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Abstract

There is an increasing need in clinical sites for optimized planning of surgical procedures.
To meet this need, the Hub&Spoke network model, a system of organization that allows
a clinical center (hub) the possibility of using operating rooms of hospitals (spoke), is
becoming more widespread. This collaborative model is proposed as a solution to two
common problems in hospital management: on the one hand, the harm, also economical,
of not making the best use of the availability of valuable resources, such as operating
rooms, and on the other hand, the risk of having overcrowded clinical centers, causing
inconvenience to patients, due to delays and extended waiting times. Over the past
decades, much research has been conducted on optimizing the scheduling of surgical pro-
cedures, differentiating them according to patient type and hospital needs. This Thesis
considers a new model of collaboration between hospitals and addresses the problem of
planning pediatric surgeries, considering the related restrictions and specific requirements
in a Hub&Spoke setting. Criteria considered for efficient scheduling include the urgency
of patients, the penalization in the case of failure to meet the due date for operations,
and the preference for surgeries in external operating rooms (spokes) over the referring
clinical center (hub), or consider another formulation that aims exclusively to complete
all clinical cases on the waiting list in the shortest number of days. The Thesis assumes
a deterministic planning problem, which does not consider emergencies, formulated as an
integer linear programming problem. However, given the computational onerousness of
the ILP model, several model relaxations, alternative formulations, and heuristic solution
methods will be proposed. Once the model with the best formulation in terms of solu-
tion quality and convergence speed has been identified, its advantages and disadvantages
will be analyzed. The proposed approaches were tested on realistic data to evaluate the
planning obtained and formulate reflections on possible difficulties in scheduling, points
to be improved, and possible strategic decisions that the clinic could take to improve the
service offered to patients.

Keywords: Health care management, Surgery scheduling, Hub-and-spoke hospital net-
works, Optimization, Integer Linear Programming





Abstract in lingua italiana

Nei centri clinici è sempre più necessaria una pianificazione ottimale degli interventi chirur-
gici. Per venire incontro a questa esigenza sta diventando maggiormente diffuso il modello
di rete Hub&Spoke, un sistema di organizzazione che permette ad un centro clinico (hub)
la possibilità di usufruire sale operatorie di ospedali (spoke). Questo modello di collabo-
razione si propone come una soluzione a due problemi comuni nella gestione ospedaliera:
da un lato il danno, anche economico, di non sfruttare al meglio la disponibilità di risorse
pregiate, quali le sale operatorie, e dall’altro il rischio di avere centri clinici sovraffollati,
causando disagi ai pazienti, dovuti ai ritardi e ai tempi di attesa prolungati. Negli ultimi
decenni sono state condotte numerose ricerche sull’ottimizzazione della pianificazione degli
interventi chirurgici, differenziandoli in base al tipo di paziente e alle esigenze ospedaliere.
La Tesi considera un nuovo modello di collaborazione tra ospedali e affrontare il problema
di pianificare gli interventi chirurgici pediatrici, considerando le relative restrizioni e le
specifiche richieste in un contesto Hub&Spoke. Tra i criteri presi in considerazione per
una calendarizzazione efficiente vi sono l’urgenza dei pazienti, la penalizzazione nel caso
di mancato rispetto della "due date" per le operazioni, e la preferenza per gli interventi
chirurgici nelle sale operatorie esterne (spokes) rispetto al centro clinico di riferimento
(hub), o considerare un’altra formulazione che mira esclusivamente a completare tutti i
casi clinici in lista d’attesa nel minor numero di giorni possibile. La tesi considera un prob-
lema di pianificazione deterministico, che non considera le emergenze, formulato come un
problema di programmazione lineare intera. Tuttavia, data l’onerosità computazionale
del modello di ILP, verranno proposti diversi rilassamenti del modello, formulazioni alter-
native e metodi risolutivi euristici. Una volta identificato il modello con la formulazione
migliore in termini di qualità della soluzione e velocità di convergenza, verranno anal-
izzati i vantaggi e gli svantaggi dello stesso. Gli approcci proposti sono stati testati su
dati realistici per valutare la pianificazione ottenuta e formulare riflessioni sulle eventuali
difficoltà nella calendarizzazione, i punti da migliorare ed eventuali decisioni strategiche
che la clinica potrebbe adottare per migliorare il servizio offerto ai pazienti.

Parole chiave: Gestione dei Servizi e Sistemi Sanitari, Pianificazione degli Interventi,
Reti di Ospedali Hub&Spoke, Ottimizzazione, Programmazione Lineare Intera
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1

1| Introduction

This Thesis aims to find an optimization method in health care management. We want to
propose a model which optimizes surgical scheduling, in terms of benefits to the patients,
but also on a wise utilization of resources. In fact, effective resource management in
healthcare is crucial, especially when these ones are limited. It involves prioritizing and
strategically allocating personnel, supplies, equipment, and especially facilities. Decision
support techniques and data analysis help to optimize resource utilization and ensure
that critical cases receive immediate attention. Ultimately, effective resource management
enables healthcare providers to deliver quality care, maintain patient safety, and achieve
equitable outcomes.

This thesis’s goal can be divided into two parts: the first one is oriented toward finding
a good model in order to locate optimized scheduling, respecting preferences, requests,
and constraints given by the clinic, and the second part, indeed is related to some data
analysis on the selected model, to highlight some key aspects or hidden information, and
give some basis for future strategical decisions on medical management.

1.1. Surgical Scheduling: Importance, Challenge and

Benefits

In the fast-paced world of healthcare, efficient surgery scheduling plays a critical role in
maximizing patient care, optimizing resource allocation, and enhancing overall operational
efficiency. The process of scheduling surgical procedures involves intricate coordination
among various stakeholders, including patients, surgeons, anesthesiologists, nurses, and
support staff. It is a complex task that requires careful consideration of numerous factors
such as urgency, operating room availability, surgical team availability, patient preferences,
preoperative preparations, and many others.

Efficient surgical scheduling is a critical aspect of hospital management, ensuring that
surgical procedures are performed in a timely manner while considering various con-
straints and urgencies. Traditionally, scheduling surgery operations is a complex and
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time-consuming task, prone to errors and sub-optimal utilization of resources. However,
over 15-20 years, advancements in technology have paved the way for automated schedul-
ing systems that can find the optimal schedule, taking into account hospital constraints
and patients’ urgencies. In the next paragraphs, it will be discussed some main intricacies
involved in setting up a schedule for surgery operations, the challenges faced by hospitals,
and the benefits of adopting automated scheduling solutions.

Constraints and Features

• One of the constraints in surgical management is the limited number of operat-
ing rooms. These need to be scheduled efficiently to maximize utilization while
accounting for various factors such as room setup time, cleaning and sterilization
requirements, and equipment availability. Underutilization of Operating Rooms
(OR) takes with it generally two main disadvantages: economic loss and surgery
delays, with the related patients’ inconvenience.
But the operating theatre is not the only resource to consider. In fact, it is also
necessary to take into counting the beds and related staff for the patients’ Post
Anesthesia Care Unit (PACU) i.e. the time required for the patient case to recover
after a specific intervention.

• Surgeon and Anesthesiologist Availability. Coordinating the availability of surgeons
and eventual anesthesiologists is crucial for a successful surgical scheduling. Each
surgeon may have preferred time slots or specific days for performing certain proce-
dures. Coordinating these preferences, considering vacation and conference sched-
ules, and ensuring adequate coverage for emergencies poses a significant challenge.

• Patient Urgencies and Prioritization. Patients with urgent or emergent surgical
needs require immediate attention. Balancing the urgency of such cases with the
scheduling of elective surgeries is essential to prioritize patient care effectively. Ur-
gent cases may require rescheduling or adjusting the schedule to accommodate their
needs while maintaining efficient utilization of operating room time. Further, the
different priorities of elective patients must be considered as well
There are many other factors to consider in setting up the schedule, like the number
of waiting days for each case, and the kind of surgery.

• Equipment and Resource Allocation. Surgical procedures often require special-
ized equipment, such as imaging devices, surgical instruments, and support staff.
Scheduling surgeries in a way that optimizes the allocation of these resources is
crucial to avoid conflicts and ensure smooth operations. Moreover, considering the
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maintenance and repair schedules of equipment is necessary to minimize disruptions
during surgical procedures.

• Specialized Surgeries. Every surgical intervention needs specific medical equipment,
to better accommodate the kind of surgery. So a factor that cannot be overlooked
is the compatibility of a patient to be operated on in a certain Operating Theatre
(OT). Generally, each hospital facility does not have a unique specialization and
related equipment, but it is designated to be used for different kinds of surgical
operations.

Benefits of optimized scheduling

By employing various techniques to assist decision-making and leveraging advanced data
analysis methods, we can successfully tackle the complex task of managing operating
theatres. This approach offers a multitude of benefits, making the entire process more
efficient and effective. It enables healthcare professionals to optimize resource allocation,
enhance patient scheduling, streamline surgical procedures, and ultimately improve overall
patient care and outcomes. With the aid of decision support systems and robust data
analysis, hospitals and healthcare facilities can make informed decisions. The integration
of decision support techniques and data analysis empowers healthcare organizations to
optimize their operating theatre management processes by looking at many factors

• Algorithms and optimization techniques allow to allocate efficiently resources, time
slots, and personnel. By applying optimization techniques to the scheduling process,
hospitals can minimize human errors and reduce the time required to generate an
optimal schedule. This efficiency leads to increased productivity, improved patient
flow, and reduced waiting times, ultimately enhancing overall hospital operations.

• Optimization approaches consider the availability of operating rooms, surgeons,
anesthesiologists, and other resources simultaneously. By analyzing multiple vari-
ables and constraints, these approaches can generate an optimized schedule that
maximizes resource utilization, minimizes or even eliminates conflicts, and reduces
idle time. The result is improved efficiency, cost-effectiveness, and a higher volume
of surgeries performed with the available resources.

• Optimization methods for scheduling consider patient urgencies and prioritize cases
accordingly. Urgent and emergent cases can be integrated into the schedule, re-
ducing delays and ensuring timely access to necessary surgical interventions. This



4 1| Introduction

prioritization improves patient satisfaction, reduces patient waiting times, and en-
hances overall patient safety by minimizing the risk of delayed treatments.

• Different methods for optimization can be integrated with data analysis tools and
performance monitoring. They provide valuable data that can be analyzed to iden-
tify trends, optimize workflows, and improve future scheduling processes. Key per-
formance indicators, such as on-time starts, turnover times, and resource utilization,
can be monitored to identify areas for improvement, leading to enhanced efficiency
and better patient outcomes. But these aspects will be discussed in the next sec-
tions.

To sum up: applying optimization techniques in surgery scheduling can noticeably help,
or even revolutionize surgical scheduling in hospitals, addressing the complex constraints
and urgencies involved. By optimizing resource allocation, prioritizing patient care, and
increasing operational efficiency, these systems offer significant benefits. The adoption
of optimized scheduling not only streamlines the scheduling process but also improves
patient satisfaction, enhances resource utilization, and ultimately leads to better overall
hospital performance.

1.2. State of the Art and Literature

The operating room scheduling problem is a complex research topic widely studied. Lit-
erature reviews presented before 2020 have provided a classification system for organizing
technical articles on operating room schedules until 2014. However, with the increasing
number of articles published each year, a new literature review is necessary to capture
emerging trends more promptly. As Harris, Sean and David Claudio show in their article
[25] 246 technical operating room scheduling articles have been published from 2015 to
2020. The review highlights current trends and identifies areas for future research. The
fact that this problem is becoming more and more necessary and an important case of
study can be easily from Figure 1.1 as reported in the article. It shows the number of
essays recorded about this topic from 2000 to 2018 and gives a prediction of the number
of them in the next three years
Two major themes stand out: ongoing development and innovation across various cate-
gories, and the significant challenge of implementing these models in real-life settings.
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Figure 1.1: Number of articles in OR Scheduling [25] [25]

1.2.1. Decision Levels

According to Rahimi, Iman, and Amir H. Gandomi [24] OR scheduling and planning in-
volve different decision levels: strategic, tactical, and operational.
At the strategic level, long-term decisions such as capacity planning and allocation are
made. The Case Mix Problem (CMP) focuses on optimizing profit/cost over a long time
period by determining the allocation of OR time to surgical specialties.
Tactical-level problems, like the Master Surgery Scheduling (MSS) problem, deal with
cyclic OR schedules and aim to assign surgical specialties to OR time slots to optimize
resource utilization. The output of the tactical level, in the form of a cyclic timetable,
informs decision-making at the operational level.
This latter one, the operational level, involves shorter-term decisions such as resource allo-
cation, surgical case scheduling, and advanced scheduling. The Surgical Process Schedul-
ing (SPS) problem is divided into two sub-problems: advance scheduling (planning future
dates for surgical cases) and allocation scheduling (determining start time and resource
allocation for cases over a short time horizon). Various literature reviews have been
published on OR planning and scheduling, covering different decision levels [24].

In this thesis project, SPS problems will be addressed,
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1.2.2. Methods and techniques

Abdalkareem and Zahraa [2] provide a comprehensive survey of recent literature on health-
care scheduling problems, covering various areas such as patients’ admission scheduling,
nurse rostering, operation room assignment, surgery scheduling, and other healthcare
scheduling problems. The research in this medical topic, as we largely said ahead, is
crucial for optimizing costs, improving patient flow, and effectively utilizing hospital re-
sources.
In recent decades, there has been a proliferation of healthcare scheduling methods that
employ metaheuristic techniques to optimize resource management in hospitals. However,
the reported results in the literature are often fragmented due to the independent solving
of specific problems and the availability of different problem definitions and datasets.

To address this, the paper integrates existing results by conducting a comprehensive
review and analyzing 190 articles based on problem definitions, formulations, datasets,
and methods. The review focuses on patients’ admission scheduling, nurse enrolling, and
operation room reserving problems. It gives a perfect overview of recent developments and
also helps to identify new trends for future research directions in healthcare scheduling.

Demeulemeester and his team presented in [29] the importance of efficient scheduling in
hospital operating rooms, a clear summary of the recent techniques used in the last two
decades in the academic literature. To assist researchers and practitioners in identifying
relevant articles, the models are classified based on various factors such as patient type,
performance measures, decisions made, facilities, research methodology, and testing phase.

The survey identifies trends and promising topics based on these classifications.
Additionally, it identifies three common pitfalls that hinder the adoption of research results
by stakeholders, including the lack of a clear target audience (researchers or practition-
ers), the use of inappropriate performance measures, and the failure to clearly report the
hospital setting and method-related assumptions. The paper provides guidelines to select
appropriate performance measures and the importance of including relevant assumptions
in articles to help readers determine the relevance of the research presented.

The survey gives a review of papers related to this topic, and each section analyzes articles
from a different perspective, which can be either problem or technically oriented, which
means proposing methods and formulations whose goals are to optimize the problem (for
example the scheduling) or to optimize or to propose new techniques for solving them.
In particular, they distinguish between seven sections:

• Problem classification: distinguish the problem to solve on the basis of the time
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horizon chosen;

• Patient characteristics: reviewing the literature according to the elective (inpatient,
outpatient) or non-elective (urgency, emergency) status of the patient;

• Performance measures: discussing the performance measures (PM) such as utiliza-
tion, idle time, waiting time, preferences, throughput, financial value, makespan,
and patient deferral;

• Decision delineation: indicating what type of the decision has to be made (date,
time, room, and capacity) and whether this decision applies to a medical discipline,
a type of surgeon or patient up- and downstream facilities: discussing whether an
approach includes other units (e.g., PACU);

• Uncertainty: indicating to what extent researchers incorporate uncertainty (stochas-
tic versus deterministic approaches);

• Operations research methodology: describing the sort of analysis carried out and
the approach used for the solution or evaluation;

• Testing phase and application: covering the information on the testing data of the
research and its implementation in practice.

Every section explains clearly the importance of each feature, the huge amount of variables
to take into consideration, and the needs, where some of them are considered as goals and
preferences, and others are seen as inviolable constraints.
Now we spotlight carefully all of them.

Patient characteristic

Every patient has specific characteristics and requirements, some of which depend on
individual characteristics while some of which depend on the specific kind of operations.

In the first group, we consider all the personal information like age and eventual dis-
abilities. Age in a pediatric environment is a very sensitive topic. In fact, in a general
medical ambient, differences in age of a few years or even a few months do not change
the accommodation criteria. But this does not hold in a pediatric setting, where patients
who are 6 months, 1 year, or 3 years old, have largely different requirements and attention
needs.

The second group is composed of all the pieces of information regarding the type of
surgery. Firstly we have to see which kind of time horizon planning the patient should
be inserted, and so understand if it will be an elective or non-elective patient, but this
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argument will be deeply discussed in the next paragraph.
Then, every intervention has an urgency factor, that indicates a sort of priority in the
schedule: the bigger the earlier.
Every surgical operation has also indications about its average duration, and eventually
the standard deviation of it, since no one operation last the exact expected surgical times.
After the intervention, there should be a time for the correct recovery, the PACU, which
can be low or high, depending for example if an intervention has had local or total anes-
thesia. Some of the recoveries can last also for one entire night or even more, and in such a
case they cannot be treated as day-hospital surgeries and must be adequately ministered.

Problem classification

The first consideration that must be done is the type of schedule we want to organize,
which depends on the time horizon considered. All surgical cases can be scheduled in a
time range of months, weeks, days, or even a few hours. This actually depends on the
type of surgical intervention, and relatively at his urgency and emergency.

So the literature to differentiate these kinds of problems used to group patients, on the
basis of their characteristics, in elective and non-elective patients.

There are many comparisons between articles on elective and articles on non-elective
patients and about inpatients and outpatients. Different classes of patients require ap-
propriate scheduling for surgery.

As Figure 1.2 shows, in recent years there has been a notable shift in attention towards
elective-patient surgery operation scheduling compared to non-elective ones. Before show-
ing the several reasons that explain this fact, let us see what an elective patient is, in
medical terms.

An elective patient refers to an individual who undergoes a planned medical procedure or
surgery that is scheduled in advance and is not considered to be an emergency. Elective
procedures are typically non-life-threatening and can be scheduled at a time that is con-
venient for both the patient and the healthcare provider.
Elective surgeries can encompass a wide range of medical interventions, and treatments
that aim to improve a patient’s quality of life or address non-emergency health condi-
tions. These procedures are often recommended by healthcare professionals based on the
patient’s medical condition, symptoms, and the expected benefits of the intervention.

Unlike emergency or urgent surgeries, elective procedures allow patients and healthcare
providers to plan and prepare adequately. Surgeries are conducted in a controlled en-
vironment, such as an operating theatre, and require the involvement of various health-
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Figure 1.2: Comparison between the number of documents on elective patients and non-
elective patients scheduling [25]

care professionals, including surgeons, anesthesiologists, nurses, and support staff. By
scheduling elective procedures, and so make planning in advance, hospitals can optimize
the utilization of their resources and streamline the delivery of care.

