
(especially model based ones) often perform
some kind of approximation in order to reduce
the computational complexity introduced by the
technique itself, directly modifying the BPR
loss. We did not take such methods into consid-
eration in our work because we wanted to remain
as general as possible in the analysis of the sam-
pling methods that work strictly with the origi-
nal formulation of the BPR and, moreover, that
only make use of the user ratings; in other words,
our study concentrates on heuristic and single-
feedback sampling methods. After the publica-
tion of the BPR orginal paper [3], many works
proposed slight variations of the loss function
and different sampling strategies. In [2], the au-
thors introduce a popularity oversampler (POP)
that favors the selection of negative items with
high popularity. In [5], Zhang et al. introduce a
ranking-aware rejection strategy (DYN) that is
dynamic and adaptive but, instead of computing
all the model scores, it restricts the computation
to a small group of negative candidates. More
recently, [4] suggests a slight alternative of the
popularity oversampler called imbalance rejec-
tion sampling (IMB) which, in order to sample
a negative instance for the positive interaction
(u, i), first randomly extracts n items from the
unobserved and then loops over these items and
selects the first instance with a larger popular-
ity than the positive item i or, if there is no
such instance, the item with maximum popu-
larity. This sampler is also used to define the
VINS sampler [4], that is dynamic and adap-
tive and, in addition to the sample, for each
triplet (u, i, j) also returns a sample weight as a
measure of the hardness of finding the violating
negative. A similar concept of difficulty is also
present in [1], where the authors weighed each
sample using the model scores of the negative
item normalized over all the scores, as a measure
of the probability of the negative item of actu-
ally being negative. Since the score needs to be
normalized, this strategy requires some approxi-
mations because, as for the AOBPR proposed in
[2], it would be unfeasible to compute the scores
for every single item at each step. The works
which are closest to our thesis are [4] and [1],
as they propose the concept of sample difficulty
as weight that increases or decreases the impor-

tance of a sample. One issue that we encoun-
tered with these techniques is that they add an
extra layer of computational complexity to the
algorithm training since they are dynamic and
this motivated us to implement a static strategy,
in which the difficulty of a sample can be easily
computed a priori, so that the weights are fixed
and can be retrieved in constant time.

6. Negative Confidence
As already mentioned, in order for the learn-
ing process to not become stagnant, the sampler
needs to draw difficult and positive-like negative
instances to increase the gradient magnitude and
avoid vanishing gradient situations. Although
this is definitely a good point from a mathemat-
ical perspective, we want to argue that select-
ing the hardest negative item can decrease the
model expressiveness. In fact, one common is-
sue in RS is that the unobserved negative inter-
actions are exactly the ones that need to be rec-
ommended in the future. In case of adaptive dy-
namic samplers, which are proven to be state of
the art, these techniques at each iteration draw
as negatives those item with larger score which,
in other words, are exactly items that the model
would recommend at that iteration. The prob-
lem is that, although those items appear as un-
observed feedback for the user in the collected
data, they can become future positives and pre-
senting them to the model as negative examples
makes the model decrease their scores, thus re-
ducing the probability of those items of being
then recommended to the user. This is why [1]
introduced the idea of negative confidence as the
probability of an item of being negative, which
is a bit different w.r.t. [4] that defines the dif-
ficulty in a way that depends on the algorithm
itself. Since we want to avoid introducing ad-
ditional complexity, instead of using the model
scores we define the negative confidence as a
function of the collaborative item-item similar-
ity. Despite the fact that various works propose
to employ the collaborative similarity informa-
tion inside Matrix Factorization models, to the
best of our knowledge there is no such thing in
the direct context of the BPR sampling, as most
of the heuristics use either the popularity or the
underlying model scores.
Let’s again denote the sample as (u, i, j), with
(u, i) being an observed pair and (u, j) an un-

4

Executive summary Matteo Moreschini

observed one. To measure the confidence of j of
being an actual negative for u, we could use the
item-item similarity between i and j with the
following idea: if j is very similar to i, then u
would probably like j in the future. Although
this confidence would take into account the pos-
itive item, it does not consider the user’s profile;
in order to solve this, we can weight the item-
item similarity using u’s positive interactions so
that the confidence of j of being negative for u
is the sum of the similarities between j and the
items the u liked in the past. Formally, we can
define a personalized confidence score for every
pair (u, j) as follows:

ruj =
∑
i∈I

rui · sim(i, j) (6)

where sim(i, j) is the item-item similarity be-
tween i and j. Since scores are relative, it is
better for our purpose to formalize this idea with
ranks. Our proposed item similarity based neg-
ative confidence for the pair (u, j) can then be
defined as:

c(u, j) =

(
1

ρ̂uj

)α

(7)

where ρ̂uj is the rank of item j for the user u with
respect to the item similarity weighted with u’s
profile and α is a hyperparamter to be tuned. It
is important to highlight that the ranks are de-
fined by sorting the similarity scores in ascend-
ing order, which means that a small rank (close
to 1) indicates an item with low similarity, while
a high one implies a large item similarity score.
The role of α is to either smooth or increase the
impact of the sample weights and it is dataset
specific. We can compute c(u, j) for each unob-
served interaction and then use it directly as a
sample weight in Equation 4:

∑
(u,i,j)∈DS

c(u, j) · lnσ (x̂uij)− λΘ∥Θ∥2 (8)

More in details, if the confidence is close to 1, ac-
cording to the collaborative item similarity the
negative instance is not likely to become a pos-
itive one; since the confidence is used as sample
weight, the weight is close to 1 and the model
update is practically unchanged w.r.t. the orig-
inal formulation. If the confidence is close to 0
instead, it means that the negative item has a

high chance of becoming a future positive for the
user and, since we do not want to overly penalize
its scores, the effect of this confidence weight is
to strongly reduce the impact of this update in
the model scores.
Summing up, the item similarity confidence
strategy that we just defined has the following
properties:

– it’s static, thus it doesn’t add extra com-
plexity to the BPR learning process;

– it’s context-dependent, in fact the weight are
defined for every unobserved pair (u, j);

– it’s able to employ the collaborative item
similarity directly inside the BPR;

– it’s general, since it only uses the rating
matrix, so it can be applied to every im-
plicit feedback scenario and, moreover, also
to various other criteria.

7. Results and Discussion
Reproducibility We evaluated our pro-
posed confidence strategy on four research
datasets: BookCrossing, LastFMHetRec2011,
Movielens1M and Yahoo Movies. As for the
preprocessing, we removed cold items and
users that have less than 5 interactions and
we also applied an implicitization step to the
explicit dataset BookCrossing, Yahoo Movies
and Movielens1M, keeping as positive feedback
only the interactions with rating greater than
7 for BookCrossing (that has 1-10 ratings)
and greater than 3 for LastFMHetRec2011
and Movielens1M (originally 1-5 star ratings).
All the sampling methods have been applied
to the BPR algorithm combined with Matrix
Factorization. For POP, we used the empirical
distribution of the items. For IMB and VINS,
we followed the suggestions of the authors [4],
setting the group size to 5 for IMB and the
max iterations to 64 for VINS. For DYN we
tried different group sizes, namely 5, 10, 15 and
20, and we set all the βk parameters of the
distribution to 0 thus always selecting the item
with maximum score since this can be computed
in linear time O(n + 1). The implementation
was carried out in Python and Cython and all
the algorithms ran on a 32GB RAM Windows
machine without the use of the GPU. As for
parameters tuning, we fixed the learning rate
and the batch size to 0.001 and 64 respectively
and tried 50 configurations on each sampling.

5

Executive summary Matteo Moreschini

Prediction Accuracy We measured the pre-
diction accuracy of the algorithms using classifi-
cation (precision and recall) and ranking (MAP
and NDCG) metrics, for different cutoffs. Table
1 shows the recall scores with cutoff at 10; in the
upper part of the table we reported the original
sampling methods, while in the lower part the
same algorithms are weighted with our proposed
item similarity based confidence (samplings that
start with W are weighted).

BK LFM M1M YM

UNI 0.064 0.150 0.089 0.238

POP 0.043 0.080 0.050 0.094

IMB 0.062 0.150 0.106 0.247

DYN 0.066 0.153 0.109 0.257

VINS 0.061 0.134 0.075 0.252

W-POP 0.054 0.099 0.053 0.156

W-IMB 0.072 0.163 0.108 0.252

W-DYN 0.082 0.176 0.119 0.267

Impr. 24.2% 15.0% 9.1% 3.9%

Table 1: Recall@10 results on the four datasets.

As we can observe, our negative confidence is
able to improve the recall of every algorithm on
each of the four datasets and the same applies
also on the other metrics (that we do not include
for space reasons, see the thesis for the full re-
sults).

Future Positive Rate In addition to plain
accuracy, we also evaluated and discussed the
relative improvement that our strategy is able
to bring. In particular, we determined that the
sampling methods that obtain the largest ad-
vantages are the ones that have a high future
positive rate (FPR), which can be defined as the
number of sampled negative items during the
training that appear as positives in the test set
over total number of sampled items.

Figure 1: FPR per epoch on LastFm.

We examined the FPR for the different sampling
strategies and, in particular, for different group
sizes in the DYN samplers, noting that larger
groups most benefit from our strategy because
they are more prone to select future positives (as
you can see in Figure 1, that shows how DYN
with groups of 20 almost samples 3x the number
of future positives selected by DYN with group
size of 5).
We discovered that, as expected, the FPR is
closely related to both the model accuracy and
the improvement of our strategy, even if it is
not enough for evaluating a sampling algorithm
as sampling strategies like POP tend to have a
high FPR but a low accuracy. In Table 2, we can
see that standard non-weighted DYN-5 outper-
forms the DYN variations with larger group size;
on the contrary, the trend is inverted once we ap-
ply our confidence weighting strategy that, lim-
iting the penalization of the positive-like items,
is able to bring the best advantages to the larger
group sizes that have higher FPR.

Standard Weighted

DYN-5 0.203 0.209

DYN-10 0.198 0.212

DYN-15 0.191 0.214

DYN-20 0.180 0.209

Table 2: NDCG@10 results on Movielens1M for
different group sizes of DYN.

Convergence and Complexity Fixing the
learning rate and batch size parameters, we mea-
sured the convergence speed using the number
of epochs. As for the non-weighted strategies,
the fastest are the ones that have a high FPR

6

Executive summary Matteo Moreschini

(POP and DYN with large groups), while the
slowest are IMB and UNI. The impact of our
proposed confidence weighting is not too well
defined, as it seems to slow the convergence on
Movielens1M and LastFm while speeding it up
a lot on BookCrossing, but one thing that we
noticed is that the non-weighted versions (espe-
cially on DYN with large groups) tend to have
a drop of accuracy right after convergence that
does not verify in the case of the weighted strate-
gies. As for the complexity, we already said that
our proposed weighting technique is static thus
the weights can be computed a priori and re-
trieved in constant time; moreover, we want to
highlight the fact that even a static sampler like
IMB, if combined with our strategy, is able to
improve dynamic adaptive techniques like DYN
that require the computation of the model scores
at each iteration (as you can see on BookCross-
ing and LastFm in Table 1).

8. Conclusions
In our thesis we provided an in-depth analysis
of the state of the art sampling techniques for
the BPR learning algorithm and we proposed
our item similarity based confidence weighting
strategy to account in the loss the probability
of a negative item of becoming positive. The
experimental results show how our strategy is
able to improve all the existing baselines reduc-
ing the impact of the updates on items that have
high probability of being liked by the user in
the future; moreover, with respect to the cur-
rent alternatives, our technique does not intro-
duce additional complexity as the weights can
be computed a priori. The main contribution
of our work, apart from the introduction of this
strategy, should also be stimulating the use of
external models not to directly sample the neg-
ative instances but rather to compute the sam-
ple weights in a similar manner to what we did,
in order to reduce the penalization of the items
that are likely to become future positives.

References
[1] Defu Lian, Qi Liu, and Enhong Chen. Per-

sonalized ranking with importance sampling.
In Proceedings of The Web Conference 2020,
pages 1093–1103, 2020.

[2] Steffen Rendle and Christoph Freudenthaler.

Improving pairwise learning for item rec-
ommendation from implicit feedback. In
Proceedings of the 7th ACM international
conference on Web search and data mining,
pages 273–282, 2014.

[3] Steffen Rendle, Christoph Freudenthaler,
Zeno Gantner, and Lars Schmidt-Thieme.
Bpr: Bayesian personalized ranking
from implicit feedback. arXiv preprint
arXiv:1205.2618, 2012.

[4] Lu Yu, Shichao Pei, Chuxu Zhang, Shang-
song Liang, Xiao Bai, Nitesh Chawla,
and Xiangliang Zhang. Addressing class-
imbalance problem in personalized ranking.
arXiv preprint arXiv:2005.09272, 2020.

[5] Weinan Zhang, Tianqi Chen, Jun Wang,
and Yong Yu. Optimizing top-n collabo-
rative filtering via dynamic negative item
sampling. In Proceedings of the 36th in-
ternational ACM SIGIR conference on Re-
search and development in information re-
trieval, pages 785–788, 2013.

7

POLITECNICO DI MILANO
School of Industrial and Information Engineering

Master of Science in Computer Science and Engineering

Bayesian Personalized Ranking
Sampling Techniques

ADVISOR:
Prof. Paolo Cremonesi

CO-ADVISOR:
Cesare Bernardis

CANDIDATE:
Matteo Moreschini

Academic Year 2020/2021

Abstract

Recommender Systems (RSs) provide users with personalized suggestions for

products of different kinds. Collaborative Filtering (CF) methods leverage

past user-item interactions to provide recommendations and, among these

techniques, Matrix Factorization (MF) is a well known family which is able

to achieve state of the art performances. In the context of Matrix Factoriza-

tion and particularly in implicit feedback scenarios, Bayesian Personalized

Ranking (BPR) is one of the criteria that can be adopted for learning the

model weights. This criterion offers the key advantage of dealing with the

problem of recommendation as a ranking task, thus maximizing the proba-

bility of correctly ranking the unseen items of a user. At each iteration of the

BPR learning procedure, a sample composed by a user, a seen item (positive

item) and an unseen item (negative item) is extracted in order to update the

model weights; this process is known as sampling and it highly affects the

model capabilities. Various sampling frameworks have been proposed with

the aim of speeding up the computation and finding good negative candi-

dates. Recent works focus on sample weighting strategies that try to take

into account the difficulty of a sample. In this thesis we analyze the state

of the art sampling techniques and introduce an item similarity based con-

fidence which uses the item-item similarity to infer the negativeness of an

item. The confidence is then used as a sample weight in order to decrease the

impact of the model updates for those items that, according to the item-item

similarity, have a high chance of become positive interactions in the future.

The results of the experiments conducted on four popular research datasets

show that our proposed confidence weighting strategy is able to achieve very

good results both in accuracy and convergence speed without impacting the

computational complexity.

Sommario

I Sistemi di Raccomandazione (RS) producono suggerimenti personalizzati

per vari tipi di prodotti e contenuti. Gli algoritmi collaborativi (CF) sfruttano

le interazioni passate tra utenti e oggetti per costruire le raccomandazioni

relative a ciascun utente e, in particolare, tra queste tecniche si distinguono

i modelli di fattorizzazione di matrici (MF). Tra questi modelli, specialmente

in casi in cui la preferenza degli utenti non è esplicita ma deve essere in-

ferita (feedback implicito), un criterio di ottimizzazione molto popolare è

il Bayesian Personalized Ranking (BPR). Tale criterio offre il vantaggio di af-

frontare la questione della raccomandazione come un problema di ordina-

mento, cercando di massimizzare la probabilità di ordinare in modo corretto

un oggetto con cui l’utente ha interagito rispetto ad uno con cui non ha in-

teragito. Nel processo di ottimizzazione del criterio, ad ogni iterazione viene

estratta una tripletta composta da un utente, un oggetto con cui l’utente ha

interagito (oggetto positivo) e uno con cui non ha interagito (oggetto nega-

tivo); questo processo è noto come sampling e ha un forte impatto nel processo

di allenamento del modello. Varie tecniche di sampling sono state proposte

con l’obiettivo di velocizzare la convergenza dell’algoritmo BPR e di miglio-

rare la qualità delle raccomandazione. I lavori più recenti in questo ambito

sono incentrati sul concetto di peso della tripletta al fine di tenere in con-

siderazione la difficoltà di un oggetto negativo. In questo lavoro di tesi ana-

lizziamo lo stato dell’arte identificando pregi e difetti delle attuali tecniche

esistenti e, utilizzando la similarità collaborativa tra gli oggetti, proponiamo

il concetto di confidenza di un negativo per ogni singolo utente come misura

della probabilità che possa in futuro diventare un positivo per quell’utente.

Tale concetto di confidenza viene utilizzato per assegnare un peso a ciascuna

tripletta al fine di diminuire l’impatto dell’aggiornamento del gradiente per

gli oggetti negativi che hanno una bassa confidenza. I risultati sperimentali

ottenuti su quattro dataset di ricerca dimostrano che la strategia proposta

è in grado di migliorare le tecniche esistenti con un impatto minimo sulla

complessità computazionale dell’algoritmo.

6

Contents

Introduction 14

1 State of the art 17
1.1 Data Structures . 18

1.2 Data Types . 21

1.2.1 Explicit vs. Implicit Feedback 21

1.2.2 Item and User Features 22

1.2.3 Additional Data . 23

1.3 Models . 24

1.3.1 Collaborative Filtering 25

1.4 Similarity Metrics . 26

1.4.1 Cosine Similarity . 27

1.4.2 Pearson Coefficient . 27

1.4.3 Jaccard Coefficient . 28

1.5 Tanimoto Coefficient . 28

1.6 Memory Based Collaborative Filtering 28

1.6.1 Top Popular . 28

1.6.2 User k-Nearest Neighbors 29

1.6.3 Item k-Nearest Neighbors 30

1.6.4 Neighborhood-Based Graph Models 30

1.7 Model Based Collaborative Filtering 34

1.7.1 SLIM . 34

1.7.2 Matrix Factorization . 35

1.8 Bayesian Personalized Ranking 38

1.8.1 BPRMF . 43

1.9 BPR Sampling . 44

1.9.1 Uniform Sampling Issues 44

1.9.2 Negative Sampling Classes 47

8

Contents

1.10 BPR Sampling Algorithms . 52

1.10.1 Uniform Sampling . 52

1.10.2 Popularity Oversampling 52

1.10.3 Personalized Popularity Oversampling 54

1.10.4 Imbalance Rejection Sampling 54

1.10.5 VINS . 56

1.10.6 Ranking-aware Rejection Sampling 58

1.11 BPR Variants . 60

1.11.1 AOBPR . 60

1.11.2 GBPR . 61

1.11.3 PRIS . 61

1.11.4 Graded Implicit Feedback 62

1.11.5 MF-BPR . 63

1.11.6 VBPR . 63

1.11.7 Social Information . 64

1.12 Introducing Our Work . 65

2 Models 66
2.1 Sampling Issues . 66

2.1.1 The risks of oversampling difficult instances 67

2.1.2 Adding Similarities . 69

2.2 Our Solution . 70

2.2.1 How can we measure the confidence of an item of being

negative? . 71

2.2.2 How do we use this confidence value inside the BPR

sampling? . 73

2.2.3 Which sampler is likely to most benefit from the confi-

dence value? . 75

3 Evaluation 77
3.1 Evaluation Metrics . 77

3.1.1 Classification Metrics . 78

3.1.2 Ranking Metrics . 80

3.2 Preprocessing . 84

3.2.1 Implicitization . 84

3.2.2 K-core . 85

3.2.3 Dataset Partitioning . 86

3.3 Datasets . 88

3.3.1 BookCrossing . 88

9

Contents

3.3.2 LastFm . 89

3.3.3 Movielens1M . 91

3.3.4 Yahoo Movies . 93

3.4 Implementation . 95

3.4.1 Technologies . 95

3.4.2 Hyperarameter Tuning 95

3.4.3 Number of Epochs and Early Stopping 96

4 Results 98
4.1 Prediction Accuracy . 99

4.1.1 Classification Metrics . 99

4.1.2 Ranking metrics . 105

4.1.3 POP vs. IMB . 111

4.1.4 Cutoff vs. DYN Group Size 112

4.2 Future Positive Rate . 114

4.2.1 Example 1: POP improvement 114

4.2.2 Example 2: DYN group size 116

4.2.3 FPR vs Accuracy . 119

4.3 Convergence Speed . 121

5 Conclusions 126

Bibliography

10

List of Figures

1.1.1 The dummy rating matrix R (on the left) and ICM (on the

right) of the example movie recommendation system. 20

1.3.1 Simple content based approach for a movie recommender sys-

tem. 25

1.4.1 Cosine similarity graphical explanation. 27

1.6.1 The long tail model. 29

1.6.2 On the left, a user-based approach identifies the similarity be-

tween user 1 and user 3 and thus suggests to user 3 an item

that user 1 rated. On the right, since item 1 and item 3 are

similar and user 3 has interacted with item 3, item 1 is rec-

ommended to user 3. 30

1.6.3 A possible graph representation of a simplistic movie recom-

mendation engine, using Neo4j, a popular graph database en-

gine. 32

1.7.1 The basic matrix factorization approach. 36

1.7.2 The SVD of the user rating matrix. 37

1.8.1 Missing as negatives assumption. 39

1.8.2 The BPR approach for constructing the training data. 40

1.8.3 The sigmoid function. 41

1.9.1 This image shows the uniform sampling process that randomly

extracts a positive interaction and a negative one, resulting in

a too easy ranking thus in a poor learning process. 45

1.9.2 The architecture of GANs applied to Computer Vision. The

generator output is connected directly to the discriminator

input. Through the mechanism of backpropagation the dis-

criminator’s classification provides a signal that the generator

uses to update its weights. 50

11

List of Figures

1.9.3 This images shows an application of GANs to computer vi-

sion. The faces are examples of photo-realistic GAN-generated

faces, taken from a recent paper from 2017. [32] 50

1.11.1 The image represents the architecture of the VBPR framework. 63

2.1.1 The Spotify ”Recommended” section at the end of a user-

generated playlist, that contains the top recommendations to

add to the playlist. 69

2.2.1 Plots for the function 1
x
α

for different values of α. The bigger

is α, the steeper is the function. 73

2.2.2 The two stacks represent the items sorted in descending order

by the current model score, before (left) and after (right) the

updates. 74

3.1.1 The confusion matrix. 79

3.2.1 The preprocessing phase. 84

3.2.2 The process of transforming an explicit dataset with a 5-star

rating to an implicit one, using a threshold of 2. 85

3.2.3 The k-core at 2 preprocessing. The green arrows represent

the rows/columns (users/items) that remain at the end of this

phase, i.e. those rows/columns with at least two interactions. 86

3.2.4 The split procedure adopted to obtain the training and testing

sets. 86

3.3.1 The original BookCrossing dataset information. 88

3.3.2 The BookCrossing dataset information after the implicitiza-

tion and k-core steps. 88

3.3.3 The popularity distribution in the preprocessed BookCross-

ing dataset. 89

3.3.4 The original LastFm dataset information. 90

3.3.5 The LastFm dataset information after the implicitization and

k-core steps. 90

3.3.6 The popularity distribution in the preprocessed LastFm dataset. 91

3.3.7 The original Movilens1M dataset information. 92

3.3.8 The Movielens1M dataset information after the implicitiza-

tion and k-core steps. 92

3.3.9 The popularity distribution in the preprocessed Movielens1M

dataset. 92

3.3.10 The original Yahoo Movies dataset information. 94

12

List of Figures

3.3.11 The Yahoo Movies dataset information after the implicitiza-

tion and k-core steps. 94

3.3.12 The popularity distribution of the items in the preprocessed

Yahoo Movies dataset. 94

4.1.1 Bar plot that shows the percentage of gain brought by the sim-

ilarity sample weighting for the recall scores on BookCrossing. 100

4.1.2 Bar plot that shows the percentage of gain brought by the sim-

ilarity sample weighting for the recall scores on LastFm. . . . 101

4.1.3 Bar plot that shows the percentage of gain brought by the sim-

ilarity sample weighting for the recall scores on Movielens1M. 102

4.1.4 Bar plot that shows the percentage of gain brought by the sim-

ilarity sample weighting for the recall scores on Yahoo Movies. 103

4.1.5 Bar plot that shows the percentage of gain brought by the sim-

ilarity sample weighting for the MAP scores on BookCrossing. 106

4.1.6 Bar plot that shows the percentage of gain brought by the sim-

ilarity sample weighting for the MAP scores on LastFm. 107

4.1.7 Bar plot that shows the percentage of gain brought by the sim-

ilarity sample weighting for the MAP scores on Movielens1M. 108

4.1.8 Bar plot that shows the percentage of gain brought by the sim-

ilarity sample weighting for the MAP scores on Yahoo Movies. 109

4.1.9 MAP scores for each epoch of the IMB sampler with groups

of 5 (IMB-5) and 100 (IMB-100) on LastFm. 111

4.1.10 Difference between recall scores of the weighted DYN-5 and

DYN-20 at different cutoffs on BookCrossing. 112

4.2.1 FPR per epoch on the LastFm dataset. 115

4.2.2 FPR for the POP and DYN-20 samplers on Yahoo Movies. . . . 115

4.2.3 Percentage of future positive items, for DYN-5 and DYN-20,

on Yahoo Movies. 116

4.2.4 Percentage of negative items that are future positive items, for

different group sizes, on LastFm. 117

4.2.5 FPR for DYN-20 and its weighted counterpart on Yahoo Movies.118

4.2.6 FPR for DYN-5 and W-DYN-5 on Yahoo Movies. 118

4.2.7 Comparison between the precision scores on LastFm between

POP and DYN-15. 119

4.2.8 Comparison between FPR of POP and DYN-15 on LastFm. . . 120

4.3.1 Rec@25 for each epoch on the BookCrossing dataset for the

DYN samplers; the red ones are the weighted versions, the

blue ones are the non weighted standard DYN. 124

13

List of Figures

4.3.2 Comparison between DYN and W-DYN in Rec@25 on LastFm. 125

14

Introduction

In the last two decades, Recommender Systems (RS) have become one of the

most successful and popular trends in the data mining and machine learning

world, both from an industry perspective and from a research one. The need

for RS arises from the incredibly fast growth of online content, from movie

websites to music streaming services, from traveling agencies to e-commerce

websites, and was recently strongly fueled by the increased availability of

large datasets and by hardware innovation. In this scenario, providing a per-

sonalized aid turns out to be beneficial both for the content providers, that

aim at maintaining users on their platform for as long as possible, and for the

users, since good personalized recommendations can add another dimension

to the user experience and let users discover new contents. In 2003 Ama-

zon published their paper [39] about item collaborative filtering and a later

report dated 2013 stated that their recommendation algorithm (such as the

”other customers also bought”) was able to generate 35% of the company’s

revenue. Netflix started using analytics for recommending DVDs to its users.

