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Abstract

In this dissertation, we present some mathematical methods and techniques
involving reproducing kernel Hilbert spaces (RKHSs) and associated inte-
gral transforms in the setting of complex, quaternions and Clifford analy-

sis. The focus will be on some particular examples such as Fock spaces and
Segal-Bargmann theory, Bergman spaces, Hardy spaces andGabor spaces. These
models are very important in several areas of mathematics including complex
analysis, functional analysis, operator theory, etc. They have some important
applications in mathematical physics, more precisely, in quantum mechanics,
signal processing and time frequency analysis. It turns out that such spaces are
relevant also to develop support vector machines (SVMs) kernel methods. In
particular, Fock spaces are related to the radial basis function (RBF) kernels that
are popular kernels used in machine learning.

In the first part of the thesis, we study Fock spaces of slice hyperholomorphic
functions in the Hilbert and Banach cases. We obtain new quaternionic approx-
imation results both in the first and second kind theory. We develop also Segal-
Bargmann transforms in the noncommutative case of quaternions and give de-
scriptions in terms of generalized versions of the creation and annihilation op-
erators. In particular, we deal with an extension of the Cholewinski-Fock space
in this setting. Moreover, based on the quaternionic Bargmann transform we
introduce and study a quaternionic short-time Fourier transform QSTFT with a
Gaussian window that can be computed for hypercomplex signals.

In the second part of the thesis, we introduce a special Clifford-Appell sys-
tem which can be obtained using the Fueter mapping theorem. We study the
behaviour of such system of polynomials with respect to the classical Cauchy-
Kowalevski product. Then, we present some new QRKHS of Fueter hyperholo-
morphic functions based on this Clifford-Appell system. We study in this case
different kernel techniques and integral transforms concerning the Fock, Hardy
and Bergman spaces and associated operators. We compute also the Bergman

V



i
i

“thesis’’ — 2021/1/31 — 22:52 — page VI — #8 i
i

i
i

i
i

kernel function on different quaternionic domains.
Finally in the last part of this thesis, we introduce a new theory of poly-

analytic functions in hypercomplex analysis. It turns out that this theory con-
tains an interesting subclass of special monogenic functions of axial type and
we prove a poly Cauchy formula. Then, we relate different polyanalytic func-
tion theories in hypercomplex analysis by providing two extended versions of
the famous Fueter-Sce-Qian mapping theorem. We prove also an integral rep-
resentation of this result as a direct application of the poly Cauchy formula.

The results obtained in this dissertation open various questions and research
problems to investigate in the future, that are discussed in the last section.
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Summary

In this thesis, we study different reproducing kernel function spaces and asso-
ciated integral transforms in the setting of complex, quaternions andClifford
analysis. In particular, we focus on some specific examples such as Segal-

Bargmann-Fock spaces, Bergman spaces, Hardy spaces and Gabor spaces. These
models are very important in complex analysis, operator theory and have sev-
eral applications inmathematical physics, especially in quantummechanics, and
also in signal processing and time frequency analysis thanks to the link with the
short-time Fourier transform. As it is well-known, in quantummechanics phys-
ical quantities such as position, momentum and energy are represented by op-
erators acting on some complex Hilbert spaces. In 1961, Bargmann constructed
a Hilbert space of entire functions on which the creation and annihilation oper-
ators are adjoints of each other and satisfy the classical commutation rules. This
space is known as Fock or Segal-Bargmann space. Moreover, to any particle
moving on the real line is associated a wave function which defines some unit
vector of the classical SchrödingerHilbert space. This unit vector ismapped onto
a special holomorphic function making use of a particular exponential kernel.
The new resulting complex function is the so-called Segal-Bargmann transform.
In the last years, this subject attracted several mathematicians and physicists
working in the field of Clifford analysis and related topics. As a consequence,
many results and research problems were considered and developed in this di-
rection. In the hypercomplex setting, we investigated some new reproducing
kernels and associated Hilbert spaces using different techniques and tools from
complex and Clifford analysis motivated by such special integral transforms in-
volved in several applications in mathematical physics, like Segal-Bargmann
transforms in quantum mechanics and Gabor or short-time Fourier transforms
in signal analysis.
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Another main contribution that we achieved during this work is that we ini-
tiated exploring a new research path by extending the theory of slice regular
or slice monogenic functions to higher order and considering the so-called slice
poly-analytic or slice poly-monogenic function theory on which several ques-
tions are open now. These functions can be considered from different points
of view. A first approach consists of considering the space of quaternions as
union of complex planes and to see these functions as null solutions of the n-th
power of the Cauchy-Riemann operator with respect to each complex plane. A
second approach is based on the so-called poly-decomposition, which makes a
slice poly-analytic function of order n obtained as a sum of n slice regular func-
tions multiplied on the left by some conjugate powers. A third approach consists
in considering slice poly-analytic functions in the kernel of the n-th power of a
certain global operator with non-constant coefficients. We note also that a gen-
eralized version of the poly-Cauchy formula and the famous Fueter-Sce-Qian
mapping theorem in Clifford analysis were also introduced and proved in this
framework. This new construction allowed to relate the different poly func-
tion theories in hypercomplex analysis. Furthermore, an important fact that
was observed is that this slice polyanalytic function theory contains one of the
most important subclasses of the Cauchy-Fueter hyperholomorphic functions,
namely the class of Fueter hyperholomorphic functions of axial type. A very
natural and interesting problem that has to be conisdered now and which is still
under investigation is to develop a natural S-functional calculus associated to
this new poly-analytic function theory in hypercomplex analysis.

In this thesis, we dealt with different problems touching several topics in-
cluding: slice hyperholomorphic and monogenic function theories, reproducing
kernel theory, quaternionic approximation theory, Fock and Bergman spaces,
poly-analytic function theory, Dirac operator in Clifford analysis, quaternionic
Segal-Bargmann and Fourier transforms, poly-Fueter mapping theorems and
their applications, Clifford-Appell systems, Short-time Fourier transforms and
reproducing kernel Gabor spaces, hypercomplex Hardy spaces and Schur anal-
ysis, etc. We give here a brief overview on the different results obtained:

• In [62], jointly with Prof. Sabadini and Prof. Gal, we introduced the Ba-
nach Fock spaces of slice hyperholomorphic functions on the quaternions,
both of the first and of the second kind. In particular, we proved several
approximation results on these different spaces, some of them are based on
constructive methods making use of the Taylor expansion and the convo-
lution polynomials. The techniques used in these two cases are different.
Moreover, for the second kind theory, we discussed also some density re-
sults of reproducing kernels. This paper extends some classical results of
complex analysis contained in the famous book of Kehe Zhu titled ”Anal-
ysis on Fock spaces”.

• The Cholewinski-Fock space in the slice hyperholomorphic setting was
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studied in [61]. It presents an extension of the classical slice hyperholo-
morphic Fock space introduced in 2014 by Alpay, Colombo, Sabadini and
Salomon. This was possible by considering on the space of slice entire
functions a specific weight involving a modified Bessel function of the
third kind, namely the Macdonald function. We gave a complete descrip-
tion of this quaternionic Hilbert space. Then, its reproducing kernel is ob-
tained making use of the slice hyperholomorphic extension of the classical
complex Dunkl kernel. We introduced also an associated unitary integral
transform, and studied some specific quaternionic operators on the slice
hyperholomorphic Cholewinski-Fock space. This construction follows an
approach by Cholewinski in 1984.

• In [56], with my colleague De Martino, we introduced a new quaternionic
short-time Fourier transform QSTFT with a Gaussian window. We proved
there several results about this QSTFT like Moyal formula, reconstruction
formula and Lieb uncertainty principle. This construction was possible
thanks to the use of the quaternionic Segal-Bargmann transform. More-
over, we computed the reproducing kernel associated to the Gabor space
considered in this framework.

• The results obtained in [63], joint with Prof. Sabadini and Prof. Krausshar
can be considered as applications of the famous Fueter-Sce-Qian map-
ping theorem. It is well-known in the literature that this theorem relates
two main theories in Clifford analysis, namely the recent theory of slice-
monogenic functions and the classical one of monogenic functions (i.e:
solutions of Dirac operator). More precisely, making use of the Fueter-Sce-
Qian mapping theorem we constructed and studied some special integral
transforms of Bargmann-Fock type in the setting of quaternion slice hyper-
holomorphic and Cauchy-Fueter regular functions. In particular, starting
with the normalized Hermite functions we got an Appell system of quater-
nionic regular polynomials. We obtained also some new integral represen-
tations and generating functions in both the Fock and Bergman cases. In
this article, we computed also the explicit expressions of the slice hyper-
lomorphic Bergman kernels on the quaternionic unit half ball and the frac-
tional wedge domain. We discussed also the Bergman-Fueter transforms
and presented some of its consequences.

• The paper [8] is a joint work with Prof. Sabadini and Prof. Alpay. It deals
with a specific system of Clifford-Appell polynomials and in particular
their Cauchy-Kowalevski product. We first study how this Clifford-Appell
system behave with respect to the CK product. We gave also a character-
ization of axially Fueter regular functions in terms of this Clifford-Appell
system. We introduced there a new family of quaternionic reproducing
kernel Hilbert spaces in the framework of Fueter regular functions. This
construction is based on a general idea which allows to obtain various
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function spaces, by specifying a suitable sequence of real numbers. We
focused more on the Fock and Hardy cases and associated operators like
creation, annihilation, shift and backward shift operators. We studied also
the action of the Fueter mapping and its range.

• In [5], jointly with Prof. Sabadini, Prof. Colombo and Prof. Alpay, we
started a new research direction to begin the study of Schur analysis and
de Branges-Rovnyak spaces in the framework of Fueter hyperholomor-
phic functions. In this paper we treated several problems related to Hardy
space, Schurmultipliers, Blaschke functions, Herglotzmultipliers and their
associated kernels and Hilbert spaces, based on the Cauchy-Kowalesvkay
product and the notion of Appell-like polynomials.

• In [17], jointly with Prof. Sabadini and Prof. Alpay, we proposed a new
definition extending to higher order the theory of slice hyperholomorphic
functions on the quaternions originally introduced by Gentili and Struppa
in 2007. This definition extends the notion of complex polyanalytic func-
tions to quaternions. We studied some basic properties of such functions
and proved the counterparts of the following results : Splitting Lemma,
Identity Principle, Representation Formula, Extension Lemma, Refined Split-
ting Lemma and presented some of their consequences. We proved also a
very important characterization of slice polyanalytic functions, namely the
so-called poly-decomposition. Then, we considered the Fock and Bergman
spaces in this new setting and computed explicit expressions of their re-
producing kernels.

• In [9], jointly with Prof. Sabadini and Prof. Alpay, we proved that slice
polyanalytic functions of order n ≥ 1 on quaternions can be considered
as null solutions of the n-th power of some special global operator with
nonconstant coefficients as it happens in the case of slice hyperholomor-
phic functions. We investigated also some extension versions of the Fueter
mapping theorem in this polyanalytic setting. In particular, we showed
that under axially symmetric conditions it is always possible to construct
both Fueter regular and poly-Fueter regular functions through slice poly-
analytic ones using what we call the poly-Fueter mappings. This allows to
present two different extended formulations of the poly-Fueter mapping
theorem. Furthermore, we proved a new poly-Cauchy formula that sug-
gests to start several new interesting research problems. In particular, as
a first application of this poly-Cauchy formula we gave the integral repre-
sentation of the poly-Fueter mapping theorem, extending a very important
result obtained in 2010 by Colombo, Sabadini and Sommen.

As avenues for further research, we already started some new projects that
are still under progress. We plan to develop them more in the future and to start
new research investigations in some recent related topics such as:
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1. Wiener algebra on quaternions: The Fueter variables case.

2. PS and PF functional calculus and their applications.

3. Poly-Bergman-Fueter transforms.

4. Fischer decomposition in the space of slice hyperholomorphic functions.

5. Short-time Fourier transformswithHermitewindows: hypercomplex poly-
analytic framework and applications in time-frequency analysis.

6. Quaternionic support vector machines, reproducing kernel methods in
machine learning and stochastic processes.
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List of symbols

• H the space of quaternions

• S the sphere of imaginary units

• B the quaternionic unit ball

• CI the complex plane corresponding to the imaginary unit I

• ∂I the Cauchy-Riemann operator on the slice CI

• ∂S the slice derivative

• V the global operator

• D or ∂ the Cauchy-Fueter operator

• SR(Ω) the space of slice regular functions on Ω

• SPn(Ω) the space of slice polyanalytic functions of order n on Ω

• R(Ω) or FR(Ω) the space of Cauchy-Fueter regular functions on Ω

• Rn(Ω) or FRn(Ω) the space of polyanalytic Cauchy-Fueter regular func-
tions of order n on Ω

• FSlice(H) the quaternionic Fock space of slice hyperholomorphic functions

• Fp
α(H) the quaternionic Fock spaces of the first kind

• Fα,p
Slice(H) the quaternionic Fock spaces of the second kind

• ASlice(B) the quaternionic Bergman space of slice hyperholomorphic func-
tions of the second kind

• ∆ the Laplace operator on R4
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• τ the Fueter mapping

• Qn the quaternionic Appell polynomials

• Pn the quaternionic Appell-like polynomials

• τn the poly-Fueter mapping of order n (form I)

• Cn the poly-Fueter mapping of order n (form II)

• ζl the Fueter variables for l = 1, 2, 3

• Rn the Clifford algebra over n-imaginary units

• QRKHS stands for quaternionic reproducing kernel Hilbert space

• QSTFT stands for quaternionic short-time Fourier transform

• SVMs stands for support vector machines

• RBF stands for radial basis function
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CHAPTER1
Introduction

In the noncommutative setting, the main function theories that extend com-
plex analysis, operator theory and their mathematical physics applications to
higher dimensions are the so-called monogenic and slice monogenic functions
with values in a Clifford algebra. In the case of a quaternionic variable these two
theories are known respectively as Fueter regular (or Fueter hyperholomorphic)
and slice regular (or slice hyperholomorphic) functions, see [28,35,47,75,83]. It is
interesting to investigate any possible relations and intersections between these
two different function theories. For example, we note that it is always possi-
ble to construct Fueter hyperholomorphic functions starting from slice regular
ones using different techniques such as the Fueter mapping theorem and its in-
verse [48, 49], or using the Radon and dual Radon transforms, see [44]. But in
general, the slice monogenicity does not imply, nor is implied by monogenicity.

In 1931, the work of Moisil [95] was at the origin of extending the classical
theory of holomorphic functions in complex analysis to quaternions by gener-
alizing the classical Cauchy-Riemann operator. Then, in 1935, Fueter developed
this approach by Moisil and introduced a new theory of quaternionic regular
functions generalizing the classical one of holomorphic functions, see [67]. This
theory is based on the well-known Cauchy-Fueter operator defined by

D :=
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
.
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Chapter 1. Introduction

Thus, a quaternionic valued function is said to be Fueter regular or Fueter hy-
perholomorphic if it solves the equation

Df ≡ 0.

It turns out that Fueter’s theory of quaternionic regular functions generalized
several complex analysis results using new techniques, in particular it is possi-
ble to consider the counterparts of different notions, such as a Cauchy kernel,
Cauchy formula, identity principle, Liouville theorem, etc. Unfortunately, the el-
ementary functions like the quaternionic polynomials and power series are not
regular with respect to the Fueter theory. We will revise some facts in Chapter
2 about this theory, but for more details we suggest the reader to consult the
books [47, 83].

In 2006-2007 a new function theory of a quaternionic variable extending the
classical theory of complex analysis to the quaternionic setting has been intro-
duced by Gentili and Struppa in [76, 77]. Then, it was also extended to the Clif-
ford valued functions, by considering the so-called slice monogenic functions,
see [36]. Both these theories include all the elementary transcendental func-
tions. This new class of functions was extensively developed in the last years
and found several applications in different topics inmathematics and physics, in-
cluding for example Schur analysis and quaternionic operator theory, see [7,35].
Moreover, this new noncommutative function theory is now considered more
suitable for applications in quaternionic quantum mechanics thanks to the dis-
covery of the new notion of the S-spectrum which allowed to develop a new
S-functional calculus for quaternionic operators, see the books [35,37,38]. Fur-
thermore, this theory is useful also to develop the formalism for quaternionic
quantum mechanics, see [97] and the classical book [4].

In general, positive definite functions and reproducing kernel Hilbert spaces
appear in several areas of mathematics, physical sciences and engineering. They
are relevant not only in operator theory and coherent states in quantum me-
chanics but also in the study of support vector machines and kernel methods
in machine learning. Thus, a current intresting topic in hypercomplex anal-
ysis is related to quaternionic reproducing kernel Hilbert spaces like Hardy,
Bergman, Besov, Dirichlet and Fock spaces in the new quaternionic and slice
monogenic setting. Thanks to their use in quantum mechanics and signal pro-
cessing such reproducing kernel Hilbert spaces, especially Fock spaces and as-
sociated Segal-Bargmann integral transforms attracted recently the attention of
several mathematicians and physicists from different points of views, see for
example [15, 34, 46, 53, 60, 88, 96, 101]. In particular, we present in this research
project several results related to this topic. Indeed, we considered different
quaternionic reproducing kernel Hilbert spaces and associated integral trans-
forms, like Segal-Bargmann transforms and Gabor or short-time Fourier trans-
forms in the noncommutative framework both in slice and Fueter hyperholo-
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morphic theories. So, we would like to present briefly in this introduction the
state of the art related to such topics in classical complex analysis. We explain
also some interactions with mathematical physics and present some quantum
mechanics interpretations of such mathematical objects.

Indeed, contrary to classical physics, in quantum mechanics physical quanti-
ties such as position, momentum and energy are represented by operators acting
on some complex Hilbert space. We note that in 1961 Bargmann introduced in
his original paper [23] a Hilbert space of entire functions on which the creation
and annihilation operators, namely

Mzf(z) := zf(z) and Dzf(z) :=
d

dz
f(z)

are closed, densely defined operators that are adjoints of each other and satisfy
the classical commutation rule

[Dz,Mz] = I

where [., .] and I are respectively the commutator and the identity operator. In
addition to that, it turns out that the creation and annihilation operators are uni-
tary equivalent to the classical position and momentum operators of quantum
mechanics trough the well-known Segal-Bargmann transform which was also
introduced in the same paper [23].

The latter is an integral transform mapping unitary the classical Schrödinger
Hilbert space of wave functions L2(Rn) onto a space of holomorphic functions.
In the literature, this output space is known as Fock or Segal-Bargmann space
and sometimes called also the bosonic Fock space with n degrees of freedom.
It consists of entire functions that are square integrable on the complex plane
with respect to the normalized Gaussian measure. We refer to [85, 98, 115] for
more detailed explanations.

It turns out that the Bargmann-Fock spaces and associated Segal-Bargmann
transforms are importantmathematical models used in classical (complex) quan-
tum mechanics and signal processing. Indeed, from one side this integral trans-
form allows to construct a bridge between the Schrödinger Hilbert space and a
special Hilbert space of holomorphic functions on the whole plane, namely en-
tire functions. From the other side, this transform can be obtained as the short-
time Fourier transform with a specific Gaussian window. Moreover, by taking
Hermite windows it is possible to find connections with polyanalytic function
theory.

It was explained in chapter 3 of [85] that it is impossible to predict the result
of an experiment in quantum mechanics. Only the probabilities of the outcome

3
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Chapter 1. Introduction

of a measurement can be predicted and these probabilities are encoded in awave
function that is a function of the real variable x ∈ Rn. Then, we note that to any
particle moving in the real line is associated a wave function ψ : R −→ C. The
square modules of this function

x 7→ |ψ(x)|2

is interpreted as the probability density for the position of this particle. More
precisely, taking a region A ⊂ R the quantity∫

A

|ψ(x)|2dx

is defined to be the probability that the given particle belongs to the set A. Ob-
viously, the probability that its position is on the whole real line R should be
equal to 1 so that we have

‖ψ‖2 :=
∫

R
|ψ(x)|2dx = 1.

The wave function is said to be a unit vector of the Hilbert space L2(R) in this
case. Then, to each unit vector in the standard Hilbert space on the real line is
associated a holomorphic function which is also a unit vector of the Fock space.
The new output complex function is the Segal-Bargmann transform.

Such spaces have been considered in some higher dimensional extensions of
complex analysis, namely the analysis based on functions with values in a Clif-
ford algebra or, in particular, quaternions. For some recent works, we refer the
reader to e.g. [101] which is the framework of monogenic functions, to [15, 60]
in the framework of slice hyperholomorphic functions and to [88], which makes
use of slice hyperholomorphic functions and in which the authors point out the
link with the study of quantum systems with internal, discrete degrees of free-
dom corresponding to nonzero spins. We note also that the class of slice hyper-
holomorphic functions [35,50,75] has attracted interest in the past decade for its
various applications especially in operator theory. One of its features is that it
contains power series (despite what happens for other theories of hypercomplex
variables) thus it is natural to consider functions which are ”entire” in this class
and, in particular, Fock spaces. In these directions, we obtained several results
related to different topics such as: reproducing kernels, Fock spaces, Bergman
spaces, Segal-Bargmann transforms, quaternionic approximation theory, short-
time Fourier transform, Fueter mapping theorem, Dirac operator, etc.

In this thesis it was also very useful for us to understand the so-called Appell
systems. Actually, in 1880, the French mathematician Appell introduced a new
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class of polynomial sequences generalizing the well-known property satisfied
by the classical monomials with respect to the real derivative, namely

d

dx
Pn = nPn−1,

see [20]. So, a polynomial sequence {Pn}n≥0 of degree n satisfying such an
identity with respect to a derivative is called anAppell set or anAppell sequence.
In [32, 107] the authors followed a different approach to define an Appell set by
requesting the identity

d

dx
Pn = Pn−1.