The reasons why literature pushed significantly the elective patient OR scheduling are
several. First of all elective surgeries are planned in advance and can be more easily
scheduled, allowing hospitals to better allocate their resources, including operating rooms,
staff, and equipment. By optimizing the scheduling of elective surgeries, hospitals can
achieve higher resource utilization and efficiency.

Elective surgeries are often less time-sensitive and can be rescheduled if necessary, allowing
hospitals to balance the workload and utilize resources more effectively. By focusing
on optimizing elective-patient surgery operation scheduling, hospitals can reduce costs
associated with overtime, under-utilization of resources, and cancellations.

Secondly, they involve patients who could have the option to choose the timing, or period,
of their procedure. By organizing elective-patient surgery operation scheduling, hospitals
can provide better patient satisfaction by accommodating their preferences and minimiz-
ing waiting times. This can lead to improved patient experience and outcomes.

Elective surgeries are typically predictable, allowing hospitals to plan and optimize their
schedules in advance. On the other hand, non-elective surgeries, such as emergency or
very urgent procedures, often require immediate attention and cannot be easily, or at
all, scheduled in advance. The unpredictable nature of non-elective surgeries makes their
scheduling more challenging and more difficult to optimize.
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While non-elective surgeries remain critical and time-sensitive, the focus on elective-
patient surgery operation scheduling in recent years can be attributed to the potential for
greater efficiency, cost-effectiveness, improved patient experience, and the ability to plan
and optimize resources. However, it is important to recognize the ongoing importance of
non-elective surgeries and the need for efficient scheduling practices to ensure timely and
appropriate care for all patients.

Elective patients can also be divided into two different groups: inpatients and outpatients.
Inpatients are hospitalized patients who have to stay overnight, whereas outpatients typi-
cally enter and leave the hospital on the same day [24].

Actually, outpatient care (also called ambulatory care) has increased in literature, since,
according to the Milliman Medical Index [1], outpatient care costs have grown by 9.9%
on average over time. This rise is mostly related to rising costs for both current services
and pricey new services, although linked to a proportionate rise in admissions for outpa-
tient treatment [22]. As an illustration, to delineate differences between the two groups,
routine operations, and less invasive techniques are frequently used in outpatient surgery.
Furthermore, the precise timing of the arrival of outpatients is unpredictable because they
are not already residing in a hospital ward prior to the operation. The selection of the
scheduling approach may be significantly influenced by these and other factors.

The planning of outpatient surgeries so is a procedure that does not require hospitaliza-
tion and has lower costs and risks of infection. Non-elective surgeries, since are urgent but
not life-threatening cases that may disrupt the elective schedule, have different ways of
handling. Break-in moments, dedicated ORs, and disaster scenarios are some of the meth-
ods and policies that have been proposed or implemented to deal with non-electives. The
article also provides a comprehensive overview of the current challenges and opportunities
in outpatient surgery management.

Performance measures

The paper focuses on performance measures (PMs) used in the literature related to oper-
ating room (OR) planning and scheduling. Different stakeholders prioritize different PMs
based on their interests and goals. Hospital administrators may prioritize high utilization
[7][13][11], and low costs [12], while some may prioritize short waiting times of patients
[7][14] .
To find a compromise, many authors include multiple PMs and often use a weighted
sum approach. The major PMs discussed in the literature include waiting time [7][14],
utilization [7][11], leveling (balancing the utilization of units connected to the OR, for
a more balanced workload for the medical staff) [19][20][18], idle time [14], throughput
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Figure 1.3: Performance measures used over time, from 2004 to 2014 [29]

[7][11][13], preferences [5][6][10], financial measures [15], [18] makespan [8] and patient
deferral [9][16][18]. Direct and indirect waiting times are frequently used as the main goal
to minimize. Surgeon waiting time is less commonly included. Minimizing overtime is
a popular objective due to its impact on staff satisfaction, costs, surgery cancellations,
and downstream disruptions. Regular OR utilization and patient throughput are also
considered, but less frequently. A quick overview to see which PM was preferred, and
taken into analysis is given in Figure 1.3. It shows how many surveys in the literature,
have taken into consideration specific criteria for the measurement of performance, and
how they change in the decade.
The article also provides examples of studies and discusses the importance of each PM,
for each different problem. Overall, selecting appropriate PMs is crucial for balancing the
interests of different stakeholders in OR planning and scheduling.

Operation research metodology

The literature on OR planning and scheduling encompasses various methodologies within
the domain of operations research. Table 1.4 provides an overview of the techniques used
to solve OR setup problems. Scenario analysis, where different scenarios or options are
compared, is one of the most popular approaches, particularly in discrete-event simulation
(DES) modeling. Simulations were used to affect patient flow and resource allocation,
such as patient scheduling and routing, resource scheduling, and the sizing and planning
of beds, rooms, and staff. Most of the simulation work is done at the department or clinic
level.

Some notable studies which include an integrated DES model were conducted by Steins
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Figure 1.4: Methods used for the OR scheduling problems, from 2004 to 2014 [29]

et al. [31], considering preoperative care and a PACU, or through an analytical approach
using a Markov model by Tancrez et al. [32], determining OR capacity for non-elective
patients. Olivares et al. [28] indeed analyzed the decision-making process of reserving
OR capacity using the newsvendor model.

The use of mathematical programming (MP), constructive algorithms, and improvement
heuristics is prevalent in the literature. MPs, such as mixed-integer programming (MIP),
deal with combinatorial optimization problems. Multiple objectives, including under-
/overtime or under/over-utilization, are often considered in the optimization models.
Elective patients are the focus of many MP models, but stochastic versions incorporating
random variables are also used.

Heuristics are proposed when MPs become computationally challenging. Column generation-
based heuristics and genetic algorithms are employed to solve patient scheduling problems.
Additionally, methods like Six Sigma and screening for the economic impact of improving
first-case starts are introduced in certain articles [21].

For future studies, simulation-optimization is regarded as a promising method for solving
complex optimization problems while incorporating the complexities of the OR schedul-
ing process. Traditional methods can also provide valuable insights, but efforts should be
made to make them applicable to a broader range of realistic problem settings by accom-
modating multiple sources of variability and expanding the supported distributions.

Testing phase and application
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Figure 1.5: Different methods proposal, from 2004 to 2014 [29]

Researchers often conduct thorough testing phases to demonstrate the applicability of
their research. They aim to show computational efficiency or the extent to which objec-
tives can be achieved, requiring a substantial amount of data. Most of the data used in
these tests are based on real healthcare practices. However, how it is reported in Figure
1.5, it has been found that despite the availability of real data for testing, less than 7% of
the methods proposed in the literature are actually applied in practice. This contradiction
highlights the gap between research and implementation in the practical domain of OR
planning and scheduling. While some progress has been made in implementing research
in health services, the majority of articles still lack reports on actual implementation.

There are a few exceptions where research has been successfully implemented. For in-
stance, Wachtel and Dexter [34] introduce a website used by different US hospitals to
determine patient arrival times for surgery appointments, considering factors such as
early starts and patient availability. Another example is the decision support system de-
veloped by van Essen et al. [33] for daily rescheduling problems where is evaluated with
a simulation modeling tool in British healthcare organizations. Understanding key issues
in practice helps researchers build models that better reflect reality and solve problems
closer to real-world scenarios.

Authors often provide limited detail about the implementation process. It is essential to
provide additional information on the behavioral factors associated with implementation,
as identifying the causes of success or failure can benefit the research community.

Many articles define problems specific to a single hospital, and the extent to which meth-
ods are applicable to other settings is unclear. Generalizable methods should be intro-
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duced to facilitate the spread and implementation of effective operations research practices
across multiple hospitals. Van Essen et al. [33] address this by surveying several hospitals
to justify the generality of their modeling assumptions.

Future research can focus on assessing the current use of planning and scheduling exper-
tise in hospitals. Surveys, such as the one conducted by Sieber and Leibundgut [30] in
Switzerland, provide insights into the state of OR management. Developing guidelines on
how scheduling data should be made publicly available, along with a standardized format
for describing hospital settings, would be beneficial for future research.

1.3. Multihospital

One recent innovation that holds immense importance in the medical and hospital sector is
the multihospital (MH) strategy. This approach involves the integration and collaboration
of multiple hospitals to deliver comprehensive, high-quality care. We briefly show the
latest innovation surrounding the multihospital model and highlight its significance in the
current moment for medical and hospital reasoning.

The multihospital approach involves the formation of networks or systems comprising
multiple hospitals and healthcare facilities. These institutions come together to share
resources, expertise, and best practices, with the aim of providing coordinated, patient-
centered care across a broader geographic area. The multihospital model fosters collab-
oration, standardization of care, and the optimization of resources, ultimately leading to
improved healthcare outcomes and patient experiences.

An important issue that MH faces up is enhanced access to specialized care. In many
regions, access to specialized healthcare services can be limited, requiring patients to travel
long distances or face lengthy waiting periods. The multi-hospital approach addresses
this challenge by leveraging the expertise of multiple hospitals within a network. By
coordinating services and sharing resources, specialized care can be made more accessible
to patients, even in underserved areas. This approach reduces the burden on individual
hospitals, ensures equitable access to quality care, and minimizes the need for patients to
seek care far from their communities.

With this model care coordination and continuity are improved. The multihospital ap-
proach places in fact a strong emphasis on care coordination and continuity, particularly
for patients with complex medical needs. Through interconnected electronic health record
systems and standardized protocols, healthcare providers within the network can share
patient information, test results, and treatment plans. This enhanced communication
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and collaboration enable a comprehensive understanding of patients’ medical histories,
ensuring continuity of care across different hospitals and specialties. As a result, pa-
tients experience smoother transitions between providers, reduced duplication of tests,
and improved patient safety.

The multihospital strategy demonstrates its critical importance in times of crisis, such
as pandemics or natural disasters. The interconnectedness and shared resources of the
network allow for effective coordination and response. In the face of a surge in patient
volume, hospitals within the network can collaborate to allocate resources, staff, and
expertise where they are most needed. This approach enhances the healthcare system’s
resilience, improves emergency preparedness, and ensures that patients receive the care
they require, even in the midst of challenging circumstances.

The MH approach represents a transformative innovation in the medical and hospital
sector, and maybe every clinic will be cooperative and build an enormous web of social
welfare, and this will become, hopefully, a standard method in the future.

1.3.1. Hub & Spoke

The Hub & Spoke approach is one of the huge multihospital system.

In recent years, the healthcare industry has witnessed significant transformations, driven
by advancements in technology and an increasing focus on efficiency and patient-centric
care. One innovative approach that has gained traction and holds immense promise is the
Hub & Spoke model. This model is revolutionizing medical and hospital systems, offering
a plethora of benefits that are particularly crucial in today’s ever-evolving healthcare
landscape.
We explore the latest innovation surrounding the Hub & Spoke model and shed light on
its importance in the medical and hospital sector.

The Hub & Spoke model is a strategic framework that involves a central hub institution
collaborating with satellite facilities, known as spokes, to provide specialized healthcare
services. The central hub typically houses the expertise, resources, and infrastructure re-
quired for complex procedures and diagnoses, while the spokes offer primary care and rou-
tine medical services. This approach enables effective coordination, streamlined patient
flow, and optimized utilization of resources, leading to improved healthcare outcomes.

The importance of the Hub & Spoke model in the current moment

In many regions, access to specialized medical services is limited, resulting in patients
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traveling long distances or facing prolonged waiting times. The Hub & Spoke model
addresses this challenge by decentralizing specialized care. Spokes, located in local com-
munities, provide primary care and basic diagnostic services, reducing the burden on the
central hub and improving accessibility for patients. This approach ensures that quality
healthcare is available closer to patients’ homes, making it more affordable and conve-
nient. This is a Hub & Spoke approach especially used in vastly extended regions, where
the geographical facility location has a relevant importance.

Efficient Resource Utilization

This method is used, and it has a big potential utility, also in metropolitan areas. Health-
care facilities, especially hospitals, often face resource constraints such as limited beds,
specialized equipment, and skilled medical personnel. By adopting the Hub & Spoke
model, hospitals can optimize resource allocation. Routine cases and low-complexity
treatments can be handled at the spokes, while the central hub focuses on complex cases
and specialized services. This efficient distribution of resources reduces overcrowding at
the central hub, enhances cost-effectiveness, and enables optimal utilization of expensive
medical equipment, creating a web of collaborative hospitals.

Collaboration and Knowledge Exchange

The Hub & Spoke model fosters collaboration between the central hub and spokes, creat-
ing a network of healthcare providers who can share expertise and exchange knowledge.
The central hub serves as a hub of excellence, providing training and mentorship to the
spokes, which, in turn, gain exposure to advanced medical practices. This collaboration
boosts the overall competence of the healthcare system and ensures that patients receive
the best possible care.

Disaster Preparedness

In times of emergencies, such as pandemics or natural disasters, healthcare systems face
unprecedented challenges. The Hub & Spoke model, with its decentralized structure,
provides inherent resilience in the face of such crises. The spokes can act as decentral-
ized healthcare centers, handling routine cases and triaging patients, while the central
hub concentrates on critical cases and resource mobilization. This approach facilitates a
coordinated response, ensures efficient allocation of resources, and enhances the overall
healthcare system’s ability to handle emergencies.
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To conclude, the Hub & Spoke model represents a significant innovation in healthcare,
offering numerous advantages for medical and hospital systems. From improving accessi-
bility and affordability to optimizing resource utilization [27] [26].

1.3.2. Post pandemic

The impact of the COVID-19 pandemic on surgical scheduling and the subsequent surge
of articles and studies on this topic cannot be overlooked. The pandemic brought about
unprecedented challenges to healthcare systems worldwide, causing disruptions in surgical
services and necessitating the development of innovative solutions to address the backlog
of postponed surgeries. As a result, numerous articles have been published in recent years,
highlighting the impact of the pandemic on surgical scheduling and proposing strategies
to mitigate its effects. These articles shed light on the importance of efficient scheduling
practices in the face of emergencies and the need for adaptive scheduling systems.

The COVID-19 pandemic has resulted in the postponement of elective surgeries to prior-
itize resources and minimize the risk of virus transmission by sending patients to specific
spokes. This delay has led to a significant backlog of surgeries, exacerbating the challenges
associated with surgical scheduling. Researchers and experts have recognized the urgent
need for efficient scheduling methodologies to manage the backlog effectively and ensure
timely access to necessary surgical interventions [17].

The impact of the pandemic has also highlighted the need for better prioritization strate-
gies in surgical scheduling. With limited resources and urgent cases arising from COVID-
19 complications, hospitals have had to make difficult decisions regarding which surgeries
to prioritize. Articles [23][26] have explored the development of algorithms and decision-
making frameworks that consider factors such as patient urgency, surgical complexity,
and available resources to optimize scheduling decisions and maximize patient outcomes.

Furthermore, the pandemic has accelerated the adoption of digital technologies and arti-
ficial intelligence in surgical scheduling. Articles [17][23] have discussed the integration of
automated scheduling systems with electronic health records, data analytics, and predic-
tive modeling to enhance efficiency and optimize resource allocation. These technologies
enable hospitals to analyze large datasets, identify patterns, and generate optimized sched-
ules based on real-time information, ultimately improving patient care and mitigating the
impact of the pandemic on surgical services.

Kasivisvanathan and Ramanathan [26] studied surgical services during the COVID-19
pandemic based on the model and experience of the RMCancerSurgHub. This proposed
model is based on the hub and spoke idea, focusing on establishing local and regional
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hub centers to provide urgent surgical treatment in a setting protected from the burden
of COVID-19. It utilizes an extended multidisciplinary team (MDT) approach, delivering
core NHS services in clean sites that can adapt to surges in viral cases. The model
incorporates a clinical prioritization process to ensure equitable access within and between
specialties, prioritizing patients based on the severity of their condition while minimizing
exposure to the virus for those whose treatment can be safely delayed. Moreover, this
model has the capacity to increase surgical activity and guide units and networks through
the recovery phase.

In summary, the COVID-19 pandemic has spurred a significant increase in the number
of articles addressing surgical scheduling, highlighting the challenges posed by the crisis
and the importance of efficient scheduling practices. These articles emphasize the need
for adaptability, prioritization strategies, and the integration of advanced technologies to
optimize surgical schedules, manage backlogs, and ensure timely access to essential sur-
gical care. The pandemic has acted as a catalyst for innovation in surgical scheduling,
leading to a wealth of research and practical solutions aimed at improving healthcare
system resilience and patient outcomes in times of crisis.

1.4. Aims and Goals

This Thesis aims to find a new optimization method for OR scheduling, in particular
in pediatric health care. The proposed model wants to optimize surgical scheduling for
day-hospital, in terms of benefits to the patients, but also on a wise utilization of resources.

The key factors which have been taken into consideration are urgency, the control of the
waiting time, and the penalization of delays. To these principal aspects, the model is
built based on a Hub & Spoke approach, by preferring surgical operations allocated in
spoke sites.

This big problem is composed of two factors: proposing a model that respects all the
requirements and the constraints given by the clinic that commissioned this research and
then finding a formulation, or a solving method, that allows getting the optimal solution
in a manageable amount of time. The model was structured to solve an integer program-
ming problem and since the scheduling problem in our case is NP-hard, it is very time
demanding to solve it in an analytical way, so alternative paths are required, proposing
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new meta-heuristic solutions.

The final step is, based on data analysis on the chosen model to draw attention to certain
important details or hidden information and provide some foundation for the next strategic
medical care decisions.
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2| Description and Formulations

The problem has been suggested by Ospedale dei Bambini Vittore Buzzi (V. Buzzi Chil-
dren Hospital) of Milano.

We consider the problem of scheduling pediatric elective surgeries in a Hub & Spoke
environment. The considered surgeries are day hospital ones, namely the intervention
and the recovery time must start and finish on the same day.

We consider a set of patients P , and a time horizon, that goes from day 1 to day |D|.
Every day has been divided into many time slots, presented in a set T . The starting time
for scheduling, each of the patients and surgeons, is given by the time slot. The set of time
slots T has been made for the simplicity of the modeling. It represents the working hours.
Those have been divided into time slots to define a specific start time for the operation.
The thicker is the partition the more accurate is the schedule, and maybe it is possible
to wedge in more surgeries, but on the contrary, we significantly increase the number of
variables to find, and secondly, it proposes a schedule very labile to eventual delays.

Since it is a scheduling problem, we have to decide if a patient would be operated on in
the time range, where, and when, and all the necessary information to give to the patient
for the surgical intervention.
Whenever a patient is not scheduled in the given time horizon, the child must be consid-
ered in the following planning horizon. For this reason, the non-allocation of the patient
would be considered as an assignment to a dummy facility fictitious, without any specific
kind of constraints to be respected. A patient is assigned to it if is not possible to sched-
ule for any reason. For example, there could be too many surgical cases for a small time
horizon, and it is impractical for any possible schedule. Or simply the best scheduling is
to avoid operating on the patient and postpone the operation to the next time horizon.