Time has passed and DVDs have been replaced by streaming services; cur-

rently more than 80 percent of the shows people watch on Netflix are discov-

ered through the platform’s recommendation system, which is responsible of

generating ca. one billion dollars every year. Spotify, YouTube, TikTok and

other e-commerce leaders have made recommender systems a salient part of

their websites with the aim of producing accurate personalized content for

the users in order to keep them on their platform as long as possible.

Recommender System algorithms are classified on the type of information

15

List of Figures

they use to compute predictions and are typically distinguished in content

based approaches and collaborative filtering. While the former methods use

additional information about the items, the latter ones try to understand

the similarities among the users and the items based only on past interac-

tions. Collaborative filtering methods are considered to be state of the art

and, among them, Matrix Factorization excels as a popular class of models

for learning the collaborative similarities among users and items. In the con-

text of Matrix Factorization, the Bayesian Personalized Ranking (BPR) is an

optimization criterion that, differently from its alternatives, deals with the

recommendation task as a ranking task. This makes it perfectly suitable for

implicit feedback scenarios, which are situations where the data contains bi-

nary information about whether an interaction between a user and an item

occurred or not, without further specifying if the interaction was positive or

negative.

The main contribution of this thesis is a wide analysis on the existing neg-

ative sampling techniques that are used in the BPR learning algorithm and

the introduction of a negative confidence sample weighting strategy based on

item similarity.

The thesis is organized in four chapters:

• State of the art: starting with an overview of the Recommender Sys-

tems field, in this chapter we gradually dig deeper into the topics that

most matter for our study. It contains an in-depth analysis of the Bayesian

Personalized Ranking criterion in its original formulation, as well as an

extensive review of the existing sampling strategies.

• Models: in this chapter we propose our concept of negative confidence

based on item similarity, showing how it can be employed in the BPR

loss and explaining the reasons for adopting our strategy over the ex-

isting alternatives.

• Evaluation: this chapter contains all the information regarding data

and metrics that we used for evaluating the BPR sampling algorithms.

It also includes the implementation details to reproduce our work.

• Results: in the final chapter we present the results of our research. We

show that our proposed confidence is able to improve the existing sam-

plings and we discuss some interesting facts that emerged from each

dataset.

16

Chapter 1

State of the art

Recommender Systems (RS) are a collection of data science techniques and

software engineering tools that aim at providing suggestions of “items” to

“users”. Generally speaking, we can define the users as the main actors that

are capable of taking some action in a certain environment, that could be

an e-commerce website rather than a social network platform rather than

Spotify. On the other hand, the items can be defined as the objects that the

users interact with; this could be songs in case of Spotify or other users in

case of a social network. From this definition, it should be clear that user and

items are specific terms used in the RS area and can identify, without loss of

generality, any two entities that have an interaction. The interaction is the

real main character of Recommender Systems. Interaction is an extremely

broad term, pretty much any complex system can be seen as one or multiple

entities interacting, that means that the RS theory can be applied to several

domains and datasets even if their story is very much related to social or

marketing platforms.

17

Chapter 1. State of the art

1.1 Data Structures

In order to tackle a certain problem as a Recommender System one, we want

to identify and define some common data elements:

• Users: a set of users U .

• Items: a set of items I , i.e. the entities the users interact with1.

• Ratings: a set of ratings S, that are the scores assigned by users to the

interactions with the items.

• User features: set of attributes of the users Fu .

• Item features: set of properties of the items Fi .

The research in RS stemmed from the information retrieval and data mining
field; as a result of this, the data is commonly described using matrices and

classical data structures:

• R: the User Rating Matrix is a |U | × |I | shaped matrix that captures the

historical interactions between user and items. A generic cell of the

matrix, denoted from now on as rij , contains the interaction of user i

with item j; rij can be an explicit value in a certain predefined interval

representing the preference of user i over the item j or simply a binary

value (i.e. 1 if user i interacted with item 0 and a 0 otherwise). Since

most of the time the number of items that a user interacted with is very

small compared to the total number of items, R is usually an extensive

and greatly sparse matrix.

• ICM: the Item Content Matrix is a |I | × |Fi | shaped matrix used to rep-

resent the properties of each item as a vector. The features are a pre-

defined set of properties, highly dependent on the application domain,

used to characterize each item. Each feature can take on different val-

ues: integer numbers, real numbers, booleans and so on. Since handling

different types of data into a single matrix can lead to many difficulties

(e.g. computing similarity matrices and products), the item features

are usually preprocessed in order to remove non number-like features

using different data mining methods, as one-hot encoding or binary en-

coding.

1Generally speaking, I and U are disjoint sets that represent different types of entities,
but this is not always true. In a social network like Facebook, for example, users interact with
other users, so in this case the set of items coincides with the set of users.

18

Chapter 1. State of the art

• UCM: the User Content Matrix is a |U | × |Fu | matrix that in each row i

contains the vector of features of user i. The same considerations we

made earlier about the different data types for the ICM can also apply

for the UCM.

Let’s now try to identify these data structures in a simplified real life case:

a Netflix2-like movie recommendation system. Netflix is a popular video

streaming service offering their subscribed users a great variety of visual con-

tent that spans from movies and TV series to documentaries and cartoons.

Let’s define what happens in our simplistic Netflix clone:

• each user subscribed to the service is able to choose between a vast se-

lection of movies, documentaries etc.;

• after watching a movie, a user leaves a score between 0 and 5, with 0

representing the fact that the user totally disliked the movie and 5 the

fact that the user really liked it;

• for each user, our Netflix clone is able to collect some minimal informa-
tion such as the preferred language, the state where the user is located

and the user’s date of birth;

• for each item, our clone has a list of features characterizing the item,

for example: the genre, the duration, the date when the content was

released, the language etc.

Using the data structures that we just presented, a possible way to model this

data is the following:

• R: the user rating matrix contains, for each user, the ratings of the items

(aka videos) that the user watched, as an integer number between 1 and

5 representing how much user i liked item j or 0 if the user did not

watch the item.

• ICM: there are different kinds of features for the movies; we can imag-

ine that the genre is a string withing a possible list of genres (hence, a

categorical feature), the duration can be expressed as number of min-

utes, the date could be a timestamp or a string as well. In order to

2Netflix and Recommender Systems have always been very close and the ability of their
recommendation systems to suggest movies/TV series is one of the main reasons behind the
company’s fortune. Netflix also organized one of the most popular competitions of RS in 2006,
which took almost three years to complete and had a 1 million dollars price.

19

Chapter 1. State of the art

Figure 1.1.1: The dummy rating matrix R (on the left) and ICM (on the right) of the example
movie recommendation system.

store this information within the ICM we could apply usual data min-

ing techniques to adjust the data.

• UCM: the same reasoning applies for the UCM, as the language and

the state could be categorical variables, while the data of birth could

be a timestamp or a string, so in this case we also apply some common

cleaning and preprocessing techniques.

At the end of this process we have something that looks like the data struc-

tures in Figure 1.1.1, which can be used to build our models for recommend-

ing new TV shows to the users.

20

Chapter 1. State of the art

1.2 Data Types

A requirement for the adoption of a RS is the availability of data, which gen-

erally describes the past interactions between users and items and identifies

which kind of algorithms can be applied to the problem.

1.2.1 Explicit vs. Implicit Feedback

The first and most significant distinction is between an explicit and implicit
dataset:

• Explicit datasets: in this case we rely on the user giving us explicit sig-

nals about their preferences, so the ratings represent the explicit feed-

back that users directly assigned to the items they interacted with. An

example could be a 0 to 5 star score of Amazon reviews or a 0 to 5 score

to a Tripadvisor restaurant. In this case, each cell of the rating matrix

is a numeric value in a (usually) predefined scale.

• Implicit datasets: the explicit ratings are not available and are binary

values (1 or 0) that represent whether a user interacted with an item or

not. Implicit feedback indirectly reflects opinions by observing user be-

haviors such as the purchase history, browsing history, search patterns,

clicks and even mouse movements [44, 34, 27].

Explicit dataset are more informative but less common, and they are gen-

erally less dense compared to implicit datasets. In the vast majority of real

life situations the feedback that we are able to observe is implicit. The vast

majority of the research in the field is focused on processing explicit feed-

back, probably thanks to the convenience and ease of use, in many practical

situations, due to the reluctance of users to rate products3 or limitations of

the system that is unable to collect explicit feedback [27], almost every inter-

action that happens on the Web is a “click” action which is intrinsically not

explicit; we can record that some not logged user clicked on some item on

our platform but we have no clue on the reason why this happened neither

if the interaction was a positive or a negative one. We can point out the fact

that is always possible to transform an explicit dataset into an implicit one

making some assumptions through a process called implicitization, but the

reverse is generally not possible; for example, in an e-commerce website that

can track the click actions of the user as well as the time that a user spends

3This is caused by the “laziness” of users that tend not to leave reviews. It’s estimated
only around 5% of customers typically provide a review or rating for products on Amazon.

21

Chapter 1. State of the art

on a page, one could use the time in order to infer the user preference and

this approach could work but it’s still not a precise nor explicit indication of

the user’s preference.

An important and remarkable difference between the two types of feedback

is that in implicit data there is no way (at least having only the sole user rat-

ings, without additional information) to distinguish between a positive and a
negative interaction, in fact we only know if a user interacted with an item

but we have no information about the user preference since there could be a

lot of reasons why the user did not interact with a specific item (such as be-

ing unaware of the existence of the item, being unable to consume it due to

its price, a limited item availability etc) [44]. This means that in an explicit

dataset we can label the interactions as either positive, negative or missing,

while with implicit dataset we only have positive and missing interactions,

making it trickier for the recommender to understand the user preferences

and make accurate predictions especially because, in general, as we already

said only a very small portion of the user rating matrix contains non-zero

entries and this creates a great imbalance between the positive class and neg-

ative/missing one (this kind of problem is also known as “class imbalance”

problem and it’s particularly clear in the case of one-class problems like im-

plicit feedback).

Another crucial difference, which is related to what we just explained, is that

this kind of data is intrinsically noisy [27], we can observe a positive, but

there is no way to know if it was an actual positive or a bad one. This is what

happens for example on Amazon when a user purchases a set of speakers

that end up not working as they should, thus the user gives a bad review to

the product; this type of information cannot be reconstructed with implicit

feedback.

1.2.2 Item and User Features

Item features are the descriptive attributes of the items, denoting the item’s

content, while user features have the same meaning with respect to the users.

The features can appear in various data types and forms; taking a song stream-

ing service:

• item features: the attributes of the items/songs could be the duration in

seconds, the author, the album, the song’s text etc.;

• user features: possible user features could be the user’s email, name,

22

Chapter 1. State of the art

preferred language and maybe a bio.

It’s worth noting that, while item features are easy to collect as they depend

on the system, user features are usually more rare and difficult to collect as

most of the interactions that happen online do not require users to be logged

in and, even if the user is logged in, it’s not always possible to collect that

much information due to privacy policies.

1.2.3 Additional Data

In addition to interactions and user/item features, there are other kinds of

data that provide meaningful insights for improving the recommender’s ca-

pabilities but are more specific and domain dependent.

1.2.3.1 Temporal Data

In many settings, the recommendations for an item might evolve over time and

also the preference of the user might change as time passes by. For example, the

recommendations for a movie may be very different at the time of release

with respect to several years later, and also the taste of a user could change

as the user becomes older. In such cases, it is extremely important to incor-

porate some form of temporal knowledge in the recommendation process.

Even if so far we considered the rating matrix as the matrix the tracks the

historical interactions between user and items without making any distinc-

tion between recent and old interactions, nowadays pretty much every kind

of data is labeled with some timestamp or date and this additional knowledge

can be incorporated in the recommendation algorithms.

1.2.3.2 Session Data

Sometimes, rather than observing the evolution over time, it’s also important

to understand the best way to recommend items in a certain short time win-
dow. The concept of session is strongly paired with the concept of browsing

session, as the continuous period of time that a user spends browsing some

platform until the user leaves that platform. In this setting, the information

is sometimes collected as a list of historical sessions of the users, that contains

the interactions between users and items in a specific time interval.

Session-based recommender systems [62, 49, 48] have recently emerged in

such settings to try to investigate the user’s preference in a more short-term

and dynamic way with respect to classical RS, trying to capture and adapt to

23

Chapter 1. State of the art

the evolving behaviour of the user in a short period of time.

1.2.3.3 Context Information

On top of tracking the interactions, it’s sometimes possible to observe data

about the environment, or context, in which the interaction happens; such

contextual information can include time, location or social data. Let’s take a

movie service platform as an example once more, the context in which users

decides to choose a certain movie can vary: were they alone? Were they with

the family? Were they with friends? Was it morning, afternoon or evening?

Were they eating while watching? Were they watching on a TV, a laptop or

an iPad?

Context-aware (or context-based) recommender systems [2, 57] are domain

specific RS that exploit this kind of additional data in order to make more

accurate predictions based on the situation in which users interact with the

items.

1.2.3.4 Social Data

Traditional recommender systems always ignore social relationships among

users but, in real life, when we are asking our friends for book recommenda-

tions or when we browse on YouTube for reviews of a 34 inches monitor, we

are actually requesting social recommendations. Social recommendation is

a daily occurrence, and we always turn to our friends for recommendations.

This fact is also influenced by the boom of Web 2.0 websites and applications,

blogs, affiliate marketing websites and YouTube channels. Hence, in order to

improve the suggestions and to provide more personalized recommendation

results, recent RS models [17, 64] try to incorporate real social life and on-

line social network information among users to improve the recommendation

quality.

1.3 Models

The basic and standard models for recommender systems work with two of

the data kinds that we explained:

• user-item interactions, i.e. the user rating matrix; such methods are

referred to as collaborative filtering methods, which are techniques that

rely on the historical user behavior, using only past ratings, regardless

of the item or user features.

24

Chapter 1. State of the art

Figure 1.3.1: Simple content based approach for a movie recommender system.

• item and/or user features, i.e. the ICM and/or the UCM; these algo-

rithms are called content based recommenders. Content-based recom-

mender systems try to match users to items that are similar to what

they have liked in the past. These approaches, for a specific user, don’t

try to find a correlation with other users but rely only on the user’s past

interactions to find common attributes among the items the user inter-

acted with, so the focus is only on the target user’s own ratings and the

attributes of the items liked by the user, the ratings of the other users

usually play no role in this scenario (Figure 1.3.1).

In addition to these models, more advanced techniques are hybrid/ensemble

models of these approaches or domain specific families of recommender sys-

tems like the one the we briefly introduced earlier. In the following sections

we discuss the collaborative filtering methods.

1.3.1 Collaborative Filtering

The idea behind Collaborative Filtering4 is simple: since the observed ratings

are often highly correlated, we can use the collaborative power of the ratings

given by other like-minded users in order to infer the missing ratings for a

specific user [27]. A big advantage that makes these methods very appealing

is that, since they only take advantage of the rating matrix, they are domain

4The term was coined by the developers of Tapestry as a way to gather qualitative data. It
was developed at Xerox PARC as a way to handle the large amounts of email and messages.

25

Chapter 1. State of the art

free and yet they can address aspects that are often elusive and hidden to

content based approaches. These methods often use some kind of similarity
metric between the items or between the users.

Collaborative filtering can be viewed as a special case of missing matrix values
analysis, which studies the problem of finding the latent entries in a matrix.

From a different perspective, collaborative filtering can also be interpreted

as a generalization of the classification and regression tasks, considering the

columns as features (that can be missing for certain rows) and performing

the prediction phase in entry-wise fashion rather than row-wise fashion [3].

One noticeable aspect is that a matrix completion setting is inherently trans-
ductive, that means that the test instances are also included during the train-

ing process, since the rating matrix is a |U | × |I | matrix of all the users and

items; this fact often makes it hard for the collaborative recommender to pro-

duce recommendations for test instances that are not available at the time of

training. This does not happen in algorithms that are inductive such as naive

Bayes.

One of the main challenges in developing collaborative filtering techniques

is that the rating matrix is a greatly sparse matrix, most of the data (usually

97/98%) is composed by zeroes, i.e. missing values. Taking as example a

music platform like Spotify, most users would have listened to a very small

portion of the immense universe of available songs and this reflects in the

rating matrix with a lot of missing/unspecified/unobserved data, making it

difficult for the recommender to suggest items to a user with very few inter-

actions and also to suggest to a user those items that have few interactions.

We can distinguish two families of collaborative filtering methods: memory
based and model based. The first techniques often use some kind of simi-

larity heuristic, thus we present some notions about similarities and then we

illustrate the most popular memory based and model based algorithms.

1.4 Similarity Metrics

Recommender systems algorithms often require a definition of an appropri-

ate similarity function to measure how much users or items differ from each

other. For this purpose, usually users and items are represented by vectors

so that data mining and information retrieval derived approaches studied

for these type of structures can be adopted. In the following definitions, x

and y will be considered to be representations of users or items lying in an

n-dimensional space, without loss of generality.

26

Chapter 1. State of the art

Figure 1.4.1: Cosine similarity graphical explanation.

1.4.1 Cosine Similarity

Cosine similarity is one of the most basic yet powerful similarity metrics.

The idea is the following: measuring the cosine of the angle formed by the

two input vectors (see figure 1.4.1), knowing that the cosine it’s a real valued

function that will be 1 if the two vectors share the same direction and verse,

0 if the two vectors are orthogonal and −1 if they share the same direction

but have opposite verse.

Given two input vectors, x and y, the cosine similarity cos(x,y) is defined as:

cos(x,y) =
x · y

‖x‖ · ‖y‖+H
(1.1)

where H is the shrink coefficient (hyperparameter to be tuned) use to penal-

ize the vectors with a small number of observed interactions (i.e. 1 in the

vectors) and ‖x‖ indicates the norm of the vector x.

1.4.2 Pearson Coefficient

The Pearson correlation coefficient (also known as Person’s r) quantifies the

linear correlation between two sets of data.

The formula for computing the coefficient is the following:

Pearson(x,y) =
∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄2)
√∑n

i=1 (yi − ȳ2)
(1.2)

27

Chapter 1. State of the art

1.4.3 Jaccard Coefficient

Jaccard similarity is a set similarity metric, measuring the percentage of at-

tributes two sets X and Y share, i.e. generally the ratio of intersection over

union:

Jaccard(X,Y) =
|X ∩Y |
|X ∪Y |

(1.3)

Generally, if both X and Y are empty, the Jaccard coefficient is assumed to be

1. The Jaccard distance, which measures dissimilarity between sample sets, is

complementary to the Jaccard coefficient and is obtained by subtracting the

Jaccard coefficient from 1, or, equivalently, by dividing the difference of the

sizes of the union and the intersection of two sets by the size of the union.

1.5 Tanimoto Coefficient

Tanimoto reformulated the Jaccard coefficient to real valued vectors, under

the name of Tanimoto coefficient or Extended Jaccard coefficient. The for-

mula is the following:

Tanimoto(x,y) =
x · y

‖x‖2 + ‖y‖2 − x · y
(1.4)

In case of binary vectors, the Tanimoto coefficient coincides with the Jaccard

coefficient.

1.6 Memory Based Collaborative Filtering

In memory based techniques, the missing ratings for user-item couples are

inferred on the basis of their neighbors using some sort of heuristic or sim-

ilarity measure (see Appendix 1.4). These techniques directly use the given

ratings in order to compute the predictions and consequently they are both

easy to implement and to explain, and were among the first collaborative

filtering algorithms.

1.6.1 Top Popular

Top Popular is a non-personalized technique, which means that recom-

mends the same set of items to every user regardless of the user’s profile. The

top popular algorithm simply recommends the items to every user, ordering

28

Chapter 1. State of the art

Figure 1.6.1: The long tail model.

them by their popularity (i.e. the number of interactions for each item)5. This

heuristic is often used as a baseline model for comparing the performance of

other approaches.

RS datasets tend to be very popularity biased, most of the interactions involve

only a small portion of the dataset, and collaborative techniques often em-

phasizes the popular items in the so called “short head” over “long tail” items

[46, 1] that are popular among small groups of users (Figure 1.6.1).

1.6.2 User k-Nearest Neighbors

User based collaborative filtering (UserKNN) is a neighborhood method that

computes the similarity between the rows of the rating matrix, i.e. the sim-

ilarity between the users’ profiles. The idea behind this method is that if

two users, u and v, have similar past user’s profile, it’s likely the items that

are positive interactions for v and are still unobserved for u would represent

good recommendations.

In this setting, the rating for the unobserved user-item pair (u, i) is computed

using the ratings given by the users that are most similar to u. In order to do

that, a similarity metric sim(u,v) should be defined in order to quantify how

much similar is the taste of the two users6. The predicted score, using the

|U | × |U | shaped similarity matrix sim, is then estimated as:

5This can be easily computed as the sum of the item column in the rating matrix.
6Usually, some normalization technique like TF-IDF or BM25 is applied to the rating

matrix before computing the rating matrix.

29

Chapter 1. State of the art

Figure 1.6.2: On the left, a user-based approach identifies the similarity between user 1 and
user 3 and thus suggests to user 3 an item that user 1 rated. On the right, since item 1 and
item 3 are similar and user 3 has interacted with item 3, item 1 is recommended to user 3.

rui =
∑
v∈U rvi sim(u,v)∑
v∈U |sim(u,v)|

(1.5)

1.6.3 Item k-Nearest Neighbors

Item based collaborative filtering (ItemKNN) computes the similarity be-
tween items implementing the idea of recommending to user u the items

that are similar to the ones that are in u’s profile. The similarity metric, in

this case, is computed between the columns of the R and has a |I | × |I | shape.

The rating for user u and item i will be predicted as:

rui =

∑
j∈I ruj sim(i, j)∑
j∈I |sim(i, j)|

(1.6)

The difference between item-based and user-based techniques are exampli-

fied in figure 1.6.2.

1.6.4 Neighborhood-Based Graph Models

Another approach for dealing with the recommendation task from a different

perspective consists of using the graph theory.

30

Chapter 1. State of the art

1.6.4.1 Graph Approach Intuition

Network analysis is a versatile tool in uncovering the principles of many com-

plex systems, especially the ones in which the centrality of the information

is in the relationship between the nodes rather than in the nodes themselves.

This perfectly applies to RS. Many technological, physical and biological sys-

tems can be viewed as graphs, with nodes representing the individual entities

and edges capturing the interactions between them. A RS such as the one we

saw in the example in Section 1.1 could be defined, using the graph theory,

as a bipartite, directed and weighted graph. Let’s give some notions to better

understand what this means:

• Graph: a graph (or, equivalently, network) G is an ordered pair of dis-

joint sets (V, E) where V is the set of nodes (or, equivalently, vertices)

and E is the set of edges which is a subset of the cartesian product of

the nodes V ×V .

