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Abstract

N this dissertation, we present some mathematical methods and techniques
involving reproducing kernel Hilbert spaces (RKHSs) and associated inte-
gral transforms in the setting of complex, quaternions and Clifford analy-

sis. The focus will be on some particular examples such as Fock spaces and
Segal-Bargmann theory, Bergman spaces, Hardy spaces and Gabor spaces. These
models are very important in several areas of mathematics including complex
analysis, functional analysis, operator theory, etc. They have some important
applications in mathematical physics, more precisely, in quantum mechanics,
signal processing and time frequency analysis. It turns out that such spaces are
relevant also to develop support vector machines (SVMs) kernel methods. In
particular, Fock spaces are related to the radial basis function (RBF) kernels that
are popular kernels used in machine learning.

In the first part of the thesis, we study Fock spaces of slice hyperholomorphic
functions in the Hilbert and Banach cases. We obtain new quaternionic approx-
imation results both in the first and second kind theory. We develop also Segal-
Bargmann transforms in the noncommutative case of quaternions and give de-
scriptions in terms of generalized versions of the creation and annihilation op-
erators. In particular, we deal with an extension of the Cholewinski-Fock space
in this setting. Moreover, based on the quaternionic Bargmann transform we
introduce and study a quaternionic short-time Fourier transform QSTFT with a
Gaussian window that can be computed for hypercomplex signals.

In the second part of the thesis, we introduce a special Clifford-Appell sys-
tem which can be obtained using the Fueter mapping theorem. We study the
behaviour of such system of polynomials with respect to the classical Cauchy-
Kowalevski product. Then, we present some new QRKHS of Fueter hyperholo-
morphic functions based on this Clifford-Appell system. We study in this case
different kernel techniques and integral transforms concerning the Fock, Hardy
and Bergman spaces and associated operators. We compute also the Bergman
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kernel function on different quaternionic domains.

Finally in the last part of this thesis, we introduce a new theory of poly-
analytic functions in hypercomplex analysis. It turns out that this theory con-
tains an interesting subclass of special monogenic functions of axial type and
we prove a poly Cauchy formula. Then, we relate different polyanalytic func-
tion theories in hypercomplex analysis by providing two extended versions of
the famous Fueter-Sce-Qian mapping theorem. We prove also an integral rep-
resentation of this result as a direct application of the poly Cauchy formula.

The results obtained in this dissertation open various questions and research
problems to investigate in the future, that are discussed in the last section.



Summary

N this thesis, we study different reproducing kernel function spaces and asso-
ciated integral transforms in the setting of complex, quaternions and Clifford
analysis. In particular, we focus on some specific examples such as Segal-

Bargmann-Fock spaces, Bergman spaces, Hardy spaces and Gabor spaces. These
models are very important in complex analysis, operator theory and have sev-
eral applications in mathematical physics, especially in quantum mechanics, and
also in signal processing and time frequency analysis thanks to the link with the
short-time Fourier transform. As it is well-known, in quantum mechanics phys-
ical quantities such as position, momentum and energy are represented by op-
erators acting on some complex Hilbert spaces. In 1961, Bargmann constructed
a Hilbert space of entire functions on which the creation and annihilation oper-
ators are adjoints of each other and satisfy the classical commutation rules. This
space is known as Fock or Segal-Bargmann space. Moreover, to any particle
moving on the real line is associated a wave function which defines some unit
vector of the classical Schrodinger Hilbert space. This unit vector is mapped onto
a special holomorphic function making use of a particular exponential kernel.
The new resulting complex function is the so-called Segal-Bargmann transform.
In the last years, this subject attracted several mathematicians and physicists
working in the field of Clifford analysis and related topics. As a consequence,
many results and research problems were considered and developed in this di-
rection. In the hypercomplex setting, we investigated some new reproducing
kernels and associated Hilbert spaces using different techniques and tools from
complex and Clifford analysis motivated by such special integral transforms in-
volved in several applications in mathematical physics, like Segal-Bargmann
transforms in quantum mechanics and Gabor or short-time Fourier transforms
in signal analysis.
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Another main contribution that we achieved during this work is that we ini-
tiated exploring a new research path by extending the theory of slice regular
or slice monogenic functions to higher order and considering the so-called slice
poly-analytic or slice poly-monogenic function theory on which several ques-
tions are open now. These functions can be considered from different points
of view. A first approach consists of considering the space of quaternions as
union of complex planes and to see these functions as null solutions of the n-th
power of the Cauchy-Riemann operator with respect to each complex plane. A
second approach is based on the so-called poly-decomposition, which makes a
slice poly-analytic function of order n obtained as a sum of n slice regular func-
tions multiplied on the left by some conjugate powers. A third approach consists
in considering slice poly-analytic functions in the kernel of the n-th power of a
certain global operator with non-constant coefficients. We note also that a gen-
eralized version of the poly-Cauchy formula and the famous Fueter-Sce-Qian
mapping theorem in Clifford analysis were also introduced and proved in this
framework. This new construction allowed to relate the different poly func-
tion theories in hypercomplex analysis. Furthermore, an important fact that
was observed is that this slice polyanalytic function theory contains one of the
most important subclasses of the Cauchy-Fueter hyperholomorphic functions,
namely the class of Fueter hyperholomorphic functions of axial type. A very
natural and interesting problem that has to be conisdered now and which is still
under investigation is to develop a natural S-functional calculus associated to
this new poly-analytic function theory in hypercomplex analysis.

In this thesis, we dealt with different problems touching several topics in-
cluding: slice hyperholomorphic and monogenic function theories, reproducing
kernel theory, quaternionic approximation theory, Fock and Bergman spaces,
poly-analytic function theory, Dirac operator in Clifford analysis, quaternionic
Segal-Bargmann and Fourier transforms, poly-Fueter mapping theorems and
their applications, Clifford-Appell systems, Short-time Fourier transforms and
reproducing kernel Gabor spaces, hypercomplex Hardy spaces and Schur anal-
ysis, etc. We give here a brief overview on the different results obtained:

« In [62], jointly with Prof. Sabadini and Prof. Gal, we introduced the Ba-
nach Fock spaces of slice hyperholomorphic functions on the quaternions,
both of the first and of the second kind. In particular, we proved several
approximation results on these different spaces, some of them are based on
constructive methods making use of the Taylor expansion and the convo-
lution polynomials. The techniques used in these two cases are different.
Moreover, for the second kind theory, we discussed also some density re-
sults of reproducing kernels. This paper extends some classical results of
complex analysis contained in the famous book of Kehe Zhu titled "Anal-
ysis on Fock spaces’.

« The Cholewinski-Fock space in the slice hyperholomorphic setting was
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studied in [61]. It presents an extension of the classical slice hyperholo-
morphic Fock space introduced in 2014 by Alpay, Colombo, Sabadini and
Salomon. This was possible by considering on the space of slice entire
functions a specific weight involving a modified Bessel function of the
third kind, namely the Macdonald function. We gave a complete descrip-
tion of this quaternionic Hilbert space. Then, its reproducing kernel is ob-
tained making use of the slice hyperholomorphic extension of the classical
complex Dunkl kernel. We introduced also an associated unitary integral
transform, and studied some specific quaternionic operators on the slice
hyperholomorphic Cholewinski-Fock space. This construction follows an
approach by Cholewinski in 1984.

In [56], with my colleague De Martino, we introduced a new quaternionic
short-time Fourier transform QSTFT with a Gaussian window. We proved
there several results about this QSTFT like Moyal formula, reconstruction
formula and Lieb uncertainty principle. This construction was possible
thanks to the use of the quaternionic Segal-Bargmann transform. More-
over, we computed the reproducing kernel associated to the Gabor space
considered in this framework.

The results obtained in [63], joint with Prof. Sabadini and Prof. Krausshar
can be considered as applications of the famous Fueter-Sce-Qian map-
ping theorem. It is well-known in the literature that this theorem relates
two main theories in Clifford analysis, namely the recent theory of slice-
monogenic functions and the classical one of monogenic functions (i.e:
solutions of Dirac operator). More precisely, making use of the Fueter-Sce-
Qian mapping theorem we constructed and studied some special integral
transforms of Bargmann-Fock type in the setting of quaternion slice hyper-
holomorphic and Cauchy-Fueter regular functions. In particular, starting
with the normalized Hermite functions we got an Appell system of quater-
nionic regular polynomials. We obtained also some new integral represen-
tations and generating functions in both the Fock and Bergman cases. In
this article, we computed also the explicit expressions of the slice hyper-
lomorphic Bergman kernels on the quaternionic unit half ball and the frac-
tional wedge domain. We discussed also the Bergman-Fueter transforms
and presented some of its consequences.

The paper [8] is a joint work with Prof. Sabadini and Prof. Alpay. It deals
with a specific system of Clifford-Appell polynomials and in particular
their Cauchy-Kowalevski product. We first study how this Clifford-Appell
system behave with respect to the CK product. We gave also a character-
ization of axially Fueter regular functions in terms of this Clifford-Appell
system. We introduced there a new family of quaternionic reproducing
kernel Hilbert spaces in the framework of Fueter regular functions. This
construction is based on a general idea which allows to obtain various
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function spaces, by specifying a suitable sequence of real numbers. We
focused more on the Fock and Hardy cases and associated operators like
creation, annihilation, shift and backward shift operators. We studied also
the action of the Fueter mapping and its range.

« In [5], jointly with Prof. Sabadini, Prof. Colombo and Prof. Alpay, we
started a new research direction to begin the study of Schur analysis and
de Branges-Rovnyak spaces in the framework of Fueter hyperholomor-
phic functions. In this paper we treated several problems related to Hardy
space, Schur multipliers, Blaschke functions, Herglotz multipliers and their
associated kernels and Hilbert spaces, based on the Cauchy-Kowalesvkay
product and the notion of Appell-like polynomials.

« In [17], jointly with Prof. Sabadini and Prof. Alpay, we proposed a new
definition extending to higher order the theory of slice hyperholomorphic
functions on the quaternions originally introduced by Gentili and Struppa
in 2007. This definition extends the notion of complex polyanalytic func-
tions to quaternions. We studied some basic properties of such functions
and proved the counterparts of the following results : Splitting Lemma,
Identity Principle, Representation Formula, Extension Lemma, Refined Split-
ting Lemma and presented some of their consequences. We proved also a
very important characterization of slice polyanalytic functions, namely the
so-called poly-decomposition. Then, we considered the Fock and Bergman
spaces in this new setting and computed explicit expressions of their re-
producing kernels.

« In [9], jointly with Prof. Sabadini and Prof. Alpay, we proved that slice
polyanalytic functions of order n > 1 on quaternions can be considered
as null solutions of the n-th power of some special global operator with
nonconstant coefficients as it happens in the case of slice hyperholomor-
phic functions. We investigated also some extension versions of the Fueter
mapping theorem in this polyanalytic setting. In particular, we showed
that under axially symmetric conditions it is always possible to construct
both Fueter regular and poly-Fueter regular functions through slice poly-
analytic ones using what we call the poly-Fueter mappings. This allows to
present two different extended formulations of the poly-Fueter mapping
theorem. Furthermore, we proved a new poly-Cauchy formula that sug-
gests to start several new interesting research problems. In particular, as
a first application of this poly-Cauchy formula we gave the integral repre-
sentation of the poly-Fueter mapping theorem, extending a very important
result obtained in 2010 by Colombo, Sabadini and Sommen.

As avenues for further research, we already started some new projects that
are still under progress. We plan to develop them more in the future and to start
new research investigations in some recent related topics such as:
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. Wiener algebra on quaternions: The Fueter variables case.

. PS and PF functional calculus and their applications.

. Poly-Bergman-Fueter transforms.

. Fischer decomposition in the space of slice hyperholomorphic functions.

. Short-time Fourier transforms with Hermite windows: hypercomplex poly-
analytic framework and applications in time-frequency analysis.

. Quaternionic support vector machines, reproducing kernel methods in
machine learning and stochastic processes.
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List of symbols

« H the space of quaternions

S the sphere of imaginary units

B the quaternionic unit ball

+ C; the complex plane corresponding to the imaginary unit /

« 0; the Cauchy-Riemann operator on the slice C;

« Og the slice derivative

« V the global operator

D or O the Cauchy-Fueter operator

« SR(£) the space of slice regular functions on 2

« SP,(2) the space of slice polyanalytic functions of order n on 2

« R(2) or FR(N2) the space of Cauchy-Fueter regular functions on 2

¢ R,(Q2) or FR,, () the space of polyanalytic Cauchy-Fueter regular func-
tions of order n on €2

« Fsiice(H) the quaternionic Fock space of slice hyperholomorphic functions
« FP(H) the quaternionic Fock spaces of the first kind
« Fg (H) the quaternionic Fock spaces of the second kind

+ Agiice(B) the quaternionic Bergman space of slice hyperholomorphic func-
tions of the second kind

« A the Laplace operator on R*
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7 the Fueter mapping
+ (), the quaternionic Appell polynomials

« P, the quaternionic Appell-like polynomials

T, the poly-Fueter mapping of order n (form I)

C,, the poly-Fueter mapping of order n (form II)

(; the Fueter variables for [ = 1,2, 3

R,, the Clifford algebra over n-imaginary units

« QRKHS stands for quaternionic reproducing kernel Hilbert space
« QSTFT stands for quaternionic short-time Fourier transform

« SVMs stands for support vector machines

« RBF stands for radial basis function
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CHAPTER

Introduction

In the noncommutative setting, the main function theories that extend com-
plex analysis, operator theory and their mathematical physics applications to
higher dimensions are the so-called monogenic and slice monogenic functions
with values in a Clifford algebra. In the case of a quaternionic variable these two
theories are known respectively as Fueter regular (or Fueter hyperholomorphic)
and slice regular (or slice hyperholomorphic) functions, see [28,35,47,75,83]. Itis
interesting to investigate any possible relations and intersections between these
two different function theories. For example, we note that it is always possi-
ble to construct Fueter hyperholomorphic functions starting from slice regular
ones using different techniques such as the Fueter mapping theorem and its in-
verse [48,49], or using the Radon and dual Radon transforms, see [44]. But in
general, the slice monogenicity does not imply, nor is implied by monogenicity.

In 1931, the work of Moisil [95] was at the origin of extending the classical
theory of holomorphic functions in complex analysis to quaternions by gener-
alizing the classical Cauchy-Riemann operator. Then, in 1935, Fueter developed
this approach by Moisil and introduced a new theory of quaternionic regular
functions generalizing the classical one of holomorphic functions, see [67]. This
theory is based on the well-known Cauchy-Fueter operator defined by

0 0 0 0
D= ' ' .
(91:0 +28$1 +‘78x2 + k8$3
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Chapter 1. Introduction

Thus, a quaternionic valued function is said to be Fueter regular or Fueter hy-
perholomorphic if it solves the equation

Df =0.

It turns out that Fueter’s theory of quaternionic regular functions generalized
several complex analysis results using new techniques, in particular it is possi-
ble to consider the counterparts of different notions, such as a Cauchy kernel,
Cauchy formula, identity principle, Liouville theorem, etc. Unfortunately, the el-
ementary functions like the quaternionic polynomials and power series are not
regular with respect to the Fueter theory. We will revise some facts in Chapter
2 about this theory, but for more details we suggest the reader to consult the
books [47,83].

In 2006-2007 a new function theory of a quaternionic variable extending the
classical theory of complex analysis to the quaternionic setting has been intro-
duced by Gentili and Struppa in [76,77]. Then, it was also extended to the Clif-
ford valued functions, by considering the so-called slice monogenic functions,
see [36]. Both these theories include all the elementary transcendental func-
tions. This new class of functions was extensively developed in the last years
and found several applications in different topics in mathematics and physics, in-
cluding for example Schur analysis and quaternionic operator theory, see [7,35].
Moreover, this new noncommutative function theory is now considered more
suitable for applications in quaternionic quantum mechanics thanks to the dis-
covery of the new notion of the S-spectrum which allowed to develop a new
S-functional calculus for quaternionic operators, see the books [35,37,38]. Fur-
thermore, this theory is useful also to develop the formalism for quaternionic
quantum mechanics, see [97] and the classical book [4].

In general, positive definite functions and reproducing kernel Hilbert spaces
appear in several areas of mathematics, physical sciences and engineering. They
are relevant not only in operator theory and coherent states in quantum me-
chanics but also in the study of support vector machines and kernel methods
in machine learning. Thus, a current intresting topic in hypercomplex anal-
ysis is related to quaternionic reproducing kernel Hilbert spaces like Hardy,
Bergman, Besov, Dirichlet and Fock spaces in the new quaternionic and slice
monogenic setting. Thanks to their use in quantum mechanics and signal pro-
cessing such reproducing kernel Hilbert spaces, especially Fock spaces and as-
sociated Segal-Bargmann integral transforms attracted recently the attention of
several mathematicians and physicists from different points of views, see for
example [15, 34, 46, 53, 60, 88,96, 101]. In particular, we present in this research
project several results related to this topic. Indeed, we considered different
quaternionic reproducing kernel Hilbert spaces and associated integral trans-
forms, like Segal-Bargmann transforms and Gabor or short-time Fourier trans-
forms in the noncommutative framework both in slice and Fueter hyperholo-
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morphic theories. So, we would like to present briefly in this introduction the
state of the art related to such topics in classical complex analysis. We explain
also some interactions with mathematical physics and present some quantum
mechanics interpretations of such mathematical objects.

Indeed, contrary to classical physics, in quantum mechanics physical quanti-
ties such as position, momentum and energy are represented by operators acting
on some complex Hilbert space. We note that in 1961 Bargmann introduced in
his original paper [23] a Hilbert space of entire functions on which the creation
and annihilation operators, namely

M,f(z):=2f(z) and D,f(z):= diif(z)

are closed, densely defined operators that are adjoints of each other and satisty
the classical commutation rule

[D,,M,] =T

where [.,.] and Z are respectively the commutator and the identity operator. In
addition to that, it turns out that the creation and annihilation operators are uni-
tary equivalent to the classical position and momentum operators of quantum
mechanics trough the well-known Segal-Bargmann transform which was also
introduced in the same paper [23].

The latter is an integral transform mapping unitary the classical Schrédinger
Hilbert space of wave functions L?(IR") onto a space of holomorphic functions.
In the literature, this output space is known as Fock or Segal-Bargmann space
and sometimes called also the bosonic Fock space with n degrees of freedom.
It consists of entire functions that are square integrable on the complex plane
with respect to the normalized Gaussian measure. We refer to [85, 98, 115] for
more detailed explanations.

It turns out that the Bargmann-Fock spaces and associated Segal-Bargmann
transforms are important mathematical models used in classical (complex) quan-
tum mechanics and signal processing. Indeed, from one side this integral trans-
form allows to construct a bridge between the Schrédinger Hilbert space and a
special Hilbert space of holomorphic functions on the whole plane, namely en-
tire functions. From the other side, this transform can be obtained as the short-
time Fourier transform with a specific Gaussian window. Moreover, by taking
Hermite windows it is possible to find connections with polyanalytic function
theory.

It was explained in chapter 3 of [85] that it is impossible to predict the result
of an experiment in quantum mechanics. Only the probabilities of the outcome
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of a measurement can be predicted and these probabilities are encoded in a wave
function that is a function of the real variable x € R". Then, we note that to any
particle moving in the real line is associated a wave function 1) : R — C. The
square modules of this function

z = [P(a)[*

is interpreted as the probability density for the position of this particle. More
precisely, taking a region A C R the quantity

IR

is defined to be the probability that the given particle belongs to the set A. Ob-
viously, the probability that its position is on the whole real line R should be
equal to 1 so that we have

ol = / Wkt =1

The wave function is said to be a unit vector of the Hilbert space L?(RR) in this
case. Then, to each unit vector in the standard Hilbert space on the real line is
associated a holomorphic function which is also a unit vector of the Fock space.
The new output complex function is the Segal-Bargmann transform.

Such spaces have been considered in some higher dimensional extensions of
complex analysis, namely the analysis based on functions with values in a Clif-
ford algebra or, in particular, quaternions. For some recent works, we refer the
reader to e.g. [101] which is the framework of monogenic functions, to [15,60]
in the framework of slice hyperholomorphic functions and to [88], which makes
use of slice hyperholomorphic functions and in which the authors point out the
link with the study of quantum systems with internal, discrete degrees of free-
dom corresponding to nonzero spins. We note also that the class of slice hyper-
holomorphic functions [35,50,75] has attracted interest in the past decade for its
various applications especially in operator theory. One of its features is that it
contains power series (despite what happens for other theories of hypercomplex
variables) thus it is natural to consider functions which are entire” in this class
and, in particular, Fock spaces. In these directions, we obtained several results
related to different topics such as: reproducing kernels, Fock spaces, Bergman
spaces, Segal-Bargmann transforms, quaternionic approximation theory, short-
time Fourier transform, Fueter mapping theorem, Dirac operator, etc.

In this thesis it was also very useful for us to understand the so-called Appell
systems. Actually, in 1880, the French mathematician Appell introduced a new
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class of polynomial sequences generalizing the well-known property satisfied
by the classical monomials with respect to the real derivative, namely

%PR = nPn—la
see [20]. So, a polynomial sequence {P,},>o of degree n satisfying such an
identity with respect to a derivative is called an Appell set or an Appell sequence.
In [32,107] the authors followed a different approach to define an Appell set by
requesting the identity

d

dz
In the classical case, where x is interpreted as a real or complex variable, the stan-
dard monomials P, (z) = z" form an Appell set, but also the famous Hermite,
Bernoulli and Euler polynomials are examples of Appell sets. The importance of
such polynomials in various settings is well known, and we mention here, with
no pretense of completeness their relevance in probability theory and stochastic
process since they can be connected to random variables, see [111], they were
used also to study optimal stopping problems related to Lévy process in [105].
Moving to the hypercomplex analysis setting, we have various function theo-
ries, associated with different differential operators.
In the slice hyerholomorphic setting, Appell systems can be obtained by simply
extending the variable in use to become hypercomplex, and so we have that, for
example, the standard monomials in the quaternionic variable are among them
with respect to the slice derivative. But these sets of polynomials were stud-
ied also in the setting of quaternionic and Clifford analysis with respect to the
hypercomplex derivative, see [29,30,63,93,99]. It turns out that the Appell sys-
tems in this framework play a similar role as the complex monomials do to define
elementary functions in terms of their power series like cosine, sine, exponen-
tial, etc. This fact opens a variety of questions about such Appell systems also
in relation to various function spaces including Fock, Hardy, Bergman, Dirichlet
spaces, etc. Various questions arise also about their associated operators such as
creation, annihilation, shift and backward shift operators. Actually, what makes
Appell systems in quaternionic and Clifford analysis rather peculiar, is the fact
that the function theory has been developed using the so-called Fueter polyno-
mials, see [28,83], and these polynomials do not satisfy the Appell property in
general. However, a series expansion for hyperholomorphic functions is possi-
ble using both the approaches. In this dissertation, we present aslo some results
in this direction.

P,=PF,.

One of the main achievements that we made also in this work is that we in-
troduced in [9,17] a new research direction which is opening several interesting
questions to investigate. Indeed, we extended the notion of slice regular func-
tions to higher order by considering the so-called slice polyanalytic functions.
In particular, this gives two different directions of the extension, from one side
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the new theory that we proposed extended the complex polyanalytic function
theory to the noncommutative setting. On the other side, it can be seen also as
an extension of the original quaternionic function theory introduced by Gentili
and Struppa to higher orders. We got also a counterpart of the poly-Cauchy
formula for such functions. Futhermore, we gave two possible poly extensions
of the famous Fueter-Sce-Qian mapping theorem and proved an integral rep-
resentation of this result based on a certain global operator with nonconstant
coefficients. These slice polyanayltic functions can be seen from three different
points of view. The first approach consists of considering the space of quater-
nions H as union of complex planes and to see these functions as null solutions
of the n-th power of the Cauchy-Riemann operator with respect to each complex
plane, i.e if on any complex plane f satisfies the equation

=n 1 [0 a\"
or flu+ol):= o (% —1—1%) fr(u+ Iv) =0.

The second approach is based on the so-called poly-decomposition which allows

to consider such functions as sums of the form

fkfk(l‘), reH

with all the components f;, which are slice regular functions and 7 is the order
of poly-analyticity. The third approach consists in considering slice polyanalytic
functions as elements in the kernel of the n-th power of the global operator with
nonconstant coefficients V, see [9]. In this sense, we have

V) (z) = (axo + % Zmlaﬂ> flz)=0.

Furthermore, using the Fueter mapping theorem it was possible to introduce
some special Appell polynomials (Q,,(x)),>0 where

Qn(x) = ZTjnjjfgn—j, n >0,
j=0

that are at the same time Fueter hyperholomorphic and slice polyanalytic func-
tions of order n + 1, for suitable real coeflicients TJ” see chapters 7, 8 and 9 for
more explanations and bibliography notes related to such coefficients. These
polynomials are very special since they belong to the intersection of two differ-
ent noncommutative function theories, namely the classical Fueter theory and
the slice polyanalytic theory, moreover they have nice properties with respect
to the CK product and hypercomplex derivative. Another important feature, see
Theorem 3.10 in [8], is that we proved that any Fueter hyperholomorphic func-
tion f of axial type admits a power series expansion in terms of the polynomials
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Q,, of the form
f@) = Qu(@)un,  u, €M
n=0

This fact allows to embed the space of Fueter hyperholomorphic functions of
axial type, denoted by AR, into a space consisting of series of slice polynalytic
functions that we denote here by

SPOO = Spl + 8732 + ... +8Pn+1 + ceey

where SP,, denotes the space of slice polyanalytic functions of order n. More
precisely we consider the subspaces of slice polyanalytic functions associated to
the polynomials (Q),,),>o defined by

Q, = {Qn(z)\, X € H}

and .
n=0

We can show that the space of hyperholomorphic functions of axial type AR
corresponds to the space Q., i.e.

AR = Q.

The previous subspaces of slice polyanalytic functions Q,, were already consid-
ered before but from a different point of view and using a different terminology,
namely they were called spaces of homogeneous special monogenic polynomi-
als of degree n, see for example Lemma 1 in [3]. Using these ideas and identi-
fications we can show also that it is always possible to embed this interesting
subclass of special monogenic functions in a more general framework of slice
polyanalytic functions. In particular, we can use techniques from slice polyana-
lytic function theory to prove results on such special monogenic functions. For
example in Chapter 9 we can prove a Representation Formula in the monogenic
setting using a slice polyanalytic approach. Furthermore, we note that these
slice polyanalytic (and Fueter hyperholomorphic) polynomials (Q,,),>o are just
a particular case of a more general interesting construction which makes use of
the classical Cauchy-Kovalevskaya extension theorem. We explained more in
details this general construction thanks to some new Appell-like polynomials
and the classical CK product in Clifford analysis, see [5].

Description of the contents

This thesis is divided into 11 chapters besides this introduction. The second
and third chapters revise briefly the state of the art and main backgrounds. We
present there some very well-known results in the litterature related to positive
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definite functions, reproducing kernel Hilbert spaces and associated operators.
We discuss also the different hypercomplex function theories and their connec-
tions based on the Fueter-Sce-Qian mapping theorems. The main results and
contributions of our research are presented from chapter 4 to chapter 12. We
give now a brief description of the contents following the chapters order in the
manuscript:

« Chapter 4: This chapter is based on [62]. It continues the study of slice
hyperholomorphic Fock spaces over the quaternions started in [15] with
the purpose of providing some approximation results, specifically our goal
is to extend results on the density of polynomials in the complex case to
the slice hyperholomorphic setting. We shall show that in this context one
may define two types of Fock spaces, which are called of the first and of
the second kind, and for which the approximation results require differ-
ent techniques. The plan of the chapter is the following: Section 2 review
the Hilbert slice hyperholomorphic Fock space and quaternionic Segal-
Bargmann transform. Section 3 introduces Banach Fock spaces of the first
and second kind. In Section 4 we study the approximation in Fock spaces
of the first kind. In Section 5 we study the approximation in Fock spaces of
the second kind, obtaining a result of general validity. We obtain quanti-
tative estimates in terms of higher order moduli of smoothness and of best
approximation quantity. Finally we discuss type and order of functions in
the Fock spaces of the second kind.

« Chapter 5: This chapter is based on [61]. Its purpose is to continue this ex-
ploration of generalized Fock spaces following an approach by Cholewin-
ski, Sifi and Soltani in order to present a study of a quaternionic Hilbert
space of slice entire functions weighted by a modified Bessel function that
we shall call the quaternionic slice hyperholomorphic Cholewinski-Fock
space or the slice Cholewinski-Fock space for short. This will allow us
to extend some results obtained in [15,60] on the slice hyperholomorphic
Fock space and the quaternionic analogue of the Segal-Bargmann trans-
form. Moreover, we study there some specific quaternionic operators as-
sociated to the slice Cholewinski-Fock space. In a particular case, we show
that the slice derivative and the quaternionic multiplication are adjoints of
each other and satisfy the classical commutation rule on the slice hyper-
holomorphic Fock space.

The chapter has the following structure: we first give some motivations for
this study. Then, in Section 2 we collect some basic facts about the Mac-
donald function as it will be needed in the sequel. In Section 3, we define
the slice Cholewinski-Fock space and we introduce an orthonormal basis.
Moreover, we show that it is a quaternionic reproducing kernel Hilbert
space. Section 4 is devoted to the study of a quaternionic unitary isomor-
phism between the slice Cholewinski-Fock space and a suitable quater-
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nionic Hilbert space on the real line. This quaternionic isomorphism will
be connected also to what we call the slice Dunkl transform. Then, Section
5 deals with two right quaternionic linear operators that are proved to be
adjoint of each other and satisfy a specific commutation rule on the slice
Cholewinski-Fock space. Finally, the last section explains how the results
obtained in the slice quaternionic setting could be extended in a similar
way to the slice monogenic setting for Clifford algebras valued functions.

Chapter 6: This Chapter is based on [56]. We introduce an extension of the
short-time Fourier transform in a quaternionic setting in dimension one.
To this end, we fix a property that relates the complex short-time Fourier
transform and the complex Segal-Bargmann transform:

—|z|?

Vof(r,w) =e ™G f(2)e” 2, (1.0.1)

where V,, is the complex short-time Fourier transform with respect to
the Gaussian window ¢ and G f(z) denotes the complex version of the
Segal-Bargmann transform according to [78]. To achieve our aim we use
the quaternionic Segal-Bargmann transform studied in [60]. In order to
present these results, we adopt the following structure: After a brief mo-
tivation to the topic, in Section 2 we prove some new properties of the
quaternionic Segal-Bargmann transform. In particular we deal with an
unitary property and give a characterization of the range of the Schwartz
space. Moreover, we provide some calculations related to the position and
the momentum operators. In Section 3, we give a brief overview of the 1D
Fourier transform [65] and show a Plancherel theorem in this framework.
In Section 4, we define the 1D QSTFT and prove an isometric relation, a
Moyal formula, a reconstruction formula, etc. From this, it follows that
the adjoint operator defines a left inverse. Furthermore, it gives the pos-
sibility to write the 1D QSTFT using the reproducing kernel associated to
the Gabor space

& ={V.f, f e L*(R,H)}.
Finally, we show that the 1D QSTFT follows a Lieb’s uncertainty principle.

Chapter 7: This Chapter is based on [63]. We construct a Clifford-Appell
system of spherical monogenics in the right Fueter-Bargmann space over
quaternions, denoted by RB(H), and consisting of quaternionic Fueter
regular functions that are square integrable with respect to the Gaussian
measure. The main tool that we use is the Fueter mapping theorem which
relates slice hyperholomorphic functions to Fueter regular ones through
the Laplacian. More precisely, we apply the Fueter mapping on a special
basis of the slice hyperholomorphic Fock space constructed in [15] and
obtain a set of homogeneous monogenic polynomials in the right mono-
genic Bargmann space over the quaternions. This allows us to construct
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on the standard Hilbert space on the real line the so called Bargmann-
Fock-Fueter integral transform whose range is a quaternionic reproduc-
ing kernel Hilbert space of Cauchy-Fueter regular functions. In particular,
this may give a partial answer to Remark 4.6 in [88] about Clifford coher-
ent state transforms using the Fueter mapping theorem in the setting of
quaternions.

In order to present these results, we collect some basic definitions and pre-
liminaries in Section 2. In Section 3, we study how the Fueter mapping
acts on special basis elements of the slice hyperholomorphic Fock space.
Then, we show that the obtained polynomials constitute an Appell set in
the Bargmann space of Cauchy-Fueter regular functions. In Section 4, the
Fock-Fueter kernel is discussed and the Bargmann-Fock-Fueter integral
transform is introduced and studied. Section 5 presents a factorization of
the Bargmann-Fock-Fueter transform.

+ Chapter 8: This Chapter is a continuation of the previous one. It is based
also on [63], we first deal with some explicit formulas for the slice hyper-
holomorphic Bergman kernels on some different quaternionic domains.
We consider the case of the quaternionic unit half ball and the fractional
wedge domain. Then, we treat an integral transform similar to the one
considered in the previous chapter in the case of the Bergman spaces on
the unit ball, on the half space and on the unit half-ball on quaternions.

+ Chapter 9: This chapter is based on [5, 8]. In order to define and study
quaternionic reproducing kernel Hilbert spaces the approach that makes
use of the Appell systems looks very promising and allows to define the
associated operators. We will show that using a special set of Clifford
Appell polynomials, denoted by {Q,, },>0, we can introduce various func-
tions spaces denoted by HM,; whose elements are converging series of
the form ) Q,,a,,, where the quaternionic coefficients a,, satisfy suitable
conditions which depend on a given sequence b = (b,,),,>0 of real (in fact
rational) numbers. This approach is rather general, and it is used also in
the slice hyperholomorphic setting in which the series under considera-
tion are of the form ) _ ¢"a,,, where ¢ denotes the quaternionic variable and
give rise to spaces denoted by HS,, ¢ = (¢;,)n>0. In this chapter we treat
the case of the quaternionic Fock and the Hardy spaces which have been
already studied in the slice setting but are new in the Fueter regular frame-
work combined with the Appell polynomials. For this reason, these spaces
are called Clifford-Appell-Fock space and Clifford-Appell-Hardy space, re-
spectively. One problem of the system {Q),, },> is that if we multiply two
such polynomials we do no obtain an element in the system. This is ex-
pected provided the non-commutative setting and in fact hyperholomor-
phic functions can be multiplied using the so-called CK product. With
the polynomials (),, there is the additional problem of remaining within
the Appell system and in fact we show how this can be achieved. This
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technical result opens the possibility to prove several results and also to
introduce creation, annihilation and shift operators. An advantage of this
description is that we can prove that the function spaces HM, and HS.
for suitable choices of b, ¢, can be related using the Fueter mapping theo-
rem.

The structure of the chapter is the following: in Section 2 we revise some
notations and preliminary results that we need. In Section 3 we introduce
some quaternionic reproducing kernel Hilbert spaces (QRKHS) based on a
specific Appell system, and prove different properties on such kind of poly-
nomials. We show also that, under suitable conditions, any axially Fueter
regular function can be expanded in terms of these Appell polynomials. In
Section 4 we focus more on the Fock space in this setting. In particular, we
study different properties related to the notions of creation, annihilation
operators and Segal-Bargmann transforms. In Section 5 we treat the Hardy
space case, and study different properties related to the shift and backward
shift operators. Section 6 shows how the Fueter mapping acts by sending
spaces of slice hyperholomorphic functions into spaces of Fueter regular
functions. Moreover, we prove that in some special cases the Fueter map-
ping acts as an isometric isomorphism up to a constant. Finally, in the last
section we briefly present Appell-like polynomials and discuss a bit some
results related to Schur analysis in this framework.

Chapter 10: This chapter is based on [17]. We extend the definition of slice
hyperholomorphic functions to higher order and define the slice polyana-
lytic functions of a quaternionic variable. Then, we shall use the obtained
results to introduce and study the Fock and Bergman spaces of quater-
nionic slice polyanalytic functions and give explicit formulas for their re-
producing kernels. Note that by considering polyanalytic functions with
respect to the classical Cauchy-Fueter regularity on quaternions, it turns
out that even the simple example given by F(q,q) = |qg|* is not poly-
analytic of order 2. However, a natural question that may arise in this
direction is about a possible extension of the well-known Fueter mapping
theorem on quaternions allowing to construct Cauchy-Fueter polyanalytic
functions starting from slice polyanalytic functions of the same order. The
chapter has the following structure: in Section 2 we introduce the quater-
nionic slice polyanalytic functions and prove the poly-decomposition. In
particular, on slice domains we show that a slice polyanalytic function is
the sum of the quaternionic conjugate powers multiplied by slice regu-
lar functions, thus extending the analogous result for complex functions.
We prove also the counterparts of the Splitting Lemma, Identity Princi-
ple, Representation Formula, Extension Lemma and the Refined Splitting
Lemma in this framework. We also discuss slice polyanalytic functions as
a subclass of slice functions on axially symmetric domains. In particular,
we prove a version of the identity principle in this situation. In Section 3,
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we introduce and study the Fock space of slice polyanalytic functions on
quaternions and we give the formula of its reproducing kernel. We treat
also the case of the Bergman theory of the second kind in the quaternionic
slice polyanalytic setting in the case of the unit ball.

« Chapter 11: This chapter is based on [9]. It proposes a bridge between
two theories: the one of slice polyanalytic functions and the one of poly-
Fueter regular functions. It is interesting to note that the class of slice
hyperholomorphic functions is related with the class of functions consid-
ered by Fueter to construct regular functions and thus there is a bridge
between them, specifically the so-called Fueter mapping, in fact by ap-
plying the Laplacian to a slice hyperhomolorphic function one obtains a
regular function, i.e. a function in the kernel of the Cauchy-Fueter oper-
ator, see for example [48]. Also the theory of polyanalytic functions can
be extended to the slice setting by considering a suitable definition, as we
explained in chapter 10. Thus it is a natural question to ask whether there
is an analog of the Fueter map in this more general setting. The answer is
positive and it is one of the main results here: we show that by applying
the Laplacian composed with the (n — 1) power of a global operator with
non-constant coefficients to any slice polyanalytic function of order n we
obtain a Cauchy-Fueter regular function. A second approach to extend the
Fueter mapping to the polyanalytic setting consists to apply the standard
Fueter mapping on each component associated to the poly-decomposition.
This construction allows to generate poly-Fueter regular functions starting
from slice polyanalytic ones of the same order.

This Chapter has the following structure: in Section 2 we set up basic no-
tations and revise some preliminary results. Section 3 contains some re-
sults on the powers of the global operator V' and the main statements and
proofs of the poly-Fueter mapping theorems. In Section 4 we prove a poly-
Cauchy formula in this framework. Then, in Section 5 we study an integral
representation of the poly-Fueter mapping theorem on the quaternionic
unit ball. In Section 6, we rewrite our results in the slice polymonogenic
case.

« Chapter 12: In this chapter we give a conclusion of this work. We present
also some new research directions and perspectives that are still under
investigations.
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CHAPTER

Reproducing kernel Hilbert spaces in complex
analysis

Positive definite functions and reproducing kernel Hilbert spaces play an impor-
tant role in different areas of mathematics such as complex analysis, operator
theory, Schur analysis, etc. They are used also to define coherent states in quan-
tum mechanics and appear in the field of support vector machines and kernel
methods in machine learning. In this chapter, we will revise the main properties
of positive definite functions, reproducing kernel Hilbert spaces, and their asso-
ciated operators. We will consider specific examples such as Hardy and Bergman
spaces on the unit disk D and Fock spaces on the whole complex plane C. Their
polyanalytic counterparts will be briefly discussed also. The material revised in
this chapter is based on the following references [10, 22, 85, 86, 98, 115]. Since
most of the results presented in this chapter are very well-known and classical
we have omitted to give proofs.

2.1 Positive definite kernels and RKHS

We start by recalling the notion of a positive definite kernel.

Definition 2.1.1. Let () be a set. The function K (z,w) from €2 x 2 into C is called
a positive definite kernel if for every N € N, every choice of wy, ..., wy € €2, and
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every choice of c1, ..., cny € C, we have

N
Z G K (wj, wg)e, > 0. (2.1.1)

jk=1

Remark 2.1.1. We note that the condition (2.1.1) is equivalent to saying that the
N x N matrix with (j, k) entry K (w;, wy,) is positive.

The next examples are all positive definite kernels associated to some famous
reproducing kernel Hilbert spaces.

1

Examples 2.1.2. 1. Cauchy kernel: K1(z,w) = T V(z,w) € DxD.
— 2w
2 B kernel: (=, w) ! V(z,w) €D x D
. Bergman kernel: Ky(z,w) = ———— Z,w .
g 2\%, (1 _ Zw)za )

3. Fock kernel: K3(z,w) = e*, V(z,w) € C x C.

4. Poly-Fock kernel of order 2: K (z,w) = (1 — |z — w|?), V(z,w) €
C xC.

We recall some basic facts on positive definite kernels:
Proposition 2.1.3. Let (2 be a set in C. Then, we have

1. If K is a positive definite kernel then K (z,w) is Hermitian, that is

K(z,w) = K(w,z), forallz,w € .

2. The sum of two positive definite kernels is still positive definite.

3. The product of two complex-valued positive definite kernels is still positive
definite.

4. If K(z,w) is positive definite so is F'(z,w) = K(z,w).

A very useful way to check that a given function is positive definite is to
express it as an inner product. This observation is the idea behind the kernel
trick and feature mapping terminology which are used in machine learning

Proposition 2.1.4. Let 2 be some set and (H,(.,.),,) be a Hilbert space. Let
2 — h, be a function from (2 into H. Then, the function defined by

K(z,w) = (hw, hz)4

is positive definite. In general, the function p(z) = h, is called a feature map.
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Definition 2.1.2. A Hilbert space H of functions defined on a set (2 is called a
reproducing kernel Hilbert space if the point evaluations

Ay fr— fw), weQ
are bounded. Then, by Riesz representation theorem there exists a uniquely deter-
mined function K (z,w) defined on € x €, satisfying the two following properties:
i) For every w € €1, the function
Ky :z— K(z,w)
belongs to H.
ii) Reproducing property: for every f € H and w € €2, we have
(Ko £y = F(w).
The function K (z,w) is positive definite and is called the reproducing kernel of H.

Conversely, we have the following fundamental result which is known as
Moore-Aronszajn theorem, see for example [10]:

Theorem 2.1.5. Associated to a function K(z,w) positive definite on a set € is
uniquely determined a Hilbert space H(K '), whose elements are functions on (2,
and with reproducing kernel K (z, w).

By the end of this section, we give two important kernel examples that are
used in machine learning algorithms, see [110, 112].

1. Radial basis function kernel (RBF kernel): in machine learning, the
RBF kernel is a popular kernel function used in various kernelized learning
algorithms. In particular, it is used in support vector machines (SVMs)
classification. For two samples = and 2/, sometimes called also feature
vectors, the RBF kernel is defined by

x—o'|?

K / — _ ||

(x,2") = exp ( o)

where ||z — 2/||? is the the square Euclidean distance between the two

feature vectors and o > 0 is a free parameter.

2. The polynomial kernel: in machine learning, the polynomial kernel is a
kernel function used with SVMs and other kernelized models, that repre-
sents similarity of vectors (training samples) in a feature spaces over poly-
nomials of the original variables, allowing learning of non-linear models.
For polynomials of degree d, the polynomial kernel is defined as

T d
K(z,y) = (z7y + )%,
where x and y are vectors in the input space and ¢ > 0 is a free parameter.

Althought the RBF kernel is more popular in SVM classification than the poly-
nomial kernel, the latter is quite popular in natural language processing (NLP).
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2.2 Hardy and Bergman spaces

In this section, we revise briefly some classical reproducing kernel Hilbert spaces
on the complex unit disk, in particular we recall the Hardy and Bergman spaces
based on [10].

The Hardy space Hy(ID) (see Definition below) provides a convenient setting to
describe shift-invariant subspaces of ¢?(N), and this is one of the main motiva-
tions for introducing this space. It has applications in several other problems in
analysis and digital signal processing. Indeed, a sequence in ¢?(N) represents a
finite energy discrete signal, and its associated power series belongs to Ha(ID).
This allows to transform different problems in signal processing into problems
in the setting of function theory in the open unit disk. We recall that, given a
function f analytic in the open unit disk, the function

Msy(r) = /0 ’ |f(re)|?df, r € (0,1)

is increasing. Then, we recall the Hardy space definition

Definition 2.2.1. The Hardy space Hy(ID) is the set of analytic functions in D
such that

27
sup My(r) = sup / |f(re®)?df < .
0

re(0,1) re(0,1)
An equivalent characterization of the Hardy space is given by
Theorem 2.2.1. A power series f(z) = Z a,z" defined on the unit disk, belongs

n=0
to the Hardy space Hy (D) if and only if it holds that

o
Z |an|? < oo.
n=0

Theorem 2.2.2. The Hardy space Hy(ID) is a reproducing kernel Hilbert space with
reproducing kernel given by the kernel function,

1
1—zw’

Ku,m) (2, w) = forall z,w € D. (2.2.1)

Two important operators that appear in Hardy spaces theory are the shift
and backward shift operators, defined and denoted respectively by

M,: f— M,(f)(z) =2zf(2)

and
OEYONY
Ry fr— Ra(f)(2) = z—a '
flla), z=a



2.2. Hardy and Bergman spaces

We note that the shift operator M, defines an isometric operator on the
Hardy space Hy (D), its adjoint there is given by the backward shift R, under
which the Hardy space is invariant. Moreover, it holds that

[1Ro(N)ao) = 11/ ) — [F(0)]* (2.2.2)

One of the main important results associated to the shift operator on the Hardy
space, is the famous Beurling, or Lax-Beurling theorem which allows to charac-
terize invariant subspaces of the shift operator, see [10] and references therein.