Some patients are already on a waiting list at the beginning of the planning horizon. With
wlp we denote the number of days from the patient’s p registration. All the operations
are intended as day-hospital and emergencies are not evaluated. Any stochastical factor
is not taken into consideration, for example, the variability of the operation time. Every
model proposed will be built in order to find a totally deterministic schedule.
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Every surgical case p also has personal information, given as parameters, regarding the
agep and the due date ddp, which is strongly preferred to be respected, otherwise if a
patient p is allocated after the ddp, a positive integer variable δp will assume the value
given by the difference of the scheduled day and ddp.
There are further data related to the kind of surgery, in terms of urgency up, the number
of necessary surgeons ndocp, the average length of the operation time τp, and the PACUp.
We recall that this last one stays for Post Anesthesia Care Unit, which means the time a
patient must be in a recovery bed immediately after the surgery, in order to be monitored
typically by anesthesiologists, and other medical staff.

In addition to the main sites, hubs, which could have different operating theatres, patients
can be operated on in some Operating Theatres (OTs) in other hospitals, spokes, on
certain days, letting some doctors move from the hub to the spokes. In the previous
chapter, we have seen how important is a collaboration between hospitals from different
points of view.
Let us consider a set of available hospitals Hr, each of which has its own set of OT OHh.
With set H we will denote the real facilities with the dummy one. All the OTs are in
unique sets: Or if we consider all the real operating rooms, while with O if we count also
one of the dummy hospitals.
It has been separated into the sets of H and Hr, and analogously O and Or because we
want to clearly distinguish the real sites from the dummy ones. This decision will be very
clear later on since some strict constraints must be respected in true hospitals but can
be, sometimes must be, relaxed in dummy medical facilities.

Then every patient that needs surgery must be allocated to a specific operating room o, in
a specific hospital center h on a specific day d, and the operation is scheduled to start at
a specific time slot t. For this reason it has been proposed binary variables zyphd and ypodt

that assume value 1 if the patient p on day d is allocated in hospital h, and respectively
starts his surgical operation at time t in operating room o.

The principal hub site, which forms the set HUB, would prefer to move different surgical
operations to the spoke sites, since on the one hand the hub is relieved, to make it less
busy, and on the other hand, having more available facilities, the patients waiting list can
be completed in a reduced amount of days. It also strives to facilitate the increment of
usage of O.T. that otherwise would be rarely used. But not every patient can be allocated
to the spoke sites. Indeed very small children, who are younger than a threshold, that in
our case is 5 years old, must be operated on in the hub, since there is more appropriate
medical equipment to be used on more delicate, and physically smaller patients.
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Not every day the clinic can rely on the spoke site. They are available only on certain
days, for example, in our case, the Buzzi pediatric center can rely on external facilities
only once a week. For this reason with a binary matrix ahd we can set the availability of
each facility on each day in the planning horizon.

Due to the characteristic of the different interventions, each patient p requires specific
equipment, but not every medical site has all the possible types of tools for every kind of
surgery. Due to these ad hoc requirements, we describe this compatibility with a binary
matrix mPHph, that assumes value 1 if the machinery needed for patient p is present in
hospital h and 0 if it is not.
We assume that we have a number of specific instruments in a hospital greater or equal
to the number of its O.T.s. Otherwise, the schedule found could allocate two or more
different cases in different O.T.s of the same hospital, who can be operated at the same
instant, and there is not enough available required machinery.

Finally, every ambulatory care center provides a number of available beds bh. Obviously,
each bed for the recovery, as also the OT, can be used only for one person at a time.
With a binary variable wphdt we assure a positive value if patient p, in hospital h, on day
d starts to use a bed for the recovery at time t

Not only the patient must be associated with a definite place and time, but also the
surgeons. Surgeons, who are collected in a set S must be considered in the model since
the doctors are not indistinguishable. Each of them has a particular specialization and
habilitations for certain surgeries. For this reason, the mastery of the doctors must be
taken into account, and possibly their availability. For the first issue, we defined a binary
matrix mPSps that assumes value 1 if patient p needs a kind of surgery that can be
accomplished by surgeon s, 0 otherwise. Then it must be considered the fact if a surgeon
operates in a specific medical facility, the surgeon will spend the entire day in that center,
and can not move to others. To allocate surgeons, it has been used the same idea for
patients’ schedules: it has been introduced binary variables zxshd and xsodt that assume
value 1 if surgeon s on day d is allocated in hospital h, and respectively starts his surgical
intervention at time t in the operating room o.
To have also a correct assignment of the surgeon to the medical case, it has been introduced
also a binary variable lpsdt which is set to 1 whenever the patient p starts to be operated
by doctor s on day d at time t.

In addition to the points discussed before, the hospital’s scheduling program is built
to respect some priorities, like urgency up. While in the daily scheduling, there must be
respected specific ordering. The precedence on each operating day is given by the patients’
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ages age: the youngest child has priority. This is due to the fact that the younger child
since he is more delicate and weak, it is preferred to let the patient stay at the hospital
the less as possible, and so let the child not stay out of the home more than necessary,
avoiding the incident of a delay of the ahead operations.

Sets, parameters, and variables are recapped, with a brief description, in Table 2.1, Table
2.2, and Table 2.3 respectively.

2.1. Approach

It has been decided to consider three different variations of the problem. The models we
have been instructed to build are required to adhere to certain specifications.
The models are built in order to propose an OT, a date, and a starting time for every
patient, recalling that an association with the dummy hospital means that the patient
was not scheduled in the specific planning horizon.
The proposed schedule must respect all the constraints described previously, so:

• patients must be allocated to facilities that are available on the required day, and
which possess the necessary equipment

• each patient must be operated on by a number of surgeons required by the kind of
operation, and every doctor of the specific interventions must have the competencies
to operate on that kind of medical case

• each bed and each OR can be used at most by only one patient at a time

• since are considered day hospital cases, the PACU, and so the relative assignment
to a bed, must be done in the same instant the surgical intervention ends in the
same hospital, and the discharge time must be on the same day of entry

• for each working day, patients must be scheduled in increasing order by their age

• different capacities which cannot be disrespected: the closure hour per day, and the
available number of beds for each facility, in which can not be allocated a number of
patients who would require a bed at the same time more than the available number
of beds

• each surgeon cannot operate on in different medical facilities on the same day

• each surgeon can operate on only one patient at a time.
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Respecting all these constraints we want to build a model whose aim is to optimize the
scheduling under 3 main KPIs:

• operate on the patients the first as possible, especially if they have a high urgency
factor

• penalize delays. These are calculated as the exceeding days of the proposed schedule
from the operation’s due date. Even these ones are weighted with the respective
urgency factor of each patient

• strongly privileges the usage of spokes OTs instead of the hub’s ones, to maximize
the usage of spoke resources that are not widely used, and to allocate fewer people
to the hub to relieve the crowding of a big and multi-specialized medical center.

Following also these requests we decided to approach the problem as an Integer Linear
Programming problem, through three different formulations, of Surgery Planning with
the Hub and Spoke (SPHS)

First Problem

This formulation is bonded by all of the constraints aforementioned.

And all three preferences requested by the clinic (minimize the waiting days, penalize
delays, and prefer spoke utilization) are inserted in the objective function, which we want
to minimize, in the form of different summations on weighted variables.

The models are built in order to propose a schedule, and so for each patient an OT, a
date, and a starting time, are found by a binary variable, which is set to 1 if the patient
is allocated there.

It is the most complete formulation, including all the constraints related to normal schedul-
ing, the ones associated with the hospital’s requirements, and some indeed related to
pediatric necessities.

The presence of the constraints that assure the correct ordering on a working day is only
in this formulation. It will be the main and only difference with the second model.

Second Problem

We propose a second variant in order to simplify the model, removing one constraint,
which is detachable, and not strongly necessary.
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We want to explore how this simpler model, without this constraint, behaves.
Comparison between these two problems will be made, analyzing the differences, to see
if this second formulation brings benefits to the schedule setup, and, if so, quantify them
through different Performance Measures.

Does this restriction penalize the overall scheduling, or is it roughly the same?

Third Problem

We decided to study also a different problem with respect to the original requests made
by the clinic center.
It has a similar formulation but it is a separate problem since it has a different aim. Here
the goal is to minimize the makespan, which is the earliest date in order to schedule all
the cases.
However, despite it is built to obtain a different target, this result could help on our
analysis to have a general overview of the minimum number of facilities the clinic requires
and of the makespan to satisfy all the demands.

The solution found by this last formulation represents also a lower bound of the completion
of all the patients on the waiting list, and so it is the minimum date to be communicated
to all patients, to inform them that they will certainly be operated on by that date.
This is possible only if the medical center does not regard at patients’ urgency and their
desired operation’s due date. Here in fact the KPI would be entirely focused on the
clinical interests, not considering any patient’s potential benefits. The attention is totally
focused on the completion time.

This problem also does not include any required ordering, like the one required in the
first model.

It is not considered a fictitious hospital, where to allocate patients that cannot be sched-
uled along the proposed time horizon since this model aims to show how many days all
the patients can be listed, and so we cannot admit the possibility of non-operability.

2.2. Common elements of the three formulations

Therefore here are listed the sets, parameters, variables defined, and constraints.
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2.2.1. Common Sets

Set Description

Hr Set of available hospitals

H Set of all hospitals, including the fictitious one, i.e. H = Hr ∪ {fictitious}
HUB Subset of Hr, the hospitals that are hubs

OHh Set of available operating theatres for each hospital h

O Set of available operating theatres, i.e. O =
⋃

h∈H OHh

Or Set of available operating theatres

P Set of patients

S Set of Surgeons

D Days of the time horizon

T Time slots, to partition the working day

Table 2.1: Sets
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2.2.2. Common Parameters

Parameter Description

mPSps Coverage matrix Patient-Doctor. Binary: 1 if doctor s ∈ S can operate
patient p ∈ P , 0 otherwise

mPHph Coverage matrix Patient-Hospital. Binary: 1 if the surgical case p ∈ P

can be operated on facility h ∈ H

τp Operating time of surgical case p ∈ P

numdocp Number of doctors required to operate patient p ∈ P

ddp Deadline of surgical case p ∈ P in days; i.e. the day before which this
surgical case must be performed

up Urgency. The higher the more urgent

wlp How many days patient p ∈ P is in the waiting list

agep Age, in months, of the patient p ∈ P

PACUp Post Anesthesia Care Unit of surgical case p ∈ P , i.e. time the patient
requires a bed after his operation

aoh Availability of a hospital h ∈ H on day d ∈ D. Binary: 1 if it is
available, 0 otherwise

bh Number of beds for PACU for hospital h ∈ H

mha Maximum patients’ age that must be operated on in a hub center

Table 2.2: Parameters
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2.2.3. Common Variables

Variable Description

xsodt binary: 1 if doctor s goes to O.T. o, on day d, and starts an operation
at time t, 0 otherwise. t is in 0...|T | − τp

ypodt binary: 1 if patient p starts to be operated on at O.T. o, on day d,
at working time t, 0 otherwise. t is in 0...|T | − τp − PACUp

zxshd binary: 1 if doctor s goes to hospital h, on day d, 0 otherwise

zyphd binary: 1 if patient p goes to hospital h, on day d, 0 otherwise

wphdt binary: 1 if a bed is used by patient p, at hospital h, on day d, from
working time t, until he finishes his recovery, 0 otherwise

lpsdt binary: 1 if surgeon s operates on patient p on day d starting at time
t, 0 otherwhise.

δp integer ≥ 0: delay with respect to the due date of the operation of
patient p

closure_day integer ≥ 0: the last day of the entire schedule

Table 2.3: Variables

2.2.4. Common Constraints

∑
h∈H,d∈D

zyphd = 1 ∀p ∈ P (2.1)

zyphd = 0 ∀p ∈ P, ∀h ∈ H,∀d ∈ D : mPHph = 0 (2.2)

∑
h∈H

zxshd ≤ 1 ∀s ∈ S,∀d ∈ D (2.3)

xsodt ≤ zxshd ∀s ∈ S,∀h ∈ H,∀o ∈ OHh,∀d ∈ D, ∀t ∈ T (2.4)

∑
o∈OHh,t∈T

ypodt = zyphd · ahd ∀p ∈ P, ∀h ∈ H,∀d ∈ D (2.5)
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∑
s∈S,

xsodt ·mPSps ≥ numdocp · ypodt

∀p ∈ P, ∀h ∈ Hr,∀o ∈ OHh,∀d ∈ D, ∀t ∈ T

(2.6)

∑
p∈P,i∈{max(t−τp+1,0),...,t}

ypodi ≤ 1 ∀o ∈ Or,∀d ∈ D, ∀t ∈ T (2.7)

wphdt+τp =
∑

o∈OHh

ypodt ∀p ∈ P, ∀h ∈ Hr,∀d ∈ D, ∀t ∈ T (2.8)

∑
p∈P,i∈{max(t−PACUp+1,0),...,t}

wphdi ≤ bh · ahd ∀h ∈ Hr,∀d ∈ D, ∀t ∈ T (2.9)

ypodt + xsodt − 1 ≤ lpsdt ∀p ∈ P, ∀s ∈ S,∀o ∈ O, ∀d ∈ D, ∀t ∈ T (2.10)

∑
p∈P,i∈{max(t−τp+1,0),...,t}

lpsdi ≤ 1 ∀s ∈ S,∀d ∈ D, ∀t ∈ T (2.11)

δp ≥
∑

o∈O,d∈D,t∈T

(d− ddp) · ypodt ∀p ∈ P (2.12)

(t+ τp + PACUp) · ypodt ≤ |T | · ahd ∀p ∈ P, ∀h ∈ Hr,∀o ∈ OHh, ∀d ∈ D, ∀t ∈ T

(2.13)

zyphd = 0 ∀p ∈ P, ∀h ∈ H \HUB, ∀d ∈ D : agep > mha (2.14)

The first two constraints (2.1) and (2.2) impose not only must the patients be operated
on only once, but they must be operated on in a suitable OT due to the presence of the
necessary equipment for the specific kind of intervention.

Constraints (2.3) guarantee each surgeon to not work in more than one hospital center
on the same day.

Equations (2.4) and (2.5) are consistency constraints, for variables xsodt and zxshd, and
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ypodt with zyyhd respectively. They also guarantee to not use hospitals when they are not
available. The same is also (2.10), which connects the variable lpsdt with the variables
of the starting operation of the patient, ypodt, and the surgeon xsodt. Restriction (2.5)
should be completed with multiplication with the availability parameter ahd since we must
control that a patient is allocated to an open hospital.

Equations (2.6) state that each patient must be operated on by as many doctors as the
number required from the specific treatment.

Equations (2.7) impose that in each operating room, there can not be more than one
operation at each time instant. The same is also forced for surgeons by (2.11), and anal-
ogously to the maximum available beds for Post Anesthesia Care Unit for each hospital
by (2.9).

The number of used beds for post-surgery recovery, to avoid going over the total beds, is
set by equation (2.8).

Inequalities (2.14) are extra constraints that follow this policy: patients younger than 5
years old (mha = 60 months), must be operated on in a hub site, for the reason already
described.

Equations (2.13) state that the termination of each surgery, which consists of operation
time and PACU, must terminate before the hospital closure hour, if the clinic is open, i.e.
ahd = 1.

2.3. Problems and Models

Hereafter are proposed three different versions of the problem described above. The first
is aimed at finding the best scheduling according to the clinic’s requests.

The second one is very similar to the previous one, but we want to evaluate the impact
of the constraints patient’s age. Could this relaxation have a substantial improvement on
the complete schedule? Or on the efficiency and speed of the solution?

The third variant has a completely different approach, we want to compute the minimum
number of days to operate on all the patients.

2.3.1. Formulation Problem 1: SPHS

For this formulation, we need to add two more parameters presented in Table 2.4, which
are two multiplicative factors, needed to give weights to different parts of the objective
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function: αh is a vector that for each hospital gives a "cost" of utilization. Since the clinic
strongly prefers to use spoke resources, αh will assume a low value if the hospital h is a
spoke, and a higher value if it is a hub. Then we want to penalize postponing the surgical
interventions in the next time horizon, so if h is the dummy hospital, the cost will be
much higher.

Parameter Description

αh Multiplicative factor for the objective function to identify spokes and
hubs

γ Multiplicative factor for the objective function which controls the delays

Table 2.4: Other parameters for SPHS

But the biggest difference that distinguishes SPHS from SPHS_noY F is the presence
of constraints (2.15), which impose an ordering on a specific day, such that patients are
operated on in increasing order by their age.

∑
t∈T

(t+ τi) · yiodt ≤
∑
t∈T

yjodt + 2|T | · (2−
∑
t∈T

yiodt −
∑
t∈T

yjodt)

∀o ∈ O, ∀d ∈ D, ∀i, j ∈ P : agei ≤ agej

(2.15)

This formulation has the aim to find the best scheduling to minimize the following objec-
tive function:

min objfun2 =
∑
p∈P

(up ·
∑

o∈Or,d∈D,t∈T

d · ypodt) + γ ·
∑
p∈P

up · δp +
∑

p∈P,h∈H,d∈D

zyphd · αh

(2.16)

It is essentially composed of 3 summations: the first two are referred to the urgency of
each patient. Specifically, the first one is about the preference to avoid letting a patient
not wait too long to be operated on, especially if the child has a higher urgency. While
the second one refers to the delay time: the more a specific surgery is urgent, the more
its operation day tends to be not after the due date, or at least to have a small delay.
The last one specifies the preference for using spoke sites over the hubs, which means
paying a higher cost in terms of objective function if the hospital h where patient p is
allocated, is a hub, and paying an even more expensive price if the patient is assigned to
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the fictitious medical facility.

These parts could be multiplied with parameters, to give more weight to specific compo-
nents, i.e. more importance to a specific section, regarding the clinic’s priority.

2.3.2. Formulation Problem 2: SPHS_noY F

The second variant is very similar to the first one. It has got the same formulation, the
same objective function (2.16), and all the constraints from (2.1) to (2.14), but without
the added constraint (2.15), that from now on will be noted as Y oungerF irst constraints.
We have proposed this second problem, as a little variation of the previous model since we
want to examine if there is a potentially significant improvement in the overall schedule
due to relaxing the constraint related to the daily priority given by the age of patients.

Since the objective function does not account for the starting time of the scheduled opera-
tion, we can consider reordering the daily schedule at a second moment. But the ordering
of the surgeries given by the solution may not be feasible for (2.13).

Looking at this simple example. Consider two patients, A and B, with these parameters:
τA = 3, PACUA = 2, τB = 2, PACUB = 1. Suppose also |T | = 6, and a fixed day and an
O.T.
We essentially have two different ways to schedule them: A before B, or vice versa, as
presented in Figure 2.1 and Figure 2.2.