In the classical case, where x is interpreted as a real or complex variable, the stan-
dard monomials Pn(x) = xn form an Appell set, but also the famous Hermite,
Bernoulli and Euler polynomials are examples of Appell sets. The importance of
such polynomials in various settings is well known, and we mention here, with
no pretense of completeness their relevance in probability theory and stochastic
process since they can be connected to random variables, see [111], they were
used also to study optimal stopping problems related to Lévy process in [105].
Moving to the hypercomplex analysis setting, we have various function theo-
ries, associated with different differential operators.
In the slice hyerholomorphic setting, Appell systems can be obtained by simply
extending the variable in use to become hypercomplex, and so we have that, for
example, the standard monomials in the quaternionic variable are among them
with respect to the slice derivative. But these sets of polynomials were stud-
ied also in the setting of quaternionic and Clifford analysis with respect to the
hypercomplex derivative, see [29, 30, 63, 93, 99]. It turns out that the Appell sys-
tems in this framework play a similar role as the complexmonomials do to define
elementary functions in terms of their power series like cosine, sine, exponen-
tial, etc. This fact opens a variety of questions about such Appell systems also
in relation to various function spaces including Fock, Hardy, Bergman, Dirichlet
spaces, etc. Various questions arise also about their associated operators such as
creation, annihilation, shift and backward shift operators. Actually, what makes
Appell systems in quaternionic and Clifford analysis rather peculiar, is the fact
that the function theory has been developed using the so-called Fueter polyno-
mials, see [28, 83], and these polynomials do not satisfy the Appell property in
general. However, a series expansion for hyperholomorphic functions is possi-
ble using both the approaches. In this dissertation, we present aslo some results
in this direction.

One of the main achievements that we made also in this work is that we in-
troduced in [9,17] a new research direction which is opening several interesting
questions to investigate. Indeed, we extended the notion of slice regular func-
tions to higher order by considering the so-called slice polyanalytic functions.
In particular, this gives two different directions of the extension, from one side

5



i
i

“thesis’’ — 2021/1/31 — 22:52 — page 6 — #26 i
i

i
i

i
i

Chapter 1. Introduction

the new theory that we proposed extended the complex polyanalytic function
theory to the noncommutative setting. On the other side, it can be seen also as
an extension of the original quaternionic function theory introduced by Gentili
and Struppa to higher orders. We got also a counterpart of the poly-Cauchy
formula for such functions. Futhermore, we gave two possible poly extensions
of the famous Fueter-Sce-Qian mapping theorem and proved an integral rep-
resentation of this result based on a certain global operator with nonconstant
coefficients. These slice polyanayltic functions can be seen from three different
points of view. The first approach consists of considering the space of quater-
nions H as union of complex planes and to see these functions as null solutions
of the n-th power of the Cauchy-Riemann operator with respect to each complex
plane, i.e if on any complex plane f satisfies the equation

∂I
n
f(u+ vI) :=

1

2n

(
∂

∂u
+ I

∂

∂v

)n
fI(u+ Iv) = 0.

The second approach is based on the so-called poly-decomposition which allows
to consider such functions as sums of the form

n−1∑
k=0

xkfk(x), x ∈ H

with all the components fk which are slice regular functions and n is the order
of poly-analyticity. The third approach consists in considering slice polyanalytic
functions as elements in the kernel of the n-th power of the global operator with
nonconstant coefficients V , see [9]. In this sense, we have

V n(f)(x) :=

(
∂x0 +

~x

|~x|2
3∑
l=1

xl∂xl

)n

f(x) = 0.

Furthermore, using the Fueter mapping theorem it was possible to introduce
some special Appell polynomials (Qn(x))n≥0 where

Qn(x) =
n∑
j=0

T nj x̄
jxn−j, n ≥ 0,

that are at the same time Fueter hyperholomorphic and slice polyanalytic func-
tions of order n+ 1, for suitable real coefficients T nj , see chapters 7, 8 and 9 for
more explanations and bibliography notes related to such coefficients. These
polynomials are very special since they belong to the intersection of two differ-
ent noncommutative function theories, namely the classical Fueter theory and
the slice polyanalytic theory, moreover they have nice properties with respect
to the CK product and hypercomplex derivative. Another important feature, see
Theorem 3.10 in [8], is that we proved that any Fueter hyperholomorphic func-
tion f of axial type admits a power series expansion in terms of the polynomials
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Qn of the form

f(x) =
∞∑
n=0

Qn(x)un, un ∈ H.

This fact allows to embed the space of Fueter hyperholomorphic functions of
axial type, denoted by AR, into a space consisting of series of slice polynalytic
functions that we denote here by

SP∞ := SP1 + SP2 + ...+ SPn+1 + ...,

where SPn denotes the space of slice polyanalytic functions of order n. More
precisely we consider the subspaces of slice polyanalytic functions associated to
the polynomials (Qn)n≥0 defined by

Qn := {Qn(x)λ, λ ∈ H}

and

Q∞ :=
∞⊕
n=0

Qn.

We can show that the space of hyperholomorphic functions of axial type AR
corresponds to the space Q∞, i.e.

AR = Q∞.

The previous subspaces of slice polyanalytic functionsQn were already consid-
ered before but from a different point of view and using a different terminology,
namely they were called spaces of homogeneous special monogenic polynomi-
als of degree n, see for example Lemma 1 in [3]. Using these ideas and identi-
fications we can show also that it is always possible to embed this interesting
subclass of special monogenic functions in a more general framework of slice
polyanalytic functions. In particular, we can use techniques from slice polyana-
lytic function theory to prove results on such special monogenic functions. For
example in Chapter 9 we can prove a Representation Formula in the monogenic
setting using a slice polyanalytic approach. Furthermore, we note that these
slice polyanalytic (and Fueter hyperholomorphic) polynomials (Qn)n≥0 are just
a particular case of a more general interesting construction which makes use of
the classical Cauchy-Kovalevskaya extension theorem. We explained more in
details this general construction thanks to some new Appell-like polynomials
and the classical CK product in Clifford analysis, see [5].

Description of the contents

This thesis is divided into 11 chapters besides this introduction. The second
and third chapters revise briefly the state of the art and main backgrounds. We
present there some very well-known results in the litterature related to positive
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Chapter 1. Introduction

definite functions, reproducing kernel Hilbert spaces and associated operators.
We discuss also the different hypercomplex function theories and their connec-
tions based on the Fueter-Sce-Qian mapping theorems. The main results and
contributions of our research are presented from chapter 4 to chapter 12. We
give now a brief description of the contents following the chapters order in the
manuscript:

• Chapter 4: This chapter is based on [62]. It continues the study of slice
hyperholomorphic Fock spaces over the quaternions started in [15] with
the purpose of providing some approximation results, specifically our goal
is to extend results on the density of polynomials in the complex case to
the slice hyperholomorphic setting. We shall show that in this context one
may define two types of Fock spaces, which are called of the first and of
the second kind, and for which the approximation results require differ-
ent techniques. The plan of the chapter is the following: Section 2 review
the Hilbert slice hyperholomorphic Fock space and quaternionic Segal-
Bargmann transform. Section 3 introduces Banach Fock spaces of the first
and second kind. In Section 4 we study the approximation in Fock spaces
of the first kind. In Section 5 we study the approximation in Fock spaces of
the second kind, obtaining a result of general validity. We obtain quanti-
tative estimates in terms of higher order moduli of smoothness and of best
approximation quantity. Finally we discuss type and order of functions in
the Fock spaces of the second kind.

• Chapter 5: This chapter is based on [61]. Its purpose is to continue this ex-
ploration of generalized Fock spaces following an approach by Cholewin-
ski, Sifi and Soltani in order to present a study of a quaternionic Hilbert
space of slice entire functions weighted by a modified Bessel function that
we shall call the quaternionic slice hyperholomorphic Cholewinski-Fock
space or the slice Cholewinski-Fock space for short. This will allow us
to extend some results obtained in [15, 60] on the slice hyperholomorphic
Fock space and the quaternionic analogue of the Segal-Bargmann trans-
form. Moreover, we study there some specific quaternionic operators as-
sociated to the slice Cholewinski-Fock space. In a particular case, we show
that the slice derivative and the quaternionic multiplication are adjoints of
each other and satisfy the classical commutation rule on the slice hyper-
holomorphic Fock space.

The chapter has the following structure: we first give somemotivations for
this study. Then, in Section 2 we collect some basic facts about the Mac-
donald function as it will be needed in the sequel. In Section 3, we define
the slice Cholewinski-Fock space and we introduce an orthonormal basis.
Moreover, we show that it is a quaternionic reproducing kernel Hilbert
space. Section 4 is devoted to the study of a quaternionic unitary isomor-
phism between the slice Cholewinski-Fock space and a suitable quater-
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nionic Hilbert space on the real line. This quaternionic isomorphism will
be connected also to what we call the slice Dunkl transform. Then, Section
5 deals with two right quaternionic linear operators that are proved to be
adjoint of each other and satisfy a specific commutation rule on the slice
Cholewinski-Fock space. Finally, the last section explains how the results
obtained in the slice quaternionic setting could be extended in a similar
way to the slice monogenic setting for Clifford algebras valued functions.

• Chapter 6: This Chapter is based on [56]. We introduce an extension of the
short-time Fourier transform in a quaternionic setting in dimension one.
To this end, we fix a property that relates the complex short-time Fourier
transform and the complex Segal-Bargmann transform:

Vϕf(x, ω) = e−πixωGf(z̄)e
−π|z|2

2 , (1.0.1)

where Vϕ is the complex short-time Fourier transform with respect to
the Gaussian window ϕ and Gf(z) denotes the complex version of the
Segal-Bargmann transform according to [78]. To achieve our aim we use
the quaternionic Segal-Bargmann transform studied in [60]. In order to
present these results, we adopt the following structure: After a brief mo-
tivation to the topic, in Section 2 we prove some new properties of the
quaternionic Segal-Bargmann transform. In particular we deal with an
unitary property and give a characterization of the range of the Schwartz
space. Moreover, we provide some calculations related to the position and
the momentum operators. In Section 3, we give a brief overview of the 1D
Fourier transform [65] and show a Plancherel theorem in this framework.
In Section 4, we define the 1D QSTFT and prove an isometric relation, a
Moyal formula, a reconstruction formula, etc. From this, it follows that
the adjoint operator defines a left inverse. Furthermore, it gives the pos-
sibility to write the 1D QSTFT using the reproducing kernel associated to
the Gabor space

GϕH := {Vϕf, f ∈ L2(R,H)}.

Finally, we show that the 1D QSTFT follows a Lieb’s uncertainty principle.

• Chapter 7: This Chapter is based on [63]. We construct a Clifford-Appell
system of spherical monogenics in the right Fueter-Bargmann space over
quaternions, denoted by RB(H), and consisting of quaternionic Fueter
regular functions that are square integrable with respect to the Gaussian
measure. The main tool that we use is the Fueter mapping theorem which
relates slice hyperholomorphic functions to Fueter regular ones through
the Laplacian. More precisely, we apply the Fueter mapping on a special
basis of the slice hyperholomorphic Fock space constructed in [15] and
obtain a set of homogeneous monogenic polynomials in the right mono-
genic Bargmann space over the quaternions. This allows us to construct

9
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Chapter 1. Introduction

on the standard Hilbert space on the real line the so called Bargmann-
Fock-Fueter integral transform whose range is a quaternionic reproduc-
ing kernel Hilbert space of Cauchy-Fueter regular functions. In particular,
this may give a partial answer to Remark 4.6 in [88] about Clifford coher-
ent state transforms using the Fueter mapping theorem in the setting of
quaternions.
In order to present these results, we collect some basic definitions and pre-
liminaries in Section 2. In Section 3, we study how the Fueter mapping
acts on special basis elements of the slice hyperholomorphic Fock space.
Then, we show that the obtained polynomials constitute an Appell set in
the Bargmann space of Cauchy-Fueter regular functions. In Section 4, the
Fock-Fueter kernel is discussed and the Bargmann-Fock-Fueter integral
transform is introduced and studied. Section 5 presents a factorization of
the Bargmann-Fock-Fueter transform.

• Chapter 8: This Chapter is a continuation of the previous one. It is based
also on [63], we first deal with some explicit formulas for the slice hyper-
holomorphic Bergman kernels on some different quaternionic domains.
We consider the case of the quaternionic unit half ball and the fractional
wedge domain. Then, we treat an integral transform similar to the one
considered in the previous chapter in the case of the Bergman spaces on
the unit ball, on the half space and on the unit half-ball on quaternions.

• Chapter 9: This chapter is based on [5, 8]. In order to define and study
quaternionic reproducing kernel Hilbert spaces the approach that makes
use of the Appell systems looks very promising and allows to define the
associated operators. We will show that using a special set of Clifford
Appell polynomials, denoted by {Qn}n≥0, we can introduce various func-
tions spaces denoted by HMb whose elements are converging series of
the form

∑
Qnan, where the quaternionic coefficients an satisfy suitable

conditions which depend on a given sequence b = (bn)n≥0 of real (in fact
rational) numbers. This approach is rather general, and it is used also in
the slice hyperholomorphic setting in which the series under considera-
tion are of the form

∑
qnan, where q denotes the quaternionic variable and

give rise to spaces denoted by HSc, c = (cn)n≥0. In this chapter we treat
the case of the quaternionic Fock and the Hardy spaces which have been
already studied in the slice setting but are new in the Fueter regular frame-
work combined with the Appell polynomials. For this reason, these spaces
are called Clifford-Appell-Fock space and Clifford-Appell-Hardy space, re-
spectively. One problem of the system {Qn}n≥0 is that if we multiply two
such polynomials we do no obtain an element in the system. This is ex-
pected provided the non-commutative setting and in fact hyperholomor-
phic functions can be multiplied using the so-called CK product. With
the polynomials Qn there is the additional problem of remaining within
the Appell system and in fact we show how this can be achieved. This
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technical result opens the possibility to prove several results and also to
introduce creation, annihilation and shift operators. An advantage of this
description is that we can prove that the function spaces HMb and HSc
for suitable choices of b, c, can be related using the Fueter mapping theo-
rem.
The structure of the chapter is the following: in Section 2 we revise some
notations and preliminary results that we need. In Section 3 we introduce
some quaternionic reproducing kernel Hilbert spaces (QRKHS) based on a
specific Appell system, and prove different properties on such kind of poly-
nomials. We show also that, under suitable conditions, any axially Fueter
regular function can be expanded in terms of these Appell polynomials. In
Section 4 we focus more on the Fock space in this setting. In particular, we
study different properties related to the notions of creation, annihilation
operators and Segal-Bargmann transforms. In Section 5we treat the Hardy
space case, and study different properties related to the shift and backward
shift operators. Section 6 shows how the Fueter mapping acts by sending
spaces of slice hyperholomorphic functions into spaces of Fueter regular
functions. Moreover, we prove that in some special cases the Fueter map-
ping acts as an isometric isomorphism up to a constant. Finally, in the last
section we briefly present Appell-like polynomials and discuss a bit some
results related to Schur analysis in this framework.

• Chapter 10: This chapter is based on [17]. We extend the definition of slice
hyperholomorphic functions to higher order and define the slice polyana-
lytic functions of a quaternionic variable. Then, we shall use the obtained
results to introduce and study the Fock and Bergman spaces of quater-
nionic slice polyanalytic functions and give explicit formulas for their re-
producing kernels. Note that by considering polyanalytic functions with
respect to the classical Cauchy-Fueter regularity on quaternions, it turns
out that even the simple example given by F (q, q) = |q|2 is not poly-
analytic of order 2. However, a natural question that may arise in this
direction is about a possible extension of the well-known Fueter mapping
theorem on quaternions allowing to construct Cauchy-Fueter polyanalytic
functions starting from slice polyanalytic functions of the same order. The
chapter has the following structure: in Section 2 we introduce the quater-
nionic slice polyanalytic functions and prove the poly-decomposition. In
particular, on slice domains we show that a slice polyanalytic function is
the sum of the quaternionic conjugate powers multiplied by slice regu-
lar functions, thus extending the analogous result for complex functions.
We prove also the counterparts of the Splitting Lemma, Identity Princi-
ple, Representation Formula, Extension Lemma and the Refined Splitting
Lemma in this framework. We also discuss slice polyanalytic functions as
a subclass of slice functions on axially symmetric domains. In particular,
we prove a version of the identity principle in this situation. In Section 3,
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we introduce and study the Fock space of slice polyanalytic functions on
quaternions and we give the formula of its reproducing kernel. We treat
also the case of the Bergman theory of the second kind in the quaternionic
slice polyanalytic setting in the case of the unit ball.

• Chapter 11: This chapter is based on [9]. It proposes a bridge between
two theories: the one of slice polyanalytic functions and the one of poly-
Fueter regular functions. It is interesting to note that the class of slice
hyperholomorphic functions is related with the class of functions consid-
ered by Fueter to construct regular functions and thus there is a bridge
between them, specifically the so-called Fueter mapping, in fact by ap-
plying the Laplacian to a slice hyperhomolorphic function one obtains a
regular function, i.e. a function in the kernel of the Cauchy-Fueter oper-
ator, see for example [48]. Also the theory of polyanalytic functions can
be extended to the slice setting by considering a suitable definition, as we
explained in chapter 10. Thus it is a natural question to ask whether there
is an analog of the Fueter map in this more general setting. The answer is
positive and it is one of the main results here: we show that by applying
the Laplacian composed with the (n− 1) power of a global operator with
non-constant coefficients to any slice polyanalytic function of order n we
obtain a Cauchy-Fueter regular function. A second approach to extend the
Fueter mapping to the polyanalytic setting consists to apply the standard
Fueter mapping on each component associated to the poly-decomposition.
This construction allows to generate poly-Fueter regular functions starting
from slice polyanalytic ones of the same order.
This Chapter has the following structure: in Section 2 we set up basic no-
tations and revise some preliminary results. Section 3 contains some re-
sults on the powers of the global operator V and the main statements and
proofs of the poly-Fueter mapping theorems. In Section 4 we prove a poly-
Cauchy formula in this framework. Then, in Section 5 we study an integral
representation of the poly-Fueter mapping theorem on the quaternionic
unit ball. In Section 6, we rewrite our results in the slice polymonogenic
case.

• Chapter 12: In this chapter we give a conclusion of this work. We present
also some new research directions and perspectives that are still under
investigations.

12
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CHAPTER2
Reproducing kernel Hilbert spaces in complex

analysis

Positive definite functions and reproducing kernel Hilbert spaces play an impor-
tant role in different areas of mathematics such as complex analysis, operator
theory, Schur analysis, etc. They are used also to define coherent states in quan-
tum mechanics and appear in the field of support vector machines and kernel
methods in machine learning. In this chapter, we will revise the main properties
of positive definite functions, reproducing kernel Hilbert spaces, and their asso-
ciated operators. Wewill consider specific examples such asHardy and Bergman
spaces on the unit disk D and Fock spaces on the whole complex plane C. Their
polyanalytic counterparts will be briefly discussed also. The material revised in
this chapter is based on the following references [10, 22, 85, 86, 98, 115]. Since
most of the results presented in this chapter are very well-known and classical
we have omitted to give proofs.

2.1 Positive definite kernels and RKHS

We start by recalling the notion of a positive definite kernel.

Definition 2.1.1. LetΩ be a set. The functionK(z, w) fromΩ×Ω intoC is called
a positive definite kernel if for every N ∈ N, every choice of w1, ..., wN ∈ Ω, and

13
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Chapter 2. Reproducing kernel Hilbert spaces in complex analysis

every choice of c1, ..., cN ∈ C, we have

N∑
j,k=1

ciK(wj, wk)ck ≥ 0. (2.1.1)

Remark 2.1.1. We note that the condition (2.1.1) is equivalent to saying that the
N ×N matrix with (j, k) entry K(wj, wk) is positive.

Thenext examples are all positive definite kernels associated to some famous
reproducing kernel Hilbert spaces.

Examples 2.1.2. 1. Cauchy kernel: K1(z, w) =
1

1− zw
, ∀(z, w) ∈ D×D.

2. Bergman kernel: K2(z, w) =
1

(1− zw)2
, ∀(z, w) ∈ D× D.

3. Fock kernel: K3(z, w) = ezw, ∀(z, w) ∈ C× C.

4. Poly-Fock kernel of order 2: K4(z, w) = ezw(1 − |z − w|2), ∀(z, w) ∈
C× C.

We recall some basic facts on positive definite kernels:

Proposition 2.1.3. Let Ω be a set in C. Then, we have

1. If K is a positive definite kernel then K(z, w) is Hermitian, that is

K(z, w) = K(w, z), for all z, w ∈ Ω.

2. The sum of two positive definite kernels is still positive definite.

3. The product of two complex-valued positive definite kernels is still positive
definite.

4. If K(z, w) is positive definite so is F (z, w) = K(z, w).

A very useful way to check that a given function is positive definite is to
express it as an inner product. This observation is the idea behind the kernel
trick and feature mapping terminology which are used in machine learning

Proposition 2.1.4. Let Ω be some set and (H, 〈., .〉H) be a Hilbert space. Let
z 7−→ hz be a function from Ω into H. Then, the function defined by

K(z, w) = 〈hw, hz〉H
is positive definite. In general, the function ϕ(z) = hz is called a feature map.

14
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2.1. Positive definite kernels and RKHS

Definition 2.1.2. A Hilbert space H of functions defined on a set Ω is called a
reproducing kernel Hilbert space if the point evaluations

Λw : f 7−→ f(w), w ∈ Ω

are bounded. Then, by Riesz representation theorem there exists a uniquely deter-
mined functionK(z, w) defined on Ω×Ω, satisfying the two following properties:

i) For every w ∈ Ω, the function

Kw : z 7−→ K(z, w)

belongs to H.

ii) Reproducing property: for every f ∈ H and w ∈ Ω, we have

〈Kw, f〉H = f(w).