Another important example of reproducing kernel Hilbert spaces on the unit
disk, is the Bergman space that we recall here

Definition 2.2.2. The Bergman space As(ID) is the set of analytic functions in D
such that

/ R)PAAG) < o,

1
with dA(z) = —dzdy is the Lebesgue measure with respect to z = x + iy.
7r

An equivalent characterization of the Bergman space is given by

Theorem 2.2.3. A power series f(z) = Z a,z" defined on the unit disk, belongs

n=0
to the Bergman space A5(ID) if and only if it holds that

|an|2
E < 00.
n+1

n=0

Theorem 2.2.4. The Bergman space As(ID) is a reproducing kernel Hilbert space
with reproducing kernel given by the kernel function,

1
Ka,m)(z,w) = ( forall z,w € D. (2.2.3)

1—zw)?’
It is also possible to study weighted Bergman spaces A$ (D) with o > —1,
see [86]. In this situation, the kernels are of the form

1
Kagm(z,w) = ( for all z,w € D. (2.2.4)

1 — zw)o+?’
We note that the case @ = 0 corresponds to the standard Bergman space. The
Bergman kernels can be considered also on different domains like the annulus,
ellipse, half space, etc [10]. In particular, we recall briefly here the cases of half
space and half unit disk, since this will be used after in chapter 8. Let C, denote
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Chapter 2. Reproducing kernel Hilbert spaces in complex analysis

the half space defined by the conditions z € C and Re(z) > 0. Then, the
complex Bergman kernel on C, is given by

1

Ke, (z,w) = MTE)Z

, forall z,w e C,. (2.2.5)

The reproducing kernel on the half unit disk D, is obtained as the sum of the
Bergman kernels of both the complex unit disk and the half plane. In particular,
we have

1 1

(1 —z2w)?  7(z+w)?

Kp, (z,w) := forall z,w € Dy, (2.2.6)

where the first term corresponds to the Bergman kernel of the unit disk K while
the second one is the Bergman kernel of the complex half plane K¢, (see, e,g.,
p. 812 in [52]).

2.3 Fock spaces and Segal-Bargmann transforms

In this section we review basic notions related to Fock spaces on C". We re-
call also the Segal-Bargmann transform and discuss its behavior with respect
to some classical operators like the creation and annihilation operators, Fourier
transform and Weyl operator. The material revised here is based mainly on the
following references [23, 85,98, 115].

For any positive parameter &« > 0, we consider the Gaussian measure on C"

defined by .
dho(z) = <9> ? ol gx(2)

™

where 2z = (21, ..., 2,), |2|* = Z |21|?, 2x = x +iyx VE = 1,...,n and d\ is the
k=1
Lebesgue measure on C" given by

[T arz) = [ dardyr
k=1 k=1

The Fock or Segal-Bargmann space on C" denoted by F%(C") or F2(C") is the
space consisting of all entire functions f(z) on C" satisfying the condition

/ |f(2)PdAa(2) < oo.
cn

According to the book [85], the constant « is related to some physics quantities

associated to the quantum particle. It is in general taken to be equal to 7 where

f stands for the reduced Planck’s constant.

18



2.3. Fock spaces and Segal-Bargmann transforms

The Fock space F2(C") can be defined as the intersection of holomorphic func-
tions on C" with the Hilbert space L**(C") = L?*(C",d\,). Then, we can
consider on F2(C") the scalar product induced from L?*(C") and defined by

)= | FEGGEINLE)

According to [98], F2(C") is called the boson Fock space with n degrees of free-
dom. We call it simply Fock space or Segal-Bargmann space since we do not con-
sider the fermion Fock space. For k = (kq, ..., k,) € N*, w = (w1, ..., w,) € C",
we use the following notations :

n

n
K=k K=kl k) and [k =) k.
t=1

Then, a first important result that we know on this space is the following

Theorem 2.3.1. The set F2(C") is a Hilbert space with respect to the scalar product
(.,.),- Moreover, the monomials defined by

fu(z) =28 =20 2 W= (ky, . k) € N V2 = (21, .0, 2,) €C?

Rn

form an orthogonal basis in F2(C") and using the polar coordinates for all k =

(k1, ..., k) € N™ we have

k!

1 fell %2 cny = R

An interesting characterization of the Fock space making use of power series
is given by

Proposition 2.3.2. A function f(z) = Z ar2" belongs to the Fock space F2(C")

keNn
if and only if the following condition is satisfied

k!
1 2emy = Y m|@k!2 < 00.
keNn

For z = (z1, ..., z,) € C", we have the following growth condition

Proposition 2.3.3. For every f € F2(C"), it holds that

W22
f(2)] < e 2 || fllFzcm-

We consider the evaluation mapping on the Fock space defined by
A, feFACY) — f(z) e C
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Chapter 2. Reproducing kernel Hilbert spaces in complex analysis

The previous proposition shows that all the evaluation mappings A, on the Fock
space are continuous. Hence, by the Riesz representation theorem it can be
proved that F2(C") is a reproducing kernel Hilbert space whose reproducing
kernel is given by the following exponential function

Ko(z,w) = e Vz,w € C".
The normalized reproducing kernel of the Fock space is given by
K%(a, z)
Kg(a)

a

ki(z) =

Furthermore, any function f(z) of the Fock space maybe reproduced thanks to
the following integral representation formula

f)= [ [f2)e"dAo(w); z€C".
(Cn

For z € C" fixed, sometimes the functions
K :w— K¢ (w) = Ku(z,w)
are called coherent states.
Recall that every closed subspace F' of a Hilbert space H uniquely determines

an orthogonal projection Proj : F' — H.
In this case, the ortogonal projection is described by the following

Proposition 2.3.4. The orthogonal projection
Py : L**(C") — FA(C")

is an integral operator. More specifically,

Pof(z) = o Koz, w) f(w)dAa(w)

forall f € L>*(C") and all z € C™.

The Segal-Bargmann transform is a natural unitary operator associated to
the Fock space, it was introduced in [23]. It identifies the standard Hilbert space
L?*(R™) and the Fock space F2(C").

In fact, L?(R™) denote the classical Hilbert space on the n-real space R" with
respect to its standard Lebesgue measure dr = dx; - - - dx,,. An orthogonal basis
of L?(R"; dz) is given by the multi-dimensional Hermite functions

oo O™ N
() = (1) ed e (e*wf ) =TI, 0, @31)
/=1

axml
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2.3. Fock spaces and Segal-Bargmann transforms

for varying m = (my, -+ ,my) € (Z*)?, where h2, () is the one-dimensional
Hermite function (see [90]). Their norm is known to be given explicitly by
a (|2 m|  |m T\ 4/
1017 sy = 2™ ed ™! (5) : (2.3.2)

Then, taking a wave function ¢ € L*(R",dz), v : R® — C the Bargmann
transform B,, is defined as follows

Bo(z) = /R” An(z, 2)0(x)dz.

The kernel function of this transform is given by the following

An(z,2) = Ax(z) := <g> ) o7 (PP +a?)+av2zn
s

where for z = (21,..,2,) € C", & = (x1,..,2,) € R"” we have the following

notations
n

n n

2._ 2 2. 2 —

27 = E 27,0 = E x; and zx:= g 2%,
i=1 =1

i=1

It is known that the last kernel could be obtained making use of the generating
function of Hermite polynomials. Namely, we have the following formula

2" hi; ()

Foretll| EA I P TN T AT

= An(z, 7).

In 1961, Bargmann proved this important result

Theorem 2.3.5. The Segal-Bargmann transform B,, is an isometric isomorphism
from the standard Hilbert space L*(R™) to the Fock space F2(C™). Moreover, for
a fixed z € C" we have the following

BoAZ (w) = (%)‘Z K:(w) VweC™.

Another important property of this transform B,, is that it maps the Hermite
functions h%, to the standard orthogonal basis of F*®(C"), constituted by the
complex monomials. More exactly, we have (see [23])

Proposition 2.3.6. For allm € N" and z € C",

[Boh](z) = (9)Z 213! lml .

T

Since B,, is a unitary operator sending a basis to a basis. Then the Segal-
Bargmann transform admits an inverse and we have B, ' = B’. More exactly,
the inverse of a function f(z) in the Fock space F2(C") is given by the following
formula

B, f(x) = /Cn A, (z,2) f(2)dAa(2).
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Chapter 2. Reproducing kernel Hilbert spaces in complex analysis

Remark 2.3.7. Without lost of generality, for the rest of this chapter we suppose
that the dimension n = 1 and the Segal-Bargmann transform By will be denoted

simply by B.
The creation and annihilation operators on the Fock space F2(C) are defined

respectively by

Mof(2) = 2 DfE) = - f()

Notice that M, and D, are unbounded operators on the Fock space and satisfy
the canonical commutation relations namely

(M,,D,] = —T.
Moreover, the operator D, is adjoint to M, i.e

M:=D.,.

z

We have the following

d
Proposition 2.3.8. Let ¢ € L*(R) be such that x¢p, 9 E L*(R) then we have
T
d
1. (z + E) Bly|(2) = V2Blzy(2).

2. V3:Blg)(2) = B [(:1: - %) gp} (2).

Corollary 2.3.9. The Segal-Bargmann transform B maps the dimensionless rais-
ing and lowering operators

d d
T = - — 4+ —
a <£L’ J}) and a (ZI} :L‘)

on L*(R) onto the respective raising and lowering operators
bt =V2M. and b=2M;

on the Fock space F2(C).

A second interesting approach to introduce Segal-Bargmann transforms is
by considering the convolution product of the function ¢ € L*(R) with the
continuous extension of the fundamental solution of the heat equation. Indeed,
let p;(z) denote the fundamental solution of the heat equation

0 1

&Pt(x) = §Amﬂt($),
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2.3. Fock spaces and Segal-Bargmann transforms

Le. ] ,
_l=l®
€Tr) = - € 2t
Pl = Gy
where A is the usual Laplacian on R. Then, the Segal-Bargmann transform of
the function ¢ € L?(R) can be defined by setting C'p(z) = p; * ¢(z) where p;

has been analytically continued to C. Explicitly, we have

Ciolz) = / =)l

Such construction was used in [88] to study some extensions of Segal-Bargmann
or coherent state transforms in the setting of Clifford analysis.

We end this section by turning the attention to the fact that Segal-Bargmann
transform can be seen also as a particular example of a more general result
known as The Stone-von Neumann Theorem. This construction involves mainly
the Schrédinger Hilbert space H = L?(R) combined together with the classical
position and momentum operators X and P satisfying the canonical commuta-
tions relations namely,

X: o= Xp(x):=xp(x), P:p— Pp(r) =———p(z)
are defined such that we have

X, P =1,

«

where the symbol [, | denote the commutator of two operators and Z is the iden-
tity.

The Fourier transform and Weyl operator

We review also the Fourier transform and Weyl operator once connected to the
Segal-Bargmann transform. The Fourier transform of a signal f : R — Cis

defined by
0O = o [ o

Thanks to the Plancherel-Theorem, it turns out that the Fourier transform maps
unitary L?(RR; dz) onto itself. The following diagram is commutative

F24(C) == F2(C)
B—li TB
L*(R) —5— I(R)
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Chapter 2. Reproducing kernel Hilbert spaces in complex analysis

Then, we may consider the operator
Sa = BF,B~".

We note that S, maps isometrically 7%(C) into F*(C). Moreover, we have
the following

Proposition 2.3.10. For a given [ € F>“(C), we have

forall z € C.
A well-known fact is that the classical Fourier transform corresponding to
a = 1 admits the normalized Hermite functions ¢,, = m as eigenfunctions.
n

Indeed, we have

Flen) = (=1)"@n

The Weyl operators form a family of isometric operators on the Fock space
that can be defined using the normalized reproducing kernel combined with
the translation operator on the Fock space. They are of particular interest for
quantum mechanics and have a semi-group property with respect to a complex
parameter. For more details about this subject see for example [85, 115]. We
recall quickly this notion to stress the importance of Fock spaces.

Definition 2.3.1. Let a be a fixed complex number. The Weyl operator is defined
to be the operator W, : F>*(C) — F**(C) such that

Waf(2) = k3 (2) (2 — a)

a(z&—ﬁ)
=e 2 f(z —a).

forevery f € F*>%(C) and z € C, where k is the normalized reproducing kernel
of the Bargmann-Fock space.

An important fact on the Weyl operators is given by the following

Theorem 2.3.11. Leta,b € C. The Weyl operator W, is a unitary operator on the
Fock space F**(C). Moreover, we have the semi-group property

W f(2) = e OWo f(2)
forany f € F>*(C) and z € C.

Now, fix ¢ a real number and consider the translation operator on the stan-
dard Hilbert space defined by T : L*(R) — L*(R), T.p(x) := ¢(x — ). Then,
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2.4. Polyanalytic functions and associated reproducing kernels

the following diagram is also commutative

F2o(C) - F2(C)
B—ll TB
LA(R) —— L*(R)

and we can consider the operator
U.:= BT.B™".

Observe that U, maps isometrically F**(C) into F>*(C). Moreover, it holds
that

Proposition 2.3.12. For a given f € F>*(C), we have

U(f)(2) = W f(2)
forall z € C.

2.4 Polyanalytic functions and associated reproducing kernels

In this section, we revise the needed material concerning complex polyanalytic
functions. The reader interested in more details, may consult the book [22].

Definition 2.4.1. Let () be a domain of C. A function f : ) — C is said to be
polyanalytic of order n or n—analytic if

(%)nf(z) =0, Vz € Q.

The space of all polyanalytic functions of order n is denoted by H,(£2).
Example. The function F'(z) = 1 — 2% is polyanalytic of order 2 on C.

Proposition 2.4.1. Let () be a domain of C and f : @ — C. Then, the two
following conditions are equivalent

1. f is polyanalytic of order n.
2. f(z2) =) Zap(2),Vz € Q whereay, ..., a,_, are analytic on Q).

Proposition 2.4.2. Let f and g be two polyanalytic functions of order n on a
domain ). If Q) is a subdomain of () such that f and g coincide on ), then f and
g coincide everywhere in (2.
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Chapter 2. Reproducing kernel Hilbert spaces in complex analysis

We recall also the polyanalytic Cauchy formula in complex analysis, see The-
orem 2.1 in [57].

Theorem 2.4.3. Fork > 1, we set

1z Re(z2)k

velE) = 5 Wﬁ

Forz = x+1y, setdo = dx Ady. If f is polyanalytic of order n, then for all z € D

we have
J

0
9=/ » Z Pl = 2) 5 flu)do

In the book of Balk [22], the Fock space F,,(C) of polyanalytic functions of
order n is defined by

FAC) = A1 € (L) [ IF)Fe i) < oo,

where d\(z) denotes the usual Lebesgue measure on the complex plane. Note
that, F,,(C) is a reproducing kernel Hilbert space whose reproducing kernel is

n—1 1
wz (k+1)y|z—w|2k (2.4.1)

k=0

Moreover, for all f € F,,(C) and z € C we have

)] < VaeF | fllmo

On the other hand, the Bergman space A2 (D) of polyanalytic functions of order
n in the unit disc is given by

AD) = {1 € 1) [ IFEPNE) < oc.

Also A2 (D) is a reproducing kernel Hilbert space whose reproducing kernel is
given by

n—1
n—+k 21—
() = g (1 (o) (" E )= e
=0

(2.4.2)
for any z, w € ). Moreover, forall f € A%(D) and z € D, we have the following

n_fllazm)

\/_(1—!ZI)

If()l < —=
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CHAPTER

Preliminaries on hypercomplex analysis

In this chapter, we present the quaternions and revise the main results that
will be needed in the sequel about different hypercomplex function theories.
In particular, slice regular and Fueter hyperholomorphic functions. Then, we
review a fundamental result in Clifford analysis that allows to connect both
the function theories, namely the so-called Fueter-Sce-Qian mapping theorem.
The material revised in this chapter is based mainly on the following refer-
ences [7, 28,35-38, 47, 75,77, 83]. Since most of the results presented in this
chapter are very well-known and classical we have omitted to give proofs.

3.1 Slice hyperholomorphic function theory

The non-commutative field of quaternions is defined to be
H={q=x0+ 210 + 2] + 23k ; o, 21,22, 23 € R}
where the imaginary units satisfy the multiplication rules
P=42=k=—1 and ij=—ji=k jk=—kj=1ki=—ik=].
On H the conjugate and the modulus of g are defined respectively by
q = Re(q) — Im(q) where Re(q) =x9, Im(q) = x1i+ x97+ w3k

and

lg| = Vqq = \/xg—i-x%—ka:%—i-x%.
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Chapter 3. Preliminaries on hypercomplex analysis

We can use also ¢ to denote the vector part of the quaternionic variable. The
imaginary units can be denoted sometimes as ey, e and e3 = e;e2. We note that
the quaternionic conjugation satisfy the property pg = ¢p for any p,q € H.
Moreover, the unit sphere

{g =210+ w2 + w3k; ¥ + a5 + 25 =1}
coincides with the set of all imaginary units given by
S={qeH;¢*>=—-1}.

Any quaternion ¢ € H \ R can be written in a unique way as ¢ = = + [y for
some real numbers x and y > 0, and imaginary unit / € S, in fact we have

[Eli + SBQj + $3k‘
|T10 4 20 + w3k

q =g+ |[E12+JZ2]+ZL’3]{3|

Then, for every given I € S, the slice C; is defined to be R + RI and it is
isomorphic to the complex plane C so that it can be considered as a complex
plane in H passing through 0, 1 and /. The semi-slice C; is given by the set

{z+yl;z,y € R,y > 0}.
Ifg=129 € Rthenq € C;forall I € S. It is immediate that we have

H= UC,.
Ies

We denote by B, the open ball in H of radius r > 0, i.e.

B, = {q = 20 + iz1 + jry + kxs, such that x5 + 2% + 23 + 23 < *}.

To introduce convolution operators of a quaternion variable, we need a suitable
exponential function of quaternion variable. For any I € S, we choose the
following well-known definition for the exponential:

e’ = cos(t) + Isin(t), t € R,
see [83]. The Euler’s kind formula holds :
(cos(t) 4 I sin(t))* = cos(kt) + I sin(kt),

and therefore we can write
(elt)k — elkt.

For any ¢ € H\R, let r := |q|; then, see [83], there exists a unique a € (0, 7)
such that cos(a) := ! and a unique /, € S, such that

Ia T2 T3 Ty

g=re, withl, =iy +jv+ ks, y=

rsin(a)’ rsin(a)’ rsin(a)
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3.1. Slice hyperholomorphic function theory

Now, if ¢ € R, then we choose @ = 0,if ¢ > 0anda = 7if ¢ < 0, and as I,
we choose an arbitrary fixed / € S. So that if ¢ € R\ {0}, then again we can
write ¢ = |g|(cos(a) + I sin(a)) (but with a non unique /). The above is called
the trigonometric form of the quaternion number ¢ # 0. For ¢ = 0 we do not
have a trigonometric form for ¢ (exactly as in the complex case).

In [77], the authors proposed a new definition to extend the classical theory
of holomorphic functions in complex analysis to the quaternionic setting. This
leads to the new theory of slice hyperholomorphic or slice regular functions on
quaternions:

Definition 3.1.1. A real differentiable function f : () — H, on a given domain
Q2 C H, is said to be a (left) slice regular function if, for every I € S, the restriction
f1 to the slice C; satisfies

Orf(x + Iy) == % ({% —l—[%) fr(z+ Iy) =0,

on ;. The slice derivative Os f of f is defined by :

or(f)lq) ifg=x+Ty,y#0

0 =
s(f)(q) %(f)(x) ifq = x is real.

In addition we introduce the following terminology

1. A quaternionic valued function on a domain (2 is said to be (quaternionic)
intrinsic if f(Q;) C C; forany I € S.

2. A function which is slice regular on the whole space of quaternions H is
said to be entire.

We will refer to left slice regular functions as slice regular functions, for short.
The set of these functions is denoted by SR({2). It turns out that SR(f) is a
right vector space over the noncommutative field H.

Remark 3.1.1. The multiplication and composition of slice regular functions are
not slice regular, in general. Moreover, the slice derivative does not satisfy the
Leibniz rule with respect to the pointwise multiplication. However, the composition
f - g of two slice regular functions is slice regular if g is intrinsic and the pointwise
product f g is slice regular if f is intrinsic, see [35].

According to this definition, the basic polynomials in ¢ with quaternionic co-
efficients on the right are slice regular. Moreover, for any power series Z q" n,

n
there exists 0 < R < oo, called the radius of convergence such that the power
series is a slice regular function on B(0, R) := {q € H; |q| < R}. The space of
slice regular functions is endowed with the natural topology of uniform conver-
gence on compact sets. The characterization of slice regular functions on a ball
B = B(0, R) centered at the origin is given by
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Chapter 3. Preliminaries on hypercomplex analysis

Theorem 3.1.2 (Series expansion). An H-valued function f is slice regular on
B(0, R) C H if and only if it has a series expansion of the form:

f@) =3 a8 (1)(0)

converging on B(0, R) = {q € H; | q |< R}.

Definition 3.1.2. A domain () C H is said to be a slice domain (or just s-domain)
if QN R is nonempty and for all I € S, the set Q2 := QN Cj is a domain of the
complex plane C;. If moreover, for every ¢ = x + Iy € €, the whole sphere

lq] :={z + Jy; J €S},
is contained in €2, we say that (2 is an axially symmetric slice domain.

Example. The whole space H and the Euclidean ball B = B(0, R) of radius R
centered at the origin are axially symmetric slice domains.

The following properties of slice regular functions are fundamental and very
useful to develop this theory, see [35,75].

Lemma 3.1.3 (Splitting Lemma). Let f be a slice regular function on a domain
2. Then, for every I, J € S with I L J, there exist two holomorphic functions
F,G :Q; — Cy such that for all z = x + Iy € ()7, we have

fi(z) = F(2) + G(2)J,
where Q); = QN C;andC; =R + RI.

Theorem 3.1.4 (Identity Principle). Let f and g be two slice regular functions on
a slice domain (). If, for some I € S, f and g coincide on a subset of {2; having an
accumulation point in (), then f = g on the whole domain ).

Theorem 3.1.5. Let §) be an axially symmetric slice domain and f € SR(Q).
Then, for any I, J € S, we have the formula

flz+ Jy) = %(1 —JI) fi(x + Iy) + %(1 + JI) fi(z — Ty)

forallqg=x+ Jy € .
In other words, we have

Theorem 3.1.6 (Representation Formula). Let () be an axially symmetric slice
domain, f € SR(Q2) and I, J € S. Then, for allq = x + yI € H, we have

flx+yl) = a(z,y) + 18(x,y)
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3.1. Slice hyperholomorphic function theory

where
alw9) = Sfw +yJ) + flz — yJ)
and

Ba.) = 27— ud)  f(a+yJ)

Moreover, a and 3 are H-valued differentiable functions satisfying the Cauchy-
Riemann conditions. We have also o(z, —y) = a(x,y) and B(z, —y) = —5(z,y).

Lemma 3.1.7 (Extension Lemma). Let {2; be a domain in C; symmetric with
respect to the real axis and such that Q; "R # (. Leth : Q — H be a
holomorphic function. Then, the function ext(h) defined by

1 JI
ext(h)(z+Jy) = 5[h(x—i—[y)—l—h(m—[y)]—i-?[h(x—]y)—h(x+]y)]; J €S,
extends h to a slice regular function ext(h) on Q= U x + Iy, the sym-

z+1y ; x+Jyed
metric completion of (2. Moreover, ext(h) is the unique slice regular extension of

h.

It is also possible to introduce the notion of Cauchy kernel for slice hyper-
holomorphic functions, see for example [35,48].

Definition 3.1.3. Let q, s € H be such that sq # qs. The series expansion given
by

S s,q) == _q"s™", g <]
n=0

is called a noncommutative Cauchy kernel series or shortly Cauchy kernel series.

Theorem 3.1.8. Let ¢, s € H be such that q ¢ [s]. Then, we have

S7(s,q) = —(¢" = 2Re(s)q + |q)*) (¢ —9).

An important fact in this theory, is that the slice hyperholomorphic Cauchy
kernel can be written in two different forms thanks to the following identity.

Proposition 3.1.9. Let ¢, s € H be such that q ¢ [s]. Then, we have
—(q" — 2Re(s)q + |q|*) (¢ —5) = (s = 9)(s* — 2Re(q)s + |s[*) .

Then, two formulations of the Cauchy kernel can be introduced in this frame-
work

Definition 3.1.4. Let ¢, s € H be such that q ¢ [s].
e We say that S~1(s, q) is written in the form I if
S7(s,q) = —(q" — 2Re(s)q + |a|*) (¢ — 5)-

31



Chapter 3. Preliminaries on hypercomplex analysis

 We say that S~ (s, q) is written in the form Il if

57 (s,q) = (s —q)(s* — 2Re(q)s + |s[*) .

The previous notion of Cauchy kernel allows to introduce a Cauchy formula
for slice hyperholomorphic functions.

Theorem 3.1.10 (Cauchy Formula). Let W C H be an open set and [ a left slice
regular function. Let U be a bounded axially symmetric open set such thatU C W.
Suppose that theboundary of UNC; consists of a finite number of rectifiable Jordan
curves for any I € S. Then, if ¢ € U, we have

1

=5 f(s)ds1S7(s,q),
™ J aUncy)

f(q)

where ds; = ds/I and the integral does not depend on U nor on the imaginary
unit [ € S.

Another interesting approach to define slice hyperholomorphic functions is
to consider them as solutions of a special global operator with non constant
coeflicients that was introduced and studied in [40, 51, 80]. This leads to the
following definition

Definition 3.1.5. Let () be an open set in H and f : Q0 — H a function of class
C'. We define the global operator G(f) by

G()(q) =171 0uo f(@) + T D> 210, f(q),

foranyq=xo+q € €.

It was proved in [40] that any slice hyperholomorphic function belongs to
ker(G) on axially symmetric slice domains. Other interesting properties of the
global operator G were studied in [42]. We recall some of them that will be
helpful for our purposes:

Proposition 3.1.11. Let () be an open set in H and f, g : 0 — H two functions
of class C'. Then, forq = xo + ¢ € Q we have

L G(fg) =G(flg+ fGlg)+ (df - fT) ixz&mg-
In particular, it holds: =
2. G(fA+g) =GN + G(g), VA € H.
5 Glaof) = |7PS +20G(f) and G(@ 1) =~ 1°f +TG().
4 G(¢"f) = ¢*G(f), ¥k € N.
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3.2 Quaternionic intrinsic functions

Let us consider the subclass of SR((2) defined on an open set 2 C H by
NEQ):={feSR(Q): f(ANC;) C C;;VI € S}.

If Q is axially symmetric, functions of this class are called quaternionic intrinsic
in analogies with the complex case thanks to the following property

Proposition 3.2.1. A slice regular function f belongs to the class N'(Q) if and
only if it satisfies f(q) = f(q) forallq € Q.

If one considers the ball @ = B(0, R) with center at the origin it is clear
that a slice regular function is belonging to N () if and only if its power series
expansion has real coefficients. These functions are also called real, in a more
general case we have

Proposition 3.2.2. Let ) C H be an axially symmetric open set and consider the
slice regular function f(x + yI) = a(z,y) + I8(x,y). Then f € N(Q) if and
only if

fx+yl) = az,y) + 15(z,y)

with o, B are real valued functions satisfying the Cauchy-Riemann conditions.

Remark 3.2.3. All elementary transcendal functions are belonging to the class
N (H). These functions coincide with the analogous complex function on any com-

plex plane C;.

[e.e] qn
1. exp(q) = el = Z prt
n=0

2. sin(q) = Z(—l)”@%_:ll)'
3. cos(q) = Z(—l)" (gj:)'

Another version of the splitting lemma involving complex intrinsic functions
is the following

Lemma 3.2.4 (Refined Splitting Lemma). Let U C H be an axially symmetric
slice domain and let f be a slice regular function on U. For any I, J € S with J
orthogonal to I, there exist four holomorphic intrinsic functions h; : U N C; —
Cr,1=0,...,3 such that

frx+yl) =ho(x +yl) + hy(x+y)I + ho(z +yI)J + hz(z +yIK,
where K = 1J.

33



Chapter 3. Preliminaries on hypercomplex analysis

An important fact is that the class of slice regular functions on axially sym-
metric slice domains can be obtaind from the subclass of quaternionic intrinsic
functions. This is explained thanks to the following

Proposition 3.2.5. Let U C H be an axially symmetric slice domain and {1, 1, J, 1.J}
a basis of H. Then,

SR(U) =NU) & NI & N(U)J & NU)LT

Because of the noncommutativity of H the composition and multiplication
of two slice regular functions are not slice regular in general. Consider the fol-
lowing example, set f(q) = ¢ — i we have

f@)?=(q—i)(g—i)=¢ —q—ig—1

The product f? = ff is not slice regular because of the term iq. However, we
know that

Proposition 3.2.6. Let U C H be an axially symmetric slice domain and let f
and g be two slice regular functions on U belonging to N'(U). Then, the point wise
multiplication fg belongs also to N'(U).

On the other hand, we consider the function g(q) = ¢*. Clearly the compo-
sition g o f = f? which is not slice regular. To preserve the slice regularity of
the composition, we have the following
Proposition 3.2.7. Let U be an axially symmetric quaternionic slice domain and
V' an open set in H. Let g and f be respectively two slice regular functions on U
andV such that g(U) C V and g € N (U). Then, the composition f o g is slice

regular on U.

For I € S fixed, we define another subclass of slice regular which is larger
than NV (U). Namely, we consider

Vi(U) ={feSRU): f(UNC;) CCr}
Remark 3.2.8. We have the following
1L NU) = IQSVI(U).

2. LetI €S fixed and J € S such that I | J. Then, direct computations using
the extension lemma shows the following

SR(U) = Vi(U) & V;(U)J.
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3.3 Hardy, Bergman and Fock spaces of slice hyperholomorphic func-
tions

The Hardy space of slice hyperholomorphic functions on the quaternionic unit
ball B was introduced first in [11,12] and is denoted by Hy(B). See also [55] for
Hardy spaces H,,(B). We recall that the Hardy space is defined to be the space
of slice regular power series given by

H,(B) = {f = dPag; ap e H:||fIP =) |ail” < oo}.
k=0 k=0

We note that Hy(B) is a quaternionic reproducing kernel Hilbert space whose
reproducing kernel is given by

Ku,@)(q,7 Z q"T" = (1—qr)7, (3.3.1)

where * denotes the classical star product of slice hyperholomorphic functions.
Furthermore, we have the following charaterization of the quaternionic Hardy
space:

Theorem 3.3.1. Let f € Ho(B). Then, the norm of f can be written as

1 2 %
191 = s (50 [ 1ftoePas)
0<p<1 7T 0

The slice Bergman space of the first and second kind were introduced in
[41,43]. In particular, we focus on the case of the Bergman space of the second
kind of the quaternionic unit ball B. For I &€ S, the slice hyperholomorphic
Bergman space of the second kind is defined to be

Asiee(B) := {f € SR(B): / 1)) < oo}

Note that, Agj;..(B) is a right quaternionic Hilbert space which does not depend
on the choice of the imaginary unit /. Its reproducing kernel is obtained by ex-
tending the classical kernel in complex analysis; in closed form it can be written
as follows, see [43]:

1
Bs(q,r) = %(1 —2q7 + *7?)(1 — 2Re(q)7 + |q|*7*) 2 (3.3.2)
We note that this kernel can be written also in the following form
1
Bs(q,r) = —(1 = 2Re(r)q + Ir2¢%)72(1 — 2qr + ¢*r?). (3.3.3)
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The paper [15] studies the slice hyperholomorphic quaternionic Fock space
Fsiice(H), defined for a given I € S to be

Foue )= {1 € SRED: 2 [ 150 o) < .

where f; = f|c, and d\;(p) = dxdy for p = = + yl. The definition of this
space does not depend on the choice of I. This quaternionic Fock space can be
characterized in terms of the slice hyperholomorphic power series as follows

Fstice(H) = {Z ¢"ar; a, € H :Zk:!|ak]2 < oo} :
k=0 k=0

It was proved also that Fgy;..(H) is a right quaternionic reproducing kernel
Hilbert space whose reproducing kernel is given by
NPT

e.(pq) = o (3.3.4)

n=0

Equivalently, the reproducing kernel of the slice hyperholomorphic Fock space
could be obtained also by taking the slice regular extension of the complex func-
tion e*? where z and ¢ belong to the same slice. This means that

e(pq) = ext(e*)(p). (33.5)

Its associated Segal-Bargmann transform was studied in [60] by considering the
slice hyperholomorphic kernel obtained making use of the normalized Hermite
functions (7,,),>0. The explicit expression of this kernel is given by

0 k
A, ) =) j_ﬁnk(aj) = e 3@V gy ) e H xR, (3.3.6)
k=0 :

Then, for any quaternionic valued function ¢ in L?(R, H) the slice hyper-
holomorphic Segal-Bargmann transform is defined by

BS(0)(q) = / A 2)p() (33.7)

In the same spirit different famous spaces of slice hyperholomorphic functions
such as Hardy, Besov, Bloch, Dirichlet and Bergman spaces were studied in [13,
43,113].

3.4 Fueter hyperholomorphicfunction theory and Fueter mapping the-
orem

We recall the classical notion of Fueter hyperholomorphic or Fueter regular
functions, for more details one can see [47,83].
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Definition 3.4.1. LetU C H be an open set and f : U — H a real differentiable
function. We say that f is (left) Fueter regular or regular for short if

0 0 0

. . 0
DIa) = (o + i+ + e ) 1) =0Ng € U

The right linear space of Fueter regular functions is denoted by R(U).

Sometimes the Cauchy-Fueter operator can be denoted simply by 0. The
right Fueter regular functions can be defined just by taking the imaginary units
on the right of the derivatives of the function f. The quaternionic monomials
P,(q) = ¢" are not Fueter regular. However, there exist some other important
functions in this theory, the so-called Fueter variables, defined by

G(z) =2 — ezo, 1 =1,2,3. (3.4.1)

These functions play the same role that complex monomials play in complex
analysis. For example, a series expansion for Fueter regular functions is obtained
using these Fueter variables. A suitable product that allows to preserve the reg-
ularity in this setting is the so-called C-K product, denoted ©. Given two Fueter
regular functions f and g, we take their restriction to 2y = 0 and consider their
pointwise multiplication. Then, we take the Cauchy-Kowalevskaya extension
of this pointwise product, which exists and is unique, to define f © g, see [83].
As customary, a Fueter regular polynomial of degree £ is called a quaternionic
spherical monogenic of degree k. For more details about the theory of quater-
nionic Fueter regular functions we refer the reader to, e.g. [47,83].

The two theories of slice hyperholomorphic and Fueter regular functions are
related by the Fueter mapping theorem, see [48]. We briefly recall below the
variation of this result that we will use later and we refer the reader to [102] for
more details. We recall below the variations of the Fueter mapping theorem that
we will use later in the next chapters and refer the reader to [48,102] for several
extensions.

Theorem 3.4.1 (Fueter mapping theorem [48]). Let U be an axially symmetric
setin andlet f : U C H — H be a slice hyperholomorphic function of the form
flx4yl) = a(x,y)+16(x,y),wherea(x,y) and 5(x,y) are quaternionic-valued
functions such that o(x, —y) = a(z,y), B(z, —y) = —P(x,y) and satisfying the
Cauchy-Riemann system. Then, the function

—
~

- - q -
Fioo+ )= 2 (alan 7)) + Lo la1)
extends to a Fueter regular function on the whole U.

Remark 3.4.2. If U is an axially symmetric slice domain in H, then every slice
hyperholomorphic function f : U C H — H is of the form f(x + Iy) =
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a(z,y) + 16(x,y), where o and 3 have the properties mentioned in the preced-
ing statement. This is an immediate consequence of the Representation formula
observed in Lemma 2.2 in [45].

Remark 3.4.3. Below, we can consider the Fueter mapping defined by
7:SRWU) — FRWU), f—7(f) = A(f).
Theorem 3.4.4 ( [48]). Given a quaternion s € H, we define
[s]={peH: p=Re(s)+1|5],I €S}.
Let S7'(s, q) be the Cauchy kernel defined by:
$7V(s,q) = (s — @)(s> — 2Re(q)s + [a)) ", ¢ ¢ [s]
Then the function
F(s,q) = AS7!(s,q) = —4(s — 7)(s* — 2Re(q)s + |¢|*) >,

is a Cauchy-Fueter regular function in the variable q, and it is right slice regular
in the variable s for q ¢ [s|.

Theorem 3.4.5 (The Fueter mapping theorem in integral form [48]). LetW C H
be an axially symmetric open set and let f be slice hyperholomorphic in W. Let
U be a bounded axially symmetric open set such that U C W. Suppose that the
boundary of Uy = U N C; consists of finite number of rectifiable Jordan curves for
any I € S. Then, if ¢ € U, the Cauchy-Fueter regular function given by

7(f)(q) = Af(q)

has the integral representation

1

= — AS™Y(s,q)ds;f(s), ds; = ds/I,
27T aU;

7(f)(q)

and the integral does not depend on U nor on the imaginary unit I € S.
We will need also these useful results in our computations

Proposition 3.4.6 ( [24]). For alln > 2, we have
D[qn} _ _Qanfqufl.
k=1

Proposition 3.4.7 ( [63]). For alln > 2, we have



3.5. Clifford monogenic case

3.5 Clifford monogenic case

Let {e1, €2, ..., €, } be an orthonormal basis of the Euclidean vector space R™
in which we introduce a non-commutative product defined by the following
multiplication law

exes + esep = =205, k,s=1,....m
where 0y, 5 is the Kronecker symbol. The set
{ea: AC{l,...,m} withey = epep,...,,1 < hy <..<h, <m,ey=1}

forms a basis of the 2™-dimensional Clifford algebra R,, over R. Let R™"! be
embedded in R,, by identifying (x¢, 71, ..., 7,,) € R™! with the paravector
r = 9+ x € R,,. The conjugate of z is given by Z = x(y — z and the norm |z|
of z is defined by |x|?> = 22 + ... + 22,. For m > 1, the Euclidean Dirac operator

on R™ is given by

8£ = Z ek&ck .
k=1
The generalized Cauchy-Riemann operator (also known as Weyl operator) and
its conjugate in R™*! are given respectively by

O := 0y + 0y and 0 := 9,y — O,

Notice that _ _
00 = 00 = Agm+1

where Agm+1 stands for the usual Laplacian on the Euclidean space R™"!. Real
differentiable functions on an open subset of R™"! taking their values in R,,
that are in the kernel of the generalized Cauchy-Riemann operator are called
left monogenic or monogenic, for short. Moreover, for a monogenic function f
we have the following Leibniz rule, see e.g. [100]

Op(af) = —mf — 20, f =2 110, f. (3.5.1)
=1

The latter formula will be very important for our calculations. In the particular
case of quaternions the generalized Cauchy-Riemann operator in R”"! becomes
the Cauchy-Fueter operator and this leads to the theory of quaternionic Fueter
regular functions. The (n — 1) dimensional sphere of units 1—vectors in R™ is
denoted by

Sl = {$:x161+...—|—$mem;x%+...aj2 1}.

m —

Note thatif I € S"7!, then I? = —1. Based on these notations, in [36] the theory
of slice regular functions on quaternions was extended to the slice monogenic
setting thanks to the following :
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Definition 3.5.1. A real differentiable function f : Q C R™" — R,, on a
given open set is said to be a slice (left) monogenic function if, for very [ € S™ 1,
the restriction f; to the slice C;, with variable x = u + Iv, satisfies the following
equation on 2y = QN Cy

Orf(u—+Iv) := % <€%+I%> fr(u+ovl) =0.

The space of all slice monogenic functions on () is denoted by SM ().

Finally, we state the famous Fueter-Sce-Qian mapping theorem in the Clif-
ford monogenic case

Theorem 3.5.1 (Fueter-Sce-Qian mapping theorem ). Let 2 be an axially sym-
metric slice domain of R™"L. If f is an s-polymonogenic function. Then, the func-
tion defined by

() (@) = A f(x)

is monogenic.
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CHAPTER

Approximation in slice hyperholomorphic Fock
spaces

In this chapter we introduce two Fock spaces of slice regular functions. These
spaces can be of two different kinds since they are equipped with different inner
products and contain different functions. Then, we show that the set of quater-
nionic polynomials is dense in both Fock spaces of the first and of the second
kind. Several proofs are presented, including constructive methods based on the
Taylor expansion and on the convolution polynomials. In the last case, quan-
titative estimates in terms of higher order moduli of smoothness and of best
approximation quantity are obtained. The results obtained in this part of the
thesis are based on [62].

4.1 Motivation

Fock spaces have been introduced in quantum mechanics via tensor products
to describe the quantum states space of variables belonging to a same Hilbert
space. Then, it was realized that this description corresponds in fact to the
Segal-Bargmann spaces, i.e. spaces of holomorphic functions in several vari-
ables which are square integrable with respect to a Gaussian measure. These
spaces are important also in other settings, like in infinite dimensional analysis
and in free analysis, since these spaces are related to the white noise space and
to the theory of stochastic distributions, see [114]. For an account on the theory
of Fock spaces one may consult for example the book [115]. Here we continue
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the study of slice hyperholomorphic Fock spaces over the quaternions started
in [15] with the purpose of providing some approximation results, specifically
our goal is to extend results on the density of polynomials in the complex case
to this setting. We shall show that in this context one may define two types of
Fock spaces, which are called of the first and of the second kind, and for which
the approximation results require different techniques.

We review results on the Hilbert quaternionic Fock space and Segal-Bargmann
transform. We introduce also the definition of Fock spaces of the first and sec-
ond kind. First, we study the approximation result in Fock spaces of the first
kind. Then, we move to prove the approximation result in Fock spaces of the
second kind, obtaining a result of general validity. We obtain quantitative esti-
mates in terms of higher order moduli of smoothness and of best approximation
quantity. Finally we discuss the density of reproducing kernels, type and order
of functions in the Fock spaces of the second kind.

4.2 Theslice hyperholomorphic Fock space and Segal-Bargmann trans-
form

The Bargmann-Fock space of slice hyperholomorphic functions in the Hilbert
case was first introduced by Alpay, Colombo, Sabadini and Salomon in [15]. In
this section, we briefly review this notion and recall some results on the quater-
nionic Segal-Bargmann transform introduced in [60] that will be useful in the
sequel.

For given I € S and v > 0, we set
v

F(E) = {f e SRE): 2 [ InilwPe an () < oc.

where f; = f|c, and d\;(q) = dady for ¢ = z + yI. The set F,"”(H) is called
the slice hyperholomorphic Fock space. The right H-vector space .FIZ’V(H) is
endowed with the inner product

{(f,9) p2vm = %/ ar(@) fr(q)e ™" dX; (q) (4.2.1)

Cr
for f, g € F;"(H), so that the associated norm is given by

v

e =% [ 1P ar(a),

It was shown in [15] that the monomials f,,(¢) := ¢";n = 0,1,2,--- , form an
orthogonal basis of F;" (H) with

<fn7 fn>]—‘12”(H) = V_'(Sm,n' (4.2.2)
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Moreover, for any f = 3 ¢"a, and g = 3 ¢"b, in F;"(H), we have

n=0 n=0
> nl—
<fa g>]:12’”(H) = Z ﬁbnan, (4.2.3)
n=0

Thus, a given series f(q) = 3. ¢"a, belongs to F>*(H) if and only if the se-
n=0

quence of quaternions (a,),>o satisfies the growth condition

oo
n!
£ 1120 ey = > ;\%\2 < 00. (4.2.4)
n=0

The definition of the quaternionic Bargmann-Fock space F;" (H) does not de-
pend on the choice of the complex plane thanks to this observation:

Proposition 4.2.1. Let f be slice entire function and I, J € S. Then, we have

1
5“f”f,2’”(H) < Hfo}”(H) < 2Hf||f12’”(H)'

Remark 4.2.2. According to the previous comment, we will denote in general the
slice hyperholomorphic Fock space by F~"_(H).

slice

We note that for a fixed ¢ € H, the evaluation map d, : Fr (H) — H;

slice
d,(f) :== f(q), is a continuous linear form. More precisely, we have

Lemma 4.2.3. For every [ € F2"

slice

14
5,(F)1 < exp (Sal?) 1 f1Leze

Thus, by Riesz’ representation theorem for quaternionic Hilbert spaces, there
exists a unique element K in J, ¥ (H) such that:

slice
<f7 K(I]j>_7:2,'/ (H) = 611(f) - f(q)
for all f € F2” (H). The reproducing kernel function K, : H x H — H;

(H), we have the estimate

slice
slice

(p,q) — K, (p,q) = K}(p) is then given by

N
K,(p,q) = Z o K,(q,p). (4.2.5)
n=0 '

We have also

Proposition 4.2.4. For every q,q € H, we have
<qu’ qu’ >}‘2vl’

slice

o /
(H) - KV(q ’Q)

and in particular

HK;H;,,, ) el

slice
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The reproducing kernel of Fz._(H) is given by

o0 T'L—TL

K (p7 -

e.(vpq), V(p,q) € H x H.

n=0

Now, we turn our attention to the quaternionic Segal-Bargmann transform.
It can be defined from the quaternionic Hilbert space L?(R;dr) = L?*(R;H),
consisting of all the square integrable H-valued functions with respect to

()= | U@, (426)

onto the slice hyperholomorphic Bargmann-Fock space F . (H). For this, we
consider the kernel function

34 _,
A(g;z) = (%) eF@HI VAT (g ) eH xR, (4.27)

obtained as the slice hyperholomorphic extension of the kernel function of the
classical Segal-Bargmann transform. This is closely connected with the fact that
A(q; ) can be seen as the generating function of the real weighted Hermite
functions

B () = (—1)res ()

dz™

that form an orthogonal basis of L?(RR; dz), with norm given explicitly by

hY || 2 ! i

v . "yl ) 4.2.8
H nHL?(R,dm) (V) ( )
In particular, we have the expansion

Proposition 4.2.5. Forallq € H and x € R, we have

Z -
|| nHL2 R;dz)

gl 20 ey

n

Another property concerns the partial function of the above kernel function
defined on R by A, : © — A,(x) := A(q; x) for every fixed ¢ € H. It connects
the norm of A, in L*(R, H) to the one of the reproducing kernel function K’ g In

F2Y (H). In fact, we have

slice
Proposition 4.2.6. For every fixed ¢ € M, the function A, is an element of
L*(R,H) and satisfies

v1ql2 v
HAqu(RH) = ezl = HK (4.2.9)

lrze -
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Associated to the kernel function A(g; ) given by (4.2.7), we consider the
integral transform defined by

14

Bu(w)(a) = [ Alg o)yt = (4)’ [ eFee @i @20

™

for ¢ € H and ¢ : R — Hj provided that the integral exists. We will call it the
quaternionic Segal-Bargmann transform. The following shows that By is well
defined on L*(R; dw).