Figure 2.1: Example scheduling 1
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Figure 2.2: Example scheduling 2

As we can easily see, while the first schedule is feasible, the second one shows how, the
same surgeries, but in a different order, violate constraints (2.13), and make the setup
impossible.

2.3.3. Formulation Problem 3: SPHS_MS

This third formulation is not so different from the previous ones, despite the goal is
different. All the structure is the same proposed in Section 2.2, but with two new elements.

The first one is a new variable closure_day, a positive integer value that indicates the
last day of the entire schedule.

Variable Description

closure_day integer ≥ 0: the last day of the entire schedule

Table 2.5: Added Variables for SPHS_MS

This variable essentially stands for the makespan, which means that every surgical opera-
tion must be scheduled before the closure_day. And this is given by the equation (2.17)
which guarantees the definition of the makespan of the planning.

closure_day ≥ d · zyphd ∀p ∈ P, ∀h ∈ H,∀d ∈ D (2.17)

This could have been seen as a lower bound. It means that if the clinic center does not
consider any economic and space advantages, and treats all the care recipients in the same
manner, how many days are required to operate on all the patients? We are essentially
calculating the makespan of setting up all the cases, with the above-mentioned hypothesis.
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Model name Objective function s.t constraints
SPHS (2.16) (2.1)-(2.14),(2.15)

SPHS_noY F (2.16) (2.1)-(2.14)
SPHS_MS (2.20) (2.1)-(2.14),(2.17),(2.18)

Table 2.6: Formulation of all models

In this way, the clinic could give eventually to the patient a maximum number of waiting
days, from the specific time horizon.

Since we want to know in how many days the net of hospitals could operate on all the
patients we do not consider any fictitious hospital where to allocate patients that cannot
be scheduled along the proposed time horizon.
For this reason, constraints (2.18) that force patients to not be allocated to a dummy
hospital have been added to previous ones:

ypodt = 0 ∀p ∈ P, ∀h ∈ H \Hr,∀o ∈ OHh,∀d ∈ D, ∀t ∈ T (2.18)

The second main difference is the objective function. Here, in fact, the clinic center
disregards the spoke preference, urgency, and delays, to treat all care recipients equally.
The attention is totally focused on the completion time.
The objective function so is constructed as follows:

min objfun_of_cl = closure_day (2.19)

However with this formulation, after several tests, we recognized that it was very time
demanding. For this reason, a valid alternative to the objective function. has been
proposed. The urgent patient precedence criteria have been included but with a lower
weight with respect to the value of closure day. The new objective function became:

min objfun3 =
∑
p∈P

(up ·
∑

o∈Or,d∈D,t∈T

d · ypodt) + β · closure_day (2.20)

with β a multiplicative factor that gives more weight to the total objective function.

This last formulation of the objective function brings two advantages simultaneously:
reducing the solve time and giving already a schedule, really similar to the one we look
for. From now on, this last formulation will be used when referring to SPHS_MS.
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2.4. Other Problems

When it comes to optimizing the operation schedule, various criteria are employed, as
previously discussed while considering the diverse key performance indicators (KPIs) uti-
lized by hospitals. This underscores the fact that there is no one-size-fits-all approach
to achieving an ideal operation schedule. Instead, hospitals employ different criteria and
metrics based on their unique priorities and objectives.

These optimization criteria can encompass a wide range of factors, such as minimizing pa-
tient waiting times, maximizing the utilization of operating rooms and resources, reducing
surgeon idle time, optimizing the allocation of doctors and surgical teams, and ensuring
efficient use of equipment and facilities. Each criterion represents a distinct aspect of
operational efficiency and effectiveness within the context of hospital scheduling.

Furthermore, the selection of specific criteria is influenced by various factors, especially
by the overall goals and priorities of the healthcare institution. As a result, different
hospitals may prioritize different KPIs and adopt distinct optimization approaches based
on their specific needs and circumstances.

By acknowledging the existence of diverse optimization criteria and KPIs, healthcare
professionals and administrators can tailor their operation schedules to align with their
organizational objectives and deliver optimal patient care.

For each criterion we want to adopt, we will propose alternative objective functions, and
give a general overview of all of the proposals in the next Chapter, since for some of them,
new variables are required.
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Formulations

The formulations described in Chapter 2 turned out to be very time-consuming even with
a hundred patients.

So before trying to solve completely this with some approaches, like heuristics or matheuris-
tic ones, we tried to compute relaxations of the problems in Section 3.1.
We also tried to modify the formulations in Section 3.2.
Indeed in Section 3.3 will be shown different objective function proposals, to essentially
improve the solve time of specific models.

3.1. Relaxation: Neglecting Physicians

So far, the model has been built in order to find the best scheduling considering both
the patients and the doctors. Surgeons must be taken into because every surgery has
different characteristics, and they can be treated only by specialized doctors. The first
relaxation proposed is to remove all the sets, variables, and related constraints regarding
the physicians. It means variables xsodt, zxshd, lpsdt and constraints (2.3), (2.4), (2.6),
(2.10) and (2.11).

However, surgeons and related associations with the patients and OTs cannot be simply
discarded, for the reason above mentioned. For this reason, a relaxation and a method
of two phases have been proposed: relaxation and then an assignment of surgeons a
posteriori.
Since it is a heuristic approach, it will be largely discussed in the next chapter.

Before showing the results, and the eventual improvements, let us see how much impact
this relaxation has in terms of the number of variables. This last formulation has an order
of O(P · (ODT + HD + HDT + 1)), instead of O(P · (ODT + HD + HDT + 1) + S ·
(ODT +HD + PDT )).
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By neglecting doctors we decrease the number of nodes but effectively we eliminate all
those nodes which present symmetries between them. In fact not only some doctors can
be exchangeable, but can be considered more doctors than necessary.

From now on, whenever this relaxation is used, it will be made explicit with the suffix
nodoc attached to the name’s model.

Model name Objective function s.t constraints
SPHSnoc (2.16) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.14), (2.15)

SPHS_noY Fnodoc (2.16) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.14)
SPHS_MSnodoc (2.20) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.17),(2.14),(2.17),(2.18)

Table 3.1: General Formulation of SPHSnodoc

3.2. Bin-Packing-based enriched formulation

We now propose an alternative formulation of the problems, enriched with variables and
constraints.

Every OT, each day, can be seen as a bin, with some capacity limit, for instance, the
working day hours. So we can look at which day d, which operating theatre o should
be open, by setting a variable yBPod. Consequently, we must see the allocation of the
patient p to the bin opened, through a variable xBPpod.

For this reason, it has been decided to add variables and constraints correctly associated
with the Bin Packing formulation to the models already written and described above,
instead of substituting them. And the same holds also for the list of constraints used for
every model proposed.

To the formulations in section 2.2.3 (SPHS,SPHS_noY F and SPHS_MS) these two
variables:

Variable Description

yBPod binary: 1 if the bin, i.e. the OT o on day d is open, 0 otherwise

xBPpod binary: 1 if the patient p is allocated in the bin identified by OT o and
day d, 0 otherwise

While the restrictions to add to the list of the already present constraints for a specific
model are the following:

∑
o∈OHh,d∈D

xBPpod = 1 ∀p ∈ P (3.1)
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∑
p∈P,t∈T

ypodt ≤ yBPod · |T | ∀o ∈ O, ∀d ∈ D (3.2)

∑
p∈P

τp · xBPpod ≤ yBPod · |T | ∀o ∈ O, ∀d ∈ D (3.3)

∑
p∈P

PACUp · xBPpod ≤ yBPod · |T | ∀o ∈ O, ∀d ∈ D (3.4)

Equations 3.1 state that every patient must be allocated to exactly one bin.

Constraints 3.2, 3.3 and 3.4 guarantee three different capacities: the number of patients
allocated in a specific bin cannot exceed the total number of working time slots, the sum
o operation times τp, and PACU of all patients assigned to that bin can not overcome
the overall amount of labor hours. These last two can be improved by substituting |T |
with |T |/(min τ), and respectively |T |/(min PACU).

We have added two variables xBPpod and xBPpod, and appropriate constraints.

While for the objective function, obviously depends on which model we are using, and so
which the aim is. If we use the obj. fun. considering the classic Bin Packing problem, we
would write:

min objfunBP =
∑

o∈O,d∈D

yBPod (3.5)

which is the goal of the SPHS_MS, since we want to minimize the number of days for
completing the entire set of clinical cases.

But this formulation presents an error if the problem to solve is SPHS_MS. With this
objective function, it is minimized the number of bins, but there’s any imposition about
the minimization of the makespan. For the solver each bin, on each day has the same
weight, while we want to reduce as much as possible the number of days.

Also computationally speaking, it could be very onerous, since the solver explores different
nodes which bring the same result. We essentially have to break the symmetries given
by the (almost) equality between the various bins. And so maybe give a weight directly
proportional to the day.

Breaking symmetries is a convenient approach to enhance the efficiency and effectiveness
of the learning process. Symmetries refer to situations where multiple hypotheses or
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solutions exist that are essentially equivalent or indistinguishable from each other.

In this way we are essentially reducing the search space, allowing the solver to explore a
more focused and manageable set of hypotheses.

Secondly, redundant solutions are avoided. Since most of the bins are indistinguishable,
breaking symmetries can be eliminated redundant solutions and focus on finding unique
and informative hypotheses.

So the first intuitive new objective function proposed is the following:

min objfunBP22 =
∑

o∈O,d∈D

yBPod · d (3.6)

But it has been proposed also different formulations which will be shown more in detail
in the next section, describing different proposals of the objective function.

Model name Objective function s.t constraints
SPHS_BP (3.6) (2.1) - (2.14),(2.15),(3.1)-(3.4)

SPHS_noY F_BP (3.6) (2.1)-(2.14),(3.1)-(3.4)
SPHS_MS_BP (3.6) (2.1) - (2.9), (2.10) - (2.14),(2.17),(2.18),(3.1)-(3.4)

Table 3.2: General Formulation of SPHS_BP

The pure Bin Packing problem can be seen as the lower bound of the solution if the
question is to find the makespan. In fact, if the clinic center makes the deliberate choice
to prioritize equal treatment for all care recipients, disregarding individual preferences,
urgency, and potential delays and the primary focus is solely on minimizing the overall
completion time, every patient will be treated in a maximum closure_day days.

It is important to note that while this approach promotes equality and efficiency, it may
result in varying waiting times for individual patients. By focusing on the completion
time and considering the maximum number of days a patient may have to wait, the clinic
strives to strike a balance between fairness and operational effectiveness within the given
time horizon.

From now on, whenever it is used the Bin Packing approach, it will be made explicit with
the suffix _BP attached to the model’s name.
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3.3. Alternative Objective Functions

Before guessing and trying the best objective function, for each model, it is necessary to
understand what is important to prioritize for the hospital, if the avoidance of delays,
the number of days used to meet up all the patients’ requests, or anything else. Then
since some objective function formulations take into account many factors, like the ones
aforementioned, it is important to calibrate the weights associated with every part of the
o.f.
Moreover, after understanding carefully which are the preferences of the management, it
can be discussed whether some little editing can or not help the solver to find faster a
good solution, without changing significantly the overall results.

In previous chapters, these decisions have been presented as Performance Measures (PM),
also known as a key performance indicators (KPI). The performance measures refer to
the metrics used to evaluate the planning and scheduling processes in operations research.
These measures assess various aspects such as computational efficiency and computational
time

Performance Measures play a crucial role in OR planning as it has been discussed before,
as they provide a basis for comparing different methodologies, algorithms, and models.
These measures are also used by researchers to evaluate the performance of their proposed
solutions and to demonstrate the effectiveness of their approaches in addressing real-world
problems.

Here we focus essentially on some of the aspects described in the literature, each with its
own specific weights and importance.
Objective achievement, which evaluates the extent to which the desired objectives, such
as minimizing costs, maximizing resource utilization, or optimizing schedules.
Utilization measures the employment of resources and assesses whether they are effec-
tively and efficiently utilized. Here, since we want to build a model based on Hub &
Spoke approach we want to widely take advantage of the OT borrowed from other’s med-
ical facilities.
Waiting times. They quantify times experienced by patients in the scheduling process,
providing insights into the efficiency of the system and patient flow.

Here are reported some proposals for different objective functions: especially for the third
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formulation, and some of them referred to the Bin Packing formulation:

min objfunclday = closure_day (3.7)

This o.f. 3.7 essentially aims to minimize the makespan, without considering the patient’s
or hospital’s benefits.

min objfunBinPacking = β ·
∑

o∈O,d∈D

yBPod +
∑
p∈P

up · (
∑

o∈O,d∈D,t∈T

d · ypodt) (3.8)

min objfunBinPacking_m12 =
∑
p∈P

up · (
∑

o∈Or,d∈D,t∈T

d · ypodt) + γ ·
∑
p∈P

up · δp+∑
p∈P,h∈H,d∈D

zyphd · αh+

β ·
∑

o∈O,d∈D

yBPod

(3.9)

min objfunBinPacking2 :
∑

o∈O,d∈D

f(d) · yBPod (3.10)

These last o.f.s refer to the Bin Packing formulations.
The equation (4.3) takes into consideration the urgency and prioritization of the patients,
and the number of bins used, recalling that a bin is uniquely identified by the OT and the
day. The first part, which is multiplied by factor β, does not determine the makespan. In
fact, it does not give any preference about the day, to minimize the completion time, but
only the number of opening OTs. The variable yBPod can be multiplied by the index d of
the first summation, in order to minimize the sum of the days when bins are open, and
so, given for free, the maximum day of opening. But it has been noticed by comparing
these two variations that they are the same. Effectively the second part already contains
the day factor and implicitly has got the aim to minimize the makespan.

The objfunBinPacking_m12 in (3.9), is a little bit more complete, taking into account
four different factors. Both the first two parts take as Performance Measure the urgency
of the patients in two different forms: one, as the same as the previous formulation,
prefers to not allocate patients too far in the time horizon, and the other tends to keep
control of delays, avoiding the deferral of the interventions respect to the due date ddp.
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The third component is referred to the Hub & Spoke modeling, preferring to allocate
surgical operations in the spokes sites, with respect to the hubs’ ones. While the last
one is completely equal to the part described in (4.3), describing the minimization of the
working OT used.
This formulation has the same structure of the objective function (2.16) presented in
SPHS and SPHS_noY F in Section 2.3, with only the addition of the part regarding
the reduction as much as possible of the number of bins used.

The o.f. (3.10) is a variation of the one proposed in model_clday. Here our PM is
only the makespan, using the Bin Packing approach. We want to discover if it would be a
valid alternative to the objective function proposed in (2.19) which has been revealed very
time-demanding, even with a small dataset. To avoid the problem well described above,
and so to consider the bin all equals, without imposing the preference of minimizing the
number of used days, we have to multiply the variable yBPod to a factor, that depends on
the day. It was already proposed a linear weighting, related to the day. Now we propose
different functions f(d), not linear anymore. Polynomial functions have been tried, at
different orders, and exponential ones, to see if and how at the variation of f the solving
time differs.
The functions tested, and with reported results, were essentially three: two polynomials
of different orders, to see what happens to the compile time at the increasing order of
the function, and an exponential function. They are here proposed in expanding order of
growth, to spot if there are evident variations in terms of solving time. It has been chosen
f(d) = d2, f(d) = d5 and finally f(d) = 2d.

As it has been said: when it comes to optimizing the operation schedule, various criteria
are employed. To recap the criteria that we wanted to adopt, were the minimization
of patient waiting times, weighted with his/her urgency, in the time horizon (1), the
penalization of eventual delays, also weighted with the urgency (2), the Spokes predilection
to the Hubs (3), the total make-span, i.e. the closure day (4), and the total number of OTs
used along the time horizon (5). A recap of all the different objective functions proposed
for each is presented in Table 3.3.

Each distinct objective function introduces specific enhancements based on the individual
requirements it aims to address.
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OBJECTIVE FUNCTION FORMULATION CRITERIA

objfun2

∑
p∈P

up · (
∑

o∈Or,d∈D,t∈T
d · ypodt)

+
∑
p∈P

up·δp

+
∑

p∈P,h∈H,d∈D
zyphd·αh

(1),(2),(3)

objfun3

∑
p∈P

up · (
∑

o∈O,d∈D,t∈T
d · ypodt)

+γ*closure_day
(1),(4)

objfunBinPacking

∑
o∈O,d∈D

β ·yBPod

+
∑
p∈P

up · (
∑

o∈O,d∈D,t∈T
d · ypodt)

(1)

objfunBinPacking2
∑

o∈O,d∈D
d · yBPod (5)

objfunBinPacking2*
∑

o∈O,d∈D
f(d) · yBPod (5)

objfunBinPacking2**
∑

o∈O,d∈D
2d · yBPod (5)

objfunclday closure_day (4)

objfunBinPacking_m12

∑
p∈P

up · (
∑

o∈Or,d∈D,t∈T
d · ypodt)

+
∑
p∈P

up·δp

+
∑

p∈P,h∈H,d∈D
zyphd·αh

+
∑

o∈O,d∈D
β·yBPod

(1),(2),(3),(5)

Table 3.3: Different Objective Functions
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It has been decided to find enriched formulations, with the hope to reach the optimal
solution, sometimes just feasible ones, in a fewer amount of time. In this part, various
possible improvements are essentially studied, especially of the third model, which aim is
to reduce the makespan combined with optimal scheduling to avoid too many delays.

So in this chapter, some heuristic methods will be presented, such as the greedy in Section
4.1, and some matheuristics ones in Sections 4.2 and 4.3. It has been developed a base
relax heuristic in Section 4.4.

4.1. Greedy

Particularly for the third formulation, an initial approach to achieve a favorable makespan
could be through the implementation of a greedy algorithm. This method involves se-
quentially considering patients and, for each day, hospital, operating theater (O.T.), and
time slot in a specific order. The objective is to assess whether adding the surgical case at
those particular indexes would result in available space, ensuring that all capacities and
constraints are respected. It has been used a First Fit heuristic approach.

The process begins with the first patient and proceeds iteratively. For each day, hospital,
O.T., and time slot in the specified order, the algorithm checks if there is sufficient space
to accommodate the surgical case by verifying if all capacities, such as the maximum
number of surgeries allowed per day or the availability of O.T. time slots, are adhered to.
If the conditions are met, the patient is scheduled for the specific O.T. at the designated
date. The algorithm then moves on to the next patient, repeating the process.

However, if the proposed indexes do not satisfy the capacity constraints, the algorithm
rejects those specific indexes and continues to the next available option in the reverse
order of the indexes. This ensures that alternative scheduling options are explored to find
feasible solutions.

To have a priority rank, hoping for a better schedule, we ordered patients in a decreasing
way of their urgency coefficient.
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By employing this greedy algorithmic approach, a rudimentary yet efficient starting point,
in terms of makespan, can be achieved. It allows for systematic scheduling based on
available space while respecting the capacity limitations of each day, hospital, O.T., and
time slot. This initial scheduling arrangement forms the foundation upon which further
optimization and adjustments can be made to refine the overall scheduling process and
minimize the makespan.