The functionK(z, w) is positive definite and is called the reproducing kernel of H.

Conversely, we have the following fundamental result which is known as
Moore-Aronszajn theorem, see for example [10]:
Theorem 2.1.5. Associated to a function K(z, w) positive definite on a set Ω is
uniquely determined a Hilbert space H(K), whose elements are functions on Ω,
and with reproducing kernel K(z, w).

By the end of this section, we give two important kernel examples that are
used in machine learning algorithms, see [110, 112].

1. Radial basis function kernel (RBF kernel): in machine learning, the
RBF kernel is a popular kernel function used in various kernelized learning
algorithms. In particular, it is used in support vector machines (SVMs)
classification. For two samples x and x′, sometimes called also feature
vectors, the RBF kernel is defined by

K(x, x′) = exp
(
−||x− x′||2

2σ2

)
,

where ||x − x′||2 is the the square Euclidean distance between the two
feature vectors and σ > 0 is a free parameter.

2. The polynomial kernel: in machine learning, the polynomial kernel is a
kernel function used with SVMs and other kernelized models, that repre-
sents similarity of vectors (training samples) in a feature spaces over poly-
nomials of the original variables, allowing learning of non-linear models.
For polynomials of degree d, the polynomial kernel is defined as

K(x, y) = (xTy + c)d,

where x and y are vectors in the input space and c ≥ 0 is a free parameter.
Althought the RBF kernel is more popular in SVM classification than the poly-
nomial kernel, the latter is quite popular in natural language processing (NLP).

15
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Chapter 2. Reproducing kernel Hilbert spaces in complex analysis

2.2 Hardy and Bergman spaces

In this section, we revise briefly some classical reproducing kernel Hilbert spaces
on the complex unit disk, in particular we recall the Hardy and Bergman spaces
based on [10].
The Hardy space H2(D) (see Definition below) provides a convenient setting to
describe shift-invariant subspaces of `2(N), and this is one of the main motiva-
tions for introducing this space. It has applications in several other problems in
analysis and digital signal processing. Indeed, a sequence in `2(N) represents a
finite energy discrete signal, and its associated power series belongs to H2(D).
This allows to transform different problems in signal processing into problems
in the setting of function theory in the open unit disk. We recall that, given a
function f analytic in the open unit disk, the function

M2(r) =

∫ 2π

0

|f(reiθ)|2dθ, r ∈ (0, 1)

is increasing. Then, we recall the Hardy space definition

Definition 2.2.1. The Hardy space H2(D) is the set of analytic functions in D
such that

sup
r∈(0,1)

M2(r) = sup
r∈(0,1)

∫ 2π

0

|f(reiθ)|2dθ <∞.

An equivalent characterization of the Hardy space is given by

Theorem 2.2.1. A power series f(z) =
∞∑
n=0

anz
n defined on the unit disk, belongs

to the Hardy space H2(D) if and only if it holds that
∞∑
n=0

|an|2 <∞.

Theorem2.2.2. TheHardy spaceH2(D) is a reproducing kernel Hilbert space with
reproducing kernel given by the kernel function,

KH2(D)(z, w) =
1

1− zw
, for all z, w ∈ D. (2.2.1)

Two important operators that appear in Hardy spaces theory are the shift
and backward shift operators, defined and denoted respectively by

Mz : f 7−→Mz(f)(z) = zf(z)

and

Ra : f 7−→ Ra(f)(z) =


f(z)− f(a)

z − a
, z 6= a

f ′(a), z = a.

16
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2.2. Hardy and Bergman spaces

We note that the shift operator Mz defines an isometric operator on the
Hardy space H2(D), its adjoint there is given by the backward shift R0 under
which the Hardy space is invariant. Moreover, it holds that

||R0(f)||2H2(D) = ||f ||2H2(D) − |f(0)|2. (2.2.2)

One of the main important results associated to the shift operator on the Hardy
space, is the famous Beurling, or Lax-Beurling theorem which allows to charac-
terize invariant subspaces of the shift operator, see [10] and references therein.

Another important example of reproducing kernel Hilbert spaces on the unit
disk, is the Bergman space that we recall here

Definition 2.2.2. The Bergman space A2(D) is the set of analytic functions in D
such that ∫

D
|f(z)|2dA(z) <∞,

with dA(z) =
1

π
dxdy is the Lebesgue measure with respect to z = x+ iy.

An equivalent characterization of the Bergman space is given by

Theorem 2.2.3. A power series f(z) =
∞∑
n=0

anz
n defined on the unit disk, belongs

to the Bergman space A2(D) if and only if it holds that

∞∑
n=0

|an|2

n+ 1
<∞.

Theorem 2.2.4. The Bergman space A2(D) is a reproducing kernel Hilbert space
with reproducing kernel given by the kernel function,

KA2(D)(z, w) =
1

(1− zw)2
, for all z, w ∈ D. (2.2.3)

It is also possible to study weighted Bergman spaces Aα2 (D) with α > −1,
see [86]. In this situation, the kernels are of the form

KAα
2 (D)(z, w) =

1

(1− zw)α+2
, for all z, w ∈ D. (2.2.4)

We note that the case α = 0 corresponds to the standard Bergman space. The
Bergman kernels can be considered also on different domains like the annulus,
ellipse, half space, etc [10]. In particular, we recall briefly here the cases of half
space and half unit disk, since this will be used after in chapter 8. Let C+ denote

17
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Chapter 2. Reproducing kernel Hilbert spaces in complex analysis

the half space defined by the conditions z ∈ C and Re(z) > 0. Then, the
complex Bergman kernel on C+ is given by

KC+(z, w) =
1

π(z + w)2
, for all z, w ∈ C+. (2.2.5)

The reproducing kernel on the half unit disk D+ is obtained as the sum of the
Bergman kernels of both the complex unit disk and the half plane. In particular,
we have

KD+(z, w) :=
1

π(1− zw)2
+

1

π(z + w)2
for all z, w ∈ D+, (2.2.6)

where the first term corresponds to the Bergman kernel of the unit diskKD while
the second one is the Bergman kernel of the complex half plane KC+ , (see, e,g.,
p. 812 in [52]).

2.3 Fock spaces and Segal-Bargmann transforms

In this section we review basic notions related to Fock spaces on Cn. We re-
call also the Segal-Bargmann transform and discuss its behavior with respect
to some classical operators like the creation and annihilation operators, Fourier
transform and Weyl operator. The material revised here is based mainly on the
following references [23, 85, 98, 115].

For any positive parameter α > 0, we consider the Gaussian measure on Cn

defined by

dλα(z) =
(α
π

)n
2
e−α|z|

2

dλ(z)

where z = (z1, ..., zn), |z|2 =
n∑
k=1

|zk|2, zk = xk+ iyk ∀k = 1, ..., n and dλ is the

Lebesgue measure on Cn given by
n∏
k=1

dλ(zk) =
n∏
k=1

dxkdyk.

The Fock or Segal-Bargmann space onCn denoted byF2,α(Cn) orF2
α(Cn) is the

space consisting of all entire functions f(z) on Cn satisfying the condition∫
Cn

|f(z)|2dλα(z) <∞.

According to the book [85], the constant α is related to some physics quantities

associated to the quantum particle. It is in general taken to be equal to
1

~
where

~ stands for the reduced Planck’s constant.

18



i
i

“thesis’’ — 2021/1/31 — 22:52 — page 19 — #39 i
i

i
i

i
i

2.3. Fock spaces and Segal-Bargmann transforms

The Fock space F2
α(Cn) can be defined as the intersection of holomorphic func-

tions on Cn with the Hilbert space L2,α(Cn) = L2(Cn, dλα). Then, we can
consider on F2

α(Cn) the scalar product induced from L2,α(Cn) and defined by

〈f, g〉α =

∫
Cn

f(z)g(z)dλα(z).

According to [98], F2
α(Cn) is called the boson Fock space with n degrees of free-

dom. We call it simply Fock space or Segal-Bargmann space since we do not con-
sider the fermion Fock space. For k = (k1, ..., kn) ∈ Nn, w = (w1, ..., wn) ∈ Cn,
we use the following notations :

zk = zk11 ...z
kn
n , k! = k1!...kn! and |k| =

n∑
t=1

kt.

Then, a first important result that we know on this space is the following

Theorem2.3.1. The setF2
α(Cn) is a Hilbert space with respect to the scalar product

〈., .〉α. Moreover, the monomials defined by

fk(z) = zk = zk11 ...z
kn
n , ∀k = (k1, ..., kn) ∈ Nn; ∀z = (z1, ..., zn) ∈ Cn

form an orthogonal basis in F2
α(Cn) and using the polar coordinates for all k =

(k1, ..., kn) ∈ Nn, we have

‖fk‖2F2
α(Cn) =

k!

α|k| .

An interesting characterization of the Fock space making use of power series
is given by

Proposition 2.3.2. A function f(z) =
∑
k∈Nn

akz
k belongs to the Fock spaceF2

α(Cn)

if and only if the following condition is satisfied

‖f‖2F2
α(Cn) =

∑
k∈Nn

k!

α|k| |ak|
2 <∞.

For z = (z1, ..., zn) ∈ Cn, we have the following growth condition

Proposition 2.3.3. For every f ∈ F2
α(Cn), it holds that

|f(z)| ≤ eα
|z|2
2 ‖f‖F2

α(Cn).

We consider the evaluation mapping on the Fock space defined by

Λz : f ∈ F2
α(Cn) 7−→ f(z) ∈ C

19
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Chapter 2. Reproducing kernel Hilbert spaces in complex analysis

The previous proposition shows that all the evaluation mappingsΛz on the Fock
space are continuous. Hence, by the Riesz representation theorem it can be
proved that F2

α(Cn) is a reproducing kernel Hilbert space whose reproducing
kernel is given by the following exponential function

Kα(z, w) = eαzw ∀z, w ∈ Cn.

The normalized reproducing kernel of the Fock space is given by

kαa (z) :=
Kα(a, z)√
Kα
a (a)

Furthermore, any function f(z) of the Fock space maybe reproduced thanks to
the following integral representation formula

f(z) =

∫
Cn

f(z)eαzwdλα(w); z ∈ Cn.

For z ∈ Cn fixed, sometimes the functions

Kα
z : w 7→ Kα

z (w) = Kα(z, w)

are called coherent states.

Recall that every closed subspace F of a Hilbert space H uniquely determines
an orthogonal projection Proj : F −→ H.
In this case, the ortogonal projection is described by the following

Proposition 2.3.4. The orthogonal projection

Pα : L2,α(Cn) −→ F2
α(Cn)

is an integral operator. More specifically,

Pαf(z) =

∫
Cn

Kα(z, w)f(w)dλα(w)

for all f ∈ L2,α(Cn) and all z ∈ Cn.

The Segal-Bargmann transform is a natural unitary operator associated to
the Fock space, it was introduced in [23]. It identifies the standard Hilbert space
L2(Rn) and the Fock space F2

α(Cn).
In fact, L2(Rn) denote the classical Hilbert space on the n-real space Rn with
respect to its standard Lebesgue measure dx = dx1 · · · dxn. An orthogonal basis
of L2(Rn; dx) is given by the multi-dimensional Hermite functions

hαm(x) := (−1)|m|e
α
2
x2 ∂|m|

∂xm1 · · · ∂xmn

(
e−αx

2
)
=

d∏
`=1

hαm`
(x`), (2.3.1)

20
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2.3. Fock spaces and Segal-Bargmann transforms

for varyingm = (m1, · · · ,md) ∈ (Z+)d, where hαm`
(x`) is the one-dimensional

Hermite function (see [90]). Their norm is known to be given explicitly by

‖hαm‖
2
L2(Rn;dx) = 2|m|α|m|m!

(π
α

)d/2
. (2.3.2)

Then, taking a wave function ψ ∈ L2(Rn, dx), ψ : Rn −→ C the Bargmann
transform Bn is defined as follows

Bnψ(z) =

∫
Rn

An(z, x)ψ(x)dx.

The kernel function of this transform is given by the following

An(z, x) = Az(x) :=
(α
π

)n
4
e

−α
2

(z2+x2)+α
√
2zx

where for z = (z1, .., zn) ∈ Cn, x = (x1, .., xn) ∈ Rn we have the following
notations

z2 :=
n∑
i=1

z2i , x
2 :=

n∑
i=1

x2i and zx :=
n∑
i=1

zixi.

It is known that the last kernel could be obtained making use of the generating
function of Hermite polynomials. Namely, we have the following formula∑

k∈Nn

zk

‖zk‖F2
α(Cn)

hαk (x)

‖hαk‖L2(Rn)

= An(z, x).

In 1961, Bargmann proved this important result

Theorem 2.3.5. The Segal-Bargmann transform Bn is an isometric isomorphism
from the standard Hilbert space L2(Rn) to the Fock space F2

α(Cn). Moreover, for
a fixed z ∈ Cn we have the following

BnA
z
n(w) =

(α
π

)−n
4
Kz
α(w) ∀w ∈ Cn.

Another important property of this transformBn is that it maps the Hermite
functions hαm to the standard orthogonal basis of F2,α(Cn), constituted by the
complex monomials. More exactly, we have (see [23])

Proposition 2.3.6. For allm ∈ Nn and z ∈ Cn,

[Bnh
α
m](z) =

(α
π

)n
4
2

|m|
2 α|m|zm.

Since Bn is a unitary operator sending a basis to a basis. Then the Segal-
Bargmann transform admits an inverse and we have B−1

n = B∗
n. More exactly,

the inverse of a function f(z) in the Fock spaceF2
α(Cn) is given by the following

formula
B−1
n f(x) =

∫
Cn

An(z, x)f(z)dλα(z).
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Chapter 2. Reproducing kernel Hilbert spaces in complex analysis

Remark 2.3.7. Without lost of generality, for the rest of this chapter we suppose
that the dimension n = 1 and the Segal-Bargmann transform B1 will be denoted
simply by B.

The creation and annihilation operators on the Fock spaceF2
α(C) are defined

respectively by

Mzf(z) = zf(z); Dzf(z) =
d

dz
f(z).

Notice thatMz and Dz are unbounded operators on the Fock space and satisfy
the canonical commutation relations namely

[Mz, Dz] = −I.

Moreover, the operator Dz is adjoint toMz , i.e

M∗
z = Dz.

We have the following

Proposition 2.3.8. Let ϕ ∈ L2(R) be such that xϕ,
d

dx
ϕ ∈ L2(R) then we have

1.
(
z +

d

dz

)
B[ϕ](z) =

√
2B[xϕ](z).

2.
√
2zB[ϕ](z) = B

[(
x− d

dx

)
ϕ

]
(z).

Corollary 2.3.9. The Segal-Bargmann transform B maps the dimensionless rais-
ing and lowering operators

a† =

(
x− d

dx

)
and a =

(
x+

d

dx

)
on L2(R) onto the respective raising and lowering operators

b† =
√
2Mz and b =

√
2M∗

z

on the Fock space F2
α(C).

A second interesting approach to introduce Segal-Bargmann transforms is
by considering the convolution product of the function ϕ ∈ L2(R) with the
continuous extension of the fundamental solution of the heat equation. Indeed,
let ρt(x) denote the fundamental solution of the heat equation

∂

∂t
ρt(x) =

1

2
∆xρt(x),
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2.3. Fock spaces and Segal-Bargmann transforms

i.e.
ρt(x) =

1

(2πt)
n
2

e−
|x|2
2t

where ∆ is the usual Laplacian on R. Then, the Segal-Bargmann transform of
the function ϕ ∈ L2(R) can be defined by setting Cϕ(z) = ρ1 ∗ ϕ(z) where ρt
has been analytically continued to C. Explicitly, we have

Cϕ(z) =

∫
R
ρ1(z − x)ϕ(x)dx.

Such construction was used in [88] to study some extensions of Segal-Bargmann
or coherent state transforms in the setting of Clifford analysis.

We end this section by turning the attention to the fact that Segal-Bargmann
transform can be seen also as a particular example of a more general result
known as The Stone-von Neumann Theorem. This construction involves mainly
the Schrödinger Hilbert spaceH = L2(R) combined together with the classical
position and momentum operatorsX and P satisfying the canonical commuta-
tions relations namely,

X : ϕ 7→ Xϕ(x) := xϕ(x), P : ϕ 7→ Pϕ(x) := − i

α

d

dx
ϕ(x)

are defined such that we have

[X,P ] =
i

α
I,

where the symbol [, ] denote the commutator of two operators and I is the iden-
tity.

The Fourier transform and Weyl operator

We review also the Fourier transform and Weyl operator once connected to the
Segal-Bargmann transform. The Fourier transform of a signal f : R −→ C is
defined by

Fα(f)(ξ) :=

√
α

2π

∫
R
f(x)e−αixξdx.

Thanks to the Plancherel-Theorem, it turns out that the Fourier transform maps
unitary L2(R; dx) onto itself. The following diagram is commutative

F2,α(C) Sα //

B−1

��

F2,α(C)

L2(R)
Fα

// L2(R)

B

OO
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Chapter 2. Reproducing kernel Hilbert spaces in complex analysis

Then, we may consider the operator

Sα := BFαB
−1.

We note that Sα maps isometrically F2,α(C) into F2,α(C). Moreover, we have
the following

Proposition 2.3.10. For a given f ∈ F2,α(C), we have

Sα(f)(z) = f(−iz)

for all z ∈ C.

A well-known fact is that the classical Fourier transform corresponding to

α = 1 admits the normalized Hermite functions ϕn =
hn
‖hn‖

as eigenfunctions.

Indeed, we have
F(ϕn) = (−i)nϕn.

The Weyl operators form a family of isometric operators on the Fock space
that can be defined using the normalized reproducing kernel combined with
the translation operator on the Fock space. They are of particular interest for
quantum mechanics and have a semi-group property with respect to a complex
parameter. For more details about this subject see for example [85, 115]. We
recall quickly this notion to stress the importance of Fock spaces.

Definition 2.3.1. Let a be a fixed complex number. The Weyl operator is defined
to be the operator Wa : F2,α(C) −→ F2,α(C) such that

Waf(z) := kαa (z)f(z − a)

= eα(zā−
|a|2
2

)f(z − a).

for every f ∈ F2,α(C) and z ∈ C, where kαa is the normalized reproducing kernel
of the Bargmann-Fock space.

An important fact on the Weyl operators is given by the following

Theorem 2.3.11. Let a, b ∈ C.The Weyl operatorWa is a unitary operator on the
Fock space F2,α(C). Moreover, we have the semi-group property

WaWbf(z) = eiα=(ab)Wa+bf(z)

for any f ∈ F2,α(C) and z ∈ C.

Now, fix c a real number and consider the translation operator on the stan-
dard Hilbert space defined by Tc : L2(R) −→ L2(R), Tcϕ(x) := ϕ(x−c). Then,
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2.4. Polyanalytic functions and associated reproducing kernels

the following diagram is also commutative

F2,α(C) Uc //

B−1

��

F2,α(C)

L2(R)
Tc

// L2(R)

B

OO

and we can consider the operator

Uc := BTcB
−1.

Observe that Uc maps isometrically F2,α(C) into F2,α(C). Moreover, it holds
that

Proposition 2.3.12. For a given f ∈ F2,α(C), we have

Uc(f)(z) = W c√
2
f(z)

for all z ∈ C.

2.4 Polyanalytic functions and associated reproducing kernels

In this section, we revise the needed material concerning complex polyanalytic
functions. The reader interested in more details, may consult the book [22].

Definition 2.4.1. Let Ω be a domain of C. A function f : Ω −→ C is said to be
polyanalytic of order n or n−analytic if(

∂

∂z

)n
f(z) = 0, ∀z ∈ Ω.

The space of all polyanalytic functions of order n is denoted by Hn(Ω).

Example. The function F (z) = 1− zz is polyanalytic of order 2 on C.

Proposition 2.4.1. Let Ω be a domain of C and f : Ω −→ C. Then, the two
following conditions are equivalent

1. f is polyanalytic of order n.

2. f(z) =
n−1∑
k=0

zkak(z),∀z ∈ Ω where a0, ..., an−1 are analytic on Ω.

Proposition 2.4.2. Let f and g be two polyanalytic functions of order n on a
domain Ω. If Ω0 is a subdomain of Ω such that f and g coincide on Ω0, then f and
g coincide everywhere in Ω.
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Chapter 2. Reproducing kernel Hilbert spaces in complex analysis

We recall also the polyanalytic Cauchy formula in complex analysis, seeThe-
orem 2.1 in [57].

Theorem 2.4.3. For k ≥ 1, we set

ψk(z) =
1

2πi

z̄

|z|2
Re(z)k−1

(k − 1)!
.

For z = x+ iy, set dσ = dx∧dy. If f is polyanalytic of order n, then for all z ∈ D
we have

f(z) =

∫
∂D

n−1∑
j=0

(−2)jψj+1(u− z)
∂j

∂ūj
f(u)dσ.

In the book of Balk [22], the Fock space Fn(C) of polyanalytic functions of
order n is defined by

Fn(C) = {f ∈ Hn(C);
∫

C
|f(z)|2e−|z|2dλ(z) <∞},

where dλ(z) denotes the usual Lebesgue measure on the complex plane. Note
that, Fn(C) is a reproducing kernel Hilbert space whose reproducing kernel is

Fn(z, w) = ewz
n−1∑
k=0

(−1)k
(

n

k + 1

)
1

k!
|z − w|2k (2.4.1)

Moreover, for all f ∈ Fn(C) and z ∈ C we have

|f(z)| ≤
√
ne

|z|2
2 ‖f‖Fn(C).

On the other hand, the Bergman spaceA2
n(D) of polyanalytic functions of order

n in the unit disc is given by

A2
n(D) = {f ∈ Hn(D);

∫
D
|f(z)|2dλ(z) <∞}.