Proposition 4.2.7. For every q € H and every ) € L*(R;dx), we have

1/2 v 2
Ba) @] < (2) 7 e 6 pagus (42.11)

The explicit expression of the Segal-Bargmann transform acting on the Her-
mite functions i/ is given by Namely, we have

Lemma 4.2.8. For every quaternion q € H and nonnegative integer n, we have

1
v (Vv VNign non
Bi(hy)(a) = (=) 280
and
||B]}V]I(hryz)||f:l’;e(H) - ||th1||L2(R,H)-
An important fact that was proved in [60] is given by

Theorem 4.2.9. The quaternionic Segal-Bargmann transform By realizes a sur-
jective isometry from the Hilbert space L*(R,H) onto the slice hyperholomorphic

Bargmann-Fock space F-\ (H).

The following properties hold for the quaternionic Segal-Bargmann trans-
form

d
Proposition 4.2.10. For all p € L%(R) such that z, s L3(R) we have
T
1. (9s +vq) Bt [¢] (a) = vv/2By[re)()-

2. B Km - d%) so} (q) = vV2qBg[¢](q)-

4.3 Banach Fock spaces of slice hyperholomorphic functions

In the framework of slice regular functions, one may consider two kinds of func-
tion spaces. In the papers [68, 73], the properties of density for quaternionic
polynomials in these kinds of spaces were obtained for Bergman, Bloch and
Besov spaces. See also the recent book [72] about a general quaternionic ap-
proximation theory. Let us mention here that in the complex case, convolution
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polynomials were used to obtain constructive approximation results in complex
Bergman spaces, see [70]. In this chapter we continue this type of study for the
quaternionic slice regular functions in the so-called Fock spaces. Before to intro-
duce them, we firstly recall some known facts about Fock spaces in the complex
case

Definition 4.3.1. (see, e.g., [115], p. 36) Let 0 < p < oo and o > 0. The Fock
space F?(C) is defined as the space of all entire functions in C with the property

that ;Jz_p ‘f(z)e""'zPV2 pdA(z) < 400, where dA(z) = dxdy = rdrdf, z =
TJc

x + iy = re?, is the area measure in the complex plane.

Remark 4.3.1. Endowed with

ap —alz p
1710 =5, | [ dace)

it is known (see, e.g., [115], p. 36) that F? is a Banach space for 1 < p < oo,
and a complete metric space for || - ||, with 0 < p < 1. Also, if p = +o00, then

endowed with || f||co.a = esssup{|f(z)|e~®**I/2; 2 € C}, F° is a Banach space.

Remark 4.3.2. Concerning the approximation by polynomials in Fock spaces,
qualitative results without any quantitative estimates were obtained. For any
0 < p < oo, and f € FP, there exists a sequence of polynomials (P,),en
such that lim,, o || f — Pullp.. = O (see, e.g., Proposition 2.9, p. 38 in [115]).
The proof of this result is not constructive and consists in two steps : at step
1, one approximates f(z) by its dilations f(rz) with » — 1~ and at step 2 one
approximates each f, by its attached Taylor polynomials. If 1 < p < oo, then
one can construct P, as the Taylor polynomials attached to f (see, e.g., Exercise
5, p. 89in [115]) but if 0 < p < 1, then there exists f € F? which cannot be
approximated by its associated Taylor polynomials (see, e.g., Exercise 6, p. 89
in [115]). However, if f € F3° is such that lim, f(z)e“'z‘z/2 = 0, then f can
be approximated by polynomials in the norm || - ||« (see, e.g., Exercise 8, p. 89
in [115]).

We now consider Fock spaces in the quaternionic setting and we begin with
the following definition. We note that this notion has not been previously con-
sidered in the literature in this generality.

Definition 4.3.2. Let0 < p < 400 and(0 < a < +00. The Fock space of the first
kind F*(H) is defined as the space of entire slice regular functions f € SR(H),
such that

0= (52) | @G pdmia) < -+,

with dm(q) representing the Lebesgue volume element in R*.
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4.4. Approximation by polynomials in Fock spaces of the first kind

Remark 4.3.3. With the same techniques used in the complex case, one may
verify that for 1 < p < +o0, || - ||,,o has the properties of a norm, while for
0<p<1/|f—glP, has the properties of quasi-norm.

To introduce the Fock spaces of the second kind, we need the following def-
inition:

Definition 4.3.3. For] € S,0 < a < 400 and 0 < p < 400, let us denote

ap —alal?
po= P / @ R ),
I

171 s = 52

where dmj(q) represents the area measure on Cj.
The space of all entire functions f with the property that || f
denoted by F7, ;(H).

pa < 400 will be

We are now in position to introduce the following:

Definition 4.3.4. The Fock space of the second kind Fg;!. (H) is defined as the

lice
space of all f € SR(H) with the property that for some I € S we have f €
ﬂ](H) In order to make the norm independent of the choice of the imaginary

(0%
unit, we set

1fll 72 ey = supl| fllp.a.r-
IeS

4.4 Approximation by polynomials in Fock spaces of the first kind

In the sequel, we consider the quaternionic Fock spaces of the first kind 7 (H)
introduced in the previous section. First, we start by proving the following es-
timate:

Lemma 4.4.1. Let f € F2(H). Then, there exists a constant ¢ > 0 such that for
all ¢ € H, we have

1
2 P
wherec = 4 (—W) .
ap

Proof. Let I € S, since f is slice regular on H , then making use of the Splitting
Lemma we have that for all z € C;,

fi(z) = F(2) + G(2)J,

a2
()] < ce? | £lp.ar

where J € S is orthogonal to I, and F, G are two holomorphic functions on
the slice C;. Note that since f € FZ(H) it is easy to see that [ and G belong
to the classical Fock space F2(Cj). Thus, by the classical complex analysis the
following estimates are satisfied for any z € C;

o

gZQ Z2
|F(2)] < e[ Fll gyic,) and |G(2)] < €21 Gllpacyy-
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Chapter 4. Approximation in slice hyperholomorphic Fock spaces

Then,
f(2)] < |F(2)] +|G(2)|
< e3P (| F| zocy) + 1G p2cey)-

However, since |F'(z)| < |f(2)| for any z € C;, we have

1Flye,y = o2 /CI ()P )
o op
- 27
ap
o

F )P (e Pdmy (2)

IN

} F (@) (1) dm(q)

2T
= 1.
D

2
By similar arguments we get also ||G||zz(c,) < (—W) | fllp,a- So, for any
ap

z € C; we have the following estimate

21 g|2|2
|<M<2Qw) 1l

Finally, for ¢ = x + Jy € H by the Representation Formula we have

F() + F@+T5[FE) — f() iz =+ Iy € Cy

(@ <1+ 1FE)]

Hence, the last inequality combined with the estimate on C; give

1
27T Eg2
vmns4Q%)eﬂﬂwmm

for all ¢ € HL O

Now, we can state and prove the main result of the polynomial approxima-
tion in this setting.

Theorem 4.4.2. Let a > 0 and 0 < p < oco. The set of all quaternionic polyno-
mials is included in F?(H) and for every f € FF(H), there exists a sequence of
quaternionic polynomials (py,)nen such that ||p, — fllp.a — 0 asn — +oo.
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4.4. Approximation by polynomials in Fock spaces of the first kind

Proof. First of all, we observe that any quaternionic polynomial belongs to F7? (H).
This follows easily from the fact that for any £ = 0, 1, ...., we have

/ P (e dm(g) < +oo.
H

We then divide the proof in two steps.

Step 1. Let 0 < r < 1, f € FP(H) and define f,(q) = f(rq). Evidently f, is
an entire slice regular function.

Firstly, we will prove that lim, ;- || f» — f|p.« = 0. We will reason similar
to the complex case in the proof of Proposition 2.9, p. 38 in [115], taking into
account that f : H — H can be written componentwise as

f(@) = filq) +ifa(q) + jf3(q) + kfa(q),

q = x1 + ix9 + jrs + kx4 and that applying the Lemma 3.17, p. 66 in [86] to f
is equivalent to apply it to each real-valued function of four real variables fy(q),
k=1,23,4.

By using the componentwise form, since f is entire slice regular it follows
that it is continuous on H and it is immediate that lim, ,;-1 f(rq) = f(q), for
all g € H.

Now, for f € FP(H), changing the variable ¢ = w and taking into account
that as in the proof of Theorem 2.1 in [68], we have dm(q) = Zdm(w), we

) i
obtain

| frlh o = <g—§>2 /H |f(rq)e—a|ql2/2|pdm(q)

« 21 2 2(p—2
_ (2_71:> = /H |F(w)e= ol /2 L gmralulP =202 g

Since for all w € Hand 0 < r < 1 we have e Pw’(°=1/2 < 1 by
applying the dominated convergence theorem in the above mentioned Lemma
3.17 in [86], we are lead to lim, ;-1 || f — f||,.a = 0.

Step 2. The proof is terminated if we can show that for every r € (0,1),
the function f, can be approximated by some quaternionic polynomials in the
norm topology of F2(H). To this end, let 0 < r < 1 and ar? < 8 < «. On one
hand, note that f, is slice regular on H. Moreover, according to Lemma 4.4.1
there exists ¢ > 0 such that for any ¢ € H we have

()] = [ f(rq)] < ce2™ 97| f

Thus, since ar? — 3 < 0 we get

/ Fi(@)Pe PP dmig) < A1 £I2. / @)l g ) < oo,
H H

p?a.

In particular, this shows that f, belongs to 3 (H). Furthermore, since f—a < 0
we can see also that 73(H) is continuously embedded in F%(H). Indeed, for
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Chapter 4. Approximation in slice hyperholomorphic Fock spaces

h e }-BQ(H), applying Lemma 4.4.1 there exists C' > 0, such that for any ¢ € H,
we have

Ih(q)] < Ce'97||h]|p.
Thus,

[ e P dn(g) < crpl, [ FH I dmg) < .
H H

Hence, this shows that ||h]|, < K||h||2,s where K = K (o, 8,p) > 0. On the
other hand, it is clear that the quaternionic monomials (¢"),, are contained and
generate any element of the quaternionic Hilbert space F E(H) but they do not
form an orthogonal basis of the Hilbert Fock space of the first kind. So, using the
orthonormalization process we can obtain an orthonormal total family (p,,),, of
quaternionic polynomials in 77 (H). Therefore, f, can be approximated by (p, )
since f. € F7(H). Moreover,there exists K > 0 such that

Hfr _pn”P,a < KHfr _anZB'

Finally, the previous inequality shows that f, can be approximated by a sequence
of quaternionic polynomials in the norm topology of 77 (H). This ends the proof.
O

Remark 4.4.3. The approximation in Fock spaces of the first kind is not based
on the Taylor expansion since the quaternionic monomials do not form an or-
thogonal basis of the Hilbert Fock space of the first kind.

4.5 Approximation by polynomials in Fock spaces of the second kind

In this section we prove the density of polynomials in Fock spaces of the second
kind, including a result with quantitative estimates in terms of higher order
moduli of smoothness and in terms of the best approximation quantity.

Before to state our main result, we need to prove some technical results. The
following proposition has a rather standard proof that we write for the sake of
completeness.

Proposition 4.5.1. Letp > 1 (resp. 0 < p < 1) and let || - ||p.a.1 be the norm
(resp. quasi-norm) in F, ;(H). Then || - |[,.a.r and || - ||, are equivalent for any

I,Jes.
Proof. From the representation formula we easily get
[fe+yD < |f@+yl)| +[f(z -yl

Then, by taking |.|P in the above formula, and using the inequalities (a + b)? <
2P aP +bP),if 1 < p < +o0,and (a + b)P < a? + 17, if 0 < p < 1, for all
a,b > 0, we obtain

Fa+ gDl <27 [[fl@+ )P+ [ fl@—y)P], 1< p < o0
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4.5. Approximation by polynomials in Fock spaces of the second kind

and
|fla+yD)P <[[f(x+y )P +[f(x—yJ)I], f 0 <p <1

Multiplying both terms in the above inequalities with e~P*l*+v/ °r2, integrating
on C; with respect to dm;(q), then multiplying the corresponding obtained in-
equality with e~ P2lz+y/ *r2, integrating on C; with respect to dm (q) and taking
into account that |z + yI|?> = |z + yJ|*> = |x — yJ|* = 2 + y?, we obtain an
inequality of the form || f||, 0.1 < C,|| fl|p.a.s, with C,, independent of I and J.
Interchanging now / with J and repeating the above reasonings, we get the
desired conclusion. O

Corollary 4.5.2. Given any I,J € S the slice hyperholomorphic Fock spaces
Fh (H) and F}, ;(H) contain the same elements and have equivalent norms.

Remark 4.5.3. The notion of Fock space of the second kind given in Definition
4.3.4 is independent of the choice of the imaginary unit, and this justifies the
notation Fg;? _(H).

lice

Lemma 4.5.4. Let0 < p < oo, > 0 and f € Fg? (H). Then, for any ¢ € H

lice
we have )
f(@)] < 421 fll reie -

Proof. Let f € Fg? (H) and let I € S. Then, choose J in S perpendicular to

lice
I. In particular, f is slice regular on H, then by the Splitting Lemma there exist
F.G : C; — C; two holomorphic functions such that we have

f1(z) = F(z) + G(2)J; Yz € Cy.

Then, we use similar arguments as in the Lemma 4.4.1 to see that for any 2z € Cy,
we have

a2
1f(2)] < 2 (|Fll moepy + Gl F2cn)-

However, note that

1F 72y < 1fllrge @y and |Gllzze,y < N fllFee -

Thus, for any z € C; we get

apy2
£(2)] < 2e550] fll e

Slice (H) ’

Finally, we apply the Representation Formula in order to prove the estimate
for any g € H and this completes the proof. O

The first main result of this section is the following.

Theorem 4.5.5. Let 0 < p < +00,0 < a < 400 and f € Fg (H). There

exists a sequence of polynomials (P,),en such that for any I € S we have || P, —
fllpar = 0 asn — +o0.
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Chapter 4. Approximation in slice hyperholomorphic Fock spaces

Proof. We divide the proof in two steps.

Step 1. Fix [j € S. For 0 < r < 1, we define f,.(¢) = f(rq), ¢ € H. By
hypothesis, we know that f € F}, ; (H), i.e. f, is an entire function on Cj,.

Firstly, we prove that lim, - || f, — f]|p.c.5, = 0. To this end, we note that
since the restriction of f, is entire on Cj,, it is continuous, which evidently
implies that pointwise we have lim, - f(rq) = f(q), for all ¢ € Cy,.

Now, for f € fjfj 1, (H), by setting 7¢ = w and taking into account that as in
the proof of Theorem 2.1 in [68] (see also [26]), we have dmy,(q) = S dmy,(w),
we obtain

ap _algl?
1fellpare = 5 . |f(rq)e= "2 [Pdmy, (q)
To
apl —a|w|? —pa|w|?(r—2—
_%ﬁ./c |Fw)ealol/2p . c=palol6==0/2 0 (0
Io

Since for allw € Cj, and 0 < 7 < 1 we have

epalul2=1)/2 < |
by applying the dominated convergence theorem we easily obtain
im0ty = 11

Therefore, an application of the above mentioned Lemma 3.17 in [86] (see
the proof of Theorem 2.1) leads to lim, ;-1 || f» — f|lp.0.0 = 0.

Step 2. This part is exactly the same as in the case of complex variable,
proof of part (b) in Proposition 2.9, p. 39 in [115], but reasoning on Cj,. Indeed,
let 0 < r < 1 and choose r?a < < «. Lemma 4.5.4 allows to see that f, €
F gl’fce(H) since ar? < (. On the other hand, the condition 3 < a combined with

the Lemma 4.5.4 show that FL;> (H) is continuously embedded in Fg;”_(H).
Moreover, for any h € Fi- (H) there exists ¢ = ¢(p,a, 3) > 0 such that we
have the following estimate

1Pl 7z

Slice

Note that the family of functions given by

k
er(q) == \/%qky

forms an orthonormal basis of F5;- (H) according to [15] and f. € Fo.2 (H)
for any 0 < r < 1. Thus, there exists a sequence (P, ),cn of quaternionic
polynomials with right coefficients such that ||f, — P,|| 2 am — 0 when

n — oo. Therefore, we just need to use the estimate (4.5.1) to conclude that the

polynomials (P, ),en approximate f, in Fg;;. (H) for any 0 < r < 1.
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4.5. Approximation by polynomials in Fock spaces of the second kind

Finally, according to Proposition 3.1, any other norm (or quasi-norm, accord-

ing to p), || - ||p.a,s With I € S, is equivalent to the norm (quasi-norm) || - ||, 4.1,
it follows that the sequence of polynomials (P, ),cn converges to f in any norm
(quasi-norm) || - ||.a.7, which proves the theorem. O

Remark 4.5.6. The approximation in Fock spaces of the second kind is based
on the Taylor expansion since the quaternionic monomials form an orthogonal
basis of the Hilbert Fock space of the second kind.

In what follows, for 1 < p < 400 we present a constructive proof for the
density result in Theorem 4.5.5, with quantitative estimates in terms of higher
order moduli of smoothness and in terms of the best approximation quantity.

For this end, we introduce the following definition, in which we keep the
notations from Section 2.

Definition 4.5.1. Let0 < p < +oo, [ € S and f € F}, ;(H). The higher order
LP-moduli of smoothness of k-th order is defined by

) 1/p
wn(f;0)5z, = sup {/ AP e /ﬂpdmz<z>}

0<|h|<é

= sup ||wocA;€zf||Lp(CI)’
0<[h|<é

where k € N, w,(z) = e—alz?/2,

k

3t = S0 () sty andl ey = ([ iiapamt)

s=0

(In other words, wi.(f;0) z» . = wi(f;0)w,.Lr(cy) is a weighted modulus of smooth-
ness.)
The best approximation quantity is defined by

En(fpar =f{|[f = Pllpar P € P} = inf{||wa(f — P)llLecy): P € Pu}y
where P,, denotes the set of all polynomials of degree < n.

Note that exactly as in the case of the LP-moduli of smoothness for functions
of real variable (see, e.g., [59], pp. 44-45), it can be proved that

limwi(f;0) 7 =0,

We(fih - 8)zn, < A+ D)F - wn(fi0)5 . i1 < p < +oo (452

and
[wi(f5 A 5);271]” <A+ D wr(f; 5);2’1]7’, if0<p<l1. (4.5.3)
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Chapter 4. Approximation in slice hyperholomorphic Fock spaces

Indeed, this is immediate from the fact that denoting (for fixed z) g(x) = f(z¢™),
we get AFf(z2) = Z:g(O), where

Lg(an) = (1) (’j)g@o + 5h).

s=0

Now, for any 1 < p < 400 and f € Fg;’_(H), let us define the convolution
operators

L@ = [ flae) Koo, g e .

Here K, (t) is a positive and even trigonometric polynomial with the property
7K, (t)dt = 1.

In particular, we can consider the Fejér kernel

K1) = 1 (sin(nt/2)>2 |

~ 2mn \ sin(t/2)

and in this case we will denote L, (f)(q) by F,.(f)(q).

T e (e

where r will be chosen as the smallest integer with r > ’w, m € Nand

the constants A, are chosen such that [*_ K, ,(t)dt = 1, let us define

el ) = = [~ o0 0 (") e an, g 1

Also, let us define V,,(f)(q) = 2F5,(f)(¢) — F.(f)(q), ¢ € H.

According to the reasonings in [74], [71], for fixed [ € S, if ¢ € C; then
L,()(q), Lnmr(f)(q) and V,,(f)(q) are polynomials in ¢ on C; , with coef-
ficients independent of I and depending only on the series development of f.
Therefore, as functions of ¢, L,,(f)(q), In.m.(f)(¢) and V,,(f)(q) represent poly-
nomials on the whole H.

The second main result of this section is the following.

Theorem 4.5.7. Let 1 < p < 400,0 < o < 400, m € NU {0} and f €
Fgib (H) be arbitrary but fixed.

(i) L,.m.(f)(q) is a quaternionic polynomial of degree less than r(n—1), which
forany I € S satisfies the estimate

1
H[n,m,r(f) - f”p,a,[ S Cp,m,r * Wm+1 (fa _) , € N7
",
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4.5. Approximation by polynomials in Fock spaces of the second kind

wherem € N, 1 is the smallest integer with v > Iw and C(p,m,r) > Oisa
constant independent of f, n and I.

(ii) V.(f)(q) is a quaternionic polynomial of degree < 2n — 1, satisfying for
any I € S the estimate

Vi) = Fllpar < 2079722 4+ D)YP 41] - E,(f)pass 7 € N

Proof. For the fact that the convolution operators I,, ,,, - (f)(¢) and V,,(f)(q) are
polynomials of the corresponding degrees see [74], [71].

(i) In the sequel we will apply the following well known Jensen type inequal-
ity for integrals: if f::r Gu)du = 1, G(u) > 0forall u € [—m, 7] and p(t) is
a convex function on the range of the measurable function of real variable F,
then

+m +m

’ ( / F(u)G(u)du) < / o(F(w)G (u)du.

Let m € N and r be the smallest integer such that r > ’w.
Now, by choosing ¢(t) =, 1 < p < 00, q € C;, we get

p

1) = T D@ =| [ A ()R 0

< [[ s @ik

—Tr

< [ 1AM P K o

Multiplying above by [e*amp/ %7, integrating on C; with respect to dm;(q) and
taking into account the Fubini’s theorem, we obtain

/ - L () (@) = F(@)]P - e~ /2P dmy (q)

<[ [ / AT [ )| K 0

—T

< [ il Kot

—T

< / W1 (f3 1)) (n]t] + 1)mHp e (t)dt.

—T

By [92], p. 57, relation (5), for r € N with r > p(m21)+2’ we get

/ (n|t| + 1) P K, ()dt < Cpony < 400, (4.5.4)

—T

which proves the estimate in (i).
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(ii) Now, let f, g € Fg;i..(H)and 1 < p < 4o00. By the convexity of ¢(t) = t?
we get the obvious inequality (a + b)? < 2P~!(a? + bP), valid for all a,b > 0,
which for all ¢ € C; implies

ValF)(@) — Va@)(@)] < 20Fon(F)(@) — Fonlg)(@)] + 1Fa (1)) — Fal9)()]
<> / "1 F(ge™) — glge™)] - Kon(t)d + / "1 F(ae™) — glae™)| - Ko(t)dt

—Tr —T

K
~—

and

Valf)(g) = Valg)(@) < 27 [(2 /

™ p

£ (ge™) — g(ge™)] - K2n(t>dt>

—Tr

+ </ T |f(ge™) — g(ge™)] 'Kn(t)dt>p]

—T

™

<2t |2 [ iflae) - glae - Kanltrir+

—T

|f(ge™) — glge™)IP - Kn(t)dt] '

—T

Multiplying above with [e=@l4*/2]p = [e=2l4¢""*/2]p integrating this inequality
on C; with respect to dm;(q) and reasoning as at the above point (i), we obtain

( / . |f(ge™) — g(qe“)|p[ealqe“lz/z]pdml(q)> y

™

WVl ) =Va(@)I s < 21 [2? /

—T

™

—T

Kty [ (| 1Faet) - oo Pl o)) o).

Setting F'(q) = | f(¢)—g(q)|P[e~*9"/?]P, ¢ € C;, writing ¢ = 7 cos(#)+ I sin(f)
and taking into account that

1
dm;(q) = ;rd’rdﬁ,

simple calculations lead to the equality

/ P (") Pdmy(q) = / \F(q)Pdmi(2), for all ,
(C[ (CI

which replaced in the above inequality immediately implies
IValH)=Va(@)lpar < 27 20 —gllp 0t 1 f =gl o] = 2" 2P+ 1)1f —gll}.0
that is

IVa(f) = Val@llpar < 20797 (22 + )P f = gllpanr-

Now, let us denote by P a polynomial of best approximation by elements in P,
in the norm in || - ||, 4,7, that is

En(Plpos = mf{|[f = Pllpar; P € P} = [If = Pillper:
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4.5. Approximation by polynomials in Fock spaces of the second kind

Note that since P, is finite dimensional (for fixed n), this polynomial P} exists.
Since by similar reasonings with those in [69], p. 425 we get V,,(P¥) = P,
for all ¢ € Cy, it follows

||f - Vn(f)”p,a,l < ”f - P:;”p,aJ + ||Vn(P;) - Vn(f)“p,a,f
< En(f)pas + 2077 (22 + )P PE = fllpar
_ [2(p—1)/p (2P + 1)1/p +1] - En(f)p,oc,],

which proves (ii) and the theorem. 0

Remark 4.5.8. The result in Theorem 4.5.7 evidently holds also in the complex
Fock spaces. In this context, the result is new.

In [15] the authors proved that the quaternionic Fock space of the second
kind F, gl’fce(H) is a right quaternionic Hilbert space whose reproducing kernel

is given for all (r, ¢) € H? by

K, (r,q) :== e.(arq)

00 —
akrqu

k!

k=0

Then, we denote by R the set of all functions of the form

Fr) =Y Ku(r,qu)be, Vr € H

k=1

where (bg)k, (gr)r € H for all k = 1,..,n. As a consequence of the Theorem
4.5.5 we obtain the following result:

Theorem 4.5.9. Leta > 0 and0 < p < oo. The set'R is dense in the quaternionic
Fock spaces of the second kind Fg;'. . (H).

Proof. i) The result is clear in the Hilbert case when p = 2. Indeed, we only
use the reproducing kernel property to see that the orthogonal of R is
reduced to zero.

ii) For p > 0, let f be a quaternionic polynomial with right coefficients.
Then, there exists 0 < 5 < « such that Fgl’?ce(H) is continuously em-
bedded in Fg;I (H). Note that since f is a polynomial, by the Hilbert
case it can be approximated by a sequence of R in the topology norm
of F2 (H). Thus, let ¢1,..., ¢, € H and (ag)z—1..n C H be such that

lice
n

-----

3 .
1f= E K ag, || zs2 () tends to zero asn — oo. However, there exists
S
k=1

lice

¢ > 0 such that we have the following estimate
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n n
17 ; Kéran, |zge,m < el f - ,; Rataw =gz m

Sli ce( )

n
Zq
<elf =Y K] an, |52 oy
k=1

n
This shows that || f — Z K& ay, || 7a» () tends to zero as n — oo, for any

k=1
quaternionic polynomial f. However, in Theorem 4.5.5 we proved that the

set of quaternionic polynomials is dense in any quaternionic Fock space
of the second kind. Hence, R is dense in the quaternionic Fock spaces of
the second kind F?(H).

O

The order and type of slice regular entire functions on quaternions were
introduced in Chapter 5 of the book [50]. In the setting of the Fock spaces
Fapb (H), we have:

Proposition 4.5.10. Let 0 < p < oo and f € Fg;.. (H). Then, f is of order less
or equal than 2. Moreover, if f is of order 2, then it is of type o (f) < §.

Proof. Note that f € Fg; (H), then by Lemma 4.5.4, we have

@) < el

Slzce )
In particular, we have
@2
My(r) = fnﬁ‘X'f( @) < cez" || fllrap -

Therefore,
M
o(f) = Tim log(log My (r)) <o

=00 log r

Moreover, if p(f) = 2, then we have

o(f) = lim —long( )

(07
r—00 r2 -2
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CHAPTER

The Cholewinski-Fock space in the slice
hyperholomorphic setting

Inspired from the Cholewinski approach see [33], we investigate a family of
Fock spaces in the quaternionic slice hyperholomorphic setting as well as some
associated quaternionic linear operators. In a particular case, we reobtain the
slice hyperholomorphic Fock space introduced and studied in [15]. The results
obtained in this chapter are based on [61].

5.1 Motivation

We recall that in 1961 Bargmann introduced the Bargmann-Fock space on which
the creation and annihilation operators, namely

M.f(:) = 2f() and Df(z) = 5 f(2)

are closed, densely defined operators that are adjoints of each other and satisfy
the classical commutation rule

[D,M,| =T

where [.,.] and Z are respectively the commutator and the identity operator.
Furthermore, the standard Schrédinger Hilbert space on the real line is unitary
equivalent to the Fock space via the so-called Segal-Bargmann transform. A
few years later, in [33] Cholewinski extended this construction by studying a
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Hilbert space of even entire functions weighted by a modified Bessel function of
the third kind sometimes also called Macdonald function. His construction gen-
eralized the original one of Bargmann so that in a particular case the weight is
exactly the classical normalized Gaussian measure. He also proved in [33] some
commutator relations between the Schrédinger radial kinetic energy operator
and the operator M. 2. Then, in 2002 based on the approach of Cholewinski, Sifi
and Soltani considered and studied in [108] a Hilbert space of entire functions
that are not necessarily even with a weight involving the Macdonald function.
As we already discussed before the topic of Segal-Bargmann-Fock spaces and
associated integral transforms in this new quaternionic and slice monogenic set-
ting was interesting from several points of view, see [15,34,46,53,60,88,96,101].
The purpose of this chapter is to continue this exploration and present the study
of a quaternionic Hilbert space of slice entire functions weighted by a modified
Bessel function that we shall call here the quaternionic slice hyperholomorphic
Cholewinski-Fock space or the slice Cholewinski-Fock space for short. This will
allow us to extend some results obtained in [15,60] on the slice hyperholomor-
phic Fock space and the quaternionic analogue of the Segal-Bargmann trans-
form. Moreover, we study some specific quaternionic operators associated to
the slice Cholewinski-Fock space. In a particular case, we show that the slice
derivative and the quaternionic multiplication are adjoints of each other and
satisfy the classical commutation rule on the slice Fock space introduced in [15].

The chapter has the following structure: in the next section we briefly review
some useful properties of the Macdonald function as it will be needed in the
sequel. Then, we define the slice Cholewinski-Fock space and we introduce an
orthonormal basis. Moreover, we show that it is a quaternionic reproducing
kernel Hilbert space. Section 4 is devoted to the study of a quaternionic unitary
isomorphism between the slice Cholewinski-Fock space and a suitable quater-
nionic Hilbert space on the real line. This quaternionic isomorphism will be con-
nected also to what we call the slice Dunkl transform. Then, we deal with two
right quaternionic linear operators that are proved to be adjoint of each other
and satisfy a specific commutation rule on the slice Cholewinski-Fock space.
Finally, the last section explains how the results obtained in the quaternionic
setting could be extended in a similar way to the slice monogenic setting with
Clifford algebras valued functions.

5.2 Some properties of Bessel and modified Bessel functions

For more details about the subject of Bessel functions and related topics we refer
the reader to [66,90].

To any complex number v is associated the so-called Bessel differential equa-
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tion d2 p
d YTyt (2 =)y =0 (5.2.1)

Using the Frobenius method, a solution of the last equation is given by the Bessel
function of the first kind, namely

Tolw) = @)V 2 Tk + 1)(;(13+ k+1) <%>2k '

The second linear independent solution of the Bessel equation is the Bessel
function of the second kind Y, which is defined by

cos(vm)J,(x) — J_,(x)

sin(v)

Y, (z) = if ve¢Z

and
Yo,(x) =1lmY,(z) if v=necZ

v—n

The same reasoning is adopted to construct a modified Bessel function of the
third kind sometimes called also the Macdonald function and denoted by K, ().
To this end, we consider the modified Bessel equation given by

o d? d 9 9
d Qy—i—xd—y—(x +v)y=0 (5.2.2)

Analogously, the modified Bessel function of the first kind is defined by

Iu(z) = (g)v g T(k+ 1)r2y tk+1) @)%

and the Macdonald function is defined by
ml,(z)—IL(z)

2 sin(vm)

K,(z) = if ve¢Z
and
K,(z)=lmK,(z) if v=necZ.

v—n
The Macdonald function is of a particular interest for our study since it will ap-
pear in the next section as a weight of the quaternionic Hilbert space of entire
slice regular functions instead of the classical Gaussian measure.
So, we summarize in the following Proposition some interesting properties of

this function that will be useful in the sequel, see [66,90].
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Proposition 5.2.1. Letx > 0 and d,v € R such thaté +v > 0 andd — v > 0.
Then, we have the following formulas

1. K,(x) :/ exp(—x cosh t) cosh(vt)dt.
0

T s
2. K%(x):Kfé(x): 22

& 0 v 0 v
6—1 002 e z 7
3 /0 PV (1)t = 2 r(2+2)r(2 2).

5.3 The slice hyperholomorphic Cholewinski-Fock space F¢;, . (H)

Any quaternionic entire function may be written as

f=fe s
f¢and f° are respectively even and odd functions where
fe(Q) — f(Q) +2f(_Q) and fo(Q) — f(Q) _2f<_Q) )

Then, thanks to the series expansion theorem for slice regular functions we have

flg) = Zq”an with a, € H

n=0
so that,

f(q) = Z ¢as, and f°(q) = Zq2n+la2n+1-
n=0 n=0

1
Now, let o > —5 and I be any imaginary unit in the sphere S. Then, for p =

x + ylI in the slice C; we consider the following probability measure

|p|2a+2

mf{aﬂpmdh(p)

dAa1(p) ==

where K, is the Macdonald function and d\;(p) is the usual Lebesgue measure
on the slice C;. In [108] the complex generalized Fock space F(C) was defined
to be the space consisting of complex entire functions f : C — C satisfying:

[ 17 @R 420+ 1) [ 1P () < o
C C
Then, we consider the following definition
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Definition 5.3.1. A slice entire function f : H — H is said to be in the slice
Cholewinski-Fock space or the generalized slice Fock space if, for I € S it satisfies
the following condition

/ 5 0) Pdas(p) +2(a + 1) / )P ] AN asns () < 0.
Cr Cy

The space containing all such functions will be denoted F¢;,.. (H).

1
Remark 5.3.1. Notice that if « = —3 then thanks to (2) in Proposition 5.2.1 we
can see that Fg, . (H) is exactly the slice hyperholomorphic Fock space introduced

and studied in [15]. Indeed, for o = —g we get

1 )
Ao 1(p) = %6_"" d\;(p).

In particular, in this case f belongs to F§,, .. (H) if and only if it belongs to the
classical slice hyperholomorphic Fock space.

For f,g € F§,..(H) we define the following inner product

9= |

We shall see later that this definition is well posed since it does not depend
on the choice of the imaginary unit /. We have :

)5 () s (9)+2(a+1) / T )P 2dAesr1 ()

(C[ (CI

Proposition 5.3.2. F3,,..(H) is a right quaternionic Hilbert space with respect to
<" .>‘Fglice(H).

Proof. Let (f,) be a Cauchy sequence in Fg,  (H). Take I,J € S such that
I 1 J. Then, since f,, are slice regular we can use the Splitting Lemma to write

fos=F,+Gn,J ¥neN

where F), and G, are holomorphic functions on the slice C; belonging to the
generalized complex Fock space F*(Cy). It is easy to see that (F},), and (G},),
are Cauchy sequences in F*(C;). Hence, there exists two functions F' and G
belonging to F*(C/) such that the sequences (F,,), and (G,,), are converging
respectively to F and G. Let f; = F'+ GJ and consider f = ext(fr) we have
then f € Fg,..(H). Moreover, the sequence (f,,) converges to f with respect
to the norm of g, . (H). This ends the proof. O

For any m,n > 0, we set
Em,n(a) = / qzmq2nd)\a,I(Q)
Cr
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and
Omn(a) = / "G g7 Aag1,1(q)-
Cr
Then, the following formulas hold

Lemma 5.3.3. For allm,n > 0, we have

INa+n+1)
Fa+1)

ii) Opp(a) = By p(a+1).

i) Epnla) = 6m7n22"n!

10

Proof. i) We write ¢ = re'? using the polar coordinates. This leads to

Emn (n—m)6I 2(m+n+a+1)Ka 2 drdf
a(a) = 2%MH/ / r (r)rdr

(n—m)0I1 - 2(m+n+a+1) 2
—_— de K, d
20‘7TF(04+ ) /0 ¢ /0 ' (r)rdr

26 o
__ Omn_ R e
2ar(a+1)/ " alr)rdr

Making use of the change of variable ¢ = r?, we obtain

5 [ee]
E, (o) = —2% et g (4)dt
(@) 20T (a + 1) /0 *)

Then, the proof of i) ends thanks to the property 3 in Proposition 5.2.1 by
taking 0 = 2n + o + 2.

ii) This is obvious from the definition of O, ,, ().

O
Thanks to the last lemma we have the two following propositions :
[e.e]
Proposition 5.3.4. Let f(q) = Z q"a, and g(q Z q"b,, be two slice regular
n=0 n=0

functions belonging to F$;,..(H). Then, we have

905, Z buctn (@

where

o) =[] ([ ] +=+1)

Ia+1)
Here the symbol |.| stands for the integer part.

64



5.3. The slice hyperholomorphic Cholewinski-Fock space 7§, . (H)

Proof. We have

(f9)ra, ) = / _ GO P) ) +2(a+1) / g PPl dAarri(p)

Cr

Then, we set

A= [ GO and B=2ar)) [ GEI i)
Cr

Cr

Notice that

Zq as, and g°( Zq2mb2m
Thus,
A= lim o P2 P as, | dha.1(p)
R=eo J {pl<R} (Z > (Z

n=0
- Z EEm,n(a)GQn-

Hence, making use of the Lemma 5.3.3 we get

= Z @a%ﬁzk(a)
k=0

Similarly, by writing

fo(Q) = Zq2n+la2n+1 and QO(Q) = Z q2m+1bzm+1
m=0

n=0

we obtain

o0
= ¥ barr1aks1 farta ().
5=0

This leads to
< ]:gl ce Z b a/n/Bn

O

Remark 5.3.5. Proposition 5.3.4 shows that the scalar product is independent of
the choice of the imaginary unit I.
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Proposition 5.3.6. For anyn € N, we consider the functions

Then, {¢S },, form an orthonormal basis of Fg,, . (H).

Proof. Lemma 5.3.3 allows us to easily check that

< % ’ ng>J:glice

Let us prove now that these functions form a basis of g, (H). Indeed, take

f in F§,..(H) such that (f, ¢¢) 7o @ = 0,7k Then, since [ is entire slice

(o)
regular it admits a series expansion so that f = Z @5 e, where (¢,), C H.
n=0

Notice that from the Proposition 5.3.4 we have

<fa ¢g>]_‘glice(H) = Ck,Vk‘ > 0.
This shows that f is identically zero. 0

An immediate consequence is :

[e.e]

Corollary 5.3.7. An entire function of the form f(q) = Zq”an belongs to
n=0

&ice (H) if and only if it satisfies the following growth condition

o)

> lan*Ba(a) < oo

n=0
Lemma 5.3.8. Foralln € N, we haven! < §,(a).

Proof. This is a consequence of the Duplication formula for the Gamma function

given by
D@)l(z+3) 7

r(2r) 221

1
combined with the fact that the function (3, is increasing for « > ——.Indeed, by

treating both cases of n = 2k and n = 2k + 1 with k£ € N using the Duplication
formula we get
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Remark 5.3.9. F3,,..(H) is continuously embedded in the slice Fock space Fsc.(H).
Indeed, we have

) )
11 = S laal?nl < 3 JanPBal@) = 113, o
n=0 n=0

1
The equality holds if « = -3
In the sequel, we shall prove that g,  (H) is a quaternionic reproducing

kernel Hilbert space and give an expression of its reproducing kernel. To this
end, let us fix ¢ € H and consider the evaluation mapping

A Slzce(H) —>Haf'_>Aq(f) :f(Q)

Then, we have the following estimate on F¢,..(H) :

Proposition 5.3.10. For any f € Fg,,..(H), there exists 0 < C(|q|) < e 2 such
that

AA)] = 1@ < Clal) 11l rg, o

Proof. The series expansion theorem for slice regular functions asserts that
(e}
= Z q¢"a, with (a,), C H.

Then using the Cauchy-Schwarz inequality we have the following estimates,

1A (N = (9] < Z lal"an)

(Z i )2(2% )

< CllaDIf 1l 7g,,,

[N

Notice that thanks to Lemma 5.3.8 this constant could be also estimated so

that we have .
C = S i 2 < Ee
UQD_ Zﬁ(@) sez.
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Remark 5.3.11. Proposition 5.3.10 shows that all the evaluation mappings on

&ice (H) are continuous. Then, the Riesz representation theorem for quaternionic
Hilbert spaces, see [28] asserts that Fg,..(H) is a quaternionic reproducing kernel
Hilbert space.

For p, q € H, we consider the function

o0

La(p, q) Z

:O

7’LTL

where

FRPRRARYCIERES)
2 T(a+1)
If ¢ = x € R we use the following notation L, (p, z) = L,(pz) since px = zp.

The function ~
Ko(p,q) = K&(p) := Li(p)
satisfies the following properties

Proposition 5.3.12. Let q,s € H fixed,
(a) Kgé € glice(H)'
(b) Forall f € FS,.(H), we have f(q) = (f, Ko‘>]m

Slzce(H) ’
(c) <K;v Kg>}‘glice(]}]1) = Kg(s)'
Proof. 1. We have by definition
KI( p"a, where a, = )
D=y A
Thus,
& |2n
> Bul@)lan]* = Z
n=0
= C2(|C]|)
< e|‘1‘2 < 00

2. Let f € F&,..(H); since f is slice regular on H we can write f(p) =
Z p"b, with (b,), C H. Then, using the expression of K* combined

W1th Proposition 5.3.4 we obtain
« n
<f K >‘Fglzce Z q b a
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3. We just need to write

o0

o - an n o
_gﬁn(a)p and K( Z

—n

and then use the Proposition 5.3.4.
O

The results obtained in this section may be summarized in the following

Theorem 5.3.13. F¢,.  (H) is a quaternionic reproducing kernel Hilbert space
whose reproducing kernel is given by the following formula

An

q) = % gn(qa) forall (p,q) € H x H.

Proof. 1t is a consequence of the Propositions 5.3.10 and 5.3.12. O

1
Remark 5.3.14. For « = ——, it turns out that K (., .) is the reproducing kernel
of the slice Fock space Fsyic.(H) obtained in [15] and given by

e(p7) = ) p;!n'

n=0

5.4 A unitary integral transform associated to F¢, . (H)

In this section we introduce an integral operator 7}, and show that it defines an
isometric isomorphism between the quaternionic slice Cholewinski Fock space
introduced in the last section and a specific quaternionic Hilbert space on the
real line, namely H,, = L% (R, du,,) where
|p[20+1
dpe(x) = ————dx.
Hal®) = S T a1 1)

Note that the quaternionic Hilbert space H,, is endowed by the inner product

/cb ) dptal2).

Note that H_ 1is the standard Hilbert space L%(R). In this case, the isomor-

ph1sm T, is the quaternionic Segal-Bargmann transform introduced and studied
n [60].

Let us consider the kernel

atl

Calp,z) =25 e 2P L, (V2pr) Y(p,z) € Hx R
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so that, for ¢ € H, and ¢ € H we define

Toplq) = / Calga)ple)do(a).

In the sequel, we study the integral transform 77,. To this end, let us recall some
properties of the so called generalized Hermite polynomials, see [103,104,108].
These generalized Hermite polynomials are defined by

%1 )i
Z o ﬁ" m)”_%; r €R
k=0 571 k

their generating function in the classical complex case is given by

2 o Hy(2)
e T Ly(zx) = Z —=2" z€CrzekR
n=0 2 Bn(a)

Moreover, it turns out that the Hermite functions

2_(n*;*1) 9
hy(2) == WegHg(x)
(o

associated to these polynomials form an orthonormal basis of the Hilbert space

Ha.