Listing 4.1: Greedy

l e t a f l a g=0
f o r each p in P

i f age [ p ] <= mha
f o r each d in D

f o r each h in HUB
f o r each o in OH[ h ]

f o r each t in T
i f s e t t i n g y [ p , o , d , t ]=1 are r e spec t ed :

capac i ty o f each OT,
time l im i t o f c l o s u r e hour , and
beds a v a i l a b i l i t y f o r pa t i en t PACU time

then add the pa t i en t in the schedule , namely :
l e t y [ p , o , d , t ]=1
l e t zy [ p , h , d]=1
l e t w[ p , h , d , t+tau [ p ] ] = w[ p , h , d , t+tau [ p ] ]+1
l e t f l a g :=1
break and s t a r t with the next pa t i en t ;

i f age [ p ] > mha
f o r each d in D

f o r each h in H
f o r each o in OH[ h ]

f o r each t in T
i f s e t t i n g y [ p , o , d , t ]=1 are r e spec t ed :

capac i ty o f each OT,
time l im i t o f c l o s u r e hour , and
beds a v a i l a b i l i t y f o r pa t i en t PACU time

then add the pa t i en t in the schedule , namely :
l e t y [ p , o , d , t ]=1
l e t zy [ p , h , d]=1
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l e t w[ p , h , d , t+tau [ p ] ] = w[ p , h , d , t+tau [ p ] ]+1
l e t f l a g :=1
break and s t a r t with the next pa t i en t ;

4.2. Decomposing

From the very first result analyzed and discussed in the next Chapter, and as we could
expect, the more the number of patients grows, the more the compiler is time demanding.
And it does not raise linearly, but exponentially, since it is solved with a branch and
bound method. So the first improvement proposal is to divide the dataset into two
different partitions, to solve sequentially.

A first approach, only to see if it could have a little improvement, the partitions are based
simply only on the order of the ID of the patients, without taking into consideration any
other features. The initial part is the first half of the total instance, while the second
takes the other half.

It is essentially the same problem we have discussed so far, but divided into two steps, in
order to have fewer parameters for each of them. We solve the first one, find the schedule,
and attach to it the setup found with the remaining surgical cases.

The next analysis has been done with different partitions, considering for example the
due date and/or the level of urgency, clearly the more urgent the patient’s condition, the
first is allocated, and analogously with the smaller due date.

We could think about how many partitions the dataset should be divided in order to obtain
the best trade-off between optimum and compiling time. After careful consideration
and analysis, the decision has been reached to avoid dividing the dataset into numerous
partitions and keep the number of splits equal to two. While it is acknowledged that this
approach may result in a reduction of compilation time, as there would be fewer variables
to schedule, it has been recognized that the overall optimization of the entire scheduling
process would be compromised due to the decreased number of patients involved.

Dividing the dataset into multiple partitions initially seemed appealing as a means to
streamline the scheduling system. With fewer variables to consider, the compilation time
would naturally decrease, potentially leading to more efficient scheduling operations. This
reduction in compilation time could be perceived as a notable advantage, as it would
expedite the process and allow for quicker decision-making.

However, upon deeper evaluation, it became apparent that such partitioning would have
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unintended consequences. By reducing the number of patients within each partition, the
total optimization of the scheduling system would suffer. A smaller pool of patients means
that the system would have limited flexibility and fewer opportunities to find optimal
scheduling solutions.

Optimizing the entire scheduling process relies on analyzing and considering a compre-
hensive dataset, encompassing a diverse range of patient characteristics, requirements,
and preferences. By encompassing a larger pool of patients, the scheduling system gains
access to a wider array of variables, allowing for a more comprehensive and effective opti-
mization process. This holistic approach ensures that the scheduling system can consider
various factors to generate the most optimized schedules.

In summary, while dividing the dataset into multiple partitions may offer a reduction in
compilation time, it would compromise the overall optimization of the scheduling process.
By maintaining a larger dataset and avoiding such partitioning, the scheduling system
can capitalize on the full range of variables, leading to more effective and comprehensive
scheduling solutions.

4.2.1. Sprint reducing the number of days

Since we are decomposing the dataset, the number of patients is reduced, so it is not
necessary to explore all the days in the time horizon. For this reason, to improve the
speed of reaching the best solution, the number of days of the time horizon has been
reduced, decreasing significantly the number of parameters.

Listing 4.2: Decompose and Sprint

l e t c mu l t i p l i c a t i v e f a c to r , that depends on the s p l i t
l e t days=|D|
Decompose the datase t i n to two p a r t i t i o n s : P1 and P2
Solve the problem P1 in a smal l time
Save the closure_day found so far , and save bestday=closure_day
For the model with p a r t i t i o n P1 s e t a time l im i t o f 1000 ,

and update the s e t D={1. . bestday }
Solve the model with P1
i f { bestday ∗c < days}

s e t D={closure_day +1. . bestday ∗c}$
e l s e

s e t D={closure_day +1. . days}$
For the model with p a r t i t i o n P2 s e t a time l im i t o f 1000 ,
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and update the s e t D dec ided in the prev ious s tep
Solve the model with P2

4.3. Associations Surgeons

As we previously said, the doctors’ scheduling cannot be overlooked. To reach the entire
feasibility of the problem either patients and surgeons must be correctly allocated.

Before showing the methods utilized to assign medical staff, in our case only doctors, to
OTs and to clinical cases, let us see why this step can not be ignored, or given to it less
importance than actually it requires.

The methods utilized to assign medical staff, in our case, only doctors, to OTs and to
clinical cases will be discussed in chapter 4, but firstly let us see why this step can not be
ignored, or given to it less importance than actually, it requires.

In fact, if we consider also the availability of medical personnel, the entire scheduling,
divided into these two sequential steps, an unfeasibility can incur.
Let us see how this inconvenience can happen through this example. Consider a solution
to the first part of the problem, i.e. the surgical cases scheduling. Let us assume that the
result assigns on a specific day, in a precise operating room, patients with the same kind
of operation, maybe rare, let us call it kind R. Suppose that every doctor specialized in
interventions of kind R is unforthcoming on that day, or, in another scenario, the solution
decided to allocate surgeries of this kind of operation simultaneously in many different
OTs, but there is no sufficient availability of specialized staff. Since the solution proposed
in the first part did not take into account this factor, it is feasible with this restriction,
but the entire problem turns out to be unfeasible.

If this error should occur, there are two possible ways to solve this contradiction. One
depends on the clinic’s operational decision management and the other one from the model
formulation. In the first case, the medical center has to look carefully at the costs-benefits
in order to understand if it is convenient to make internal proposals to fill in that time
slot.
The other option is to add to the model constraints that violate the allocation of patients
that cannot be satisfied by doctors and retrain the first part followed by the second one
until a feasible solution is found.

The approach that has been used for solving this challenge is the following: to partition
the formulation into two different autonomous problems.
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The first one has variables ypodt, zyphd, wphdt, δp and closure_day

The constraints are all the ones specific for each model, that do not have the variables
regarding the doctors. The objective function is the same used for the entire problem,
whatever formulation we choose, since in every o.f. proposed so far there is any element
that keeps control of the medical staff.

The second step is a sort of complementary problem: our variables and constraints are
all the ones previously discarded and the same holds for the list of constraints. This has
been approached as a facility location problem, in fact, we have to associate surgeons with
scheduled medical cases, where each of them has specific necessities and requirements,
like the number of medical staff, or the kind of specialist, on the basis of the surgical
intervention.

For what concerns the objective function of this latter problem, it has been proposed the
minimization of the total number of doctors, for each hospital and day, used to satisfy all
the demands, i.e. :

min objfun_mindoc =
∑

s∈S,h∈H,d∈D

zxshd (4.1)

It has been used variable zxshd instead of xsodt since the idea is to minimize the number
of surgeons in a specific working day, and not only the number of them for meeting every
patient’s need.

From now on we consider this model as modelSA, for indicating the surgeons association.

4.4. Forcing the solution of SPHS_noY F with youngerfirst

constraints

We have already talked about the difference between SPHS and SPHS_noY F , and the
advantages that this relaxation brings. As the results in the next chapters will show, the
second formulation, which excludes the youngerfirst 2.15 constraints from the original
formulation, has a better optimal solution, and it is also found in a lower time than the
first one.

The proposed approach involves finding a solution to the formulation without incorporat-
ing the youngerfirst constraints initially. Subsequently, in the second step, the solution
is modified to ensure compliance with the youngerfirst restriction.

The intention is to explore a solution space without the initial limitations imposed by the
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youngerfirst. By doing so, we can identify potential solutions that may not have been
apparent or accessible under strict adherence to those constraints.

Once an initial solution is obtained, the subsequent step involves enforcing the youngerfirst
constraints upon it. This means adjusting or modifying the solution to align with the spe-
cific requirements and limitations outlined by the pediatric needs.

By adopting this two-step approach, we enable a more comprehensive exploration of the
solution space, potentially discovering innovative and effective strategies that would have
otherwise been overlooked. It allows for flexibility, striking a balance between exploring
unconstrained possibilities and eventually incorporating the necessary constraints to meet
the desired objectives.

Inevitably, when initially exploring the solution space without the youngerfirst con-
straints, there is a possibility that the obtained solution may not satisfy all the restric-
tions, just think about the capacity of the working hours, recalling the example proposed
in Figure 2.1 and Figure 2.2. In such cases, an assessment is required to determine the
number of additional hours needed to make the solution feasible while ensuring compliance
with the constraints.

After applying the youngerfirst constraints to the solution obtained in the first step, a
careful analysis is conducted to identify any violations or discrepancies. By comparing
the modified solution with the constraints, it becomes possible to quantify the extra time
required to render the solution feasible.

This evaluation involves pinpointing the time capacities that initially succeeded and calcu-
lating the additional hours needed to rectify the situation. By quantifying the extra time
required, the clinic or organization can make informed decisions regarding resource alloca-
tion, scheduling adjustments, adding extra working time, or any other necessary measures
to ensure that the solution becomes feasible while still adhering to the youngerfirst con-
straints.

In summary, by assessing the solution obtained without the youngerfirst constraints and
determining the violations, the calculation of extra time needed provides valuable insights
into the adjustments necessary to make the solution feasible. This analysis enables the
clinic to address any shortcomings, optimize scheduling, and ultimately reach a solution
that satisfies all the constraints while minimizing additional time requirements.

Technically we set the formulation in the following way: we run the SPHS_noY F first,
then save the results of variables zyphd, fixing for each patient, the date, and the medical
center found by the solution. Then the second step is to run the SPHS, with the values
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of zyphd unchangeable, and consider them as a parameter instead of variables. Then the
problem is only to give the perfect order of the new schedule, imposing the youngerfirst

constraints, and eventually rescheduling the medical staff, to avoid unfeasible overlaps.
Before doing this it is necessary to consider a new set of time slots, say T1, such that
|T1| > |T | since we have to allow patients, to be reallocated, following the ordering given
by their age, to avoid the unfeasibility of the problem.

We could run the SPHS as a second step, to assure the wanted order. Anyway, it has
been found a better approach for this last step. A more efficient method is to run a new
model, with the same variables and constraints of SPHS, and the variables zyphd fixed,
but with a new variable, a new constraint, and a different objective function. We actually
indicate that we want to minimize the eventual extra hours.

We add a new integer variable cod that says the closure hour of each OT on each day, by
setting this constraint

cod ≥ (t+ τp + PACUp) · ypodt ∀p ∈ P, ∀o ∈ O, ∀d ∈ D, ∀t ∈ T (4.2)

And with the objective function:

min objfun_clhour =
∑

o∈O,d∈D

cod (4.3)

The last step is to count and quantify the exceeded hours, of this forced solution. Then
the clinic, following its appropriate KPI, will decide what is the best solution to adopt,
according to its Performance Measure, if to assume the possibility to give its medical staff
some extra working time, to do not consider the new order, and keep the solution found
by SPHS_noY F , redo the problem, considering all the constraints all in one, or to find
a trade-off.

A possible compromise is to make a relaxation of the second step. After finding the first
proposed solution, and fixing zyphd, instead of solving the SPHS_noY F problem, we can
consider a Lagrangian relaxation: the ordering imposed by patients’ age can be seen as
a strong penalization to the objective function instead of inviolable constraints. In this
way, the medical center does not consider the possibility to make overtime operations,
but at least, it reschedules the order of interventions, to operate the younger the first,
compatible with the working hours limit.
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In this Chapter the computational results are described. All the approaches have been
implemented in AMPL, Version 20230124 (MSVC 19.29.30147.0, 64-bit. The models have
been solved with Gurobi 10.0.0 which proved to be the most effective solver in preliminary
tests.
Computational tests have been run on a machine with AMD Ryzen 3 3250U Processor,
8,00 GB of RAM installed (5,88 GB usable); 64-bit Operating System. Windows 11 Home
edition, 22H2 version.

We tested the approaches on a set of instances described in Section 5.1.

Then in Section 5.2 the very first results of the SPHS, SPHS_noY F , and SPHS_MS

are shown.
The results obtained by the alternative formulations and relaxations are described in
Section 5.3, and the ones obtained by the heuristic approaches, in Section 5.4.
In Section 5.4.5 deeper analysis on the schedule found by the best approach discovered so
far are conducted.
Finally in Section 5.5 are studied the behavior on the delays, by considering a shorter
time horizon.

In Table 5.1 there is a map that shows, for each formulation, the objective function used,
and the constraints present.
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MODEL OBJECTIVE FUNCTION CONSTRAINTS
SPHS (2.16) (2.1) - (2.14),(2.15)
SPHSnodoc (2.16) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.14), (2.15)
SPHSnodoc_BP (3.6) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.14), (2.15),(3.1)-(3.4)
SPHS_BP (3.6) (2.1) - (2.14),(2.15),(3.1)-(3.4)
SPHSnodoc_BP_of_BP12 (3.9) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.14), (2.15),(3.1)-(3.4)
SPHS_noYF (2.16) (2.1)-(2.14)
SPHS_noYFnodoc (2.16) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.14)
SPHS_noYFnodoc_BP (3.6) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.14) ,(3.1)-(3.4)
SPHS_noYF_BP (3.6) (2.1)-(2.14),(3.1)-(3.4)
SPHS_noYFnodoc_BP_of_BP12 (3.9) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.14) ,(3.1)-(3.4)
SPHS_MS_BPnodoc (2.20) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.14),(2.17),(2.18),(3.1)-(3.4)
SPHS_MS_nodoc (2.20) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.17),(2.14),(2.17),(2.18)
SPHS_MS_BP (3.6) (2.1) - (2.9), (2.10) - (2.14),(2.17),(2.18),(3.1)-(3.4)
SPHS_MS (2.20) (2.1) - (2.9), (2.10) - (2.14),(2.17),(2.18)
SPHS_MSnodoc_of_clday (2.19) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.17),(2.14),(2.17),(2.18)
SPHS_MS_BP_of_dxnbin (3.10) (2.1) - (2.9), (2.10) - (2.14),(2.17),(2.18),(3.1)-(3.4)
SPHS_MSnodoc_BP_of_d2xnbin (3.10) (d^2) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.17),(2.14),(2.17),(2.18),(3.1)-(3.4)
SPHS_MS_BP_of_d2xnbin (3.10) (d^2) (2.1) - (2.9),(2.10) - (2.14),(2.17),(2.18),(3.1)-(3.4)
SPHS_MSnodoc_BP_of_d2xnbin (3.10) (d^2) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.17),(2.14),(2.17),(2.18),(3.1)-(3.4)
SPHS_MS_BP_of_d5xnbin (3.10)(d^5) (2.1) - (2.9), (2.10) - (2.14),(2.17),(2.18),(3.1)-(3.4)
SPHS_MSnodoc_BP_of_2dxnbin (3.10) (2^d) (2.1),(2.2),(2.6),(2.7),(2.8),(2.9),(2.12),(2.13),(2.17),(2.14),(2.17),(2.18),(3.1)-(3.4)
SPHS_MS_BP_of_2dxnbin (3.10) (2^d) (2.1) - (2.9), (2.10) - (2.14),(2.17),(2.18),(3.1)-(3.4)
SPHS_MS_of_clday (2.19) (2.1) - (2.9), (2.10) - (2.14),(2.17),(2.18)
SPHS_MS_BP_of_dxnbin (3.10) (2.1) - (2.9), (2.10) - (2.14),(2.17),(2.18),(3.1)-(3.4)

Table 5.1: Recap all models

5.1. Instances

In this Section we describe the instances which are partially derived from Buzzi Children’s
Hospital’s staff suggestions and partially from realistic data.

5.1.1. Hospitals

Buzzi acts as the hub and it is open every day. Two sites, acting as spokes, are available
only once a week.
The hub has got two operating theatres, while the spoke has one OT which can be used
by the hub each. To all these, it has been added a fourth facility, which is the dummy
hospital.
From now on we consider the hospital n. 1 as the Hub, hospitals 2 and 3 as Spokes, and
4 as the dummy one.

To be able to run the models explained hereafter, we added different parameters, so far just
to have a general idea of the behaviors of the different models and their relative variations.
Then all the parameters will be given by the medical center or chosen adequately.
We decided to consider a time horizon of 32 days, i.e. |D| = 32, and each working day is
divided into 10 time slots, one for each hour. The daily working hour will be partitioned
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further considering a slot of 30, 20, or 15 minutes. So let a new parameter slots_per_h

which indicates in how many partitions an hour is divided. So, for now, we have 10
working hours per day, and letting slots_per_h = 1, we have |T | equal to 11 since we
start from slot 0.

We consider a set of 10 surgeons. The matrix mPSps is randomly generated so as to
guarantee that each surgeon s can operate on 70% of the cases. The same is also done to
make the coverage matrix, considering the probability for a patient to be operated on in
that hospital h, namely, it has the necessary equipment for patient p, equals 0.9.

It has been considered a bed capacity of beds equal to 5, if the facility is a hub, and equal
to 3 of instead it is a spoke. While if it is the dummy hospital, we should assure to have
enough beds to potentially allocate all those patients who could not be allocated in the
time horizon, so we set it to 140.

5.1.2. Patients

We tested the approaches on 24 sets of patients, [4][3]. The dataset is composed of
8 instances with 80 patients, 8 instances with 120 patients, and 8 instances with 140
patients, for a total of 24 instances.

All the features of the patient are given:

• ID

• urgency coefficient (up)

– Five urgency classes are defined with maximum waiting time set at 8, 30, 60,
180, and 360 days, respectively, and corresponding urgency coefficients u equal
to 45, 12, 6, 2, 1. Namely, 45 is the most urgent, while 1 is the least urgent.