Also A2
n(D) is a reproducing kernel Hilbert space whose reproducing kernel is

given by

Bn(z, w) =
n

π(1− wz)2n

n−1∑
k=0

(−1)k
(

n

k + 1

)(
n+ k

n

)
|1− wz|2(n−1−k)|z − w|2k

(2.4.2)
for any z, w ∈ D. Moreover, for all f ∈ A2

n(D) and z ∈ D, we have the following

|f(z)| ≤ n√
π

‖f‖A2
n(D)

(1− |z|2)
.
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CHAPTER3
Preliminaries on hypercomplex analysis

In this chapter, we present the quaternions and revise the main results that
will be needed in the sequel about different hypercomplex function theories.
In particular, slice regular and Fueter hyperholomorphic functions. Then, we
review a fundamental result in Clifford analysis that allows to connect both
the function theories, namely the so-called Fueter-Sce-Qian mapping theorem.
The material revised in this chapter is based mainly on the following refer-
ences [7, 28, 35–38, 47, 75, 77, 83]. Since most of the results presented in this
chapter are very well-known and classical we have omitted to give proofs.

3.1 Slice hyperholomorphic function theory

The non-commutative field of quaternions is defined to be

H = {q = x0 + x1i+ x2j + x3k ; x0, x1, x2, x3 ∈ R}

where the imaginary units satisfy the multiplication rules

i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj = i, ki = −ik = j.

On H the conjugate and the modulus of q are defined respectively by

q = Re(q)− Im(q) where Re(q) = x0, Im(q) = x1i+ x2j + x3k

and
|q| =

√
qq =

√
x20 + x21 + x22 + x23.
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Chapter 3. Preliminaries on hypercomplex analysis

We can use also ~q to denote the vector part of the quaternionic variable. The
imaginary units can be denoted sometimes as e1, e2 and e3 = e1e2. We note that
the quaternionic conjugation satisfy the property pq = q p for any p, q ∈ H.
Moreover, the unit sphere

{q = x1i+ x2j + x3k; x
2
1 + x22 + x23 = 1}

coincides with the set of all imaginary units given by

S = {q ∈ H; q2 = −1}.

Any quaternion q ∈ H \ R can be written in a unique way as q = x + Iy for
some real numbers x and y > 0, and imaginary unit I ∈ S, in fact we have

q = x0 +
x1i+ x2j + x3k

|x1i+ x2j + x3k|
|x1i+ x2j + x3k|.

Then, for every given I ∈ S, the slice CI is defined to be R + RI and it is
isomorphic to the complex plane C so that it can be considered as a complex
plane in H passing through 0, 1 and I . The semi-slice C+

I is given by the set

{x+ yI;x, y ∈ R, y ≥ 0}.

If q = x0 ∈ R then q ∈ CI for all I ∈ S. It is immediate that we have

H = ∪
I∈S

CI .

We denote by Br the open ball in H of radius r > 0, i.e.

Br = {q = x0 + ix1 + jx2 + kx3, such that x20 + x21 + x22 + x23 < r2}.

To introduce convolution operators of a quaternion variable, we need a suitable
exponential function of quaternion variable. For any I ∈ S, we choose the
following well-known definition for the exponential:

eIt = cos(t) + I sin(t), t ∈ R,

see [83]. The Euler’s kind formula holds :

(cos(t) + I sin(t))k = cos(kt) + I sin(kt),

and therefore we can write
(eIt)k = eIkt.

For any q ∈ H\R, let r := |q|; then, see [83], there exists a unique a ∈ (0, π)
such that cos(a) := x1

r
and a unique Iq ∈ S, such that

q = reIqa, with Iq = iy + jv + ks, y =
x2

r sin(a)
, v =

x3
r sin(a)

, s =
x4

r sin(a)
.
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3.1. Slice hyperholomorphic function theory

Now, if q ∈ R, then we choose a = 0, if q > 0 and a = π if q < 0, and as Iq
we choose an arbitrary fixed I ∈ S. So that if q ∈ R \ {0}, then again we can
write q = |q|(cos(a) + I sin(a)) (but with a non unique I). The above is called
the trigonometric form of the quaternion number q 6= 0. For q = 0 we do not
have a trigonometric form for q (exactly as in the complex case).
In [77], the authors proposed a new definition to extend the classical theory
of holomorphic functions in complex analysis to the quaternionic setting. This
leads to the new theory of slice hyperholomorphic or slice regular functions on
quaternions:

Definition 3.1.1. A real differentiable function f : Ω −→ H, on a given domain
Ω ⊂ H, is said to be a (left) slice regular function if, for every I ∈ S, the restriction
fI to the slice CI satisfies

∂If(x+ Iy) :=
1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ Iy) = 0,

on ΩI . The slice derivative ∂Sf of f is defined by :

∂S(f)(q) :=

 ∂I(f)(q) if q = x+ Iy, y 6= 0

∂

∂x
(f)(x) if q = x is real.

In addition we introduce the following terminology

1. A quaternionic valued function on a domain Ω is said to be (quaternionic)
intrinsic if f(ΩI) ⊂ CI for any I ∈ S.

2. A function which is slice regular on the whole space of quaternions H is
said to be entire.

We will refer to left slice regular functions as slice regular functions, for short.
The set of these functions is denoted by SR(Ω). It turns out that SR(Ω) is a
right vector space over the noncommutative field H.

Remark 3.1.1. The multiplication and composition of slice regular functions are
not slice regular, in general. Moreover, the slice derivative does not satisfy the
Leibniz rule with respect to the pointwise multiplication. However, the composition
f · g of two slice regular functions is slice regular if g is intrinsic and the pointwise
product fg is slice regular if f is intrinsic, see [35].

According to this definition, the basic polynomials in q with quaternionic co-
efficients on the right are slice regular. Moreover, for any power series

∑
n

qnan,

there exists 0 ≤ R ≤ ∞, called the radius of convergence such that the power
series is a slice regular function on B(0, R) := {q ∈ H; |q| < R}. The space of
slice regular functions is endowed with the natural topology of uniform conver-
gence on compact sets. The characterization of slice regular functions on a ball
B = B(0, R) centered at the origin is given by
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Chapter 3. Preliminaries on hypercomplex analysis

Theorem 3.1.2 (Series expansion). An H-valued function f is slice regular on
B(0, R) ⊂ H if and only if it has a series expansion of the form:

f(q) =
+∞∑
n=0

qn
1

n!
∂
(n)
S (f)(0)

converging on B(0, R) = {q ∈ H; | q |< R}.

Definition 3.1.2. A domain Ω ⊂ H is said to be a slice domain (or just s-domain)
if Ω ∩ R is nonempty and for all I ∈ S, the set ΩI := Ω ∩ CI is a domain of the
complex plane CI . If moreover, for every q = x+ Iy ∈ Ω, the whole sphere

[q] := {x+ Jy; J ∈ S},

is contained in Ω, we say that Ω is an axially symmetric slice domain.

Example. The whole space H and the Euclidean ball B = B(0, R) of radius R
centered at the origin are axially symmetric slice domains.

The following properties of slice regular functions are fundamental and very
useful to develop this theory, see [35, 75].

Lemma 3.1.3 (Splitting Lemma). Let f be a slice regular function on a domain
Ω. Then, for every I, J ∈ S with I ⊥ J , there exist two holomorphic functions
F,G : ΩI −→ CI such that for all z = x+ Iy ∈ ΩI , we have

fI(z) = F (z) +G(z)J,

where ΩI = Ω ∩ CI and CI = R+ RI.

Theorem 3.1.4 (Identity Principle). Let f and g be two slice regular functions on
a slice domain Ω. If, for some I ∈ S, f and g coincide on a subset of ΩI having an
accumulation point in ΩI , then f = g on the whole domain Ω.

Theorem 3.1.5. Let Ω be an axially symmetric slice domain and f ∈ SR(Ω).
Then, for any I, J ∈ S, we have the formula

f(x+ Jy) =
1

2
(1− JI)fI(x+ Iy) +

1

2
(1 + JI)fI(x− Iy)

for all q = x+ Jy ∈ Ω.

In other words, we have

Theorem 3.1.6 (Representation Formula). Let Ω be an axially symmetric slice
domain, f ∈ SR(Ω) and I, J ∈ S. Then, for all q = x+ yI ∈ H, we have

f(x+ yI) = α(x, y) + Iβ(x, y)
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3.1. Slice hyperholomorphic function theory

where
α(x, y) =

1

2
[f(x+ yJ) + f(x− yJ)]

and
β(x, y) =

J

2
[f(x− yJ)− f(x+ yJ)].

Moreover, α and β are H-valued differentiable functions satisfying the Cauchy-
Riemann conditions. We have also α(x,−y) = α(x, y) and β(x,−y) = −β(x, y).

Lemma 3.1.7 (Extension Lemma). Let ΩI be a domain in CI symmetric with
respect to the real axis and such that ΩI ∩ R 6= ∅. Let h : ΩI −→ H be a
holomorphic function. Then, the function ext(h) defined by

ext(h)(x+Jy) :=
1

2
[h(x+Iy)+h(x−Iy)]+JI

2
[h(x−Iy)−h(x+Iy)]; J ∈ S,

extends h to a slice regular function ext(h) on
∼
Ω = ∪

x+Iy ; x+Jy∈Ω
x+ Iy, the sym-

metric completion of ΩI . Moreover, ext(h) is the unique slice regular extension of
h.

It is also possible to introduce the notion of Cauchy kernel for slice hyper-
holomorphic functions, see for example [35, 48].

Definition 3.1.3. Let q, s ∈ H be such that sq 6= qs. The series expansion given
by

S−1(s, q) :=
∞∑
n=0

qns−1−n, |q| < |s|

is called a noncommutative Cauchy kernel series or shortly Cauchy kernel series.

Theorem 3.1.8. Let q, s ∈ H be such that q /∈ [s]. Then, we have

S−1(s, q) = −(q2 − 2Re(s)q + |q|2)−1(q − s).

An important fact in this theory, is that the slice hyperholomorphic Cauchy
kernel can be written in two different forms thanks to the following identity.

Proposition 3.1.9. Let q, s ∈ H be such that q /∈ [s]. Then, we have

−(q2 − 2Re(s)q + |q|2)−1(q − s) = (s− q)(s2 − 2Re(q)s+ |s|2)−1.

Then, two formulations of the Cauchy kernel can be introduced in this frame-
work

Definition 3.1.4. Let q, s ∈ H be such that q /∈ [s].

• We say that S−1(s, q) is written in the form I if

S−1(s, q) := −(q2 − 2Re(s)q + |q|2)−1(q − s).
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Chapter 3. Preliminaries on hypercomplex analysis

• We say that S−1(s, q) is written in the form II if

S−1(s, q) := (s− q)(s2 − 2Re(q)s+ |s|2)−1.

The previous notion of Cauchy kernel allows to introduce a Cauchy formula
for slice hyperholomorphic functions.

Theorem 3.1.10 (Cauchy Formula). LetW ⊂ H be an open set and f a left slice
regular function . LetU be a bounded axially symmetric open set such thatU ⊂ W .
Suppose that theboundary ofU∩CI consists of a finite number of rectifiable Jordan
curves for any I ∈ S. Then, if q ∈ U , we have

f(q) =
1

2π

∫
∂(U∩CI)

f(s)dsIS
−1(s, q),

where dsI = ds/I and the integral does not depend on U nor on the imaginary
unit I ∈ S.

Another interesting approach to define slice hyperholomorphic functions is
to consider them as solutions of a special global operator with non constant
coefficients that was introduced and studied in [40, 51, 80]. This leads to the
following definition

Definition 3.1.5. Let Ω be an open set in H and f : Ω −→ H a function of class
C1. We define the global operator G(f) by

G(f)(q) := |~q |2∂x0f(q) + ~q
3∑
l=1

xl∂xlf(q),

for any q = x0 + ~q ∈ Ω.

It was proved in [40] that any slice hyperholomorphic function belongs to
ker(G) on axially symmetric slice domains. Other interesting properties of the
global operator G were studied in [42]. We recall some of them that will be
helpful for our purposes:

Proposition 3.1.11. Let Ω be an open set in H and f, g : Ω −→ H two functions
of class C1. Then, for q = x0 + ~q ∈ Ω we have

1. G(fg) = G(f)g + fG(g) + (~q f − f~q )
3∑
l=1

xl∂xlg.

In particular, it holds:

2. G(fλ+ g) = G(f)λ+G(g),∀λ ∈ H.

3. G(x0f) = |~q |2f + x0G(f) and G(~q f) = −|~q |2f + ~q G(f).

4. G(qkf) = qkG(f),∀k ∈ N.
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3.2. Quaternionic intrinsic functions

3.2 Quaternionic intrinsic functions

Let us consider the subclass of SR(Ω) defined on an open set Ω ⊂ H by

N (Ω) := {f ∈ SR(Ω) : f(Ω ∩ CI) ⊂ CI ;∀I ∈ S}.

If Ω is axially symmetric, functions of this class are called quaternionic intrinsic
in analogies with the complex case thanks to the following property

Proposition 3.2.1. A slice regular function f belongs to the class N (Ω) if and
only if it satisfies f(q) = f(q) for all q ∈ Ω.

If one considers the ball Ω = B(0, R) with center at the origin it is clear
that a slice regular function is belonging toN (Ω) if and only if its power series
expansion has real coefficients. These functions are also called real, in a more
general case we have

Proposition 3.2.2. Let Ω ⊂ H be an axially symmetric open set and consider the
slice regular function f(x + yI) = α(x, y) + Iβ(x, y). Then f ∈ N (Ω) if and
only if

f(x+ yI) = α(x, y) + Iβ(x, y)

with α, β are real valued functions satisfying the Cauchy-Riemann conditions.

Remark 3.2.3. All elementary transcendal functions are belonging to the class
N (H). These functions coincide with the analogous complex function on any com-
plex plane CI .

1. exp(q) = eq =
∞∑
n=0

qn

n!
.

2. sin(q) =
∞∑
n=0

(−1)n
q2n+1

(2n+ 1)!
.

3. cos(q) =
∞∑
n=0

(−1)n
q2n

(2n)!
.

Another version of the splitting lemma involving complex intrinsic functions
is the following

Lemma 3.2.4 (Refined Splitting Lemma). Let U ⊂ H be an axially symmetric
slice domain and let f be a slice regular function on U . For any I, J ∈ S with J
orthogonal to I , there exist four holomorphic intrinsic functions hl : U ∩ CI −→
CI , l = 0, ..., 3 such that

fI(x+ yI) = h0(x+ yI) + h1(x+ yI)I + h2(x+ yI)J + h3(x+ yI)K,

where K = IJ .
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Chapter 3. Preliminaries on hypercomplex analysis

An important fact is that the class of slice regular functions on axially sym-
metric slice domains can be obtaind from the subclass of quaternionic intrinsic
functions. This is explained thanks to the following

Proposition 3.2.5. LetU ⊂ H be an axially symmetric slice domain and {1, I, J, IJ}
a basis of H. Then,

SR(U) = N (U)⊕N (U)I ⊕N (U)J ⊕N (U)IJ

Because of the noncommutativity of H the composition and multiplication
of two slice regular functions are not slice regular in general. Consider the fol-
lowing example, set f(q) = q − i we have

f(q)2 = (q − i)(q − i) = q2 − qi− iq − 1

The product f 2 = ff is not slice regular because of the term iq. However, we
know that

Proposition 3.2.6. Let U ⊂ H be an axially symmetric slice domain and let f
and g be two slice regular functions on U belonging to N (U). Then, the point wise
multiplication fg belongs also to N (U).

On the other hand, we consider the function g(q) = q2. Clearly the compo-
sition g ◦ f = f 2 which is not slice regular. To preserve the slice regularity of
the composition, we have the following

Proposition 3.2.7. Let U be an axially symmetric quaternionic slice domain and
V an open set in H. Let g and f be respectively two slice regular functions on U
and V such that g(U) ⊂ V and g ∈ N (U). Then, the composition f ◦ g is slice
regular on U .

For I ∈ S fixed, we define another subclass of slice regular which is larger
than N (U). Namely, we consider

VI(U) := {f ∈ SR(U) : f(U ∩ CI) ⊂ CI}

Remark 3.2.8. We have the following

1. N (U) = ∩
I∈S

VI(U).

2. Let I ∈ S fixed and J ∈ S such that I ⊥ J . Then, direct computations using
the extension lemma shows the following

SR(U) = VI(U)⊕ VI(U)J.
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3.3. Hardy, Bergman and Fock spaces of slice hyperholomorphic functions

3.3 Hardy, Bergman and Fock spaces of slice hyperholomorphic func-
tions

The Hardy space of slice hyperholomorphic functions on the quaternionic unit
ball B was introduced first in [11,12] and is denoted by H2(B). See also [55] for
Hardy spaces Hp(B). We recall that the Hardy space is defined to be the space
of slice regular power series given by

H2(B) =

{
f =

∞∑
k=0

qkak; ak ∈ H : ||f ||2 =
∞∑
k=0

|ak|2 <∞

}
.

We note that H2(B) is a quaternionic reproducing kernel Hilbert space whose
reproducing kernel is given by

KH2(B)(q, r) :=
∞∑
n=0

qnrn = (1− qr)−∗, (3.3.1)

where ∗ denotes the classical star product of slice hyperholomorphic functions.
Furthermore, we have the following charaterization of the quaternionic Hardy
space:

Theorem 3.3.1. Let f ∈ H2(B). Then, the norm of f can be written as

||f ||2 = sup
0<ρ<1

(
1

2π

∫ 2π

0

|f(ρeIθ|2dθ
) 1

2

.

The slice Bergman space of the first and second kind were introduced in
[41, 43]. In particular, we focus on the case of the Bergman space of the second
kind of the quaternionic unit ball B. For I ∈ S, the slice hyperholomorphic
Bergman space of the second kind is defined to be

ASlice(B) := {f ∈ SR(B);
∫

BI

|fI(p)|2dλI(p) <∞}.

Note that,ASlice(B) is a right quaternionic Hilbert space which does not depend
on the choice of the imaginary unit I . Its reproducing kernel is obtained by ex-
tending the classical kernel in complex analysis; in closed form it can be written
as follows, see [43]:

BS(q, r) =
1

π
(1− 2q̄r̄ + q̄2r̄2)(1− 2Re(q)r̄ + |q|2r̄2)−2. (3.3.2)

We note that this kernel can be written also in the following form

BS(q, r) =
1

π
(1− 2Re(r)q + |r|2q2)−2(1− 2qr + q2r2). (3.3.3)
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Chapter 3. Preliminaries on hypercomplex analysis

The paper [15] studies the slice hyperholomorphic quaternionic Fock space
FSlice(H), defined for a given I ∈ S to be

FSlice(H) :=

{
f ∈ SR(H);

1

π

∫
CI

|fI(p)|2e−|p|2dλI(p) <∞
}
,

where fI = f |CI
and dλI(p) = dxdy for p = x + yI . The definition of this

space does not depend on the choice of I . This quaternionic Fock space can be
characterized in terms of the slice hyperholomorphic power series as follows

FSlice(H) =

{
∞∑
k=0

qkak; ak ∈ H :
∞∑
k=0

k!|ak|2 <∞

}
.

It was proved also that FSlice(H) is a right quaternionic reproducing kernel
Hilbert space whose reproducing kernel is given by

e∗(pq) =
∞∑
n=0

pnqn

n!
. (3.3.4)

Equivalently, the reproducing kernel of the slice hyperholomorphic Fock space
could be obtained also by taking the slice regular extension of the complex func-
tion ezq where z and q belong to the same slice. This means that

e∗(pq) = ext(ezq)(p). (3.3.5)

Its associated Segal-Bargmann transform was studied in [60] by considering the
slice hyperholomorphic kernel obtained making use of the normalized Hermite
functions (ηn)n≥0. The explicit expression of this kernel is given by

AS
H(q, x) :=

∞∑
k=0

qk√
k!
ηk(x) = e−

1
2
(q2+x2)+

√
2qx, ∀(q, x) ∈ H× R. (3.3.6)

Then, for any quaternionic valued function ϕ in L2(R,H) the slice hyper-
holomorphic Segal-Bargmann transform is defined by

BSH(ϕ)(q) =
∫

R
AS

H(q, x)ϕ(x)dx. (3.3.7)

In the same spirit different famous spaces of slice hyperholomorphic functions
such as Hardy, Besov, Bloch, Dirichlet and Bergman spaces were studied in [13,
43, 113].

3.4 Fueter hyperholomorphic function theory andFuetermapping the-
orem

We recall the classical notion of Fueter hyperholomorphic or Fueter regular
functions, for more details one can see [47, 83].
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3.4. Fueter hyperholomorphic function theory and Fueter mapping theorem

Definition 3.4.1. Let U ⊂ H be an open set and f : U −→ H a real differentiable
function. We say that f is (left) Fueter regular or regular for short if

Df(q) :=
(

∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)
f(q) = 0,∀q ∈ U.

The right linear space of Fueter regular functions is denoted by R(U).

Sometimes the Cauchy-Fueter operator can be denoted simply by ∂. The
right Fueter regular functions can be defined just by taking the imaginary units
on the right of the derivatives of the function f . The quaternionic monomials
Pn(q) = qn are not Fueter regular. However, there exist some other important
functions in this theory, the so-called Fueter variables, defined by

ζl(x) = xl − elx0, l = 1, 2, 3. (3.4.1)

These functions play the same role that complex monomials play in complex
analysis. For example, a series expansion for Fueter regular functions is obtained
using these Fueter variables. A suitable product that allows to preserve the reg-
ularity in this setting is the so-called C-K product, denoted�. Given two Fueter
regular functions f and g, we take their restriction to x0 = 0 and consider their
pointwise multiplication. Then, we take the Cauchy-Kowalevskaya extension
of this pointwise product, which exists and is unique, to define f � g, see [83].
As customary, a Fueter regular polynomial of degree k is called a quaternionic
spherical monogenic of degree k. For more details about the theory of quater-
nionic Fueter regular functions we refer the reader to, e.g. [47, 83].