• Directed graph: a directed graph is a graph in which the edge joining

two nodes has a meaningful direction, that means that if a,b ∈ V the

relationship a→ b (with the arrow representing the edge) has a differ-

ent meaning with respect to a← b (and the two edges can be present

simultaneously). On the other hand, if a→ b and a← b aren’t distinct,

we label the graph as undirected.

• Bipartite graph: a graph G(V ,E) is said to be bipartite if there exists

a partition (V1,V2) such that V1 ∪ V2 = V , V1 ∩ V2 = ∅ and every edge

connects exactly a node of V1 and a node of V2.

• Weighted graph: a weighted graph (sometimes referred to as edge-

weighted graph) is a graph denoted by a triple G(V ,E,W) in which V

is the set of nodes, E is the set of edges and W is the set of weights

(numbers) assigned to each edge.

Let’s take the previous example of a Netflix-like video streaming platform

and try to model the data using the definitions that we just gave.

As previously stated, there are two main types of entities, users and TV

shows, that will be the two types of nodes of our bipartite graph U (set of

users) and I (set of movies, or items in the RS theory). The edges of the graph

capture the relationships between its nodes and in this case we can state that

users interact with movies when they see the movie, hence we can define a

HAS SEEN relationship. In this model, an edge u1 → i1 connecting u1 ∈ U

31

Chapter 1. State of the art

Figure 1.6.3: A possible graph representation of a simplistic movie recommendation engine,
using Neo4j, a popular graph database engine.

to i1 → I represent the fact the user u1 saw the movie i1. An example of

the resulting graph using the former approach (with features incapsulated in

nodes and edges) is in figure 1.6.3.

Our graph is bipartite with heterogeneous nodes and it’s directed, since the

edges are only possible from users to movies, but it’s not weighted yet. In

our Netflix clone, users are able to give a feedback on the movie they see,

so we can store this information at edge level attaching a weight to each edge

representing the preference of the user on that specific movie; the weight will

be an integer number in range 1 to 57. A classical way to store this data is

by using the adjacency matrix A, which is the matricial representation of a

graph with a row for each user node and a columns for each item node; the

values of each cell, if the graph is unweighted, Aij will be 0 if there is no edge

between i and j or 1 otherwise (if the graph is weighted, the 1s are replaced

with the rating given by i to j). So far we only considered interactions, but

we also have access to user and items features. This kind of information can

be incapsulated in our graph at node level or adding feature nodes that are

7Notice that in this case it makes no sense to have 0 weighted edges, since in the rating
matrix a 0 means that user did not interacted with the item and this naturally reflects in the
graph by not having an edge between that user and that item node.

32

Chapter 1. State of the art

connected to the specific node that has that property8. Once we have put our

data in the graph structures, we can handle the problem as a link prediction
one, whose goal is trying to predict the missing edges between users and

items.

This graph approach is really helpful for visualization and became very pop-

ular in the last few years thanks to the great interest in graph machine learn-

ing models such as GraphSAGE [18, 61]. It is evident that the two approaches

are completely interchangeable (the rating matrix in figure is exactly the

weighted adjacency matrix of the graph in Figure 1.6.3) and are indeed two

equivalent ways to deal with the same problem, but from two different per-

spectives.

1.6.4.2 Graph Collaborative Filtering

Graphs are a powerful abstraction that enable many algorithmic tools from

the network domain providing a structural representation of the user-item

interactions. Since the sparsity of the user rating matrix causes significant

challenges in the computation of similarities, graph methods try to tackle

the problem from a different perspective.

In the setting of user-based collaborative filtering, the neighborhood of a user

is defined by the set of users that are encountered frequently in a random walk
starting from that user (the same applies for an item-based setting); the ex-

pected frequency the random walks can be measured using one of the many

algorithms like PageRank [43] or SimRank [30] that were born primarily to

respond to the needs of Web-ranking applications and search engines.

The concept of neighborhood has been defined using the concept of random

walk. A random walk process on a graph can be seen as a discrete ”memory-

lessness” Markov chain, where an hypothetical walker starts on a node and

at each time step it chooses one of its neighbours at random and moves to it

without any dependence on the past actions and states. A Markov chain is

characterized by a special matrix called transition matrix P , a non-negative

real valued matrix in which every cell Pij contains the probability of reaching

the node j starting from i. The transition matrix P can be obtained by the

(possibly weighted) adjacency matrix:

8Note that adding ”Feature” nodes would make the graph tripartite. Feature nodes will
also have their own adjacency matrix with users and items.

33

Chapter 1. State of the art

Pij =
Aij∑
k∈V Aij

(1.7)

There are several methods, such as P 3
α and RP 3

β , that use the transition matrix

that we just defined in order to compute user/item collaborative filtering.

1.7 Model Based Collaborative Filtering

Model based methods differentiate from the memeory based techniques as

they often utilize machine learning or data mining concepts in order to make

predictions.

Model based recommenders offer a few advantages:

• Space Efficiency: kNN algorithms require computation that grows with

both the number of users and the number of items. While memory

based methods use the user’s ratings directly to compute the predic-

tions, model based techniques learn a model of the user rating.

• Prediction Speed: for what we just explained about space efficiency,

differently from memory based approaches, these methods do not rely

on the whole dataset every time to compute the predictions and this

makes the recommendation process much faster.

• Avoiding Overfitting: due to their summarization and generalization

approach, these methods often help in reducing the overfitting in the

recommendations.

• Synonymy: in real life, different product/item names can refer to the

similar objects. This latent correlation cannot be identified by kNN

methods.

These methods include naive Bayes, regression and decision trees and latent

factor models.

1.7.1 SLIM

Sparse Linear Method is an algorithm proposed by Ning and Karypis for

top-N recommendations, based on the item-item regression [41]. This fam-

ily of models is referred to as sparse linear models because they encourage

sparsity in the regression coefficients with the use of regularization methods,

learning a sparse aggregation coefficient matrix W , |I | × |I |, using the rating

matrix; more in detail, the W matrix is obtained as:

34

Chapter 1. State of the art

argmin
W

1
2
‖R−R�W ‖2F +

β

2
‖W ‖2f +λ‖W ‖1 (1.8)

While other methods assume to have mean-centered ratings, sparse linear

models assume to have non-negative rating values, hence every value of W is

positive, which makes SLIM more suitable for the implicit feedback setting.

The predicted score for an unobserved pair (u, i) is then calculated as a sparse

aggregation of items that have already been rated by u:

rui =
∑
j∈I
ruj W(j, i) (1.9)

1.7.2 Matrix Factorization

Matrix factorization methods provide a neat way to leverage all row and col-

umn correlations at once to estimate the entire data matrix in a lower di-
mension [34]. The key idea in dimensionality reduction methods is that the

reduced, rotated, and completely specified representation can be robustly es-

timated from an incomplete data matrix. Latent factor models try to explain

the ratings by characterizing both items and users on an arbitrary number

of latent factors inferred from the ratings patterns, exploiting the fact that

significant portions of the rows and columns of data matrices are highly cor-

related. A high correspondence between item and user factors leads to a high

predicted rating and, consequently, to a recommendation.

Matrix factorization models have gained popularity in recent years as they

are able to combine a good scalability with a significant accuracy and are

considered to be state of the art in large scale recommendation tasks because,

differently from other collaborative methods, they also allow the incorpora-

tion of additional data such as implicit feedback, temporal knowledge, con-

text information and confidence levels, simply adding new dimensions to the

existing user-item rating matrix.

In its basic form, MF consists in representing users and items in a latent factor

space of dimension f , using two matrices, namely Q ∈ R|U |×f and P ∈ R|I |×f .

The main challenge is computing the mapping of each item and user to factor

vectors, once we have the mapping the ratings can be computed as follows

(in matrix notation):

R = PQT (1.10)

35

Chapter 1. State of the art

Figure 1.7.1: The basic matrix factorization approach.

Figure 1.7.1 shows a graphical representation of the matrix decomposition.

Researches proposed various methods for learning the P and Q latent matri-

ces.

1.7.2.1 SVD

Singular Value Decomposition is a well-established information retrieval tech-

nique for identifying latent semantic factors matrix and thus producing low-

rank approximations [34, 58]. In the collaborative filtering domain, SVD

requires factoring the rating matrix (Figure 1.7.2):

SVD(R) =U × S ×V T (1.11)

U and V are orthogonal matrices, respectively called left and right singular

matrices, of size m × r and n × r, with r being the rank of the rating matrix.

S is a r × r shaped diagonal matrix with all the singular values of the rating

matrix as diagonal entries. U describes the relationships between users and

latent factors, S represents the strength of each latent factor and V contains

the similarities between latent factors and items. The matrices obtained by

performing SVD are particularly appealing because SVD provides the best

lower rank approximations of the rating matrix in terms of Frobenius norm

[53].

This mathematical process often raises difficulties due to the high sparsity

of ratings, since conventional SVD is undefined when the knowledge about

the matrix is incomplete. E-commerce sites like Amazon have tremendous

amount of users visits per day, and recommending products to these large

number of customers in real-time requires the underlying recommendation

36

Chapter 1. State of the art

Figure 1.7.2: The SVD of the user rating matrix.

engine to be highly scalable. Recommendation systems usually divide the

prediction process into two steps: offline and online. In case of SVD, the of-

fline component requires more time compared to the correlation-based algo-

rithm. Moreover, inaccurate imputation might distort the data and produce

inefficient recommendations and SVD has been shown to be prone to overfit-

ting. Several versions of SVD have been proposed in literature to overcome

these drawbacks.

1.7.2.2 Funk SVD

This algorithm was proposed by Simon Funk as a special kind of SVD that

loops through all the ratings in the training set. Funk SVD uses the following

regularized loss function:

∑
(u,i)∈κ

(rui − qi · pu)2 +λq ‖qi‖2 +λp ‖pu‖2 (1.12)

The idea is learning the latent factors in such a way that they can mimic the

known ratings as closely as possible. Funk SVD popularized the stochastic

gradient descent optimization for MF. Funk SVD proved to be prone to over-

fitting, i.e. to approximate just the known ratings but failing to provide good

estimates for the unknown ones, so choosing an appropriate value for λ is

crucial.

1.7.2.3 ALS

Alternating Least Squares optimization method basically iterates over the

following steps until convergence is reached:

37

Chapter 1. State of the art

• Step 1: keeping P fixed, solve for each of the |I | rows ofQ by treating the

problem as a least-squares regression problem, using only the observed

ratings. The objective function to maximize is :

∑
u:rui>0

rui −
f∑
s

Pus ·Qis

2

(1.13)

• Step 2: the same thing is done for the items, keeping Q fixed and solv-

ing for each of the |U | rows of Q by treating the problem as a least-

squares regression problem, using only the observed ratings. The ob-

jective function is the counterpart of in Equation 1.13 with respect to

items.

1.7.2.4 Bayesian Personalized Ranking

Rendle proposed BPR-OPT as a generic optimization criterion [51], derived

from the Bayesian analysis of the task, that can be applied to a wide vari-

ety of algorithms, ranging from Matrix Factorization to adaptive k-nearest-

neighbors. Since this algorithm is the main focus of this thesis, we will go

more into more detail in the next section.

1.8 Bayesian Personalized Ranking

All the methods that we presented so far are designed for the top N item pre-

diction task of personalized ranking, but actually none of them is directly opti-
mized for ranking. The great innovation of the Bayesian Personalized Ranking

(BPR) criterion is dealing with the problem of recommendation as a ranking
task, thus maximizing the probability of correctly ranking the unseen items

of a user.

The BPR criterion is formulated for implicit feedback scenarios, where the

behaviour of the user is not explicit but needs to be inferred9 as discussed in

Section 1.2.1.

The usual approach for item recommenders is to predict a personalized score

rui for each item, reflecting the preference of the user for the item. Items are

then ranked by sorting them according to that predicted score. In implicit

settings, the unobserved interactions are a mixture of negative and missing

(i.e. possibly future positives) values. The way typical machine learning

9The criterion can be applied to explicit dataset thorough the process of implicitization
previously discussed.

38

Chapter 1. State of the art

Figure 1.8.1: Missing as negatives assumption.

methods for item recommendation deal with the missing values issue is to

ignore the hidden distinction between negative and missing values (Figure

1.8.1). The training set is created as the pairs (u, i) with positive label 1 and

the rest of the dataset is considered negative. This way, the machine learn-

ing method is optimized to predict the value 1 for elements that are positive

interactions in the training set and 0 for the rest. What this means is that

a model with enough expressiveness that perfectly fits the training data be-

comes unable to rank, as the missing interactions that could possibly become

positive in the future are presented as negative feedback. The only reason

why this does not happen most of the time is that these methods heavily rely

on regularization techniques to prevent overfitting10 [51].

The approach proposed by Rendle is novel and different: rather than scoring
single items, the model parameters are learned by pairwise ranking, where

the goal is trying to optimize the ranking between item pairs for each users. This

idea can be formulated as a real life example in a movie recommender system

such as Netflix in which the user can decide which movie to watch within a

certain set, expressing the preference of an item over another rather than an

absolute scored preference. From the original dataset S, the construction of

the training data DS is based on the following assumptions:

• for every observed pair (u, i), the user prefers this item over all other

non-observed items;

• for two items that a user viewed, we cannot infer any preference (since

we are in an implicit setting);

10An overfitted model is a statistical model that contains more parameters than can be
justified by the data and lacks of generalization abilities.

39

Chapter 1. State of the art

Figure 1.8.2: The BPR approach for constructing the training data.

• for two items that a user did not view, again we cannot infer any pref-

erence.

The result of this process is exemplified in figure 1.8.2. The training data can

be formalized as:

DS :=
{
(u, i, j) | i ∈ I+

u ∧ j ∈ I\I+
u
}

(1.14)

With I+
u being the set of items the user u interacted with. This approach has

the big advantage of distinguishing the negative layer from the missing
layer, since the missing values between two non-observed items are exactly

the item pairs that have to be ranked in the future. Moreover, the dataset

perfectly suits the ranking objective, DS is a subset of the global preference

of the user that needs to be inferred.

The Bayesian formulation of the personalized ranking task is maximizing the

following posterior probability:

p (Θ |>u) ∝ p (>u |Θ)p(Θ) (1.15)

where Θ represents the parameter vector of an arbitrary model class and >u

40

Chapter 1. State of the art

Figure 1.8.3: The sigmoid function.

is the desired latent personalized ranking for user u. In order for the ranking

>u to be a total ordering, it needs to meet three sound properties:

• totality: for each couple of distinct items i and j, either i >u j or j >u i;

• anti-symmetry: for each couple of items i and j, if i >u j and j >u i than

i and j are the same item (i = j);

• transitivity: for each triplet of items i, j and k, if i >u j and k >u k than

also i >u k.

To achieve these properties, there are two main and fundamental assump-
tions:

1. all the users are expected to act independently;

2. the ordering of each pair of items (i, j) for a specific user is independent
of the ordering of every other pair.

With these assumptions we can rewrite the previous probability as product

of densities: ∏
u∈U

p (>u |Θ) =
∏

(u,i,j)∈DS

p (i >u j |Θ) (1.16)

In order to meet the previous sound properties, we now need to define a

scoring function representing the probability that user u prefers i over j:

p (i >u j |Θ) := σ
(
x̂uij(Θ)

)
(1.17)

Where:

• σ is the logistic sigmoid function (Figure 1.8.3):

σ (x) :=
1

1 + e−x
(1.18)

41

Chapter 1. State of the art

• x̂uij(Θ) is a real valued function in the parameters Θ which models the

user’s preferences between the two items i and j. In practice, the BPR

delegates to an external function the job of modeling this probability.

This function is totally generic since, as we already said, the BPR is

just an optimization criterion which can be applied to any underlying

algorithm that’s in charge of computing this preference. This function,

together with the two previous assumptions about the independence

of the interactions, assures that the personalized ranking to be learned

meet the totality, anti-symmetry and transitivity properties (i.e. it is

a total ordering) [51]. Since the dataset is composed by triples, the

pairwise prediction x̂uij can be expressed as the difference of the two

single predictions:

x̂uij := x̂ui − x̂uj (1.19)

The criterion can now be finally formulated as:

BPR-OPT :=
∑

(u,i,j)∈DS

lnσ
(
x̂uij

)
−λΘ‖Θ‖2 (1.20)

where:

• i is a positive item for user u, i ∈ I+
u ;

• j is not a positive item for user u, j ∈ I\I+
u ;

• λΘ are regularization parameters that depend on the model (e.g. Matrix

Factorization).

Algorithm 1 The LEARN-BPR algorithm.
procedure LEARN-BPR(DS ,Θ)

initialize Θ

repeat
draw (u, i, j) from DS

Θ←Θ +α
(
e
−x̂uij

1+e−x̂uij
· ∂∂Θ x̂uij +λΘ ·Θ

)
until convergence
return Θ̂

end procedure

The LEARN-BPR algorithm is illustrated in Algorithm 1. The BPR criterion is

42

Chapter 1. State of the art

differentiable, so gradient descent based algorithms 11 are the logical choice

for maximization.

1.8.1 BPRMF

We already presented MF in Section 1.7.2, stating that SVD is in general the

best approximation with respect to least-square [51, 34, 52], but for the rank-

ing task the BPR criterion is a far better choice. As we just saw, the BPR

criterion delegates to an external model the job of defining and computing

the scoring function x̂uij , BPRMF is the matrix factorization model optimiz-

ing the criterion in Equation 1.20.

The prediction formula can be rewritten using the notation in the previous

section and the one in Section 1.7.2:

x̂ui =
f∑
k=1

puk · qik (1.21)

The model parameters Θ are the weights of the matrices P and Q that rep-

resent the user and item features in the latent space. In the LEARN -BPR

procedure in Algorithm 1, the only thing required is knowing the derivative:

∂
∂θ
x̂uij =

(
qik − qjk

)
if θ = puk

puk if θ = qik

−puk if θ = qjk

0 else

(1.22)

With this in mind and using regularization constants for the users and items

features, we can adopt MF as the underlying model for learning the BPR

criterion.

11Gradient descent is a very popular optimization technique used to find a local minimum
of a differentiable function.

43

Chapter 1. State of the art

1.9 BPR Sampling

It should be clear at this point that at each step the LEARN-BPR algorithm

(Algorithm 1) draws a triple composed by:

• a user u;

• a positive item for the user i;

• a negative item j.

This process is known as sampling. Sampling is a widely discussed topic that

concerns several tasks, spanning from Computer Vision to Natural Language

Processing models, and it hardly affects the algorithm performance and con-

vergence speed.

The original LEARN-BPR introduced a stochastic gradient descent algorithm

that randomly chooses the triples from a uniform distribution with a boot-

strap sampling strategy with replacement [51]. In recent years, more sophis-

ticated techniques have been proposed that try to understand the best way to

extract the negative samples (the j item in the triple (u, i, j)) in order to both

reduce the convergence time and the overall complexity.

1.9.1 Uniform Sampling Issues

The problem with the proposed uniform sampler, that led Rendle and Freuden-

thaler to publish a paper directly focused on sampling [50], is that since sam-

ples are extracted from a uniform distribution, most of the triples extracted

are usually not very informative and this fact dramatically slows the conver-

gence and limits the recommendation quality. As we briefly discussed in

Section 1.6.1, the item popularity in RS typically follows a tailed non uni-

form distribution, in which few items are very popular and the majority of

the dataset have fewer interactions. Randomly sampling triplets from the

dataset means that the sampler is showing to the algorithm triples that are

too easy to rank, thus causing difficulties in the learning process. We are

going to explore this with an example.

1.9.1.1 General Intuition

Let’s consider a scenario of a music recommendation system like Spotify, with

|U | being the set of users of the platform and |I | the set of songs. Sampling

triplets for learning the BPR criterion in this setting means extracting:

44

Chapter 1. State of the art

Figure 1.9.1: This image shows the uniform sampling process that randomly extracts a pos-
itive interaction and a negative one, resulting in a too easy ranking thus in a poor learning
process.

• u, a user;

• i, a song that user u liked in the past;

• j, a song that u did not interact with either because the user doesn’t like

it or because the user haven’t had the chance to listen to it yet.

Since we can expect that the song popularity distribution follows the long

tail model explained in Section 1.6.1, most of the triples extracted by a uni-

form sampler will present to the algorithm the preference of user u for the

probably popular song i with respect to the probably niche song j; moreover,

this kind of sampling strategy does not take into account the taste of user

u. Let’s imagine that user u is into 70s/80s Rock music; a random sampler

that extracts “I can’t get no satisfaction” by The Rollings Stones as positive

example and “Rozzi” by Paky12 as negative example is not teaching much

to the algorithm, as the task of predicting that u prefers the Stone’s song is

way too easy and even a top-popular baseline can succeed in predicting this

user preference (Figure 1.9.1). In order to make the algorithm really learn the

user’s preference, the sampler needs to extract trickier and more informative

negatives: “I can’t get no satisfaction” by The Rollings Stones or “Born in the

U.S.A.” by Bruce Springsteen?, “Welcome to the Jungle” by Guns N’ Roses

or “Free Bird” by Lynyrd Skynyrd? Asking these questions to the algorithm

12Paky is an Italian trap/rap artist born in 1999.

45

Chapter 1. State of the art

makes it understand u’s taste on a deeper level.

1.9.1.2 Gradient Magnitude

From a mathematical standpoint, the previous example can be explained by

the fact that after a few training epochs the model is not able to learn any-

thing more due to the too small gradient magnitude. In machine learning

and data mining, especially in the context of artificial neural networks [25,

5], vanishing gradient is a widely discussed topic that affects those techniques

that use gradient descent based methods and backpropagation13 and verifies

when the gradient is so small that it practically prevents the models weights

from changing their values. In the context of BPR, the logical choice for op-

timizing the criterion is stochastic gradient descent since the criterion is dif-

ferentiable and batch updates would be too computationally expensive; as

we noted in the previous example though, uniformly sampled negative items

are very likely to be ranked correctly below a (random) positive item and thus

the gradient of the pair is near 0 [50]. From Equation 1.20, we can compute

the gradient with respect to the model parameters as follows:

∂BPR−OPT
∂Θ

=
∑

(u,i,j)∈DS

∂
∂Θ

lnσ
(
x̂uij

)
−λΘ

∂
∂Θ
‖Θ‖2

∝
∑

(u,i,j)∈DS

−e−x̂uij

1 + e−x̂uij
· ∂
∂Θ

x̂uij −λΘΘ
(1.23)

From this we can obtain the stochastic gradient descend single update for the

model parameters, which is the one in Algorithm 1:

Θ←Θ +α
(
e−x̂uij

1 + e−x̂uij
· ∂
∂Θ

x̂uij +λΘ ·Θ
)

(1.24)

From this formula, we can observe that, at each step, the gradient ∂
∂Θ x̂uij has

a multiplicative factor that can be rewritten using Equation 1.19:

e−x̂uij

1 + e−x̂uij
= 1− 1

1 + e−x̂uij
= 1− σ

(
x̂uij

)
= 1− σ

(
x̂ui − x̂uj

)
= 1− p (i >u j) = ∆uij

(1.25)

13Popular technique used for training feed-forward neural networks.

46

Chapter 1. State of the art

This quantity depends on how the model is able to discern between the pos-

itive item i and the negative one j for the user u and in particular represents

the probability of incorrectly ranking the pair of items, so it’ll be close to

zero if the model correctly assigns a larger score to item i and close to 1 if, on

the contrary, j is incorrectly assigned a larger score than i. In other words,

∆uij represents the gradient magnitude and can be viewed as a measure of the

influence that a specific sample (u, i, j) has in updating the model parameters

Θ. In particular, if ∆uij is close to zero we have the vanishing gradient condi-

tion that we presented, meaning that the model parameter θ is not affected

by the updating of the sample (u, i, j). This suggests that a great number of

pairwise samples extracted with a uniform sampler are meaningless for up-

dating the model, and only a small number of them are valuable.

What should be clear from this analysis is that sampling meaningful, difficult
and informative negative items is vital for the learning process of the model.

1.9.2 Negative Sampling Classes

After the original BPR paper publication, a few sampling techniques have

been proposed with the purpose of identifying meaningful negative candi-

dates that can increase the gradient magnitude in order to improve the train-

ing phase. Among these methods we can identify some common properties.

1.9.2.1 Static vs Dynamic

The first distinction is determined by how the sampling probability distribu-

tion changes over the training epochs.

• Static sampling techniques adopt a strategy that extracts triples (u, i, j)

from a distribution which is not affected by the training epoch at which

the triple is sampled.