Then, similarly to the complex case we prove the following

Lemma 5.4.1. Letp € H and x € R. Then, we have

o)

p? HY (x
677La(px> = Z ZnEH((Oz)pn

Proof. Set
22 = H(2)
(2)=e TLy(zz) and g¢;(2) = —n " Vze G,
70 () and 0(2) =D 58

Notice that f; and g; are two entire functions. Then, they could be extended into
two slice entire regular functions denoted respectively ext(f;) and ext(g;). On
the other hand, the functions

Fl) = e T La(a) and Glg) =3 iy

™)

q

are entire slice regular on H since ¢ — e~ 7 is quaternionic intrinsic. It follows
then from the uniqueness in the Lemma 3.1.7 that F' = ext(f;) and G = ext(g;).
Finally, since F' and G coincide on the slice C; we use the identity principle to
conclude the proof. O
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As a consequence of the last lemma we have

Proposition 5.4.2. Letp € H and z € R. Then,

2

Calpoz) = 3 h3(x) g

=
£

Proof. Let (p,z) € H x R, and write

[e.o] n

M

WE

a+1 T
2

he () —2 2% e %
Ba() 2 (o)

Then, by taking ¢ = v/2p € H we can apply the last lemma to get

3 he(r) 2

He(x) (@)
2

7

= 2% e 2@ L (V2pa)

()
= Cuo(p, ).
O
Another interesting property of the kernel C, is given by
Lemma 5.4.3. Let p,q € H. Then,
/ Ca(p7 m)ca(%m)dﬂa(l') = La<p7 Q>
R
Proof. Let p, q € H, making use of the Proposition 5.4.2 we can write
Ca(p> .T) = h%(ﬂf)— and Ca(an) = h%(ﬂ?) :
% V Bn(a) ; vV Bn(a)
Thus,
Colp)Cala. 2)dal) = [ (S i 1) ) dyta(s)
/R R nz; B () 'rnZO Bm ()

— P q" W (e (o)
n,m=0 \/5n<a)\/ﬁm(a) /]R n (@)l (2)dpa(x)

Then, since {h{ },>¢ form an orthonormal set in #,, we have

[ ettt = 3 VB gq;ﬁ O

= La(p, q)-
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Therefore, we have

Proposition 5.4.4. Let g € H and ¢ € H,,. Then,
L ICn. = V' La(q,7) = v/ La(lg]?).

2. |Tap(@)l < v La(lg?) ¢l

Proof. 1. It is a direct consequence of the Lemma 5.4.3 combined with the

identity C,(q,z) = C,(q, x) for all ¢ € H.

2. We start by writing

Tup(q)] < / 1Co(a.2) (@) da ()

Then, we use the Cauchy-Schwarz inequality to complete the proof.
O

Remark 5.4.5. Forn € N, we have T,,hy = ¢, and [|[Tohy || 7o, @) = |75 ||, -

lice

N N
Moreover, if o = Y _ hicy then | Tuil7s, )= Y _ leal* = 1@l
n=0

n=0

Finally, we prove the following

Theorem 5.4.6. The integral transform T, is an isometric isomorphism mapping
the quaternionic Hilbert space H,, onto F§,;..(H).

N
Proof. Let ¢ € H, and set py = Z hia, with (a,) C H such that ¢ con-

n=0
verges to ¢ in ‘H,. Then, making use of the second estimate in Proposition 5.4.4

we can show that T, is a Cauchy sequence in the quaternionic Hilbert space
Gice(H). Thus, there exists [ € F§;,..(H) such that T,y — f. Conse-

Slice(
quently, it will exist a subsequence (7, ¢y, ), converging to f pointwise almost

everywhere. Moreover, according to the Proposition 5.4.4 we have the following

Tap(p) — Taen (p)| < ClpDlle — nllne

Then, by letting N goes to infinity we can see that (7, ) vy converges pointwise
to 7T,,¢. In particular, the pointwise convergence shows that 7,0 = f. However,

by definition we have f := lim Topn.

N—00,F&;c0(H)

Therefore, it follows that
| Tabll 7e,,. ey = | fll 7o,y = Nlignoo||Ta90N||fglice(H) = [loll#a-

Hence, T, is a quaternionic isometric integral operator which is one-to-one.
Moreover, since T, h$ = ¢ it is also surjective and this ends the proof. O]
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As a consequence we have

Proposition 5.4.7. Let f € Fg;,..(H) and x € R. Then, for any imaginary unit
I € S we have

T f(a) = / B )N () 200D / © (3, 0) (PP 2 dAar s ().

Cr

Proof. First, note that T}, is a surjective isometry. Then, it defines a quaternionic
unitary operator which means that its inverse is given by 7, ' = T:* where T)*
is the adjoint operator of T,,. Now, let f € F;, . (H), then since T,' = T we
have

<Ta_1f7g>'Ha = <f7 TaQ)]—'ghce(H) Vg € Ha.

Observe that T, g is given by

Tota) = [ Cala.2)g(@)dpa ()
Then, we have
-1 i
<Ta fv g>'Ha - <f7 Tag>f§lice(H) vg € Ha'

- / T i () () + 2+ 1 / Tl Ao s0)

However, we have

(Tog)i(p) = / i Ca(p, ) g(x)dpio () and (To9)7(p) = / i Co(p, 2)g(x)dpa(T).

Thus, making use of Fubini’s theorem we get that for any g € H,, we have

(1259, = | _as(@)dna(a)
= <¢f’ g)ya )

where we have set

by(z) = / o) 0D (p) 42t ) / o (B, 0) fL (PP 2 dAar ().

Cr
Since the last equality holds for all g € F;,..(H) it follows that T, ' f = ¢p. [

Remark 5.4.8. The integral on the right hand side in Proposition 5.4.7 does not
depend on the choice of the imaginary unit since the scalar product does not depend
on the choice of the slice.
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We finish this section by connecting this unitary transform 7, to what we
call the (right) slice Dunkl transform. Indeed, we define the (right) slice Dunkl
transform of a function ¢ € H,, with respect to a slice C; to be

Dlp(z) == /  Lo(=Tat)p(t)da)

More properties of the classical complex Dunkl transform can be found for ex-
ample in [109]. Actually, this transform generalizes the classical Fourier trans-
form on the real line. It satisfies a version of the Plancherel theorem since it
extends uniquely to a unitary operator from the Hilbert space H,, onto itself.
Then, we prove

Lemma 5.4.9. Let [ be any imaginary unit in' S and ) € H,,. Then,
T.D!(x) = Typog(x) where g(x)=—al forallz € R.
Proof. Let x € R and ¢ € H,, and consider the function

o(s) = DLis(s) = / Lol Tt

Then, thanks to the Plancherel and Fubini’s theorems ¢ € H, we can write
Tuple) = | Calir,)¢(s)dal)
— [ cutees) ([ at-1s0)00)dnatt)) duats)
-/ ( / Ca(:p,s)La(—Ist)d,ua(S)) P (E)dpal)
Note that, we have
o(z,t) = /R Colx, 8)Lo(—1st)dpq(s).
Thus, we get

plz,t) =22 e 2 /R e_gLa(\/gxs)La(—Ist)d,ua(s).

The last integral can be evaluated as in Theorem 3.4 in [109] since x € R. Then,
we get

d(x,t) = Co(—Ix,t).

Therefore, we obtain
7,056(0) = [ Cal~L. 00 (0)dpa(t).
R
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Finally, this shows that

TaDot(z) = Tatp(=al).

As a consequence of the Lemma 5.4.9 we have the following :

Proposition 5.4.10. Forany [ € S and f € Fg, .. (H) we have
TDIT\(f)(w) = f(—aT) Vo eR.

Proof. We just have to take ) = T);' f € H,, and then apply the Lemma 5.4.9.
O

5.5 Some quaternionic operators on F3;, . (H)

In this section, we shall consider the two following operators on the slice Cholewinski-
Fock space defined by

Mf(q) =qf(q) and D.sf(q) =0sf(q)+ (2a+1)g"" f(q)

with domains given respectively by
D(M) = {f S gflice(H);Mf S glice(H)}
and
D<Da,5) = {f S glice<H); Da,Sf S glice<H)}'
Note that M and D, g are quaternionic right linear operators densely defined

on F$;..(H) since {¢% },en is an orthonormal basis of this quaternionic Hilbert
space.

In the sequel, we present some properties of these right quaternionic operators
on ‘Fglice (H)

Proposition 5.5.1. M andD,, s are two closed quaternionic operators on F§;,...(H).

Proof. We consider the graph of M defined by

G(M) == A{(f, M[); f € DIM)}.

Let us show that G(M) is closed. Indeed, let ¢,, be a sequence in D(M) such
that ¢,, and M¢,, converge to ¢ and 1 respectively on F§;;..(H). Then, thanks
to the Proposition 5.4.4 we have

|0n(q) = ¢(@)| < Cyllon — ¢l and  |[Men(q) = P(g)] < Cl| Mo — ];

it follows that ¢,, and M¢,, converge respectively to ¢ and v pointwise. This
leads to 1(q) = M¢(q) which ends the proof. The same technique could be
adopted to prove the closeness of the operator D,, s on Fg,.. (H). O
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Proposition 5.5.2. Let f € Fg, . (H). Then, Mf € Fg,..(H) if and only if
Dosf € Fluee(H). In particular this means that D(M) = D(D,,s).

o0

Proof. Let f(q) = Zq"an be an entire slice regular function belonging to

n=0
%o (H); we shall compute || M f|| and || D, s f]|. We have

9)=> ¢""a, and |M[|’ = Z Basi(a)lanl.
n=0
On the other hand,

a Sf Z 2kq2k lCLQ + Z o+ k + l)q A2k+1

Bor(ax B
z @) k- amz

Bak— 1(CY 521@
N Bala)
TS Bt
Thus we have
a Sf Z q Cn where Cn = Bg:zéo)o Ap41-

Hence, making use of Proposition 5.3.4 we obtain

IPasfI? = 3 5 @l
n=0 n

Now, we use the fact that

: 20 + 1
6+1(Oé>_ +1+ « +

Bu(a) 2

and setting k = n + 1 we get

Pasf? =3 (k4 225 0= 19 ) Bl

1+ (=1")

k=0
This leads to
1DasfIIP = IMFIP = LFIP = (2a +1) Y (=1)*Bu()|axf?
k=0

Last equality concludes the proof and shows that M and D, ¢ have the same
domain on Fg, ., (H). O
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Proposition 5.5.3. For f € D(D, s) and g € D(M), we have

(Dasf e @y = (iM)ra @)
and
<Mg,f>]:a_ () — <g7 osz).Fg‘lwe( H) -

Proof. Take f(q Z q"a, and g(q Z q"b,. Then, as we have seen before

n=0

= . ﬁnH(Oé)
Da = " n th n— ", 7 N
@)=Y e with o, = il

and by taking b_; = 0 we have

we have

0o
= Z qnbn—l
n=0

Therefore, it follows from the Proposition 5.3.4 that

< an 9 F Zﬁnﬂ b nGnt1

~u M9>F§m< B
Then, we just need to apply (h,1) = (I, h) to get the second formula. O
Proposition 5.5.4. The commutator of the operators D, s and M satisfies
[DasiM] =T+ (20 +1)A
where T is the identity operator and Af(q) = f(—q) on F$,..(H).
Proof. Let f € F&,..(H), then we have

f(a) —f(—q)>_

MF@) = af(@) and Dosfla) = 0sf(0) + (2o 1 (L0

Thus,
MDqsf(q) = 405 () + (20 +1) (M)

Moreover, since the identity is an intrinsic entire slice regular function then the
slice derivative satisfies the Leibniz formula so that we have

q) + J(—q
DasM(a) = 5(0) + 0051 (o) + 20+ 1) HOHEDY,
Hence, by substituting the two last equations we get the desired result. O
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Finally, all the previous properties could be summarized in the following
main result

Theorem 5.5.5. M and D,, s are closed densely defined right quaternionic linear
operators adjoints of each other on the slice Cholewinski-Fock space. Moreover, they
satisfy the commutation rule

Do s; M| =T+ (2a+1)A.

1
Remark 5.5.6. Ifa = —3 the last theorem states that the slice derivative Og and

the quaternionic multiplication operator M, are adjoints one of each other and
satisfy the classical commutation rule [Og; M,| = Z on the slice hyperholomorphic
Fock space introduced in [15].

5.6 The slice monogenic Cholewinski-Fock spaces

Let {ey, e, ...,e,} be an orthonormal basis of the Euclidean vector space R"
with a non-commutative product defined by the following multiplication law

eres + esep = —20s; k,s=1,...n

where 0y, s is the Kronecker symbol. The set {e4: A C {1,...,m}} with ey =
€hy€hy---Eh,, 1 < hy < ... < h, <n,ep = 1forms a basis of the Clifford algebra
R,. Let R"™! be embedded in R,, by identifying (z¢, z1, ..., x,) € R*"! with
the para-vector x = 2y + = € R,,. The conjugate of x is given by z = o — x

and the norm of z is defined by |z|*> = 22 + ... + 22. Furthermore, the (n — 1)
dimensional sphere of units 1—vectors in R" is denoted by

St ={z =261 + ... + Tpen; ] + ..+ 22 =1},

Note thatif I € S"~!, then I? = —1. Based on these notations, in [36] the theory
of slice regular functions on quaternions was extended to the slice monogenic
setting where the space of all slice monogenic functions on {2 is denoted by
SM(Q). Then, by analogy with the quaternionic setting, to f € SM(R"!)
such that

fx) = f(x) + f°(x)

we consider
T / Ui @F A (@) + 200+ 1) / TGRS

where for the para-vector x = u + vI € C; we have

|m|2a+2

d)\a ](Q?) :

a(r) = mf(a(|$|2)d)\z($)-
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Hence, we define the slice monogenic Cholewinski-Fock space on R™ ! to be
Stice R™™) = {f € SMR™); || [0 < 00}.

The monomials given by paravectors (z™),, form an orthogonal basis of 7, (R" ).

Moreover, note that if @ = —3 this space is the slice hyperholomorhic Clifford

Fock space introduced in section 5 of [15].
Finally, we conclude this by this comment

Remark 5.6.1. The theory of slice monogenic functions with Clifford valued func-
tions [35, 36] extends following the same spirit the one of slice regular functions
on quaternions so that we have the same extended versions of : Splitting Lemma,
series expansion theorem, Representation Formula, etc. Hence, most of the results
obtained in this paper in the quaternionic setting could be rewritten in the slice
monogenic setting.
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CHAPTER

A quaternionic Short-time Fourier transform
QSTFT

In this chapter, we study a special one dimensional quaternion short-time Fourier
transform (QSTFT). Its construction is based on the slice hyperholomorphic
Segal-Bargmann transform. We discuss some of its basic properties and prove
different results on this QSTFT such as Moyal formula, reconstruction formula
and Lieb’s uncertainty principle. We provide also the reproducing kernel asso-
ciated to the Gabor space considered in this case. The results obtained here are
based on [56]

6.1 Motivation

There has been an increased interest in the generalization of integral transforms
to the quaternionic and Clifford settings in the last years. Such transforms are
widely studied, since they help in analysis of vector-valued signals and images.
In [31] it was explained that some hypercomplex signals can be useful tools for
extracting intrinsically 1D-features from images. The reader can find other moti-
vations for studying the extension of the time frequency-analysis to quaternions
in [31]. In the survey [54] the author states that this research topic is based on
three main approaches: the eigenfunction approach, the generalized roots of —1
approach and the spin group approach. In particular, using the second approach
a quaternionic short-time Fourier transform in dimension 2 is studied in [21].
In the paper [94] the same transform is defined in a Clifford setting for even
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Chapter 6. A quaternionic Short-time Fourier transform QSTFT

dimension more than two. We introduce here an extension of the short-time
Fourier transform in the quaternionic setting in dimension one. To this end,
we fix a property that relates the complex short-time Fourier transform and the
complex Segal-Bargmann transform:

—n|z|?

Vof(z,w) =e ™G f(2)e 2, (6.1.1)

where V,, is the complex short-time Fourier transform with respect to the Gaus-
sian window ¢ (see [78, Def. 3.1]) and G f(z) denotes the complex version of
the Segal-Bargmann transform according to [78]. To achieve our aim we use the
quaternionc analogue of the Segal-Bargmann transform studied in [60]. This in-
tegral transform was used also in [63] to study some quaternionic Hilbert spaces
of Cauchy-Fueter regular functions.

In order to present our results, we adopt the following structure: in the next
section, we prove some new properties of the quaternionic Segal-Bargmann
transform that will be useful for our purpose. In particular we deal with an
unitary property and give a characterization of the range of the Schwartz space.
Moreover, we provide some calculations related to the position and the momen-
tum operators. After that, we give a brief overview of the 1D Fourier trans-
form [65] and show a Plancherel theorem in this framework. Then, we will
define the 1D QSTFT and prove an isometric relation for the 1D QSTFT and a
Moyal formula using the Segal-Bargmann techniques. We show also the follow-
ing reconstruction formula

flyy =271 / 62”I“yV(pf(x,w)e‘”(y_m)dedw, Vy € R.
R2

From this follows that the adjoint operator of the QSTFT defines a left inverse.
Furthermore, it gives the possibility to write the 1D QSTFT using the reproduc-
ing kernel associated to the Gabor space

Gh =V, f, f € L*(R,H)}.

Finally, we prove that the 1D QSTFT considered here follows a Lieb’s uncertainty
principle.

6.2 Further properties of the quaternionic Segal-Bargmann transform

In this section we prove some new properties of the quaternionic Segal-Bargmann
transform.

6.2.1 A unitary property

We start from an unitary property which is not found in literature in the follow-
ing explicit form.
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6.2. Further properties of the quaternionic Segal-Bargmann transform

Proposition 6.2.1. Let f, g € L*(R,H). Then, we have

(Bi(f), Bi(9)) 2

slzce

) = (fs 9)r2mm)- (6.2.1)

Proof. Any f,g € L*(R,H) can be expanded as

z) =Y hi(z)ay,

k>0

= Z hZ(x)Bkv

k>0

where (ag)ken, (Bk)ren C H.

(f,Dreem = / dx—Z/ h” x) Brhy(x)ay dz
R

k>0
= Zﬂk(/ hy(x) daz) Qg (6.2.2)
k>0
= Z [ (z HLZ(RH)ﬁkak
k>0

On the other way, since

s = ([ TG @) di )y = W0 e

Jj=0
We have by [60]

<f7 hZ>L2(]R,H)

Ba(f)(q) = er(q) (6.2.3)
i 2 O e Ten T
B PP 116 B
2 e el
|15 () || 2y
er(q)———— .
5 .
Using the same calculus we obtain
Ry(
Bi(g)(q) = > R 1A (@)l 2z L er(2)Br. (6.2.4)

k}>0 || k”fg’l:ce
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By putting together (6.2.3) and (6.2.4) we obtain

(BE(f), Bii(9)) sy

Slzce (H)

( = ()

k>0 kIFLy.
erlq _ulal2
.ﬁake la dXr(q)
k ]:5;;26
v o ek(Q)
Sl [
k>0 Cr Hekagﬁce
. ek(q) 6—1/|q|2 d)\[(q))ak
e
y 1
k>0

Slzce

(/ _ a@alge " dw)) o

1
> ||hz<x>||%z(R,H)ﬁkWHeklﬁggceak
k‘>0 Slzce
Z |y (@ )||L2 R,H) Brou
k>0

Finally, since (6.2.2) and (6.2.5) are equal we obtain the thesis.

Remark 6.2.2. If f = g in (6.2.1) we have that the quaternionic Segal-Bargmann
transform realizes an 1sometry from L*(R,H) onto the slice hyperholomorphic

Bargmann-Fock space fSlwe (H), as proved in a different way in [60, Thm. 4.6]

6.2.2 Range of the Schwartz space

We characterize the range of the Schwartz space under the Segal-Bargmann
transform with parameter v = 1 in the slice hyperholomorphic setting of quater-
nions. We consider also some equivalence relations related to the position and
momentum operators in this setting. The quaternionic Schwartz space on the

real line that we are considering in this framework is defined by

Sp(R) ={¢y :R—H :

2 (W)()

sup
z€R

For I € S, the classical Schwartz space is given by

Sc;(R) :={p:R— Cp;

(0% dﬂ
¢ sup |x @(90)(93)

zeR
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6.2. Further properties of the quaternionic Segal-Bargmann transform

Clearly, we have that
S(CI (R) C SH(R) C LIQHI(R)
Moreover, we prove the following

Lemma 6.2.3. Lett) : © — 1)(x) be a quaternionic valued function. LetI, J € S
be such that I 1 J. Then, ) € Su(R) if and only if there exist p1, p2 € Sc,(R)
such that we have

V() = o1(x) + po(x)J, Vo € R.
Proof. Let ¢ € Sg(R). Then, we can write

U(x) = e1(2) + pa(x)J,
where ; and 5 are C;—valued functions. Note that for all o, 5 € N we have

2 2

+

d8 2

B
’ e (a) @)

B
. 2 (o))

2" ()()

In particular, this implies that ¢ € Sg(R) if and only if 1, 2 € S¢,(R). O

Let us now denote by SF(H) the range of Si(R) under the quaternionic
Segal-Bargmann transform Bg. Therefore, we have the following characteriza-

tion of SF(H):

Theorem 6.2.4. A function f(q) = Z q"cy. belongs to SF(H) if and only if
k=0

sup |ex|KPVE! < 00, Vp > 0.

keN
ie,

SF(H) = {Z ¢"cr, ¢ € Hand sup |cp|kPVE! < 00, Vp > 0}
0 keN

Proof. Let f € SF(H), then by definition f = Bgi) where ¢ € Sy(R). Let
I,J € S, besuchthat I L J. Thus, Lemma 6.2.3 implies that

Y(x) = p1(x) + pa()J,

where 1, p2 € Sc,(R). Therefore, we have

Biy(v)(a) = Bii(y1)(a) + Bi(2)(a) .

Then, we take the restriction to the complex plane C; and get:

B () (2) = Be, (1) (2) + Be, (92)(2) . ¥z € Cp,
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where the complex Bargmann transform (see [23]) is given by

1 10,2 2
Be/(p)() = 3 [ A @, =12
i J R
In particular, we set f; := B (v), fi := Bc,(¢1) and fo := Be,(¢2). Then,
we have fi, fo € SF(Cj). Thus, by applying the classical result in complex
analysis, see [98] we have

filz) = Zanzn and fo(z) = anz", Vz e Cy.
n=0 n=0

Moreover, for all p > 0 the following conditions hold

sup |a,|n”Vn! < 0o and sup |b,|nPVn! < .
neN neN

In particular, we have then

oo

fi(z) = Zanz” + (Z a,z")J, Vz € Cy.
n=0

n=0

Therefore,

fr(z) = Zz”cn with ¢, = a,, + b, J, forall z € C;.

n=0

Thus, by taking the slice hyperholomorphic extension we get

flq) = Zq"cn, Vg € H.
n=0

Moreover, note that ¢, = a,, + b,J,n € N. Then, ,Vn € N.

Thus, for all p > 0, we have

| < lan] + by

sup |, [nPVn! < sup |a,|nPvVn! + sup |b,|nPVn! < co.
neN neN neN

Finally, we conclude that

SFMH) = {f(q) = quck, ¢x € Hand sup |cx| /" VE! < 00, Vp > 0}.
— keN
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6.2.3 Position and momentum operators
Now, let us consider on L?(R, H) = L%(R) the position and momentum opera-
tors defined by

X :p— Xo(x)=xp(x)and D : ¢ — Dp(z) = —p(z).

Their domains are given respectively by

D(X) :={p € Li(R); X¢ € Ly(R)} and D(D) = {y € Li(R); Dy € Ly(R)}.
First, let us prove the following

Lemma 6.2.5. Forall (q,x) € H x R, we have
05 Aji(g, %) = (—q + V22) Af(q, ).

Proof. Let(q,z) € HxR. Then, by definition of the quaternionic Segal-Bargmann
kernel we can write

2

2
_3 _zZ _ 47
AZ(q,x) =7 1e" Te 2 eV,

In this case, we can apply the Leibnitz rule with respect to the slice derivative
and get
2

Os Az (q,x) = Tie” 7 <6q2285(6\/§xq) + as(eq;)e\/iﬂl) )

However, using the series expansion of the exponential function and applying
the slice derivative we know that

V)

2

ds(e™ ) = —ge™ T and Og(eV>) = V2xeV?™,
Therefore, we obtain

OsAg(q,2) = (—q + V21) Afj(q, ).

Theorem 6.2.6. Let ¢ € D(X). Then, we have

(s + ) Bi(p)(q) = V2B5i(29)(q), Vg € H.
Proof. Let ¢ € D(X) and ¢ € H. Then, we have

0sB3(0)(q) = / OsA%(a.0)¢ (o)
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Therefore, using Lemma 6.2.5 we obtain

0sBi(¢)(q) = V2Bi(z¢) () — aBi()(a).

Finally, we get

(95 +a) Bi(¢)(a) = V2B (2¢)(q), Vg € H.

As a quick consequence, we have
Corollary 6.2.7. The position operator X on L%4(R) is equivalent to the operator
1 1

\/§ lice

Bg. In other words, for all ¢ € D(X) we have

(05+q) on the space F ... (H) via the quaternionic Segal-Bargmann transform

X(p) = (8 BT Dps ()

V2
On the other hand, we have also the following

Theorem 6.2.8. We denote by M, : ¢ — M,(q) = qp(q) the creation operator
on Fop (H). Then, we have

1

Syt = — on .
(Big) ™ M,By = \/§(X D) on D(X) ND(D)
Proof. Let ¢ € D(X) N D(D). Then, we have
BAD)0) = [ Afa.0) ol

—— [ TG

However, note that for all (¢, x) € H x R, we have

%Agﬂ(q, 7) = (—x + V2q) AL (g, 7).

Therefore,
Bi(D)(q) = Bi(z¢)(q) — V2aBi()(q)-

Thus, we obtain

1
M, B () = B (— X—D> :
Ba(e) H \/5( ) | (¢)
Finally, we just need to apply (B5)~! to complete the proof. O
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6.3. 1D quaternion Fourier transform

6.3 1D quaternion Fourier transform

In this section, we study the one dimensional quaternion Fourier transforms
(QFT). Namely, we are considering here the 1D left sided QFT studied in chapter
3 of the book [65]. In order to have less problems with computations we add
—27 to the exponential.

Definition 6.3.1. The left sided 1D quaternionic Fourier transform of a quaternion

valued signal ) : R — H is defined on L'(R;dx) = L'(R; H) by

Fr()(w) = / ey )t

for a given I € S. Its inverse is defined by

Fr(o)(t) = / g )

Let J € S be such that J L I. We can split the signal 1) via symplectic
decomposition into simplex and perplex parts with respect to I such that we
have:

U(t) = Ui(t) +a(t)J
where 1 (t),12(t) € C;. The left sided 1D QFT of 1) becomes

Fr()(w) = / ] e~ 2wl (t)dt + / ) e 2 W, (t)dtJ

so that
Fr()(w) = Fr(1)(w) + Fr(2)(w) .

According to [65], most of the properties may be inherited from the classical
complex case thanks to the equivalence between C; and the standard complex
plane and the fact that QFT can be decomposed into a sum of complex subfield
functions.

Now, we define two fundamental operators for the time-frequency analysis.

Translation

T(t) == Y(t — x) z € R.

Modulation
Myp(t) = ™ (t),  weR

As in the classical case we have a commutative relation between the two oper-
ators.

Lemma 6.3.1. Let ¢ be a function in L?(R,H) then we have
TxMww(t) _ e—?ﬂlwl‘Mwaw(t), w, T € R. (631)
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Proof. 1t is just a matter of computations

Mo(t) = Mup(t — ) = 0 Dy(t — a)
— e?wlwte—ZWwa¢(t . I’)
— efQWIwwe%rthw(t o LU)

= e ™M ().

O
From [65, Table 3.2] we have the following properties
Fr(map) = M_z Fi(¢), (6.3.2)
FI<Mww> = wal(¢)- (6.3.3)
From (6.3.2) and (6.3.3) follow easily that
FI<Mwaw) = TwaxfI(w)- (6.3.4)

Then, we prove a version of the Plancherel theorem for 1D QFT.

Theorem 6.3.2. Let ¢,¢) € L*(R, H). Then, we have
(F1(0): F1(¥)) 2 = (& V) L2y
In particular, for any ¢ € L*(R,H) we have

Fr( ) eem = |10l 2@ m)-

Proof. Let ¢, € L*(R,H). By inversion formula for the 1D QFT, see [65], we
have

$(w) = F1(F1(6))(w), Yw € R.

Thus, direct computations using Fubini’s theorem lead to

000) e = [ 0 ([ e mionan) o

_/(/e%wwm )ﬂw@w
/I} (6)()dt

Fi(o), fI(¢)>L2(R H) -

As a direct consequence, we have for any ¢ € L*(R, H)

1 Fr(L2@m = (Fr(0), Fi(0)) 12my
- <¢7 ¢>L2(R,H)

= ||¢||2L2(R,H)'
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6.4. Quaternion short-time Fourier transform with a Gaussian window

The following remark may be of interest in some other contexts.

Remark 6.3.3. The formal convolution of two given signals ¢, : R — H when
it exists is defined by

@x0)lt) = [ olryutt~ )i
R
In particular, if the window function ¢ is real valued the 1D QFT satisfies the clas-

sical property
Fr(¢ =) = Fi(¢)Fr ().

6.4 Quaternion short-time Fourier transform with a Gaussian window

The idea of the short-time Fourier transform is to obtain information about local
properties of the signal f. In order to achieve this aim the signal f is restricted
to an interval and after its Fourier transform is evaluated. However, since a
sharp cut-off can introduce artificial discontinuities and can create problems, it
is usually chosen a smooth cut-off function ¢ called *window function”. The aim
of this section is to propose a quaternionic analogue of the short-time Fourier

transform in dimension one with a Gaussian window function ¢(t) = 2!/ demmt?,
For this, we consider the following formula [78, Prop. 3.4.1]
. 77r\z|2
Vof(z,w) =e ™G f(Z)e 2 (6.4.1)

where the variables (z,w) € R? have been converted into a complex vector
z = = + iw, and G f(z) is the complex version of the Segal-Bargmann trans-
form according to [78]. Therefore, we want to extend (6.4.1) to the quaternionic
setting. To this end, we use the quaternionic analogue of the Segal-Bargmann
transform [60] and the slicing representation of the quaternions ¢ = = + Jw,
where I € S. If the signal is complex we denote the short-time Fourier trans-
form as V,,, while if the signal is H-valued we identify the short-time Fourier
transform as V.

Definition 6.4.1. Let f : R — H be a function in L?*(R,H). We define the 1D
quaternion short time Fourier transform of f with respect to o(t) = oM/ et gs

Vso) = B3 ()

where ¢ = x + Iw and Bg(f)(q) is the quaternionic Segal-Bargmann transform.

lq|

27‘r
7, (6.4.2)

Fixing v = 27, we can write (6.4.2) in the following way
V@f(l’, w) _ 2% / 6—7r(§+t2)+2W§t—]rmw—@f(t) dt(643)
R

From this formula we are able to put in relation the 1D quaternion short-time
Fourier transform and the 1D quaternion Fourier transform defined in the pre-
vious section.
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Lemma 6.4.1. Let [ be a function in L*(R,H) and o(t) = 2"/*e~"", recalling
the 1D quaternion Fourier transform we have

Vo f(x,w) = V2Fi(f - ) (). (6.4.4)
Proof. By putting ¢ = 2 + [w in (6.4.3) we have
3 Ingw - oon _wln —7t? —E(m2—w2—2xw])-
Vof(r,w) = 21e ez e 2 e e 2

R
_627r(:c—1w)tf<t) dt

_ 22/ 6—7rt2—7rac2+27ra:te—27rlwtf(t) dt
R

= V2 [ e rletf(p)2iem ) gy
R

NG / eI (1)t — x) dt = VIFI(f - o) ().
R

O

Now, we prove a formula which relates the 1D quaternion Fourier transform
and its signal through the 1D short-time Fourier transform.

Proposition 6.4.2. If is a Gaussian function o(t) = 2'/%¢~™" and f € L*(R, H)
then
Vof(x,w) = V2e ™Y Fi(f)(w, —x). (6.4.5)

Proof. Recalling the definition of modulation and of inner product on L?(R, H),
by Lemma 6.4.1 we have

Voflz,w) = V2 / i e2mlwtp(t — x) f(t) di (6.4.6)
NG / MLl (1) dt = VE(f. M),

Using the Plancherel theorem for the 1D quaternion Fourier transform, the prop-
erty (6.3.4) and the fact that F;(¢) = ¢ we have

Vof(x,w) = V2(Fi(f), Fr(Murap))
- \/§<Ff<f>7TwM—xfI(90)>
= \/§<'/—-I<f)a7-wM—x90>

Finally, from (6.3.1) and (6.4.6) we get
Vof (2,0) = V2e 271 (Fi(f), M_amup) = V2e 2TV, Fi(f) (w, —).
O
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6.4. Quaternion short-time Fourier transform with a Gaussian window

6.4.1 Moyal fromula

Now, we prove the Moyal formula and an isometric relation for the 1D quater-
nion short-time Fourier transform in two ways. In the first way we use the
properties of the quaternionic Segal- Bargmann transform, whereas in the sec-
ond way we use Lemma 6.4.1 and some basic properties of 1D quaternion Fourier
transform.

Proposition 6.4.3. For any f € L*(R, H)

Vo fll 2@z = V2| £l L2z (6.4.7)

Proof. We use the slicing representation of the quaternions ¢ = x + Iw and
formula (6.4.2) to get

Velleen = [ Wefle.w)Pdods

= [empln(5)

Now, using the change of variable p = % we have that dA(p) = 5 dw dz, hence
by [60, Thm. 4.6]

2
112
el du da.

Velllze@m = 2 / 1B £p))Pe 29" dA(p)
= 2||Bfu(f)||fr;ﬁ; =2/ fl122@m):

Therefore
Ve fll 2@ = V2| £l 2m-
L]

Thus, the 1D quaternionic short-time Fourier transform is an isometry from
L*(R,H) into L*(R?; H).

Proposition 6.4.4 (Moyal formula). Let f, g be functions in L*>(R,H). Then we
have

Vel Veg) 2@zm = 2(f, 9) 2 m).- (6.4.8)
Proof. From (6.4.2) we get

Vol Vog) L2z = / Vog(x,w)Vy f(z,w) dw dx
RQ

— e—IwwaS() i 6—‘Q|22W€—I7rww,
R I\ V2
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Using the same change of variables as before p = % and from (6.2.1) we
obtain

Vol Vod) eemy = / BE@) (0)BS (1) (p)e 2" dw da
- )BS< )>f§lf:( =2(f,9)L2®m)-

Remark 6.4.5. If we put [ = Hh;:(i E in (6.4.2) by [60, Lemma 4.4] we get

|22/

Vol () = e 1mse 80 2o gh,

Remark 6.4.6. From (6.4.4) we can prove (6.4.8) in another way. This proof may
be of interest in some other contexts.

Let us assume f,g € L*(R,H) and recall o(t) = 2'/*¢~™", by Lemma 6.4.1
and Plancherel theorem for the 1D quaternion Fourier transform we have

Vof Vo9 2oy = / Voi(z,w)Vy f (2, w) dw dz
R2

= 2| Filg-mp)W)Fi(f - mp)(w) dwdz

RQ

= 2 G e @) () dw do.
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6.4. Quaternion short-time Fourier transform with a Gaussian window

Now, by Fubini’s theorem and the fact that ||o||3 = 1 we get

Vo f Vo) 2@mem) = 2/ </ mf(w)~m@(w)dx> dw

_ / </ (@) (x — w) dx) duw
_ / (/RQQQ(:E—w)dx) de
IR

= 2 [ Gl d =2 / () () dow
R R
= 2<f>9>L2 R,H)-
Hence
Vo f Vo) L2z = 2(f, 9) 12®.m)- (6.4.5)

If we put f = g in (6.4.5) we obtain (6.4.7).

6.4.2 Inversion formula and adjoint of QSTFT

The 1D QSTFT with Gaussian window ¢ satisfies a reconstruction formula that
we prove in the following.

Theorem 6.4.7. Let f € L*(R, H). Then, we have
fly) = 277 /R2 62“I“yV¢f(x,w)e_“(y_x)2dxdw, Yy € R.
Proof. For all y € R, we set
9(y) = 231/ 2 VY, f(x,w)e ™ duduw.
R

Let h € L?(R,H). Fubini’s theorem combined with Moyal formula for QSTFT
leads to

(0:B) ey = [ Bal)dy
_ 2_% / @ 27rIwaLpf(x’w)e—ﬂ(y—w)zdxdwdy
_ 2 1\/_/ (/ e~ 27rlwy24e W(y x) h(y)dy) V(Pf({,E,W)dmdw
R2

=27 / Vh(z, )V, f (2, w)drdw
R2

=27 <Veof7 V<Ph>L2(]R2)
= (/, h>L2(R)
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Chapter 6. A quaternionic Short-time Fourier transform QSTFT

Hence, we have
fly) =g(y) = 274 / e vy f(x, w)e’”(y’x)dedw.
R2

This ends the proof. 0J

We note that the QSTFT admits a left side inverse that we can compute as
follows

Theorem 6.4.8. Let ¢ denote the Gaussian window () = 24~ and let

us consider the operator A, : L*(R?,H) — L*(R,H) defined for any F' €
L?(R? H) by

AL (F)(y) = 21 / MY F (2, w)e ™0 dadw, Yy € R.
R2

Then, A, is the adjoint of V,,. Moreover, the following identity holds
VoV, = 2Id. (6.4.6)

Proof. Let F' € L?(R* H) and i € L*(R, H). We use some calculations similar
to the previous result and get

h(y) A (F)(y)dy

—

<A50(F)7h>L2(R,H) - "

NN

2 W)™V F (2, w)e ™) dedwdy

Y
R3

V2 (/ 6_2““’9231e—”(y_x)Qh(y)dy> F(z,w)dxdw
R

RZ

Voh(z,w)F(z,w)drdw

]RQ
= (F, th>L2(R2,H) :

——

In particular, this shows that
Ag)(F) = Vi(F), VF € L*(R?, H).

From reconstruction formula we obtain (6.4.6).

O

Remark 6.4.9. We note that the identity VV,, = 21d provides another proof
for the fact that QSTFT is an isometric operator and the adjoint V;, defines a left
inverse.
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6.4. Quaternion short-time Fourier transform with a Gaussian window

6.4.3 The eigenfunctions of the 1D quaternion Fourier transform

Through the 1D QSTFT we can prove in another way that the eigenfunctions of
the 1D quaternion Fourier transform are given by the Hermite functions.

Proposition 6.4.10. The Hermite functions hi™(t) are eigenfunctions of the 1D
quaternion Fourier transform :

Fr(m)(t) = 272 (=D 7 (1), tEeR.
Proof. By identity (6.4.2) and [60, Lemma 4.4] we have

_lal?
Vo(h2™)(z, —w) = ™ BI(h2m)(-L)e "8 (6.4.7)

V2
— e]ﬂ'mw21/42k‘/2(27T)]g2_k/2qke_7r|g\2

mlq|?

elﬂxw2l/4(2ﬂ_)qu6— 2

Recalling that ¢ =  + Iw and using (6.4.5) we obtain
Vo Fr(him) (@, —w) = 272V R (w, @)

— 2—1/2627r1wxe—17rw1851(hi7r> (w — ]l’)e_lq;ﬁ

—IC] lg|“m
2—1/267r]szS h27r ( )6_ B
_ 271/2e7r1wx21/42k/2(2ﬂ)k(_1)k27k/2qkef#

2

271/2(_[)kelrrwx21/4(2ﬂ_)quef \ql2 w .

Combining with (6.4.7)
Vo Fr(hi) (z, —w) = 272 (= D)V by (2, —w).
From (6.4.6) we know that V,, is injective, hence we have the thesis. O

6.4.4 Reproducing kernel property

The inversion formula gives us the possibility to write the 1D QSTFT using the
reproducing kernel associated to the quaternion Gabor space, introduced in [2],
with a Gaussian window that is defined by

G = Vo f, f € (R H)}.
Theorem 6.4.11. Let f be in L2(R, H) and o(t) = 2/~ If

Kw(w, T W/7 :E/) _ / G—QWIw/tSO(t . x/)e_QﬂIWtSO(t _ CB) dt,
R
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then K, (w, z;w’, 2') is the reproducing kernel i.e.

V‘Pf(l'/?w/) = KW(M7$;w,7x/)V@f(l‘aw) drdw.

RQ

Proof. By Lemma 6.4.1 and the reconstruction formula we have
wa(x/7w/) _ 23/4/ 6—27r]w’tf(t)€—7r(t—:p')2 dt
R
_ 23/4 / e—27r[w’t€—7r(t—z’)22—
R
: (/ e%lw'fe_”(t_x)QV(pf(x, w) dz dw) dt
RQ

_ \/E/ 6727r](w’7w)t677r(t7x’)2efw(tfm)Q .
R3
YV, f (x,w) dz dw dt.

PN

Using Fubini’s theorem we have

Vel ) = f/ (/ It g (e x>26—ﬂ<t—x>2dt).
RQ

Vo f (2, w) dv dw

_ / (/ e—27r]w t21/46_ﬂ'(t_1’/)221/46—271'th677r(tfx)2 dt) .
R2 R

Vo f (2, w) dv dw

= /R2 ( /R e’zﬂwltgp(t — ' )e 2wt p(t — ) dt) .

Vo f (2, w) dz dw

= Ky (w, 230, 2" )V, f (2, w) dedw.

R2

6.4.5 Lieb’s uncertainty principle for QSTFT

The QSTFT follows the Lieb’s uncertainty principle with some weak differences
comparing to the classical complex case. Indeed, we first study the weak uncer-
tainty principle which is the subject of this result

Theorem 6.4.12 (Weak uncertainty principle). Let f € L*(R, H) be a unit vector
(ie||f|| = 1), U an open set of R? and ¢ > 0 such that

/ Vo f (z,w)Pdzdw > 1 — &.
U
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6.4. Quaternion short-time Fourier transform with a Gaussian window

Then, we have
1—¢

2 Y

where |U| denotes the Lebesgue measure of U.

\U| >

Proof. We note that using Definition of QSTFT and [60, Prop. 4.3] we obtain

lal?

Vo f(z,w)| = |B]1§1f((7/\/§)|e_7”
= |Baf(p)le ™" p=q/v2
< V2|2

Thus, by hypothesis we get
1-e< [ V(oo Pdeds < [V fIRIUT < 2001
U

Hence, we have
1—¢
2

\U| >
U

Theorem 6.4.13 (Lieb’s inequality). Let f € L?(R,H) and 2 < p < oo. Then,
we have

2p+
/ Vol @) Pdades < = || e

Proof. Let I, J € S be such that [ is orthogonal to J. Then, for f € L*(R,H),
there exist fi, fo € L*(R, C;) such that

ft)=ft)+ fo(t)J, ¥t €R

and for which the classical Lieb’s inequality [91] holds , i.e:

/ \Vio fi(z, w)|pd:vdw<—||fl||L2R(CI l=1,2.

In particular, by definition of QSTFT we have
Vo f(z,w) =V, fi(z,w) + V, falz,w) ], V(z,w) € R
Thus,

Ve (z,w)[” < (Vo fi(e, w)| + Vo falz, w)])"
<27 (Vo hila,w)I” + [V fo(z, w)IP) -
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We use the classical Lieb’s inequality on each component combined with the
fact that || fi||, < ||f||, for l = 1,2 and get

oP
[ Wat@ardnds < = (1Al + 1ll)
op+1
< Ay

This ends the proof. ]

The next result improves the weak uncertainty principle in the sense that it
gives a best sharper estimate for |U|.

Theorem 6.4.14. Let f € L*(R,H) be a unit vector, U an open set of R? and
€ > 0 such that

/ WV, f(z,w)?drdw > 1 — ¢.
U

Then, we have
U] > ¢,(1 €)™,

2

where |U| denotes the Lebesgue measure of U and ¢, = <2pp+l> "

Proof. Let f € L*(R,H) be such that || f||;2rm = 1. We first apply Holder
inequality with exponents ¢ = g and ¢’ = % Then, using Lieb’s inequality

for QSTFT we get
/ Vo f(z, w)|*drdw = / Vo fl(z, w)|2XU (z,w)dxdw
U R2

< ([ s wras) o7
RQ

Hence, by hypothesis we obtain

Ul > (1 —e)7

2
p+1\ p—2
where ¢, = (2 > .
P
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6.5 Concluding remarks

In this chapter, we studied a quaternion short-time Fourier transform (QSTFT)
with a Gaussian window. This window function corresponds to the first nor-
malized Hermite function given by t(t) = ¢(t) = 2/4¢~™". Based on the
quternionic Segal-Bargmann transform we proved several results including dif-
ferent versions of Moyal formula, reconstruction formula, Lieb’s principle, etc.
A more general problem in this framework is to consider a QSTFT associated to
some generic quaternion valued window 1. For a given quaternion ¢ = = + [w
we plan to investigate in our future research works the properties of the QSTFT
defined for any f € L*(R,H) by

Vof(z,w) = /R e 2y (t — x) f(t)dt.

In particular, studying such transforms with normalized Hermite functions
{¥n(t) }n>0 that are real valued windows will be related to the theory of slice
poly-analytic functions on quaternions considered in [17].
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CHAPTER

A Clifford-Appell system and
Bargmann-Fock-Fueter transform

This chapter deals with some special integral transforms of Bargmann-Fock type
in the setting of quaternionic valued slice hyperholomorphic and Cauchy-Fueter
regular functions. The construction is based on the well-known Fueter mapping
theorem. In particular, starting with the normalized Hermite functions we can
construct an Appell system of quaternionic regular polynomials. The ranges of
such integral transforms are quaternionic reproducing kernel Hilbert spaces of
regular functions. New integral representations and generating functions in this
quaternionic setting are obtained in the Fock case. The results obtained in this
chapter are based on [63].