The two theories of slice hyperholomorphic and Fueter regular functions are
related by the Fueter mapping theorem, see [48]. We briefly recall below the
variation of this result that we will use later and we refer the reader to [102] for
more details. We recall below the variations of the Fueter mapping theorem that
we will use later in the next chapters and refer the reader to [48,102] for several
extensions.

Theorem 3.4.1 (Fueter mapping theorem [48]). Let U be an axially symmetric
set inH and let f : U ⊂ H −→ H be a slice hyperholomorphic function of the form
f(x+yI) = α(x, y)+Iβ(x, y),whereα(x, y) and β(x, y) are quaternionic-valued
functions such that α(x,−y) = α(x, y), β(x,−y) = −β(x, y) and satisfying the
Cauchy-Riemann system. Then, the function

∼
f(x0 + ~q ) = ∆

(
α(x0, |~q |) +

~q

|~q |
β(x0, |~q |)

)
extends to a Fueter regular function on the whole U .

Remark 3.4.2. If U is an axially symmetric slice domain in H, then every slice
hyperholomorphic function f : U ⊂ H −→ H is of the form f(x + Iy) =

37



i
i

“thesis’’ — 2021/1/31 — 22:52 — page 38 — #58 i
i

i
i

i
i

Chapter 3. Preliminaries on hypercomplex analysis

α(x, y) + Iβ(x, y), where α and β have the properties mentioned in the preced-
ing statement. This is an immediate consequence of the Representation formula
observed in Lemma 2.2 in [45].

Remark 3.4.3. Below, we can consider the Fueter mapping defined by

τ : SR(U) → FR(U), f 7−→ τ(f) = ∆(f).

Theorem 3.4.4 ( [48]). Given a quaternion s ∈ H, we define

[s] = {p ∈ H : p = Re(s) + I|~s |, I ∈ S}.

Let S−1(s, q) be the Cauchy kernel defined by:

S−1(s, q) = (s− q)(s2 − 2Re(q)s+ |q|2)−1, q /∈ [s].

Then the function

F(s, q) := ∆S−1(s, q) = −4(s− q)(s2 − 2Re(q)s+ |q|2)−2,

is a Cauchy-Fueter regular function in the variable q, and it is right slice regular
in the variable s for q /∈ [s].

Theorem 3.4.5 (The Fueter mapping theorem in integral form [48]). LetW ⊂ H
be an axially symmetric open set and let f be slice hyperholomorphic in W . Let
U be a bounded axially symmetric open set such that U ⊂ W . Suppose that the
boundary of UI = U ∩CI consists of finite number of rectifiable Jordan curves for
any I ∈ S. Then, if q ∈ U , the Cauchy-Fueter regular function given by

τ(f)(q) = ∆f(q)

has the integral representation

τ(f)(q) =
1

2π

∫
∂UI

∆S−1(s, q)dsIf(s), dsI = ds/I,

and the integral does not depend on U nor on the imaginary unit I ∈ S.

We will need also these useful results in our computations

Proposition 3.4.6 ( [24]). For all n ≥ 2, we have

D[qn] = −2
n∑
k=1

qn−kqk−1.

Proposition 3.4.7 ( [63]). For all n ≥ 2, we have

τ [qn] = −4
n−1∑
k=1

(n− k)qn−k−1qk−1.
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3.5. Clifford monogenic case

3.5 Clifford monogenic case

Let {e1, e2, ..., em} be an orthonormal basis of the Euclidean vector space Rm

in which we introduce a non-commutative product defined by the following
multiplication law

ekes + esek = −2δk,s, k, s = 1, ...,m

where δk,s is the Kronecker symbol. The set

{eA : A ⊂ {1, ...,m} with eA = eh1eh2...ehr , 1 ≤ h1 < ... < hr ≤ m, e∅ = 1}

forms a basis of the 2m-dimensional Clifford algebra Rm over R. Let Rm+1 be
embedded in Rm by identifying (x0, x1, ..., xm) ∈ Rm+1 with the paravector
x = x0 + x ∈ Rm. The conjugate of x is given by x̄ = x0 − x and the norm |x|
of x is defined by |x|2 = x20 + ...+ x2m. Form ≥ 1, the Euclidean Dirac operator
on Rm is given by

∂x =
m∑
k=1

ek∂xk .

The generalized Cauchy-Riemann operator (also known as Weyl operator) and
its conjugate in Rm+1 are given respectively by

∂ := ∂x0 + ∂x and ∂ := ∂x0 − ∂x.

Notice that
∂∂ = ∂∂ = ∆Rm+1

where∆Rm+1 stands for the usual Laplacian on the Euclidean space Rm+1. Real
differentiable functions on an open subset of Rm+1 taking their values in Rm

that are in the kernel of the generalized Cauchy-Riemann operator are called
left monogenic or monogenic, for short. Moreover, for a monogenic function f
we have the following Leibniz rule, see e.g. [100]

∂x(xf) = −mf − x∂xf − 2
m∑
l=1

xl∂xlf. (3.5.1)

The latter formula will be very important for our calculations. In the particular
case of quaternions the generalized Cauchy-Riemann operator inRm+1 becomes
the Cauchy-Fueter operator and this leads to the theory of quaternionic Fueter
regular functions. The (n − 1) dimensional sphere of units 1−vectors in Rn is
denoted by

Sm−1 = {x = x1e1 + ...+ xmem;x
2
1 + ...x2m = 1}.

Note that if I ∈ Sn−1, then I2 = −1. Based on these notations, in [36] the theory
of slice regular functions on quaternions was extended to the slice monogenic
setting thanks to the following :
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Chapter 3. Preliminaries on hypercomplex analysis

Definition 3.5.1. A real differentiable function f : Ω ⊂ Rm+1 −→ Rm on a
given open set is said to be a slice (left) monogenic function if, for very I ∈ Sm−1,
the restriction fI to the slice CI , with variable x = u + Iv, satisfies the following
equation on ΩI = Ω ∩ CI

∂If(u+ Iv) :=
1

2

(
∂

∂u
+ I

∂

∂v

)
fI(u+ vI) = 0.

The space of all slice monogenic functions on Ω is denoted by SM(Ω).

Finally, we state the famous Fueter-Sce-Qian mapping theorem in the Clif-
ford monogenic case

Theorem 3.5.1 (Fueter-Sce-Qian mapping theorem ). Let Ω be an axially sym-
metric slice domain of Rm+1. If f is an s-polymonogenic function. Then, the func-
tion defined by

τm(f)(x) = ∆
m−1

2

Rm+1f(x)

is monogenic.
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CHAPTER4
Approximation in slice hyperholomorphic Fock

spaces

In this chapter we introduce two Fock spaces of slice regular functions. These
spaces can be of two different kinds since they are equipped with different inner
products and contain different functions. Then, we show that the set of quater-
nionic polynomials is dense in both Fock spaces of the first and of the second
kind. Several proofs are presented, including constructive methods based on the
Taylor expansion and on the convolution polynomials. In the last case, quan-
titative estimates in terms of higher order moduli of smoothness and of best
approximation quantity are obtained. The results obtained in this part of the
thesis are based on [62].

4.1 Motivation

Fock spaces have been introduced in quantum mechanics via tensor products
to describe the quantum states space of variables belonging to a same Hilbert
space. Then, it was realized that this description corresponds in fact to the
Segal-Bargmann spaces, i.e. spaces of holomorphic functions in several vari-
ables which are square integrable with respect to a Gaussian measure. These
spaces are important also in other settings, like in infinite dimensional analysis
and in free analysis, since these spaces are related to the white noise space and
to the theory of stochastic distributions, see [114]. For an account on the theory
of Fock spaces one may consult for example the book [115]. Here we continue
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Chapter 4. Approximation in slice hyperholomorphic Fock spaces

the study of slice hyperholomorphic Fock spaces over the quaternions started
in [15] with the purpose of providing some approximation results, specifically
our goal is to extend results on the density of polynomials in the complex case
to this setting. We shall show that in this context one may define two types of
Fock spaces, which are called of the first and of the second kind, and for which
the approximation results require different techniques.

We review results on the Hilbert quaternionic Fock space and Segal-Bargmann
transform. We introduce also the definition of Fock spaces of the first and sec-
ond kind. First, we study the approximation result in Fock spaces of the first
kind. Then, we move to prove the approximation result in Fock spaces of the
second kind, obtaining a result of general validity. We obtain quantitative esti-
mates in terms of higher order moduli of smoothness and of best approximation
quantity. Finally we discuss the density of reproducing kernels, type and order
of functions in the Fock spaces of the second kind.

4.2 The slice hyperholomorphic Fock space andSegal-Bargmann trans-
form

The Bargmann-Fock space of slice hyperholomorphic functions in the Hilbert
case was first introduced by Alpay, Colombo, Sabadini and Salomon in [15]. In
this section, we briefly review this notion and recall some results on the quater-
nionic Segal-Bargmann transform introduced in [60] that will be useful in the
sequel.

For given I ∈ S and ν > 0, we set

F2,ν
I (H) := {f ∈ SR(H);

ν

π

∫
CI

|fI(q)|2e−ν|q|
2

dλI(q) <∞},

where fI = f |CI
and dλI(q) = dxdy for q = x + yI . The set F2,ν

I (H) is called
the slice hyperholomorphic Fock space. The right H-vector space F2,ν

I (H) is
endowed with the inner product

〈f, g〉F2,ν
I (H) =

ν

π

∫
CI

gI(q)fI(q)e
−ν|q|2dλI(q) (4.2.1)

for f, g ∈ F2,ν
I (H), so that the associated norm is given by

‖f‖2F2,ν
I (H)

=
ν

π

∫
CI

|fI(q)|2e−ν|q|
2

dλI(q).

It was shown in [15] that the monomials fn(q) := qn; n = 0, 1, 2, · · · , form an
orthogonal basis of F2,ν

I (H) with

〈fn, fn〉F2,ν
I (H) =

m!

νm
δm,n. (4.2.2)
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4.2. The slice hyperholomorphic Fock space and Segal-Bargmann transform

Moreover, for any f =
∞∑
n=0

qnan and g =
∞∑
n=0

qnbn in F2,ν
I (H), we have

〈f, g〉F2,ν
I (H) =

∞∑
n=0

n!

νn
bnan, (4.2.3)

Thus, a given series f(q) =
∞∑
n=0

qnan belongs to F2,ν
I (H) if and only if the se-

quence of quaternions (an)n≥0 satisfies the growth condition

‖f‖2F2,ν
I (H)

=
∞∑
n=0

n!

νn
|an|2 <∞. (4.2.4)

The definition of the quaternionic Bargmann-Fock space F2,ν
I (H) does not de-

pend on the choice of the complex plane thanks to this observation:

Proposition 4.2.1. Let f be slice entire function and I, J ∈ S. Then, we have

1

2
‖f‖F2,ν

I (H) ≤ ‖f‖F2,ν
J (H) ≤ 2‖f‖F2,ν

I (H).

Remark 4.2.2. According to the previous comment, we will denote in general the
slice hyperholomorphic Fock space by F2,ν

slice(H).

We note that for a fixed q ∈ H, the evaluation map δq : F2,ν
slice(H) −→ H;

δq(f) := f(q), is a continuous linear form. More precisely, we have

Lemma 4.2.3. For every f ∈ F2,ν
slice(H), we have the estimate

|δq(f)| ≤ exp
(ν
2
|q|2
)
‖f‖F2,ν

slice(H).

Thus, by Riesz’ representation theorem for quaternionic Hilbert spaces, there
exists a unique element Kν

q in F2,ν
slice(H) such that:〈

f,Kν
q

〉
F2,ν

slice(H)
= δq(f) = f(q)

for all f ∈ F2,ν
slice(H). The reproducing kernel function Kν : H × H −→ H;

(p, q) 7−→ Kν(p, q) = Kν
q (p) is then given by

Kν(p, q) =
∞∑
n=0

νnpnqn

n!
= Kν(q, p). (4.2.5)

We have also

Proposition 4.2.4. For every q, q′ ∈ H, we have〈
Kν
q , K

ν
q′

〉
F2,ν

slice(H)
= Kν(q

′, q)

and in particular ∥∥Kν
q

∥∥2
F2,ν

slice(H)
= eν|q|

2

.
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Chapter 4. Approximation in slice hyperholomorphic Fock spaces

The reproducing kernel of F2,ν
Slice(H) is given by

Kν(p, q) = Kν
q (p) =

∞∑
n=0

νnpnqn

n!
= e∗(νpq), ∀(p, q) ∈ H×H.

Now, we turn our attention to the quaternionic Segal-Bargmann transform.
It can be defined from the quaternionic Hilbert space L2(R; dx) = L2(R;H),
consisting of all the square integrable H-valued functions with respect to

〈ϕ, ψ〉L2(R;dx) :=

∫
R
ψ(x)ϕ(x)dx, (4.2.6)

onto the slice hyperholomorphic Bargmann-Fock space F2,ν
slice(H). For this, we

consider the kernel function

A(q;x) :=
(ν
π

)3/4
e

−ν
2
(q2+x2)+ν

√
2qx; (q, x) ∈ H× R, (4.2.7)

obtained as the slice hyperholomorphic extension of the kernel function of the
classical Segal-Bargmann transform. This is closely connected with the fact that
A(q;x) can be seen as the generating function of the real weighted Hermite
functions

hνn(x) := (−1)ne
ν
2
x2 d

n

dxn

(
e−νx

2
)

that form an orthogonal basis of L2(R; dx), with norm given explicitly by

‖hνn‖
2
L2(R;dx) = 2nνnn!

(π
ν

)1/2
. (4.2.8)

In particular, we have the expansion

Proposition 4.2.5. For all q ∈ H and x ∈ R, we have

A(q;x) =
∞∑
n=0

hνn(x)

‖hνn‖L2(R;dx)

qn

‖qn‖F2,ν
slice(H)

.

Another property concerns the partial function of the above kernel function
defined on R by Aq : x 7→ Aq(x) := A(q;x) for every fixed q ∈ H. It connects
the norm of Aq in L2(R,H) to the one of the reproducing kernel functionKν

q in
F2,ν
slice(H). In fact, we have

Proposition 4.2.6. For every fixed q ∈ H, the function Aq is an element of
L2(R,H) and satisfies

‖Aq‖L2(R,H) = e
ν
2
|q|2 =

∥∥Kν
q

∥∥
F2,ν

slice(H)
. (4.2.9)
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4.3. Banach Fock spaces of slice hyperholomorphic functions

Associated to the kernel function A(q;x) given by (4.2.7), we consider the
integral transform defined by

BνH(ψ)(q) =
∫

R
A(q;x)ψ(x)dx =

(ν
π

) 3
4

∫
R
e

−ν
2
(q2+x2)+ν

√
2qxψ(x)dx (4.2.10)

for q ∈ H and ψ : R −→ H, provided that the integral exists. We will call it the
quaternionic Segal-Bargmann transform. The following shows that BνH is well
defined on L2(R; dx).

Proposition 4.2.7. For every q ∈ H and every ψ ∈ L2(R; dx), we have

|BνH(ψ)(q)| ≤
(ν
π

)1/2
e

ν
2
|q|2‖ψ‖L2(R;dx). (4.2.11)

The explicit expression of the Segal-Bargmann transform acting on the Her-
mite functions hνn is given by Namely, we have

Lemma 4.2.8. For every quaternion q ∈ H and nonnegative integer n, we have

BνH(hνn)(q) =
(ν
π

) 1
4
2

n
2 νnqn

and
‖BνH(hνn)‖F2,ν

slice(H) = ‖hνn‖L2(R,H) .

An important fact that was proved in [60] is given by

Theorem 4.2.9. The quaternionic Segal-Bargmann transform BνH realizes a sur-
jective isometry from the Hilbert space L2(R,H) onto the slice hyperholomorphic
Bargmann-Fock space F2,ν

slice(H).

The following properties hold for the quaternionic Segal-Bargmann trans-
form

Proposition 4.2.10. For all ϕ ∈ L2
H(R) such that xϕ,

d

dx
ϕ ∈ L2

H(R) we have

1. (∂S + νq)BνH [ϕ] (q) = ν
√
2BνH[xϕ](q).

2. BνH
[(
x− d

dx

)
ϕ

]
(q) = ν

√
2qBνH[ϕ](q).

4.3 Banach Fock spaces of slice hyperholomorphic functions

In the framework of slice regular functions, one may consider two kinds of func-
tion spaces. In the papers [68, 73], the properties of density for quaternionic
polynomials in these kinds of spaces were obtained for Bergman, Bloch and
Besov spaces. See also the recent book [72] about a general quaternionic ap-
proximation theory. Let us mention here that in the complex case, convolution
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Chapter 4. Approximation in slice hyperholomorphic Fock spaces

polynomials were used to obtain constructive approximation results in complex
Bergman spaces, see [70]. In this chapter we continue this type of study for the
quaternionic slice regular functions in the so-called Fock spaces. Before to intro-
duce them, we firstly recall some known facts about Fock spaces in the complex
case

Definition 4.3.1. (see, e.g., [115], p. 36) Let 0 < p < ∞ and α > 0. The Fock
space F p

α(C) is defined as the space of all entire functions in C with the property

that
αp

2π

∫
C

∣∣∣f(z)e−α|z|2|/2∣∣∣p dA(z) < +∞, where dA(z) = dxdy = rdrdθ, z =

x+ iy = reiθ, is the area measure in the complex plane.

Remark 4.3.1. Endowed with

‖f‖pp,α =
αp

2π

∫
C

∣∣∣f(z)e−α|z|2/2∣∣∣p dA(z),
it is known (see, e.g., [115], p. 36) that F p

α is a Banach space for 1 ≤ p < ∞,
and a complete metric space for ‖ · ‖pp,α with 0 < p < 1. Also, if p = +∞, then
endowed with ‖f‖∞,α = esssup{|f(z)|e−α|z|2|/2; z ∈ C}, F∞

α is a Banach space.

Remark 4.3.2. Concerning the approximation by polynomials in Fock spaces,
qualitative results without any quantitative estimates were obtained. For any
0 < p < ∞, and f ∈ F p

α , there exists a sequence of polynomials (Pn)n∈N
such that limn→∞ ‖f − Pn‖p,α = 0 (see, e.g., Proposition 2.9, p. 38 in [115]).
The proof of this result is not constructive and consists in two steps : at step
1, one approximates f(z) by its dilations f(rz) with r → 1− and at step 2 one
approximates each fr by its attached Taylor polynomials. If 1 < p < ∞, then
one can construct Pn as the Taylor polynomials attached to f (see, e.g., Exercise
5, p. 89 in [115]) but if 0 < p ≤ 1, then there exists f ∈ F p

α which cannot be
approximated by its associated Taylor polynomials (see, e.g., Exercise 6, p. 89
in [115]). However, if f ∈ F∞

α is such that limz→∞ f(z)eα|z|
2/2 = 0, then f can

be approximated by polynomials in the norm ‖ · ‖∞,α (see, e.g., Exercise 8, p. 89
in [115]).

We now consider Fock spaces in the quaternionic setting and we begin with
the following definition. We note that this notion has not been previously con-
sidered in the literature in this generality.

Definition 4.3.2. Let 0 < p < +∞ and 0 < α < +∞. The Fock space of the first
kind Fp

α(H) is defined as the space of entire slice regular functions f ∈ SR(H),
such that

‖f‖pp,α :=
(αp
2π

)2 ∫
H
|f(q)|p(e−α|q|2/2)pdm(q) < +∞,

with dm(q) representing the Lebesgue volume element in R4.
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4.4. Approximation by polynomials in Fock spaces of the first kind

Remark 4.3.3. With the same techniques used in the complex case, one may
verify that for 1 ≤ p < +∞, ‖ · ‖p,α has the properties of a norm, while for
0 < p < 1, ‖f − g‖pp,α has the properties of quasi-norm.

To introduce the Fock spaces of the second kind, we need the following def-
inition:

Definition 4.3.3. For I ∈ S, 0 < α < +∞ and 0 < p < +∞, let us denote

‖f‖pp,α,I =
αp

2π

∫
CI

|f(q)|p(e−α|q|2/2)pdmI(q),

where dmI(q) represents the area measure on CI .
The space of all entire functions f with the property that ‖f‖p,α,I < +∞ will be
denoted by Fp

α,I(H).

We are now in position to introduce the following:

Definition 4.3.4. The Fock space of the second kind Fα,p
Slice(H) is defined as the

space of all f ∈ SR(H) with the property that for some I ∈ S we have f ∈
Fp
α,I(H). In order to make the norm independent of the choice of the imaginary

unit, we set
‖f‖Fα,p

Slice(H) = sup
I∈S

‖f‖p,α,I .

4.4 Approximation by polynomials in Fock spaces of the first kind

In the sequel, we consider the quaternionic Fock spaces of the first kind Fp
α(H)

introduced in the previous section. First, we start by proving the following es-
timate:

Lemma 4.4.1. Let f ∈ Fp
α(H). Then, there exists a constant c > 0 such that for

all q ∈ H, we have
|f(q)| ≤ ce

α
2
|q|2‖f‖p,α,

where c = 4

(
2π

αp

) 1
p

.

Proof. Let I ∈ S, since f is slice regular on H , then making use of the Splitting
Lemma we have that for all z ∈ CI ,

fI(z) = F (z) +G(z)J,

where J ∈ S is orthogonal to I , and F , G are two holomorphic functions on
the slice CI . Note that since f ∈ Fp

α(H) it is easy to see that F and G belong
to the classical Fock space Fp

α(CI). Thus, by the classical complex analysis the
following estimates are satisfied for any z ∈ CI

|F (z)| ≤ e
α
2
|z|2‖F‖Fp

α(CI) and |G(z)| ≤ e
α
2
|z|2‖G‖Fp

α(CI).
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Chapter 4. Approximation in slice hyperholomorphic Fock spaces

Then,

|f(z)| ≤ |F (z)|+ |G(z)|
≤ e

α
2
|z|2(‖F‖Fp

α(CI) + ‖G‖Fp
α(CI)).