• In dynamic samplers, on the other hand, the sampling probability dis-

tribution is not fixed as it changes during the training. Usually the

distribution is affected by the updates of the model parameters, which

means that the probability of a negative item to be extracted in a spe-

cific instant of training is proportional to its model score at that time

instant (in this case, the sampler is also called adaptive).

The uniform sampler that we described is static, since it randomly chooses

negative instances from a fixed uniform distribution.

47

Chapter 1. State of the art

Let’s compare the two approaches in two key aspects:

1. Complexity Analysis: static samplers are very convenient because sam-

pling from a fixed parametric distribution is simple. We can sample a

rank r from the fixed distribution (e.g. a Geometric distribution) in

O(1) and then retrieve the item in that position again in constant time.

The complexity obviously changes in the case of a dynamic sampler, as

the relative ranks of the items change at each epoch due to the model

updates, thus the scores need to be computed at each epoch.

2. Sample Quality: sampling from a fixed distribution does not take into

account what the model is able to learn during the training (i.e. the cur-
rent belief) and, moreover, a dynamic sampling strategy that uses the

model weights makes the algorithm gradually learn the users prefer-

ence by first sampling simple items and then, as the training continues,

selecting more difficult samples at each epoch. The reason behind this

is that the weights are usually initialized at random with some seed,

hence the first round of sampling will be quite close to a standard uni-

form sampling; at each epoch the model weights are updated and the

distribution of the scores becomes more defined so the sampling prob-

ability of the items will change accordingly, resulting in process that

is somehow similar to fine-tuning the algorithm on the most difficult

items.

1.9.2.2 Global vs Context-dependent

In global sampling techniques, the probability for an item to be sampled is

independent from the current user and positive item in the triple. For exam-

ple, the uniform sampler is global, in fact when choosing the negative item j

for the positive interaction (u, i) it extracts a negative interaction completely

at random regardless of u and i.

On the contrary, context-dependent strategies employ the context in the

sampling process, that means that the probability for an item to be extracted

changes for each context, hence we have a different distribution for each

different user (or even for each different pair (u, i)).

1.9.2.3 Single-feedback vs Multi-feedback

As we discussed in Section 1.2, different types of information can be collected

in a recommender system, from the simple non-scored interactions to the

48

Chapter 1. State of the art

user or item features to the external context.

The sampling techniques that, like the uniform sampler, only take into ac-

count the historic interactions between users and items are called from now

on single feedback methods; these methods are the most general ones, as

they can always be applied to every RS dataset, since they only need the user

rating matrix.

With the term multi-feedback sampling techniques instead we refer to all

those techniques that cannot be applied to every dataset and that usually

employ information that is highly domain specific. These methods can in-

clude content information like the item features rather than different types

of feedback (e.g. clicks vs purchases) rather than external information like

images or videos. As these techniques are domain specific and exploit ad-

ditional information, they usually greatly improve the model’s performance

compared to the standard single-feedback sampling methods that only use

the rating matrix, at the cost of being not always applicable.

1.9.2.4 Heuristics vs Model Based

So far we only talked about some generic probability distribution for the neg-

ative items, distinguishing the techniques on the basis of the properties of the

distribution, but we haven’t yet explored how these distributions are gener-

ated.

Heuristic samplers are a class of samplers that define the probability sam-

pling distribution using heuristics: randomly (i.e. the uniform sampler), uti-

lizing the popularity, the scores etc. In contrast to the heuristic samplers,

popular sampling methods delegate to an external model the job of learning

the optimal sampling distribution for training the original model; we will

refer to these techniques as model based samplers.

The growth of model based sampling techniques was heavily boosted by the

rise of Generative Adversarial Networks (GANs) [8, 59, 14], which is a class of

Machine Learning techniques proposed by Bengio and Goodfellow in which

two models (specifically, two neural networks) contest each other in a minmax
game. A generative model G tries to capture the data distribution and trick a

discriminative model that learns to determine whether a sample comes from

the model distribution or the data distribution (Figure 1.9.2). This concept

constitutes one of the most successful popular trends in the machine learning

49

Chapter 1. State of the art

Figure 1.9.2: The architecture of GANs applied to Computer Vision. The generator output
is connected directly to the discriminator input. Through the mechanism of backpropaga-
tion the discriminator’s classification provides a signal that the generator uses to update its
weights.

Figure 1.9.3: This images shows an application of GANs to computer vision. The faces are
examples of photo-realistic GAN-generated faces, taken from a recent paper from 2017. [32]

field in recent years14 and it is the same one adopted by some of the model

based sampling techniques that have been proposed in the context of BPR,

like the very popular framework IRGAN [59, 7, 11]. In these approaches,

the generative model is exactly the sampler, that incrementally learns to fit

users’ preference distribution and thus adaptively generate positive-like in-

formative instances [7].

Although these techniques are very attractive, they pose a lot of challenges

and won’t be explored in depth in this thesis. It should be easy to understand

that, for the most part, these samplers are incredibly difficult to implement

14GANs have been employed also in various domains outside the academic area, they es-
pecially gained interest and success in arts and music.

50

Chapter 1. State of the art

and tune, they need a huge quantity of training samples and they are ex-

tremely slow and computationally expensive since training a GAN means

training two different models and tune two different sets of hyperparameters

[56]. Moreover, especially in the case of adversarial samplers, model based

techniques tend to yield a biased estimate of the gradients since its uneven

sampling distribution will skew the instance contribution, resulting in sub-

optimal results [7] so that the model will be biased to over-fit the difficult

positive-like negative instances that are likely to be adopted by the user in the

future. Lastly, it should be noted that even though deep learning approaches

are very appealing and are claimed to be the state of the art in nearly every

ML domain, the enthusiasm that surrounds these techniques is not always

supported nor confirmed by experimental results; this is particularly true

for the top-n recommendation tasks, as precisely discussed in a recent paper

proposed by Dacrema et al. [9], in which properly tuned collaborative base-

lines like the ones discussed in Section 1.3.1 still perform better than deep

learning based methods.

51

Chapter 1. State of the art

1.10 BPR Sampling Algorithms

In this section we introduce the more significant and discussed negative sam-

pling techniques for the Bayesian Personalized Ranking. Here we only deal

with those techniques that are strictly proposed to work with the classical for-

mulation of the BPR in Equation 1.20 and that only consider the user rating

matrix (i.e.single-feedback and heuristics) due to their generality.

1.10.1 Uniform Sampling

This is the original sampling algorithm proposed in the BPR paper, which we

have already discussed extensively in section 1.9. According to the previous

definitions, this sampling technique is static and global, as the sampling dis-

tribution does not change over time and is not affected by the specific positive

interaction.

Rendle et al. also proposed to use a uniform distribution with a bootstrap

sampling approach with replacement so that stopping can be performed at

any step [51], since the number of the interactions is usually so big that a

full cycle over all the interactions at each epoch is not feasible, so a bootstrap

approach is the one proposed. We want to point out now that this bootstrap

approach is affecting the positive sampling strategy, which we will not cover

in depth since we are interested in understanding the possibilities and limi-

tations of the current negative sampling strategies.

1.10.2 Popularity Oversampling

Considering that item distribution of the items in a RS typically follows the

long tail model (Figure 1.6.1), using a uniform strategy is not very efficient

since most of the pairs will be uninformative, as explained Section 1.9.1. The

popularity oversampling strategy [50] tries to address the issue by using a

non uniform distribution that favors the sampling of the popular negative

items. In order to oversample popular items, one could use the empirical
distribution of the item popularity or a parametric distribution.

Whether one chooses the empirical distribution or its parametric counter-

part, the idea behind it is exactly the same, albeit the parametric one is usu-

ally preferred due to its readability. This sampling technique is static since

the sampling distribution is defined once for all before the sampling process

begins and never changes and does not take into account how the estimated

rank of an item changes during learning. It is also global as the sampling

52

Chapter 1. State of the art

does not depend on the context but only on the overall popularity of the

items.

1.10.2.1 Empirical Distribution

In the empirical case, the sampling distribution is defined by how many times

the item appeared as a positive interaction in the dataset:

p(j | u) ∝
∣∣∣{(u′ , j ′) ∈ S : j = j ′

}∣∣∣ (1.26)

Designing a sampler for drawing a negative candidate for the triple (u, i,?)

is easy, as the sampler can simply extract an observation (u′ , j) uniformly

and discard u, assuming that (u,j) < S (i.e. u did not interacted with j). The

procedure is showed in Algorithm 2; the input (u, i) is the positive interaction

uniformly selected from the observations S.

Algorithm 2 Empirical Popularity Oversampling strategy.
procedure EmpP opOversampling(u, i)

draw (u′, j) uniformly from S, with j ∈ I\I+
u :

return negative item j for sample (u, i, j)
end procedure

1.10.2.2 Parametric Distribution

If one decides to use a parametric distribution, the usual choices are analyti-

cal laws that are very close to the long tail model, as the Geometric or Zipf15

distributions [50]. Let’s take as example the Geometric distribution with the

following formulation:

p(j | u) = γ(1−γ)r(j), γ ∈ (0,1) (1.27)

this can also be rewritten as:

p(j | u) ∝ exp(−r(j)/λ), λ ∈R+ (1.28)

15Zipf’s law, proposed by the American linguist George Kingsley Zipf, refers to the fact
that for data types the rank-frequency distribution is an inverse relation.

53

Chapter 1. State of the art

where r(j) is the rank of item j according to the global popularity and λ is a

parameter that identifies the expected rank in the distribution. In this case,

the sampler first extracts a rank r from the Geometric distribution and then

returns the item j on position r according to the item popularity (Algorithm

3).

Algorithm 3 Parametric Popularity Oversampling strategy.
procedure P aramP opOversampling(u, i)

sample r from the Geometric distribution;
get j ∈ I\I+

u in position r in the popularity ranking;
return negative item j for sample (u, i, j)

end procedure

1.10.3 Personalized Popularity Oversampling

This technique [50] stems from the same idea as the previous sampling method.

Such method is still static but it is different in the fact that this time the sam-

pling distribution is context-specific because in this case, instead of defining

a global popularity distribution, the sampling distribution is personalized

for each user:

p(j | u) ∝
∣∣∣{(u′ , j ′) ∈ S : u = u′ , j = j ′

}∣∣∣ (1.29)

Such distribution, even if logically better than the previous one as it takes the

user into account, is not really applicable in real situations as it is defined on

very few samples due to the sparsity of the user rating matrix.

1.10.4 Imbalance Rejection Sampling

This sampler is a slight variation of the popularity oversampling that acts as

a ”rejection sampler”.

Rejection sampling (also commonly called ”acceptance-rejection method”)

is a general method applied in statistics and numerical analysis whose aim

is sampling points independently from a probability density function f (x)

defining an envelope function g(x) that acts like a proxy distribution from

which we can sample[13].

54

Chapter 1. State of the art

Algorithm 4 The Rejection sampler that uses the Imbalance Value.
procedure ImbRejectionSampling(u, i, s,π)

initialize selected j = −1, max pop = −1
for iter← 1 to s do

draw j uniformly from I\I+
u

if π(j) > max pop then
max pop = π(j)
selected j = j

end if
reject ratio = 1−min

{
π(j)
π(i) ,1

}
if random.unif orm() > reject ratio then

selected j = j
break

end if
end for
return negative item j for sample (u, i, j)

end procedure

In [65], the authors analyze the problem from the graph theory perspective

shown in section 1.6.4.1. They define the ”vertex-level imbalance” as the issue

that happens when the number of times that a vertex (i.e an item i) appears in

observed edges (i.e. an arc from user u to item i) is extremely smaller or larger

than that in the unobserved ones (i.e. the class imbalance problem already

mentioned). In practice, the imbalance value is the ratio of an item positive

occurrence over the negative one. This quantity is obviously intrinsically re-

lated to the the vertex degree, which is the item’s popularity. The key insight

of this sampler is that it aims at favoring the sampling of negative items with

a larger degree than the positive item i, so that the probability distribution

changes according to the positive item in the sample. The reason behind this

is that ranking a very popular item (the negative one) versus a less popular

one (the positive one) should be a difficult task, thus the gradient should be

close to 1. The pseudocode of the procedure is in Algorithm 4.

As you can see, the algorithm takes two inputs: an integer s and a function π.

The meaning of s is the number of negatives to extract (the ”max shots””) to

use, it’s an hyperparameter to tune; a higher smeans an increased probability

of finding a difficult negative item at the cost of increasing the training time.

The function π is defined as the global popularity of the items. From the

55

Chapter 1. State of the art

pseudocode, we can point out that the sampling returns in two cases:

1. if it finds a negative item j that has a greater popularity with respect to

the positive item i sampled;

2. if it reaches the max shots, then it returns the item with max popularity.

Notice that the first condition makes this sampler an actual rejection sam-

pler. With respect to the notation in the previous sections, we can define this

sampling technique as static and context-dependent.

1.10.5 VINS

Algorithm 5 VINS.
procedure V INS(u, i,max iterations, s,π,ε)

initialize selected j = −1, max score = −1inf
for iter← 1 to max iterations do

j = ImbRejectionSampling(u, i, s,π)
xuji = xuj − xui + ε
if xuj > max score then

max score = xuj
selected j = j

end if
if xuji > 0 then

break
end if

end for
ri =

⌊
Z

min(max iterations,iter)

⌋
return negative item j for sample (u, i, j), wui(ri)

end procedure

VINS stands for Vital Negative Sampler, it’s a sampler proposed on the same

paper [65] that includes the strategy that we just presented. Actually, the

rejection sampler in the previous section is exactly the first phase of the VINS

sampler, while the second phase extends the rejection sampler by considering

the dynamic relative rank position of positive and negative items for finding

more informative negative samples. We can see this sampler as an hybrid

sampler that uses both a static and a dynamic adaptive one.

56

Chapter 1. State of the art

Looking at Algorithm 5, we want to point out two main things. First of

all, similarly to the imbalance sampler in Section 1.10.4, VINS terminates

whether one of the two following condition verifies:

1. the max iterations parameter has been reached. In this case, the sam-

pled negative item is the candidate with largest score;

2. the negative item has a greater score than the positive one (xuji > 0).

The idea is that if we are able to find such a negative item, then the

sample is for certain a difficult one to rank. In [65], this negative in-

stance is called ”violated negative sample”.

The second key aspect that we want to highlight is that, as we can see in

the algorithm, this sampler differentiates from the others that we presented

as it not only returns the triple (u, i, j) but also a number wui . This value is

intended as a measure of the difficulty of finding the negative candidate j as

a sample weight. The exact formula to compute wui is the following:

wui (ri) =
1 + 0.5 ·

(⌈
log2 (ri + 1)

]
− 1

)
1 + 0.5 ·

(⌈
log2(Z + 1)

]
− 1

) (1.30)

where ri =
⌊

Z
min(max iterations,iter)

⌋
and Z =

∑
i∈I π(i). With reference to the BPR

criterion in Equation 1.20, the sample weight acts in this way in the criterion:

∑
(u,i,j)∈DS

wui lnσ
(
x̂uij

)
−λΘ‖Θ‖2 (1.31)

modifying the weight of each sample update in the loss. In particular, the

negative candidate is said to be difficult if it needs a lot of iterations in order

to find the one that breaks the second condition (xuji > 0) or if it reaches

the max iterations parameter; in this case, wui is smaller, thus reducing the

weight of the sample due to the arduousness of finding a difficult one.

VINS is an hybrid sampler, it is both static (in its first phase) and dynamic
(second phase), it is context-dependent and adaptive and applies a dynamic
sample weighting since the weight is not statically defined but needs to be

computed at each iteration. From a complexity point of view, it is clear

that VINS is very much slower and computationally expensive, and this also

highly depends on the s and max iterations parameters. Obviously larger

values should give better results, but they also have a more significant im-

pact on the performance.

57

Chapter 1. State of the art

1.10.6 Ranking-aware Rejection Sampling

Wang et al. proposed this sampling technique [66] in order to speed up the

training of BPR and LambdaRank16 without having huge impact on the per-

formance. This paper was published one year before the Rendle paper fo-

cused on sampling and it is based on the same ideas of finding a dynamic

adaptive sampler to improve the static ones. While Rendle proposed an in-

tegrated framework to reduce the complexity, Wang et al. dealt with the per-

formance issue by suggesting an approach that samples only a small group

of candidates in an uniform manner and then extracts the negative candidate

according to a rejection strategy that uses a sampling weighting function g(xi),

which can be a linear or polynomial function, that depends on the relative

ranking xi of item i according to the current model scores. This sampling is

dynamic, adaptive and context-dependent and, even if dynamic sampling

is slower due to the computation of the item scores, offers great advantages

in terms of performance since it only considers an arbitrary small portion of

the negative items.

1.10.6.1 Linear Weigthing Function

This sampling algorithm takes as input the current positive interaction (u, i),

a parameter β that identifies the rejection probability and a scoring function

s, which in our case is the model itself.

Algorithm 6 Sampling strategy that uses a linear weighting.
procedure RankingAwareRejectionLinear(u, i,β, s)

draw j and l uniformly from I\I+
u

compute the scores s(j) and s(l)
if s(j) > s(l) then

return j with probability 1
1+β , l otherwise

end if
return l with probability 1

1+β , i otherwise
end procedure

Therefore, the probability for an item j to be extracted is the following:

16Class of algorithms proposed by Microsoft researchers in [6].

58

Chapter 1. State of the art

pj =
1

1 + β
Pr(s(j) > s(l)) +

β

1 + β
Pr(s(j) ≤ s(l))

∝
(
1− xj

)
+ βxj = −(1− β)xj + 1 ≡ g

(
xj

) (1.32)

In this case the time complexity is significantly lower with respect to com-

puting all the item scores, as it is O(1) compared to O(I\|I+
u |).

1.10.6.2 General Polynomial Weighting Function

This version of the sampling algorithm is exactly the same as the previous

linear one but extended to a larger number of uniformly sampled negative

candidates. The probability distribution in this case follows a multinomial

distribution:

pj ∝ 1C0
n

(
1− xj

)n
+

n∑
k=1

βkC
k
nx
k
j

(
1− xj

)n−k
(1.33)

In particular, setting all the parameters βk to zero, one obtains a sampler that

extracts the negative item with the largest score among the n+1 selected; this

can be done in O(n+ 1) time complexity.

59

Chapter 1. State of the art

1.11 BPR Variants

The BPR criterion in Equation 1.20 has been revised in various manners for

different reasons. The original BPR starts from a generic implicit feedback

scenario, in which we can only monitor if a user interacted with an item or

not. As already discussed in section 1.2, in real-world scenarios we are typ-

ically able to track multi-feedback information like clicks, view times, pur-

chases etc. and external contextual information like item properties, social

connections etc. Some of the following algorithms take into account this aux-

iliary domain specific information in order to better formulate the criterion

for the task at hand, while other try to improve certain aspects of the algo-

rithm.

In this section we want to briefly outline some of the more interesting deriva-

tions, without going into too much detail, just to give some intuitions that can

help understanding the aim of this work.

1.11.1 AOBPR

This [50] was the article written by Rendle and Freudenthaler in order to

improve the sampling technique of the BPR. The key aspect of this research

is what we discussed in Section 1.9.1.

Rendle and Freudenthaler propose to use the model scoring function to de-

fine the sampling distribution. This approach would make the sampling dy-
namic, adaptive and context-dependent. The idea is similar to the ranking

aware rejection sampling and to VINS, in the sense that ideally we want to

choose negative items with large scores because they increase the gradient

magnitude ∆uij . Instead of formulating the problem using the scores, it is

better to use the concept of ranks as they represent an absolute value. The

sampling probability for a negative item j to be extracted is:

p(j | u) ∝ exp(−r̂(j | u)/λ), λ ∈R+ (1.34)

with r̂(j | u) being the expected rank and λ the parameter of the exponen-

tial distribution. The great difference between this algorithm and the ones

proposed in Sections 1.10.5 and 1.10.6 is that in this case the distribution

probability is defined over all the negative instances. Consequently, in each

iteration, in order to extract the negative items all the scores need to be com-

puted from scratch and this highly increases the training time, so much that

60

Chapter 1. State of the art

it becomes unfeasible. In fact, if we call Tpred the time for computing a score,

a dynamic sampler that extracts a rank r and than needs to compute all the

scores increase the complexity by a factor O
(
|I | · Tpred + |I | log(|I |)

)
.

To overcome this issue, Rendle et al. designed an efficient framework, com-

monly called AOBPR (Adaptive Oversampling BPR), that is able to approxi-

mate the sampler in Equation 1.34 in amortized time using some mathemat-

ical transformations in the context of matrix factorization models.

1.11.2 GBPR

Group Preference Based Bayesian Personalized Ranking (GBPR) is a BPR

variant proposed by Pan and Chen in [45]. This work is based on the fact

that the two assumptions of the BPR discussed in Section 1.8, namely (i) the

individual pairwise preference over two items and (2) independence between two
users may not always hold. As a response to the possible violations of these

two fundamental assumptions, the authors propose a new assumption and

introduce the notion of group preference as the “overall preference score of a

group of users on an item” [45], in contrast with the individual preference that

is the preference score of a user on an item. The assumption is that the group

preference G ⊆ U tri on an item i is likely to be stronger than the individual

preference of a user over that item. This idea is also supported by the fact

the users tend to be influenced by other users. The GBPR criterion is the

following:

GBPR(u) =
∏
i∈I tru

∏
j∈I tr\I tru

Pr
(
r̂Gui > r̂uj

) [
1−Pr

(
r̂uj > r̂Gui

)]
(1.35)

1.11.3 PRIS

This [37] recent article by Chen et al. introduced a new ranking loss based

on ”importance sampling” so that more informative negative samples can be

utilised better. Among the various things discussed in the paper, the key

aspect we should focus on is that it points out one important problem in

BPR: it ignores the negative confidence, so that all negative items are treated

equally. In their PRIS (Personalized Ranking with Importance Sampling)

framework, the probability of an item being negative is modeled using the

model scores. Recalling that σ (x̂uij) represents the probability for user u to

prefer item i over j, a higher σ (x̂uij) means a lower probability for j to be

negative. Thus, the probability of an item j being negative can be expressed

61

Chapter 1. State of the art

as:

P (j | u, i) =
exp

(
−x̂uij

)
∑
j ′∈I\Iu exp

(
−x̂uij ′

) (1.36)

This value is than used as sample weight in the loss as follows:

∑
(u,i,j)∈DS

P (j | u, i)× lnσ
(
x̂uij

)
−λΘ‖Θ‖2 (1.37)

From the equation above, we can see that PRIS pays more attention those

unobserved items that present higher negative probability. We can immedi-

ately see that the probability in Equation 1.36 is extremely time consuming

to compute due to the very large number of unobserved items (we already

said that the user rating matrix is often very sparse), that’s why the authors

changed the BPR loss to make it more efficient.

1.11.4 Graded Implicit Feedback

Lerche and Jannach adapted the BPR to scenarios in which we can exploit

additional information about the interactions between users and items, such

as the date or the number of times that a certain interaction happened [36].

They point out that the original dataset definition in Equation 1.14 is only

able to encode single, positive-only statements like non-repeated item pur-

chases or “like” statements on social platforms. For this reason, they propose

a different dataset generation strategy:

D++
S := {(u, i, j) | pweight (u, i) > pweight (u,j), i ∈ I, j ∈ I} (1.38)

that takes into account the weight of a sample. The weight of a sample can

be the number of times that an interaction occured or a number associated

to how recent an interaction is. Each weighting strategy identifies a different

model. This idea is also related to [12] by Gantner et al. for the KDD Cup17

2011, which proposes a weighted BPR (WBPR) that takes into account the

item popularity in order to balance the contribute of each single triple.

17The KDD (Data Mining and Knowledge Discovery) Cup is a competition organized every
year by ACM Special Interest Group on Knowledge Discovery and Data Mining since 1997.
More information can be found at https://kdd.org/kdd-cup.

62

https://kdd.org/kdd-cup

Chapter 1. State of the art

Figure 1.11.1: The image represents the architecture of the VBPR framework.

1.11.5 MF-BPR

Pagano et al. took inspiration from the previous approach by extending the

BPR sampling method, that equates the feedback sources, with different “lev-

els”. Their approach exploits multiple feedback sources simultaneously dur-

ing the training process [40]. Additional feedback types are: clicks, views,

likes etc. Each one of this types of feedback strengthens the user profile in a

different manner, and the sampling method can exploit these differences.