7.1 Motivation

The study of Appell sequences has been performed in the setting of Clifford anal-
ysis with respect to the hypercomplex derivative, see for example [29, 93, 99].
In [46, 101] the authors introduced some special modules of monogenic func-
tions of Bargmann-type in Clifford analysis. This line of research opens some
new research directions on Bargmann-Fock spaces and associated transforms in
the setting of Clifford analysis. In this chapter, we construct an Appell sequence
of spherical monogenics in the right Fueter-Bargmann space over quaternions,
denoted by RB(H), and consisting of quaternionic Fueter regular functions that
are square integrable with respect to the Gaussian measure. The main tool that
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we use is the Fueter mapping theorem which relates slice hyperholomorphic
functions to Fueter regular ones through the Laplacian. More precisely, we ap-
ply the Fueter mapping on a special basis of the slice hyperholomorphic Fock
space constructed in [15] and obtain a set of homogeneous monogenic polyno-
mials in the right monogenic Bargmann space over the quaternions. This al-
lows us to construct on the standard Hilbert space on the real line the so called
Bargmann-Fock-Fueter integral transform whose range is a quaternionic repro-
ducing kernel Hilbert space of Cauchy-Fueter regular functions. In particular,
we give a partial answer to Remark 4.6 in [88] about Clifford coherent state
transforms using the Fueter mapping theorem in the setting of quaternions.

In section 3 of [46] the real monogenic Bargmann module on the Euclidean space
R™ was defined to be the module consisting of solutions of the s-th power of
the Dirac operator that are square integrable on R with respect to a Gaussian
measure. In this work we use a similar definition for the quaternions by replac-
ing the s-th power of the Dirac operator by the Cauchy-Fueter operator. So, we
call the right Fueter-Bargmann space on quaternions the space defined by

RB(H) = {7 € R(H): = [ (@) ™ iNG) < o).

where d)\ denotes the usual Lebesgue measure on the Euclidean vector space
R*.

In order to present our results, we first study how the Fueter mapping acts
on a special basis elements of the slice hyperholomorphic Fock space. Then, we
show that the obtained polynomials constitute an Appell set of the Bargmann
space of Cauchy-Fueter regular functions over the quaternions. Then, we dis-
cuss the notion of Fock-Fueter kernel. We use the previous notion to introduce
and study the Bargmann-Fock-Fueter integral transform iand characterize the
Fueter mapping range. Some new integral representations and generating func-
tions in this quaternionic setting are obtained in the Fock space case.

7.2 A Clifford-Appell system based on the Fueter mapping

The main goal of this section is to apply the Fueter mapping on the quater-
nionic monomials forming an orthogonal basis of the slice hyperholomorphic
Fock space Fgjic.(H) and to get an Appell set of RB(H). A different proof of
this result using Cauchy-Kowalevski extension arguments can be found in [84].

First, we need a lemma that describes the action of the Cauchy-Fueter opera-
tor on the quaternionic monomials f,(q) = ¢™:

Lemma 7.2.1 (see [24]). Foralln > 2, we have

Ofalq) ==2> " *g" .
k=1
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7.2. A Clifford-Appell system based on the Fueter mapping

Then, we prove the following

Theorem 7.2.2. For alln > 2, we have

Proof. Let ¢ = xo + x11 + 227 + w3k, thanks to the quaternions multiplication
rules we have

fa(q) = @ = :Eg — xf — a:% — x§ + 2x0(x11 + 22J + x3k)

It is easy to check that f,(q) = —4, so the formula holds for n = 2.
Let n > 2. We suppose the proposition is true for n and we show that

Frii(@) = =4 (n+1—k)g" g
=1

Indeed, we have }n 41 = Afpyr and f41(¢) = qfn(q). Therefore, applying the
classical Leibniz rule we get the following system

(52 0 0?
8—%%fn+1(Q): 23_1,0f"<q) + qa_x§f"(q>
o 0 9
9 2% fn+1(q> QZa_xl.fn(q) + qaxﬁ fn(q)
0 0 9
8_:E%fn+1(q)=2ja—@fn(Q) + qa_%%fn(Q)
9?2 0 0

5 fia(@)=2k 5= Fal@) + a5 5 Fu(@)

\

Thus, by adding both sides of the system we obtain

~

fn+1 = Afn+1 = 2afn + qun - 2afn + an

Then, thanks to Lemma 11.2.6 combined with the induction hypothesis we ob-
tain

Frpi(@) =—=4) (n+1—k)g"*g" .
k=1
This completes the proof. O

Proposition 7.2.3. Foralln > 2, we have }n € RB(H).

Proof. First of all, by the Fueter mapping theorem the functions f, are mono-
genic. We now show that for n > 2, we have

/ . £, (q)]2e7 197 d)(q) < oo.
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Indeed, we have

—_

n—

~

fn(q)’ =4

(n o k,)qn—k—lqk—l

ol

=1

n—1

<4 (n—k)lqg"?.

k=1
— (n—1)n
And since Z(n — k)= g we get the following estimate
k=1

~

|fu(@)] < 2(n—1)njq|" >

Hence, for all n > 2, we have || f,,[|rpm) < 2n(n — 1)|| fo—2||L2(m). The proof is
completed since the quaternionic monomials are square integrable with respect
to the Gaussian measure on H.

O

Remark 7.2.4. Letn > 2 and k > 0. Then

1. The functions f, are spherical monogenics of degree n — 2.

2. frir = 20fu+ qfn.
3. frpalq) = —4) (k+1—j)d" 7.

J=0

As a consequence we obtain an Appell set of spherical monogenics in RB(H).
To prove this fact we need some preliminary lemmas.

Lemma 7.2.5. Let f : H — H be a Fueter regular function. Then,

3
Aqf) =4f +2) m0y,f.
=0

Proof. Notice that for the particular case of quaternions the Leibniz rule given by
(3.5.1) correspond tom = 3. Then, if we write ¢ = xo+2x withz = z11+x9j+23k
we obtain

3
Op(af) =—3f —x0sf —2 Z 210y, f. (7.2.1)

=1

Morever, we have

Aqf) = [+ x00f + 20, f — Op(2f).
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So, thanks to (7.2.1) we obtain
B B 3
d(qf) =4f +zodf +20f +2) w0, f.
=1

It is easy to see that f = 20, f. Moreover, if f is regular then f = 0 which
completes the proof. U

Let us consider the Euler operator

3
E, = Z 210y,
1=0

We have:

Lemma 7.2.6. Leth > 2 and 0 < s < h. Then
E,(¢"F) = hd"7".

Proof. Note that for all [ > 0, we have

d

d—xl(ql) =g + qig" ™ + ¢%ig P+ g (7.2.2)
and 4
d—ml@l) = —igd ™ —qigd - g — . — ¢ (7.2.3)
We have analogous relations for d_xg(q ), d_{L'g(q) and d_{[‘2<q ), d—x?’(q ). Now
observe that by the classical Leibniz rule we have
d h—s =s h—s =s—1 h—s—1=s
@) =5+ (=) T

On the other hand, applying the Leibniz rule we also have

d

d—xl(q

h—s d d

h—s =s (78 el
) I (¢°) + I (g

=q hfs)qs.

Therefore, we use the formulas (7.2.2), (7.2.3) and those ones with respect to all

d d d
other derivatives to compute d—xl(qh_scjs), d—@(qh_sq’s) and d—%(qh_sq’s). Then,
by standard computations we obtain the result. U

Lemma 7.2.7. Forallk > 1,

5fk+2 =2(k+2)frs1
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Proof. Direct computations show that the formula holds for £ = 1 and k£ = 2.
Let k > 2, we can just prove 0f;_ 5 = 2(k + 3) f,_». Indeed, we have

fras = 20fit2 + qf pia

Then, we apply the conjugate of the Cauchy-Fueter operator on both sides of
the latter equality and we use the fact that 90 = 00 = A to get

5}k+3 = 2}k+2 + 5(‘1?k+2)~ (7.2.4)

Let us calculate g(q}kw).

Since f , is Fueter regular and in view of Lemma 7.2.5 we have

5(9fk+2) =4f 10+ 2E,f 10, (7.2.5)
and

k
Eqfpia = _4Z(k +1- S)Eq(qk_sqs). (7.2.6)
s=0

Hence, we apply Lemma 7.2.6 to obtain

Eq (qk‘—SqS) — qu—sGs )

Therefore, by replacing in (7.2.6) we get

quk+2 = kfk+2'

Finally, we conclude from the equations (7.2.4) and (7.2.5) that

5fk+3 =2(k+ 3)fk+2-
This concludes the proof. O

For k& > 0, let us consider the sequence of polynomials defined by

o J~”k+2(‘1)
Pl = G55
We prove the following

Theorem 7.2.8. The polynomials { P } >0 form an Appell set of spherical mono-
genics of degree k in the quaternionic vector space RI3(H).
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Proof. Any homogeneous monogenic polynomial of the sequence { Py }>o is

exactly of degree k£ and belongs to RB(H) since f;_, is for all & > 0. Fur-
thermore, thanks to Lemma 7.2.7 we can easily see that for all & > 1 we have
0P, = 2P;_;. It follows that this sequence forms an Appell set in RB(H), in

the sense of [32,107], with respect to the hypercomplex derivative 55 U
k!
Remark 7.2.9. Let k > 0 and set (), := _EP’“' Then, we have
/
Q= — k2 (7.2.7)

2k + 1)(k + 2)

and )
55@4 = kQp-1.

Moreover, we can see that the obtained family of polynomials may be expressed in
terms of the coefficients used in formulas (5) and (6) in the paper [29]. Namely, we
have

k
- Z Thq" g (7.2.8)
j=0

where

B (k=75 (E+1)(k+2)
and (a), = a(a + 1)...(a +n — 1) is the Pochhammer symbol.

Tk . TH(3) KU (2)r—(1); _ 2(k—j+1)

7.3 The Bargmann-Fock-Fueter transform

In this section, we study the Bargman-Fock-Fueter transform on the space of
quaternions. A similar integral transform was introduced in [39] making use of
the theory of slice hyperholomorphic Bergman spaces on the quaternionic unit
ball and the Fueter mapping theorem.

7.3.1 Fock-Fueter kernel and Fock-Fueter transform

To this end, we introduce the Fock-Fueter kernel on the quaternions. Indeed, in
[15], the authors proved that the slice hyperholomorphic Fock space Fgj;c. (H) is
aright quaternionic reproducing kernel Hilbert space whose reproducing kernel
is given by the formula

— Prg*
Ku(p, q) = e.(pq) Z R Y(p,q) € H x H.
k=0

Then, we consider the following
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Definition 7.3.1 (Fock-Fueter kernel). The Fock-Fueter kernel K z(q, p) is defined
by
Kr(q,p) == 14Ku(q,p) = AKu(q,p),  V(g,p) € HxH,

where Laplacian A is taken with respect to the variable q.
We prove the following

Proposition 7.3.1. For all (¢,p) € H x H, we have
— Qr(q) _
Kr(q,p)=—2) TpkH,
k=0

where QQi.(q) are the quaternionic monogenic polynomials defined in Remark 7.2.9.

Proof. Let (q,p) € H x H, by definition of the Fock-Fueter kernel we have

However, thanks to Remark 7.2.9 we observe that
A(¢") = —2(k — D)kQr—2(q); Vk > 2.

Therefore, we get

Krlg.p) = 23 220

—~ (k—2)!
_ 9 io: QI;J!Q)Z—)H;
k=0

Remark 7.3.2. Fors € H, let

Exp(s) := Z QZ('S)
k=0 '

be the generalized Cauchy-Fueter regular exponential function considered in the
paper [29]. Then, we have

Kr(q,p) = —2p°Exp(pq), V(q,p) € H x R.
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Proposition 7.3.3. The Fock-Fueter kernel Kx(q,p) is Cauchy-Fueter regular on
H with respect to the variable q and anti-slice entire regular with respect to the
variable p.

Proof. Note that K(q,p) is Cauchy-Fueter regular on H with respect to the
first variable thanks to the Fueter-mapping theorem. On the other hand, for all
p € H we have

Kx(q,p) Zak 2 where ay(q) = Ql;(' )

Then, it is clear by the series expansion theorem for slice hyperholomorphic
functions that the Fock-Fueter kernel is slice anti-regular with respect to the
variable p. 0]

The Fock-Fueter kernel admits the following estimate

Proposition 7.3.4. For all (¢,p) € H x H, we have

|Kr(q,p)| < 2|p|*e”.
Proof. First, observe that for all £ > 0 and ¢ € H we have

1Qr(q |<2Tk (3)lgl*

7=0
= lq|".
Hence, making use of Proposition 7.3.1 we obtain
Qi(q
\Kfqp|<22‘ D
\qpl
< 2|p|? Z

— 2|p|2€\qp|_

In this case we introduce the following definition

Definition 7.3.2 (Fock-Fueter transform). Let f € Fgjice(H). We define the
Fock-Fueter transform of f by

f@):= | Kx(g,p)f(p)du(p);

Cr

1
where K 7 is the Fock-Fueter kernel, du;(p) = —e "’d\;(p) and I € S.
T
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Let L?(R) denote the space of functions 1) : R — H so that

WH%%(R) = / 1Y (z)Pdr < 0.
R
Then, for any ¢ € L%(R) its quaternionic Segal-Bargmann transform is defined

by
Biplq) == / Alga)p(o)ds

where the kernel function A(q, x) is given by the formula
A(q, ) = e 2@ e V2 V(gq, ) € H x R.

It was shown in [60] that By defines an isometry on L% (R) with range Fgj;c. (H).
Then, for any ¢ € L% (RR) we set

fap = BHSD € fSlice<H)

and consider the associated Fock-Fueter transform fip that we call Bargmann-
Fock-Fueter transform. We can easily check the following

Proposition 7.3.5. Let p € L%(R), q € H and I € S. Then, we have

folg) = / g, )¢ (o)

where

d(q,7) = . Kr(q,p)A(p, x)dpi(p).

Proof. This follows directly from the quaternionic Segal-Bargmann transform
and Fock-Fueter transform definitions making use of the Fubini’s theorem. [

7.3.2 Fueter mapping range of the slice hyperholomorphic Fock space

Now, let us consider the quaternionic regular polynomials defined in Remark
7.2.9 and which may be written as :

k
Qulq) =D Tfq"7;vq € H. (7.3.1)
7=0

Then, we denote the range of the Fueter mapping on the slice hyperholomorphic
Fock space by

A(H) :=A{7(f); f € Fsice(H)}.

We have the following sequential characterization of this vector space:
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Theorem 7.3.6. Let g € R(H). Then, g belongs to A(H) if and only if the follow-
ing conditions are satisfied:

i) Vg e H, g(q) = Z Qr(q)ax where (ay,)r>o C H.

k=0

. k!
ii) Z | |* < o0.
po (k+1)(k+2)

Proof. The Fueter mapping theorem gives A(H) C R(H). Then, we suppose
that g € A(H), thus g = 7(f) where f € Fgjice(H). Then, according to [15] we
have

= Z ¢"cy, with (¢;) C H and ||f||2]:Sl7lce(H) = Z E!ler]? < oo.
k=0 k=0

However, we know that
7(1) =7(q) = 0 and T(qk) = —2(k — 1)kQr_2(q), Yk > 2.

Therefore, we get

) =Y Qulq)ox with oy, = =2(k + 1)(k + 2)cgra, Yk >0,

moreover,

s k!

FE Ty = 0 2enial < A1 < o
k=0

k=0

Conversely, let us suppose that the conditions i) and ii) hold. Then, we con-
sider the function

N4 h =2 yp >,

Thus, we get g = 7(h) since

k+2)

Qulq) = -1

Vk > 0.
2k +1)(k+2) -

Moreover, note that we have

E I 2 _ § 2

Hence, g = 7(h) with h € Fgjice(H). In particular, it shows that g € A(H).
This completes the proof. O
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Remark 7.3.7. As a direct consequence of Theorem 7.3.6 we have

k!

A(H) = {ZQk q)ag; (ag)p>o0 C H and Z k+1)(k+2)’&k’ < 00}

k=0

Given f(q Z Qr(q)ay and g(q Z Qr(q) Bk in A(H) we define their

inner product by

61{:0%7

h0k+& k+m

so that the associated norm is

1% = =§: ok .
2 k+1k+m

Then, one can easily check the following properties

Proposition 7.3.8. Let f, g, h € A(H) and A € H. Then, we have:

i) (fs9) a0y = (9> [)aqm) -
ii) || f|I? = <f,f>AH > 0 unless f = 0.

”1) <fag+h> H)_<f7 > +<f7h>A(H)
iv) (fA, g>A(H) =(/, 9>A(H) Aand (f, 9)\>,4(H) =/, g>A(H)

Proof. This statement follows using classical arguments.

O

Now, forall £ > 0, we consider the quaternionic regular polynomials defined

by

1w = D06, wen

and we introduce the following:

Definition 7.3.3. For all (p,q) € H x H, we define the function

Note that, for any (¢, p) € H x H we have:

o

k+1k+m
>3

i) |G(p,q) Ipg|* < .
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7.3. The Bargmann-Fock-Fueter transform

ii) G(p,q) = G(q,p)-

i) G(g,9) = Y |Te(g)]* < oo.
k=0
Let us prove that all the evaluation mappings are continuous on A(H). In-
deed, we have
Proposition 7.3.9. Let q,q € H, then we have:
i) The function G, : p — G(p) = G(p, q) belongs to A(H).

ii) The evaluation mapping A, : f — A,(f) = f(q) is a continuous linear
functional on A(H). Moreover, for any f € A(H) we have

[A() =1 (D] < IGqll.agen £l 4

i) (G, Gq>A(H) = G(q,q).

Proof. i) Note that by definition of the polynomials (7} (q))x>o, for any fixed
q € H we have

(b4 D42 as b s o

Go(p) =) Qr(p)an(q) with ax(q) =

k!
(7.3.4)
Moreover, observe that
(T o R A
aA(H)  (k+1)(k +2)
(kA1) (k+2
=> ( ,)f, |Qu(a)P (73.5)
k=0 )
S (k+1)(k+2
< Z ( ]l(' )|q|2kz < 00
k=0
This shows that G, € A(H) for any ¢ € H.
ii) If f € A(H), then by definition we have
flqg) = kZ:OQk(Q)ak and || | = kzzo et Dk +2) |ag|* < oo
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Therefore, making use of the Cauchy-Schwarz inequality we get

A= 1f @)
< Z 1Qula)l o

2 (k+1)(k+2 & )
(5 0] ( o)

k=0 k=0

= |G gl am || f 1| .4

1
2

iii) Let ¢, ¢’ € H be such that

ZQk )ar(q) and G ( ZQk Jou(q

kE+1 2
where we have set o (w) = (it Dk + >Qk(w) for any w € H and

k!
k > 0. Therefore, we get

> k!

As a consequence we prove the following result

Theorem 7.3.10. The set A(H) is a right quaternionic reproducing kernel Hilbert
space whose reproducing kernel is given by the kernel function G : H x H — H
defined in (7.3.3). Moreover, for any q € H and f € A(H) we have

fla) =, Gq>A(H)

Proof. According to Proposition 7.3.9 we know that all the evaluation mappings
are continuous on A(H) and G, € A(H) for any ¢ € H. So, we only need to
prove the reproducing kernel property. Indeed, let ¢ € Hand f € A(H) be such
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that f(p Z Qx(p) By, for any p € H. Using (7.3.4) we obtain

k=0
A(H) Z k—|—2) () Bk
( )-
This completes the proof. U

7.4 Factorization of the Bargmann-Fock-Fueter transform and conse-
quences

We can factorize the Bargmann-Fock-Fueter transform thanks to the following:

Theorem 7.4.1. The Bargmann-Fock-Fueter transform can be realized by the com-
mutative diagram

Su: L%(R) A(H)

5| T

fSlzce( ) T) SR(H)

so that
Sy :=71oldo By.

More precisely, for any ¢ € L%(R), and q € H, we have

Sepla) = fola) = / g, )¢ (o)

where

O(q, ) = —i;%]’:zm; V(g,z) € H x R.
-0 :

Proof. Let ¢ € L%(R) and ¢ € H, observe that
Sulel(q) = 7o Id o Bulel(q)
- [ sa@a)eta)ds
R
Thus, by Proposition 7.3.5 we only need to prove that
AA(g,x) = ®(g, ) ¥(g,7) € H X R,
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where

®(q,z) = . Kx(q,p)A(p, x)dpr(p).-

Indeed, note that according to Proposition 4.1 in [60] for all (¢, z) € H x R we
have the following expansion of the Segal-Bargmann kernel

fj v
k
2] ||hk||

where {hy, } >0 stands for the well-known Hermite functions forming an orthog-
onal basis of LZ(R). Therefore, on the one hand we have

S Qk—z(Q)hk(ﬂf)
= (k—2)22

 Qr(q)hyesa()
~ kl2s

3 3
= = W= bo

On the other hand, making use of Proposition 7.3.1 combined with the expansion
of the Segal-Bargmann kernel we get

p)A(

2B
z Qo) 1,0
P
é’: 0 21_2(;)) hj(z)

Y
1—2(q) ()
2oy

22

b, l‘)d/u(p)

Q) ) (= 2 4 s
) (Z j!Q%’hJ( )) dur(p)
hj

qD(an) = o K]:(qa
I
Cr

j=0

X

»M»—‘| o

<pj ’ pk+2>]:suce(H)

N,

™
™

m~| )
-

2

1
7T4l

OLj

Qr(q)hp2(x)
ZO kl2s

S S
PN R | DD

o]
k=

This completes the proof. O]
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Proposition 7.4.2. For all (¢,p) € H x H we have

[ ea.0)ep. 00 = 13" L))
R k=0

Proof. Let (q,p) € H x H, then

JR LT 7 =/, i zhz]jz )(ZQ] )

0

= Qilq
e kﬂ Pt hj+2 x)dx
f > / @ o(a)

k,j:O
U
Z o ol

Therefore, making use of the orthogonality of Hermite functions we get

/]R O(q,2)P(p, z)dr =4 Z WQMQ)QI@@)

k=0

=4 Tilg)T(p)
k=0

Remark 7.4.3. Recalling that L% (R) is endowed with the scalar product

(91, ¢2) _/ Po ()1 (x)dx, Y1, P2 € LE(R),
R
as a consequence of Proposition 7.4.2 and of (7.3.3) we get

1
n <(I>p> q>§> ) v(Qap) € H x H.

G(q,p) = 1

Corollary 7.4.4. For all ¢ € H, the function &, : © — P (x) = D(q,2)
belongs to L3(R) and

[ lzce) =2 (Z EE D2 0uo) ) < .

k=0

Moreover, for any ¢ € L%(R) we have

[Sue(g)] < Hq)qHLI%H(R)HSOHLfﬂ(R)
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Proof. Let ¢ € H, then we have
124172y = [ @(q,2)2(q, 7)dx
" R

= /R O(q, z)P(q, v)dx.

Thus, by Proposition 7.4.2 we get

H%Hiﬁ(m) = 42Tk(Q)Tk(§)
k=0
(k4 1)(k+2)

=4 k!

k=0

‘Qk<9)‘2'

However, since |Qx(q)|> < |q|** for all k& > 0, using (7.3.5) and the Cauchy-
Schwarz inequality we conclude the proof. O

The action of the Bargmann-Fock-Fueter transform on the normalized Her-
mite functions is given by

Proposition 7.4.5. Foralln > 0, set

hn ()

) (7.4.1)
172l 22 )

fn(:L‘) =

Then, we have 5
Suén = fe, = 0; forn =0,1

and 5
Subn(q) = fe.(q) = —2Th-2(q); foralln > 2.

Proof. To prove this fact we only need to use the definition of Sy as a compo-
sition of the Fueter mapping 7 and the quaternionic Segal-Bargmann transform
By. Then, by Lemma 4.4 in [60] we know that

n

Ba(6,)(q) = jﬁ

Finally, we apply Remark 3.8 to conclude the proof. 0J

:Vn > 2.

Then, we have
Proposition 7.4.6. The Bargmann-Fock-Fueter transform
Su : LE(R) — A(H)

is a quaternionic right linear bounded surjective operator such that for any ¢ €
L%(R), we have
[Srellagm < 2lellz -
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Proof. Let ¢ € L*(R). Since (&) as in (7.4.1) form an orthonormal basis of
L?(R) we then have

Y= kaak with (o) C H and such that [|p[|* = Z lou|? < o0.
k=0 -

Hence, since By is an isometric isomorphism we use Proposition 7.4.5 to get

Sup(q) =Y Qulq)Br where f; = _2\/ (k + 11){(|k’ +2)

k=0

Af42-

In particular, this implies that

1Sael 2w = Z it 1)(k: ) |Bk|?

k=0

=4 |aw* < dflgl®.
k=2

Finally, Sy : L%(R) — A(H) is surjective by construction. This completes the
proof. O

For any k > 0, we consider the subspaces of L?(R) defined by
Hy, = GH = {&a; a € HY,

where &), denote the normalized Hermite functions. It is clear that we have the
orthogonal decomposition

Then, we consider H = &°,H; as a subspace of L%(R), endowed with the
induced norm and prove

Proposition 7.4.7. Let p,v € H, then we have
(Smep, SH¢>A(H) =4{p,V)y

In particular,
1Saellae = 2[l@lln-

Proof. Let p = ka@k and ¢ = Z &k Ok be two functions belonging to H.
k=2
Thus, by Proposmon 7.4.5 we get

Sup =Y Quary and Syp = > Qi
k=0 k=0
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where we have set

aj = —2\/<k + 111(']6 + 2>ozk+2 and (3, = —2\/<k i 13{;('16 2) Breta-

Therefore, we obtain

oo k! /
(S, Sut) aw Z R
B_
w>

H
' ?ME% i

Thus, in particular, for ¢ = ¢ we obtain

I1Saellac = 2@l
UJ

Finally, we finish this section by giving some integral representations of the
quaternionic regular polynomials (Qx)r>0 in terms of the Fock-Fueter kernel
K#(q,p) and the Segal-Bargmann-Fueter kernel ®(q, =), respectively. Indeed,

Proposition 7.4.8. Let I € S and q € H. Then, we have

i) Qrlq) = T Kx(q,p)p"dus(p), Vk > 0.
ii) Qr(q) = ——— ! / O(q, x)hgro(z)dx, Yk > 0.
Ari2z (k+ 1)(k+2) J r

Proof. i) When k > 0, Proposition 7.3.1 yields

ZQ P2 V(g,p) e HxH.

Therefore,
K k+2 g — 9 Q k42, j+2
]:(q p) ILL < p] >]:Slzce )
(C[ _7 =0
- p@l) ) Qula)y ez
- k' ]:Slice(H)

= —2(k + 1)(k +2)Qx(q).
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ii) This assertion follows reasoning in the same way we did for i) using The-
orem 7.4.1 combined with the fact that Hermite functions form an orthog-
onal basis of L%(R).

O

As a consequence we have this special identity

Corollary 7.4.9. Foranyx € R, I € S andk > 0, we have
/ Polplte PP AN (p) = m(k + 1) (k + 2)2",
Cr

where I € S and d\; is the Lebesgue measure on C;.

Proof. We only need to apply Proposition 7.4.8 combined with the expression of
the Fock-Fueter kernel for z € R, which is given by

Kr(z,p) = =2p"¢"F,  V(z,p) € R x H.
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CHAPTER

The Bergman kernel and Bergman-Fueter
transform on different quaternionic domains

In this chapter, we continue the study related to the Clifford-Appell polynomials
constructed using the Fueter mapping theorem. In particular, we calculate the
Bergman kernels on some different quaternionic domains. We treat also the so-
called Bergman-Fueter integral transform in the cases of the unit ball, the half
space and the unit half-ball on quaternions. As a consequence of this construc-
tion some new integral representations and generating functions related to the
Clifford-Appell system are obtained. The results presented in this chapter are
also based on [63].

8.1 The slice hyperholomorphic Bergman kernels

In this section, we compute the explicit expression of the slice hyperholomor-
phic Bergman kernel on the quaternionic unit half ball and the fractional wedge
domain. The case of the quarter-ball could be treated also using similar tech-
niques. For the study of the Bergman kernel function in the setting of mono-
genic or Cauchy Fueter regular functions one may consult for example [52,106].

8.1.1 The quaternionic unit half ball B* case

Let BT denote the quaternionic half ball defined by the conditions ¢ € B and
Re(q) > 0. For afixed I € S,let Bf := B N C; be the half disk of the complex
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plane C;. Then, the classical complex Bergman space on B} is defined by
1
A®}) = (£ € Hol(®]), — [ 151(2)PdA() < o)
]BI

where Hol(B}) denotes the space of holomorphic functions on the half disk
B}, 2 = = + Iy and dA(z) = dxdy. Note that the space A(B;) is a complex
reproducing kernel Hilbert space. Furthermore, its reproducing kernel KE}” is
obtained as the sum of the Bergman kernels of both the complex unit disk and
half plane. In particular, we have

U U
1—-m?  (z+w)2

Ky (2,0) = V(z,w) € By x B} (8.1.1)

where the first term corresponds to the Bergman kernel of the unit disk Kp,
while the second one is the Bergman kernel of the complex half plane K(CI+,

(see, e,g., p- 812 in [52]). Now, let us fix an imaginary unit / € S and consider
on the quaternionic half ball B* the set defined by

Agice(BY) = {f € SR(B), % / )P (p) < o) (8.1.2)

where for p = x + Iy we have set do;(p) = dzdy. The set Agj;c.(BT) is a right
quaternionic vector space and may be endowed with the inner product:

(£ ) Aspice(Bh) 7= % / . fr(p)g1(p)dor(p). (8.1.3)

Moreover, since the quaternionic half-ball is a bounded axially symmetric slice
domain it turns out that Ag..(B") is the slice hyperholomorphic Bergman
space of the second kind on B*. These spaces were introduced and studied in
a more general setting on axially symmetric slice domains in [43]. In particular
we have:

Proposition 8.1.1. The set Agji..(B1) defined in (8.1.2) is a right quaternionic
Hilbert space which does not depend on the choice of the imaginary unit [ € S.

Note that in this framework the evaluation mapping
0q : f = 04(f) = f(q)

is a right quaternionic bounded linear form on Agj;..(B™) forany ¢ € B*. More-
over, the slice hyperholomorphic Bergman kernel of the second kind associated
with B or slice Bergman kernel for short, is the function

Kg+ : BT x Bt — Bt (q,7) — Kg+(q,7)
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which is defined making use of the slice hyperholomorphic extension operator,
ie.

KIB"’ <Q7 T’) = KIE%JF (q)
= ext[Ky (2)](q), forr e BT NCy, q € B,
J

The next result relates the slice Bergman kernel on the quaternionic half ball
to the slice Bergman kernels in the case of the quaternionic unit ball and of the
half space.

Theorem 8.1.2. The slice hyperholomorphic Bergman space Agjic.(B1) is a right
quaternionic reproducing kernel Hilbert space. Moreover, for all (q,r) € BT x B*
we have:

[(IEB+ (Q7 71) = KB(Q? T) + KH+ (CL 7“),

where Ky and Ky+ are, respectively, the slice Bergman kernels of the quaternionic

unit ball and half space.

Proof. The first assertion follows from the general theory.
Then, let us fix r € B™ such that r belongs to the slice C; with J € S. Then, we
consider the function v, defined by

Yy (q) == Kg(q,r) + Ku+(q,7), Vg € BT,

Clearly v, belongs to Agjic.(B") since BT is contained in both B and H' and
since by definition K and K+ are the slice Bergman kernels of the quater-
nionic unit ball and half space. Then, we only need to prove the reproducing
kernel property. Indeed, let f € Agjc.(B'). In particular, by the Splitting
Lemma we can write f;(z) = F(z) + G(z)J’ for any z € B} with J' € S
is orthogonal to J and F, G : B} — C belong to the complex Bergman space
A(BT). Therefore, we have

W P = | G2
= ( / L WF(Z)dUJ(Z)> + ( / N sz)G(z)daJ(z)> J’

= < Bt mF(z)dUJ(Z)> + ( ot WG(Z)ng(Z>> J.

Thus, by applying the results from the classical complex setting we get

(s [ Aty = F(r) + G(r)J'
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So, it follows that the function v, belongs and reproduces any element of the
space Agjicc(B") for any r € B*. Hence, by the uniqueness of the reproducing
kernel we get

Ky+ (q7 T) = KB(Q? T) + K+ (Qa 7”), v(Q? T) cB* x B
This completes the proof. O

The explicit expression of the slice Bergman kernel of the quaternionic half-
ball is given by the following

Theorem 8.1.3. Forall (q,r) € BT x B*, we have:
Kg+(q.r) = (L+¢*) [(1 = q7) * (¢ + 7)) (1 +7%),
where the x-product is taken with respect to the variable q.

Proof. Let (q,r) € BT x B and assume that r belongs to a slice C; . First,
observe that , )

1 1+7

( +Z_)( —H:) ;Vz € BY.
(1—=27)(2+T7))2

Let " : Bt — H be the function defined by

KIB}F(Za 7') =

1

V)= et | T e e

(q); Vg € BT.

Then, we consider the function
U(q) = (14 ¢*)®"(q)(1 +7°); Vg € B".

Note that, U" is slice regular on B* as a multiplication of the intrinsic slice
regular function ¢ — 1 + ¢ with ¢ — ®"(¢)(1 + 7*) which is also slice
regular on the quaternionic half ball by construction. Moreover, for any z € B

we have
iy AT
VE = e e K

Therefore, by the Identity Principle for slice regular functions we get

U (q) = Kg+(q,7); ¥(q,7) € Bt x B*.

Finally, we use the definition of the * product to see that, for all (¢,r) €
BT x B* we have

(q) = (q+7) 2% (1—qF) ™ = [(1—qF) * (g +T7)] ™.
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8.1.2 The fractional wedge domain case
For I € S, let us now consider the wedge domain defined by
We, '={z € Cj, Re(z) > 0and Re(a%za%) < 0 witha = e%}.
In particular, in the complex case the Bergman kernel is given in [52] by
Zn—lu—}n—l
=
Let Wy denotes the axially symmetric completion of W, . In the next result,
we compute the quaternionic slice hyperholomorphic Bergman kernel on Wj:

Theorem 8.1.4. For all (q,7) € Wy x Wi, we have
Kwr(g,r) = (=1)"n*¢" (g™ — 2(=1)"q"" + ")
(laf* = 2(=1)"Re(q")7" +7") 7%,

Proof. Let ¢,r € W]; be such that r belongs to C; where J € S. Then, for
q = x + I,y and 2 = x + Jy thanks to the extension operator we have that

1 T r = 1qJ r > r
Ky (a:7) = 5 (K (2) + Ky (2)) + 2= (K (2) = Ky (2))

Ky (z,w) = (=1)"n

Thus, using the complex case formula we get
R6(2n7122n),’7n71 +R6<zn71>73n71
Ko (2) + Ko (2) =2(—1)"n?
WCJ( ) WCJ( )=2(-1) (|27 + 727 — 2(=1)"Re(zn)7)?
2(_1)nRe(zn—12n>f2n—l
(2> + 72n — 2(—1)"Re(z”)f")2'

—2(—1)"n?
and

o —Im (2122 J—t — Im (27 1) gt
(|22 4 720 — 2(=1)" Re(2")7")*
2(—=1)"Im(z"tzn) gt
(|22 + 720 — 2(=1)"Re(zm)im)?
Therefore, developing the computations we obtain
Kyn(g,r) = (=1)"n” (¢" """ = 2(=1)"¢" "7 + ")
x (Jg" + 7" = 2(=1)"Re(q")™")

Ky (2) = Kiye (2) = 2(=1)"n

+2(=1)"n?

Hence, we finally get
Ewg(q.r) = (=1)"n?¢" (" =2(=1)"q"7"+7")F" " (|g|*=2(=1)" Re(q")7"+7°") .
This completes the proof. 0

Remark 8.1.5. Observe that for the case n = 1 in Theorem 8.1.4 the Bergman
kernel function coincide with the result obtained on the quaternionic half space
in [43].
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8.2 The Bergman-Fueter transform and consequences

In this section, we study the Bergman-Fueter integral transform on different ax-
ially symmetric slice domains U on the quaternions, namely we deal with the
unit ball, the half space and the unit half ball. In particular, we obtain some
new generating functions and integral representations of the quaternionic reg-
ular polynomials (Qx)r>o obtained in the previous chapter. We give also the
sequential characterization of the range of the Fueter mapping on the slice hy-
perholomorphic Bergman space on the quaternionic unit ball. First, associated
to U we recall from [39] the following

Definition 8.2.1 (Bergman-Fueter transform associated to U). Let f : U —
H be in the slice hyperholomorphic Bergman space of the second kind Agjic.(U).
Then, we define the Bergman-Fueter transform of f associated to U to be

@) = /  Kbela.n)f)do(r),

where KY . is the Bergman-Fueter kernel on U defined through the following for-
mula

Kgp(q,r) = AKy(q,r), Y(g,r) € U x U.
The Laplacian A is taken with respect to the variable q and do(r) defines the re-
striction of the normalized Lebesgue measure on Uy = U N Cj.
8.2.1 The quaternionic unit ball case U = B

In [43] an explicit expression of the Fueter-Bergman kernel was obtained when
U is the quaternionic unit ball B. More precisely, we have the following result
originally proved in [43]:
Theorem 8.2.1. Forall (q,r) € B x B, we have

KBp(g,r) = —4 (1 — 2Re(q)F + |q>7) "7 + 2(1 — 2q7 + ¢7°) 621)
x (1= 2Re(q)F + |q*P) 7.

Furthermore, if we set
R(q,r) = (1 — 2Re(q)7 + |q|*7*) ",

then
Kpp(q,r) = —4[R(q,7) + 2Kg(q,7)] R(q,7)7°.

We prove the following
Proposition 8.2.2. Let (q,r) € B x B, we have

Kip(q,r) = 23 (k + 1)(k + 2)(k + 3)Qu(q) 7"

k=0

130



8.2. The Bergman-Fueter transform and consequences

Proof. Let (q,r) € B x B, making use of the slice hyperholomorphic extension
operator it is clear that the slice Bergman kernel on B is given by the series

expansion
= (k+ )¢
k=0
Therefore, by definition of the Bergman-Fueter kernel we obtain:
Kpp(q,r) = 14K8(q,7)

) i(k — DE(k + 1)Qx_a(g)7

o0

= =2 (k+ 1)(k+2)(k +3)Qu(q)r* .

O

As a consequence of the latter result, we obtain the following generating
function associated to the quaternionic regular polynomials (Q)x>0:

Theorem 8.2.3. Forall (q,r) € B x B, we have
k::O

where
R(q,r) = (1 — 2Re(q)7 + |q|*7*) " and K(q,) = (1 — 2G7 + ¢*7*)R(q, 7).
Proof. Note that Theorem 8.2.1 gives

Kpp(a.r) = —4[R(q,7) + 2Ks(q, )] R(g, )7,

This result combined with Proposition 8.2.2 leads to
> (k+1)(k+2)(k + 3)Qi(q)F* = 2R*(q,) + 4Kg(q,7)R(q, 7).
k=0

This completes the proof. O
In particular, we get the following series representation

Corollary 8.2.4. Let —1 < ¢ < 1 andr € B. Then, we have

= (1—qr)™

> 1) 2
Z (k + k+ )(k+3)qkfk
k=0
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Proof. We only need to observe that if ¢ € R then for all £ > 0 we have Q;(¢) =
q* thanks to the identity Z?:o Tjk = 1. Moreover, since —1 < ¢ < 1 we have

R(q,r) = Kg(g,r) = (1 —qr) %,
Finally, the proof is concluded by making use of Theorem 8.2.3. OJ

Remark 8.2.5. As a consequence of Corollary 8.2.4 we observe that forall s,t > 1
we have

i(k+1)(k+2)(k+3)_6 st \*
P stk o \1l-st)
Note also that using the fact
= n(n+1)(n+2)
Vn>0:) k(k+1)= ,
k=1 3

we have ‘
0o j
DD k(k+ g =2(1 - gr) 7t

j=1 k=1

The right Bergman-Fueter space B(B) is the range of the slice hyperholo-
morphic Bergman space through the Fueter mapping. Indeed, it is defined by

B(B) :={7(f); f € Astice(B)}.

Then, the next result gives the sequential characterization of the Bergman-Fueter
space B(B):

Theorem 8.2.6. Let g € R(B). Then, g € B(B) if and only if the following
conditions are satisfied:

i) Vg eB, g(q) = Z Qr(q)ax where (o) >0 C H.
k=0

| |?

i) ;0 k+ 12k +22(k+3) =

Proof. First, note that by the Fueter mapping theorem we have B(B) C R(B).
Let g € B(B), thus g = 7(f) where f € Agjice(B) such that we have

= Jeil?

k:0k+1

f@) =>_ qFex, with (cx) C Hand ||f||* = < 00

k=0

However,
7(1) = 7(q) = 0 and 7(¢") = —2(k — D)kQr_2(q), Yk > 2.

132



8.2. The Bergman-Fueter transform and consequences

Therefore, we get
) =Y Qulq)ox with oy, = =2(k + 1)(k + 2)cgra, Yk > 0.

Moreover, we have

S o |? S 2
<4 < 00.
kz;(/le) 2(k + 2)2(k + 3) kZ 17 < o0

Conversely, let us suppose that the conditions i) and ii) hold. Then, we con-
sider the function

. = k . Op—2
h(q) —Zq Bk, where 5k——m, Vk > 2.

Thus, we get g = 7(h) thanks to the formula

(¢"?)
= — , Yk > 0.
@i(a) 20k + 1)(k + 2) =
Moreover, note that we have
2 |6k 1 - o |”
I =3 8 = 12 G s g <

k=2

Hence, g = 7(h) with h € Agjce(B). In particular, it shows that g € B(B). This
completes the proof. O

Remark 8.2.7. We observe that

| |?

k+2)2(k + 3)

B(B) :={f ZQk Jag,Vq € B, OékGHZ = < 00}

As we have seen in Section 4 for the Fock case, it is also possible to endow
the Fueter-Bergman space B(B) with the inner product

i O‘kﬁk
2 (k+ 1)2(k + 2)2(k + 3)

forany f = Z Qrap and g = Z Q. Bk- Tt is also possible to show that B(B) is

k=0
aright quatermomc reproducing kernel Hilbert space whose reproducing kernel

function is given by
L(g,r): =) (k+1)*(k +2)°(k + 3)Qu(@)Qx(F), ¥(g,r) € B x B.
k=0
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So that, for any f € B(B) and p € B we have
(f, Lp>5(15g) = f(p)

An integral representation of the polynomials (Qy)x>¢ on the quaternionic
unit ball B in terms of the Bergman-Fueter kernel is given in the following:

Proposition 8.2.8. Let] € S, q € B and k > 0. Then, we have

1
(k+1)(k+2)

Qula) = — | Koranr2donn),

Proof. This follows with direct computations making use of Proposition 8.2.2.
O

As a result we get this special identity

Corollary 8.2.9. Forany —1 < ¢ < 1,1 € Sand k > 0, we have
/ (L = ) () = & + 1)k + 2)g"
Br

where I € S and d)\; is the Lebesgue measure on B;.

Proof. We only need to apply Proposition 8.2.8 combined with the expression of
the Bergman-Fueter kernel when —1 < ¢ < 1.
O

8.2.2 The Bergman-Fueter transform on H* and B*

The next result gives the explicit expression of the Bergman-Fueter kernel on
the quaternionic half space H™:

Theorem 8.2.10. For all (q,r) € H" x HT, we have
KB (q.r)=—4 [(\qP +2Re(q)T +72) 7+ 2(q% + 247 +7°) (Jg|* + 2Re(q)7 + f2)‘3] :

Moreover, if we set

P(g,r) = (|¢]* + 2Re(q)?+?2)_l ,

then
Kip(q,r) = —4[P(q,7) + 2K+ (q,7)] Plg. 7).

Proof. First, note that by Theorem 4.4 in [43] we have

% (@ +2q7 +7°) (|g]* + 2Re(q)T + fQ)‘2 .

KH"" (q7 T) =
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8.2. The Bergman-Fueter transform and consequences

However, the Bergman-Fueter kernel is obtained by computing the Laplacian of
the slice Bergman kernel with respect to the variable ¢, so that we have

Kg;(qv 71) = AKH*(Q? 7“), V(q, T) € H+ X H+.
Then, direct computations using the formula of Kpy+(q, ) show that

d2
— Kyt (q,7) = 2(|q|> + 2Re(q)7 + 7) ™% — 16(q + 7)(zo + 7)(|q|* + 2Re(q)7 + )3

dad
— 4G 4 2q7 + 7)(|q|* + 2Re(q)T 4+ 72) 3 + 24(G° + 2qF + 72) (2 + 7)?
x (lg* + 2Re(q)7 + )"

and also

d2

@Kw(q, r) = —2(|q]* + 2Re(q)7 + 72) "% 4 821 (qi + iq + 2i7)(|q|* + 2Re(q)7 + 72)~*
1

— 47 +2q7 + ) (|q|* + 2Re(q)7 + 72) 7% + 2423 (¢° + 2qT + 7°)
% (|l + 2Re(q)7 + 7).
2 d2
Similarly we calculate d—ngHJr (g,r) and d—ngHJr(q, 7). Then, with some
computations, we get

4 - _
K&o(g,r) = — [(yq|2 +2Re(q)7 +72) "+ 2(¢% + 27 + ) (|gI? + 2Re(q)F + ) 3] :
Finally, by replacing the function P(q,r) in the previous formula we obtain
Kg;(qa T) =—4 [P(Q7 T) + 2Kg+ (Qa ’f’)] P(qy T)'
O

Proposition 8.2.11. The Bergman-Fueter kernel Kg;(q, 1) is Fueter regular in q
and slice anti-regular inr on H™.