However, since |F (z)| ≤ |f(z)| for any z ∈ CI , we have

‖F‖pFp
α(CI)

=
αp

2π

∫
CI

|F (z)|p(e−α|z|2/2)pdmI(z)

≤ αp

2π

∫
CI

|f(z)|p(e−α|z|2/2)pdmI(z)

≤ αp

2π

∫
H
|f(q)|p(e−α|q|2/2)pdm(q)

=
2π

αp
‖f‖pp,α.

By similar arguments we get also ‖G‖Fp
α(CI) ≤

(
2π

αp

) 1
p

‖f‖p,α. So, for any

z ∈ CI we have the following estimate

|f(z)| ≤ 2

(
2π

αp

) 1
p

e
α
2
|z|2‖f‖p,α.

Finally, for q = x+ Jy ∈ H by the Representation Formula we have

f(q) =
1

2
[f(z) + f(z)] + J

I

2
[f(z)− f(z)] ; z = x+ Iy ∈ CI

Thus,
|f(q)| ≤ |f(z)|+ |f(z)|.

Hence, the last inequality combined with the estimate on CI give

|f(q)| ≤ 4

(
2π

αp

) 1
p

e
α
2
|q|2‖f‖p,α,

for all q ∈ H. �

Now, we can state and prove the main result of the polynomial approxima-
tion in this setting.

Theorem 4.4.2. Let α > 0 and 0 < p < ∞. The set of all quaternionic polyno-
mials is included in Fp

α(H) and for every f ∈ Fp
α(H), there exists a sequence of

quaternionic polynomials (pn)n∈N such that ‖pn − f‖p,α → 0 as n→ +∞.
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4.4. Approximation by polynomials in Fock spaces of the first kind

Proof. First of all, we observe that any quaternionic polynomial belongs toFp
α(H).

This follows easily from the fact that for any k = 0, 1, ...., we have∫
H
|qk|p(e−α|q|2/2)pdm(q) < +∞.

We then divide the proof in two steps.
Step 1. Let 0 < r < 1, f ∈ Fp

α(H) and define fr(q) = f(rq). Evidently fr is
an entire slice regular function.

Firstly, we will prove that limr→1− ‖fr − f‖p,α = 0. We will reason similar
to the complex case in the proof of Proposition 2.9, p. 38 in [115], taking into
account that f : H → H can be written componentwise as

f(q) = f1(q) + if2(q) + jf3(q) + kf4(q),

q = x1 + ix2 + jx3 + kx4 and that applying the Lemma 3.17, p. 66 in [86] to f
is equivalent to apply it to each real-valued function of four real variables fk(q),
k = 1, 2, 3, 4.

By using the componentwise form, since f is entire slice regular it follows
that it is continuous on H and it is immediate that limr→1−1 f(rq) = f(q), for
all q ∈ H.

Now, for f ∈ Fp
α(H), changing the variable rq = w and taking into account

that as in the proof of Theorem 2.1 in [68], we have dm(q) = 1
r4
dm(w), we

obtain

‖fr‖pp,α =
(αp
2π

)2 ∫
H
|f(rq)e−α|q|2/2|pdm(q)

=
(αp
2π

)2 1

r4
·
∫

H
|f(w)e−α|w|2/2|p · e−pα|w|2(r−2−1)/2dm(w).

Since for all w ∈ H and 0 < r < 1 we have e−pα|w|2(r−2−1)/2 ≤ 1, by
applying the dominated convergence theorem in the above mentioned Lemma
3.17 in [86], we are lead to limr→1−1 ‖fr − f‖p,α = 0.

Step 2. The proof is terminated if we can show that for every r ∈ (0, 1),
the function fr can be approximated by some quaternionic polynomials in the
norm topology of Fp

α(H). To this end, let 0 < r < 1 and αr2 < β < α. On one
hand, note that fr is slice regular on H. Moreover, according to Lemma 4.4.1
there exists c > 0 such that for any q ∈ H we have

|fr(q)| = |f(rq)| ≤ ce
α
2
r2|q|2‖f‖p,α.

Thus, since αr2 − β < 0 we get∫
H
|fr(q)|2e−β|q|

2

dm(q) ≤ c2‖f‖2p,α
∫

H
e(αr

2−β)|q|2dm(q) <∞.

In particular, this shows that fr belongs toF2
β(H). Furthermore, since β−α < 0

we can see also that F2
β(H) is continuously embedded in Fp

α(H). Indeed, for
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Chapter 4. Approximation in slice hyperholomorphic Fock spaces

h ∈ F2
β(H), applying Lemma 4.4.1 there exists C > 0, such that for any q ∈ H,

we have
|h(q)| ≤ Ce

β
2
|q|2‖h‖2,β.

Thus, ∫
H
|h(q)|pe−

αp
2
|q|2dm(q) ≤ Cp‖h‖p2,β

∫
H
e

(β−α)p
2

|q|2dm(q) <∞.

Hence, this shows that ‖h‖p,α ≤ K‖h‖2,β where K = K(α, β, p) > 0. On the
other hand, it is clear that the quaternionic monomials (qn)n are contained and
generate any element of the quaternionic Hilbert space F2

β(H) but they do not
form an orthogonal basis of the Hilbert Fock space of the first kind. So, using the
orthonormalization process we can obtain an orthonormal total family (pn)n of
quaternionic polynomials inF2

β(H). Therefore, fr can be approximated by (pn)n
since fr ∈ F2

β(H). Moreover,there existsK > 0 such that

‖fr − pn‖p,α ≤ K‖fr − pn‖2,β.

Finally, the previous inequality shows that fr can be approximated by a sequence
of quaternionic polynomials in the norm topology ofFp

α(H). This ends the proof.
�

Remark 4.4.3. The approximation in Fock spaces of the first kind is not based
on the Taylor expansion since the quaternionic monomials do not form an or-
thogonal basis of the Hilbert Fock space of the first kind.

4.5 Approximation by polynomials in Fock spaces of the second kind

In this section we prove the density of polynomials in Fock spaces of the second
kind, including a result with quantitative estimates in terms of higher order
moduli of smoothness and in terms of the best approximation quantity.
Before to state our main result, we need to prove some technical results. The
following proposition has a rather standard proof that we write for the sake of
completeness.

Proposition 4.5.1. Let p ≥ 1 (resp. 0 < p < 1) and let ‖ · ‖p,α,I be the norm
(resp. quasi-norm) in Fp

α,I(H). Then ‖ · ‖p,α,I and ‖ · ‖p,α,J are equivalent for any
I, J ∈ S.

Proof. From the representation formula we easily get

|f(x+ yI)| ≤ |f(x+ yJ)|+ |f(x− yJ)|.

Then, by taking |.|p in the above formula, and using the inequalities (a+ b)p ≤
2p−1(ap + bp), if 1 ≤ p < +∞, and (a + b)p ≤ ap + bp, if 0 < p < 1, for all
a, b ≥ 0, we obtain

|f(x+ yI)|p ≤ 2p−1 [|f(x+ yJ)|p + |f(x− yJ)|p] , if 1 ≤ p <∞
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4.5. Approximation by polynomials in Fock spaces of the second kind

and
|f(x+ yI)|p ≤ [|f(x+ yJ)|p + |f(x− yJ)|p], if 0 < p < 1.

Multiplying both terms in the above inequalities with e−pα|x+yI|2/2, integrating
on CI with respect to dmI(q), then multiplying the corresponding obtained in-
equality with e−pα|x+yJ |2/2, integrating onCJ with respect to dmJ(q) and taking
into account that |x + yI|2 = |x + yJ |2 = |x − yJ |2 = x2 + y2, we obtain an
inequality of the form ‖f‖p,α,I ≤ Cp‖f‖p,α,J , with Cp independent of I and J .

Interchanging now I with J and repeating the above reasonings, we get the
desired conclusion. �

Corollary 4.5.2. Given any I, J ∈ S the slice hyperholomorphic Fock spaces
Fp
α,I(H) and Fp

α,J(H) contain the same elements and have equivalent norms.

Remark 4.5.3. The notion of Fock space of the second kind given in Definition
4.3.4 is independent of the choice of the imaginary unit, and this justifies the
notation Fα,p

Slice(H).

Lemma 4.5.4. Let 0 < p < ∞, α > 0 and f ∈ Fα,p
Slice(H). Then, for any q ∈ H

we have
|f(q)| ≤ 4e

α
2
|q|2‖f‖Fα,p

Slice(H).

Proof. Let f ∈ Fα,p
Slice(H) and let I ∈ S. Then, choose J in S perpendicular to

I . In particular, f is slice regular on H, then by the Splitting Lemma there exist
F,G : CI −→ CI two holomorphic functions such that we have

fI(z) = F (z) +G(z)J ; ∀z ∈ CI .

Then, we use similar arguments as in the Lemma 4.4.1 to see that for any z ∈ CI ,
we have

|f(z)| ≤ e
α
2
|z|2(‖F‖Fp

α(CI) + ‖G‖Fp
α(CI)).

However, note that

‖F‖Fp
α(CI) ≤ ‖f‖Fα,p

Slice(H) and ‖G‖Fp
α(CI) ≤ ‖f‖Fα,p

Slice(H).

Thus, for any z ∈ CI we get

|f(z)| ≤ 2e
α
2
|z|2‖f‖Fα,p

Slice(H).

Finally, we apply the Representation Formula in order to prove the estimate
for any q ∈ H and this completes the proof. �

The first main result of this section is the following.

Theorem 4.5.5. Let 0 < p < +∞, 0 < α < +∞ and f ∈ Fα,p
Slice(H). There

exists a sequence of polynomials (Pn)n∈N such that for any I ∈ S we have ‖Pn −
f‖p,α,I → 0 as n→ +∞.
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Chapter 4. Approximation in slice hyperholomorphic Fock spaces

Proof. We divide the proof in two steps.
Step 1. Fix I0 ∈ S. For 0 < r < 1, we define fr(q) = f(rq), q ∈ H. By

hypothesis, we know that f ∈ Fp
α,I0

(H), i.e. fr is an entire function on CI0 .
Firstly, we prove that limr→1− ‖fr − f‖p,α,I0 = 0. To this end, we note that

since the restriction of fr is entire on CI0 , it is continuous, which evidently
implies that pointwise we have limr→1− f(rq) = f(q), for all q ∈ CI0 .

Now, for f ∈ Fp
α,I0

(H), by setting rq = w and taking into account that as in
the proof of Theorem 2.1 in [68] (see also [26]), we have dmI0(q) =

1
r2
dmI0(w),

we obtain

‖fr‖pp,α,I0 =
αp

2π

∫
CI0

|f(rq)e−α|q|2/2|pdmI0(q)

=
αp

2π

1

r2
·
∫

CI0

|f(w)e−α|w|2/2|p · e−pα|w|2(r−2−1)/2dmI0(w).

Since for all w ∈ CI0 and 0 < r < 1 we have

e−pα|w|
2(r−2−1)/2 ≤ 1,

by applying the dominated convergence theorem we easily obtain

lim
r→1−1

‖fr‖pp,α,I0 = ‖f‖pp,α,I0.

Therefore, an application of the above mentioned Lemma 3.17 in [86] (see
the proof of Theorem 2.1) leads to limr→1−1 ‖fr − f‖p,α,I0 = 0.

Step 2. This part is exactly the same as in the case of complex variable,
proof of part (b) in Proposition 2.9, p. 39 in [115], but reasoning on CI0 . Indeed,
let 0 < r < 1 and choose r2α < β < α. Lemma 4.5.4 allows to see that fr ∈
Fβ,2
Slice(H) sinceαr2 < β. On the other hand, the condition β < α combinedwith

the Lemma 4.5.4 show that Fβ,2
Slice(H) is continuously embedded in Fα,p

Slice(H).
Moreover, for any h ∈ Fβ,2

Slice(H) there exists c = c(p, α, β) > 0 such that we
have the following estimate

‖h‖Fα,p
Slice(H) ≤ c‖h‖Fβ,2

Slice(H). (4.5.1)

Note that the family of functions given by

ek(q) :=

√
βk

k!
qk,

forms an orthonormal basis of Fβ,2
Slice(H) according to [15] and fr ∈ Fβ,2

Slice(H)
for any 0 < r < 1. Thus, there exists a sequence (Pn)n∈N of quaternionic
polynomials with right coefficients such that ‖fr − Pn‖Fβ,2

Slice(H) −→ 0 when
n→ ∞. Therefore, we just need to use the estimate (4.5.1) to conclude that the
polynomials (Pn)n∈N approximate fr in Fα,p

Slice(H) for any 0 < r < 1.
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Finally, according to Proposition 3.1, any other norm (or quasi-norm, accord-
ing to p), ‖ · ‖p,α,I with I ∈ S, is equivalent to the norm (quasi-norm) ‖ · ‖p,α,I0 ,
it follows that the sequence of polynomials (Pn)n∈N converges to f in any norm
(quasi-norm) ‖ · ‖p,α,I , which proves the theorem. �

Remark 4.5.6. The approximation in Fock spaces of the second kind is based
on the Taylor expansion since the quaternionic monomials form an orthogonal
basis of the Hilbert Fock space of the second kind.

In what follows, for 1 ≤ p < +∞ we present a constructive proof for the
density result in Theorem 4.5.5, with quantitative estimates in terms of higher
order moduli of smoothness and in terms of the best approximation quantity.

For this end, we introduce the following definition, in which we keep the
notations from Section 2.

Definition 4.5.1. Let 0 < p < +∞, I ∈ S and f ∈ Fp
α,I(H). The higher order

Lp-moduli of smoothness of k-th order is defined by

ωk(f ; δ)Fp
α,I

= sup
0≤|h|≤δ

{∫
CI

|∆k
hf(z)|p · [e−α|z|

2/2]pdmI(z)

}1/p

= sup
0≤|h|≤δ

‖wα∆k
hf‖Lp(CI),

where k ∈ N, wα(z) = e−α|z|
2/2,

∆k
hf(z) =

k∑
s=0

(−1)k+s
(
k

s

)
f(zeIsh) and ‖f‖Lp(CI) =

(∫
CI

|f(z)|pdmI(z)

)1/p

.

(In other words, ωk(f ; δ)Fp
α,I

= ωk(f ; δ)wα,Lp(CI) is a weighted modulus of smooth-
ness.)
The best approximation quantity is defined by

En(f)p,α,I = inf{‖f − P‖p,α,I ;P ∈ Pn} = inf{‖wα(f − P )‖Lp(CI);P ∈ Pn},

where Pn denotes the set of all polynomials of degree ≤ n.

Note that exactly as in the case of the Lp-moduli of smoothness for functions
of real variable (see, e.g., [59], pp. 44-45), it can be proved that

lim
δ→0

ωk(f ; δ)Fp
α,I

= 0,

ωk(f ;λ · δ)Fp
α,I

≤ (λ+ 1)k · ωk(f ; δ)Fp
α,I
, if 1 ≤ p < +∞ (4.5.2)

and

[ωk(f ;λ · δ)Fp
α,I
]p ≤ (λ+ 1)k · [ωk(f ; δ)Fp

α,I
]p, if 0 < p < 1. (4.5.3)
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Chapter 4. Approximation in slice hyperholomorphic Fock spaces

Indeed, this is immediate from the fact that denoting (for fixed z) g(x) = f(zeix),
we get ∆k

hf(z) = ∆
k

hg(0), where

∆
k

hg(x0) =
k∑
s=0

(−1)s+k
(
k

s

)
g(x0 + sh).

Now, for any 1 ≤ p < +∞ and f ∈ Fα,p
Slice(H), let us define the convolution

operators

Ln(f)(q) =

∫ π

−π
f(qeIqt) ·Kn(t)dt, q ∈ H.

Here Kn(t) is a positive and even trigonometric polynomial with the property∫ π
−πKn(t)dt = 1.
In particular, we can consider the Fejér kernel

Kn(t) =
1

2πn
·
(
sin(nt/2)
sin(t/2)

)2

,

and in this case we will denote Ln(f)(q) by Fn(f)(q).
For

Kn,r(t) =
1

λn,r
·
(
sin(nt/2)
sin(t/2)

)2r

,

where r will be chosen as the smallest integer with r ≥ p(m+1)+2
2

, m ∈ N and
the constants λn,r are chosen such that

∫ π
−πKn,r(t)dt = 1, let us define

In,m,r(f)(q) = −
∫ π

−π
Kn,r(t)

m+1∑
k=1

(−1)k
(
m+ 1

k

)
f(qeIqkt)dt, q ∈ H.

Also, let us define Vn(f)(q) = 2F2n(f)(q)− Fn(f)(q), q ∈ H.
According to the reasonings in [74], [71], for fixed I ∈ S, if q ∈ CI then

Ln(f)(q), In,m,r(f)(q) and Vn(f)(q) are polynomials in q on CI , with coef-
ficients independent of I and depending only on the series development of f .
Therefore, as functions of q, Ln(f)(q), In,m,r(f)(q) and Vn(f)(q) represent poly-
nomials on the whole H.

The second main result of this section is the following.

Theorem 4.5.7. Let 1 ≤ p < +∞, 0 < α < +∞, m ∈ N ∪ {0} and f ∈
Fα,p
Slice(H) be arbitrary but fixed.
(i) In,m,r(f)(q) is a quaternionic polynomial of degree less than r(n−1), which

for any I ∈ S satisfies the estimate

‖In,m,r(f)− f‖p,α,I ≤ Cp,m,r · ωm+1

(
f ;

1

n

)
Fp

α,I

, n ∈ N,
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wherem ∈ N, r is the smallest integer with r ≥ p(m+1)+2
2

and C(p,m, r) > 0 is a
constant independent of f , n and I .

(ii) Vn(f)(q) is a quaternionic polynomial of degree ≤ 2n − 1, satisfying for
any I ∈ S the estimate

‖Vn(f)− f‖p,α,I ≤ [2(p−1)/p · (2p + 1)1/p + 1] · En(f)p,α,I , n ∈ N.

Proof. For the fact that the convolution operators In,m,r(f)(q) and Vn(f)(q) are
polynomials of the corresponding degrees see [74], [71].

(i) In the sequel we will apply the following well known Jensen type inequal-
ity for integrals: if

∫ +π

−π G(u)du = 1, G(u) ≥ 0 for all u ∈ [−π, π] and ϕ(t) is
a convex function on the range of the measurable function of real variable F ,
then

ϕ

(∫ +π

−π
F (u)G(u)du

)
≤
∫ +π

−π
ϕ(F (u))G(u)du.

Letm ∈ N and r be the smallest integer such that r ≥ p(m+1)+2
2

.
Now, by choosing ϕ(t) = tp, 1 ≤ p <∞, q ∈ CI , we get

|f(q)− In,m,r(f)(q)|p =
∣∣∣∣∫ π

−π
∆m+1
t f(q)Kn,r(t)dt

∣∣∣∣p
≤
[∫ π

−π
|∆m+1

t f(q)|Kn,r(t)dt

]p
≤
∫ π

−π
|∆m+1

t f(q)|pKn,r(t)dt.

Multiplying above by [e−α|q|
2/2]p, integrating on CI with respect to dmI(q) and

taking into account the Fubini’s theorem, we obtain∫
CI

|In,m,r(f)(q)− f(q)|p · [e−α|q|2/2]pdmI(q)

≤
∫ π

−π

[∫
CI

|∆m+1
t f(q)|p · [e−α|q|2/2]pdmI(q)

]
Kn,r(t)dt

≤
∫ π

−π
ωm+1(f ; |t|)pFp

α,I
·Kn,r(t)dt

≤
∫ π

−π
ωm+1(f ; 1/n)

p
Fp

α,I
(n|t|+ 1)(m+1)p ·Kn,r(t)dt.

By [92], p. 57, relation (5), for r ∈ N with r ≥ p(m+1)+2
2

, we get∫ π

−π
(n|t|+ 1)(m+1)p ·Kn,r(t)dt ≤ Cp,m,r < +∞, (4.5.4)

which proves the estimate in (i).
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(ii) Now, let f, g ∈ Fα,p
Slice(H) and 1 ≤ p < +∞. By the convexity ofϕ(t) = tp

we get the obvious inequality (a + b)p ≤ 2p−1(ap + bp), valid for all a, b ≥ 0,
which for all q ∈ CI implies

|Vn(f)(q)− Vn(g)(q)| ≤ 2|F2n(f)(q)− F2n(g)(q)|+ |Fn(f)(q)− Fn(g)(q)|

≤ 2

∫ π

−π
|f(qeIt)− g(qeIt)| ·K2n(t)dt+

∫ π

−π
|f(qeIt)− g(qeIt)| ·Kn(t)dt

and

|Vn(f)(q)− Vn(g)(q)|p ≤ 2p−1

[(
2

∫ π

−π
|f(qeIt)− g(qeIt)| ·K2n(t)dt

)p
+

(∫ π

−π
|f(qeIt)− g(qeIt)| ·Kn(t)dt

)p]
≤ 2p−1

[
2p
∫ π

−π
|f(qeIt)− g(qeIt)|p ·K2n(t)dt+

∫ π

−π
|f(qeIt)− g(qeIt)|p ·Kn(t)dt

]
.

Multiplying above with [e−α|q|
2/2]p = [e−α|qe

It|2/2]p, integrating this inequality
on CI with respect to dmI(q) and reasoning as at the above point (i), we obtain

‖Vn(f)−Vn(g)‖pp,α,I ≤ 2p−1

[
2p
∫ π

−π

(∫
CI

|f(qeIt)− g(qeIt)|p[e−α|qeIt|2/2]pdmI(q)

)
×

K2n(t)dt+

∫ π

−π

(∫
CI

|f(qeIt)− g(qeIt)|p[e−α|qeIt|2/2]pdmI(q)

)
Kn(t)dt

]
.