In Section 1.8 we described the procedure for creating the training data DS
for the BPR, which basically distinguishes a positive, a negative and a missing

layer. In the MF-BPR (MF stands for Multi Feedback) approach the various

types of feedback are mapped onto various levels that reflect the expected

contribution of each type. Let L =
(
L1, . . . ,Lp

)
represent a given ordered set

of levels such that a feedback in Li is a stronger indicator of interest compared

to a feedback in Li+1, that is Li � Li+1. Then the training data for this methods

can be characterized as follows:

DMF =
{
(u, i, j) | i ∈ IL,u ∧ j ∈ IN,u ∧L ∈ L+ ∧L �N

}
(1.39)

From this dataset, the sampling process is designed according to the different

levels of feedback, so the sampling probability distribution will reflect the

different types of interactions.

1.11.6 VBPR

This [21] work by He et al. was widely cited and discussed in recent years.

Their paper points out that, typically, one feature which is ignored by ex-

isting personalized recommendation techniques is the visual appearance of

the items being considered. VBPR (Visual BPR) tries to incorporate the visual

features of the items to model the user’s preference.

The scenario is still an implicit one, but in addition to the user-item inter-

63

Chapter 1. State of the art

actions, a single image for each item is also available. As you can observe in

Figure 1.11.1, there are two types of parameters that need to be updated at

each iteration:

• the BPR model parameters, which are updated according to the original

paper;

• the parameters of the item visual latent features extracted from a pre-

trained CNN.

This method highly improves the model performance especially in cold start
scenarios and for settings such as e-commerce platforms, in which the vi-

sual appearance of an item is one of the key factors that contributes to the

purchase of said item.

1.11.7 Social Information

Various algorithms have been proposed to take advantage of social interac-

tions among users. These works, as [68, 35, 67], incorporate the social feed-

back to define different sampling strategies often improving the performance

of the BPR in particular in cold case scenarios, as the previous algorithm. The

idea of these algorithms is to leverage the social relationships in a manner

which is similar to GBPR approach proposed by Chen and Pan in Section

1.11.2.

64

Chapter 1. State of the art

1.12 Introducing Our Work

In this chapter, we described what Recommender Systems are about, which

are the reasons that drive the interest in this field and which are the major

challenges to be faced. We presented the different types of datasets and data

structures and introduced the main state of the art models. We focused on MF

techniques and especially on the BPR, explaining its novel approach and ad-

vantages, and then moved our attention to the existing sampling algorithms

adopted in the BPR.

In this scenario, this thesis focuses on implicit feedback situations in which

no other information is available and tries to investigate the negative sam-

pling process of the BPR criterion applied to the Matrix Factorization algo-

rithm (Section 1.8.1). In particular, lots of studies [44, 28, 12, 60] point out

the idea of weighting each sample according to some metric and, amongst

them, a couple of recent works [65, 37] investigate this aspect in the con-

text of the BPR. Our thesis analyzes these techniques and proposes a new

sampling strategy based on the concept of negative confidence, which is the

measure of how much we can be sure of the negativeness of an item for a

certain user. Defining the confidence value is not a trivial task and for this

purpose we use the collaborative methods in Section 1.3.1, which to our best

knowledge have not been used by other approaches directly in the BPR sam-

pling strategies. This confidence sampling strategy can bring great benefits

in term of performance without burdening on the model complexity.

65

Chapter 2

Models

In the previous chapter we focused our attention on the BPR model and, in

particular, on the several sampling techniques that have been proposed to

speed up the model convergence and improve the recommender ability to

produce a personalized ranking. While the first works [66, 50, 51] on this

topic focus on the sampler, the more recent ones [65, 37] try to weight each

sample in order to increase or decrease the importance that each triple has in

the model parameters updates.

In this chapter, we present our strategy for improving the current techniques.

2.1 Sampling Issues

Firstly let’s have a brief recap of the main challenges and important aspects

we should take into account when dealing with sampling.

• Draw informative pairs: this is the key aspect that started the discus-

sion about sampling in the first place. As discussed in the previous

chapter, selecting difficult negative instances is vital for the learning

process of the model.

• Complexity: for a sampling technique to be applicable and usable, it’s

important for the complexity to be relatively low in terms of time and

66

Chapter 2. Models

hardware consumption.

• Tuning: correspondingly, a sampling technique that aims at being gen-

eral and widely used should not ideally have too many hyperparam-

eters, which are often difficult to tune and also increase the training

time.

Ultimately, we want to design a negative sampling strategy that is general
and widely applicable, not very computationally expensive and that is able

to select difficult negative instances. Since we don’t want our strategy to only

be applicable in certain domains, we only focus on strictly implicit feedback

scenarios in which only one type of feedback is observable (e.g. a purchase

action, but not a view action) and we don’t have any auxiliary information

about users, items or any temporal or social knowledge.

In the following paragraphs, we discuss the two main ideas that motivated

our work.

2.1.1 The risks of oversampling difficult instances

We remarked in multiple occasions that the difficulty of a sample is directly

related to the gradient magnitude and thus to the ability of the recom-

mender to output good suggestions (see Section 1.9.1.2).

We agree with this reasoning as it brings undoubted benefits, but we want to

argue that this approach can lead to tricky situations in which too difficult

negative candidates can prevent the recommender to take into consideration

certain items that a user may like in the future.

Going back to the music recommendation example in Section 1.9.1.1 once

again, let’s take u to be a user who’s into 70s/80s Rock’n’Roll, and in particu-

lar Rolling Stones, Guns N Roses, but that does not like AC/DC or The Eagles

much.

We are going to try to give a real life context to the state of the art sampling

techniques:

• uniform: the uniform sampler randomly chooses a song from the in-

credibly vast list of songs available on our Spotify-like music streaming

service. We already pointed out why this is not optimal in 1.9.1.

• popularity based: popularity oversamplers favor the selection of neg-

ative items with a high popularity. This means that negative samples

that will be extracted multiple times by this technique would probably

67

Chapter 2. Models

be: “Shape of You” by Ed Sheeran, “Blinding Lights” by The Weeknd,

“Bad Guy” by Billie Eilish or “One Dance” by Drake1. Oversampling

this kind of songs can speed up the training in the initial phases, as

the model should be able to learn that u is not really into 2010s Pop

music, but in the long run this kind of strategy doesn’t increase the

difficulty of the samples and, on the contrary, it even prevents the sam-

pler to choose niche items that could be meaningful for the user such as

less popular Rock songs of the 70s/80s that are not among the current

top streamed songs. This matter is also proven by experimental results

[50, 65, 22], that show that the popularity oversamplers performance

are worse even with respect to the random sampler, probably because,

as we just mentioned, popular items may be overtrained locally at the

expense of less popular items which would then be undertrained [22].

Another thing to consider is that, since the item popularity distribution

is typically long tailed, the most popular items are likely to become fu-

ture positive interactions.

• dynamic adaptive samplers: in the case of a dynamic sampler, that

also takes into account the current model belief [50, 65, 66], it’s trick-

ier to formulate a real life example because the sampling distribution

is not dependent on some tangible property of users or items but it’s

defined by the latent user and item features identified by the matrix

factorization model. Still, if the underlying model is good enough at

some point, it should be able to output decent quality recommenda-

tions, thus we can imagine that some high scored negative items for our

users could be: “Back in Black” by AC/DC and “Take It Easy” by The

Eagles, “Hearth of Gold” by Neil Young or “All Right Now” by Free2.

For the AC/DC and Eagles songs, we can be pretty sure that these are

good negatives since u does not particularly love those bands, but the

same reasoning cannot be applied for the other two songs because the

fact u has not listened to them could be due to some random reason.

For example, u could not be aware of their existence or perhaps u owns

a vinyl that contains those songs and therefore prefers to play them

on the turntable. This leads to a tricky scenario: u would probably

like Young’s and Free’s songs, but drawing them as negative examples

makes the model lower their scores, so that these items would probably

1All these songs appear in the list of the top 10 most streamed songs on spotify. You can
check the full list at https://en.wikipedia.org/wiki/List of most-streamed songs on Spotify.

2These songs are all included in the Spotify Classic Rock 70s/80s.

68

https://en.wikipedia.org/wiki/List_of_most-streamed_songs_on_Spotify

Chapter 2. Models

Figure 2.1.1: The Spotify ”Recommended” section at the end of a user-generated playlist, that
contains the top recommendations to add to the playlist.

not appear into u in the ”Recommended” section (Figure 2.1.1) as one

of the top items even if they would probably become positive interac-

tions.

This issue is also related to what we highlighted at the end of Section 1.2.1,

which is that implicit feedback is noisy by nature and that there are lots of

reasons why an interaction might not have happened yet. We can conclude

that, even if we definitely want to find solid negative items, this can lead to

confusing situations in which very difficult and positive-like negative items

are almost too much positive-like, so that it’s too hard to discern whether these

items are actual negatives or they are future positives (i.e. false negatives)

that the user has ignored for some undefined reason. This is why we would

like to try to measure this uncertainty and include it in the scores updating

phase.

2.1.2 Adding Similarities

Our work takes place in implicit feedback scenarios, in which only a sin-

gle type of feedback is observable and there is no additional information of

any type. For this reason, most of the techniques explained in Section 1.11

cannot be applied in such a situation. Moreover, we would like to propose

a sampling technique that is not computationally expensive and does not

rely on external complex models, so we are rather referring to the heuristic

sampling algorithms described in Section 1.10. Among these sampling tech-

niques, there are two types of heuristic that are commonly used for modeling

the negative sampling probability of the items:

• the item popularity, whether global or restricted to each user, that is

typically used by static samplers to draw the negative items;

69

Chapter 2. Models

• the model scores, which are used by the dynamic adaptive samplers in

order to compute the sampling distribution based on the current model

belief.

These two metrics are appealing because they are always available and do

not rely on external computationally expensive models like the generative

approaches (Section 1.9.2.4), but there is some other heuristics that is always

available from the user rating matrix and very easy to compute: collabo-
rative similarities. Several works [26, 31] have been proposed to take into

account the similarity based techniques inside Matrix Factorization models,

but, to the best of our knowledge, there is no such thing in the specific con-

text of the BPR sampling. The idea is that we can try to use the item-item

similarity information, which derives from the simple calculations of heuris-

tics such as the cosine or Jaccard similarities (see Section 1.4), to improve the

sampling process in uncertainty situations like the one we described in the

previous section.

2.2 Our Solution

Practically speaking, we would like to design a strategy which is able to draw

difficult and informative triples without increasing the model complexity

and which is also able to handle that a difficult negative item could become

a positive one in the future. In particular, we want to handle the following

cases in two separate manners:

1. if we are sure that the negative sampled item is an actual negative, but

the model is ranking it as one of the top items, then we certainly want

to push this item to the lower ranks;

2. if we are not entirely sure about the negative nature of the sample be-

cause we have some indication that it could become a positive interac-

tion in the future, then we still want to lower its score but in a softer

and smoother way.

In other words, we want to take into account the confidence of a negative

sample, i.e. we would like to have a measure related to the probability of a

sample of being a true negative. In order to design our strategy, we need to

clarify a few aspects:

1. How can we measure the confidence of an item being negative?

2. How do we use this confidence value inside the BPR sampling?

70

Chapter 2. Models

3. Which sampler is likely to benefit the most from the confidence value?

2.2.1 How can we measure the confidence of an item of being neg-
ative?

The notion of confidence has been proposed in several works [60, 28, 26, 16,

44], especially as a measure of positive confidence, for example in contexts

in which additional information can be observed as the number of times that

an interaction occurred rather than the date of the last interaction. To our

knowledge, the closest ideas to our thesis are in the two recent works [65,

37]. Let’s compare the two:

• In [65], the confidence level is measured as the hardness of finding

a good negative candidate, in particular as the number of iterations

needed to find a ”violated negative” instance (as described in Section

1.10.5). This notion of confidence is not a direct measure of confidence

as it depends on the sampler; nevertheless, it should statistically give

a good estimation. This confidence value is dynamic and needs to be

computed for every single sample.

• In [37], confidence is formulated as the probability of an item of being

negative and it directly uses the model scores. This confidence level,

like the previous one, needs to be computed dynamically for each sam-

ple. Such operation makes it computationally expensive as it needs to

be normalized over all the scores, which means that the the scores need

to be computed at each iteration. That is why Chen et al. proposed an

approximation of this algorithm, as discussed in Section 1.11.3.

In our case, instead of using the scores, we propose to employ the collabora-

tive knowledge derived from the item similarity to give an estimation of the

negativeness of a user-negative item pair. A first idea could be to measure

the confidence of an item j of being negative with respect to the positive in-

teraction (u, i) utilizing the item-item similarity sim(i, j) between the positive

and the negative items. In fact, if sim(i, j) is close to 1, then the two items are

similar, so if u likes i then u would probably also like j in the future (this is

the main assumption on which collaborative filtering approaches are based);

we can therefore use the sim(i, j) as a measure of how likely j will become a

positive item.

In order to improve this idea, we can extend this to the whole set of items

liked by u. Similarly to the ItemKNN described in Section 1.6, we can com-

pute the similarity between items using some of the metrics described in Sec-

71

Chapter 2. Models

tion 1.4 and then weight the similarity scores with the user profile in order

to obtain a personalized score for each user-item pair. In particular, the per-

sonalized item similarity score that we obtain for user u and negative item j

is:

ruj =
∑
i∈I
rui · sim(i, j) (2.1)

where sim(i, j) is the item-item similarity between items i and j.

From this computation, we get a set of scores for each user, but instead of

using the notion of personalized similarity score as a direct measure of con-

fidence, it is better to formalize this concept using ranks. That is because

the vastness of scores is relative with respect to other items and it is also

dataset specific, while ranks are absolute values. For this purpose, from the

values obtained with Equation 2.1, we can obtain the item ranks for each user

by sorting the user’s scores in ascending order (from the least similar to the

most similar item).

We can now define the item similarity based confidence of the not observed

pair (u,j) as follows:

c(u,j) =
1
ρ̂uj

α

(2.2)

where ρ̂uj is the rank of item j for the user u with respect to the item simi-

larity weighted with u’s profile and α is a hyperparamter to be tuned. It is

important to note that the ranks are defined by sorting the similarity scores in

ascending order, which means that a small rank (close to 1) indicates an item

with low similarity, while a high one implies a large item similarity score. In

other words, we introduce the use of the item similarity weighted with users’

profiles to compute a measure of how likely an unobserved pair is to become

a positive one. The role of α is to either smooth or increase the impact of the

sample weights and it is dataset specific3; in Figure 2.2.1 you can see how

different values of alpha affect the confidence function.

More in detail, we can observe how ρ̂uj >> 1 (i.e. a large score ruj with re-

spect to the other items) indicates that, from a similarity perspective, item j

3As a rule of thumb, when the number of items increases α would generally need to be
decreased to yield optimal results.

72

Chapter 2. Models

Figure 2.2.1: Plots for the function 1
x
α

for different values of α. The bigger is α, the steeper is
the function.

is ranked among the top items, hence it is likely to become a positive inter-

action for u. This directly affects the confidence level as the confidence of an

item with very large score will be very low. On the other hand, if ruj is small,

ρ̂uj would be close to 1, thus its confidence will also be close to 1 (exactly one

if ρ̂uj is exactly 1).

2.2.2 How do we use this confidence value inside the BPR sam-
pling?

Now that we have defined our confidence measure, we want to be able to

use it in our BPR framework. As we have already mentioned, we are willing

to use the original definition of the BPR in Equation 1.20 and we want to

prevent changes in the loss. One way to proceed would be to use this sample

confidence as weight of the sample as in [65, 37, 12] in the following way:

∑
(u,i,j)∈DS

c(u,j) · lnσ
(
x̂uij

)
−λΘ‖Θ‖2 (2.3)

where c(u,j) is the confidence value defined in Equation 2.3. In this manner,

the confidence value acts as a multiplying factor that has a direct impact on

the gradient:

∑
(u,i,j)∈DS

c(u,j) · ∂
∂Θ

lnσ
(
x̂uij

)
−λΘ

∂
∂Θ
‖Θ‖2

∝
∑

(u,i,j)∈DS

−e−x̂uij

1 + e−x̂uij
· c(u,j) · ∂

∂Θ
x̂uij −λΘΘ

(2.4)

73

Chapter 2. Models

Figure 2.2.2: The two stacks represent the items sorted in descending order by the current
model score, before (left) and after (right) the updates.

This is how we can handle the two cases described at the beginning of this

section, as you can see in Figure 2.2.2. The figure shows the relative ranks

of the items for user u in descending order, according to the scores assigned

by the model. Let’s suppose that the sampler extracts the negative instance

j (in red), which has a high score according to the current model belief and

a high confidence of being a true negative from a collaborative perspective;

in this case, the model updates its score and pushes it to the bottom. In the

other case, the negative sampled item j ′ (in orange) has a high model score

but a low confidence of being negative, thus the model updates its score by

a small factor taking this uncertainty into account and pushing it just a few

ranks down.

Our sample weighting strategy has the following characteristics:

• It is static, since each sample’s weight can be easily computed a priori

and then remains fixed. It makes a remarkable difference with respect

to [65, 37], and it is motivated by our efforts to avoid additional com-

plexity. In fact, once the weights are computed, the confidence for the

pair (u,j) can be obtained in constant time (O(1)).

• It is context-dependent, the confidence formulated in Equation 2.3 is

not defined for the single item but for the pair (u,j), so c(u,j) and c(u′ , j)

generally are different values, and this is due to the fact that the item

similarity score is weighted with the user’s profile (Equation 2.1).

• It employs the item similarity power of items directly inside the BPR

framework. This differentiates from [65, 37] since they utilise the ranks

74

Chapter 2. Models

of the items according to the model scores. What made this choice

preferable, in addition to the reduced complexity and the great value

of the item similarity information, is that we wanted to try something

different with respect to the scores. We are willing to use dynamic sam-

plers, as they are proved to be state of the art [50, 65, 59, 37, 66], how-

ever, it is not ideal to utilize the same exact scores for both drawing

and weighting the sample since the sampler would draw high ranked

items and, at the same time, reduce their importance. Using a different

metric for weighting the sample means that we don’t always penalize a

sample that has a high score, since this depends exclusively on the item

similarity between the items in the user profile and the negative item

in the sample. Adding a metric such as item similarity, even if static,

could bring benefits to the model as it is able to describe the data in a

different manner compared to what the model already knows.

• It is totally general. The concept of confidence formulated in Equa-

tion 2.3 does not depend on the scores (like [37]) neither on the spe-

cific underlying sampler (like [65]), but it is only based on similarity

information that we can extract from the original user rating matrix.

This means that this exact same confidence weighting strategy can be

applied to a wide variety of algorithms (similar to [44, 12]) and sam-

pling methods. From a broader perspective, we formulated the concept

of item similarity based confidence, but the same thing can be done

with the user similarity as well as with some more elaborate collabora-

tive methods such as the graph based similarities mentioned in Section

1.6.4.1 or even with a more complicated model.

2.2.3 Which sampler is likely to most benefit from the confidence
value?

All the sampling techniques we discussed should benefit from this strategy,

but this is particularly true for those methods that are able to select the more

difficult negative items, because they are also prone to extract future posi-

tives.

Among the existing techniques, we would like to make a couple considera-

tions:

• the static samplers that we presented will likely draw a small number of

future positives at each epoch for what we said in Section 2.1.1. More-

over, as they are static, the percentage of future positive items sampled

75

Chapter 2. Models

at each epoch will not significantly change. A different case could be

represented by the popular oversampler, which could be able to select

a good number of future positive instances in those datasets that have

a very long tailed item popularity distribution.

• VINS (Section 1.10.5) is a hybrid sampler that first samples a set of

items using the global popularity and then takes into account the item

scores. A possible issue with this approach is that the first sampling

phase that uses the popularity can limit the model performance due to

what we discussed in Section 2.1.1.

• the ranking-aware rejection sampling in [66] (Section 1.10.6) is a good

trade-off between recommendation quality and performance. Experi-

mental results [66, 26] show that limiting the number of items in the

group leads to a better performance in both complexity and accuracy.

In this regard, we suspect one of the possible reasons behind this to be

that using larger groups of items means selecting the negative instances

that are ranked highest, i.e. the most positive-like items, which could

be particularly impactful in reducing the ranking performance as the

model accuracy increases over the training epochs.

For these reasons, we suggest to use the confidence sample weighting in com-

bination with the dynamic adaptive sampler and especially with the ranking-

aware rejection sampling [66] due to the clear benefits we have amply dis-

cussed so far. These samplers have the great advantage of adapting to the

model and improve the learning process as it goes on and they are proved

to be able to select the more difficult samples with respect to the other tech-

niques.

In the following chapters we are applying our strategy to four real-life datasets

in order to compare the relative improvements that the similarity-based con-

fidence weighting strategy is able to bring.

76

Chapter 3

Evaluation

A proper design of the evaluation of a RS is crucial in order to get an under-

standing of the effectiveness of the various algorithms, and it is often mul-

tifaceted, meaning that a single criterion cannot capture many of the goals

of the designer, and a difficult and tricky task for several reasons [23, 10].

The same algorithm can perform differently on different datasets, better or

worse depending on the dataset peculiarities and on the algorithm strenghts

and weaknesses. The same algorithm can also perform differently on the very

same dataset due to the way the data is prepared or splitted, due to the pa-

rameter tuning phase of the algorithm or even due to the different goals that

one could have.

In this part we introduce the metrics, dataset and evaluation criteria for mea-

suring the performance of our proposed similarity-based sample weighting.

3.1 Evaluation Metrics

A RS can be evaluated using either online or offline methods. Online evalu-

ations originated from online advertisement and e-commerce and they gen-

erally measure the acceptance rates of recommendations in real-world cases,

using classic measures such as the click-through rate (CTR) which is the ratio

of user clicks on items that were recommended [4]. Since online evaluations

77

Chapter 3. Evaluation

require active user participation, it is often not feasible to use them in bench-

marking and research, hence why we resort to the offline methodology to

evaluate our experiments. Offline evaluations typically measure the quality

of a recommender system based on a ground-truth according to a metric.

There are generally three broad classes of metrics:

• Predictive accuracy metrics, which evaluate how close the ratings esti-

mated by a recommender are to the true user ratings.

• Classification accuracy metrics, that measure the quality of the rec-

ommendation by assessing the number of times that the RS is correct

about predicting that there will be an interaction between a user and

an item.

• Rank accuracy metrics, which give an evaluation of the RS’s ability of

producing an ordered list of items to the user that actually matches the

order of preferences that a user has.

We only deal with implicit feedback datasets, therefore predictive accuracy

metrics aren’t useful for our analysis since the ratings are expressed with a

binary value. In the following paragraphs we present the metrics used to

evaluate our proposed strategy.

3.1.1 Classification Metrics

Classification metrics are appropriate for tasks such as those involving binary

feedback, as these metrics do not attempt to directly measure the ability of an

algorithm to accurately predict ratings. Some deviations from actual ratings

are tolerated, as long as they do not lead to classification errors [20]. These

metrics measure the recommender’s ability to distinguish relevant from not
relevant items. The definition of relevance has been extensively discussed in

the data mining and information retrieval field, so we first want to give a

brief overview of some basic definitions that are necessary to describe the

metrics that we are going to use.

Suppose we have a datasetD with two classes of items1, containing both rele-

vant (referred to as P) and not relevant items (referred to as N). The predictive

accuracy of a classification algorithm on D can be summarized using a 2× 2

1In a RS scenario, if the dataset is implicit then the positive items are the relevant ones. If
the dataset is explicit, the ratings need to be transformed to binary scale through an implicit-
ization.

78

Chapter 3. Evaluation

Figure 3.1.1: The confusion matrix.

error matrix called confusion matrix (Figure 3.1.1), which has the instances

of the predicted class as rows and the true ones as columns.

The four entries in the confusion matrix have the following meanings:

• True Positive (TP): relevant items correctly predicted as relevant.

• False Positive (FP): not relevant items incorrectly predicted as relevant.

• True Negative (TN): not relevant items correctly predicted as not rele-

vant.

• False Negative (FN): relevant items incorrectly predicted as not rele-

vant.

By combining these values we can obtain the metrics that we are going to

use to evaluate the classification capability of the implemented algorithms:

precision and recall.