Proof. Note that on the one hand the Fueter mapping theorem implies that K1 ,.(q, )
is Fueter regular in ¢ since K+ is slice regular in g. On the other hand, the func-
tion P~!(q, r) is an anti-slice regular function with real coefficients with respect
to r and so is the function P(q,r). Finally, the result follows since K-+ is also
anti-slice regular in r. U

Concerning the Fueter-Bergman kernel of the quaternionic half unit ball B+
we have the following:

Theorem 8.2.12. Forall (¢,r) € B* x B*, the following formula holds
Kg;'((b T) = KEF(Q? T) + Kg;((b T)'

Furthermore, the Bergman-Fueter kernel K. is Fueter regular in q and slice anti-
regular inr on B™.
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Proof. For the first statement, we only need to use the result obtained in Theorem
8.1.2 combined with the definition of the Fueter-Bergman kernel. Then, since B*
is contained in both of B and H*, we have that K% .(q, r) is Fueter regular in ¢
and slice anti-regular in 7 as the sum of K&, (g, ) and K& ,.(q, 7). O
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CHAPTER

Fock and Hardy spaces: the Clifford-Appell case

In this chapter, we study the Clifford-Appell polynomials and in particular their
CK product. Moreover, we introduce a new family of quaternionic reproduc-
ing kernel Hilbert spaces in the framework of Fueter regular functions. The
construction is based on a general idea which allows to obtain various function
spaces, by specifying a suitable sequence of real numbers. We focus on the Fock
and Hardy cases in this setting, and we study the action of the Fueter mapping
and its range. The results presented in this chapter are based on [8]

9.1 Motivation

As we have already seen before, we recall that a set of polynomials {P, },en
satisfying an identity with respect to the real derivative that takes P, to nP,_;
is called an Appell system [20]. The importance of such systems in various
settings is well known, and we mention here, with no pretense of complete-
ness their relevance in probability theory and stochastic process since they can
be connected to random variables. In hypercomplex analysis, we have various
function theories, associated with different differential operators. We will treat
the quaternionic case in this dissertation. Indeed, in the slice hyerholomorphic
setting, Appell systems can be obtained by simply extending the variable in use
to become hypercomplex, and so we have that, for example, the standard mono-
mials in the quaternionic variable define an Appell system with respect to the
slice derivative. But these sets of polynomials were studied also in the setting of
quaternionic and Clifford analysis with respect to the hypercomplex derivative,
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Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

see [29,30,63,93,99]. It turns out that these Clifford-Appell systems play a sim-
ilar role as the complex monomials do to define elementary functions in terms
of their power series like cosine, sine, exponential, etc. This fact opens a variety
of questions also in relation to various function spaces including Fock, Hardy,
Bergman, Dirichlet spaces, etc. Moreover, various questions arise about their
associated operators such as creation, annihilation, shift and backward shift op-
erators. In addition to that, what makes Appell systems in quaternionic and
Clifford analysis rather peculiar, is the fact that the function theory has been
developed using the so-called Fueter polynomials, see [28], [83], and these poly-
nomials do not satisfy the Appell property in general. However, a series expan-
sion for hyperholomorphic functions is possible using both the approaches.

In order to define and study quaternionic reproducing kernel Hilbert spaces, the
approach that makes use of the Appell systems looks very promising and al-
lows to define the associated operators. We will show that using a special set
of Clifford Appell polynomials, denoted by {Q,, },>0, We can introduce various
functions spaces denoted by H .M, whose elements are converging series of the
form > Q,,a,,, where the quaternionic coefficients a,, satisfy suitable conditions
which depend on a given sequence b = (b,,),,>0 of real (in fact rational) numbers.
This approach is rather general, and it is used also in the slice hyperholomor-
phic setting in which the series under consideration are of the form »_ ¢"a,,
where ¢ denotes the quaternionic variable and give rise to spaces denoted by
HSC, Cc = (Cn)nZO-

We treat the case of the quaternionic Fock and the Hardy spaces which have
been already studied in the slice setting but are new in the Fueter regular frame-
work combined with the Appell polynomials. For this reason, these spaces are
called Clifford-Appell Fock space and Clifford-Appell Hardy space, respectively.
One problem of the system {Q),, } ,,>0 is that if we multiply two such polynomials
we do no obtain an element in the system. This is expected provided the non-
commutative setting and in fact hyperholomorphic functions can be multiplied
using the so-called CK product. With the polynomials (),, there is the additional
problem of remaining within the Appell system and in fact we show how this
can be achieved. This technical result opens the possibility to prove several re-
sults and also to introduce creation, annihilation and shift operators.

An advantage of our description is that we can prove that the function spaces
HMy, and HS. for suitable choices of b, ¢, can be related using the Fueter map-
ping theorem.

The structure of the chapter is the following: we first revise some notations and
preliminary results that we need in the sequel. Then, we introduce some quater-
nionic reproducing kernel Hilbert spaces (QRKHS) based on a specific Appell
system, and prove different properties on such kind of polynomials. We show
also that, under suitable conditions, any axially Fueter regular function can be
expanded in terms of these Appell polynomials. We will focus more on the
Fock space in this setting. In particular, we study different properties related to
the notions of creation, annihilation operators and Segal-Bargmann transforms.
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Then, we move to treat the Hardy space case, and study different properties re-
lated to the shift and backward shift operators. Finally, we show how the Fueter
mapping acts by sending spaces of slice hyperholomorphic functions into spaces
of Fueter regular functions. Moreover, we show that in some special cases the
Fueter mapping acts as an isometric isomorphism up to a constant.

9.2 Notations

First we recall some basic facts about Cauchy-Fueter regular functions, Fueter
variables and their CK product.

We note that the quaternionic monomials P, (q) = ¢" are not Fueter regular.
However, there exist some other important functions in this theory, the so-called
Fueter variables, defined by

G(z) =2 — ezo, 1 =1,2,3. (9.2.1)

These functions play the same role that complex monomials play in complex
analysis. For example, a series expansion for Fueter regular functions is obtained
using these Fueter variables. A suitable product that allows to preserve the reg-
ularity in this setting is the so-called C-K product, denoted ®. Given two Fueter
regular functions f and g, we take their restriction to 2y = 0 and consider their
pointwise multiplication. Then, we take the Cauchy-Kowalevskaya extension of
this pointwise product, which exists and is unique, to define f © g, see [83].

We recall also the slice hyperholomorphic quaternionic Fock space Fgy;c. (H)
(see chapter 4), defined for a given / € S to be

Fstice(H) := {f € SR(H); %/C ’f[(p)‘%*lppd)\l(p) < oo} ,

where f; = f|c, and d\;(p) = dxdy for p = x + yI. This quaternionic Fock
space can be characterized in terms of the slice hyperholomorphic power series
as follows

FSlzce {ZC] Qf; akeH Zk'|ak|2<00}

Its associated Segal-Bargmann transform was studied in [60] by consider-
ing the slice hyperholomorphic kernel obtained making use of the normalized
Hermite functions (nn)n>0. The explicit expression of this kernel is given by

Ag(q,z Z \/—77}@ — e 3@ ) V2 V(g,z) e HxR.  (9.2.2)

Then, for any quaternionic valued function ¢ in L?(R, H) the slice hyper-
holomorphic Segal-Bargmann transform is defined by

= /]R A2 (q, 7)o (x)dx. (9.2.3)
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In the same spirit different famous spaces of slice hyperholomorphic functions
such as Hardy, Besov, Bloch, Dirichlet and Bergman spaces were studied in [13,
43,113].

9.3 A new family of hyperholomorphic QRKHS: General setting

Let us consider the quaternionic polynomials defined by

k
Qulg) = Ti¢" g, qeH, k>0 (9.3.1)
§=0

where
ro kD (2 y(1);  2(k—j+1)
5= B (k=5 (k+1)(k+2) (9:3.2)

and (a), = a(a+1)...(a + n — 1) is the Pochhammer symbol.

Remark 9.3.1. Notice that the polynomials (Qy)r>o given by (9.3.1) are Fueter
regular on H. Moreover, they form an Appell system with respect to the hypercom-

plex derivative g i.e, forall k > 1 we have the Appell property

0 = ki 933)

For s € H, let

Exp(s) == Y Q’;f,s) (9.3.4)
k=0 '

be the generalized Fueter regular exponential function considered in the paper
[29]. Then, we introduce the following

Definition 9.3.1. Let Q) be a domain in H. Let ¢ = (¢ )gen and b = (by)ren be
two non decreasing sequences with co = by = 1. Then, associated to b and c we

define

1. The subspace of Fueter regular functions defined by

HMb<Q) = {Z QkOék; o € H: Zbk’&k|2 < OO} .
k=0 k=0

2. The subspace of slice hyperholomorphic functions defined by

HS(Q) = {Z ¢ fii o €H: Y alfil® < OO} :
k=0 k=0
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Given [ = Z Qrap and g = Z Q1B in HM,(Q2) we define the Hermi-
k=0 k=0

tian inner produgt given by

(1 9)3, = D brkBr.
k=0

Remark 9.3.2. We note that, by specifying the sequence c, HS . include different
spaces of slice hyperholomorphic functions such as Fock, Hardy, Dirichlet and gen-
eralized Fock spaces. Such spaces are the quaternionic counterpart of the complex
version introduced in [14].

We are interested in two main problems in this setting:

Problem 9.3.3. Study the counterparts of the spaces introduced in Definition 9.3.1
by suitably chosing the sequence b in order to include in this framework of Cauchy-
Fueter regularity : Fock, Bergman, Hardy, Dirichlet spaces, etc.

In this paper, we will treat the Fock and Hardy cases that correspond, respec-
tively, to the sequences b, = k! and b, = 1, Vk > 0.

Problem 9.3.4. Study the range of the Fueter mapping on HS. and see when it is
possible to obtain spaces of regular functions of the form HM,. More in general,
we ask if using the Fueter mapping it is possible to get information on the sequence
(by) in terms of the given datum (cy,) ?

Remark 9.3.5. We note that the answer to Problem 9.3.4 for Fock and Bergman
cases were considered in [63]. See also [15,43] for the slice hyperholomorphic setting.
The answer in these two cases is given by:

1. The Fock case:

!
— k! and by, = vk > 0.
C’“ M= ey Der2) T

2. The Bergman case:

1 1
db, = Vk > 0.
1 T 02k + 2)2(k + 3)° =0

We will show that, under suitable conditions, for some special choices of the
sequence b in Definition 9.3.1 we have the estimate:

oo | ok 2
|f<q)|s<z‘qb'—k) Il £ €HMO), g€ ©035)

k=0
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In these cases, we can also prove that H.M,,(€2) are right quaternionic repro-
ducing kernel Hilbert spaces with reproducing kernel given by

Kapmyen(@:0) = %}?k(m’ V(gq,p) € 2 x Q. (9.3.6)

Furthermore, in such situations {&} form an orthonormal basis of
k>0

N
HM,(€2).
Now, we will prove an interesting result on the Appell polynomials (Q)r>0
useful to compute their C-K product.

Proposition 9.3.6. Let k,s > 0. Then, for any q = xo + & € H we have

CkCs

Qr © Qs(q) = Qk+s( ),

I
where © is the C-K product and ¢; = Z( )]Tl Vi > 0.

Jj=0

Proof. Since () and (), are Fueter regular functions on H, their C-K product
Qr © Qs is also Fueter regular. Then, we use the formula of the C-K extension,
see [28], given by

CK[M))(q) = exp (=z00z) [(7)](q)-

We write the explicit series expression using the fact that Q;(7) = ¢;¢" for all
[ > 0 and obtain

= (_1)]’1% J = —
Qk ©Qulq) =) i 9% (Qr(7)Qs(7))
j=0
= ciCs Y (_1.),Jx%3§ (7°)
= 7
In particular, we get
Qr © Qu(q) = axcsCK (7%°) (q), ¢ € H ks > 0, (9.3.7)

l
with ¢; := Z( 1)’ Tl VI > 0. On the other hand, we observe that ()}, is also
j=0
Fueter regular on H. Moreover, it is restriction to xy = 0 gives

Qk—«—s((j’) = Ck+sik+

Therefore, by uniqueness of the C-K extension we get

Qr+s(q) = crssCK (777°) (q), Vg € H. (9.3.8)

142



9.3. A new family of hyperholomorphic QRKHS: General setting

Hence, we combine (9.3.7) and (9.3.8) to conclude that

Qe © Qula) = ™ Qurala), Vg € HLVE, 5 0.
O
Remark 9.3.7. If we consider the Fueter regular polynomials given by Pj, = %,
Vk > 0. Then, the classical multiplication rule holds, in the sens that we have o
P, © Py = Pyys, Vk,5s > 0. (9.3.9)

Corollary 9.3.8. Let k,s > 0. Then, for any ¢ = xo + ¢ € H we have

2 e (@)2
k4 s+2 krs=ib .y )

where C? are the Gegenbauer polynomials, \q is a constant and r* = |q|*.

T
Qk © Qs(Q) - Ckcs)\g+srk+s <Cli+s(70) +

Proof. Proposition 9.3.6 gives

Qk O] Qs((j’) = Ckcsik+sa k7 s> 07

thus, by the regularity of the C-K product Q) © ()5 and uniqueness of the C-K
extension we have that

Qr © Qs(q) = e, CK[7*™), ¢ € H, k, s > 0.

Hence, the result follows as a direct application of Theorem 2.2.1 in [58] that
gives the expression of the C-K extension for the vector part powers in terms of
Gegenbauer polynomials. U

Remark 9.3.9. We note that the Appell polynomials given by (9.3.1) define a fam-
ily of Fueter regular functions of axial type (or axially Fueter regular functions), in
the sense that if we write ¢ = xo + w|q| € Q withw € S there exist two quater-
nionic valued functions A = A(xg,|7|) and B = B(zo,|{|) independent of w
such that we have

Qr(q) = A(xo,[7]) + wB(wo,[7]), Yk = 0. (9.3.10)

We end this section by proving a converse result of the previous remark. This
allows to characterize axially Fueter regular functions on quaternionic axially
symmetric slice domains in terms of the Appell system (Qy)x>0-

Theorem 9.3.10. Let 2 C H be an axially symmetric slice domain. Let g be an
axially Fueter regular function on (). Then, there exist some quaternion coefficients
() k>0 such that we have the expansion

9(a) =Y Qulg)ak, Vg € Q. (9.3.11)

k=0
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Proof. We note that g is an axially Fueter regular function on 2. Thus, by the
inverse Fueter mapping theorem proved in [49] there will exist f € SR(£2) such
that we have

g="1(f), (9.3.12)

where 7 = Aga is the Fueter mapping. Then, using the series expansion theorem
for slice hyperholomorphic functions there exist some quaternion coefficients
(ax)k>0 so that we can write

flg) = quak, Vq € (. (9.3.13)
k=0
In particular, we apply the Fueter mapping 7 on (9.3.13) and get
T(N)g) = 7(d")ax
k=0
However, we know by [63] that

7(¢") = —2(k — 1)kQp_o, Vk > 2.

Therefore, we continue the calculations and obtain
o0
T(f) =) Quou, (9.3.14)
k=0

where we have set oy, = —2(k + 1)(k + 2)ag+2, Yk > 0. Hence, comparing
(9.3.12) with (9.3.14) we conclude that

9(q) = > Qu(@)au, Vg € Q.

k=0

This ends the proof. U

9.4 The Fock space case

In this section, we consider the Clifford-Appell Fock space defined by

F(H) := {Z Qray; ap, € H - Zk!|ak\2 < oo}.
k=0 k=0

This space corresponds to the space H.M,, in Definition 9.3.1 associated with

the sequence b = k!, k£ > 0 on the domain 2 = HL. Let f = ZQkak and g =
k=0
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Z QrPx in F(H) we can equip F (H) with the scalar product
—0

<f> g>]:(]1-]1) = Z k' By
k=0

Then, we can see that all the evaluation mappings on F(H) are continuous.
Indeed, we prove the following estimate

Proposition 9.4.1. For any f € F(H) and q € H, we have

F@)] < 5 1 flra. (9.4.1)

Proof. We write f(q ZQk ). Thus, we have
k=0

o |

<l

k=0

]Ozk‘\/_

Then, by the Cauchy-Schwarz inequality we obtain

s (F144) (Sr)

However, we know that |Q(q)| < |¢|* for all ¢ € H. Hence, we get

F(@)] < eF N lra-

As a consequence, we have the following result

Theorem 9.4.2. The set F(H) is a right quaternionic Hilbert space of Cauchy-
Fueter regular functions whose reproducing kernel is given by

) = Z —Qk(qifk(p), Y(q,p) € H x H.

Qr(q)
NEl

Moreover, if we set ;(q) =
orthonormal basis of F (H).

k > 0, then, the family {{y}r>o form an
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Proof. For a fixed p € H, we consider the function defined by

Qk(P)
El

Kp(@) =Y Qu(a)Be(p), Vg € H, where 8(p) =
k=0

We observe that

S RIBEIP =Y —'Q’ﬁ)’Q < el < 00
k=0 k=0 '

So, the function K, belongs to F(H) for all p € H. Now, let f = Z Qray, be

k=0
any function in F(H). Then

(Ko ) 7y = Z k1Br(p) o = Z Qu(p)aw = f(p), Vp € H,
k=0
therefore, the reproducing kernel of the space F(H) is given by
 Qr(@)Q(p
Kre(a.0) = Y PNy ) emxm
k=0

It is clear by definition of the scalar product that

<¢ka¢j>]—‘(H) = 0y, Vk,j € N.

Furthermore, let f = Z Qray, in F(H) be such that
k=0

(Wu, £ = 0, Yk € N.

We have
Vilay, = (U, ) pa =0, Yk €N,

so, f = Oforany ¢ € H. In particular, this proves that {1, };>¢ form an or-
thonormal basis of F(H). O

Remark 9.4.3. We note that
00 2
. — & —
) Kran(7.5) = ) (-1)" 110"F", V(g p) € Ho x Ho.

ll) K}'(H)(w7y) = ezyj V(l’,y) € R xR.
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Now we turn our attention to the notion of creation operator associated with
the Clifford-Appell Fock space F(H). For this, we consider a sequence of real
numbers v = (7x)x>o that allows to define a weighted shift operator by

Tfy(Qk) = ")/ka_H, Vk > 0. (942)

We would like to preserve in this setting the main properties of adjoint and
commutation rules satisfied by the standard creation and annihilation operators
on the Fock space. First, we deal with the following

Proposition 9.4.4. Let -y be a sequence with vy = 1 and such that (9.4.2) is well
defined. Then, we have

0 0
[QT T 2] = Lrmy,
if and only if
L+ kvt
= — Vb > 1
Vk 1+ k ’ =

Proof. Let f = Z Q1 be a function in F(H). Then, we have

Z Vi Q410 and Z kEQpr—10u.

Thus, we obtain

> (9
Z (k + 1)7Qray and T Z k-1 Qg
k=0

Therefore, it follows that

0 0 >
[QTW, 1,5] () = o+ Mk + 1~ ke ilQun 04
k=1
We can see that if -
+ RYk—1
= Yk > 1
Yk 1 + k ’ 3

we have then

Therefore, using the condition 7y = 1 and formula (9.4.3) we obtain

[(;TW,TW(;] (f) = Qoo + ;Qkak =f
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For the converse, if we assume that
0 0
|:2T’Y7T’72:| (f) - f7

we apply (9.4.3) and get

10Qo(g ao+2 k4 Dy — k1) Qu(g)an = ZQk ), Vg € H.

k=1 k=0

In particular, using the fact that Q;(t) = t*,Vt € R and 7y = 1 we observe
that

Qo + Z[(k + 1)y — ko]t on = Z thoy, Vt € R.
k=1 k=0

Therefore, comparing the coefficients of the same degree we obtain
(k -+ 1)’)% — k")/kfl = 1, vk 2 1.

Hence, we have the condition

Furthermore, we can prove the following

Proposition 9.4.5. Let v be a sequence with 7y = 1 and such that (9.4.2) holds.
If one of the following properties is satisfied

0
i) l ¥ “/21 = Lrm)
B iy o0
ii) T, is the adjoint of the hypercomplex derivative 5

then, we have

Proof. We observe that condition i) and Proposition 9.4.5 show that
1+ Eye_q
=— Vk2>1
Yk 11k 2

Thus, since 7y = 1 a simple induction reasoning allows to prove that if i) holds
then 7, = 1, for all £ > 1. On the other hand, the condition ii) implies in
particular that we have

(5100.0)) = (QuT (@) Vs 21
F(H)
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So, we conclude
k(k — 1)!5k_1’j == ’ij!(sk,j—&-ly \V/k?,] Z ]-a

where 0,, ,, is the Kronecker symbol. In particular, this leads to the same con-
clusion thaty; = 1,7 > 1. O

Remark 9.4.6. We note that thanks to Proposition 9.4.5 the only operator T, that
can play the role of the creation operator with respect to the Clifford-Appell system
should act as follows

T\ (Qr) = Qr1, Yk > 0. (9.4.4)

We now introduce the notion of creation operator associated with the quater-
nionic Hilbert space HM,, in terms of the C-K product that allows to have the
property (9.4.4) . To this end, let £ > 0, and we define first the family of opera-
tors given by

Si(f) = CH’“Ql O f, Vf € HM, (9.4.5)

!
where © denote the C-K product and ¢; := Z(—l)jT;, Vi > 0.
=0

Then, for f = Z Qroy in HM,, we consider the operator S defined by applying
k=0
Sk on each component with the corresponding degree as follows

k=
Therefore, we have the explicit expression given by
LS~ o 6 Qo (9.47)
01 2 o 1 kO 4.

We note that the operator S acts like the classical shift operator with respect to
the Clifford-Appell system (Q)x>o. This can be seen in the following

Proposition 9.4.7. For all k > 0, we have
S(Qr)(q) = Qr11(q), Vg € H.
Proof. Let k > 0. Then, for all ¢ € H we have

S(Qr)(q) = Sk(Qr)(q)
= R0, 0 Qulg).

C1Ck
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Now, we apply Proposition 9.3.6 and get

C1Ck
Q10 Qr =—Qk41-
Cl+k

Hence, we obtain
S (Qk) = Qk+1-
O

As a consequence of Proposition 9.4.7 we note that the creation operator on
F(H) given by (9.4.6) acts as follows

S(Z QkOék:) = Z Qrr100.
k=0 k=0

The annihilation operator corresponds to the hypercomplex derivative

a_1(9 0 0 0
2_2 E)xo 8x1 j@xg 81'3 '

It is known by the Appell property that

g(Qk) = kQr—1, Vk > 1.

The domains of S and g in F(H) are denoted respectively by

D(8) :={f € F(H); §(f) € F(H)}

and _ —
0 0
() = {f € FE); S(f) € F(H)}.
We note that the creation operator S and the hypercomplex derivative g are

quaternionic right linear operators densely defined on F(H) since {%} is
' k>0

an orthonormal basis of the quaternionic Fock Hilbert space. In the sequel, we
shall prove some different properties of these operators:

Proposition 9.4.8. S and g are two closed quaternionic operators on JF (H).

Proof. We consider the graph of S defined by

G(8) =A{(f,81); f € D(S)}.

Let us show that G(S) is closed. Indeed, let ¢,, be a sequence in D(S) such
that ¢,, and S¢,, converge to ¢ and 1 respectively on F(H). Then, thanks to
Proposition 9.4.1 we have

160(@) — 6(@)] < €% b — Sllra
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and 2
Su(q) — ()] < €= [|Sdn — V|| £e)-

Therefore, it follows that ¢,, and S¢,, converge pointwise to ¢ and 1), respec-
tively. This leads to ¢ = S¢ which ends the proof. The same technique could be
adapted to prove the closedness of the hypercomplex derivative on F(H). O

Furthermore, we prove also the following

Proposition 9.4.9. Let f € F(H). Then, S(f) belongs to F(H) if and only 1f§f

belongs to F (H). In particular, this means that we have

Proof. We write f = Z Qray in F(H). Then, we have
k=0

= Z Qnop—1.
h=1
In particular, we have
IS(f ||}‘(H) Z e [ (9.4.8)

On the other hand, using the Appell property with respect to the hypercom-
plex derivative we have

| Ql

= Qubh, Br = (h+ Va1, Vh > 0.

h=0

Some calculations lead to

| (D) = Zh A a2 (9.4.9)

We note that by (9.4.8) we have

oo

1S £l = D (h+ 1)lanf
h=0

= (h+1)hl|ay)”

h=0

= 3" hin)lonl? + 3 Al
h=0

h=0

8

151



Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

Therefore, we use (9.4.9) in order to get

0
1Sf 7@ = ||§f||2}'(H) + 11y (9.4.10)

Hence, formula (9.4.10) shows that ||S f|| 7@ < oo if and only if ||gf| | Fmy <
oo which ends the proof. OJ

Now, we prove the adjoint property

Proposition 9.4.10. Let f € D(

Do | Qf

) and g € D(S). Then, we have

<§f7g>]-‘(H) = 59)ra

Proof. Let f = Z Qray in D(§> and g = Z QB in D(S). Thus, we have
k=0 k=0

| Ql

\

I
e
N | Ql

(Qr)a

=
Il
o

I
WE

ka—ﬂk

=
Il
—

I
WE

(h + 1>Qhah+1~

>
I
o

On the other hand, making use of Proposition 9.4.7 we have
S(g) = S(Qx)bx
k=0
= Z Qkﬂﬁk
k=0
= Z Qkﬁkq-
k=1

Therefore, we obtain

<§ fjg> = >k + Diwi e = (£.5(9)) ) -
F(H)

k=0

This ends the proof.
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N | Qf

Proposition 9.4.11. Let f € D(=) N D(S). Then, we have

S8 w=r

- 0

Proof. Let f = Z Qray be in D(§) N D(S). Thus, computations using Propo-
k=0

sition 9.4.7 and the Appell property give

o

Z Qkak and S ZkaOék

k=0

In particular, it shows that

This ends the proof. U

Remark 9.4.12. Note that the creation and annihilation operators denoted respec-

0
tievly by S and 5 are adjoint of each other and satisfy the classical commutation

rules on the Fock space of Fueter regular functions J f(H) like in the classical com-

plex case. Moreover, observe that we have also 82 (Qr) = kQyg, forany k > 1.

This property is related to the notion of number operators that appears in quantum
mechanics.

Let (7, )nen denote the normalized Hermite functions. In order to study the
Segal-Bargmann transform notion in this framework we introduce the Fueter
regular kernel function given by

o0

AH q,x

V(g,z) € H x R. (9.4.11)
k=

Then, for any quaternionic valued function ¢ in L*(R, H) and ¢ € H we define

_ / Af(q.z)e()ds (9.4.12)

We shall prove the following result:

Theorem 9.4.13. The integral transform Bl defines an isometric isomorphism
mapping the standard Hilbert space L*(R,H) onto the Clifford-Appell Fock space
F(H).
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Proof. Let ¢ € L*(R,H). We write ¢ = Zn] x)P; such that ngHLQ REH) =
7=0

(o)
Z 8]* < 0o. Then, note that we have

j=0
— Qi(q) /
= — x)p(x)d.
So, by setting o, = ne()p(z)dz for all k > 0, we get
vk /

1B (¢ ||]-' Zk'|ak|2

However, by definition of (¢ and using the orthogonality of Hermite functions
we obtain

/ da:—Zﬁj/ n;(z)dz = B, Yk > 0.

Hence, we conclude that

||BJ§(<P)H§E(H) = Z |Bj’2 = ||90H%2(R7H)'
j=0
Moreover, observe that
_ Ok

In particular, this allows to prove that B is an isometric isomorphism mapping
the standard Hilbert space L?(R, H) onto the Fock space F(H) on the quater-
nions. 0J

Now, we consider the following:

Problem 9.4.14. Is it possible to map Fgice(H) onto F(H) without using the
Fueter mapping, see [63], and keeping the isometry property ?

To answer the question, we will compute Bf; composed with the slice hy-
perholomorphic Segal-Bargmann transform.
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In order to answer this problem, we need the slice hyperholomorphic Segal-
Bargmann transform given by (9.2.3).

Notice that thanks to these integral transforms Bg and Bf it is possible to
relate the two notions of Fock spaces on the quaternions, namely the slice hy-
perholomorphic Fgj;.. (H) and the Cauchy-Fueter regular one F (H). Indeed, for
afixedi € S, f € Fspce(H) and ¢ € H we define the integral transform given
by

Y@ = [ L h ),

1
where dyi;(2) := —e1*°dA;(z) and the kernel function is obtained by taking
7r

the series

L(q,z) = Z QI};('Q)ik, Y(q,z) € H x C;.
k=0 '

Then, we prove:

Theorem 9.4.15. The quaternionic integral transform Y does not depend on the
choice of the imaginary unit 1 € S. Furthermore, it defines an isometric isomor-
phism mapping the slice hyperholomrphic Fock space Fsii..(H) onto the Clifford-
Appell Fock space F (H).

Proof. Let f € Fsyice(H), by Proposition 3.11 in [15] we have

o0 o0

fl@)=> dfapand D Jayk! < oc.

k=0 k=0

In particular, by definition of T we have

= [ (Z Q';j!‘f)zk) (Z zjaj) ()

J=0

-y Qela) (/C Ekzjd,ui(z)> a.

k,7=0

However, it is known that
/ 2 dp(2) = k6.
C;
Therefore, we get

T(f)(0) = Qrlg)ax.

Hence, since the coefficients (ax)x>o do not depend on the choice of the imag-
inary unit 7 we conclude that T(f) is well defined and does not depend on the
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choice of the imaginary unit. Now, we observe that the operator T can be ob-
tained thanks to the commutative diagram such that we have

T =Bgo(Bi)™

Indeed, to prove this fact. Let f € Fge.(H) and set
o) = (B (1)) = [ AL )M (2)

Thus, for any ¢ € H we have:

-/ A0, m)o(a)ds
- [ At (/ A5 D)) do
= /Ci (/R Al (g, 2)A%(Z, x)dx) fi(z)dpi(z).

H(g,2) = / AL (g, 2) A3, 2)dz, W(g, =) € H x C..
R

Then, we set

So, for all (¢, z) € H x C; we have

(8] (5 )
-SR]

Then, using the fact that Hermite functions form an orthonormal basis of L?(R, H)
we get

ZQ L(q,2), V(q,2) € H x C,.

At this stage, we replace H (g, z) by its expression and conclude that we have
T BEo (BS)!

Therefore, since both of B and B are isometric isomorphisms mapping L?(IR, H)
respectievly onto F(H) and Fgj;c.(H). This ends the proof. O

This quaternionic operator satisfies also the following properties :
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q" Qn(q)
m and an(Q) =

Proposition 9.4.16. For alln > 0, we set f,,(q) =

q € H. Then, we have
i) Y(fn) = ¢n, Vn > 0.

0 [ £la 0 dnz) = Kr(a.p), Wia.p) € Hx
Proof. The first statement is a direct consequence of the fact that
T = Bf o (B5)"!
This is combined with the two following relations
(Bi) ™' (1) = fo and By (fa) = éu, Y > 0.
Now, let (¢, p) € H x H. Then, we have

/Ci L(q,2)L(p, z)dui(2) Z Qulg (/ . Zjdpi(z)) W

k]O

_ % Qk(q;fk(p) 7

= K]-'(H) (q7p)'

O

Corollary 9.4.17. Leti € S. Then, for all z,y € R andn > 0, we have the
following identities

i)/ e 2" dpi(2) = 2™
C;

i) / e (2) =
C;

Proof. Observe that we have
L(t,z)=e% V(t,z) e R xC,. (9.4.13)

The first identity follows from i) of Proposition 9.4.16 combined with (9.4.13).
The second statement is also a consequence of (9.4.13) combined with ii) of
Proposition 9.4.16 and the fact that

Kf(H)(x7y) = exy’ V(x,y) e RxR.
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9.5 The Hardy space case

In this section, we study on the quaternionic unit ball {2 = B the spaces asso-
ciated to some sequence b as considered in Definition 9.3.1. First, we give some
general proofs related to these spaces HM,,(B). Then, we will give more specific
results on the Clifford-Appell Hardy space in this framework that corresponds
to the sequence by = 1,Vk > 0. In all this part, we take Q@ = B and b = (bg)x>0
a non decreasing sequence with by = 1. Then, we have

Proposition 9.5.1. The following estimate holds

s ok 2
|flg)] < <Z_’qb|k > | £llsat,, f € HMy(B), q €B.
k=0

Proof. Let us consider f(q Z Qr(q)ay in HM,(B). Thus, we have

o |

<yl

k=0

|ak|\/_

Then, by the Cauchy-Schwarz inequality we have

o (F19425) (S

However, we know that |Q1(q)| < |¢|*. Hence, we get

)l < (Z 'q'%) I Fllene

As a consequence, we get this result

Theorem 9.5.2. The sets HM,,(B) are right quaternionic reproducing kernel Hilbert
spaces. Their reproducing kernel functions are given by

Ky, m)(q,p) = Z %}fm, Y(q,p) € B x B. (9.5.1)

Qr
\/aa

Furthermore, the family {1} :=
Hy(B).

k > 0} forms an orthonormal basis of
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Proof. For a fixed p € B, we consider the function defined by

Qr(p)
b

- Z Qr(q)Pr(p), Vq € B, where fi(p) =
k=0

Thanks to the d’Alembert ratio test for power series, we have

> nlai =y 0 qu—

k=0

So, the function K, belongs to H;(B) for any p € B. Now, let f = Z Qroy, €

k=0
H,(B). Then, we have

< f H(B) — Zbkﬁk o = ZQk QE = ), Vp c B.

Therefore, the reproducing kernel of the space H;(B) is given by

by,

Kyym)(q,p) = Z M, Y(q,p) € B x B.
k=0

It is clear by definition of the scalar product that

<w27¢§>m(3) = 6k,j; Vkuj S N.

Furthermore, let f = Z Qray, in Hy(B) be such that
k=0

<@/),2, f>Hb(B) =0, Vk e N.
Thus, we have

Vorar = (U4, )y = 0, Yk €N.

So, f = Oforany ¢ € B. In particular, this proves that {¢? };>¢ form an or-
thonormal basis of HM,(B). O

Remark 9.5.3. The Clifford-Appell Hardy space corresponds to the sequence b with
all the terms equal to 1, and will be denoted simply H(B). In this case, the previous
results of this section read as follows

AE) B v f e H(B), Vg € B.

D 1f(0)] <
U e
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ii) Koue)(0:0) = Y Qu(@)Qi(p), ¥(q,p) € B x B.
k=0

iii) Ky (7, P) = Z D Rq*p", V(g,p) € Bo x By.

1
1—2ay

iV) KH(B)<x>y> = ) V(.Z',y) € (_1? 1>2

In the previous section we studied the notions of creation and annihilation
operators associated to the Fock space in this framework. We do the same in
this section for the Hardy case by studying the counterparts of the shift and
backward shift operators. We keep the same definition and notation of the shift
operator introduced in the expressions (9.4.6), (9.4.7) and Proposition 9.4.7. Then,
we first prove the following

Proposition 9.5.4. The shift operator S is a right quaternionic isometric operator
from the Clifford-Appell Hardy space H(B) into itself.

Proof. Let f = Z Q1o belongs to H(B). We apply Proposition 9.4.7 and get
k=0

S(f)qg) = Z Qr(q)ak—1, Vg € B.

Hence, we have

ISy = Z!%P
= ||fHH(B)

This shows that S defines an isometry on the Hardy space H (B). O

In order to calculate the adjoint operator of the shift on H(B) we first deal
with the following observation

Proposition 9.5.5. Forall k > 1 and q € B with q¢ # 0 we have

Q7' ©Qx(g) = Qr—1,

C1Ck—1

!
where ® is the C-K product and ¢; := Z(—l)jTj, Vi > 0.

Jj=0
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(@)~

Proof. First, we observe that (Q1(7))™! = ~— and Qx_1(¢) = cr_1q* "
(&1

Then, we write the series expansion associated to the C-K product and use sim-

ilar techniques we used to prove Proposition 9.3.6. U

For all £ > 1, we introduce a family of operators defined by

C1Ck—1

M(f) = Qi © f, Vf € H(B). (9.5.2)

Ck

Then, for any f = Z Qray in H(B) we consider the operator obtained by
k=1
applying M, on each component with the corresponding degree, i.e

M(f) = M(Qr)on. (9.5.3)
k=1
Therefore, we have an explicit expression given by
=
M(f) = ey =—[Q7" © Qilay. (9.5.4)
=1

We note that using Proposition 9.5.5 we can see that this operator M acts like
the standard backwardshift with respect to the Appell system (Q)r>0, in the
sens that we have

M(Qr) = Qp1, Yk > 1. (9.5.5)

The next result allows to compute the adjoint of the shift operator on the
Hardy space H(B).

Proposition 9.5.6. Let f,g € H(B). Then, it holds that

In other words, the adjoint of the shift on H(B) is given by
S =M.

Proof. Let f = Z Qroy and g = Z Qr Ok in H(B). Thus, we have
k=0 k=0

M(f) = Mi(Qr)au

(oo} o0
= ZQk—lak = Z Qkakﬂ-
k=1 k=0

161



Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

We know also by Proposition 9.4.7 that

S(g) = ZQkﬂkq-
k=1

Therefore, we can see that

(M = S = U5

This ends the proof. U

In [18] the authors introduced a backward shift with respect to each Fueter
variable using some integral operators. Inspired from this approach, we present
now an equivalent way to deal with the backward shift operator in our situation.
First, for all ¢ > 0 we consider on 7 (B) a family of operators R. : f — R.(f)
defined using the following expression

RN = [ 45Ul g€ B {0} ©56)

where g denote the hypercomplex derivative with respect to the variable g.
Then, we consider the backward shift operator given by

R()(g) = limR.(f)(9), ¢ € B\ {0} (9.5.7)
and _
Rf(0) = g £(0). (9.5.8)

We note that the backward shift operator R acts by reducing the degree of
the Appell system (Qy)x>o as follows

Proposition 9.5.7. For all k > 1, it holds that
R(Qr) = Qr—1-

Proof. Let k > 1 and € > 0. First, we note that

Qxr(qt) = t*Qulq), Ve < t < 1.
Then, by definition of R. and Appell property of the system (Q)r>0 we have

R.(Qu)(a) = / 19[Qk<tq>]
k
- / 22 it i
= kQr_1(q) / t*1dt.
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Therefore, we obtain

R (Qr)(q) = Qr-1(q)(1 — "), Ve > 0.

Hence, by letting ¢ — 0 we conclude that

R(Qk) = Qr—1, Yk > 1.
[l

Remark 9.5.8. We observe thanks to formula (9.5.5) and Proposition 9.5.7 that
the two backward shift operators M and R coincide on the Clifford-Appell Hardy
space H(B).

We prove also another property related to the backward shift operator R on
the spaces HM,(B).

Proposition 9.5.9. Let b = (by)ren be a non decreasing sequence with by = 1
and f € HMy(B). Then, the following inequality holds

IRFem, < Flen, = LFO)F. (95.9)
The equality holds on the Clifford-Appell Hardy space H(B).
Proof. We write f = Z Qroy, in HMy(B). Thus, by Proposition 9.5.7 we can
k=0
see that R(f) = Z Qrk+1. Therefore, using the fact that b is non decreasing

k=0
we get

IR(f ||7—L/\/le) Zbk|ak+1|

< Zbk+1|ak+1‘2
k=0
= 11, — 1F(0)%.
]

Remark 9.5.10. We note that using Proposition 9.5.9 we can see that the QRKHS
HMy(B) are invariant under the backward shift R and they satisfy inequality
9.5.9. It would be intersting to investigate the relation with Schur functions and
see if the converse holds also in this framework. If it is the case, it will present a
counterpart of the structure result proved in Theorem 3.1.2 of [16].
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9.6 The Fueter mapping range

In this section we give an answer to Problem 9.3.4. Indeed, we give a char-
acterisation of the Fueter mapping range related to the hypercomplex spaces
introduced in Definition 9.3.1.

Theorem 9.6.1. Let Q) be an axially symmetric slice domain and ¢ = (¢)gen
be a given non decreasing sequence with co = 1. Then, there exists a sequence
b = (br)k>0 such that we have

- (HS.(Q)) = HMy(9).

More precisely, we have

. Ck+2
— > 0.
) b= e 20

ii) Forall f € HS.(Q2), we have

T () aemo(e) = 2\/\|f|\%sc(g) — O = eul f(0)

Proof. Let g € 7(HS.(2)), thus there exists f € HS, such that g = 7(f).

Then, we write the series expansion

= iqkak, Vq € Q.

Thus, we have g = 7(f) = Z Qray, with oy, = —2(k+1)(k+2)aj42, Yk >

0. Now, we set

Ck+2
b. = k> 0.
AR Vel (e A

Hence, since ay = f(0) and a; = f’(0) we obtain

|m(f HHM,,(Q) Z by evy |

= 4ch|ak|2
k=2
=4 (/s — FO)F = el F(0)]*) < oo
This ends the proof. 0J
Corollary 9.6.2. If we set HS) = {f € HS., f(0) = f(0) = 0}. Then, the

Fueter mapping T defines a right quaternionic isometric operator (up to constant)

from HSY onto HM,,.
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Proof. We only have to apply ii) in Theorem 9.6.1 and get

HT(f)HHMb(Q) = 2||f||ysc(g), Vf e HSS.
O

Remark 9.6.3. The generic calculations provided in Theorem 9.6.1 confirm the
results obtained in [63] for the Fock and Bergman cases.

Remark 9.6.4. We note that in Theorem 9.6.1 even if the sequence b is not neces-
sarily a non decreasing sequence but the corresponding spaces HM,, are QRKHS.
For the Fock-Fueter space on H we refer to the calculation details provided in [63].
However, on the quaternionic unit ball B this fact results thanks to the convergence
of a certain power series associated to the sequence b.

Proposition 9.6.5. Let c and b two sequences as in Theorem 9.6.1. Then, the power
series given by

OO 2k OO 2 2
S UL Y 061

e Ck+2
is convergent on the quaternionic unit ball B.

Proof. Let ¢ € B and set

k+1)%(k+2)?
Ch+2

We have )
Sk+1 _ | |2 (k + 3) Ck+2
Sk 1 (k+1)%crys

Then, using the fact that the sequence (cy)>o is non decreasing we can see
that

.Yk > 0.

lim 25+ < lq|* < 1.
k—o0 Sk

Hence, by the d’Alembert ratio test the thesis follows. O

Remark 9.6.6. As a consequence of the previous Proposition it is not difficult to
see that on B the hypercomplex space HM, obtained in Theorem 9.6.1 is a QRKHS
with a reproducing kernel given by

Kn(ap) =3 EFV LD 0 000, Vi) e Bx B (9:62)

C
k=0 k+2

In the following table we list some spaces of slice hyperholomorphic func-
tions and their Fueter mapping ranges denoted respectively by HS,. and HM,,
the associated sequences c and b and the Fueter mapping norms.
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Table 9.1: Some spaces HM, obtained in Theorem 9.6.1

HS. o h wmwb

Hardy 1 kH%HQ 2/ 1, = 1£(0)2 = |f(0)
Fock I s 2/ 1f1ss, = £ = 17O
Dirichlet ESy I 2VMfHHSP—|me 17O
Bergman == s rgaay 2V W IBs. — 11OF = 3 OF

9.7 Further related results

In [5], we started the study of Schur analysis and de Branges-Rovnyak spaces
in the framework of Fueter hyperholomorphic functions. This allows to develop
some new Schur analysis results in the Fueter hypercomplex setting. It was
also possible to find connections with the recent theory of slice polyanalytic
functions. Indeed, this is based on the notion of Appell-like polynomials and
their nice properties with respect to the CK product. We briefly discuss such
related results in this last section.

9.7.1 Appell-like polynomials

Let us set

Qm(q) dger

Cm

Fn(q),

where (),,, denotes the m-th quaternionic Appell polynomial

m

Qu(e) =Y T"¢" ¢ (9.7.1)

Jj=0

(see [8, (3.8)]), and where the coefficients c,, are given by

m : 2(m —j+1)
m = —1 ‘7ij d Tm: y :0,1,....
en =D (ST and TP = Ry

J=0

The polynomials (),,, are called Appell since they satisty the Appell property
1—
§DQm = QO717 m Z 17
the P, do not respect such a property, since

1— B
“DP, = m&n!
2

Pm—la mZ 17

m
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however, they behave better with respect to the C'K-product, as we shall see
below. In particular, for even indexes of the form m = 2k, the Appell property
is still satisfied by the polynomials (Pa)r>o since we have ¢,,_; = ¢, in this
case.

In what follows, we are looking at a theory of hyperholomorphic functions
of the variable

_ Ql(Q)

C1

Pi(q)

= Gi(g)er + Ca(q)ea + (3(q)es, (9.7.2)

with the C'K-product. Moreover, note that
We have the following characterization, see [17, Proposition 3.6]:

Proposition 9.7.1. Let fy, ..., fn_1 beslice regular functions on a domain €2 C HL.
Then, the function defined by

f@)=> 7 filq) (9.7.4)

is slice polyanalytic of order N on (2.
As a consequence:

Corollary 9.7.2. The polynomial P,, is slice polyanalytic of order m + 1.

m

T
Proof. Forall0 < k < m, we set f(q) = iqm_’“. It is clear that all f} are slice
c

m
regular functions on ). Moreover, we note that

Pu(q) = T fi(g). Vg € Q.
k=0

Hence, the thesis follows using Proposition 9.7.1. O

We observe that it is also possible to prove a Representation Formula in the
setting of Fueter hyperholomorphic functions using techniques from slice poly-
analytic function theory.