SettingF (q) = |f(q)−g(q)|p[e−α|q|2/2]p, q ∈ CI , writing q = r cos(θ)+Ir sin(θ)
and taking into account that

dmI(q) =
1

π
rdrdθ,

simple calculations lead to the equality∫
CI

|F (qeIt)|pdmI(q) =

∫
CI

|F (q)|pdmI(z), for all t,

which replaced in the above inequality immediately implies

‖Vn(f)−Vn(g)‖pp,α,I ≤ 2p−1[2p‖f−g‖pp,α+‖f−g‖pp,α] = 2p−1(2p+1)‖f−g‖pp,α,

that is

‖Vn(f)− Vn(g)‖p,α,I ≤ 2(p−1)/p · (2p + 1)1/p‖f − g‖p,α,I .

Now, let us denote by P ∗
n a polynomial of best approximation by elements in Pn

in the norm in ‖ · ‖p,α,I , that is

En(f)p,α,I = inf{‖f − P‖p,α,I ;P ∈ Pn} = ‖f − P ∗
n‖p,α,I .
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4.5. Approximation by polynomials in Fock spaces of the second kind

Note that since Pn is finite dimensional (for fixed n), this polynomial P ∗
n exists.

Since by similar reasonings with those in [69], p. 425 we get Vn(P ∗
n) = P ∗

n ,
for all q ∈ CI , it follows

‖f − Vn(f)‖p,α,I ≤ ‖f − P ∗
n‖p,α,I + ‖Vn(P ∗

n)− Vn(f)‖p,α,I
≤ En(f)p,α,I + 2(p−1)/p · (2p + 1)1/p‖P ∗

n − f‖p,α,I
= [2(p−1)/p · (2p + 1)1/p + 1] · En(f)p,α,I ,

which proves (ii) and the theorem. �

Remark 4.5.8. The result in Theorem 4.5.7 evidently holds also in the complex
Fock spaces. In this context, the result is new.

In [15] the authors proved that the quaternionic Fock space of the second
kind Fα,2

Slice(H) is a right quaternionic Hilbert space whose reproducing kernel
is given for all (r, q) ∈ H2 by

Kα(r, q) := e∗(αrq)

=
∞∑
k=0

αkrkqk

k!
.

Then, we denote by R the set of all functions of the form

f(r) =
n∑
k=1

Kα(r, qk)bk,∀r ∈ H

where (bk)k, (qk)k ∈ H for all k = 1, .., n. As a consequence of the Theorem
4.5.5 we obtain the following result:

Theorem 4.5.9. Let α > 0 and 0 < p <∞. The setR is dense in the quaternionic
Fock spaces of the second kind Fα,p

Slice(H).

Proof. i) The result is clear in the Hilbert case when p = 2. Indeed, we only
use the reproducing kernel property to see that the orthogonal of R is
reduced to zero.

ii) For p > 0, let f be a quaternionic polynomial with right coefficients.
Then, there exists 0 < β < α such that Fβ,2

Slice(H) is continuously em-
bedded in Fα,p

Slice(H). Note that since f is a polynomial, by the Hilbert
case it can be approximated by a sequence of R in the topology norm
of Fβ,2

Slice(H). Thus, let q1, ..., qn ∈ H and (ak)k=1,...,n ⊂ H be such that

‖f−
n∑
k=1

K
α
β
qk

β ak, ‖Fβ,2
Slice(H) tends to zero as n→ ∞. However, there exists

c > 0 such that we have the following estimate
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Chapter 4. Approximation in slice hyperholomorphic Fock spaces

‖f −
n∑
k=1

Kqk
α ak, ‖Fα,p

Slice(H) ≤ c‖f −
n∑
k=1

Kqk
α ak, ‖Fβ,2

Slice(H)

≤ c‖f −
n∑
k=1

K
α
β
qk

β ak, ‖Fβ,2
Slice(H).

This shows that ‖f−
n∑
k=1

Kqk
α ak, ‖Fα,p

Slice(H) tends to zero as n→ ∞, for any

quaternionic polynomial f . However, inTheorem 4.5.5 we proved that the
set of quaternionic polynomials is dense in any quaternionic Fock space
of the second kind. Hence, R is dense in the quaternionic Fock spaces of
the second kind Fp

α(H).
�

The order and type of slice regular entire functions on quaternions were
introduced in Chapter 5 of the book [50]. In the setting of the Fock spaces
Fα,p
Slice(H), we have:

Proposition 4.5.10. Let 0 < p < ∞ and f ∈ Fα,p
Slice(H). Then, f is of order less

or equal than 2. Moreover, if f is of order 2, then it is of type σ(f) ≤ α
2
.

Proof. Note that f ∈ Fα,p
Slice(H), then by Lemma 4.5.4, we have

|f(q)| ≤ ce
α
2
|q|2‖f‖Fα,p

Slice(H).

In particular, we have

Mf (r) = max
|q|=r

|f(q)| ≤ ce
α
2
r2‖f‖Fα,p

Slice(H).

Therefore,

ρ(f) = lim
r→∞

log(logMf (r))

log r
≤ 2.

Moreover, if ρ(f) = 2, then we have

σ(f) = lim
r→∞

logMf (r)

r2
≤ α

2
.

�
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CHAPTER5
The Cholewinski-Fock space in the slice

hyperholomorphic setting

Inspired from the Cholewinski approach see [33], we investigate a family of
Fock spaces in the quaternionic slice hyperholomorphic setting as well as some
associated quaternionic linear operators. In a particular case, we reobtain the
slice hyperholomorphic Fock space introduced and studied in [15]. The results
obtained in this chapter are based on [61].

5.1 Motivation

We recall that in 1961 Bargmann introduced the Bargmann-Fock space on which
the creation and annihilation operators, namely

Mzf(z) := zf(z) and Df(z) :=
d

dz
f(z)

are closed, densely defined operators that are adjoints of each other and satisfy
the classical commutation rule

[D,Mz] = I

where [., .] and I are respectively the commutator and the identity operator.
Furthermore, the standard Schrödinger Hilbert space on the real line is unitary
equivalent to the Fock space via the so-called Segal-Bargmann transform. A
few years later, in [33] Cholewinski extended this construction by studying a
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Chapter 5. The Cholewinski-Fock space in the slice hyperholomorphic setting

Hilbert space of even entire functions weighted by a modified Bessel function of
the third kind sometimes also called Macdonald function. His construction gen-
eralized the original one of Bargmann so that in a particular case the weight is
exactly the classical normalized Gaussian measure. He also proved in [33] some
commutator relations between the Schrödinger radial kinetic energy operator
and the operatorMz2 . Then, in 2002 based on the approach of Cholewinski, Sifi
and Soltani considered and studied in [108] a Hilbert space of entire functions
that are not necessarily even with a weight involving the Macdonald function.
As we already discussed before the topic of Segal-Bargmann-Fock spaces and
associated integral transforms in this new quaternionic and slice monogenic set-
ting was interesting from several points of view, see [15,34,46,53,60,88,96,101].
The purpose of this chapter is to continue this exploration and present the study
of a quaternionic Hilbert space of slice entire functions weighted by a modified
Bessel function that we shall call here the quaternionic slice hyperholomorphic
Cholewinski-Fock space or the slice Cholewinski-Fock space for short. This will
allow us to extend some results obtained in [15, 60] on the slice hyperholomor-
phic Fock space and the quaternionic analogue of the Segal-Bargmann trans-
form. Moreover, we study some specific quaternionic operators associated to
the slice Cholewinski-Fock space. In a particular case, we show that the slice
derivative and the quaternionic multiplication are adjoints of each other and
satisfy the classical commutation rule on the slice Fock space introduced in [15].

The chapter has the following structure: in the next section we briefly review
some useful properties of the Macdonald function as it will be needed in the
sequel. Then, we define the slice Cholewinski-Fock space and we introduce an
orthonormal basis. Moreover, we show that it is a quaternionic reproducing
kernel Hilbert space. Section 4 is devoted to the study of a quaternionic unitary
isomorphism between the slice Cholewinski-Fock space and a suitable quater-
nionic Hilbert space on the real line. This quaternionic isomorphismwill be con-
nected also to what we call the slice Dunkl transform. Then, we deal with two
right quaternionic linear operators that are proved to be adjoint of each other
and satisfy a specific commutation rule on the slice Cholewinski-Fock space.
Finally, the last section explains how the results obtained in the quaternionic
setting could be extended in a similar way to the slice monogenic setting with
Clifford algebras valued functions.

5.2 Some properties of Bessel and modified Bessel functions

For more details about the subject of Bessel functions and related topics we refer
the reader to [66, 90].

To any complex number ν is associated the so-called Bessel differential equa-
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5.2. Some properties of Bessel and modified Bessel functions

tion
x2

d2

dx2
y + x

d

dx
y + (x2 − ν2)y = 0 (5.2.1)

Using the Frobenius method, a solution of the last equation is given by the Bessel
function of the first kind, namely

Jν(x) :=
(x
2

)ν ∞∑
k=0

(−1)k

Γ(k + 1)Γ(ν + k + 1)

(x
2

)2k
.

The second linear independent solution of the Bessel equation is the Bessel
function of the second kind Yν which is defined by

Yν(x) =
cos(νπ)Jν(x)− J−ν(x)

sin(νπ)
if ν /∈ Z

and
Yn(x) = lim

ν→n
Yν(x) if ν = n ∈ Z.

The same reasoning is adopted to construct a modified Bessel function of the
third kind sometimes called also the Macdonald function and denoted byKν(x).
To this end, we consider the modified Bessel equation given by

x2
d2

dx2
y + x

d

dx
y − (x2 + ν2)y = 0 (5.2.2)

Analogously, the modified Bessel function of the first kind is defined by

Iν(x) :=
(x
2

)ν ∞∑
k=0

1

Γ(k + 1)Γ(ν + k + 1)

(x
2

)2k
and the Macdonald function is defined by

Kν(x) =
π

2

I−ν(x)− Iν(x)

sin(νπ)
if ν /∈ Z

and
Kn(x) = lim

ν→n
Kν(x) if ν = n ∈ Z.

The Macdonald function is of a particular interest for our study since it will ap-
pear in the next section as a weight of the quaternionic Hilbert space of entire
slice regular functions instead of the classical Gaussian measure.

So, we summarize in the following Proposition some interesting properties of
this function that will be useful in the sequel, see [66, 90].
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Chapter 5. The Cholewinski-Fock space in the slice hyperholomorphic setting

Proposition 5.2.1. Let x > 0 and δ, ν ∈ R such that δ + ν > 0 and δ − ν > 0.
Then, we have the following formulas

1. Kν(x) =

∫ ∞

0

exp(−x cosh t) cosh(νt)dt.

2. K 1
2
(x) = K− 1

2
(x) =

√
π

2x
e−x.

3.
∫ ∞

0

tδ−1Kν(t)dt = 2δ−2Γ

(
δ

2
+
ν

2

)
Γ

(
δ

2
− ν

2

)
.

5.3 The slice hyperholomorphic Cholewinski-Fock space Fα
Slice(H)

Any quaternionic entire function may be written as

f = f e + f o

f e and f o are respectively even and odd functions where

f e(q) :=
f(q) + f(−q)

2
and f o(q) :=

f(q)− f(−q)
2

.

Then, thanks to the series expansion theorem for slice regular functions we have

f(q) =
∞∑
n=0

qnan with an ∈ H

so that,

f e(q) =
∞∑
n=0

q2na2n and f o(q) =
∞∑
n=0

q2n+1a2n+1.

Now, let α ≥ −1

2
and I be any imaginary unit in the sphere S. Then, for p =

x+ yI in the slice CI we consider the following probability measure

dλα,I(p) :=
|p|2α+2

π2αΓ(α + 1)
Kα(|p|2)dλI(p)

whereKα is the Macdonald function and dλI(p) is the usual Lebesgue measure
on the sliceCI . In [108] the complex generalized Fock spaceFα(C)was defined
to be the space consisting of complex entire functions f : C −→ C satisfying:∫

C
|f e(z)|2dλα(z) + 2(α + 1)

∫
C
|f o(z)|2|z|−2dλα+1(z) <∞.

Then, we consider the following definition
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5.3. The slice hyperholomorphic Cholewinski-Fock space Fα
Slice(H)

Definition 5.3.1. A slice entire function f : H −→ H is said to be in the slice
Cholewinski-Fock space or the generalized slice Fock space if, for I ∈ S it satisfies
the following condition∫

CI

|f eI (p)|2dλα,I(p) + 2(α + 1)

∫
CI

|f oI (p)|2|p|−2dλα+1,I(p) <∞.

The space containing all such functions will be denoted Fα
Slice(H).

Remark 5.3.1. Notice that if α = −1

2
then thanks to (2) in Proposition 5.2.1 we

can see that Fα
Slice(H) is exactly the slice hyperholomorphic Fock space introduced

and studied in [15]. Indeed, for α = −1

2
we get

dλα,I(p) :=
1

2π
e−|p|2dλI(p).

In particular, in this case f belongs to Fα
Slice(H) if and only if it belongs to the

classical slice hyperholomorphic Fock space.

For f, g ∈ Fα
Slice(H) we define the following inner product

〈f, g〉Fα
Slice(H) :=

∫
CI

geI(p)f
e
I (p)dλα,I(p)+2(α+1)

∫
CI

goI(p)f
o
I (p)|p|−2dλα+1,I(p)

We shall see later that this definition is well posed since it does not depend
on the choice of the imaginary unit I . We have :

Proposition 5.3.2. Fα
Slice(H) is a right quaternionic Hilbert space with respect to

〈., .〉Fα
Slice(H).

Proof. Let (fn) be a Cauchy sequence in Fα
Slice(H). Take I, J ∈ S such that

I ⊥ J . Then, since fn are slice regular we can use the Splitting Lemma to write

fn,I := Fn +GnJ ∀n ∈ N

where Fn and Gn are holomorphic functions on the slice CI belonging to the
generalized complex Fock space Fα(CI). It is easy to see that (Fn)n and (Gn)n
are Cauchy sequences in Fα(CI). Hence, there exists two functions F and G
belonging to Fα(CI) such that the sequences (Fn)n and (Gn)n are converging
respectively to F and G. Let fI = F + GJ and consider f = ext(fI) we have
then f ∈ Fα

Slice(H). Moreover, the sequence (fn) converges to f with respect
to the norm of Fα

Slice(H). This ends the proof. �

For anym,n ≥ 0, we set

Em,n(α) :=

∫
CI

q2mq2ndλα,I(q)
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Chapter 5. The Cholewinski-Fock space in the slice hyperholomorphic setting

and
Om,n(α) :=

∫
CI

q2m+1q2n+1|q|−2λα+1,I(q).

Then, the following formulas hold

Lemma 5.3.3. For allm,n ≥ 0, we have

i) Em,n(α) = δm,n2
2nn!

Γ(α + n+ 1)

Γ(α + 1)
.

ii) Om,n(α) = Em,n(α + 1).

Proof. i) We write q = reIθ using the polar coordinates. This leads to

Em,n(α) =
1

2απΓ(α + 1)

∫ ∞

0

∫ 2π

0

e2(n−m)θIr2(m+n+α+1)Kα(r
2)rdrdθ

=
1

2απΓ(α + 1)

∫ 2π

0

e2(n−m)θIdθ

∫ ∞

0

r2(m+n+α+1)Kα(r
2)rdr

=
2δm,n

2αΓ(α + 1)

∫ ∞

0

r2(2n+α+1)Kα(r
2)rdr.

Making use of the change of variable t = r2, we obtain

Em,n(α) =
δm,n

2αΓ(α + 1)

∫ ∞

0

t2n+α+1Kα(t)dt

Then, the proof of i) ends thanks to the property 3 in Proposition 5.2.1 by
taking δ = 2n+ α + 2.

ii) This is obvious from the definition of Om,n(α).
�

Thanks to the last lemma we have the two following propositions :

Proposition 5.3.4. Let f(q) =
∞∑
n=0

qnan and g(q) =
∞∑
n=0

qnbn be two slice regular

functions belonging to Fα
Slice(H). Then, we have

〈f, g〉Fα
Slice(H) =

∞∑
n=0

bnanβn(α)

where

βn(α) := 2n
[n
2

]
!

Γ

([
n+ 1

2

]
+ α + 1

)
Γ(α + 1)

.

Here the symbol [.] stands for the integer part.
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Proof. We have

〈f, g〉Fα
Slice(H) :=

∫
CI

geI(p)f
e
I (p)dλα,I(p)+2(α+1)

∫
CI

gIo(p)f
o
I (p)|p|−2dλα+1,I(p)

Then, we set

A :=

∫
CI

geI(p)f
e
I (p)dλα,I(p) and B := 2(α+1)

∫
CI

goI(p)f
o
I (p)|p|−2dλα+1,I(p)

Notice that

f e(q) =
∞∑
n=0

q2na2n and ge(q) =
∞∑
m=0

q2mb2m.

Thus,

A = lim
R→∞

∫
{|p|<R}

(
∞∑
m=0

b2mp2m

)(
∞∑
n=0

p2na2n

)
dλα,I(p)

=
∞∑

m,n=0

b2mEm,n(α)a2n.

Hence, making use of the Lemma 5.3.3 we get

A =
∞∑
k=0

b2ka2kβ2k(α).

Similarly, by writing

f o(q) =
∞∑
n=0

q2n+1a2n+1 and go(q) =
∞∑
m=0

q2m+1b2m+1

we obtain

B =
∞∑
k=0

b2k+1a2k+1β2k+1(α).

This leads to

〈f, g〉Fα
Slice(H) =

∞∑
n=0

bnanβn(α).

�

Remark 5.3.5. Proposition 5.3.4 shows that the scalar product is independent of
the choice of the imaginary unit I .
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Chapter 5. The Cholewinski-Fock space in the slice hyperholomorphic setting

Proposition 5.3.6. For any n ∈ N, we consider the functions

φαn(q) =
qn√
βn(α)

.

Then, {φαn}n form an orthonormal basis of Fα
Slice(H).

Proof. Lemma 5.3.3 allows us to easily check that

〈φαm, φαn〉Fα
Slice(H) = δm,n ∀m,n ∈ N.

Let us prove now that these functions form a basis of Fα
Slice(H). Indeed, take

f in Fα
Slice(H) such that 〈f, φαk 〉Fα

Slice(H) = 0,∀k. Then, since f is entire slice

regular it admits a series expansion so that f =
∞∑
n=0

φαncn where (cn)n ⊂ H.

Notice that from the Proposition 5.3.4 we have

〈f, φαk 〉Fα
Slice(H) = ck, ∀k ≥ 0.

This shows that f is identically zero. �

An immediate consequence is :

Corollary 5.3.7. An entire function of the form f(q) =
∞∑
n=0

qnan belongs to

Fα
Slice(H) if and only if it satisfies the following growth condition

∞∑
n=0

|an|2βn(α) <∞.

Lemma 5.3.8. For all n ∈ N, we have n! ≤ βn(α).

Proof. This is a consequence of the Duplication formula for the Gamma function
given by

Γ(x)Γ(x+ 1
2
)

Γ(2x)
=

√
π

22x−1
,

combined with the fact that the function βn is increasing forα ≥ −1

2
. Indeed, by

treating both cases of n = 2k and n = 2k+1 with k ∈ N using the Duplication
formula we get

βn

(
−1

2

)
= n! ≤ βn(α).

�
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Remark 5.3.9. Fα
Slice(H) is continuously embedded in the slice Fock spaceFSlice(H).

Indeed, we have

‖f‖2FSlice(H) =
∞∑
n=0

|an|2n! ≤
∞∑
n=0

|an|2βn(α) = ‖f‖2Fα
Slice(H).

The equality holds if α = −1

2
.

In the sequel, we shall prove that Fα
Slice(H) is a quaternionic reproducing

kernel Hilbert space and give an expression of its reproducing kernel. To this
end, let us fix q ∈ H and consider the evaluation mapping

Λq : Fα
Slice(H) −→ H; f 7→ Λq(f) = f(q).

Then, we have the following estimate on Fα
Slice(H) :

Proposition 5.3.10. For any f ∈ Fα
Slice(H), there exists 0 < C(|q|) ≤ e

|q|2
2 such

that
|Λq(f)| = |f(q)| ≤ C(|q|) ‖f‖Fα

Slice(H) .

Proof. The series expansion theorem for slice regular functions asserts that

f(q) =
∞∑
n=0

qnan with (an)n ⊂ H.

Then using the Cauchy-Schwarz inequality we have the following estimates,

|Λq(f)| = |f(q)| ≤
∞∑
n=0

|q|n|an|

≤
∞∑
n=0

|q|n√
βn(α)

√
βn(α)|an|

≤

(
∞∑
n=0

|q|2n

βn(α)

) 1
2
(

∞∑
n=0

βn(α)|an|2
) 1

2

≤ C(|q|)‖f‖Fα
Slice(H).

Notice that thanks to Lemma 5.3.8 this constant could be also estimated so
that we have

C(|q|) =

(
∞∑
n=0

|q|2n

βn(α)

) 1
2

≤ e
|q|2
2 .

�
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Chapter 5. The Cholewinski-Fock space in the slice hyperholomorphic setting

Remark 5.3.11. Proposition 5.3.10 shows that all the evaluation mappings on
Fα
Slice(H) are continuous. Then, the Riesz representation theorem for quaternionic

Hilbert spaces, see [28] asserts that Fα
Slice(H) is a quaternionic reproducing kernel

Hilbert space.

For p, q ∈ H, we consider the function

Lα(p, q) = Lqα(p) :=
∞∑
n=0

pnqn

βn(α)

where

βn(α) := 2n
[n
2

]
!
Γ
([

n+1
2

]
+ α + 1

)
Γ(α + 1)

.