3.1.1.1 Precision

The precision metric, also called positive predictive value, is the ratio of rel-

evant items among the retrieved items, thus it represents the probability of a

selected item being relevant:

P recision =
Number of relevant items recommended

Number of recommended items
(3.1)

Precision can be computed from the confusion matrix as follows:

P recision =
T P

T P +FP
(3.2)

In RS, the goal is to produce a personalized list of relevant items for a spe-

cific user and the problem is defined as a top-N recommendation task, as

79

Chapter 3. Evaluation

described in the first chapter. In order to address this matter, the classic def-

inition of precision is adapted in the RS world using the notion of “cutoff” k,

which is an integer number expressing that we do not compute the precision

over the whole set of items but only on the first k recommended ones. The

precision with cutoff k, indicated as P recision@k, is calculated as:

P recision@k =
Number of relevant items@ k

k
(3.3)

3.1.1.2 Recall

Recall is defined as the ratio of relevant instances selected among the total

number of relevant items available, thus it’s the probability of selecting a

relevant item:

Recall =
Number of relevant items recommended

Number of relevant items in the ground truth
(3.4)

It is also called sensitivity and it can be calculated with the confusion matrix:

Recall =
T P

T P +FN
(3.5)

The same considerations we made about cutoff can also apply for recall, with

Recall@k defined as the proportion of relevant items found in the top-k rec-

ommendations:

Recall@k =
Number of relevant items@ k

Number of relevant items in the ground truth
(3.6)

3.1.2 Ranking Metrics

Rank accuracy metrics evaluate the ability of a RS to produce an ordered list

of items that matches how the user would have ordered those same items

[23]. As these metrics check the order of the items in the list, they are best

suited for explicit feedback dataset, since the ordering can be measured in

a more accurate way using the explicit ratings given by the users. In im-

plicit feedback domains, these metrics could be very sensitive because the

only available information is if an instance is a relevant or a not relevant one,

without further measure of said relevance.

80

Chapter 3. Evaluation

These metrics differ from the prediction accuracy metrics because the abso-

lute preference of the user for an item does not matter in this case, the only

thing that matters is the relative order of the recommended items.

3.1.2.1 NDCG

NDCG, that stands for Normalized Discounted Cumulatative Gain, is an

evaluation metric derived from the information retrieval area, often used

to measure effectiveness of web search engine algorithms or related appli-

cations.

In such scenarios, when examining the ranked results of a query, there are

two crucial observations to be made [29]:

• highly relevant instances are more valuable than marginally relevant

instances;

• the greater the ranked position of a relevant instance, the less valuable

it is for the user, because it is less likely that the user will ever examine

the item.

First of all, we define the relevance of an item reli :

reli =

1 item in position i is relevant

0 item in position i is not relevant
(3.7)

The Cumulative Gain (CG) is formulated as the sum of all the relevance

scores in a the retrieved set:

CG =
n∑
i=1

reli (3.8)

The CG can be evaluated only at rank p and not on all the instances, so that

the summation can be restricted to p documents.

From the CG, we can define the Discounted Cumulative Gain (DCG) that

formalizes the previous assumptions by crediting a retrieval system for re-

trieving relevant instances by their possibly weighted degree of relevance,

which is discounted by a decreasing function of the rank of the item. The dis-

counting function is needed because it progressively reduces the score of the

document as its rank increases but not too heavily, to allow for user persis-

81

Chapter 3. Evaluation

tence in examining further documents [29]. The most common discounting

function is the logarithm. The DCG at rank p is calculated as:

DCGp =
p∑
i=1

2reli − 1
logb(i + 1)

(3.9)

where b is the base of the logarithm. In particular, a small logarithm base

models an ”impatient” user, while a larger one models a more patient and

persistent user.

The list of the search results depends inevitably on the query, therefore com-

paring a search engine’s performance from one query to the another cannot

be consistently achieved using DCG alone. The Normalized Discounted Cu-

mulatative Gain is defined for this purpose, combining the DCG with the

Ideal DCG (IDCG) at p:

IDCGp =
|RELp|∑
i=1

2reli − 1
logb(i + 1)

(3.10)

which is the ideal reordering of the documents obtained by sorting them ac-

cording to their relevance, where |RELp| is the list of relevant items, ordered

by relevance, in the ground truth up to position p. We can finally define the

NDCG as the ratio:

NDCGp =
DCGp
IDCGp

(3.11)

In RS, this metric has the same meaning if we consider that the retrieved

document set corresponds with the ordered list recommended items for the

user and limiting at top p means applying a cutoff.

3.1.2.2 MAP

Mean Average Precision is another widely used metric for measuring the

search engines’ ability to correctly rank the retrieved documents and it is

one of the most important metrics in the RS literature. As the name suggests,

it is computed as the mean of the Average Precision (AP); the AP is the av-

erage of the precision value obtained for the set of top n items existing after

each relevant item is retrieved. The formula for the AP is the following:

82

Chapter 3. Evaluation

AP@n =

∑n
k=1 Precision @k · relk

Number of relevant documents
(3.12)

where relk is defined as in Equation 3.7 and the P recision@k is the precision

computed on the first k items, as in Equation 3.3. From this definition, we

can compute the MAP as:

MAP@n =
1
n

n∑
k=1

AP@k (3.13)

From this formula we can see that the MAP, even if it is a variant of the

Precision, is a ranking metric because it penalizes the wrongly ordered items.

83

Chapter 3. Evaluation

Figure 3.2.1: The preprocessing phase.

3.2 Preprocessing

Before diving into details of the four real datasets we used for our experimen-

tal evaluation, we want to briefly present the preprocessing steps that have

been applied to these datasets, i.e. all the procedures that prepare and trans-

form the original raw data into the one that we are directly using to evaluate

our algorithms. Learning which preprocessing steps have been executed is

often crucial for understanding the performance of the algorithms, as differ-

ent preprocessings can hardly affect the algorithms overall and their relative

performance. Figure 3.2.1 shows the full preprocessing pipeline.

3.2.1 Implicitization

Among the datasets we used, three are explicit and one is implicit. As pre-

viously discussed, our analysis takes place in implicit feedback scenarios, so

the first thing we have to do is transforming the explicit ratings into a binary

scale using the so called implicitization process that we mentioned in Section

1.2.1. Given a threshold t, this procedure maps the dataset explicit ratings rij
to:

• 1 if rij > t, which means that the rating expressed is above the threshold,

therefore positive;

• 0 if rij ≤ t, so if the rating is missing or is present but below the thresh-

old.

Since each dataset has its own rating system, the threshold value t is dataset

specific.

The example in figure 3.2.2 shows the process of transforming an explicit

dataset with a 5 star rating system using the following logic:

84

Chapter 3. Evaluation

Figure 3.2.2: The process of transforming an explicit dataset with a 5-star rating to an implicit
one, using a threshold of 2.

• unobserved interactions remain unobserved;

• observed interactions in the original data with a rating value less than

or equal to 3 are considered as negative interactions, so these interac-

tion have 0 rating in the implicit dataset;

• observed interactions with a rating greater than 3 are considered posi-

tive interactions, thus have 1 rating in the implicit dataset.

In other words, after setting 3 as the threshold, rij is 1 in the implicit dataset

only when rij > 3 in the original explicit dataset, otherwise it is 0.

3.2.2 K-core

After the implicitization process, we have obtained an implicit version of the

original dataset. The next step would be removing those items and users

that have very few interactions, since these items/users are proved to create

complications in the learning problem. This issue also takes the name of

cold case scenario and it is a broadly discussed topic in the literature [38, 15].

From now on, we are going to refer to this step as k-core preprocessing.

The procedure can affect both items and users and, as we mentioned above,

it consists of removing those items/users that have less than s interactions,

i.e. that have less than s non-zero entries in the respective row (for the users)

or column (for the items).

This step is crucial and can highly affect the algorithm performance. The

reason for applying this technique is the benefit of only having users or items

with a minimum number of interactions, in order to remove noisy data. It is

worth noticing that a high k-core could favor certain algorithms over others,

especially the ones that perform worse in cold case scenarios.

In all our datasets we apply a k-core of five to keep only those users and items

85

Chapter 3. Evaluation

Figure 3.2.3: The k-core at 2 preprocessing. The green arrows represent the rows/columns
(users/items) that remain at the end of this phase, i.e. those rows/columns with at least two
interactions.

that have at least five interactions.

3.2.3 Dataset Partitioning

Splitting a dataset is essential in machine learning and data mining to obtain

an unbiased evaluation of the prediction performance.

Figure 3.2.4: The split procedure adopted to obtain the training and testing sets.

In RS, the dataset splits are represented by different user rating matrices. We

split every preprocessed user rating matrix in three separate subsets (Figure

3.2.4)

• Train Rtrain: this accounts for 60% of the dataset interactions;

• Validation Rval : it contains 20% of the interactions;

86

Chapter 3. Evaluation

• Test Rtest: it is composed by 20% of the interactions.

Rtrain is used as training set for tuning the hyperparameters and evaluating

the offline performance. For the evaluation on the final test set, the train-

ing data is obtained by merging Rtrain and Rval and the performances are

evaluated on Rtest. This way, the training data is composed by 80% of the

interactions but the training and testing data are still completely disjointed.

87

Chapter 3. Evaluation

3.3 Datasets

As already mentioned, the evaluation has been performed using four real

datasets that are widely adopted in the RS field: BookCrossing, Movielens1M,

LastFMHetrec2011 and Yahoo Movies.

3.3.1 BookCrossing

The BookCrossing dataset 2 contains the data collected during a 4-week crawl

from the BookCrossing community (www.bookcrossing.com).

This dataset contains 105.283 users (anonymized but with demographic in-

formation) providing 1.031.175 ratings on 271.379 books. The ratings are

explicit, in a 1-10 scale. Figure 3.3.1 sums up the raw dataset information.

Figure 3.3.1: The original BookCrossing dataset information.

Figure 3.3.2: The BookCrossing dataset information after the implicitization and k-core steps.

Since the data is explicit, we have to perform both implicitization and k-core.

For the implicitization, we use a threshold of t = 7 to consider the interactions

that have a higher rating as positive interactions. The k-core is set to 5.

Table 3.1 shows how the interactions are splitted in the train, validation and

test matrices.

2At http://www2.informatik.uni-freiburg.de/ cziegler/BX you can find the whole dataset.

88

www.bookcrossing.com

Chapter 3. Evaluation

Train Validation Test

29284 9716 9693

Table 3.1: Interactions split among train, validation and test in the preprocessed BookCross-
ing dataset.

The preprocessing steps hardly reduced the dimensions of this dataset, in fact

this is the smallest one we consider. Although the preprocessing increased

the dataset density, this dataset is still the sparsest dataset that we use for

our analysis, with only 0.3404% of positive feedback.

Figure 3.3.3 shows the popularity distribution of the remained items, from

which it is easy to see the long tail phenomenon described in Section 1.6.1.

Figure 3.3.3: The popularity distribution in the preprocessed BookCrossing dataset.

3.3.2 LastFm

The LastFMHetRec2011 dataset [24] was collected for the 2nd International

Workshop on Information Heterogeneity and Fusion in Recommender Sys-

tems, held in Chicago in 2011. The HetRec workshop represented a meet-

ing point for researchers and practitioners interested in addressing the chal-

lenges posed by information heterogeneity in recommender systems and study-

ing information fusion in this context [24]. In fact, this data contains various

information about social networking, tagging and music listening of a set of

users from Last.fm online music service with the the purpose of providing

better personalized services in many information-seeking and e-commerce

89

Chapter 3. Evaluation

applications.

For this thesis, we are only interested in the interactions between users and

items and, in this regard, we want to point out that the LastFM dataset is the

only intrinsically implicit feedback dataset that we use for our evaluation.

The original dataset has a sparsity > 99%, with 92834 total interactions, 1892

users and 17632 items. As you can observe (Figure 3.3.4), the number of

items is much higher than the number of users (almost 10 times higher),

but most of these items have very few interactions. In fact, after applying

the k-core at five preprocessing3, only 16% of the items has been kept in the

dataset (Figure 3.3.5). The number of average interactions per user and items

is higher with respect to BookCrossing as the density is ca. four times higher.

Figure 3.3.4: The original LastFm dataset information.

Figure 3.3.5: The LastFm dataset information after the implicitization and k-core steps.

Figure 3.3.6 shows the popularity of the items; once more, we can see the

classic long tail, but a bit less accentuated with respect to BookCrossing.

3This is the only preprocessing procedure that we applied, as the dataset natively comes
as implicit.

90

Chapter 3. Evaluation

Figure 3.3.6: The popularity distribution in the preprocessed LastFm dataset.

Table 3.2 sums up how the interactions are splitted in the train, validation

and test rating matrices.

Train Validation Test

42798 14348 14209

Table 3.2: Interactions split among train, validation and test in the preprocessed LastFm
dataset.

3.3.3 Movielens1M

The Movielens dataset comes in three standard versions that have different

names according to the number of interactions the dataset contains: Movie-

lens100K, Movielens1M (the one we chose) and Movielens20M. These datasets

are among the most used and discussed datasets, not only in the RS liter-

ature but also in other research areas and in the industry field. They are

heavily downloaded (140,000+ downloads in 2014) and referenced (7,500+

references to “movielens” in Google Scholar)[19]. These datasets are a prod-

uct of member activity in the MovieLens movie recommendation system, an

active research platform that has hosted many experiments since its launch

in 1997 [19].

91

Chapter 3. Evaluation

Figure 3.3.7: The original Movilens1M dataset information.

Figure 3.3.8: The Movielens1M dataset information after the implicitization and k-core steps.

Figure 3.3.9: The popularity distribution in the preprocessed Movielens1M dataset.

As we mentioned before, we adopted the Movielens1M version, which has

about 1 million interactions regarding 6040 users and 3706 items. Movielens

datasets contain anonymized information about people’s expressed prefer-

ences for movies and the ratings are in the 1 to 5 stars range, hence the need

for an implicitization step. In details, we set a threshold value of 3 to keep

the 4 or 5 stars interactions as positive ratings, and then we applied the usual

92

Chapter 3. Evaluation

k-core at five. The results of the preprocessing steps are summed up in Fig-

ure 3.3.7 (the raw data) and Figure 3.3.8 (the preprocessed data). As you can

observe from the figures, almost all users and items have been kept from the

raw to the preprocessed dataset.

One noticeable difference is the density of this dataset, which is almost 10

times higher in its preprocessed version with respect to BookCrossing. Ad-

ditionally, the average number of interactions for users and items is much

higher with respect to the other ones (w.r.t. BookCrossing ca. 16x for average

item interactions and ca. 7x for the users).

In Table 3.3, we reported the interactions’ split between train, test and vali-

dation after the preprocessing.

Train Validation Test

344380 115185 114811

Table 3.3: Interactions split among train, validation and test in the preprocessed Movielens1M
dataset.

3.3.4 Yahoo Movies

Yahoo Movies is a dataset [63] containing a small sample of the Yahoo! Movies

community’s preferences for various movies. The original dataset has 221364

ratings from 7642 users that interacted with 11916 movies. The user ratings

are explicit, from 1 to 5, same as the Movielens dataset. We applied a thresh-

old of 3 for the implicitazion and the usual k-core at five.

The preprocessing phase removed less than the 30% of the total interactions

and the final density of the preprocessed dataset in 0.6699%, which makes

this dataset the second most sparse after BookCrossing. Table 3.4 shows how

the interactions are splitted among the matrices:

Train Validation Test

96875 32305 32376

Table 3.4: Interactions split among train, validation and test in the preprocessed Yahoo Movies
dataset.

93

Chapter 3. Evaluation

Figure 3.3.10: The original Yahoo Movies dataset information.

Figure 3.3.11: The Yahoo Movies dataset information after the implicitization and k-core
steps.

From Figure 3.3.12 we can notice how the long tail phenomenon is particu-

larly visible in the Yahoo Movies dataset, with 5% of the items accounting for

over 50% of the total interactions.

Figure 3.3.12: The popularity distribution of the items in the preprocessed Yahoo Movies
dataset.

94

Chapter 3. Evaluation

3.4 Implementation

In this section we briefly outline the most salient implementation details

about the technologies we used and the way algorithms have been coded and

tuned.

3.4.1 Technologies

The whole research has been backed by extensive experiments written in

Python 3.9[47]. Most of the work was supported by the following libraries:

• NumPy [42]: a C based library that offers comprehensive mathematical

functions.

• SciPy [54]: another very popular C/C++ based library that contains

several optimization algorithms and utilities for scientific computation

tasks. In particular, we relied on this library for the sparse matrix rep-

resentation, using the CSC, CSR and COO matrix formats.

• SimilariPy [55]: package written in Cython for the fast computation of

matrix multiplications and similarity metrics, we used it for computing

the cosine similarity.

In addition to these tools, we also wrote the most computationally expensive

part in Cython, a superset of the Python language that supports calling C

functions and declaring C types; this made the process consistently faster and

improved the performance. All the algorithms ran on a 32GB RAM Windows

PC without the use of a GPU.

3.4.2 Hyperarameter Tuning

There are a lot of parameters in both the BPR and the analyzed sampling

methods. In order to find the optimal ones, we adopted a random search ap-

proach over the hyperparameter space using 50 different configurations for

every sampling algorithm. We used the same seed for every run so that each

algorithm within a dataset was tested against the same set of configurations.

The BPRMF parameters tuned by the random optimizer are the following:

• Number of Latent Factors: the number of factors for the MF model,

ranged between 150 and 300;

• Positive Regularization: the regularization value for the positive class, in

range 0.0001 to 0.001;

95

Chapter 3. Evaluation

• Negative Regularization: the regularization value for the negative class,

in range 0.0001 to 0.001.

For the sample weighting confidence, we ran the optimizer for different val-

ues of the α hyperparamter in Equation 2.3 in order to find the best value,

generally small values in the 0.3-0.6 range seem to yield good results.

Regarding the samplings, for VINS [65] we followed the authors’ suggestion

and set s to 5 and the max iterations to 64. For the ranking aware rejection

sampler we used small groups (5, 10, 15 and 20) as suggested in [66, 26] and

decided to set all the βk parameters to zero, thus extracting the item with

largest score as described in Section 1.10.6.2 for two reasons:

• complexity, since this way the scaling is linear (see Section 1.10.6.2);

• instead of analyzing the single sampler, we are rather interested in mea-

suring the relative improvement of the item similarity based confidence

sampling that we proposed.

Finally, for what concerns the item similarity used for computing the confi-

dence, we used the cosine similarity (defined in Appendix 1.4) with a shrink

factor of 5 to reduce the noise. Note that we did not use any feature weight-

ing algorithm like TF-IDF and we did not tune the topK parameter as our

main focus is just to have a straight item-item score for each item, since tun-

ing an ItemKNN recommender is not our purpose. However, we do not want

to exclude that a different tuning of the similarity could also improve our

results.

3.4.3 Number of Epochs and Early Stopping

As already mentioned, the BPR loss can be optimized with gradient descent

optimization methods. We opted for the Adam gradient descent based al-

gorithm [33] as it is lightweight and it also achieved the best performance.

These optimizers have two key hyperparameters:

• Learning Rate, which controls the update size at each iteration while

moving toward a minimum of the loss function;

• Batch Size: the number of training examples utilized in one iteration

for the gradient update.

These parameters are strongly related and affect the number of epochs needed

for the algorithm to converge.

96

Chapter 3. Evaluation

Since one of the aspects that we want to evaluate is the convergence speed,

measured as the number of epochs needed to reach the convergence, we de-

cided to keep the learning rate and batch size parameters fixed, otherwise

we could not measure the convergence speed of two different algorithms that

have different learning rate and batch size using the number of epochs.

To find the number of epochs for reaching the convergence, we decided to

use the Early Stopping method, which is a very popular technique adopted

in ML. In practice, once every n iterations, the performance of the algorithm

is evaluated in the validation set, according to a certain predefined metric. If

the metric stops growing for m evaluations, the procedure is stopped and we

conclude that the best number of epochs is the last one in which the metric

has grown. The m value is sometimes called patience, as it is the number of

times that the algorithm can underperform before it is stopped. In our case,

we evaluated the recall 3.1.1.2 metric at 10 every 5 epochs and we used a

patience of 2, so that the training stopped if the recall did not improve after

two consecutive evaluations. Moreover, since some configurations got stuck

in very small updates, we also stopped the training if after two consecutive

evaluations (10 epochs) the relative improvement was lower then the 0.5%.

97

Chapter 4

Results

In this chapter, we are finally ready to assess the idea of weighting samples

using the item similarity confidence defined in the second chapter. In partic-

ular, the analysis is carried out on the following samplings:

• UNI: the random sampler described in Section 1.10.1.

• POP: the popularity oversampling strategy described in Section 1.10.2,

utilizing the empirical distribution of the items.

• IMB: the imbalance rejection sampling in Section 1.10.4.

• DYN: the ranking aware rejection sampler in Section 1.10.6. For this

kind of sampler, we tried various group sizes:

– DYN-5: groups of 5.

– DYN-10: groups of 10.

– DYN-15: groups of 15.

– DYN-20: groups of 20.

Moreover, we also evaluate the weighted versions of these algorithms, espe-

cially focusing on the dynamic ones as they seem to be able to yield the best

results. To highlight the fact that the item similarity weighting has been used

98

Chapter 4. Results

for one of the previous algorithms, we use the letter W so that with W-DYN-

5 we refer to the weighted version of DYN-5 enhanced with our proposed

strategy.

4.1 Prediction Accuracy

In the following paragraphs we show the accuracy results obtained on the

dataset for the classification and ranking accuracy metrics as well as a couple

observations that emerged from this analysis.

The results are showed in tabular form as well as with different plots. For

the tables, the upper part of each table contains the standard versions of the

samplings, as described in Section 1.10, while the bottom part shows the

results of the same samplings enhanced with our proposed item similarity

based confidence described in Chapter 2. In each table, both for the weighted

and non-weighted sampling methods, the best technique is in bold while the

second best is underlined.

4.1.1 Classification Metrics

The following four pages contains the tables and plots that sum up the clas-

sification accuracy of the algorithms on the four datasets.

99

Chapter 4. Results

Sampling Prec@5 Prec@10 Prec@25 Rec@5 Rec@10 Rec@25

UNI 0.0378 0.0260 0.0159 0.0637 0.0845 0.1235

POP 0.0242 0.0174 0.0108 0.0434 0.0582 0.0854

IMB 0.0370 0.0256 0.0152 0.0621 0.0829 0.1191

VINS 0.0364 0.0257 0.0155 0.0613 0.0840 0.1231

DYN-5 0.0388 0.0273 0.0169 0.0664 0.0924 0.1350
DYN-10 0.0384 0.0272 0.0155 0.0649 0.0889 0.1224

DYN-15 0.0383 0.0265 0.0154 0.0646 0.0866 0.1234

DYN-20 0.0374 0.0254 0.0148 0.0638 0.0839 0.1165

W-POP 0.0307 0.0231 0.0147 0.0538 0.0772 0.1153

W-IMB 0.0433 0.0307 0.0187 0.0724 0.1007 0.1454

W-DYN-5 0.0463 0.0335 0.0201 0.0751 0.1052 0.1544
W-DYN-10 0.0477 0.0334 0.0196 0.0823 0.1089 0.1522

W-DYN-15 0.0464 0.0331 0.0195 0.0771 0.1075 0.1511

W-DYN-20 0.0457 0.0312 0.0182 0.0772 0.1019 0.1409

Table 4.1: Precision and recall scores with cutoff 5,10 and 25 on the BookCrossing dataset.

Figure 4.1.1: Bar plot that shows the percentage of gain brought by the similarity sample
weighting for the recall scores on BookCrossing.

100

Chapter 4. Results

Sampling Prec@5 Prec@10 Prec@25 Rec@5 Rec@10 Rec@25

UNI 0.2327 0.1778 0.1130 0.1505 0.2298 0.3616

POP 0.1179 0.0974 0.0695 0.0801 0.1299 0.2266

IMB 0.2330 0.1750 0.1131 0.1500 0.2250 0.3630

VINS 0.2087 0.1686 0.1103 0.1341 0.2176 0.3553

DYN-5 0.2390 0.1796 0.1132 0.1532 0.2314 0.3635

DYN-10 0.2256 0.1716 0.1101 0.1453 0.2199 0.3553

DYN-15 0.2372 0.1755 0.1099 0.1534 0.2260 0.3516

DYN-20 0.2301 0.1757 0.1076 0.1475 0.2231 0.3426

W-POP 0.1461 0.1172 0.083 0.0993 0.1565 0.2724

W-IMB 0.2518 0.1861 0.1168 0.1629 0.2399 0.3768

W-DYN-5 0.2587 0.1914 0.1206 0.1706 0.2474 0.3910

W-DYN-10 0.2669 0.1987 0.1235 0.1749 0.2569 0.4006
W-DYN-15 0.2707 0.1985 0.1212 0.1759 0.2574 0.3915

W-DYN-20 0.2653 0.1963 0.1201 0.1727 0.2539 0.3876

Table 4.2: Precision and recall scores for cutoffs at 5, 10 and 25 on the LastFm dataset.

Figure 4.1.2: Bar plot that shows the percentage of gain brought by the similarity sample
weighting for the recall scores on LastFm.