Proposition 9.7.3. Let f be a Fueter hyperholomorphic function of axial type
on some axially symmetric slice domain 2 C H. Let J € S, then for any x =
u+ I,v € Q the following equality holds :

flu+Ip) = % [fs(u+ Jv)+ fr(u— Jv)] + % [fr(u— Jv) — fr(u+ Jv)].
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Proof. We note that the Fueter hyperholomorphic polynomials (P, ),>0 are slice
polyanalytic of order m + 1 thanks to Corollary 9.7.2. Thus, we can apply The-
orem 3.9 in [17] in order to justify that these polynomials satisfy the Represen-
tation Formula. In particular, for 2 = v + Jv and z = u + I,v we have

P,(q) = % [Pn(2) + Pn(Z)] + % [P,(Z) — Pn(2)]. (9.7.5)

However, by Theorem 3.10 in [8], any Fueter hyperholomorphic function f of
axial type admits a power series expansion in terms of the polynomials P, of
the form

f@) =Y Pul@)un,  u, €M

Therefore, using (9.7.5) we obtain

This ends the proof. O]

Remark 9.7.4. An alternative proof of the previous Representation Formula in the
Fueter hyperholomorphic context consists to apply Proposition 3.13 in [17] to each
polynomial P,,.

9.7.2 Hardy space and intrinsic Fueter regular functions

In this section we introduce the Hardy space in this framework of Appell-like
polynomials. To start with, we denote by £ the ellipsoid

E={qeR": 9z} +al+a;+2; <1} (9.7.1)
and we note that
The function .
ke(g,s) =Y P (a) P (s) (9.7.2)
m=0
converges and is positive definite for ¢, s € £. We also note that
1

ke(xo,%0) = ———, Yo € (—1/3,1/3 9.7.3
¢(%o, Yo) 1— 97010 o, Yo € (—1/3,1/3) ( )

and with (see [8, Remark 5.3])
Ko(g,5) =Y Qn(@)Qu(s)
n=0
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we have
1

—, o, Y% € (—1,1).
I — xoyo 0 ( )

KQ(ﬁo,yo) =

Definition 9.7.1. The reproducing kernel Hilbert space associated with (9.7.2) will
be called the Hardy space, and denoted by Hy ().

Theorem 9.7.5. The Hardy space Hy(E) consists of functions of the form

Fl@) =) (Gla)er + G@)es + G(0)es)™ fon = D Pu(@)fms  (97:4)

where the coefficients f,, belong to H and are such that

> U ful® < 0. (9.7.5)
m=0

This expression is then the square of the norm of f in the Hardy space.
Proof. The proofs follows standard arguments, see [8]. U

From the form of the elements of the Hardy space Hy (&) and using the fact
that the polynomials P, are Fueter hyperholomorphic of axial type, see Remark
3.9 in [8], we deduce:

Corollary 9.7.6. Elements of Hy(E) are Fueter hyperholomorphic of axial type,
in particular are uniquely determined by their restriction to (—1/3,1/3).

Lemma 9.7.7. The operatorS : f +— P} © f is an isometry in the Hardy space,
with adjoint given by

s (Z Pnfn) = Pufuir. (9.7.6)
n=0 n=0

Furthermore
SS*f=f—f(0), feHyE). (9.7.7)

Proof. The proof is a consequence of

SS*f =P ® (Z Pnf,hq)
n=0
= Z Pn+1fn+1
n=0

oy
—f— f(0).
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Let C'f = f(0) be the point evaluation in Hy(€). Then C*u = kg (-, 0)u = u
and we get from the previous lemma

I — MpM; = C*C. (9.7.8)

This equation is really what makes several arguments work in [5].

The operator (9.7.6) will be called the backward-shift operator and denoted
by RQ.

Now, we study quaternionic intrinsic Fueter hyperholomorphic functions.
Let us recall that, given an hyperholomorphic function f on some axially sym-
metric open set (), we say that f is quaternionic intrinsic if it satisfies the relation

f@ = f(q), Vg € Q. (9.7.9)

Proposition 9.7.8. The family of polynomials (P,),>¢ consists of axially hyper-
holomorphic quaternionic intrinsic functions on H.

Proof. We know that for alln > 0 the polynomials P, are axially hyperholomor-
phic functions on H. Furthermore, using the relation with the n-th quaternionic
Appell polynomials ), see [8, (3.8)], we have

0

Proposition 9.7.9. Let f be a hyperholomorphic function of axial type on some
axially symmetric open set (). Then, f is quaternionic intrinsic if and only if it
admits a power series representation with real coefficients with respect to the poly-
nomials (P,)n>0.

Proof. We know by Theorem 3.10 in [8] that f admits a power series with respect
(e}

to (P,)n>0. So, we can write f = Z P, f, with f,, € Hforalln > 0. We assume

n=0
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that f is intrinsic, thus the formula (9.7.9) and Proposition 9.7.8 imply that

flo) = f()vqu@ZP ZP ) fu Vg € Q2

n=0

@an n Z fn,VQGQ

n=0

<~ an 3.1'0 i 31’0 fn,V:co cR
n=0

s foeR VR > 0.

The equivalence between the second and the third lines holds because P, is the
unique axially hyperholomorphic extension of (3z()". This ends the proof. [J

Proposition 9.7.10. Let S, and Sy be two hyperholomorphic functions of axial
type, defined on some axially symmetric open set (). If S} is quaternionic intrinsic,
then S; ® Sy admits a power series expansion with respect to the polynomials

(Pn)n20~
Proof. We note that S; and Ss have power series expansions in terms of (P,,),>¢
o0 (oo}

that we can write S| = Z P,a, and Sy, = Z P,b,,. Since S is quaternionic
n=0 n=0

intrinsic we know by Proposition 9.7.9 that the coefficients (a,),>o are real.

Thus, we apply also the fact that P, ® P,, = P, 1, in order to get

n=0 m=0

- i (Po ® Py)anby,
n,m=0
= i Pneranbm
n,m=0
k=0

O
Proposition 9.7.11. Let S be a hyperholomorphic function of axial type. If S
is quaternionic intrinsic, then the operator Mg coincides with the multiplication

operator f — S © f.
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Proof. We note that since S is quaternionic intrinsic, it has real coefficients.

Thus, we have P, © S = S © P, for all n > 0. Then, for any f = Z P,u,, we
n=0
have

O

Proposition 9.7.12. Let S| and Sy be two hyperholomorphic functions of axial
type such that Sy is quaternionic intrinsic. Then, we have

.2\45’1]\452 - M51®S2 (9.7.10)

Proof. We know by Proposition 9.7.10 that S; © S, is well defined and admits
a power series expansion in terms of (P, ),>¢ since S; is intrinsic. Therefore,
using Proposition 9.7.11, we have

MS1®S2(f> = (Sl © SQ) o f
= MS1(S2 ®© f)
- MS1M52(f)'
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CHAPTER

A new polyanalytic function theory in
hypercomplex analysis

In this chapter, we introduce the quaternionic slice polyanalytic functions and
prove some of their main properties including a poly-decomposition, identity
principle, representation formula, etc. Then, we apply the obtained results and
start the study of some quaternionic reproducing kernel Hilbert spaces in this
new setting. In particular, we treat Fock and Bergman spaces and give explicit
expressions of their reproducing kernels. The results obtained in this chapter
are based on [17].

10.1 Motivation

The theory of polyanalytic functions is an interesting topic in complex analysis.
It extends the concept of holomorphic functions to nullsolutions of higher order
powers of the Cauchy-Riemann operator. An excellent reference on this subject
is the book of Balk [22]. Some famous Hilbert spaces of holomorphic functions
that were extended to the setting of polyanalytic functions are the Bergman
and Fock spaces, see for example [2, 10, 22, 89] and the references therein. As
we have already seen before, the classical theory of holomorphic functions in
complex analysis was extended to obtain the theory of slice hyperholomorphic
functions of a quaternionic variable, see [35,75]. In this chapter, we extend slice
hyperholomorphic functions to higher order and define the slice polyanalytic
functions of a quaternionic variable. Then, we shall use the obtained results to
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introduce and study the Fock and Bergman spaces of quaternionic slice polyan-
alytic functions and give explicit formulas for their reproducing kernels. Note
that by considering polyanalytic functions with respect to the classical Cauchy-
Fueter regularity on quaternions, it turns out that even the simple example given
by F(q,q) = |g|* is not polyanalytic of order 2. A natural question that arises
here is about a poly Fueter regular function theory [27,57] and associated Fueter
mapping results. We shall discuss these points in more details in the next chap-
ter by proving a new Fueter mapping theorem in the poly hypercomplex case.

This chapter has the following structure: we first introduce the quaternionic
slice polyanalytic function theory and discuss some of its main results. In partic-
ular, on slice domains we show the so-called poly decomposition, that makes any
slice polyanalytic function a sum of quaternionic conjugate powers multiplied
by some unique slice regular functions, thus extending the analogous result for
complex functions. We prove also the counterparts of the Splitting Lemma, Iden-
tity Principle, Representation Formula, Extension Lemma and the Refined Split-
ting Lemma in this framework. We also discuss slice polyanalytic functions as a
subclass of slice functions on axially symmetric domains. In particular, we prove
a version of the identity principle in this case also. We introduce two expamples
of quaternionic reproducing kernel Hilbert spaces QRKHS in this framewor. In
particular, we study Bergman and Fock spaces of slice polyanalytic functions on
quaternions and give explicit expressions of their reproducing kernels.formula
of its reproducing kernel. We conclude with a brief discussion about poly-Hardy
spaces.

10.2 Slice polyanalytic functions of a quaternionic variable

In this section, we extend to higher order the theory of slice regular functions
on quaternions. Most of the material presented here is based on the results we
developed in [17].

10.2.1 Main properties of the function theory

First, we start by considering the following simple example

Example. For any g € H, let F(q) = 1 — Gqj. Then, we have

O01Fi(z + Iy) = —(x + Iy)j andé?F[(x +1Iy)=0; VI €S.
We say that F is slice polyanalytic of order 2 on H.

The slice polyanalytic functions of a quaternionic variable (or of a paravector
variable, in the case of Clifford algebra-valued functions) have to be considered
as a subclass of slice functions, see Definition 3.17 of [17].
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Definition 10.2.1 (Slice polyanalytic functions). Letn € N and denote by C™(U)
the set of continuously differentiable functions with all their derivatives up to order
n on an axially symmetric open set U C H. We letUd = {(z,y) € R?* : 2+ Iy C
U}. A function f : U — H is called a left slice function, if it is of the form

flq) =alz,y) +1B(x,y)  forq=x+1IyelU

with the two functions o, 5 : U — M that satisfy the compatibility conditions
alx,—y) = a(x,y), f(x,—y) = —F(z,y). If in addition o and § are in C"(U)
and satisfy the poly Cauchy-Riemann equations of ordern € N

1
27(837 +10,)" (a(x,y) + IB(z,y)) =0, forall [ €S (10.2.1)

then f is called left slice polyanalytic function of order n € N.

The definition is easily adapted in the case of right slice polyanalytic func-
tions. Note that a slice regular function is a function as in the previous definition,
when n = 1.

Remark 10.2.1. We note that when dealing with left slice polyanalytic functions
we will refer to them simply as slice polyanalytic. Due to the lack of commutativity
on H, we can define in an analogous way the right slice polyanalytic functions on
quaternions.

The set of all slice polyanalytic functions of order n on a domain €2 is a right
vector space over the noncommutative field of quaternions. It will be denoted
SP. () or simply SP(£?) if no confusion can arise with respect to the order.
Slice polyanalytic functions were considered also in [25]. A simple observation
that will be needed in the sequel is the following

Proposition 10.2.2. If f is an intrinsic, slice polyanalytic function of order m
and g is a slice regular function on a domain () then the pointwise multiplication
h(q) = f(q)g(q) defines also a slice polyanalytic function of order m on .

Proof. This holds because f is intrinsic, thus we can use the Leibniz rule. Indeed,
let [ € S and set x = u + [v, we will prove that

Or (fg)(u+vl) =0. (10.2.2)

Indeed, first we note that f is intrinsic, we have f(U N C;) C C;. In particular,
we have the Leibniz rule

Ar(fo)(u+ Iv) = fa(g)(u+vl) + Ir(f)g(u+vI).

We note that since f is poly slice hyperholomorphic of order m and g is slice
hyperholomorphic we have 0;(g) = 0 and 9;(f) # 0. Thus, we obtain

Ir(fg)(u+ Iv) =0r(f)g(u+ vI).
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Then, since f is intrinsic we can use the Leibniz rule m times and get

" (fg)(u+ o) =3, (F)Bi(g)(u+vl) + " (fglu + ol).

Therefore, it follows that the formula (10.2.2) holds since f € SP7T(U) and
g € SP(U). Moreover, since f is intrinsic we have that fg¢ is a slice function.
Hence, the pointwise product fg is poly slice hyperholomorphic of order m on
U.

O

As a consequence of the previous proposition and the poly-decomposition
that we shall see later (see Corollary 11.2.9), we can prove also this more general
result

Theorem 10.2.3. Let U be an axially symmetric slice domain and n,m > 1.
Assume that f : U — H is an intrinsic left poly slice hyperholomorphic function
of ordern and g : U — H a left poly slice hyperholomorphic function of order m.
Then, the pointwise product f g is poly slice hyperholomorphic of order n +m — 1.

Proof. Let n > 1 be fixed. We will use an induction process with respect to
m > 1.

i) For m = 1, it is clear that the result holds in this case by Proposition 10.2.2.

ii) We suppose now the result holds for some m > 1 and let us prove it for
m + 1. Indeed, let f an intinsic function in SP’} (U) and g in SP} (V).
We shall prove that fg € SP}"™(U). Then, using the poly-decomposition
for f and g we can write

n—1 m
F@) =Y T felg) and g(q) = Y 7"gx(q), forallq € U,
k=0 k=0

with (fx)k=o...n—1 and (gx)k—o,...m are slice hyperholomorphic functions.
Now, setting

U,.(q) = quk(q), forall g € U.

We observe that ¥, € SP7'(U), moreover we have

9(q) =V, (q) +7"gm(q), VgeU.

Therefore, it follows that
(f9)(@) = [(@¥m(a) + [(@)T"gm(q), Vg€ U. (10.2.3)

We note that by induction hypothesis we have (f¥,,) € SP} " 1(U),
this holds because ¥,,, € SP7'(U) and f € SP}(U).
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On the other hand, since f is intrinsic we have f(q)7™ = §" f(q), for all
q € U. In particular, we obtain

—_

F@)a"gm(a) = ) T (frae)(a), Va e U.

3

i

We note that using Proposition 10.2.4 we know that all the slice hyperholo-
morphic components (fx)k—o,. n—1 are intrinsic slice hyperholomorphic
functions. As a consequence, the pointwise product fjgy, are slice hyper-
holomorphic for all £ = 0, ..., n — 1. At this stage it is clear that f¢"g¢,, €
SP}H™(U). Hence, it follows by formula (10.2.3) that fg € SP} " (U).

iii) We conclude by induction that the pointwise multiplication f ¢ is poly slice
hyperholomorphic of order n + m — 1.

U

Proposition 10.2.4 (Splitting Lemma). Let f be a slice polyanalytic function of
order n. on a domain ) C H. Then, for any imaginary units [ and J with [ L J
there exist I, G : Q; — Cj polyanalytic functions of order n such that for all
z=ux+ Iy € Qf, we have

fi(z) = F(z) + G(z)J.

Proof. Let I,J € S be such that I L J, then {1, I, J,I.J} forms an orthogonal
basis of H. Hence, for any z = x + [y we can write
f1(2) = fo(2) + fi(2)] + fa(2) ] + f3(2)1J
where f, .., f3 are real valued. This leads to
fiiz)=F(z)+G(2)J

with F(2) = fo(z) + fi(2)] and G(z) = fa(z) + f3(2)I. However, f is slice
polyanalytic of order n which means that 9, f;(z + Iy) = 0 on Q;. Thus, by
linearity of the operator d; and linear independence of the basis elements we

have 0; F(z + Iy) = 0 and 9, G(x + Iy) = 0 on €. This ends the proof. [

10.2.2 Poly-decomposition and Identity Principle

An immediate consequence of the Splitting Lemma for slice polyanalytic func-
tions is

Remark 10.2.5. A function f is slice polyanalytic of order n on a domain 2 C H
if and only if for any I € S, we have

n—1

fi(2) = Y i)

k=0

where hy, : Q0 — H are holomorphic maps.
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Proposition 10.2.6. Let fy, ..., f,_1 be slice regular functions on a domain ) C
H. Then, the function defined by

fl@) =) 7 fulqg) (10.2.4)

is slice polyanalytic of order n on ().

Proof. Let I € S and choose J € S with I 1 J. The Splitting Lemma for slice
regular functions yields

fre, (@ + Ty) = Fi(x + Iy) + Gyl + Ty)J; Yk = 0,...,n

where F}, and G, are C; valued holomorphic functions on €2;. Hence, we have

—_

frix+1y) = Y (v —Iy)"fu (@ + Iy)

3 = 3
—= o
—

3

(x = Iy)" Fo(z + Iy) + Y (z—1y)*Gplz + Iy)J

(]

k=0
= F(z+ Iy) + G(z + 1y)J.

i

It is immediate that F" and G are polyanalytic of order n on €2;. Thus 5? fr(z+
Iy) =0on ) forany I € S. O

Conversely, we have the following

Proposition 10.2.7. If f is a slice polyanalytic function of order n defined on a
slice domain Q) C H. Then,

fl@)=> 7 fulq) (10.2.5)

where fo, ..., fn_1 are slice regular functions on ().

Proof. f(q) = f(x+1y) = a(z,y)+ 15(x,y) is a left slice polyanalytic of order
N. By fixing a basis 1, eq, 5, e1e2 of Hl, and writing eqg = 1, e3 = eje, we have
o= Z?:o ey, B = E;’ZO Beer, where the functions ay, B, are real-valued and
are, respectively, even and odd in the second variable. Since the basis elements
e¢ are linear independent, the system expressing the slice polyanalyticity can
be rewritten in terms of the real components f, in other words, each C;-valued

function F, = oy + 1, is polyanalytic and Fy(x — Iy) = Fy(x + [y). By the
N—1

classical result applied to each function F, we have Fy(x + Iy) = >, (v —
Iy)* fr.o(x + I'y) where the functions fj, ¢ are C;-valued and satisfy the Cauchy-
Riemann system. Since Fy(z — [y) = iV:_Ol (z—Ty)* fro(x — ITy) = kN:_Ol(a:—
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10.2. Slice polyanalytic functions of a quaternionic variable

Iy)* fr.o(x + Iy) we have fi¢(x — Iy) = fro(x + Iy) and so each f ;i s alsice
function. We then deduce

=

3 3
f(x—i—[y):ZF x+ Iy)e, Z (z — Iy)* fro(x + Ty)e
0 =0 k=0
-1

o~
Il
e
Il

=

3
(= Iy fele+1y),  fule+Ty) =) frole+ Iy,

iy
o

where the functions fj are evidently left slice regular, and this concludes the
proof. U

Therefore, we have the following characterization of slice polyanalytic func-
tions on slice domains

Corollary 10.2.8. A function f defined on a slice domain is slice polyanalytic of
order n if and only if it has the form (10.2.5).

Proof. This is a direct consequence of the Propositions 10.2.6 and 10.2.7. U

We point out that Theorem 2.16 in [79] also establishes the previous result.
The next results of slice regular functions that we shall extend to a higher or-
der in this section are the counterparts of the identity principle, representation
formula, extension lemma and the refined splitting lemma for slice polyanalytic
functions.

Theorem 10.2.9 (Identity Principle). Let f and g be two slice polyanalytic func-
tions of order n on a slice domain Q) C H. If, for some I € S, f and g coincide on
U a subdomain of 2y, then f = g everywhere in ().

Proof. Note that f and g are slice polyanalytic functions of order n on (2. Thus,
we can write

7
—
3
|

—

fl@=> 7 fulq)and g(q) = Y T°gr(q); Vg €

0 0

ES
I
iy

where (fi)r—o,..n—1 and (gx)k—o,.. n—1 are slice regular on €2. Note that thanks to
the Splitting Lemma for slice polyanalytic functions we have that f; = Fy 4+ FyJ
and g; = G1 + G9J where J € S such that I L J and Fy, F5, G, G5 are four
C;—valued polyanalytic functions on €2;. By hypothesis, we have f; = g; on U,
so I} = GG; and F5 = (G5 on U which is a subdomain of €2;. Thus, from classical
complex analysis we know that F; = Gy and F, = G5 everywhere on ;. In
particular, we get that f; = g; everywhere on ;. Hence, 5;71 fr = 5?71 gr on
Q; which shows that f,,_; coincides with g,,_; on ;. However, f,,_; and g,,_1
are slice regular. Then, making use of the Identity Principle for slice regular

functions we have that f, ; = g, 1 everywhere on ). Similarly, using the
same arguments we show that f, = g, on Q2 forall k£ = 0,...,n — 1. This ends
the proof. O

179



Chapter 10. A new polyanalytic function theory in hypercomplex analysis

10.2.3 Representation Formula and Extension Lemma

Inspired from the proof proposed in [50] for slice regular functions, we can prove
a representation formula for quaternionic slice polyanalytic functions:

Theorem 10.2.10 (Representation Formula). Let f be a slice polyanalytic func-
tion of order n defined on an axially symmetric slice domain 2 C H. Let J € S,
then for any g = x + Iy € 2 the following equality holds :

Flot 1) = 5 Usle + Ty) + Dol — Jy)) + 1 [l = Ty) = ol + Ty)

Moreover, for allx + yK C Q, K € S, there exist two functions «, 3 independent
of I, such that for any K € S we have

% [fr(x +yK) + fx(z —yK)] = a(z,y)

and
%K (2 —yK) = ficlw + yK)] = B(x,y).

Proof. The representation formula is valid since it is a consequence of the slice-
ness of a slice polyanalitic function, see Definition 10.2.1. O

Remark 10.2.11. The proof of the second statement of Theorem 10.2.10 is similar
to the one for slice regular functions which corresponds ton = 1, see [50].

Some immediate consequences of the representation formula for slice poly-
analytic functions are the following :

Corollary 10.2.12. Let U C H be an axially symmetric slice domain, D C R?
such that © + yI € U whenever (x,y) € D and let f : U — H. Then,
f € SP,(Q) if and only if there exist a, f : D — H satisfying o(z,y) =
oz, —y), B(z,y) = —B(x, —y) and 0; (a4 1) = 0 such that

flx+yl) = alz,y) + 15(x,y).

Corollary 10.2.13. Let U C H be an axially symmetric slice domain and let
f + U — H be a slice polyanalytic function. Then, for all x,y € R such that
x + yl € U there exist a,b € H such that

fle+yl)=a+1Ib
foralll €S.

Inspired from the paper [19], we can show another version of the identity
principle for slice polyanalytic functions without the hypothesis that the open
set on which they are defined is a slice domain. First, note that slice functions can
be recovered by their values on two semi-slices, see the Representation Formula
given by Proposition 6 in [81]. We have the following
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10.2. Slice polyanalytic functions of a quaternionic variable

Proposition 10.2.14. Let () be an axially symmetric domain and let f : 2 — H
be a slice polyanalytic function. Assume that there exist J, K € S, with J # K
and U, Uy two subdomains of Q7 and 2} respectively where Q) := QNCY} and
QL =QNnCL. If f =0 0n Uy and Uy, then f = 0 everywhere in ().

Proof. Let f be a slice polyanalytic function on €2 such that f = 0 on U; and Uk.
Thus, since U; and Uk are respectively subdomains of QJJ“ and Q}L( It follows,
from the Splitting Lemma for slice polyanalytic functions combined with the
classical complex analysis that f = 0 everywhere on Q7 and Q.. Then, we just
need to use the Representation Formula which allows to recover a slice function
by its values on two semi-slices to complete the proof. U

Remark 10.2.15. This last remark on slice functions allows to define slice polyan-
alytic functions on axially symmetric domains which do not necessarily intersect
the real line.

Another interesting fact that holds for slice polyanalytic functions is the Ex-
tension Lemma:

Proposition 10.2.16 (Extension). Let {2; be a domain in C; symmetric with re-
spect to the real axis and such that Q; N R # (. If

N-1

() = 3 2 hz)

k=0

with hy, : Q; — H are holomorphic functions such that hy(Z) = hy(z). Then the
unique slice polyanalytic extension of f is

N-1
ext(f)(q) := quext(hk)(q);Vq =z+ Iy e Q.
k=0

Proof. Assume that f is polyanalytic of order n on 2;. Then, we have

n—1

() =32 (z)

k=0

where hy, @ {2y — H are holomorphic functions. However, {2; is symmetric
with respect to the real axis. Thus, according to the Extension Lemma for slice
regular functions for any £ = 0,...,n — 1 we can consider the slice regular
functions defined by

frlz + L) == % [hi(2) + he(Z)] + ]qé (hi(Z) — hi(2)] ;2 =2+ Ty € Q.

Let us consider

—_

g(z + L) = (z — ]qy)kfk(x +1,y),
0

3

B
Il
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we shall prove that

oo+ Iy) = 5 11(2) + 1) + L3 1FE) ~ S 2 = + Ty € 9.

2

Indeed, first note that we have the two following equalities

(x + ]qy)'C = % [(x + Iy)* + (z — Iy) } +1 é [(m —Iy)" —(z + ]y)k]
(10.2.6)
and

(0~ I = 1 [0 = )+ @+ Iy + I [+ Ty)F — (o — Ty)F).

(10.2.7)

DN | —

Then, by definition of fj we have

Cn(z,y) + Dy(z,y)
2

g(z+ Ly) =

where we have set
Cul,y) = 3@ — Ly)* [hn(2) + ha(2)]

and
Dy(z,y) =Y I(x — Ly)*T [h(Z) — hi(2)].
k=0
We replace (z — I,y)" by its expression using the formula (10.2.7) and get

n—1
1
Colir,y) = eat(F)w + Tg) + 5 O [Hhal2) + 2 hi(2)]
e (10.2.8)
1] <
+% [2F () — 251y (2)] -
k=0
On the other hand, after straightforward computations we obtain
1 n—1 i L B
Du(z,y) = ext(f)(z + Lyy) — 5 (25 (2) + 2 (2)]
o (10.2.9)
1] <
+% [z hy(Z) — zkhk(z)} .
k=0
Therefore, it follows that
g(z+ Ly) = ext(f)(x + Iy)
this ends the proof. OJ
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10.2.4 A generalized ®—product and intrinsic functions

We note that the pointwise multiplication of two slice polyanalytic functions is
not slice polyanalytic, in general. In fact this problem appears already for n = 1,
namely in the case of slice regular functions. However, the *-product preserves
the structure in this case. For slice polyanalaytic functions of the same order
we can introduce also a natural product denoted ®,, in order to preserve the
structure. Let f and g be two slice polyanalytic functions of order n on some
axially symmetric slice domain (2 such that f and g have poly-decompositions
given by

i
L

f@) => 7" felg) and g(g Z

k=0 k=0
where f, gi. are slice regular for all £ = — 1. Then, we define
n—1
(f ®a 9)(@) = )T (fr* g)(q), (10.2.10)

B
I

0

where fj * g; stands for the classical *-product of slice regular functions.
If there is no confusion on the order of polyanalyticity n, we simply denote &®.
We note that the product ® reduces to the standard *-product in the case of
slice regular functions, namely when n = 1. Moreover, it turns out that the
space of slice polyanlytic functions SP,,(12) is a ring with respect to this new
product ®. A slice polyanalytic function of order n on some slice domain {2
is quaternionic intrinsic if and only if all its slice regular components are also
quaternionic intrinsic.

Proof. We use the poly-decomposition to write

where f; are slice regular functions for all £ = 0,..,n — 1. First, we observe
that if all the functions fj are quaternionic intrinsic, thus f will preserve any
complex plane 2N Cy, that is to say that f is also quaternionic intrinsic. For the
converse, we suppose that f is quaternionic intrinsic, that means f(q) = f(7),
for all ¢ € 2. We write the series expansion of each slice regular component
and justify that each of them has real coefficients. O

Let f and g be two slice polyanalytic functions as in Definition 10.2.4. If we
assume moreover that f is quaternionic intrinsic, then we have

(f®g)(a) =) 7 (fegr)(a), (10.2.11)

3
-

B
Il
o
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Proof. We note that the product f ® g is slice polyanalytic of order n by con-
struction. Furthermore, since f is quaternionic intrinsic we get from Proposi-
tion 10.2.4 that all the slice regular components are also quaternionic intrinsic.
In particular, by classical results of slice hyperholomorphic theory we know that

fex g(q) = frl@)gr(q), Vg€ Q.

Hence, we obtain

i
L

(f®g)(q) = 7 (frgr)(q), Yqe Q.

il

OJ

Inspired from the book [50], we present the counterpart of the Refined Split-
ting Lemma for slice polyanalytic functions. First, let us consider the subclass
of SP,,(Q2) defined by

N (Q):={feSP.(Q): f(ANC;) C Cp,VI €S}
Then, we have

Proposition 10.2.17 (Refined Splitting Lemma). Let 2 be an axially symmetric
slice domain in H and f be a slice polyanalytic function of order n on ). Then,
forany I, J € S with [ L J, there exist 1, : QO — C;,0 = 0, .., 3 intrinsic
polyanalytic such that:

Jr(@+yl) = oz +yl) +1(x +yI)I +apo(x +yl)J +ohs(z +yl)K
where K = 1.J.

Proof. If f is slice polyanalytic of order n, then we can write

with (hg)k—o.n—1 are slice regular on €. In particular, making use of the Refined
Splitting Lemma for slice regular functions we have that forallk = 0,...,n—1:

hi(x +yl) = h(x +yI) + hi(z +yID) I + hi(x +yl)J + hi(z +yl)IJ

where h{ : ; — C; are holomorphic intrinsic functions for all £ = 0, ..., 3.
We have,

n—1

fi(2) = hy(2); ¥z € Q.

k=0
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Therefore, the thesis follows by considering the polyanalytic intrinsic functions

defined by

[y

Yo +yl) =Y (v —yl)*hi(x+yl);VL=0,...,3.
0

3

i

O

As a consequence of the Refined Splitting Lemma, we have the following

Theorem 10.2.18. Let) C H be an axially symmetric slice domainand {1, 1, J,1J}
a basis of H. Then,

SPL() = N () N (DT B NN (Q)T DN (Q)TJ.

Proof. The Refined Splitting Lemma combined with the Extension Lemma for
slice polyanalytic functions shows that we have

SPL(2) = Nou () + No (DT + N (Q) T + N ()1 J.

Moreover, we only need to use Proposition 2.7 in the book [50] and the charac-
terization of slice polyanalytic functions obtained in corollary 11.2.9 to show that
all the intersections between N, (), N,,(Q)I, N,, () J, N,,(2) I J are reduced to
zero. This ends the proof. U

10.3 Two quaternionic reproducing kernel Hilbert spaces QRKHS of
slice polyanalytic functions

10.3.1 The quaternionic slice polyanalytic Fock space

In this section, we introduce the Fock space of slice polyanalytic functions on
quaternions. Let N > 1 and / € S we define the space

F(H) = {f € SP,(H)/ / )P () < oc).

This space is endowed with the following inner product

(f,9) Foqy = / 91() f1(p)e ™" dAs (p).

Cr
Then, we have the following:

Proposition 10.3.1. The set F;'(H) is a right quaternionic Hilbert space.
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Proof. The proofis based on the Splitting Lemma for slice polyanalytic functions,
see Proposition 11.2.8. Indeed, let ( f) be a Cauchy sequence in F}'(H). Choose
J € S such that I L J. Then, since f}, are slice polyanalytic we have f; ; =
Fy, + GiJ Vn € N where F}, and G}, are polyanalytic functions on the slice
Cr belonging to the classical polyanalytic Fock space F,,(Cy). It is easy to see
that (F) and (Gy)y are Cauchy sequences in F,,(C;). Hence, there exists two
functions F' and G belonging to F,,(C/) such that the sequences (F} ), and (G )
are converging respectively to ' and GG. Let f; = F'+ GJ and consider f =
ext(fr) we have then f € FJ'(H) thanks to Proposition 10.2.16. Moreover, the
sequence (fi) converges to f with respect to the norm of F}'(H). This ends the
proof. 0J

Proposition 10.3.2. Let f € SP,(H) and I, J € S two imaginary units. Then,
we have the following

1
§||f||f1”(H) <[ fllzpam < 2[fll7m

Proof. This is a consequence of the Representation Formula, see Theorem 10.2.10.
Indeed, since f is slice polyanalytic of order n on H we have

[P Ty) + fo = T)] + 15 [ = Jy) = f(o+ Ty)].

DN —

fle+1y) =

Then,
|f(x+1y)| < |f(x+ Jy)| + |f(x = Jy)l,

and therefore

f(z+ Iy < (1f(z+ Jy)| + |f(x = Ty)])
<2(f

(
2(|f(z + Jy)* + |f (@ = Ty)*)

because (|f(z + Jy)| — | f(x — Jy)|)* > 0. This implies that

113y < 2 (1 gy + 1 a0 )

However, since |||l = |fll ) we get | fl%: < 4113 By in-

terchanging the roles of I and J we get also || f ||2f;, am < 4lf ||2F?(H). Finally, it
follows that

1
§||f||f1”(H) < [ fllzpm < 2[fl7pm

O

Corollary 10.3.3. Given any I, J € S, the slice polyanalytic Fock spaces F} (H)
and F'} (H) contain the same elements and have equivalent norms.
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Remark 10.3.4. By the previous Corollary, the quaternionic slice polyanalytic
Fock space is independent of the choice of the imaginary unit. Thus, we shall use
the notation F¢,..(H).

Let us fix ¢ € H and consider the evaluation mapping
Aq : glz’ce(H) —>Haf'_>Aq(f) :f(Q)
Then, we have the following estimate on Fg,..(H) :

Proposition 10.3.5. Let f € F§, . (H) and g € H. Then,

lq|?

[Ag(F)] < Ve = || fll 7z, -

Proof. Let I € S be such that ¢ € C; and choose J € S with I 1 J. Then, the
Splitting Lemma yields

fi(2) = F(2) + G(2)J; ¥z € C;
where F' and G belong to F,,(C;). In particular, we have
@ =IF@P + |G

However, we know from classical complex analysis that

lq|?

lg?
[F(@)] < VNe'= |[Fllz,c; and |G(9)] < VNe = (|G| 5, -

Therefore,

la® 1 la?
f@I < Ve (IF1z, ) + Gl Fncy)* = Ve * [1fllz,.m-
U

Proposition 10.3.5 shows that all the evaluation mappings on Fg, . (H) are
continuous. Then, the Riesz representation theorem for quaternionic right-linear
Hilbert spaces, see [28] shows that for any ¢ € H there exists a unique function
K1 e Fg,..(H) such that for any f € Fg, . (H) we have

f(q) - <f’ K7q1>]:guce(H) )

Let J € Sand r € Cy, then for ¢ = v + Iy and z = = + Jy the corresponding
reproducing kernel of the second kind is obtained by extending the kernel of the
complex case. It is given by the following

K, HxH-—H

K,(q,r) := % [Kn(z,7) + Kn(Z,7)] + ]g (K, (Z,r) — Kn(z,7)] .

In order to compute the kernel function we use the *-product of (left) slice
functions with respect to the first variable, see [81].
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Remark 10.3.6. If f € SP,(H) and g € SP,,(H), then we have
f*9€SPuim(H).

We observe that the x-product of (left) slice functions coincides with the convolution
product related to the poly-decomposition considered in Definition 4.15 of [6].

As a consequence we can state the following result

Theorem 10.3.7. The set Fg,..(H) is a right quaternionic reproducing kernel
Hilbert space whose reproducing kernel is given by

k=0

Ky(q, 1) = e.(qT)* (i(—l)k (k Z 1) %(@q —qr—qr+ f?")’“*) V(g,7) € HxH.

Proof. Fix r € H such that r belongs to the slice C;, we consider the function
defined by

E(q) = e.(qT) * on(q,7)

where

n—1

n 1 o N

ol r) = (—1)k<k+1>g(qq—qr—qr+7"7“)’“ ;Vq € H.
k=0 )

Clearly ¢ — e, (qT) is slice regular on H with respect to the variable q. More-
over, thanks to Remark 10.3.6 we can see that ¢, (¢, 7) is a slice polyanalytic
function of order n on H with respect to ¢. Thus, F) is a slice polyanalytic
function of order n on H with respect to the variable q. Furthermore, the repro-
ducing kernel of F¢,,.. (H) extends the classical one on the slice C;. In partic-
ular, 7 (q) and K,,(q,r) coincide on the slice C; containing r. Hence, we have
K,(q,r) = F!(q) everywhere on H thanks to the Identity Principle for slice

polyanalytic functions. This ends the proof. U
Remark 10.3.8. Forn = 1, the space F(,,..(H) is exactly the slice hyperholomor-

phic Fock space and the reproducing kernel obtained in Theorem 10.3.7 corresponds
to the result obtained in [15].

10.3.2 The quaternionic slice polyanalytic Bergman space

The slice polyanalytic Bergman space of the second kind on the quaternionic
unit ball B is defined to be

teoo(B) = {f € SPx(B)/ / )P (p) < o0},
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for p = x + Iy, d\;(p) = dxdy is the usual Lebesgue measure on B; = BN C;.
This space is endowed with the following inner product

) ) = / G )

Slice

As we have seen in the previous section for the Fock space, we can use the same
techniques involving the Splitting Lemma and Representation Formula for slice
polyanalytic functions to prove that A%, . (B) is a right quaternionic Hilbert
space which does not depend on the choice of the slices. Furthermore, for any
q € Band f € A%, . (B) we have the following estimate

||f||ASche ]B)

\/_ (1 —1q*)

Hence, the Riesz representation theorem for quaternionic right-linear Hilbert
spaces shows that AY,..(B) has a reproducing kernel. The theory of quater-
nionic Bergman spaces of the second kind introduced in [43] suggests that the
expression of the reproducing kernel of A%, . (B) denoted by Bg(q,r) is ob-
tained making use of the extension operator. Indeed, let 7 € B be fixed such
that r € C, the expression of the kernel in the slice B is given in [22] by

r 7’L—|—]€ = n—1—
Bn( )_ ]_—TZ QNZ (k+1)( n >|]‘_TZ|2( ! k)|Z_7,,|2k‘

(10.3.1)

[F(@)] <

Then, by definition, for any ¢ = z 4+ Iy € B we have
Bg(g,r) = B (q)
— eat[BL(2)](0).
To give the explicit expression of B%(q,r), we consider first the function f] :

B; — C;, depending on r and defined by

n

(2) = ————-;Vz € B,.
a2 = LAV € By
We start by proving the following

Lemma 10.3.9. For every fixedr € B, the slice regular extension of f!(z) to the
quaternionic unit ball B is given by

9n(q) = Pa(q,7)Qn(q,7); Vg €B

where
N & 2n
Pua.r) = 3 (0 (7))o and Qufanr) = (1= 2Relar + )
k=0

189



Chapter 10. A new polyanalytic function theory in hypercomplex analysis

Proof. Clearly, the function f” : z — f7(z) is holomorphic on B for every fixed
r € B;. Then, by definition for ¢ = = + Iy and z = x + Jy the slice regular
extension of f};(z) to B is given by

Gi(0) = 3172(2) + S+ SAE) ~ fi()

We have
BOLEO a1 1]
2 C2m [(1—72)  (1—rz)2n
2 L (20 (2% + 2F)
S ()
k=0
m (1 —2Re(2)T + |z|?72)?"
2n

Similarly, we obtain

2n
JY (1) 7 Im(2")
BO R _n' (+)
2 7w (1 —2Re(2)F + |z[?72)2n

Since (1 — 2Re(2)T + |2[*7?)™*" = Q,(q,r), it follows by the formula of the
extension operator that

drl) =2 | S0 () etsh) - [m(zkwk] Qula.
= % [Z(—l)‘“(? ) q’“rk] Qn(g,7)
= P(q,7)Qn(g, 7).
This ends the proof. 0J

In order to have kernels that are slice functions we use the *-product of
(left) slice functions in the first variable as we did in the previous section. We
write the expression of the slice poly-Bergman kernel of the second kind of the
quaternionic slice polyanalytic Bergman space AY,,..(B) as follows:

Theorem 10.3.10. The set A%, .(B) is a right quaternionic reproducing kernel
Hilbert space whose reproducing kernel is given by

Bg(%r) = P’VL(q’T>Qn(q:T) * 77Z)n(q7 T); V(C],T’) eBxB
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10.3. Two quaternionic reproducing kernel Hilbert spaces QRKHS of slice
polyanalytic functions

where
n 2n 2N
Pn —— _1 k —k—k N — 1_ 2 - 2-2\—2n
07) = 230 () ) Qulaor) = (1= 2elar + )
and
< n n+k

— _1\k = = = N1k = o o Nk

Unlq.r) =) (—1) <k+1)( N )(1 qr—qr+qqrr) *(qq—qr—qr+rr)™.

k=0
Proof. For any r € B we consider the function

ho(q) = g,(q) * ¥nlq,7),

where g7 (q) = P,(q,7)Qx(q,r) and * is the product of slice functions. The
polynomials P,(q,r) and Q),,(¢, ) are defined as in Lemma 10.3.9 and

n—1
_ _1\k n n+k = = = \(n—l=h)x = o o Nk
(g, ) = ’;( 1) (k N 1) ( N )(1 qr—qr+qqrr) *(qq—qr—qr+rr)™.
According to Lemma 10.3.9 we note that g, is slice regular by construction with
respect to the variable q. We can see also that ,,(¢,7) is a slice polyanalytic
function of order n on B with respect to ¢. Thus, A}, is a slice polyanalytic func-
tion of order n on B with respect to q. Moreover, A/ (q) and Bg(q, ) coincide
on the slice B; containing . Hence, thanks to the Identity Principle for slice
polyanalytic functions Bg(q, ) = h] (q) everywhere on B. This completes the
proof. U

Proposition 10.3.11. The kernel B%(q, ) can be written also in this second form
Bs(q,r) = Ru(q,7) Ln(g;7) * (g, 7); ¥(g,7) € B x B

with
n 2N 2n
Ru(g,r) = (1= 2qRe(r) + ¢*|r[*) ™" and Lu(q,7) = — Z(—l)’“( . )q’“r’“-
k=0

Proof. Set ¢(q,7) = Ry(q,7)Ly(q,r) for all ¢, € B. As a product of a rational
function with real coefficients and a polynomial of order 2n with quaternionic
coefficients on the right the function ¢(.,r) is slice regular on B with respect
to the variable ¢ for every » € B. Moreover, if r € B is fixed on a slice C; we
can see that the restriction of ¢(., ) on B coincides with the function f}(z) =

;m Then, the Identity Principle for slice regular functions gives

ext(f,)(q) = Ru(q,7)Ln(q,7) forall ¢,r € B.
The last equation leads to the desired result. 0

Remark 10.3.12. For the particular casen = 1, the results obtained in this section
coincide with the results of [43] concerning the theory of the second kind for the slice
hyperholomorphic Bergman spaces.
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10.4 Further remarks

We finish this chapter with a brief discussion related to further developments
of the theory of slice polyanalytic functions. First, we note that the pointwise
multiplication of two slice polyanalytic functions is not slice polyanalytic, in
general. In fact this fact appears also for n = 1, namely for the case of slice reg-
ular functions. However, the *-product preserves the structure of slice regular
functions. For slice polyanalaytic functions of the same order we can consider
also a natural product denoted *,, in order to preserve the structure. Indeed, let
f and g be two slice polyanalytic functions of order n on €2 such that

Fong(@) =Y T (fr*gc)(q)

where f* gy stands for the classical x-product of slice regular functions. It turns
out that the set (SP,,(2), +, *,,) is a ring, so we wish to study further properties
of this product in future researches.

Furthermore, in the recent paper [87], the authors introduced and studied the
poly-Hardy space on the unit ball in the monogenic setting. A natural problem
would be to study the counterpart of the poly-Hardy space in this new slice poly-
analytic setting. However, like in the classical complex case, this space would
be trivial seen as subspace of L*(B).
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CHAPTER 1 1

The global operator and Fueter mapping theorem
for hypercomplex polyanalytic functions

In this chapter, we prove that slice polyanalytic functions on quaternions can be
considered as solutions of a power of some special global operator with noncon-
stant coefficients as it happens in the case of slice hyperholomorphic functions.
We investigate also an extension version of the Fueter mapping theorem in this
polyanalytic setting. In particular, we show that under axially symmetric con-
ditions it is always possible to construct Fueter regular and poly-Fueter regular
functions through slice polyanalytic ones using what we call the poly-Fueter
mappings. We study also some integral representations of these results on the
quaternionic unit ball. The results presented in this chapter are based on [9].