• numbers of days on the waiting list (wlp)

• average surgery time [min] (τp)

Since the duration of the surgical intervention is given in minutes, we have to transform τp,
considering as unit of measurement the slots_per_h, and so simply re-scaling it, dividing
the original τp by 60(minutes in 1h) and multiply it by slots_per_h, obtaining the new
correct value of τp.

The age of each patient [month] has been generated by a Gaussian distribution with a
mean µ = 67, and standard deviation sd = 32. But since the hospital operates on chil-
dren older than 3 months, it is chosen the maximum between 3 and the age randomly
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generated.
The number of doctors required for the surgery is set to 1 for each operation.
PACU (Post Anesthesia Care Unit) was considered as the ceiling of the operation time τp

divided by 3.
The due date ddp was obtained by the value of the urgency factor up, by taking the integer
part of 60

up
.

The mPHph has been generated in this way: if the patient p is younger than the threshold
mha, it must be operated on in a hub site (in our case h = 1) and so mPHp1 = 1. Oth-
erwise, if agep > mha, the value of mPHph is randomly generated, following a Bernoulli
distribution with a probability equal to 0.9.

To all those, it has been chosen to give a high value of β, setting it to 500, to have a big
impact on the objective functions where it is present.

To have a general recap of all the parameters we have set, we report in Table 5.2 the list
of the assigned values to Sets and Parameters.

5.2. Results

A general overview of the very first results is presented in Table 5.3. Each row is composed,
in this order, by: the name of the run instance, the computational time, the objective
function found, the lower bound of the solution, and the relmipgap.
This latter one indicates the gap between the value of the objective function found so far
and the lower bound, it is calculated as relmipgap = objfun−lowerbound

objfun
.

Then in Table 5.7 are reported the results regarding the name of the run instance, the
mean and the maximum waiting times of all the patients in the schedule found as a
solution, the number of patients scheduled to be operated on before the due date, and
the number who did not, and the mean and the maximum days of delay (considered only
on the number of people scheduled on delay).

It has compiled all the models written in their original formulation, with all the variables
and constraints proposed in Chapter 2; the number present in the name of the id in Tables
5.3 and 5.7 represents how many patients compose the instance.

There’s an important element to pay attention to. In different instances the solver did
not find any feasible solution even after 6000 seconds, then it could not give all the pieces
of information, (it happened for one instance with 120 patients and for four instances
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Set or Parameter Value
Hr [1, 2, 3]
H [Hr, 4]
OH[1] [1, 2]
OH[2] [3]
OH[3] [4]
OH[4] [5]
|S| 10
|D| 32
|T | 11
mPSps Bernoulli(p = 0.7)
mPHph 1 if h = 4 or (agep ≤ mha and h = 1)

Bernoulli(p = 0.9) elsewhere
τp

old_τp
60

· slots_per_h
numdocp 1
agep max(Normal(µ = 67, sd = 32), 3)
PACUp ⌈ τp

3
⌉

ddp ⌊ 60
up
⌋

ahd 1 if h=1 , everyday
1 if h = 2, only the 1st day of every week
1 if h = 3, only the 3rd day of every week
1 if h = 4, only day 32
0 otherwise

αh [100, 1, 1, 1000]
β 500
γ 100
bh [5, 3, 3, 140]
mha 60

Table 5.2: Assigned Values to Sets and Parameters
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with 140 in SPHS_MS). So, whilst analyzing the results, particular attention needs
to be paid to take this factor into consideration, especially when we describe the general
overview giving the average values. The difficulty, sometimes impossibility, to find any
feasible solution in some instances, especially if there are a big number of patients to set
up, already provides a glimpse of how difficult it is for the solver to find a solution with
an exact resolution method, and therefore how necessary it is to try heuristic methods to
solve the problem.

To give a directed reading key, it has been collected in Tables 5.4-5.6 a synthesized recap
of Table 5.3, grouping all the results by the type of model utilized, and the number of
patients of the instance.

Then all these Tables are followed by images that recap visually some of the previous
results and other analyses, for all models which found a solution.
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5.2.1. Computational Results

id1 computational_time objfun lowerbound relmipgap
SPHS

80_t_01: 6676.102 7400 7400 0
80_t_02: 1992.183 7052 7052 0
80_t_03: 5380.21 8082 8080 0
80_t_04: 5848.041 7773 7773 0
80_t_05: 1533.057 6161 6161 0
80_t_06: 4212.849 8193 8176 0.2
80_t_07: 2811.724 8493 8493 0
80_t_08: 5521.619 8094 8094 0
120_t_01: 3952.732 14410 13946 3.2
120_t_02: 3854.296 20552 12669 38.3
120_t_03: 3935.627 30989 14440 53.4
120_t_04: 8492.44 13603 13268 2.4
120_t_05: 3854.372 19877 10990 44.7
120_t_06: 3981.867 25314 14609 42.2
120_t_07: 4227.534 32917 15788 52
120_t_08: >6000
140_t_01: >6000
140_t_02: 4309.344 46809 15505 66.8
140_t_03: 4088.848 44521 17999 59.5
140_t_04: 4268.575 17862 16383 8.2
140_t_05: 4028.631 34767 13438 61.3
140_t_06: >6000
140_t_07: >6000
140_t_08: >6000
SPHS_noY F

80_t_01: 3674.263 7400 7400 0
80_t_02: 616.5198 7052 7052 0
80_t_03: 1456.896 8082 8082 0
80_t_04: 534.9277 7773 7773 0
80_t_05: 258.8708 6161 6161 0
80_t_06: 757.6649 8178 8178 0
80_t_07: 826.4519 8493 8493 0
80_t_08: 1026.172 8094 8094 0
120_t_01: 6522.347 14021 14020 0
120_t_02: 3772.925 12875 12828 0
120_t_03: 5644.817 14612 14611 0
120_t_04: 3942.537 13579 13579 0
120_t_05: 1688.104 11112 11111 0
120_t_06: 3684.494 18249 14713 19.3
120_t_07: 3682.615 18939 15906 16
120_t_08: >6000
140_t_01: >6000
140_t_02: 3689.717 17453 15853 9.1
140_t_03: 3689.627 30102 18137 39.7
140_t_04: 1833.705 16719 16719 0
140_t_05: 1521.686 13593 13593 0
140_t_06: >6000
140_t_07: >6000
140_t_08: >6000
SPHS_MS

80_t_01: 8756.676 9347 347 3.7
80_t_02: 5794.424 8978 588 6.5
80_t_03: 3671.905 11199 1682 15
80_t_04: 3673.414 10126 1102 11
80_t_05: 7468.536 7703 406 5.2
80_t_06: 6743.682 10168 493 4.8
80_t_07: 5961.324 10494 277 2.6
80_t_08: 8989.888 10069 359 3.5
120_t_01: 5249.529 16785 546 3.2
120_t_02: 3683.105 19436 4550 23.4
120_t_03: 3685.52 23916 7139 29.8
120_t_04: 3689.848 22167 6779 30.5
120_t_05: 3689.086 18384 5690 30.9
120_t_06: 3686.364 21689 4677 21.5
120_t_07: 3684.27 25645 7318 28.5
120_t_08: >6000
140_t_01: >6000
140_t_02: 3691.504 26095 7966 30.5
140_t_03: 3688.18 34246 13694 39.9
140_t_04: 3695.138 24526 5617 22.9
140_t_05: 4729.969 25722 10314 40
140_t_06: >6000
140_t_07: >6000
140_t_08: >6000

Table 5.3: Computational Results of the three formulations on the 24 instances*
*whenever some of them are not present is because any solution was found in at least 6000 seconds
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# of patients average
solve time
[sec]

average
percentage
gap

max per-
centage
gap

# of in-
stances
without
a feasible
solution
within
6000 sec

# of in-
stances
solved to
optimality

average
CPU
time to
reach the
optimum

80 4247 0 0.2 0 6 5003
120 4542 35.2 53.4 1 0
140 4249 52.2 66.8 4 0

Table 5.4: SPHS: Computational results

# of patients average
solve time
[sec]

average
percentage
gap

max per-
centage
gap

# of in-
stances
without
a feasible
solution
within
6000 sec

# of in-
stances
solved to
optimality

average
CPU
time to
reach the
optimum

80 1144 0 0 0 8 1143.38
120 4134 11.9 19 1 1 3942
140 3604 12.2 39 4 2 3689

Table 5.5: SPHS_noY F : Computational results

# of patients average
solve time
[sec]

average
percentage
gap

max per-
centage
gap

# of in-
stances
without
a feasible
solution
within
6000 sec

# of in-
stances
solved to
optimality

80 6370 5.1 15 0 0
120 5542 25.1 31 1 0
140 4549 36.2 40 4 0

Table 5.6: SPHS_MS: Computational results
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The correlation between the number of patients and the effectiveness of the solution
becomes increasingly evident. As the patient count rises, the quality of the solution
obtained diminishes. Even with 80 patients, the solution achieved is close to optimal;
however, it demands a significant amount of time to reach that point. Moreover, whenever
the time horizon for scheduling is extended or the time slots are expanded, the number of
parameters escalates significantly, thereby exerting a substantial influence on the overall
computational time. The computational challenge of the problem intensifies as the number
of patients and parameters grow, making it increasingly challenging to find an efficient
solution within a reasonable time frame.

5.2.2. Analytical Results

Now let us analyze some of the most relevant results about the scheduling, including the
waiting times of patients, the number of patients scheduled after their due date, and the
time of delays.

Figure 5.1 represents the average of the mean and maximum total waiting time (days in
the schedule plus the number of days on the waiting list). The mean value of the total
waiting time is more or less the same for the 3 models, but we could not say the same
for the maximum. The third model has got a lower value. It means as one could expect,
looking at their objective functions, that since we do not prefer spokes, which are not al-
ways available, we could operate earlier, reducing some max delays. But the explanation
for the fact that for the mean waiting time, there is no evident difference between the
models, while in the max waiting time yes, is that only a few patients were "sacrificed"
by delaying their operation, in order to have a better overall schedule
Figure 5.2 shows the average number of patients scheduled before and respectively after
the due date ddp. Since in SPHS_MS (m3), there is no indication regarding the delays,
and we want to minimize the total makespan, patients are more embedded, looking es-
sentially at the feasibility more than the possible delay.
Then Figure 5.3 represents the average waiting time, in terms of the number of days pa-
tients on delay are scheduled after the due date, reflecting the same considerations done
above.
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id1 mean_wt max_wt on_time on_delay mean_delay max_delay
SPHS

80_t_01: 69.775 364 73 7 3.285667 7
80_t_02: 69.0375 373 77 3 4.999833 5
80_t_03: 69.6125 366 76 4 4.999875 5
80_t_04: 69.0625 373 76 4 4.999875 5
80_t_05: 68.0625 364 78 2 4.99975 5
80_t_06: 70.0375 378 74 6 4.666589 7
80_t_07: 70.6375 378 69 11 3.363606 7
80_t_08: 70.4 366 71 9 3.444406 7
120_t_01: 79.40833 380 85 35 4.057131 17
120_t_02: 81.29167 378 81 39 10.71792 26
120_t_03: 83.59167 378 60 60 11.48331 26
120_t_04: 78.29167 380 111 9 5.666604 7
120_t_05: 81.34167 371 79 41 11.85363 24
120_t_06: 82.55 380 66 54 10.25924 27
120_t_07: 83.28333 369 58 62 10.64514 27
120_t_08:
140_t_01:
140_t_02: 90.1 376 50 90 12.63332 30
140_t_03: 90.25714 376 55 85 13.05881 31
140_t_04: 83.80714 380 116 24 5.958309 17
140_t_05: 87.27857 376 83 57 12.91226 31
140_t_06:
140_t_07:
140_t_08:
SPHS_noY F

80_t_01: 69.8 364 73 7 3.285667 7
80_t_02: 69.0375 371 77 3 4.999833 5
80_t_03: 69.6125 366 76 4 4.999875 5
80_t_04: 69.0625 371 76 4 4.999875 5
80_t_05: 68.275 364 77 3 4.999833 5
80_t_06: 69.7625 371 76 4 4.999875 5
80_t_07: 70.6 378 69 11 3.363606 7
80_t_08: 70.375 366 71 9 3.444406 7
120_t_01: 78.9 371 88 32 3.656239 8
120_t_02: 78.09167 378 103 17 3.235275 7
120_t_03: 78.84167 378 94 26 2.730759 7
120_t_04: 78.275 378 111 9 5.444384 7
120_t_05: 76.49167 373 116 4 4.999875 5
120_t_06: 80.89167 380 79 41 6.682911 26
120_t_07: 81.375 378 73 47 6.212753 22
120_t_08:
140_t_01:
140_t_02: 83.63571 380 102 38 4.052621 24
140_t_03: 87.15 380 73 67 8.895509 27
140_t_04: 83.18571 380 116 24 2.333324 5
140_t_05: 81.80714 375 136 4 4.999875 5
140_t_06:
140_t_07:
140_t_08:
SPHS_MS

80_t_01: 68.85 364 74 6 1.999967 3
80_t_02: 68.1 366 79 1 4.9995 5
80_t_03: 69.3375 366 73 7 5.285639 7
80_t_04: 68.6 366 77 3 3.999867 6
80_t_05: 66.6125 357 80 0 0 0
80_t_06: 68.925 364 77 3 1.333289 2
80_t_07: 69.375 364 72 8 2.124973 4
80_t_08: 69.325 357 73 7 2.428537 5
120_t_01: 78.4 373 87 33 3.757564 10
120_t_02: 82.59167 372 88 32 5.499983 22
120_t_03: 80.68333 364 75 45 7.088873 20
120_t_04: 79.96667 371 84 36 7.527757 24
120_t_05: 78.075 371 96 24 7.708301 22
120_t_06: 80.53333 373 73 47 6.319135 17
120_t_07: 81.68333 371 66 54 8.42591 27
120_t_08:
140_t_01:
140_t_02: 85.08571 377 93 47 7.978706 27
140_t_03: 87.26429 370 73 67 9.283568 31
140_t_04: 84.90714 371 99 41 8.390223 21
140_t_05: 84.07857 368 102 38 9.289449 27
140_t_06:
140_t_07:
140_t_08:

Table 5.7: Analytical Results of the three formulations on the 24 instances*
*whenever some of them are not present is because any solution was found in at least 6000 seconds
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# of pa-
tients

average
waiting
time
(day)

average
max w.t.
(days)

average
# of pa-
tients on
time

average
# of pa-
tients on
delay

average
delay
(days)

average
max
delay

80 69.58 370 74.25 5.75 4.34 6
120 81.57 375 75.12 44.87 9.39 22.5
140 88.93 377 67.37 72.62 11.91 28.5

Table 5.8: SPHS: Results about analysis

# of pa-
tients

average
waiting
time
(day)

average
max w.t.
(days)

average
# of pa-
tients on
time

average
# of pa-
tients on
delay

average
delay
(days)

average
max
delay

80 61.12 368 74.37 5.63 4.35 5.75
120 78.85 377 94.86 25.14 5.01 11.71
140 83.7 378 106.75 33.25 11.91 15.25

Table 5.9: SPHS_noY F : Results about analysis

# of pa-
tients

average
waiting
time
(day)

average
max w.t.
(days)

average
# of pa-
tients on
time

average
# of pa-
tients on
delay

average
delay
(days)

average
max
delay

80 68.64 363 75.63 4.37 2.77 4
120 80.28 371 81.29 38.71 6.62 20.3
140 85.33 371.5 91.75 48.25 8.74 26.5

Table 5.10: SPHS_MS: Results about analysis
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Figure 5.1: Bar plot waiting time

Figure 5.2: Bar plot operation before due date
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Figure 5.3: Bar plot delay

Figure 5.4: Objective function’s (2.16) weights

Finally, Figure 5.4 represents the operation days and the delays weighted with urgency.
It is actually the first and the second part of the weighted sum of the objective function
(2.16) of SPHS and SPHS_noY F models. From this last image, we can notice two key
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points.
The first one is that, by comparing SPHS (m1) and SPHS_noY F (m2) we hardly see
an improvement of the second model, which does not have the constraints of respecting
the interventions order on a working day. So this problem despite does not have these
extra constraints, and has a bigger feasible region to find a better schedule, does not seem
to reach a significant improvement, except for the closureday, but which is not actually
a goal for the first two problems.
The second noteworthy observation is between the first two models and the third SPHS_MS

(m3). In fact, we can notice that operating all patients to finish them as soon as possible
does not mean operating them well. Despite in the SPHS_MS model we actually have
fewer days in the total scheduling, what gives a higher weight in the objective function is
the day of the operation multiplied by the urgency up, making the objective function

5.3. Results for Variants

From now on, to show the behavior of the different formulations, we run and report
only the result of the instance 140_t_01, which counts 140 patients, as a representative
instance.
For every run, a time limit of 1000 seconds has been set, and a memory limit of 512 MB.

5.3.1. Bin Packing Enrichment

In Tables 5.11-5.16 are presented the computational and analytical results of the run
model.

SPHS:

MODEL OBJ FUN NOTES SOLVE TIME RELMIPGAP[%] CLOSURE DAY
SPHS objfun2 run out of mem 660 NO FOUND NO FOUND
SPHS_BP objfunBinPacking 1007 92 32

Table 5.11: BP Variations of SPHS - Computational results

MODEL OBJ FUN mean_wt max_wt delays/|P | mean_dlt max_dlt
SPHS objfun2 NO FOUND NO FOUND NO FOUND NO FOUND NO FOUND
SPHS_BP objfunBinPacking 91.97 379 0.3 4.38 30

Table 5.12: BP Variations of SPHS - Analysis results

SPHS_noY F :
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MODEL OBJ FUN SOLVE TIME RELMIPGAP[%] CLOSURE DAY
SPHS_noY F objfun2 891 0.41 31
SPHS_noY F_BP objfunBinPacking 654 0 31

Table 5.13: BP Variations of SPHS_noY F - Computational results

MODEL OBJ FUN mean_wt max_wt delays/|P | mean_dlt max_dlt
SPHS_noY F objfun2 83.71 377 0.29 4.51 10
SPHS_noY F_BP objfunBinPacking 84.22 377 0.31 4.40 11

Table 5.14: BP Variations of SPHS_noY F - Analysis results

SPHS_MS:

MODEL OBJ FUN SOLVE TIME RELMIPGAP[%] CLOSURE DAY
SPHS_MS objfun3 NO FOUND NO FOUND
SPHS_MS_BP objfunBinPacking 526 NO FOUND NO FOUND
SPHS_MS_BP_of_dxnbin objfunBinPacking2 676 78 32
SPHS_MS_BP_of_d2xnbin objfunBinPacking2(d^2) 743 77 29
SPHS_MS_BP_of_d5xnbin objfunBinPacking2(d^5) 694 NO FOUND NO FOUND
SPHS_MS_BP_of_2dxnbin objfunBinPacking2 (2^d) 1003 99.9 31
SPHS_MS_of_clday objfunclday 644 NO FOUND NO FOUND
SPHS_MS_BP_of_dxnbin objfunBinPacking2 NO FOUND NO FOUND

Table 5.15: BP Variations of SPHS_MS - Computational results

MODEL OBJ FUN meanwt max_wt delays/|P | mean_dlt max_dlt
SPHS_MS objfun3 NO FOUND NO FOUND NO FOUND NO FOUND NO FOUND
SPHS_MS_BP objfunBinPacking NO FOUND NO FOUND NO FOUND NO FOUND NO FOUND
SPHS_MS_BP_of_dxnbin objfunBinPacking2 86.17 361 0.45 11.50 30
SPHS_MS_BP_of_d2xnbin objfunBinPacking2(d^2) 85.15 363 0.53 7.67 24
SPHS_MS_BP_of_d5xnbin objfunBinPacking2(d^5) NO FOUND NO FOUND NO FOUND NO FOUND NO FOUND
SPHS_MS_BP_of_2dxnbin objfunBinPacking2 (2^d) 85.15 367 0.50 7.90 21
SPHS_MS_of_clday objfunclday NO FOUND NO FOUND NO FOUND NO FOUND NO FOUND
SPHS_MS_BP_of_dxnbin objfunBinPacking2 NO FOUND NO FOUND NO FOUND NO FOUND NO FOUND

Table 5.16: BP Variations of SPHS_MS - Analysis results

Differences with a Bin-Packing formulation

Upon proposing this formulation, we initially lacked knowledge of the magnitude of its
impact. However, through meticulous analysis, it becomes evident that in the case of both
SPHS and SPHS_noY F , in terms of velocity, this formulation brings improvements.
First of all in some cases, like SPHS, SPHS_MS and many of its variants.
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If we want to compare analytical differences, keeping in mind they are different problems,
improvements in terms of solution quality are negligible and sometimes nonexistent.