101

Chapter 4. Results

Sampling Prec@5 Prec@10 Prec@25 Rec@5 Rec@10 Rec@25

UNI 0.2327 0.1952 0.1485 0.0888 0.1442 0.2604

POP 0.1203 0.1052 0.0830 0.0505 0.0868 0.1601

IMB 0.2717 0.2263 0.1661 0.1056 0.1689 0.2907

VINS 0.1907 0.1619 0.1255 0.0749 0.1211 0.2186

DYN-5 0.2907 0.2434 0.1781 0.1098 0.1771 0.3011
DYN-10 0.2894 0.2398 0.1753 0.1091 0.1724 0.2958

DYN-15 0.2733 0.2269 0.1643 0.1047 0.1672 0.2845

DYN-20 0.2534 0.2112 0.1526 0.0993 0.1591 0.2706

W-POP 0.1242 0.1118 0.0922 0.0532 0.0934 0.1809

W-IMB 0.2875 0.2411 0.1765 0.1078 0.1730 0.3017

W-DYN-5 0.3046 0.2539 0.1843 0.1151 0.1822 0.3105

W-DYN-10 0.3033 0.2516 0.1814 0.1170 0.1853 0.3142
W-DYN-15 0.3045 0.2503 0.1787 0.1186 0.1881 0.3140

W-DYN-20 0.2973 0.2409 0.1709 0.1176 0.1831 0.3047

Table 4.3: Precision and recall scores for cutoffs at 5, 10 and 25 on the Movielens1M dataset.

Figure 4.1.3: Bar plot that shows the percentage of gain brought by the similarity sample
weighting for the recall scores on Movielens1M.

102

Chapter 4. Results

Sampling Prec@5 Prec@10 Prec@25 Rec@5 Rec@10 Rec@25

UNI 0.1641 0.1219 0.0751 0.2381 0.3437 0.4994

POP 0.0660 0.0544 0.0409 0.0942 0.1559 0.2919

IMB 0.1672 0.1243 0.0760 0.2466 0.3503 0.5102

VINS 0.1676 0.1252 0.0763 0.2518 0.3608 0.5183

DYN-5 0.1711 0.1251 0.0769 0.2526 0.3539 0.5123

DYN-10 0.1743 0.1284 0.0771 0.2575 0.3652 0.5209
DYN-15 0.1702 0.1250 0.0753 0.2493 0.3539 0.5056

DYN-20 0.1703 0.1241 0.0745 0.2520 0.3552 0.5066

W-POP 0.1089 0.0856 0.0573 0.1560 0.2423 0.3912

W-IMB 0.1725 0.1286 0.0789 0.2522 0.3594 0.5246

W-DYN-5 0.1759 0.1311 0.0801 0.2566 0.3657 0.5343

W-DYN-10 0.1810 0.1332 0.0803 0.2667 0.3736 0.5388
W-DYN-15 0.1780 0.1315 0.0797 0.2603 0.3661 0.5287

W-DYN-20 0.1843 0.1345 0.0805 0.2670 0.3746 0.5342

Table 4.4: Precision and recall scores for cutoffs at 5, 10 and 25 on the Yahoo dataset.

Figure 4.1.4: Bar plot that shows the percentage of gain brought by the similarity sample
weighting for the recall scores on Yahoo Movies.

103

Chapter 4. Results

Tables 4.1, 4.2, 4.3 and 4.4 contain the full results of the BPR sampling algo-

rithms for the precision and recall metrics (see Section 3.1.1) with different

cutoffs (5, 10 and 25) on the four datasets taken into consideration.

Looking at the tables, we can observe that in each dataset, even if with dif-

ferent impacts, our proposed weighting strategy is able to always improve
the classification accuracy of the base BPR sampling algorithms. Among the

existing samplers, the one that performs better is generally DYN, while POP

is by far the worst technique, as expected. In DYN, we can see that small

groups (DYN-5) seem to be able to obtain the best results in the non-weighted

versions and bigger groups (DYN-10/DYN-15) excel in the weighted version

instead, taking advantage of our confidence weighting. One surprising ob-

servation that we can make is that the uniform sampler, except for Movie-

lens1M, is able to achieve quite good accuracy even compared to the other

more computationally expensive sampling methods.

BookCrossing The BookCrossing dataset (Table 4.1 and Figure 4.1.1) is the

one that most benefits from the sample weighting. The improvements on the

recall (Figure 4.1.1) are all above 13%, and interestingly they are even larger

on the precision; for example, at 5 cutoffs the precision improvement of W-

DYN-5 is 19% with respect to the 13% on the recall. Looking at DYN, we can

see that DYN-5 is the best overall and DYN-10, DYN-15 and DYN-20 achieve

very similar results. As for the non DYN samplers, UNI performs really well,

even topping DYN-20. IMB and VINS results seem very closely related, with

VINS doing slightly better with larger cutoffs. In general, except the POP

sampler, all the baselines are concentrated in a very small range of scores; for

example, for the precision with cutoff 5, the maximum base score (0.0388 by

DNY-5) is just roughly 6% higher than the lowest score (0.0364 by VINS).

LastFm In LastFm (Table 4.2 and Figure 4.1.2) we can spot similar trends and

observe that the improvement of our strategy is really effective. We can note

that the IMB sampler accuracy is good compared to the other baselines (it is

the second strongest baseline in precision and recall at 25), but the confidence

weighting effect is limited with respect to the other sampling techniques. A

great difference between LastFm and BookCrossing is that VINS is not able

to achieve decent classification scores, in fact the only baseline that performs

worse is POP. For what concerns UNI, we can see that it is able to achieve

very similar precision and recall scores to the DYN as in BookCrossing and

it is even the second strongest base sampling in both the metrics with 10

cutoffs. As we can see from Figure 4.1.2, our proposed weighting in this case

104

Chapter 4. Results

brings the best benefits for the metrics evaluated with cutoff at 5.

Movielens1M Table 4.3 shows the classification accuracy on Movielens1M.

At first glance, we can immediately identify a considerable difference be-

tween this and the other two previous datasets: while in BookCrossing and

LastFm the group size does not seem to change much, in Movielens1M larger

groups perform significantly worse. More in details, DYN-5 performs better

than DYN-20 on the precision by ca. 15% and on the recall by ca. 11%. We

are able to notice a similar trend in the VINS performance, which practically

acts as a variation of DYN sampler with group size of 64, whereas the group

is composed by negative instances pre-sampled by IMB; we can see that IMB

performs even 42% better on Prec@5 with respect to VINS. Moreover, while in

the other dataset the IMB results are pretty close to the UNI’s one, in Movie-

lens1M IMB does even 16% better on Prec@5 and 19% on Rec@5. As for the

relative improvement (Figure 4.1.3) brought by confidence weighting, the

effect is not as evident as in the previous two dataset but it is still visible.

In particular, the item similarity confidence weighting is very beneficial for

larger group sizes in DYN, so that W-DYN-10 and W-DYN-15 are the best

overall performing algorithms in the recall.

Yahoo Movies Finally, Table 4.4 contains the precision and recall scores for

Yahoo Movies. Interestingly, this is the dataset in which larger groups of

DYN perform better than DYN-5, which seemed to be the best non-weighted

sampler in the other datasets. In fact, DYN-10 is the best on all the metrics

while the W-DYN-20 is the best overall. Similarly to the previous reasoning,

the fact that larger group sizes in DYN perform better also reflects in the

very good classification accuracy achieved by VINS which is the second best

baselines for Rec@10 and Rec@25. About the confidence weighting, Figure

4.1.4 shows that the improvement of our strategy is the smallest among all

the datasets, ranging between 1.6% to 6% for all the samplings except for

the POP, which is greatly improved. In particular, on Rec@5 the POP score is

raised by over 65% and this could be related to the fact that, as we pointed

out in Section 3.3.4, the long tail phenomenon is very accentuated in Yahoo

Movies.

4.1.2 Ranking metrics

As for classification results, in the next four pages we collected all the results

of the MAP and NDCG on the four datasets. The plots and the tables are to

be read exactly as before.

105

Chapter 4. Results

Sampling MAP@5 MAP@10 MAP@25 NDCG@5 NDCG@10 NDCG@25

UNI 0.0458 0.0465 0.0491 0.0594 0.0687 0.0820

POP 0.0309 0.0320 0.0340 0.0405 0.0473 0.0566

IMB 0.0438 0.0451 0.0474 0.0578 0.0671 0.0794

VINS 0.0416 0.0433 0.0458 0.0556 0.0658 0.0786

DYN-5 0.0482 0.0498 0.0528 0.0625 0.0737 0.0881
DYN-10 0.0476 0.0487 0.0507 0.0616 0.0723 0.0835

DYN-15 0.0462 0.0474 0.0498 0.0599 0.0698 0.0820

DYN-20 0.0458 0.0467 0.0489 0.0598 0.0688 0.0800

W-POP 0.0328 0.0350 0.0377 0.0457 0.0560 0.0689

W-IMB 0.0491 0.0507 0.0536 0.0645 0.0770 0.0923

W-DYN5 0.0552 0.0567 0.0600 0.0707 0.0841 0.1006

W-DYN-10 0.0577 0.0588 0.0617 0.0745 0.0867 0.1016
W-DYN-15 0.0559 0.0571 0.0599 0.0717 0.0851 0.1001

W-DYN-20 0.0551 0.0560 0.0587 0.0714 0.0825 0.0960

Table 4.5: MAP and NDCG scores for cutoffs at 5, 10 and 25 for BookCrossing.

Figure 4.1.5: Bar plot that shows the percentage of gain brought by the similarity sample
weighting for the MAP scores on BookCrossing.

106

Chapter 4. Results

Sampling MAP@5 MAP@10 MAP@25 NDCG@5 NDCG@10 NDCG@25

UNI 0.1751 0.1397 0.1587 0.1927 0.2426 0.3061

POP 0.0777 0.0646 0.0764 0.0996 0.1311 0.1774

IMB 0.1763 0.1390 0.1590 0.1940 0.2416 0.3073

VINS 0.1454 0.1207 0.1418 0.1678 0.2203 0.2863

DYN-5 0.1792 0.1422 0.1613 0.1972 0.2462 0.3097
DYN-10 0.1712 0.1361 0.1547 0.1879 0.2353 0.2995

DYN-15 0.1810 0.1421 0.1597 0.1977 0.2435 0.3038

DYN-20 0.1764 0.1402 0.1571 0.1926 0.2410 0.2984

W-POP 0.0947 0.0789 0.0938 0.1209 0.1567 0.2117

W-IMB 0.1941 0.1518 0.1712 0.2101 0.2588 0.3237

W-DYN5 0.2017 0.1597 0.1801 0.2201 0.2692 0.3368

W-DYN-10 0.207 0.1653 0.1865 0.2254 0.2776 0.3455
W-DYN-15 0.2131 0.1684 0.1878 0.2284 0.2798 0.3436

W-DYN-20 0.2079 0.1646 0.1840 0.2234 0.2749 0.3384

Table 4.6: MAP and NDCG scores for cutoffs at 5, 10 and 25 for LastFm.

Figure 4.1.6: Bar plot that shows the percentage of gain brought by the similarity sample
weighting for the MAP scores on LastFm.

107

Chapter 4. Results

Sampling MAP@5 MAP@10 MAP@25 NDCG@5 NDCG@10 NDCG@25

UNI 0.1656 0.1282 0.1111 0.1224 0.1623 0.2268

POP 0.0730 0.0570 0.0513 0.065 0.0899 0.1295

IMB 0.2019 0.1584 0.1354 0.1442 0.1901 0.2586

VINS 0.1312 0.1012 0.089 0.1033 0.1368 0.1919

DYN-5 0.2232 0.1768 0.1507 0.1541 0.2030 0.2739
DYN-10 0.2214 0.1734 0.1464 0.1520 0.1986 0.2690

DYN-15 0.2061 0.1604 0.1357 0.1454 0.1910 0.2574

DYN-20 0.1863 0.1447 0.1234 0.1369 0.1802 0.2427

W-POP 0.0768 0.0611 0.0574 0.0688 0.0964 0.1430

W-IMB 0.2198 0.1745 0.1475 0.1512 0.199 0.2710

W-DYN5 0.2351 0.1862 0.1571 0.1599 0.2092 0.2821

W-DYN-10 0.2349 0.1852 0.1570 0.1623 0.2124 0.2849

W-DYN-15 0.2364 0.1855 0.1564 0.1646 0.2143 0.2853
W-DYN-20 0.2282 0.1763 0.1487 0.1619 0.2091 0.2773

Table 4.7: MAP and NDCG scores for cutoffs at 5, 10 and 25 for Movielens1M.

Figure 4.1.7: Bar plot that shows the percentage of gain brought by the similarity sample
weighting for the MAP scores on Movielens1M.

108

Chapter 4. Results

Sampling MAP@5 MAP@10 MAP@25 NDCG@5 NDCG@10 NDCG@25

UNI 0.1770 0.1868 0.2039 0.2233 0.2721 0.3286

POP 0.0612 0.0676 0.0812 0.0841 0.1119 0.1584

IMB 0.1833 0.1940 0.2120 0.2310 0.2810 0.3386

VINS 0.1845 0.1976 0.2165 0.2358 0.2868 0.3438

DYN-5 0.1895 0.1992 0.2173 0.2384 0.2861 0.3435

DYN-10 0.1946 0.2058 0.2238 0.2450 0.2952 0.3513
DYN-15 0.1892 0.1994 0.2165 0.2375 0.2863 0.3413

DYN-20 0.1896 0.1999 0.2176 0.2393 0.2873 0.3421

W-POP 0.1085 0.1171 0.1321 0.1436 0.1830 0.2355

W-IMB 0.1874 0.1978 0.2164 0.2360 0.2866 0.3463

W-DYN5 0.1959 0.2070 0.2262 0.2446 0.2963 0.3571

W-DYN-10 0.2017 0.2119 0.2310 0.2522 0.3029 0.3623

W-DYN-15 0.1960 0.2065 0.2248 0.2454 0.2954 0.3543

W-DYN-20 0.2063 0.2158 0.2335 0.2553 0.3060 0.3639

Table 4.8: MAP and NDCG scores for cutoffs at 5, 10 and 25 for Yahoo Movies.

Figure 4.1.8: Bar plot that shows the percentage of gain brought by the similarity sample
weighting for the MAP scores on Yahoo Movies.

109

Chapter 4. Results

Tables 4.5, 4.6, 4.7 and 4.8 show the ranking accuracy of the sampling meth-

ods on each one of the four datasets, while Figures 4.1.5, 4.1.6, 4.1.7 and 4.1.8

display the percentage of improvement due to our proposed technique. The

metrics used for the evaluation are MAP and NDCG (described in Section

3.1.2). The comments on the ranking accuracy are a bit shorted because most

of the things we pointed out for the precision and recall results also apply for

MAP and NDCG.

BookCrossing In BookCrossing (Table 4.5) DYN-5 is the best non-weighted

algorithm in both MAP and NDCG for all the considered cutoffs, whereas the

W-DYN with groups of 10 items is the best weighted and overall algorithm

in every ranking metric, being able to outperform the non-weighted versions

of more than 15%. Comparing these scores with the ones for accuracy (Table

4.3), we can observe that W-DYN-5 is slightly more accurate on the classifica-

tion metrics for larger cutoffs. In Figure 4.1.5 we can observe that the larger

improvements of item similarity weighting are in DYN with groups of 10, 15

and 20. Comparing Figure 4.1.5 with Figure 4.1.1, the benefits appear to be

less evident on the MAP and, in particular, W-POP performs way better on

the classification metrics.

LastFm On LastFm (Table 4.6), the best baselines are DYN-15 for MAP@5
and NDCG@5 and DNY-5 for bigger cutoffs. As for classification accuracy,

VINS decreases the IMB accuracy quite significantly, similarly to what we saw

on the precision and recall scores. As can be seen from Figure 4.1.6, all the

sampling algorithms are greatly improved by the item similarity confidence

weighting, especially, as in the other cases, the DYN samplers with 10, 15 and

20 negative candidates and POP.

Movielens1M The ranking results on Movielens1M in Table 4.7 are very sim-

ilar to the classification ones, yet the improvement of our proposed strategy is

even larger (see Figure 4.1.6). DYN-20 does way worse with respect to DYN-5

both on MAP and NDCG, with a difference of more than 20%. DYN-20 is also

the strategy that most benefits from the weighting, with an improvement of

ca. 20% on the MAP compared to ca. 5% on DYN-5.

Yahoo Movies The same observations we made in the previous section also

apply for the ranking results in Yahoo Movies (Table 4.8). In particular,

big groups are able to achieve the best ranking accuracy with DYN-10 and

W-DYN-20 as the best non-weighted and weighted sampling algorithms on

MAP and NDCG for every cutoffs. From Figure 4.1.8 the great improve-

ment brought by the confidence weighting to the POP sampler is again indis-

110

Chapter 4. Results

putable.

4.1.3 POP vs. IMB

An aspect that can be detected from both the classification and ranking re-

sults is that IMB greatly outperforms POP, even if they both use popularity

of the items to define the negative sampling distribution. Moreover, the POP

sampler, which was obtained from the empirical distribution of the items,

is the worst performing sampling algorithm in each dataset as also noted

in several of the formerly cited works [50, 65, 22] while IMB tends to have

similar or better performance with respect to the original uniform negative

sampling.

There are two key differences between IMB and POP:

1. the rejection strategy that instantly draws a negative if it has a larger

popularity than the selected positive;

2. the fact that IMB draws the negative item among a small group of ran-

domly selected candidates (5 in our case).

Figure 4.1.9: MAP scores for each epoch of the IMB sampler with groups of 5 (IMB-5) and 100
(IMB-100) on LastFm.

These two cases have the effect of pushing IMB towards the UNI with the

111

Chapter 4. Results

advantage of being able to still select popular items. In fact, we can observe

how the rejection strategy accepts the first item with popularity greater than

the positive, thus it does not always accept the most popular negative but

just the first one that appears when looping in the group that meets the re-

jection condition and, since the items in the group are extracted uniformly,

the ordering is random. This way, since the candidates are uniformly drawn

and the item popularity distribution follows the long tail model, most of the

times the negative sampled item will not be in the “small head” (see Figure

1.6.1 for the long tail model).

Increasing the size of the randomly selected candidates obviously increases

the probability that the selected negative item is among the most popular

items in the dataset, thus decreasing the IMB performances towards the POP

sampler as can be seen in Figure 4.1.9, which shows the performance of IMB

with groups of 5 and groups of 100. Despite being able to notice that accu-

racy is lower for IMB-100, the rejection strategy is still able to strongly limit

this effect.

4.1.4 Cutoff vs. DYN Group Size

Figure 4.1.10: Difference between recall scores of the weighted DYN-5 and DYN-20 at differ-
ent cutoffs on BookCrossing.

112

Chapter 4. Results

A curious point that we want to emphasize is that the sampling performances

of DYN seem to slightly change according to the different group size for each

cutoff, both for the weighted and their non-weighted counterparts. More

in detail, bigger groups seem to perform somewhat better with respect to

the others on the metrics with smaller cutoffs, while smaller groups seem

stronger with bigger cutoffs. This appears clear from Figure 4.1.10, which

shows the recall scores for BookCrossing for W-DYN-5 and W-DYN-20 (see

Table 4.1); while with cutoff 5 the best one is the W-DYN-20, as the cutoff
increases the W-DYN-20 performs way worse with respect to the W-DYN-5.

This difference is gradual from 5 to 20, with groups of 10 and 15 generally

performing well on both 5, 10 and 25 cutoffs. Even when DYN-5 or DYN-20

are the best overall, the difference in performance with 5, 10 and 25 cutoff
seems to sometimes follow this trend, both for the classification and ranking

metrics, even if there are some exceptions.

Interestingly, even if we compared VINS and DYN highlighting the similarity

between the two approaches, this fact does not apply to VINS, probably due

to the first phase of sampling through IMB.

113

Chapter 4. Results

4.2 Future Positive Rate

Aside from the classification and ranking metrics, we are also interested in

understanding why some samplings perform better than others and why our

confidence weighting is able to bring greater benefits to certain samplings.

We define the Future Positive Rate (FPR) in the context of the BPR sampling

as the percentage of negative items sampled during the training that appear

as positive items in the test set. This percentage gives an idea of the diffi-

culty of the negative instances drawn by the sampler: the higher the FPR, the

harder it is for the algorithm to distinguish between negative and positive

items. Since future positive items should generally be similar to the items in

the user profile, we expect this quantity to be correlated to the improvements

that our weighting strategy can bring. In fact, the higher the Future Positive

Rate for a certain sampler is, the more evident the benefits of the item simi-

larity based confidence weighting should be since it reduces the penalization

of the items that are likely to become future positives according to the item

similarity.

Let’s compare the FPR for the various analyzed samplings, with a couple

examples on LastFm and Yahoo Movies for simplicity, but the very same con-

siderations can also be applied in the other two datasets without loss of gen-

erality.

4.2.1 Example 1: POP improvement

Figure 4.2.1 shows the FPR for each epoch for the UNI, POP and IMB sam-

pler on LastFm; as expected, since the samplers are static, the FPR is almost

a line and does not change during the epochs. The value of the FPR has been

obtained, for each epoch, as the percentage of negative items that are then

positive in the test set, averaged for all the users. As we can see, IMB selects

more than twice the number of future positives with respect to UNI, while

the POP almost six times with respect to UNI; this may be surprising at first

glance since both the samplers use the item popularity, but the cause is re-

lated to what we explained in Section 4.1.3 about both the limited number of

randomly chosen candidates taken into consideration and the rejection strat-

egy of the IMB technique. Comparing this figure with 4.1.6, we can observe

that the improvement brought by the confidence weighting is more than dou-

ble for the POP with respect to the IMB sampling. That is because, since POP

samples more future positives as negative items, reducing the importance of

the items with a high confidence of being positive has a greater impact.

114

Chapter 4. Results

Figure 4.2.1: FPR per epoch on the LastFm dataset.

Figure 4.2.2: FPR for the POP and DYN-20 samplers on Yahoo Movies.

A similar consideration about POP can be made observing the incredible im-

115

Chapter 4. Results

pact that confidence weighting has on the Yahoo Movies dataset (see Figure

4.1.8), boosting the POP strategy by more than 75% on MAP@5. As we al-

ready noticed, this boost can be explained by the fact that the long tail phe-

nomenon is really accentuated in this dataset. Interestingly, this aspect can

also be viewed clearly through the FPR results in Figure 4.2.2, as the POP

sampler selects a lot of positive instances, even more (ca. double) than the

DYN-20, which is the best performing one. The motivation is again the fact

that the proposed confidence weighting is able to lower the scores of those

selected future positive items without penalizing them too much.

4.2.2 Example 2: DYN group size

Figures 4.2.3 and 4.2.4 highlight the differences in DYN according to the

group size on LastFm and Yahoo Movies. As we can notice, the number of

future positive items selected grows with the dimension of the group; this

is easily explainable by the fact that increasing the number of candidates

among which extracting the one with largest score inevitably grows the prob-

ability of selecting one of the items ranked at the top (i.e. one of the items

that will likely be recommended, so a possible future positive).

Figure 4.2.3: Percentage of future positive items, for DYN-5 and DYN-20, on Yahoo Movies.

116

Chapter 4. Results

Figure 4.2.4: Percentage of negative items that are future positive items, for different group
sizes, on LastFm.

DYN-5 is the one that typically achieves the best scores in the non-weighted

version, as can be seen from the classification and ranking results on every

dataset except from Yahoo Movies. It is interesting to notice that, usually,

larger groups are the ones obtaining greater advantages from the item simi-

larity weights. That is exactly what happens in Yahoo Movies, with DYN-20

having almost double of FPR with respect to DYN-5: it reflects directly on

the weighted results with DYN-20 being boosted by our proposed confidence

by ca. two times with respect to DYN-5 (Figures 4.1.4 and 4.1.8). A similar

trend can be spotted in the Movielens1M results (Table 4.3), in which we can

see how DYN-5 strongly outperforms the other DYN variations, but again

our strategy turns out to be most helpful for larger sizes of the groups. The

reason behind this is the same one we illustrated previously while motivat-

ing how POP received a greater improvement compared to IMB, which is that

larger groups are able to select more future positives.

In addition to this, from Figure 4.2.5 and 4.2.6 we can observe more in de-

tail that the confidence weighting job is not reducing the number of positive

instances selected by the sampler, but instead smoothing the penalization of

the possible future positives.

117

Chapter 4. Results

Figure 4.2.5: FPR for DYN-20 and its weighted counterpart on Yahoo Movies.

Figure 4.2.6: FPR for DYN-5 and W-DYN-5 on Yahoo Movies.

Indeed, the FPR of the W-DYN-20 is even higher than the one of its non-

118

Chapter 4. Results

weighted counterpart and still remains the best overall sampling strategy on

the Yahoo dataset. In order for us to give an explanation, we should consider

that the model is more accurate and thus produces a better ranking accord-

ing to the scores, therefore selecting a future positive with larger groups is

more probable. The same matter is less evident when comparing DYN-5 and

W-DYN-5 (Figure 4.2.6), which can be justified by the limited dimension of

the randomly selected candidates that inherently narrows down the proba-

bility of finding a very difficult negative (i.e. a possible future positive) just

randomly drawing 5 items.