11.1 Motivation

This chapter proposes a bridge between two theories: the one of slice polyana-
lytic functions and the one of poly-Fueter regular functions. To understand the
framework, we recall that in classical complex analysis, n-analytic or polyan-
alytic functions are null-solutions of the n-power of the Cauchy-Riemann op-
erator. In the quaternionic setting or, more in general, in the Clifford algebra
setting, one can extend this notion by considering functions in the kernel of a
generalized Cauchy-Riemann operator (thus obtaining the so-called regular or
monogenic functions, see [47,83]) or of its n-power (thus obtaining poly-regular
functions or poly-monogenic functions, see [87,101]).
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This was the first approach to extend holomorphic functions, and then poly-
analytic functions, to a higher dimensional setting. It is interesting to note that
the class of slice hyperholomorphic functions is related with the class of func-
tions considered by Fueter to construct regular functions and thus there is a
bridge between them, specifically the so-called Fueter mapping, in fact by ap-
plying the Laplacian to a slice hyperhomolorphic function one obtains a regular
function, i.e. a function in the kernel of the Cauchy-Fueter operator, see for ex-
ample [48]. Also the theory of polyanalytic functions can be extended to the slice
setting by considering a suitable definition, as we did in [17]. Thus it is a natural
question to ask whether there is an analog of the Fueter map in this more general
setting. The answer is positive and it is one of the main results of this chapter:
we show that by applying the Laplacian composed with the (n — 1) power of the
global operator V' = 20 (where ¥ is the operator introduced in [80]) to any slice
polyanalytic function of order n we obtain a Cauchy-Fueter regular function. A
second approach to extend the Fueter mapping to the polyanalytic setting con-
sists to apply the standard Fueter mapping on each component associated to the
poly-decomposition. This constrution allows to generate poly-Fueter regular
functions starting from slice polyanalytic ones of the same order.

To put our work in perspective, we recall that classical polyanalytic functions
are important not only from the theoretical point of view, see [22], but also in the
theory of signals since they allow to encode n independent analytic functions
into a single polyanalytic one using a special decomposition. This idea is similar
to the problem of multiplexing signals. This is related to the construction of
the polyanalytic Segal-Bargmann transform mapping L?(R) onto the poly-Fock
space, see [2]. In quantum physics these functions are relevant for the study of
the Landau levels associated to Schrédinger operator, see [2,64]. Polyanalytic
functions were used also in [1] to study sampling and interpolation problems on
Fock spaces using time frequency analysis techniques such as short-time Fourier
transform (STFT) or Gabor transforms. This allows to extend Bargmann theory
to the polyanalytic setting using Gabor analysis. The theory of signals is widely
studied also with hypercomplex methods and for a list of references the reader
may consult [31] and the references therein.

As we said, Fueter regular and slice hyperholomorphic functions are related
by the famous Fueter mapping theorem. This result has some important conse-
quences and allows to define the F-functional calculus for quaternionic opera-
tors with commuting components. Recently, new several results for polyanalytic
functions were proven in the slice hyperholomorphic context over the quater-
nions, see [17], and the counterparts of the Bergman and Fock spaces were also
considered. We continue here the investigations in this direction. In particular,
we prove a new version of the well-known Fueter mapping theorem that will re-
late slice and Cauchy-Fueter polyanalytic functions on quaternions and present
an integral form of this result.

The chapter has the following structure: we set up first some basic notations
and revise some preliminary results. Then, we present some new results on the
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powers of the global operator V' and give the main statements and proofs of
the poly-Fueter mapping theorems on quaternions. We study also an integral
representation of these results based on the poly-Cauchy formula. Finally, we
rewrite our results in the polymonogenic case.

11.2  Preliminary results

We revise different notions and results related to Cauchy-Fueter and slice hy-
perholomorphic functions and also the polyanalytic setting on quaternions. We
first recall below the variations of the Fueter mapping theorem that we will use
later in this work and refer the reader to [48,102] for several extensions.

Theorem 11.2.1 (Fueter mapping theorem [48]). Let U be an axially symmetric
setinll andlet f : U C H — H be a slice hyperholomorphic function of the form
fle+yl) = a(z,y)+15(x,y),wherea(x,y) and 5(x, y) are quaternionic-valued
functions such that a(x, —y) = a(z,y), B(z, —y) = —f(x,y) and satisfying the
Cauchy-Riemann system. Then, the function

—
~

- = q -
Foo+ @)= A (aloo )+ Lotanl)
extends to a Fueter regular function on the whole U.

Remark 11.2.2. IfU is an axially symmetric slice domain in H, then every slice
hyperholomorphic function f : U C H — H is of the form f(x + Iy) =
a(z,y) + IB(z,y), where a and [3 have the properties mentioned in the preced-
ing statement. This is an immediate consequence of the Representation formula
observed in Lemma 2.2 in [45].

A function f(z+yl) = a(x,y)+ I5(x,y), where «, 5 are H (or R,,)-valued,
alz, —y) = a(z,y), Bz, —y) = —B(z,y) is called a slice function.

Remark 11.2.3. We denote by SR(U) the space of slice regular functions which
are slice functions. Below, we can consider the Fueter mapping defined by

7:SR(U) — FR(U), f+— 7(f) = A(f).
Theorem 11.2.4 ( [48]). Given a quaternion s € H, we define
[s]={peH: p=Re(s)+1|5|,1 €S}.
Let S™1(s, q) be the Cauchy kernel defined by:
S7Hs,q) = (s —q)(s* = 2Re(q)s + |q*) ™", q ¢ [s]-
Then the function
F(s,q) == AS7Y(s,q) = —4(s = 9)(s* — 2Re(q)s + |q*) %,

is a Cauchy-Fueter regular function in the variable q, and it is right slice regular
in the variable s for q ¢ [s].
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Theorem 11.2.5 (The Fueter mapping theorem in integral form [48]). Let W C
H be an axially symmetric open set and let f be slice hyperholomorphic in W. Let
U be a bounded axially symmetric open set such that U C W. Suppose that the
boundary of Uy = U N C; consists of finite number of rectifiable Jordan curves for
any I € S. Then, if ¢ € U, the Cauchy—Fueter regular function given by

7(f)(q) = Af(q)

has the integral representation

1

" or

7(f)(q) /8U AS™Y(s,q)dsrf(s), ds; = ds/I,

and the integral does not depend on U nor on the imaginary unit I € S.
We will need also these useful results in our computations

Proposition 11.2.6 ( [24]). For alln > 2, we have
Dlg"| = -2 ¢ *g" "
k=1

Proposition 11.2.7 ( [63]). For alln > 2, we have

n—1

7lg") = =4 (n—k)g" g

k=1

In [?] the theory of slice hyperholomorphic functions on quaternions is ex-
tended to higher order by considering:

Definition 11.1. Let 2 be an axially symmetric open set inlH and let f : 2 — H
a slice function of class C". Foreach I € S, let Q; = QN Cy and let f; = f\ﬂf be
the restriction of f to §2;. The restriction f; is called (left) polyanalytic of order n
if it satisfies on {2 the equation

a1 flx+ Iy) = 2% ( 0 —|—]2) fr(x +Iy) = 0.

Ox dy

The function f is called left slice polyanalytic of order n, if forall I € S, f; is
left polyanalytic of order n on ). The right quaternionic vector space of slice
polyanalytic functions of order n will be denoted by SP,,(U).

Note that slice regular functions are a special case of the definition of slice
polyanalytic functions with n = 1. The right slice polyanalytic functions can
be defined in a similar way just by taking the powers of the Cauchy-Riemann
operator with imaginary unit on the right. Several results of these functions
were studied and extended. In particular, we recall some properties that we
need for our computations in the next sections.
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Proposition 11.2.8 (Splitting Lemma). Let f be a slice polyanalytic function of
ordern on a domain Q2 C H. Then, for any imaginary units I and J with [ 1 J
there exist I',G : {1y — Cj polyanalytic functions of order n such that for all
z=ux+ ly € Q;, we have

fi(z) = F(z) + G(2)J.
We will be interested also by the following decomposition

Proposition 11.2.9 (Poly-decomposition). A function f : ) — H defined on a
slice domain is slice polyanalytic of order n if and only there exist fy, ..., f,—1 some
unique slice hyperholomorphic functions on (2 such that we have the following
decomposition:

fla) = Z_:kak(q); Vg € Q.
k=0

Finally, we consider the poly-Fueter regular functions that can be found for
example in [87] for Clifford valued functions.

Definition 11.2.1. Let U C H be an open set and let f : U — H be a function
of class C". We say that f is (left) poly-Fueter regular or poly-regular for short of
ordern > 1onU if

0 0

0
D" = ' '
f(Q) (6330 +Z83c1 +‘78m2

a n
+k8x3) flg) =0,¥q e U.

The right quaternionic vector space of poly-Fueter regular functions will be denoted

by FR,(U).

The proof of the next result was communicated to us by Dan Volok, and
appears earlier in section 6 and 7 of [27], see also [57] for the Clifford monogenic
setting. We recall it for completeness

Proposition 11.2.10. A function [ is poly-Fueter regular of order n if and only if
it can be decomposed in terms of some unique Fueter regular functions ¢y, ..., ¢r—1
such that we have

fa) = 3 hdnla).

11.3 The global operator and poly-Fueter mapping theorems

In this section, we show that slice polyanalytic functions of some order n are so-
lutions of the n-th power of a certain global operator V. A new extension of the
Fueter mapping theorem involving slice polyanalytic functions on quaternions
will be proved also.
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In [80], the author considered a modified version of the operator G which is
defined by

'Ql‘@l

V(f)(@) = 0u, f(a) szamlf Vg € Q\R.

Remark 11.3.1. For suitable domains, we note that the operators G and V' are
related by the formula

V(f)(g) = WG(J‘“)(Q), Vg e Q\R.

In what follows, if V(f) admits a (unique) continuous extension on the whole (),
then we implicitly assume that V ( f) denotes such an extension. Given anyn > 2,
inductively we will say that V™ (f) is a function on Q0 if V""1(f) is of class C! on
Q\Rand V"(f) := V(V"L(f)) admits a continuous extension on ().

First, we prove some preliminary results on the global operators G and V'
that are needed in the sequel.

Lemma 11.3.2. Let ) be an open set in H and 1) : 0 — H a function of class
Cl. Then, we have

G(q)(q) =qG(W)(q) + 2|7 [*¢(q), Vg =z + 7 € Q.

Proof. Let 1) be a C* function on 2, we apply the definition of G’ and Leibniz rule
with respect to the partial derivatives and we get

G(@)(q) = |70 (q¥)(q O, () (q

IIMw

3
= |7 *q0u, (@) + |71 (q) + cfﬁzxzﬁxl@/ﬁ(@ — 7Y me(q)
=1 =1

However, we know that

Thus, for any ¢ € () we have

G(qy)(q) = <\Q| Oap(q) + @ sz&w ) +2|7 " (q)

=7G(W)(a) + 27" (q )'
This ends the proof. OJ
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Corollary 11.3.3. Let 2 C H be a domain and f : 2 — H be a slice hyper-
holomorphic function. Then, we have

G(@af)(q) =271 f(q), Vg € Q

and
V(@f)(q) =2f(q), Yq € Q. (11.3.1)

Proof. The fact that f is slice hyperholomorphic on €2 implies that
G(f)(q) =0, Vg € Q.

Hence, a direct application of Lemma 11.3.2 gives (11.3.1) on 2 \ R. However,
since the right hand side of (11.3.1) extends the left hand side to all of () as a slice
hyperholomorphic function, then (11.3.1) holds on ). OJ

Example. To provide an example, let us consider the particular case f € SPo(H).
Then, we have

L VA(f)(q) =0, ¥q € L.
2. AV(f) is Cauchy-Fueter regular on H.

3. DV(f) is poly-Fueter regular of order 2, where D is the conjugate of the
Cauchy-Fueter operator.

To see that (1) holds, we use the poly-decomposition that asserts the existence of
some unique functions fo, fi € SR(H) such that

flq) = folq) +Gfi1(q),Yq € H.

An application of corollary 11.3.3 combined with the fact that slice hyperholomor-
phic functions belong to ker(V') show that (1) holds. The other two assertions fol-
lows similarly.

Proposition 11.3.4. Let ) be an open set in H and f : 2 — H a slice hyper-
holomorphic function. Letn > 2 and 1 < k < n — 1, then we have

L GG f)(q) = 2k|71°7" " f(q), Vg € .

2. V(@ f)(q) = 2kq"" f(q), Vg € Q.

Proof. Let f € SR(2) and n > 2. We reason by induction with respect to n.
(1) First, we note that the result holds for n = 2 as a consequence of Corollary
11.3.3. Now, let n > 2 be such that we have

G(@ f)(q) = 2k|71’7" " f(q), Vg € QVI <k <n—1.
In order, to prove that the result holds for n + 1, we only have to show that

G(@")(q) = 2nlq 1’7" f(q), Vg € Q. (11.3.2)

199



Chapter 11. The global operator and Fueter mapping theorem for
hypercomplex polyanalytic functions

Indeed, we apply Lemma 11.3.2 and obtain
G@¥) (@) =G@aa " f)(a)
=qG(@" ' )lg) + 207" f(g), Vg € Q.

However, by induction hypothesis we know that

G@ ' f)q) = 2(n = V|77 f(q), Vg € Q.
Therefore, we get
G@" f)(g) =2(n = DIFPT" " f(g) + 2|71*T" " f(q)
= 2n|71*7" " f(q),Yq € Q.

Hence, the result holds by induction and this completes the proof.
(2) We know by Remark 11.3.1 that
1
V() = WG(f)(Q),Vq € Q\R.

Then, since f is a slice hyperholomorphic function on (2, the right hand side
extends the left hand side as polyanalytic function of order k£ and so we get
V(@ f)la) = 2kq" ' f(q), Vg€ Q, 1<k<n-—1.
O

Proposition 11.3.5. Let €2 be a slice domain in H and f : Q@ — H a slice
polyanalytic function of order n > 1. Then, V' (f) is a slice polyanalytic function
of ordern — 1 on ().

Proof. We note that (2 is a slice domain. So, by poly-decomposition there exist
some unique slice regular functions ¢y, ..., ¢,—1 such that we can write

f@) = T°orlq),Vq € .

7"Glq),
=0

where we have set (;,(¢) = 2(h + 1)@p11, YO < h < n — 2 which are slice hy-
perholomorphic functions on the whole 2 by hypothesis. Hence, V() extends
as a slice polyanalytic function of order n — 1 on (2. OJ

>
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Theorem 11.3.6. Let () be an axially symmetric slice domain inH and f : () —
H a slice polyanalytic function of order n > 1. Then, f belongs toker(V™), ie:

V*(f)(q) =0, vg € Q.
Proof. We apply Proposition 11.3.5 iteratively and obtain
V(f) € SPr_1(),V2(f) € SPa_s(Q),.... V' Hf) € SP1(Q) = SR(Q).

In particular, we deduce that V"~(f) is a slice hyperholomorphic function on
(2. Therefore, it belongs to the kernel of the global operator 1 outside the real
line. Hence, since V”‘l( f) admits a continuous extension to the whole (2, by
Theorem 2.4 in [80], we conclude that

V" (f)(@) =V (V")(f)(g) =0, Vg € Q.
This ends the proof. ]

Theorem 11.3.7 (Poly-Fueter mapping theoremI). Let (2 be an axially symmetric
slice domain in H and f : Q0 — H a slice polyanalytic function of order n > 1.
Then the function given by

T(f)(q) = Ao V™ (f)(q), Vg € Q
belongs to the kernel of the Cauchy-Fueter operator D.

Proof. Using the same argument used to prove Theorem 11.3.6, we deduce that
V™=1(f) is a slice hyperholomorphic function on 2. Therefore, since (2 is an
axially symmetric slice domain we can use Theorem 11.2.1 and Remark 11.2.2 to
conclude that the function 7,,(f) is in the kernel of the Cauchy-Fueter operator
D on (), ie.,

Dot,(f)(q) =DoAo V™ (f)(q) =0, Vg € Q.

Remark 11.3.8. We note that the poly-Fueter mapping
Tni=Ao V™!

takes the space of slice polyanalytic functions of order n > 1 into the space of
Cauchy-Fueter regular functions FR(S2).

Theorem 11.3.9. Let () be an axially symmetric slice domain of H and f : () —
H a slice hyperholomorphic function. Letn > 1 and consider the functions defined

by
Uh(q) == f(q), Vg€ QYO < k <n— 1.

Then, the family {W’}}nggnforms an Appell system with respect to the operator
%V, namely

1 1 _
§V(\If§1) =0 and §V(\Ifji) = kU VI<k<n-1
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Proof. The function U9 = f is slice hyperholomorphic on Q. So, f belongs to

1
the kernel of the global operator V' on (2. Thus, we have §V(\IJ(}) = (. On the
other hand, we know by Proposition 11.3.4 that

V(@ f)(q) =2k7" " f(q), Vg e Q1< k<n—1.

Therefore, this combined with Theorem 2.4 in [80] allows to see that for all
g€ Qand 1 <k <n—1wehave

SV () = SV (@)
= kg" ' f(q)
= k\Iﬂ;ﬁl(q).
This ends the proof. 0J
Corollary 11.3.10. The sequence {G" } >0 is an Appell system with respect to 3V .

Proof. If we take the constant function f = 1, we immediately obtain the result.
O

Remark 11.3.11. We note that for any slice hyperholomorphic function f the
family {\If’}}ogkgn considered in Theorem 11.3.9 form also an Appell system with

1—
respect to the Cauchy-Riemann operator 531 foralll €8S.

The next result allows to construct poly-Fueter regular functions starting
from slice polyanalytic ones of the same order:

Theorem 11.3.12 (Poly-Fueter mapping theorem II). Let 2 C H be an axially
symmetric slice domain and let f : ) — H a slice polyanalytic function of order
n > 1. Assume that f admits the decomposition

f(@) = "7 fulg), Vg € ©
k=0

where fy, ..., fn_1 € SR(S2). Then, the function defined by

n—1

Ca(f)(a) =Y a§A(fi)(a), Vg € Q (11.3.3)

k=0
is a poly-Fueter regular function of order n.

Proof. We note by Theorem 11.2.1 and Remark 11.2.2 that the functions ¢, =
A( fr) are all Cauchy-Fueter regular on 2 for any 0 < k < n— 1. Hence, thanks

to Proposition 11.2.10 we conclude that C,( f) is poly-Fueter regular of order n.
O
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Let n > 1, the two poly-Fueter mappings 7,, and C,, can be related to each
other so that we have
7o = (2D)" 1 o C,,

in other words the diagram

SP,—>FR

Cn
i %H

FR,

1s commutative.
The proof of this fact is contained in the next result:

Theorem 11.3.13. Let f : 0 — H be a slice polyanalytic function of order
n > 1 on some axially symmetric slice domain. Then, we have

D (1)0) = gl (@), Vg € 2

Proof. Since (1 is a slice domain, by the poly-decomposition for slice polyanalytic
functions there exist f, .., f,_1 € SR(2) such that

fla)=> 7" fu(q),Vq €

0

3
—

B
Il

Thus, by Proposition 11.3.4 gives

V(£)a) = S 28 fulg), Vo € .

In a similar way, we apply (n — 1) times the global operator ' and use Propo-
sition 11.3.4 to get

V) (g) = 2" (n = 1)! fa(a), Vg € Q.

As a direct consequence, by definition of 7,, we have

T(f)(q) = 2" (n = 1)!A fii(q), Vg € Q. (11.3.4)

On the other hand, since (f;)o<r<n—1 are all slice hyperholomorphic we know
by the Fueter mapping theorem that

DAS) =0, V0O < k<n-—1.

Therefore, by Leibniz rule for the Cauchy-Fueter operator we have

D(x6Afi)(q) = kg Afu(q); Vg € QY0 <k <n— 1. (11.3.5)
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We know by definition of C,, that

Cu()(@) = S B (@) Vg € O

k=0
Thus, we use (11.3.5) and get

DIC(f)(a) = 3 kb Afula). Ve €

Similarly, if we apply the Cauchy-Fueter operator (n — 1) times and use (11.3.5),
with some computations we get

D" Cu(N(g) = (n = DIAfu1(q), Vg € Q. (11.3.6)
Finally, we combine the relations (11.3.4) and (11.3.6) to conclude that

DIC()(0) = 5ol £)(@). Va € 9

11.4 The poly-Cauchy integral theorem and poly-Cauchy formula

In this section, we prove a Cauchy integral theorem and Cauchy formula for
slice polyanaytic functions.

First, we recall the polyanalytic Cauchy formula in complex analysis, see
Theorem 2.1 in [57].

Theorem 11.4.1. For k > 1, we set
1z Re(z)!
) = S T E o T
Forz = x+1y, setdo = dx Ady. If f is polyanalytic of order n, then for all z € D

we have
J

9=/ 8@2 Vil — 2) 5 Fu)do

First, we prove a version of the Cauchy’s integral theorem for slice polyan-
alytic functions

Theorem 11.4.2 (Poly-Cauchy theorem). Let f and g be a left and right slice
polyanalytic functions of order n respectively on some axially symmetric slice do-
main €) containing the closure of B. Then, for any I € S we have

n—1

[ Sy awdr' s ~o.
oBr iy
where dw; = —dwl forw € Cj.
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Proof. Let I € S and choose J € S be such that I/ 1 J. Thus, by Splitting
Lemma for slice polyanalytic functions proved in [17] we can write

f(w) = Fi(w) + Fy(w)J and g(w) = Gy(w) + JG2(w),

where F;,G; : By — C; for [ = 1,2 are complex polyanalytic functions of
order n. In order to simplify the computations, we set

/ 1) gor" - ]dwlal f
OBy 4= 0

Then, direct computations lead to
O(f,9) = ®(F1,G1) + ©(Fs, Gr)J + JO(F1, Ga) + JO(F3, Go)J

At this stage, we apply the poly-Cauchy integral theorem proved in [57] to de-
duce that

O(F,Gr) = (Fy, Gh) = (F,Ga) = P(Fy,Ga) =0
This ends the proof. ]

Now, let n > 1 and w € B be such that w € C; with J € S. For all
0 <j < n —1, we consider the function defined by

1 (Re(w—2))

g 2z € By, 2z £ w.
w— z 3!

Gjuw(z) =

Then, we have

Proposition 11.4.3 (Poly-Cauchy kernels). For all 0 < j < n — 1, the slice
polyanalytic extension of ¢; ., is given by

D) = S—1<w,q>(R"“3—!” Vg € B,q ¢ [u],

where S~ (w, q) is the slice hyperholomorphic Cauchy kernel.

Proof. Let 0 < j < n — 1. We know that S~ (w, q) is left slice regular with
(Re(w —q))’ .

S is a real
4!

valued slice polyanalytic function of order n for all 0 < 5 < n — 1. So, we can
R —a)V
(Relw -0}
j!
slice polyanalytic of order n with respect to the variable g. And since it coincides
with ¢; ., (2) on B the proof ends thanks to the identity principle (see [17]). O

respect to the variable q. Moreover, it is clear that ¢ —

apply Proposition 3.3 in [?] to see that the product S~ (w, q)
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Remark 11.4.4. Another way to prove Proposition 11.4.3 consists of using the
extension Lemma for slice polyanalytic functions, see [17]. Indeed, we note that
z > @;.(2) is polyanalytic of ordern for any z # w. Thus, it admits a unique slice
polyanalytic extension denoted by ext|p;.,(2)](q). By definition, forq = x + I,y
and z = x + Jy such that q ¢ [w] we have

eatl6(2))(0) = 3[Bi(2) + B1E)] + 2 [B50(2) — 610()]
(1 (Be(w =g}y
=

—z 4!
— 5 Y(w,q) (RG(U;!— q))

)

where S~ (w, q) is the slice hyperholomorphic Cauchy kernel given by
S7Hw,q) = (w = q)(w” — 2Re(q)w + [q*) .

Proposition 11.4.5. Let g, w € B be such that q ¢ [w]. The function, ¢;.,(q) is
right slice polynalytic of order j + 1 in the variable w.

Proof. The proof is easy using the fact that S~ (w, ¢) is right slice regular in w
combined with the right version of Proposition 3.3 in [17]. OJ

Theorem 11.4.6 (Poly-Cauchy formula). Let ) be an axially symmetric slice do-
main containing the closure of B and f : () — H a slice polyanalytic function of
ordern > 1. For I € S, set dw; = —dwl. The integral below

=/, j;o(—2)j51(w,q)wdw18_/(f)(w),

does not depend on the choice of the imaginary unit I € S.
Moreover, for all ¢ € B we have the integral representation

r0=a [ S5 o T wd? )

Proof. The independence of the choice of I € S is a direct consequence of the
poly-decomposition in Proposition 11.2.9 combined with the series expansion
theorem for slice hyperholomorphic functions. To show the second part of the
statement, let J € S be such that J 1 [. We know that f € SP,(B), so by
Proposition 3.4 in [17] there exist two polyanalytic functions F, G : B; — C;
of order n such that for any w € B; we have

f(w) = F(w) + G(w)J.

In particular,

ar f(w) = 07 F(w) + 07 G(w)J.
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Then, we have on B; the following reproducing property thanks to the com-
plex poly-Cauchy formula applied to F' and G

o / - jzo(_?ml(w’ Q>W7+!—dela_ﬂ (f)(w) = F(q) + Gla)J

= f(q).

Furthermore, in Proposition 11.4.3 we deal with a slice polyanalytic kernel. So,
the function

v = [ s o =0 a0 ) w),

is also slice polyanayltic of order n. Hence, we can conclude by Identity principle
since ¥ coincides with f on B;.
O

Remark 11.4.7. The casen = 1 in the previous theorem gives the slice hyperholo-
morphic Cauchy formula that can be found in [35].

11.5 The poly-Fueter mapping theorem in integral form

We shall study in this section an integral representation of the poly-Fueter map-
ping theorem on the quaternionic unit ball that will extend the results obtained
n [48]. As a direct application of the slice poly Cauchy formula we will prove
the poly-Fueter mapping theorem in its integral form. To this end, we need some
technical lemmas. First, for everyn > 1,1 < j <n — 1 and w € 0B, denote by
F;(w, q) the quaternionic valued function on B sending ¢ into

Rel (w — q)

Filw.) = 7w, )=

: (11.5.1)

where Rel(w — q) = (Re(w — q))’.
Lemma 11.5.1. Let w € OB. Then, for every ¢ € B, we have
V(Fo(w,q)) = 0 and V(Fj(w, q)) = —Fj-1(w,q),Vj = L.

Proof. First, we have Fy(w, q) = S™!(w, q) is the slice hyperholomorphic Cauchy
kernel. So, ¢ — Fo(w, q) is slice hyperholomorphic with respect to the vari-
able . Thus, we have V' (Fy(w, ¢)) = 0 for all ¢. On the other hand, forall j > 1
we have

G(Fy(w.q) = G (Sl(w,Q)W) VgeB.
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Then, we apply Proposition 3.1.11 on which we see how the global operator G
acts on the product keeping in mind that one of the functions is real valued and
get
Rel(w —
67 w0) =5 w6 (D) wen s
J!

However, we have

o (Rej(jf!—Q)) _ 7o, (Rej(w - Q))

j!
— _|(7|2R6j_1(w — Q)
-1
Then, we replace in (11.5.2) and get
Re’Hw — q)

G(Fi(w,q)) = —|q*S ™ (w.q) , Vg € B.

(=1

Hence, we use Remark 11.3.1 to see that the result holds outside the real line.
Then, we apply again Theorem 2.4 in [80] which allows to extend the formula
everywhere on B. Finally, we conclude that for any ¢ € B we have

V(Fj(w,q)) = =Fja(w,q),¥j = 1.
This ends the proof. 0J
Lemma 11.5.2. Let w € 0B. For anyn > 1, we set
7, =Ao V"L
Then, for every q € B, we have
1 1(Fo(w,q)) = AS Hw, q).
2. Foralln > 2, we have

(@) 7 (Fj(w,q)) =0,V0 < j<n-—1
(b) Tn(Fna(w,q)) = (—1)"_1AS_1(U), q)-

Proof. (1) It is immediate by the definition of the map 7, = A.
(2) We reason by induction. First, we note that for n = 2, Fy(w,q) is slice
hyperholomorphic with respect to g so that

o (Fo(w, q) = A o V(Folw, q)) = 0.
Moreover, we have
n(Fi(w, q)) = A (V(Fi(w,q))) .
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Moreover, Lemma 11.5.1 yields
V(F(w,q)) = —Fo(w,q)
so we get
no(Fi(w,q)) = —A(Fo(w, q)) = —~AS™}(w, q).
We conclude that the result holds for n = 2. Let us suppose by induction that
the assertions (a), (b) in the statement hold for n > 2 and we prove them for
n+ 1.
(a) Let w € JB. Then, for every ¢ € B, it is clear that
Tn+1(f0(wﬂ Q)) =Ao Vn(fO(wa Q)) =0.
We observe that
Tor1=AoV'=AoV" oV =r1,0V. (11.5.3)
Then, for all 1 < 5 < n making use of Lemma 11.5.1 we have
Tn+1(~F:j(w7 Q>) =TnO V('F](wa CD)
= —Ta(Fj-1(w, )
= —To(Fr(w,q)); 0<h=j—-1<n-—1.
Therefore, by induction hypothesis we conclude that
Tn+1(fj(w,q)) = O,VO S] <n.

This shows that (a) holds.
(b) We use a second time the observation (11.5.3) combined with Lemma
11.5.1 and get by induction hypthesis

o1 (Fn(w, q)) = 7 0 V(Fn(w, q))
= _Tn<~rn—1(w7 Q>>
= (=1)"AS ™ (w,q).
Hence, (b) also holds. This ends the proof. O
Theorem 11.5.3 (Poly-Fueter mapping integarl form). Let f be a slice polyan-

alytic function of order n > 1 on some axially symmetric slice domain §) that
contains the closure of B. Then, the Fueter regular function 7,,(f) given by

7a(f)(@) = Ao V" (f)(q)

has the integral representation

mw(f)(g) = cn,m) [ AS™Mw,q)dw Dy (f)(w),¥g € B

OBy

2n71

where I € S and c(n, ) = 5
7r
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Proof. Let f € SP,(2), we know by the poly-Cauchy formula for slice polyan-
alytic functions (Theorem 11.4.6) that for all ¢ € B we have

27’(’ /dBIj =0 ]F (w q)dwla]< )( )

Therefore, we apply the Fueter mapping 7,, = A o V! and obtain that

T =5 /aE Z (w,q))dw; & (f)(w), Vg € B\ R.

However, by Lemma 11.5.1 we know that
To(Fno1(w,q)) = (=1)"*AS™ (w, q) and To(Fi(w,q)) =0,V0 < j<n—1
Hence, we obtain

2n—1

mla) = =5

/aB AS_l(w, Q)dw[g;_l(f)(w),\v’q cB \ R.

Finally, it is clear that the integral in the right hand side is Fueter regular with
respect to g everywhere on B which allows to extend 7,,(f) to a Fueter regular
function on the unit ball. This completes the proof. U

Corollary 11.5.4. Under the same hypothesis of Theorem 11.5.3 we note that the
poly-Fueter mapping has the explicit integral expression

(@) = z /8B (7 — w)(w? — 2Re(q)w + |g*) PdwD; (f)(w),¥g € B.

™
Proof. We apply Theorem 11.5.3 and use the expression

AS™Hw,q) = —4(w — ) (w® — 2Re(q)w + [q]*) %,
that was proved in [48]. O

Remark 11.5.5. 1. Thanks to Theorem 11.3.13 the integral formulation of the
poly-Fueter mapping theorem can be expressed in terms of the map C,, as

1

L / AS™ (w, q)dw;B, (f)(w), Yq € B.
OB

Dn_l[cn(f>](Q> = o

2. The casen = 1 in Theorem 11.5.3 is the Fueter mapping theorem in integral
form proved in [48].
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11.6 The polymonogenic case: Fueter-Sce-Qian extension

In this section, we see how the results of quaternionic slice polyanalytic func-
tions can be reformulated in the slice monogenic setting. We omit to write the
proofs since they are similar to the quaternionic case. We recall first some ba-
sic notations, let {ej, e, ..., €, } be an orthonormal basis of the Euclidean vector
space R" satisfying the rule

eres + esep = =205, k,s=1,...,n
where 0y, 5 is the Kronecker symbol. The set
{ea: AC{l,...,n}withey = epep,...6,,1 < hy <...<h, <n,e=1}

forms a basis of the 2"-dimensional Clifford algebra R,, over R. Let R""! be
embedded in R,, by identifying (z¢, 71, ..., ¥,,) € R""! with the paravector x =
zo+ 2z € R,. The conjugate of z is given by Z = 7 — x and the norm |z| of x is
defined by |x|? = 22 + ... + x2. We denote also by S"~! the (n — 1)-dimensional
sphere of unit vectors in R" given by

S"t={w=me; +...+1pe, 2T+ ...+ 22 =1}, w? = 1.

The Euclidean Dirac operator on R" is given by

DQ = zn: €j8xj.
j=1

The generalized Cauchy-Riemann operator (also known as Weyl operator) and
its conjugate in R"*! are given respectively by

D :=08,,+ D, and D := 0,, — D,.

Real differentiable functions on some open subset of R""! taking their values in
R, that are in the kernel of D* are called left k-monogenic or polymonogenic
of order k, see [57]. We consider also the slice monogenic version given by

Definition 11.2. Let U be an axially symmetric open set in R" ™ and f : U —
R,, be a slice function of class C*. We say that f is slice polymonogenic of order k
or s-polymonogenic for short, if for any I € S"~, we have

=k
The set of slice polymonogenic functions of order k is denoted SM,(U).
Remark 11.6.1. 1. The set SM(U) forms a right module on R,,.

2. The case k = 1 corresponds to the slice monogenic functions considered in [?].
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We consider on 2 C R™"! the global operator on high dimensions defined
by

Vo (f) (@) := 0y f(2) + ﬁ% > 0, f(x), Yz € Q\R.
=1

Lemma 11.6.2 (Splitting Lemma). Let U be an axially symmetric open set in
R and f : U — R,, be a slice polymonogenic function of order k. For every
I =1, €Sletl,,...,1I, beacompletion to an orthonormal basis of R,,. Then, there
exists 2"~ ' polyanayltic functions of order k denoted F'y : Uy — C; such that
foreveryz =x+ Iy

n—1

fr(z) =Y Fa(2)Ia, In =1I;,..I;,
|Al=0

where A = {iy, ..., 1;} is a subset of {2, ..., n}, withiy < ... < 1.

Theorem 11.6.3 (s-polymonogenic decomposition). Let {2 be an axially sym-
metric slice domain of R"™! and f : 0 — R,,. Then, f € SMy() if and only if
there exists unique fo, ..., fr—1 € SM(Q) such that

f(x) = folz) +Tfi(z) + ... + " fr_1(z), Vo € Q.
Using similar calculations to the quaternions case, we can prove that

Theorem 11.6.4. Let 2 be an axially symmetric slice domain of R"*! and f :
2 — R,, an s-polymonogenic function of order k > 1. Then, [ belongs to
ker(V¥), ie:

VE(f)(z) =0, Vo € Q.

For slice polymonogenic functions we state the poly-Sce-Fueter mapping
theorems in the Clifford setting as follows

Theorem 11.6.5 (Poly-Fueter-Sce mapping theorem I). Let n be an odd number
and § an axially symmetric slice domain of R"™'. If f is an s-polymonogenic
function of order k. Then, the poly-Fueter mapping defined by

mok(£)(@) = Agla Vi~ f ()
is a monogenic function, in particular a polymonogenic of order k.

Theorem 11.6.6 (Poly-Fueter-Sce mapping theoremII). Let (2 be an axially sym-
metric slice domain of R"™! and f : Q — R,, a slice polyanalytic function of
order k > 1. Assume that f admits a poly-decomposition given by

ol
—_

Hz) =, 7 f(x), ¥z € Q

J

Il
=)
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where fo, ..., fn_1 € SM(R). Then, the function defined by

k-1 -

Cor(F)(@) = D T AT (f)(2). V2 € © (11.6.1)

J=0

is a poly-monogenic function of order k.
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CHAPTER

Conclusion and further research in progress

In this dissertation, we developed several mathematical methods and results
about quaternionic reproducing kernel Hilbert spaces (QRKHSs), using different
tools and techniques from complex and hypercomplex analysis. We considered
different examples such as Hardy, Bergman and Fock spaces both in slice and
Fueter hyperholomorphic settings. In particular, most of the results were ob-
tained in the case of Fock spaces and Segal-Bargmann theory. We note that such
mathematical models are relevant and used in several interesting applications
including quantum mechanics, time-frequency analysis and machine learning
methods. We explain a bit more how Fock spaces and Bargmann theory appear
in these different areas:

« Quantum mechanics: Fock spaces and Segal-Bargmann transforms are
important mathematical models used in quantum mechanics. Sometimes
they are called bosonic Fock spaces of n degrees of freedom. They are re-
lated to several important operators there like creation, annihilation, posi-
tion, momentum, Weyl operators, etc. They are used also to define coher-
ent states in mathematical physics. For more details about such connec-
tions and applications we refer for example to [85] and references therein.

« Signal and time-frequency analysis: we note that the short-time Fourier
transform corresponding to the Gaussian window is given by the Segal-
Bargmann transform. Furthermore, the short-time Fourier associated to
Hermite function windows lead to Fock spaces of polyanalytic functions.
This explains how Fock spaces and Segal-Bargmann transforms are rele-
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vant also in signal and time-frequency analysis thanks to the link they have
with the short-time Fourier transform. We refer to the classical book [78]
for more details concerning such connections and applications.

« Machine learning methods: it is well-known that Gaussian radial basis
function (RBF) kernels are one of the most used kernels in modern ma-
chine learning methods such as support vector machines (SVMs), see [112].
Actually, in [110] the reproducing kernel Hilbert spaces (RKHSs) corre-
sponding to the (RBF) kernels were introduced and were used to analyze
the learning performance of (SVMs). We can directly recongnize through
such results how the Fock and Bargmann theory are related to machine
learning kernel methods, in particular the case of (RBF) kernels. More-
over, we note that notions such as kernel trick, feature map and feature
spaces can be obtained in this case just by computing the scalar product
on L?(R) of the Segal-Bargmann kernels, which leads to the Fock kernel.

In chapter 4 and 5 we studied different Fock spaces of slice hyperholomorphic
functions obtaining new approximation results in both the first and the second
kind theories. We got also Segal-Bargmann type transforms in the noncom-
mutative case of quaternions and gave different descriptions in terms of some
generalized versions of the creation and annihilation operators.

In chapter 6, based on the quaternionic Bargmann transform we introduced a
quaternionic short-time Fourier transform QSTFT with a Gaussian window that
can be computed for hypercomplex signals. We proved different results there
including a Moyal formula, a reconstruction formula and a Lieb’s uncertainty
principle.

In chapters 7, 8 and 9 we introduced a new vision of QRKHS of Fueter hyper-
holomorphic functions based on a specific Clifford-Appell system which can be
obtained as an application of the Fueter mapping theorem. We studied in this
framework also different kernel techniques and integral transforms related to
Fock, Hardy and Bergman spaces. We studied also Bergman kernels and associ-
ated transforms on different quaternionic domains.

Finally in chapters 10 and 11, we introduced the basis for a new theory of
polyanalytic functions in hypercomplex analysis that contains a very important
subclass of special monogenic functions of axial type. Furthermore, we connect
this noncommutative theory to the classical monogenic and poly monogenic
function theories by constructing two extended versions of the Fueter-Sce-Qian
mapping theorem in this generalized framework.

For perspectives and further research, we started working on some different
problems that are still under progress. Such problems are related to the follow-
ing topics:

1. Fischer decomposition in the space of slice hyperholomorphic functions.

2. Wiener algebra on quaternions: The Fueter variables case.
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3. PS and PF functional calculus and their applications.
4. Poly-Bergman-Fueter transforms.

5. Short-time Fourier transforms with Hermite windows: hypercomplex poly-
analytic framework and applications in time-frequency analysis.

6. Quaternionic support vector machines, reproducing kernel methods in
machine learning and stochastic processes.

In the next lines we explain a bit more some examples of research problems that
we are considering regarding the two first topics.

Fischer decomposition on slice entire functions

We would like to study an extension of the results obtained in [?] to the slice
hyperholomorphic setting. Indeed, in 1985 Meril and Struppa proved the fol-
lowing

Theorem 12.0.1. Let P and () be two polynomials on C" and consider the operator
S:fr—=5(f) = P(D)QS).
Then, the following conditions are equivalent:
1. S:H(C") — H(C") is a bijection.
2. H(C") =Z(Q) @ ker P(D), where Z(Q) = {Qg; g € H(C™)}.

In order to extend Theorem 12.0.1 to the setting of quaternions, let us first
introduce

N
Definition 12.1. Let P(X) := Z X*a,. with (ax)o<k<n C H be a right quater-

k=0
nionic polynomial. Then, associated to the slice derivative Og, for every given slice

regular function f we define

P(0s)(f) :

I
3
—~
=

S
B

First, we can prove two technical results

Lemma 12.0.2. Let u : C; — H be a holomorphic function. Then, the following
formula holds

Eat(P(D,(w)(2))(a) = P(ds)(Ewt(u:))(q), Vg € H.
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N
Lemma 12.0.3. Let P(X) := Z X*ay, be aright quaternionic polynomial. Then,
k=0

P(9s) : SR(H) — SR(H), f — P(9s)(f)
is a surjective mapping.
As a consequence we state the problem to extend Theorem 12.0.1:

Problem 12.0.4. Let P and () be two right quaternionic polynomials such that
Q(p) # 0 for allp € H. Then, consider the mapping

T:f—T(f) = Ps)(f * Q).
Are the following conditions equivalent ?
1. T:SR(H) — SR(H) is a bijection.
2. SR(H) = J(Q) @ ker P(3s), where J(Q) = {g * Q; g € SR(H)}.
We consider also plynomials of the form

N
P(X):=) arx X" ap € H (12.0.1)
k=0

The associated quaternionic linear operator is defined by

P(9s)(f) =Y ar* 05(f)-

Lemma 12.0.5. Let u; : C; — H be a holomorphic function and P be a quater-
nionic polynomial of the form (12.0.1). Then, the following formula holds

Ext(P(Di(ui)(2))(q) = P(0s)(Ext(u:))(q), Vg € H.

Remark 12.0.6. Following a similar reasoning as in Lemma 12.0.3 we can prove
that P(0s) is a surjective operator for any quaternionic polynomial P of the form
(12.0.1).

Therefore, we can state the following problem for quaternionic polynomials
of the form (12.0.1):

Problem 12.0.7. Let P and () be two quaternionic polynomials of the form (12.0.1)
such that Q)(p) # 0 for all p € H. Then, consider the mapping

L:f—— L(f):=Ps)(f *Q).

Are the following conditions equivalent ?
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1. L:SR(H) — SR(H) is a bijection.
2. SR(H) = J(Q) @ ker P(ds), where 7(Q) = {g* Q; g € SR(H)}.

Note that the notion of entire slice regular functions of expoential type was
introduced in Chapter 5 of [50]. Indeed, we have the following

Definition 12.2. An entire slice regular function f is said to be of exponential
type if there exist some constants A, B such that we have

f(q)] < Be'l, vg € H.
The space of such functions will be denoted Exp(H).
Then, we consider also the following:

Problem 12.0.8. Let P and () be two right quaternionic polynomials such that
Q(p) # 0 for all p € H. Then, consider the mapping

T:fr—=T(f) = Ps)(f*Q).
Are the following conditions equivalent ?
1. T : Exp(H) — Exp(H) is a bijection.
2. Exp(H) = J(Q) ® kergyp(u) P(0s), where T (Q) = {g % Q; g € Exp(H)}.

Wiener algebras and Lévy-Wiener theorems: the Fueter variables and
Clifford-Appell cases

We would like to study new versions of the Lévy-Wiener theorem for the quater-
nions in the setting of Cauchy-Fueter regular functions. In particular, we are
considering the Fueter variables and the Clifford-Appell cases. We are interested
also by the continuous version of the Lévy-Wiener theorem in this framework.

The Fueter variables case
We recall that the so-called Fueter variables are defined by
G(x) =21 —emo, 1 =1,2,3. (12.0.2)

Then, let us consider the poly-disk on the quaternions with respect to the
Fueter variables given by

Br ={qeH, |(q)] <1forl=1,2,3}.
Definition 12.0.1. We denote by WY the set of functions of the form

F@) = ¢ @) fa
a€eN3
where (fo)o C H are such that we have

=D Ifal < 0.

a€eN3
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We endow the algebra WY with the CK product denoted by ®. Then, we can
prove that WY, ®) is a non commutative Banach algebra.

We are studying a counterpart of the Lévy-Wiener theorem for the quternions
in the special case of Fueter variables.

Problem 12.0.9 (Lévy-Wiener theorem: Fueter variables case). Let f € WY.
Then, f is invertible in WY if and only if f(q) # 0 for all ¢ € Bp.

The Clifford-Appell case

Let us consider the Clifford-Appell polynomials considered in the previous chap-

ters and defined by
k

Qulg) =Y T 7 Vg e H (12.0.3)
7=0
where .
e K Qe—(1); _ 2(k—j+1)

T @B (k=0 (k+1)(k+2)

and (a), = a(a + 1)...(a + n — 1) is the Pochhammer symbol. This family of
polynomials form an Appell system with respect to the hypercomplex deriva-
tive. Moreover, for s € H, let

k(s)
k!

WE
QO

Exp(s) :=

b
Il

0

to be the generalized Cauchy-Fueter regular exponential function considered in
the paper [29]. We are interested by the following problem.

Problem 12.0.10. We would like to study the Wiener algebra W, consisting of
quaternionic valued functions of the form

S 00
f= Zchk such that Z lex| < o0,
k=0 k=0

A counterpart of the Lévy-Wiener theorem in this setting should be to justify that:
A function f € WY is invertible in Wy; if and only if f(q) # 0 for all ¢ € B.
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