Similar observations can be made regarding the third model, SPHS_MS, and its respec-
tive variations. However, it is important to delve further into this matter. The sensitivity
of the solution found is heavily influenced by the presence or absence of variables as-
sociated with doctors, depending on the chosen objective function. Their inclusion or
exclusion can significantly impact the final solution’s quality.

It has been made different variations of this last formulation since a Bin Packing approach
was better suited for a problem whose aim is to minimize the make-span. As we discussed
in previous chapters, minimizing the total number of days used to complete all the surgical
cases, and using as few operating theatres as possible to reach the same goal, are two sides
of the same coin, so we decided to explore extensively this approach for this model.

5.3.2. Relaxed Formulations

Keeping in mind that model SPHS_noY F is for all intents and purposes a relaxation
of SPHS, in this Subsection we analyze differences of the relaxation of the models given
by removing the surgeons from the formulations.

In Tables 5.17-5.22 are presented the computational and analytical results of the run
model.

SPHS:

MODEL OBJ FUN NOTES SOLVE TIME RELMIPGAP[%] CLOSURE DAY
SPHS objfun2 run out of mem 660 NO FOUND NO FOUND
SPHSnodoc objfun2 814 3.8 31
SPHSnodoc_BP objfunBinPacking 506 0.2 24
SPHS_BP objfunBinPacking 1007 92 32
SPHSnodoc_BP_of_BP12 objfunBinPacking_m12 501 1.3 31

Table 5.17: _nodoc Variations of SPHS - Computational results

MODEL OBJ FUN mean_wt max_wt delays/|P | mean_dlt max_dlt
SPHS objfun2 NO FOUND NO FOUND NO FOUND NO FOUND NO FOUND
SPHSnodoc objfun2 83.93 377 0.3 4.57 10
SPHSnodoc_BP objfunBinPacking 82.92 370 0.28 4.57 11
SPHS_BP objfunBinPacking 91.97 379 0.3 4.38 30
SPHSnodoc_BP_of_BP12 objfunBinPacking_m12 83.77 377 0.30 4.34 10

Table 5.18: _nodoc Variations of SPHS - Analysis results
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SPHS_noY F :

MODEL OBJ FUN SOLVE TIME RELMIPGAP[%] CLOSURE DAY
SPHS_noY F objfun2 2057.91 0.4 31
SPHS_noY Fnodoc objfun2 65 optimal 31
SPHS_noY Fnodoc_BP objfunBinPacking 52 optimal 24
SPHS_noY F_BP objfunBinPacking 1827.02 4.2 24
SPHS_noY Fnodoc_BP_of_BP12 objfunBinPacking_m12 56 optimal 31

Table 5.19: _nodoc Variations of SPHS_noY F - Computational results

MODEL OBJ FUN mean_wt max_wt delays/|P | mean_dlt max_dlt
SPHS_noY F objfun2 83.71 377 0.29 4.46 10
SPHS_noY Fnodoc objfun2 83.62 377 0.29 4.46 10
SPHS_noY Fnodoc_BP objfunBinPacking 82.95 370 0.28 4.34 11
SPHS_noY F_BP objfunBinPacking 82.95 370 0.28 4.34 11
SPHS_noY Fnodoc_BP_of_BP12 objfunBinPacking_m12 83.62 377 0.29 4.46 10

Table 5.20: _nodoc Variations of SPHS_noY F - Analysis results

SPHS_MS:

MODEL OBJ FUN SOLVE TIME RELMIPGAP[%] CLOSURE DAY
SPHS_MS_BP_nodoc objfun3 1077 3.3 22
SPHS_MS_nodoc objfun3 1068 2.3 22
SPHS_MS_BP objfunBinPacking 526 NO FOUND NO FOUND
SPHS_MS objfun3 NO FOUND NO FOUND
SPHS_MSnodoc_of_of3 objfun3 1133 2.3 22
SPHS_MSnodoc_of_clday objfunclday 26 optimal 21
SPHS_MS_BP_of_dxnbin objfunBinPacking2 676 78 32
SPHS_MSnodoc_BP_of_d2xnbin objfunBinPacking2(d^2) 39 optimal 21
SPHS_MS_BP_of_d2xnbin objfunBinPacking2(d^2) 743 77 29
SPHS_MSnodoc_BP_of_d2xnbin objfunBinPacking2(d^5) 29 optimal 21
SPHS_MS_BP_of_d5xnbin objfunBinPacking2(d^5) 694 NO FOUND NO FOUND
SPHS_MSnodoc_BP_of_2dxnbin objfunBinPacking2 (2^d) 10 optimal 21
SPHS_MS_BP_of_2dxnbin objfunBinPacking2 (2^d) 1003 99.9 31
SPHS_MS_of_clday objfunclday 644 NO FOUND NO FOUND
SPHS_MS_BP_of_dxnbin objfunBinPacking2 NO FOUND NO FOUND

Table 5.21: _nodoc Variations of SPHS_MS - Computational results
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MODEL OBJ FUN meanwt max_wt delays/|P | mean_dlt max_dlt
SPHS_MS_BP_nodoc objfun3 84.07 369 0.29 4.36 10
SPHS_MS_nodoc objfun3 83.09 368 0.29 4.36 9
SPHS_MS_BP objfunBinPacking NO FOUND NO FOUND NO FOUND NO FOUND NO FOUND
SPHS_MS objfun3 NO FOUND NO FOUND NO FOUND NO FOUND NO FOUND
SPHS_MSnodoc_of_of3 objfun3 83.09 368 0.29 4.36 9
SPHS_MSnodoc_of_clday objfunclday 84.35 368 0.47 6.81 20
SPHS_MS_BP_of_dxnbin objfunBinPacking2 86.17 361 0.45 11.50 30
SPHS_MSnodoc_BP_of_d2xnbin objfunBinPacking2(d^2) 84.27 364 0.492857 6.72 16
SPHS_MS_BP_of_d2xnbin objfunBinPacking2(d^2) 85.15 363 0.53 7.67999 24
SPHS_MSnodoc_BP_of_d2xnbin objfunBinPacking2(d^5) 84.14 368 0.49 5.99 16
SPHS_MS_BP_of_d5xnbin objfunBinPacking2(d^5) NO FOUND NO FOUND NO FOUND NO FOUND NO FOUND
SPHS_MSnodoc_BP_of_2dxnbin objfunBinPacking2 (2^d) 84.25 365 0.49 6.56 17
SPHS_MS_BP_of_2dxnbin objfunBinPacking2 (2^d) 85.15 367 0.50 7.90 21
SPHS_MS_of_clday objfunclday NO FOUND NO FOUND NO FOUND NO FOUND NO FOUND
SPHS_MS_BP_of_dxnbin objfunBinPacking2 NO FOUND NO FOUND NO FOUND NO FOUND NO FOUND

Table 5.22: _nodoc Variations of SPHS_MS - Analysis results

Differences with _nodoc relaxation

The main observation to be noted concerns the substantial enhancement achieved in this
relaxation. This improvement becomes apparent through the removal of variables and
constraints associated with surgeons, leading to advancements across various aspects.

Regarding the optimality of the solution, we observe a noteworthy improvement in the
relmipgap, particularly in certain formulations such as the SPHS_MS and its variations,
where the enhancement surpasses 99 percentile points, illustrating a significant upgrade.

In terms of quality, several analytical elements put forth demonstrate a decrease in the
mean and maximum waiting time, mean and maximum delay, and other relevant metrics,
thereby indicating an overall improvement in quality.

Furthermore, when considering the computational time aspect, there have been enhance-
ments in this area as well. In some formulations, like SPHS_MSnodoc_of_clday or
SPHS_MSnodoc_BP_of_2dxnbin, the optimal solution is reached in just a few sec-
onds.

The explanation for this behavior can be elucidated by considering two key factors. The
first one, as previously mentioned, revolves around the reduction in the number of param-
eters. This reduction undoubtedly contributes to the observed improvements. However,
it is important to note that this factor alone does not entirely account for the substantial
disparities witnessed in terms of computational time and solution quality.

The second crucial facet that deserves consideration is the absence of any explicit indica-
tion or incorporation of the surgeons’ presence in the objective functions proposed thus
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far. By omitting any guidance or specific directions for enhancing the allocation of doc-
tors, it can be surmised that the solver, which employs a Branch and Bound technique in
its computational method, is confronted with a more extensive and intricate search space.

In essence, the absence of explicit guidance regarding the optimization of surgeons’ allo-
cation, combined with the solver’s reliance on the Branch and Bound technique, results
in a significantly larger number of nodes that need to be explored. Consequently, this can
substantially contribute to the observed disparities in both computational time and the
quality of the obtained solutions.

Analysis on different Objective Functions

From the previous results and Tables, having an overview of the different formulations,
some considerations regarding the differences between various objective functions can be
now done.
Before giving a deep analysis of the results, let us recap all the differences between the
various obj. functions, presented in Table 3.3.

We set, as parameters γ equal to 100 and β equal to 500.

Each distinct objective function introduces specific enhancements based on the individ-
ual requirements it aims to address. Consequently, our attention is primarily directed
towards two key aspects: the relmipgap and the computational time. These metrics pro-
vide us with a comprehensive overview of the model’s behavior, allowing us to gauge its
performance more broadly, rather than solely relying on its overall outcomes.

The relmipgap serves as an essential measure of the optimality of the solution obtained.
By examining this metric, we can assess the model’s ability to approximate the optimal
solution, thereby providing valuable insights into its effectiveness and efficiency.

Simultaneously, the computational time offers crucial insights into the computational ef-
ficiency of the model. This metric reflects the duration required by the solver to explore
the search space, evaluate potential solutions, and ultimately converge on an optimized
schedule. By monitoring the computational time, we can evaluate the model’s computa-
tional performance, allowing us to make informed decisions regarding its feasibility and
practicality.

By focusing on these specific metrics, we gain a comprehensive understanding of the
model’s behavior and suggestions on the convergence speed, enabling us to assess its
efficacy in addressing the stated objectives and fulfilling the desired requirements.
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objfunBinPacking seems to give an important sprint for the optimal solution. Given a
high value of β parameter, the solver first decided which is the minimum number of OTs
required to accommodate all the surgical cases and then tries to optimize the order of the
scheduling, by prioritizing the more urgent patients.

For what concerns the models aimed to find the minimum make-span, it has been proposed
two different ways to reach this goal. The first was simply to minimize the closure_day,
(objfunclday). The second approach was to minimize the number of OTs used. Since
itself alone does not give any indications on the completion day, the opening of the bin, i.e.
the variable yBPod, is multiplied by its day. So objective function as objfunBinPacking2,
objfunBinPacking2∗, and objfunBinPacking2 were added. We also wanted to see if,
instead of multiplying yBPod by its day, we could have possible improvements by using a
function of the index d.
We tested essentially three different functions: two polynomials of order 2 and order 5,
and an exponential function. We spot controversial results. If we consider formulations
with the presence of doctors, the more we increase the growth of the function, the worse
is the solution found within a certain time limit, whenever it is got. While the discussion
and the results are quite the opposite if instead, we do not consider also the surgeons’
schedule. We, in fact, obtain, at an increasing growth of the function adopted, a decreasing
compiling time, to reach the optimum.

5.4. Heuristic and Matheuristic Methods

Now we check the goodness of the heuristic approaches by comparing them with the
optimal solutions of the problems, by letting them run, someone even for several hours.

5.4.1. Greedy

For 3 instances with respectively 80, 120, and 140 patients, it has been run a greedy
algorithm. The numerical values of the solution with this approach were found in just a
few seconds and they are reported in Table 5.23.
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# of pa-
tients

waiting
time
(day)

max
w.t.
(days)

# of
patients
on delay

delay
(days)

max de-
lay

objective
function
2.20

closure
day

80 69.94 364 4 3.25 8 9971 13
120 79.15 368 32 6.62 12 17867 19
140 89.86 369.5 47 8.08 16 19777 23

Table 5.23: Results about greedy

# of pa-
tients

waiting
time
(day)

max
w.t.
(days)

# of
patients
on delay

delay
(days)

max de-
lay

objective
function
2.20

closure
day

80 68.05 360 8 1.99 3 8973 12
120 78.15 364 46 3.62 10 16113 18
140 87.86 368.5 67 4.08 15 18749 21

Table 5.24: Results about the optimal solutions of SPHS_MS

We could compare it with the optimal solution of SPHS_MS model, presented in Table
5.24.
But, we would look at some considerations about its effects rather than numerical values.
The outcomes, as we could have imagined, are not so good, in terms of a wide allocation
of patients. However, in a few seconds, we have a feasible solution. So one could think
of starting the analytical resolution method from this greedy solution. From this initial
point, the solver can only improve the objective function, and in some formulations, a
good starting point could be very decisive for the convergence to the optimum.

Regardless, the schedule found by the greedy algorithm, with that specific ordering, is
not so appropriate as a starting point for the resolution. Actually, the relevant pieces
of information are given by the number of days used to complete the waiting list, as
in the SPHS_MS goal, or the number, and the kind, of OTs used to allocate all the
surgical cases, for the first two formulations SPHS and SPHS_noY F , where is given
big importance to spokes’ OTs utilization.
This kind of information which has been found in a greedy manner can be used as a
starting point, or even as constraints to respect. In this latter way, we can cut a significant
space in the feasible region, reducing the number of nodes to explore. On the other hand,
giving so much strength to only one aspect of the objective function 2.16 for SPHS



74 5| Results

and SPHS_noY F , we could eliminate some solutions that for example allocate patients
on more OTs but reduces the overall delay for most urgent cases, making the value of
the objfun lower than all the possible schedules that must satisfy the constraints of the
number of ORs used.

5.4.2. Force the solution of SPHS_noY F with the YF constraints

Comparing Table 5.4 with Table 5.5, and Table 5.8 with Table 5.9, it is evident that the
restriction of the day ordering compromises not only the quality of the solution, as we
could have imagined since we have a wider feasible area, but also on the computational
results.
This latter result is the opposite of our expectations. In fact, by removing constraints,
the feasible region would be expanded, which means the search space may become larger,
making it more challenging and time-consuming to find an optimal solution. But for
roughly the same amount of time, the relmipgap is always better for SPHS_noY F than
SPHS, despite the potentially bigger number of nodes to explore.

A possible explanation for this phenomenon could be the fact that in SPHS_noY F sur-
gical operations are more interchangeable, and the solver could have a faster convergence
speed.

However, we would like to take advantage of these improvements with this relaxation,
understanding the impact on the quality of the solution. As we discussed in Section 4.4
this is not a fundamental constraint, but by guaranteeing it, the clinic assures benefits and
welfare to the patients, especially to the younger babies, reducing the risks of occurring
in delays, and leaving them in an uncomfortable environment.
So the possible questions are: what if the hospital does not respect this constraint? Do
the solution’s improvements bring significant medical benefits, paying them with patients’
inconveniences?

Now suppose that the clinic does not want to lose prestige, or strongly wants to respect
this order set by the patient’s age. How does it cost, to maintain the solution found by
SPHS_noY F , which is better than the one found by SPHS.
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SAME DAY EARLIER THAN MODEL1 AFTER THAN MODEL 1
COUNT OPERATING DAY 61 43 36
MEAN OPERATING DAY 0 -3.09 3.02
WEIGTHED MEAN OP. DAY WITH up 0 -18.46 19.5
COUNT DELAY 101 21 18
MEAN DELAY 0 -18.46 19.5
WEIGTHED MEAN DELAY WITH up 0 -20 20.66

Table 5.25: Differences of the results of SPHS_noY F with youngerfirst constraints
added after and the ones of SPHS

To compare the eventual advantages we have run SPHS_noY F and SPHS_noY F for
1000 seconds each. For SPHS_noY F we saved the solution, add the constraints that
impose the operation day and the hospital for each patient, namely save variables zyphd,
and then run SPHS with these new variables restriction, with a larger set of |T |.
Then to compare the results of the two models, we simply compute the difference of values
of the SPHS_noY F with the addition of youngerfirst constraints, with the original
SPHS, and some notable values have been reported in Table 5.25. Whenever we find
positive values of the averages, it means that the values from the result of SPHS_noY F

with the youngerfirst constraints are bigger than the ones of SPHS results. As we can
notice there are no relevant improvements in terms quality of the solution, especially if
we have a high cost to pay. In fact, we have a total of 21 OTs where OTs go on overtime,
for a total of 54 hours accumulated as extra time.

5.4.3. Decomposing

Looking at the results in Table 5.7, and in all the Tables 5.4-5.10, the number of surgi-
cal cases of the instance strongly influences the quality of the solution. So in the same
way we have observed significant improvements by reducing the number of variables re-
lated to doctors, we could imagine, and prove by the obtained outcomes, that we have
improvements by reducing the number of patients, and their related variables.

To look at some examples, the improvement given by a smaller dataset is much more
evident in the first model.
In Table 5.4 we can see that with more or less the same computational time, the relmipgap
decreases from a value of 0.5226 when 140 patients are considered, to 0.3518 if they are
120, reaching a value of 0.0003 with 80 patients, which means that many of the solutions
found with those instances were optimal, or very close to the optimum.