4.2.3 FPR vs Accuracy

We observed that DYN samplers with bigger groups tend to perform worse

(without weighting) because they are more prone to select future positive

instances and the same reasoning applies to POP and IMB. Despite this being

true, one could be tempted to think that high FPR is a bad indicator of the

accuracy, which is definitely incorrect. In fact, the plain FPR alone is not
enough for evaluating the good or bad value of a sampling algorithm.

Figure 4.2.7: Comparison between the precision scores on LastFm between POP and DYN-15.

119

Chapter 4. Results

Figure 4.2.8: Comparison between FPR of POP and DYN-15 on LastFm.

We can deduce that from Figures 4.2.7 and 4.2.8, which show the FPR for

DYN-15 and POP on LastFm and a comparison on the precision scores. We

can observe how, despite DYN-15 having a much higher FPR (ca. 2.4% vs

1.3%), the ranking and classification metrics show how much more accurate

DYN-15 is. Consequently, another crucial aspect that we should consider

when looking at the FPR is that even if two sampling algorithms have similar

FPR, this does not mean that they selected the exact same future positives. As

discussed in Section 2.1.1, the POP selects popular items that do not really

define the taste of a user, because it prevents them from selecting the niche

items that are generally more capable to describe the user’s profile, while this

should not happen for the DYN sampler.

On this matter, we want to conclude by saying that the FPR is related to a

general issue in RS which is that the negative interactions are exactly the

ones that need to be recommended in the future. From this perspective, the

FPR is an indication of how well a model that extracts the negative samples

as recommendations would perform.

120

Chapter 4. Results

4.3 Convergence Speed

Tables 4.9 and 4.10 show the number of epochs necessary for reaching con-

vergence on the four datasets. From these results we can deduce that there

is not a single defined trend in the convergence but we can still spot some

similarities and differences.

Sampling Number of Epochs

UNI 50

POP 10

IMB 40

VINS 5

DYN-5 15

DYN-10 10

DYN-15 10

DYN-20 10

W-POP 50

W-IMB 60

W-DYN-5 55

W-DYN-10 55

W-DYN-15 55

W-DYN-20 65

Sampling Number of Epochs

UNI 100

POP 50

IMB 100

VINS 100

DYN-5 100

DYN-10 85

DYN-15 90

DYN-20 70

W-POP 80

W-IMB 100

W-DYN-5 55

W-DYN-10 40

W-DYN-15 50

W-DYN-20 65

Table 4.9: Number of epochs for reaching convergence on Movielens1M (left) and BookCross-
ing (right).

121

Chapter 4. Results

Sampling Number of Epochs

UNI 80

POP 25

IMB 75

VINS 50

DYN-5 55

DYN-10 30

DYN-15 20

DYN-20 15

W-POP 90

W-IMB 60

W-DYN-5 70

W-DYN-10 105

W-DYN-15 90

W-DYN-20 75

Sampling Number of Epochs

UNI 90

POP 5

IMB 110

VINS 150

DYN-5 75

DYN-10 85

DYN-15 85

DYN-20 130

W-POP 110

W-IMB 100

W-DYN-5 75

W-DYN-10 130

W-DYN-15 90

W-DYN-20 50

Table 4.10: Number of epochs for reaching convergence on LastFm (left) and Yahoo Movies
(right).

First of all, we can see that UNI and IMB are the slowest. This is not sur-

prising at all for UNI, as we highlighted multiple times the issues with this

strategy in selecting informative pairs. About IMB, this is clearly explain-

able with the previous study on the analysis between IMB, POP and UNI that

shows how IMB is much closer to UNI rather than to POP.

On the contrary, POP is always the fastest algorithm. This is again an ex-

pected result, as we already pointed out that oversampling popular items

improves the learning process in the very first stages but than causes the al-

gorithm to get stuck, making POP the fastest but also worst baseline from

an accuracy standpoint. One of the reasons that make POP converge so fast

could be related to the FPR, which also explains how DYN always requires

(with the exception of Yahoo Movies) a lower number of epochs to converge

in case of larger groups. On Yahoo Movies we can observe that this trend is

practically inverted and, moreover, we already noticed that this dataset is the

one in which large groups perform best, which is visible both in the results

of VINS and DYN.

About the impact of our confidence weighting, we can spot two separate

trends:

122

Chapter 4. Results

• on Movielens1M and LastFm, the weights severely increase the number

of epochs;

• on BookCrossing it really speeds up the learning.

On Yahoo Movies, we cannot outline a clear trend, with W-DYN-5/15 having

roughly the same convergence speed in terms of epochs as DYN-5/15 while

DYN-10 is much faster than W-DYN-10 and DYN-20 in much slower than W-

DYN-20. In the next pages, Figures 4.3.1 and 4.3.2 show the Rec@25 results

of DYN and W-DYN for every group size on each epoch, on BookCrossing and

LastFm. From Figure 4.3.1, we can observe that the convergence is really fast

with the weighting on BookCrossing while, on the contrary, we can spot the

opposite trend on LastFm (Figure 4.3.2). From Figure 4.3.2 it is evident that,

as the FPR seems to grow with the number of epochs until convergence (see

Figure 4.2.4), once convergence is reached, accuracy drops by a good portion,

especially with larger group sizes. On the other hand, confidence weighting

allows the model to continue learning even with a high FPR, that is why (in

addition to the fact that small weights reduce the convergence speed) the

convergence is a slightly slower and we are not able to see an instant drop in

accuracy once convergence is reached.

Finally, about the impact of our confidence weighting on the computational
complexity, we already stated that it only introduces a constant time for re-

trieving the weight associated to each sample, which is a fixed value. This of-

fers great advantages in terms of ease of computation with respect to [65, 37],

especially because this sampling strategy, if combined with a static sampler

(e.g. W-IMB), can even improve a more computational expensive dynamic

adaptive strategy (non-weighted) such as DYN, as we saw in the LastFm (Ta-

bles 4.2 and 4.5) and BookCrossing (Tables 4.1 and 4.5).

123

Chapter 4. Results

(a) DYN5

(b) DYN10

(c) DYN15

(d) DYN20

Figure 4.3.1: Rec@25 for each epoch on the BookCrossing dataset for the DYN samplers; the
red ones are the weighted versions, the blue ones are the non weighted standard DYN.

124

Chapter 4. Results

(a) DYN5

(b) DYN10

(c) DYN15

(d) DYN20

Figure 4.3.2: Comparison between DYN and W-DYN in Rec@25 on LastFm.

125

Chapter 5

Conclusions

In this thesis, we firstly presented a very detailed review of the state of the

art, starting from the high level understanding of what are RS about and

which are the main challenges and existing solutions, to then move to Ma-

trix Factorization models and, finally, to the Bayesian Personalized Ranking

criterion. We deeply analyzed the original BPR formulation as well as the

most recent BPR variant that aim at improving the learning process and em-

ploying additional knowledge. We then focused on a very important aspect

of the BPR: the negative sampling process. After describing in depth what

it means to draw a sample in the context of the BPR learning algorithm, we

highlighted the strengths and weaknesses of each technique.

From the review of the state of the art we noticed that the more recent stud-

ies move the attention from the selection of the negative instances to sample

weighting and, in particular, to the difficulty of a sample. Moreover, the state

of the art strategies often tend to be very computationally expensive and need

some approximations in order to be usable; with this in mind, we introduced

the concept of negative confidence, deriving it directly from the collabora-

tive item-item similarity. This idea stemmed from the assumption that, even

though sampling difficult negatives has been proven to have several benefits,

samples which are too difficult could decrease the model accuracy because

they are likely to become positives in the future; one way to measure this un-

126

Chapter 5. Conclusions

certainty is using the collaborative similarity between the items. We showed

how this item similarity based confidence can be utilized directly in the con-

text of the BPR sampling as a sample weight to tune the updates of the differ-

ent samples without degrading the computational complexity of the overall

process.

In the final chapter, we exhibited the experimental results of the BPR sam-

pling on four popular research datasets, by which we were able to show how

our proposed weighting strategy managed to improve all the existing tech-

niques in both classification and ranking metrics. Moreover, we explained

some of the results using the concept of future positive rate, as the number

of selected negative samples that appear as positive feedback in the test set.

The main contribution of this thesis, apart from a very detailed comparative

analysis of all the existing sampling techniques, is to introduce the problem

of distinguishing between actual negatives and future positives using the col-

laborative item-item similarity. This technique can be applied to every im-

plicit feedback dataset for all the BPR formulations and can even be used in

other losses that, similarly to the BPR, adopt the negative sampling during

the learning process. Finally, we want to point out that our proposed confi-

dence makes use of the standard item cosine similarity but the same idea can

also be implemented using other collaborative models. Generally speaking,

while most of the works focus on using an additional model (e.g. a GAN)

for generating the training sample, an interesting application could be to use

additional models to weight each sample according to the model scores in a

similar way to what we did with the collaborative similarity.

127

Bibliography

[1] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. “Man-

aging popularity bias in recommender systems with personalized re-

ranking”. In: The thirty-second international flairs conference. 2019.

[2] Gediminas Adomavicius and Alexander Tuzhilin. “Context-aware rec-

ommender systems”. In: Recommender systems handbook. Springer, 2011,

pp. 217–253.

[3] Charu C Aggarwal et al. Recommender systems. Vol. 1. Springer, 2016.

[4] Joeran Beel and Stefan Langer. “A comparison of offline evaluations,

online evaluations, and user studies in the context of research-paper

recommender systems”. In: International conference on theory and prac-
tice of digital libraries. Springer. 2015, pp. 153–168.

[5] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term dependen-

cies with gradient descent is difficult”. In: IEEE Transactions on Neural
Networks 5.2 (1994), pp. 157–166. doi: 10.1109/72.279181.

[6] Christopher Burges, Robert Ragno, and Quoc Le. “Learning to rank

with nonsmooth cost functions”. In: Advances in neural information pro-
cessing systems 19 (2006), pp. 193–200.

[7] Jiawei Chen et al. “CoSam: An Efficient Collaborative Adaptive Sam-

pler for Recommendation”. In: ACM Transactions on Information Sys-
tems (TOIS) 39.3 (2021), pp. 1–24.

[8] Antonia Creswell et al. “Generative Adversarial Networks: An Overview”.

In: IEEE Signal Processing Magazine 35.1 (2018), pp. 53–65. doi: 10.

1109/MSP.2017.2765202.

[9] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. “Are

we really making much progress? A worrying analysis of recent neural

recommendation approaches”. In: Proceedings of the 13th ACM Confer-
ence on Recommender Systems. 2019, pp. 101–109.

https://doi.org/10.1109/72.279181
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1109/MSP.2017.2765202

Bibliography

[10] Félix Hernández Del Olmo and Elena Gaudioso. “Evaluation of recom-

mender systems: A new approach”. In: Expert Systems with Applications
35.3 (2008), pp. 790–804.

[11] Jingtao Ding et al. “Reinforced Negative Sampling for Recommenda-

tion with Exposure Data.” In: IJCAI. 2019, pp. 2230–2236.

[12] Zeno Gantner et al. “Personalized ranking for non-uniformly sampled

items”. In: Proceedings of KDD Cup 2011. PMLR. 2012, pp. 231–247.

[13] Walter R Gilks and Pascal Wild. “Adaptive rejection sampling for Gibbs

sampling”. In: Journal of the Royal Statistical Society: Series C (Applied
Statistics) 41.2 (1992), pp. 337–348.

[14] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in
neural information processing systems 27 (2014).

[15] Jyotirmoy Gope and Sanjay Kumar Jain. “A survey on solving cold start

problem in recommender systems”. In: 2017 International Conference
on Computing, Communication and Automation (ICCCA). IEEE. 2017,

pp. 133–138.

[16] Quanquan Gu, Jie Zhou, and Chris Ding. “Collaborative filtering: Weighted

nonnegative matrix factorization incorporating user and item graphs”.

In: Proceedings of the 2010 SIAM international conference on data mining.

SIAM. 2010, pp. 199–210.

[17] Ido Guy. “Social recommender systems”. In: Recommender systems hand-
book. Springer, 2015, pp. 511–543.

[18] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Represen-
tation Learning on Large Graphs. 2018. arXiv: 1706.02216 [cs.SI].

[19] F Maxwell Harper and Joseph A Konstan. “The movielens datasets:

History and context”. In: Acm transactions on interactive intelligent sys-
tems (tiis) 5.4 (2015), pp. 1–19.

[20] Stephen P Harter. “Variations in relevance assessments and the mea-

surement of retrieval effectiveness”. In: Journal of the American Society
for Information Science 47.1 (1996), pp. 37–49.

[21] Ruining He and Julian McAuley. “VBPR: visual bayesian personalized

ranking from implicit feedback”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 30. 1. 2016.

[22] Xiangnan He et al. Fast Matrix Factorization for Online Recommendation
with Implicit Feedback. 2017. arXiv: 1708.05024 [cs.IR].

[23] Jonathan L Herlocker et al. “Evaluating collaborative filtering recom-

mender systems”. In: ACM Transactions on Information Systems (TOIS)
22.1 (2004), pp. 5–53.

https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1708.05024

Bibliography

[24] HetRec ’11: Proceedings of the 2nd International Workshop on Information
Heterogeneity and Fusion in Recommender Systems. Chicago, Illinois: As-

sociation for Computing Machinery, 2011. isbn: 9781450310277.

[25] Sepp Hochreiter. “The Vanishing Gradient Problem during Learning

Recurrent Neural Nets and Problem Solutions”. In: Int. J. Uncertain.
Fuzziness Knowl.-Based Syst. 6.2 (Apr. 1998), 107–116. issn: 0218-4885.

doi: 10.1142/S0218488598000094. url: https://doi.org/10.1142/

S0218488598000094.

[26] Cheng-Kang Hsieh et al. “Collaborative metric learning”. In: Proceed-
ings of the 26th international conference on world wide web. 2017, pp. 193–

201.

[27] Yifan Hu, Yehuda Koren, and Chris Volinsky. “Collaborative Filter-

ing for Implicit Feedback Datasets”. In: 2008 Eighth IEEE International
Conference on Data Mining. 2008, pp. 263–272. doi: 10.1109/ICDM.

2008.22.

[28] Yifan Hu, Yehuda Koren, and Chris Volinsky. “Collaborative filtering

for implicit feedback datasets”. In: 2008 Eighth IEEE International Con-
ference on Data Mining. Ieee. 2008, pp. 263–272.

[29] Kalervo Järvelin and Jaana Kekäläinen. “Cumulated gain-based eval-

uation of IR techniques”. In: ACM Transactions on Information Systems
(TOIS) 20.4 (2002), pp. 422–446.

[30] Glen Jeh and Jennifer Widom. “Simrank: a measure of structural-context

similarity”. In: Proceedings of the eighth ACM SIGKDD international con-
ference on Knowledge discovery and data mining. 2002, pp. 538–543.

[31] Santosh Kabbur, Xia Ning, and George Karypis. “Fism: factored item

similarity models for top-n recommender systems”. In: Proceedings of
the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining. 2013, pp. 659–667.

[32] Tero Karras et al. Progressive Growing of GANs for Improved Quality,
Stability, and Variation. 2018. arXiv: 1710.10196 [cs.NE].

[33] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2017. arXiv: 1412.6980 [cs.LG].

[34] Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix Factorization

techniques for Recommender Systems”. In: (2009). doi: https://ieeexplore.

ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422.

[35] Artus Krohn-Grimberghe et al. “Multi-relational matrix factorization

using bayesian personalized ranking for social network data”. In: Pro-

https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1109/ICDM.2008.22
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1412.6980
https://doi.org/https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422
https://doi.org/https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422

Bibliography

ceedings of the fifth ACM international conference on Web search and data
mining. 2012, pp. 173–182.

[36] Lukas Lerche and Dietmar Jannach. “Using graded implicit feedback

for bayesian personalized ranking”. In: Proceedings of the 8th ACM Con-
ference on Recommender systems. 2014, pp. 353–356.

[37] Defu Lian, Qi Liu, and Enhong Chen. “Personalized ranking with im-

portance sampling”. In: Proceedings of The Web Conference 2020. 2020,

pp. 1093–1103.

[38] Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. “Fac-

ing the cold start problem in recommender systems”. In: Expert Systems
with Applications 41.4 (2014), pp. 2065–2073.

[39] Greg Linden, Brent Smith, and Jeremy York. “Amazon. com recommen-

dations: Item-to-item collaborative filtering”. In: IEEE Internet comput-
ing 7.1 (2003), pp. 76–80.

[40] Babak Loni et al. “Bayesian personalized ranking with multi-channel

user feedback”. In: Proceedings of the 10th ACM Conference on Recom-
mender Systems. 2016, pp. 361–364.

[41] Xia Ning and George Karypis. “Slim: Sparse linear methods for top-n

recommender systems”. In: 2011 IEEE 11th International Conference on
Data Mining. IEEE. 2011, pp. 497–506.

[42] NumPy. url: https://numpy.org/.

[43] Lawrence Page et al. The PageRank citation ranking: Bringing order to the
web. Tech. rep. Stanford InfoLab, 1999.

[44] Rong Pan et al. “One-Class Collaborative Filtering”. In: (). doi: http:

//www.rongpan.net/publications/pan-oneclasscf.pdf.

[45] Weike Pan and Li Chen. “Gbpr: Group preference based bayesian per-

sonalized ranking for one-class collaborative filtering”. In: Twenty-Third
International Joint Conference on Artificial Intelligence. 2013.

[46] Yoon-Joo Park and Alexander Tuzhilin. “The long tail of recommender

systems and how to leverage it”. In: Proceedings of the 2008 ACM con-
ference on Recommender systems. 2008, pp. 11–18.

[47] Python. url: https://www.python.org/.

[48] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. “Sequence-

aware recommender systems”. In: ACM Computing Surveys (CSUR) 51.4

(2018), pp. 1–36.

[49] Massimo Quadrana et al. “Personalizing session-based recommenda-

tions with hierarchical recurrent neural networks”. In: Proceedings of

https://numpy.org/
https://doi.org/http://www.rongpan.net/publications/pan-oneclasscf.pdf
https://doi.org/http://www.rongpan.net/publications/pan-oneclasscf.pdf
https://www.python.org/

Bibliography

the Eleventh ACM Conference on Recommender Systems. 2017, pp. 130–

137.

[50] Steffen Rendle and Christoph Freudenthaler. “Improving Pairwise Learn-

ing for Item Recommendation from Implicit Feedback”. In: (2012). doi:

http://webia.lip6.fr/˜gallinar/gallinari/uploads/Teaching/

WSDM2014-rendle.pdf.

[51] Steffen Rendle et al. “BPR: Bayesian Personalized Ranking from Im-

plicit Feedback”. In: CoRR abs/1205.2618 (2012). arXiv: 1205.2618.

url: http://arxiv.org/abs/1205.2618.

[52] Badrul Sarwar et al. “Application of Dimensionality Reduction in Rec-

ommender System - A Case Study”. In: (2000). doi: https://apps.

dtic.mil/sti/pdfs/ADA439541.pdf.

[53] Badrul Sarwar et al. Application of dimensionality reduction in recom-
mender system-a case study. Tech. rep. Minnesota Univ Minneapolis Dept

of Computer Science, 2000.

[54] SciPy. url: https://numpy.org/.

[55] SimilariPy. url: https://pypi.org/project/similaripy/.

[56] Riku Togashi et al. “Scalable Personalised Item Ranking through Para-

metric Density Estimation”. In: arXiv preprint arXiv:2105.04769 (2021).

[57] Katrien Verbert et al. “Context-aware recommender systems for learn-

ing: a survey and future challenges”. In: IEEE transactions on learning
technologies 5.4 (2012), pp. 318–335.

[58] Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha. “Singular

value decomposition and principal component analysis”. In: A practical
approach to microarray data analysis. Springer, 2003, pp. 91–109.

[59] Jun Wang et al. “Irgan: A minimax game for unifying generative and

discriminative information retrieval models”. In: Proceedings of the 40th
International ACM SIGIR conference on Research and Development in In-
formation Retrieval. 2017, pp. 515–524.

[60] Jason Weston, Samy Bengio, and Nicolas Usunier. “Large scale image

annotation: learning to rank with joint word-image embeddings”. In:

Machine learning 81.1 (2010), pp. 21–35.

[61] Shiwen Wu et al. Graph Neural Networks in Recommender Systems: A
Survey. 2021. arXiv: 2011.02260 [cs.IR].

[62] Shu Wu et al. “Session-based recommendation with graph neural net-

works”. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 33. 01. 2019, pp. 346–353.

https://doi.org/http://webia.lip6.fr/~gallinar/gallinari/uploads/Teaching/WSDM2014-rendle.pdf
https://doi.org/http://webia.lip6.fr/~gallinar/gallinari/uploads/Teaching/WSDM2014-rendle.pdf
https://arxiv.org/abs/1205.2618
http://arxiv.org/abs/1205.2618
https://doi.org/https://apps.dtic.mil/sti/pdfs/ADA439541.pdf
https://doi.org/https://apps.dtic.mil/sti/pdfs/ADA439541.pdf
https://numpy.org/
https://pypi.org/project/similaripy/
https://arxiv.org/abs/2011.02260

Bibliography

[63] Yahoo Dataset. url: http://webscope.sandbox.yahoo.com/catalog.

php?datatype=r.

[64] Xiwang Yang et al. “A survey of collaborative filtering based social rec-

ommender systems”. In: Computer communications 41 (2014), pp. 1–

10.

[65] Lu Yu et al. “Addressing Class-Imbalance Problem in Personalized Rank-

ing”. In: arXiv preprint arXiv:2005.09272 (2020).

[66] Weinan Zhang et al. “Optimizing top-n collaborative filtering via dy-

namic negative item sampling”. In: Proceedings of the 36th international
ACM SIGIR conference on Research and development in information re-
trieval. 2013, pp. 785–788.

[67] Feng Zhao et al. “SDBPR: Social distance-aware Bayesian personalized

ranking for recommendation”. In: Future Generation Computer Systems
95 (2019), pp. 372–381.

[68] Tong Zhao, Julian McAuley, and Irwin King. “Leveraging social con-

nections to improve personalized ranking for collaborative filtering”.

In: Proceedings of the 23rd ACM international conference on conference on
information and knowledge management. 2014, pp. 261–270.

http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

	Introduction
	BPR
	Uniform Sampling Issues
	Sampling Techniques
	Related Work
	Negative Confidence
	Results and Discussion
	Conclusions
	Introduction
	State of the art
	Data Structures
	Data Types
	Explicit vs. Implicit Feedback
	Item and User Features
	Additional Data

	Models
	Collaborative Filtering

	Similarity Metrics
	Cosine Similarity
	Pearson Coefficient
	Jaccard Coefficient

	Tanimoto Coefficient
	Memory Based Collaborative Filtering
	Top Popular
	User k-Nearest Neighbors
	Item k-Nearest Neighbors
	Neighborhood-Based Graph Models

	Model Based Collaborative Filtering
	SLIM
	Matrix Factorization

	Bayesian Personalized Ranking
	BPRMF

	BPR Sampling
	Uniform Sampling Issues
	Negative Sampling Classes

	BPR Sampling Algorithms
	Uniform Sampling
	Popularity Oversampling
	Personalized Popularity Oversampling
	Imbalance Rejection Sampling
	VINS
	Ranking-aware Rejection Sampling

	BPR Variants
	AOBPR
	GBPR
	PRIS
	Graded Implicit Feedback
	MF-BPR
	VBPR
	Social Information

	Introducing Our Work

	Models
	Sampling Issues
	The risks of oversampling difficult instances
	Adding Similarities

	Our Solution
	How can we measure the confidence of an item of being negative?
	How do we use this confidence value inside the BPR sampling?
	Which sampler is likely to most benefit from the confidence value?

	Evaluation
	Evaluation Metrics
	Classification Metrics
	Ranking Metrics

	Preprocessing
	Implicitization
	K-core
	Dataset Partitioning

	Datasets
	BookCrossing
	LastFm
	Movielens1M
	Yahoo Movies

	Implementation
	Technologies
	Hyperarameter Tuning
	Number of Epochs and Early Stopping

	Results
	Prediction Accuracy
	Classification Metrics
	Ranking metrics
	POP vs. IMB
	Cutoff vs. DYN Group Size

	Future Positive Rate
	Example 1: POP improvement
	Example 2: DYN group size
	FPR vs Accuracy

	Convergence Speed

	Conclusions
	Bibliography