We used this approach essentially for SPHS_MS, since it was a more suitable approach.
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But we found very bad results. We put as a time limit half of the previous time limit, in
order to have generally the same computational time as the previous simulations and to
be able to compare adequately the results.

We obtained very bad results, most of them unfeasible. Actually, the compiler, in that
amount of time (500 seconds), allocates the first slot of patients in, let us say, the first d1
days. Then the other partition cannot be scheduled in a time horizon of |D| − d1 days
because maybe they are too few.

So, for this reason, we decided to give a sprint to the search for the solution, by reducing
the number of available days, since it is not needed to explore all the nodes, causing a
long search, a slow convergence, and an insufficient solution.

Decomposition reducing the time horizon for each partition

We decided to give manually some improvements to show how the reduction of the number
of days in the time horizon could bring some advantages. We set the value of the time
horizon of Part 1 equal to 16 and the time horizon of Part 2 from the day after the closure
day found in Part 1 to 32 we set a time limit of 500 seconds for each part.

In Table 5.26 we can see that there is an improvement, but not so evident, especially for
the second part the gain is less evident.

PART closure_day percentage gap
1 11 5.6
2 11+15 30

Table 5.26: SPHS_MS: Meta-heuristic results with Decomposition with a starting
feasible cl_day

Taking into account that the number of days used for Part 1 strictly depends on the
instance considered we would like to find an automatic method to choose this number
from the instance in case. For this reason, we decided to add a previous step, Part 0, in
order to obtain an idea of the minimum number of days required. In Part 0 in fact we
run the model with half number of cases just for a few minutes, in order to obtain the
value of closure_day to use in the next step.
In Part 1 we set the time horizon from 1 to the value of closure_day found in the previous
step and then run the model with the first half of patients.
Sequentially in Part 2 we set the time horizon from the day after the closure_day found
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in Part 1 to the value of the original |T | and run the model with the remaining patients,
same as before.

First of all, we have to keep attention that this method could give some improvements to
the next two steps, but it is not certain.

In fact, the minimum time required to find a value of cl_day, that could bring real im-
provements, is more than 900 seconds, which is a time very close to the total computational
time we want to stay inside, and this proves the ineffectiveness of this method. Actually,
giving the information to the solver to keep in memory the obtained best solution found
so far, part 1 is only the continuation of part 0.

The inefficiency of these last 2 approaches is also given by the fact that we do not consider
all the clinical cases all at once but are divided into two partitions and so have a lower
overview of the scheduling process.

Let us assume this example: consider 20 patients. The first 10 ones have everybody τp

of 7 hours and the second 10 patients have τp equal to 2 hours. If we do this schedule in
sequence, considering only 1 OT per day, we obtain as optimal solutions, closure_day of
10 for Part 1 and a closure_day of 3 for Part 2, completing all the surgical cases in 13
days.
But if we have considered all the 20 patients all at once we would have a completion date
of 10 instead of 13.

So we could assume not think this blocks division of the time horizon, but formulating
this approach in this way: first, run the model with the first partition of cases, fix them,
and run the second partition attaching the results to the ones found in the previous
step. We could use it also with a bin packing approach, in order to use OTs already
open, maximizing their utilization. But in this case, we have to pay attention to some
constraints that in the second step could be never satisfied, or satisfying, the quality of
the solution is very poor. Just think for example the constraints regarding the ordering
of the patients, in an increasing order. Or even at the constraints of the compatibility
between patient and hospital, there could be the risk that a patient that can go only to a
specific facility, could find it always already full, and cannot be allocated anywhere else.

To sum up, this method does not give improvements in terms of speed of convergence,
and quality of solution.
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5.4.4. Surgeons added in a second step

Looking at the relevant improvements by removing the surgeons’ variables and constraints
it has been decided to continue in this direction.

We widely explain why the solution presented with this relaxation cannot be the answer
to the entire problem as it stands, since it is not complete. So we decided to find, in a
second step, the associations of the doctors with the OTs and with the patients.

This second step was referable to solving a facility location problem. model_SA has
constraints and variables removed from SPHS to obtain the formulation without surgeons
SPHS_nodoc. The objective function now is 4.1, which aims to minimize the number
of allocated doctors in the planning horizon. As Table 5.27 reports, we obtain excellent
results, finding the optimal solution to this second problem in just a few seconds.

MODEL OBJECTIVE FUNCTION O.F. VALUE RELMIPGAP[%] COMPUTATIONAL TIME
SPHS_nodoc objfun2[2.16] 18764 0.9 1000
model_SA objfun_mindoc [4.1] 56 0 3

SPHS objfun2[2.16] 18596 0 >6000

Table 5.27: Computational results of the two sequential problems and of the optimal

This seems so far the best model that reaches all the requirements and goals, given by
the clinic.

5.4.5. Analysis

Since this formulation seemed to be the best formulation among the analyzed ones, with
this specific instance, it has been decided to conduct further analysis on the found sched-
ule, obtained by running firstly SPHS_nodoc, followed by the run model_SA model, for
the surgeon association.

Given the nature of our specific challenge, we made a deliberate decision to exclude the
Bin-Packing approach from our future considerations. This decision was made consider-
ing the trade-off between complexity and the potential benefits derived from its inclusion.
Upon analysis, it became apparent that incorporating this approach would introduce a
higher level of complexity to the model, involving an increase in the number of vari-
ables and constraints. However, the resulting improvements were deemed not sufficiently
substantial to warrant its inclusion.

But first, we change some parameters to have a more realistic setting. With respect to
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some parameter values. For example, the number of working hours per day has been
changed, and for the following analysis, it assumes the value of 7 hours.

Secondly, the working hours’ range has been partitioned in a thicker way, making con-
sidering the duration of each time slot 30 minutes, i.e. slots_per_hour = 2. With this
modification, the set of T will change, assuming |T | = 7 · 2 + 1 = 15. For this reason,
we also adjusted the values of τp, given by the clinic in minutes, and PACUp adequately,
according to our formulation.

Before showing the schedule proposed by the result of this formulation, let us have a
general overview of the dataset.

It is composed of 140 patients, each of which has one of the five urgency factors: 45 (most
urgent), 12, 6, 2, 1 (less urgent).
Figure 5.5 actually represents how many patients have a specific urgency coefficient up,
showing practically their distribution.
While Figure 5.6 reports which is the average value of the operation time τp for each
urgency class.

Figure 5.5: Histogram of the frequencies for each urgency factor
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Figure 5.6: Average value of τ for each urgency factor

Schedule analysis

We have run the first model, SPHSnodoc, which is the most complete one, and after 1000
seconds the solver found a solution whose relmipgap is equal to 0.0092, so less than 1%,
which can be considered a satisfactory solution, very close to the optimum. Subsequently,
we run model_SA, where the solver found the optimal schedule for the surgeons, on the
basis of the patient’s timetable in less than 2 seconds.

Figure 5.7 and Figure 5.8 give an overview of the different allocations of the patients.
It can be seen that, generally, in the schedule, it’s preferred to operate on more patients
at the begging of the time horizon to have more patients with a small operation day, and
so to make it possible, patients with a smaller operating time τp should be operated in
the first days.
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Figure 5.7: Number of patients allocated for each day, and for different kinds of hospital

Figure 5.8: Pie diagram of patients allocation for kind of hospitals
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Under time

An important KPI we mentioned, is the usage of capable resources, such as operating
rooms. It could be useful to know how many hours the facility uses whenever it is open
to use it. Figure 5.9 and Figure 5.10 of how many hours are used, and respectively the
percentage of under-utilization, for each open bin, where we recall that the bin is com-
posed by the OT used and the day.

Figure 5.9: Barplot of OT usage for each couple OT-day
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Figure 5.10: Barplot of OT undertime for each couple OT-day

To give a better overview of the previous images, Figure 5.11 shows how many used OT
on different days have a specific number of undertime slots.
It is important to notice that for the kind of problem, and for the formulation we used, any
patient can be allocated in the last available time slot in any operating theatre. That’s
because every patient has at minimum 1 slot of PACU time, so operations (surgical
intervention and PACU) can not start at the last open slot. So actually 1 undertime slot
is the best OT utilization we can have.
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Figure 5.11: Histogram of the number of bins with specific time slots of undertime

Total number of waiting days

Figure 5.12 and 5.13 show the mean waiting time respectively before and after the sched-
ule. It is not surprising that more or less the quantity of additional waiting days corre-
lates directly with the duration of time a patient has been on the waiting list. In general,
medical clinics tend to prioritize the assessment of a patient’s urgency coefficient in de-
termining scheduling, rather than solely considering the number of days they have been
on the waiting list, which is inevitably related to the patient’s urgency.
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Figure 5.12: Histogram of average waiting days on waiting list

Figure 5.13: Histogram of average total waiting days
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Adding extra working time slots

To follow this idea we wanted actually understand how an addition of extra working hours
to the defined one could improve the quality of the solutions in terms of patient’s and
clinic’s benefits.

The solution proposed above was basically cost-demanding since the hospital would have
added 54 hours of medical staff, to the original amount of working hours. So a more
realistic decision the medical center could adopt is to add an amount of extra time just
once a week, to only one between the available hospitals.

So it has been decided to add a parameter extra which indicates the amount of time (in
terms of time slots) the hospital could give in addition to the planned hours.
It must be added a new binary variable ehd which assumes value 1 if these extra time slots
are used in hospital h on day d, 0 otherwise. Remember the addition of working hours
to hub facilities leads to a doubling of the availability of operating theatres, since, in our
case, each hub has two OTs.

This extra time could be used only once a week, in the preferred facility, which possibly, by
increasing the number of working days on a specific day in a selected hospital, allows the
medical network to require fewer numbers of OTs necessary to complete all the operations.
For this reason, it has been added these constraints (5.1) that guarantee the usage of these
extra slots at least once a week:

∑
h∈H

(exhd1 + exhd2) ≤ 1 ∀d1 ∈ D, d2 ∈ D s.t. d2 > d1 and ⌊d1
7
⌋ = ⌊d2

7
⌋ (5.1)

and update the time capacity, so allow the possibility to have operations that can end
before the new working hour, the ordinary ones plus those added, by replacing constraints
(2.13) with new ones (5.2):

(t+ τp + PACUp) · ypodt ≤ (|T | − 1 + ehd · extra) · ahd
∀p ∈ P, ∀h ∈ Hr,∀o ∈ OHh,∀d ∈ D, ∀t ∈ T

(5.2)

With our parameters and set, in the defined time horizon there are 5 different weeks.

We let the objective function unchanged. However, it could be added to the objective
function of the formulation a factor that gives a cost to the usage of this extra time, in
order to use it only if it really brings improvements to the entire schedule.
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Therefore, we would like to analyze the eventual benefits of the scheduling, by letting the
extra equal to 1,2 or more reaching 6 time slots, namely 3 hours.
Since it was difficult to analyze the benefits by comparing all the different cases, it has
been decided to evaluate, as a Performance Measure, the ratio between the total number of
hours where OT is used and the total available hours of OT. It is considered as available
hours, all the time that an OR is open on a specific day, namely at least a patient is
allocated there on that day.

It has been run the same model, with the addition of variable ehd and constraints by
changing the value of extra, from 0 to 6 time slots. Every run lasted around 1000 seconds
The results presented in Figure 5.14, which represent the ratio between used hours and
total open hours show that not always having more working hours per week decreases
the number of OTs to open. Actually only if there is a reorganization of the schedule,
by compacting the surgical operation, there could be used less Operating Rooms, and
consequently, to have a lower amount of total available hours.
There is also another explanation for this "zig-zag" behavior. Since we set a time limit
for each run of 1000 seconds, we did not obtain optimal solutions, but some very close
to the optimum, with relmipgaps that go from 0.0092 (with extra = 0) to 0.0213 (with
extra = 6). We have a relation between the increase of extra hours with the increase of
the relmipgap of the run, since increasing the number of extra parameters we actually
admit new feasible solutions, and so there are much more nodes to explore.

Figure 5.14: Ratio between the total number of hours of OT used and the total available
hours of open OT
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5.5. Delays behavior

Now we want to understand how the solution treats the patients on delay.

We reduced the number of available days of the time horizon, from 32 to 20. Other sets
and parameters remain unchanged. Possible extra working hours are not considered.

We run the model and find the optimal solution after 872 seconds.

In this planning horizon, the best schedule of the problem with those instances, allocates
113 patients in the time horizon, letting the remaining 27 not be scheduled, as Figure
5.15 reports.

Figure 5.15: Histogram of operations

We would want to understand the criteria of this selection, which kind of patient is more
sensitive to the non-operability. We first look at the urgency factor up. Figure 5.16 shows
the number of patients that would be operated on in the planning horizon and the number
of who will have a postponed intervention.

The urgency factor gives strong weight to the decision of operability, but it is not so
crucial for the decision of postponing some operations. In other words, an high value
of up heavily brings the schedule to operate the patient p in the planning time, but a
low value of up does not imply the schedule almost surely would postpone the patient’s
intervention.
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Figure 5.16: Barplot of operations

Figure 5.17: Urgency Class distribution Schedule
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Figure 5.18: ratio of usage of OT on Urgency Class and mean operation time

So a possible explanation could be the length τ of the intervention. In fact, in 14 working
slots, we could allocate a few prolonged operations or several rapid interventions.

So we want to analyze if there is an aim to operate a more number of patients, postponing
the longer ones. As Figure 5.17 represents, the average operation time for not scheduled
patients, except for patients with up = 45, is between 3 and 4 time slots (90 and 120
minutes).

In Table 5.18 we want to show also the ratio between postponed and total cases, consid-
ering the two factors discussed above: urgency factor and average operation time. With
the kind of color, we highlight the urgency, from light blue (less urgent) to fuchsia (more
urgent). On the x-axes, we show the average intervention time only of the postponed op-
erations, while in the y-label we are representing the ratio between postponed operations
over the total surgical cases. The vertical lines instead represent the mean τ for every
kind of urgency. As we can notice, all the points except the fuchsia one, lay on the right
part of the lines, stressing the fact the schedule set up prefers to operate on more patients,
than schedule them on the basis of the urgency factor.
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Developments

We have built a complete model, SPHS, capable of solving the problem of finding an
optimal day-hospital pediatric surgical operation schedule, for patients and surgeons, in
a specific time horizon, taking into account the minimization of patients’ waiting times,
and the avoidance of delays, both weighted for the urgency coefficient of each patient, by
also making the most of the Spokes network.
The schedule should respect several constraints, regarding the capacity and availability of
the OT for the operations and of beds for the recovery time, the compatibility of patient-
hospital, and of patient-surgeon, and the ordering of interventions in a specific working
day.

The problem has approached with Integer Linear Programming, by testing on real in-
stances of surgical cases. Due to the complexity of the problem and its onerousness, this
problem could not rely on an analytical solution. For this reason, it has been proposed
different variants of the problem, by making enrichment of the model or by relaxing it,
removing constraints or even variables, to trying some heuristic approaches.

Then, in primis, we recognized which formulation brought evident improvements in terms
of convergence speed, and then analyzed primarily the feasibility of the solution with re-
spect to the original problem, and then if it is so, or adjusted to make it feasible, examined
the quality of the solution.

An important result to notice is that formulating a model for a scheduling problem, in
a Hub & Spoke context, could bring relevant improvements if a Bin-Packing approach
is considered in the formulation. In fact, each operating room, on each day, can be
considered as a bin, that can be opened, and where we can allocate patients in it if so.

The second main approach which has been found very efficient in terms of computational
speed and quality of the solution is a matheuristic approach composed of two steps: the
first one allows finding the optimal schedule of the patients, by not taking into considera-
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tion the surgeons, while the second step proposes the optimal schedule of the doctors by
associating them to the operation schedule found in the first phase.
The first step does not include any variables and constraints related to surgeons, so this
new problem SPHS_nodoc, which has the same objective function as SPHS is a strong
relaxation with respect to the original problem.
Once the best, or almost optimal, surgical operations schedule has been found, in less
than 15 minutes, it would be run a second model, which we called model_SA, which
recalls a Facility Location Problem. In fact, we want to satisfy all patients’ requests,
namely surgeons, by minimizing the number of them. So the new model model_SA is
composed essentially of the variables and constraints originally removed from SPHS to
build a relaxed model which did not include the models and as an objective function the
minimization of the sum for each day and for each facility, the total number of surgeon
involved. And in just a few seconds finds the optimal solution.

Future Developments

A first direction for future developments in the study of improved formulation or heuristics
is to enhance the efficiency and reduce the computational time so as to the growth of the
size of the instances that can be treated. For instance, finer time slots, larger patient
populations, longer planning horizons, and a more numerous net of hospitals could be
tackled and solved.
To address this, innovative techniques such as heuristic, meta-heuristic, or matheuristic
algorithms could be investigated.

Another important direction for future development lies in considering uncertain operat-
ing and PACU times. In healthcare settings, it is very common for surgeries or patient
recovery times to deviate from the initially estimated durations. Incorporating uncer-
tainty into scheduling models can allow for more robust and flexible scheduling decisions.
Probabilistic approaches, such as stochastic programming or robust optimization, can be
explored to account for the uncertainty and mitigate the potential negative impacts of
schedule disruptions. By incorporating uncertainty into the scheduling process, health-
care facilities can make more informed decisions, improve resource allocation, and enhance
operational efficiency in dynamic and unpredictable environments.
To optimize schedules that consider the range of possible outcomes, which take into ac-
count possible delays, can be used different methods to approach this modeling, such
as a Discrete Simulation Event, Stochastic Programming, Simulation-Based Approaches,
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Robust Optimization, or even Hybrid Approaches can be studied.
These are some of the methods which could provide avenues for scheduling operations
with variable operation times, considering the stochastic nature of such events.

Furthermore, the extension of scheduling models to accommodate longer time horizons
and more hospitals is crucial for scalability and practical applicability. In this Thesis, it
has been considered a monthly planning horizon. But healthcare systems often operate on
schedules spanning weeks or even months, involving coordination across multiple hospitals
or healthcare facilities. Future research can focus on developing scheduling frameworks
that handle reduced or extended time frames while considering interdependencies among
hospitals. Such models could incorporate factors like resource sharing and coordination
of specialized equipment or staff to enable efficient scheduling at a broader system level.

To address these problems new approaches that leverage data-driven methodologies can
be explored. Machine learning techniques, such as predictive analytics and classifica-
tion algorithms, can help analyze historical patient data to identify patterns, optimize
scheduling decisions, predict delays in operation times, and provide personalized care.
Additionally, simulation models can be utilized to assess the impact of different schedul-
ing strategies on various performance metrics, enabling healthcare practitioners to make
informed decisions and test scenarios in a virtual environment before implementation.

Overall, these advancements in healthcare scheduling systems will hold the potential to
enhance the efficiency, flexibility, and adaptability of healthcare scheduling, ultimately
leading to improved patient care, reduced waiting times, optimized resource utilization,
and better overall healthcare system performance.
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