If q = x ∈ R we use the following notation Lα(p, x) = Lα(px) since px = xp.

The function
Kα(p, q) = Kq

α(p) := Lqα(p)

satisfies the following properties

Proposition 5.3.12. Let q, s ∈ H fixed,

(a) Kα
q ∈ Fα

Slice(H).

(b) For all f ∈ Fα
Slice(H), we have f(q) =

〈
f,Kα

q

〉
Fα

Slice(H)
.

(c)
〈
Kα
q , K

α
s

〉
Fα

Slice(H)
= Kα

q (s).

Proof. 1. We have by definition

Kq
α(p) :=

∞∑
n=0

pnan where an =
qn

βn(α)
.

Thus,
∞∑
n=0

βn(α)|an|2 =
∞∑
n=0

|q|2n

βn(α)

= C2(|q|)
≤ e|q|

2

<∞.

2. Let f ∈ Fα
Slice(H); since f is slice regular on H we can write f(p) =

∞∑
n=0

pnbn with (bn)n ⊂ H.Then, using the expression of Kα
q combined

with Proposition 5.3.4 we obtain〈
f,Kα

q

〉
Fα

Slice(H)
=

∞∑
n=0

qnbn = f(q).

68



i
i

“thesis’’ — 2021/1/31 — 22:52 — page 69 — #89 i
i

i
i

i
i

5.4. A unitary integral transform associated to Fα
Slice(H)

3. We just need to write

Kα
q (p) =

∞∑
n=0

qn

βn(α)
pn and Kα

s (p) =
∞∑
n=0

sn

βn(α)
pn

and then use the Proposition 5.3.4.
�

The results obtained in this section may be summarized in the following

Theorem 5.3.13. Fα
Slice(H) is a quaternionic reproducing kernel Hilbert space

whose reproducing kernel is given by the following formula

Kα(p, q) =
∞∑
n=0

pnqn

βn(α)
for all (p, q) ∈ H×H.

Proof. It is a consequence of the Propositions 5.3.10 and 5.3.12. �

Remark 5.3.14. For α = −1

2
, it turns out that Kα(., .) is the reproducing kernel

of the slice Fock space FSlice(H) obtained in [15] and given by

e∗(pq) =
∞∑
n=0

pnqn

n!
.

5.4 A unitary integral transform associated to Fα
Slice(H)

In this section we introduce an integral operator Tα and show that it defines an
isometric isomorphism between the quaternionic slice Cholewinski Fock space
introduced in the last section and a specific quaternionic Hilbert space on the
real line, namely Hα = L2

H(R, dµα) where

dµα(x) :=
|x|2α+1

2α+1Γ(α + 1)
dx.

Note that the quaternionic Hilbert spaceHα is endowed by the inner product

〈ψ, φ〉Hα
:=

∫
R
φ(x)ψ(x)dµα(x).

Note that H− 1
2
is the standard Hilbert space L2

H(R). In this case, the isomor-
phism Tα is the quaternionic Segal-Bargmann transform introduced and studied
in [60].

Let us consider the kernel

Cα(p, x) := 2
α+1
2 e−

1
2
(p2+x2)Lα(

√
2px) ∀(p, x) ∈ H× R
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Chapter 5. The Cholewinski-Fock space in the slice hyperholomorphic setting

so that, for ϕ ∈ Hα and q ∈ H we define

Tαϕ(q) :=

∫
R
Cα(q, x)ϕ(x)dµα(x).

In the sequel, we study the integral transform Tα. To this end, let us recall some
properties of the so called generalized Hermite polynomials, see [103, 104, 108].
These generalized Hermite polynomials are defined by

Hα
n (x) :=

[n
2
]∑

k=0

(−1)kβn(α)

k!βn−k(α)
(2x)n−2k;x ∈ R

their generating function in the classical complex case is given by

e−
z2

4 Lα(zx) =
∞∑
n=0

Hα
n (x)

2nβn(α)
zn; z ∈ C, x ∈ R.

Moreover, it turns out that the Hermite functions

hαn(x) :=
2−

(n−α−1)
2√

βn(α)
e−

x2

2 Hα
n (x)

associated to these polynomials form an orthonormal basis of the Hilbert space
Hα.

Then, similarly to the complex case we prove the following

Lemma 5.4.1. Let p ∈ H and x ∈ R. Then, we have

e−
p2

4 Lα(px) =
∞∑
n=0

Hα
n (x)

2nβn(α)
pn.

Proof. Set

fi(z) = e−
z2

4 Lα(zx) and gi(z) =
∞∑
n=0

Hα
n (x)

2nβn(α)
zn; ∀z ∈ Ci.

Notice that fi and gi are two entire functions. Then, they could be extended into
two slice entire regular functions denoted respectively ext(fi) and ext(gi). On
the other hand, the functions

F (q) = e−
q2

4 Lα(qx) and G(q) =
∞∑
n=0

Hα
n (x)

2nβn(α)
qn

are entire slice regular on H since q 7→ e−
q2

4 is quaternionic intrinsic. It follows
then from the uniqueness in the Lemma 3.1.7 that F = ext(fi) andG = ext(gi).
Finally, since F and G coincide on the slice Ci we use the identity principle to
conclude the proof. �
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As a consequence of the last lemma we have
Proposition 5.4.2. Let p ∈ H and x ∈ R. Then,

Cα(p, x) =
∞∑
n=0

hαn(x)
pn√
βn(α)

.

Proof. Let (p, x) ∈ H× R, and write
∞∑
n=0

hαn(x)
pn√
βn(α)

= 2
α+1
2 e−

x2

2

∞∑
n=0

Hα
n (x)

βn(α)

(√
2p

2

)n

Then, by taking q =
√
2p ∈ H we can apply the last lemma to get

∞∑
n=0

hαn(x)
pn√
βn(α)

= 2
α+1
2 e−

1
2
(x2+p2)Lα(

√
2px)

= Cα(p, x).

�

Another interesting property of the kernel Cα is given by
Lemma 5.4.3. Let p, q ∈ H.Then,∫

R
Cα(p, x)Cα(q, x)dµα(x) = Lα(p, q).

Proof. Let p, q ∈ H, making use of the Proposition 5.4.2 we can write

Cα(p, x) =
∞∑
n=0

hαn(x)
pn√
βn(α)

and Cα(q, x) =
∞∑
n=0

hαn(x)
qn√
βn(α)

.

Thus,∫
R
Cα(p, x)Cα(q, x)dµα(x) =

∫
R

(
∞∑
n=0

hαn(x)
pn√
βn(α)

)(
∞∑
m=0

hαm(x)
qm√
βm(α)

)
dµα(x)

=
∞∑

n,m=0

pnqm√
βn(α)

√
βm(α)

∫
R
hαn(x)h

α
m(x)dµα(x).

Then, since {hαn}n≥0 form an orthonormal set in Hα we have∫
R
Cα(p, x)Cα(q, x)dµα(x) =

∞∑
n,m=0

pnqm√
βn(α)

√
βm(α)

δn,m

= Lα(p, q).

�
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Chapter 5. The Cholewinski-Fock space in the slice hyperholomorphic setting

Therefore, we have

Proposition 5.4.4. Let q ∈ H and ϕ ∈ Hα. Then,

1. ‖Cqα‖Hα =
√
Lα(q, q) =

√
Lα(|q|2).

2. |Tαϕ(q)| ≤
√
Lα(|q|2)‖ϕ‖Hα.

Proof. 1. It is a direct consequence of the Lemma 5.4.3 combined with the
identity Cα(q, x) = Cα(q, x) for all q ∈ H.

2. We start by writing

|Tαϕ(q)| ≤
∫

R
|Cα(q, x)||ϕ(x)|dµα(x)

Then, we use the Cauchy-Schwarz inequality to complete the proof.
�

Remark 5.4.5. For n ∈ N, we have Tαhαn = φαn and ‖Tαhαn‖Fα
Slice(H) = ‖hαn‖Hα.

Moreover, if ϕ =
N∑
n=0

hαncn then ‖Tαϕ‖Fα
Slice(H) =

N∑
n=0

|cn|2 = ‖ϕ‖Hα .

Finally, we prove the following

Theorem 5.4.6. The integral transform Tα is an isometric isomorphism mapping
the quaternionic Hilbert space Hα onto Fα

Slice(H).

Proof. Let ϕ ∈ Hα and set ϕN =
N∑
n=0

hαnan with (an) ⊂ H such that ϕN con-

verges to ϕ inHα. Then, making use of the second estimate in Proposition 5.4.4
we can show that TαϕN is a Cauchy sequence in the quaternionic Hilbert space
Fα
Slice(H). Thus, there exists f ∈ Fα

Slice(H) such that TαϕN −→
Fα

Slice(H)
f . Conse-

quently, it will exist a subsequence (TαϕNk
)Nk

converging to f pointwise almost
everywhere. Moreover, according to the Proposition 5.4.4 we have the following

|Tαϕ(p)− TαϕN(p)| ≤ C(|p|)‖ϕ− ϕN‖Hα

Then, by lettingN goes to infinitywe can see that (TαϕN)N converges pointwise
to Tαϕ. In particular, the pointwise convergence shows that Tαϕ = f . However,
by definition we have f := lim

N→∞,Fα
Slice(H)

TαϕN .

Therefore, it follows that

‖Tαϕ‖Fα
Slice(H) = ‖f‖Fα

Slice(H) = lim
N→∞

‖TαϕN‖Fα
Slice(H) = ‖ϕ‖Hα.

Hence, Tα is a quaternionic isometric integral operator which is one-to-one.
Moreover, since Tαhαn = φαn it is also surjective and this ends the proof. �
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As a consequence we have

Proposition 5.4.7. Let f ∈ Fα
Slice(H) and x ∈ R. Then, for any imaginary unit

I ∈ S we have

T−1
α f(x) =

∫
CI

Ceα,I(p, x)f Ie (p)dλα,I(p)+2(α+1)

∫
CI

Coα,I(p, x)f Io (p)|p|−2dλα+1,I(p).

Proof. First, note that Tα is a surjective isometry. Then, it defines a quaternionic
unitary operator which means that its inverse is given by T−1

α = T ∗
α where T ∗

α

is the adjoint operator of Tα. Now, let f ∈ Fα
Slice(H), then since T−1

α = T ∗
α we

have 〈
T−1
α f, g

〉
Hα

= 〈f, Tαg〉Fα
Slice(H) ∀g ∈ Hα.

Observe that Tαg is given by

Tαg(q) =

∫
R
Cα(q, x)g(x)dµα(x).

Then, we have〈
T−1
α f, g

〉
Hα

= 〈f, Tαg〉Fα
Slice(H) ∀g ∈ Hα.

=

∫
CI

(Tαg)eI(p)f
e
I (p)dλα,I(p) + 2(α + 1)

∫
CI

(Tαg)oI(p)f
o
I (p)|p|−2dλα+1,I(p)

However, we have

(Tαg)
e
I(p) =

∫
R
Ceα(p, x)g(x)dµα(x) and (Tαg)

o
I(p) =

∫
R
Coα(p, x)g(x)dµα(x).

Thus, making use of Fubini’s theorem we get that for any g ∈ Hα we have〈
T−1
α f, g

〉
Hα

=

∫
R
g(x)ψf (x)dµα(x)

= 〈ψf , g〉Hα
,

where we have set

ψf (x) =

∫
CI

Ceα,I(p, x)f Ie (p)dλα,I(p)+2(α+1)

∫
CI

Coα,I(p, x)f Io (p)|p|−2dλα+1,I(p).

Since the last equality holds for all g ∈ Fα
Slice(H) it follows that T−1

α f = ψf . �

Remark 5.4.8. The integral on the right hand side in Proposition 5.4.7 does not
depend on the choice of the imaginary unit since the scalar product does not depend
on the choice of the slice.
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Chapter 5. The Cholewinski-Fock space in the slice hyperholomorphic setting

We finish this section by connecting this unitary transform Tα to what we
call the (right) slice Dunkl transform. Indeed, we define the (right) slice Dunkl
transform of a function ϕ ∈ Hα with respect to a slice CI to be

DI
αϕ(x) :=

∫
R
Lα(−Ixt)ϕ(t)dµα(t)

More properties of the classical complex Dunkl transform can be found for ex-
ample in [109]. Actually, this transform generalizes the classical Fourier trans-
form on the real line. It satisfies a version of the Plancherel theorem since it
extends uniquely to a unitary operator from the Hilbert space Hα onto itself.
Then, we prove

Lemma 5.4.9. Let I be any imaginary unit in S and ψ ∈ Hα. Then,

TαD
I
αψ(x) = Tαψ ◦ g(x) where g(x) = −xI for all x ∈ R.

Proof. Let x ∈ R and ψ ∈ Hα, and consider the function

ϕ(s) = DI
αψ(s) :=

∫
R
Lα(−Ist)ψ(t)dµα(t)

Then, thanks to the Plancherel and Fubini’s theorems ϕ ∈ Hα we can write

Tαϕ(x) =

∫
R
Cα(x, s)ϕ(s)dµα(s)

=

∫
R
Cα(x, s)

(∫
R
Lα(−Ist)ψ(t)dµα(t)

)
dµα(s)

=

∫
R

(∫
R
Cα(x, s)Lα(−Ist)dµα(s)

)
ψ(t)dµα(t)

Note that, we have

φ(x, t) :=

∫
R
Cα(x, s)Lα(−Ist)dµα(s).

Thus, we get

φ(x, t) := 2
α+1
2 e−

x2

2

∫
R
e−

s2

2 Lα(
√
2xs)Lα(−Ist)dµα(s).

The last integral can be evaluated as in Theorem 3.4 in [109] since x ∈ R. Then,
we get

φ(x, t) = Cα(−Ix, t).
Therefore, we obtain

TαD
I
αψ(x) =

∫
R
Cα(−Ix, t)ψ(t)dµα(t).
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Finally, this shows that

TαD
I
αψ(x) = Tαψ(−xI).

�

As a consequence of the Lemma 5.4.9 we have the following :

Proposition 5.4.10. For any I ∈ S and f ∈ Fα
Slice(H) we have

TαD
I
αT

−1
α (f)(x) = f(−xI) ∀x ∈ R.

Proof. We just have to take ψ = T−1
α f ∈ Hα and then apply the Lemma 5.4.9.

�

5.5 Some quaternionic operators on Fα
Slice(H)

In this section, we shall consider the two following operators on the slice Cholewinski-
Fock space defined by

Mf(q) = qf(q) and Dα,Sf(q) = ∂Sf(q) + (2α + 1)q−1f o(q)

with domains given respectively by

D(M) = {f ∈ Fα
Slice(H);Mf ∈ Fα

Slice(H)}

and
D(Dα,S) = {f ∈ Fα

Slice(H);Dα,Sf ∈ Fα
Slice(H)}.

Note that M and Dα,S are quaternionic right linear operators densely defined
on Fα

Slice(H) since {φαn}n∈N is an orthonormal basis of this quaternionic Hilbert
space.

In the sequel, we present some properties of these right quaternionic operators
on Fα

Slice(H)

Proposition 5.5.1. M andDα,S are two closed quaternionic operators onFα
Slice(H).

Proof. We consider the graph ofM defined by

G(M) := {(f,Mf); f ∈ D(M)}.

Let us show that G(M) is closed. Indeed, let φn be a sequence in D(M) such
that φn and Mφn converge to φ and ψ respectively on Fα

Slice(H). Then, thanks
to the Proposition 5.4.4 we have

|φn(q)− φ(q)| ≤ Cq‖φn − φ‖ and |Mφn(q)− ψ(q)| ≤ Cq‖Mφn − ψ‖;

it follows that φn and Mφn converge respectively to φ and ψ pointwise. This
leads to ψ(q) = Mφ(q) which ends the proof. The same technique could be
adopted to prove the closeness of the operator Dα,S on Fα

Slice(H). �
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Chapter 5. The Cholewinski-Fock space in the slice hyperholomorphic setting

Proposition 5.5.2. Let f ∈ Fα
Slice(H). Then, Mf ∈ Fα

Slice(H) if and only if
Dα,Sf ∈ Fα

Slice(H). In particular this means that D(M) = D(Dα,S).

Proof. Let f(q) =
∞∑
n=0

qnan be an entire slice regular function belonging to

Fα
Slice(H); we shall compute ‖Mf‖ and ‖Dα,Sf‖. We have

Mf(q) =
∞∑
n=0

qn+1an and ‖Mf‖2 =
∞∑
n=0

βn+1(α)|an|2.

On the other hand,

Dα,Sf(q) =
∞∑
k=1

2kq2k−1a2k +
∞∑
k=1

2(α + k + 1)q2ka2k+1

=
∞∑
k=1

β2k(α)

β2k−1(α)
q2k−1a2k +

∞∑
k=1

β2k+1(α)

β2k(α)
q2ka2k+1

=
∞∑
n=1

βn(α)

βn−1(α)
qn−1an

Thus we have

Dα,Sf(q) =
∞∑
n=0

qncn where cn =
βn+1(α)

βn(α)
an+1.

Hence, making use of Proposition 5.3.4 we obtain

‖Dα,Sf‖2 =
∞∑
n=0

βn+1(α)

βn(α)
βn+1(α)|an+1|2.

Now, we use the fact that

βn+1(α)

βn(α)
= n+ 1 +

2α + 1

2
(1 + (−1)n)

and setting k = n+ 1 we get

‖Dα,Sf‖2 =
∞∑
k=0

(
k +

2α + 1

2
(1− (−1)k)

)
βk(α)|ak|2

This leads to

‖Dα,Sf‖2 = ‖Mf‖2 − ‖f‖2 − (2α + 1)
∞∑
k=0

(−1)kβk(α)|ak|2

Last equality concludes the proof and shows that M and Dα,S have the same
domain on Fα

Slice(H). �
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Proposition 5.5.3. For f ∈ D(Dα,S) and g ∈ D(M), we have

〈Dα,Sf, g〉Fα
Slice(H) = 〈f,Mg〉Fα

Slice(H)

and
〈Mg, f〉Fα

Slice(H) = 〈g,Dα,Sf〉Fα
Slice(H) .

Proof. Take f(q) =
∞∑
n=0

qnan and g(q) =
∞∑
n=0

qnbn. Then, as we have seen before

we have

Dα,Sf(q) =
∞∑
n=0

qncn with cn =
βn+1(α)

βn(α)
an+1

and by taking b−1 = 0 we have

Mg(q) =
∞∑
n=0

qnbn−1

Therefore, it follows from the Proposition 5.3.4 that

〈Dα,Sf, g〉Fα
Slice(H) =

∞∑
n=0

βn+1(α)bnan+1

= 〈f,Mg〉Fα
Slice(H) .

Then, we just need to apply 〈h, l〉 = 〈l, h〉 to get the second formula. �

Proposition 5.5.4. The commutator of the operators Dα,S and M satisfies

[Dα,S;M] = I + (2α + 1)A

where I is the identity operator and Af(q) = f(−q) on Fα
Slice(H).

Proof. Let f ∈ Fα
Slice(H), then we have

Mf(q) = qf(q) and Dα,Sf(q) = ∂Sf(q) + (2α + 1)q−1

(
f(q)− f(−q)

2

)
.

Thus,

MDα,Sf(q) = q∂Sf(q) + (2α + 1)

(
f(q)− f(−q)

2

)
Moreover, since the identity is an intrinsic entire slice regular function then the
slice derivative satisfies the Leibniz formula so that we have

Dα,SMf(q) = f(q) + q∂Sf(q) + (2α + 1)

(
f(q) + f(−q)

2

)
.

Hence, by substituting the two last equations we get the desired result. �
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Chapter 5. The Cholewinski-Fock space in the slice hyperholomorphic setting

Finally, all the previous properties could be summarized in the following
main result

Theorem 5.5.5. M and Dα,S are closed densely defined right quaternionic linear
operators adjoints of each other on the slice Cholewinski-Fock space. Moreover, they
satisfy the commutation rule

[Dα,S;M] = I + (2α + 1)A.

Remark 5.5.6. If α = −1

2
the last theorem states that the slice derivative ∂S and

the quaternionic multiplication operator Mq are adjoints one of each other and
satisfy the classical commutation rule [∂S;Mq] = I on the slice hyperholomorphic
Fock space introduced in [15].

5.6 The slice monogenic Cholewinski-Fock spaces

Let {e1, e2, ..., en} be an orthonormal basis of the Euclidean vector space Rn

with a non-commutative product defined by the following multiplication law

ekes + esek = −2δk,s; k, s = 1, ..., n

where δk,s is the Kronecker symbol. The set {eA : A ⊂ {1, ...,m}} with eA =
eh1eh2...ehr , 1 ≤ h1 < ... < hr ≤ n, e∅ = 1 forms a basis of the Clifford algebra
Rn. Let Rn+1 be embedded in Rn by identifying (x0, x1, ..., xn) ∈ Rn+1 with
the para-vector x = x0 + x

−
∈ Rn. The conjugate of x is given by x̄ = x0 − x

−
and the norm of x is defined by |x|2 = x20 + ... + x2n. Furthermore, the (n − 1)
dimensional sphere of units 1−vectors in Rn is denoted by

Sn−1 = {x = x1e1 + ...+ xnen;x
2
1 + ...+ x2n = 1}.

Note that if I ∈ Sn−1, then I2 = −1. Based on these notations, in [36] the theory
of slice regular functions on quaternions was extended to the slice monogenic
setting where the space of all slice monogenic functions on Ω is denoted by
SM(Ω). Then, by analogy with the quaternionic setting, to f ∈ SM(Rn+1)
such that

f(x) = f e(x) + f o(x)

we consider

‖f‖2α,n :=

∫
CI

|f eI (x)|2dλα,I(x) + 2(α + 1)

∫
CI

|f oI (x)|2|x|−2dλα+1,I(x)

where for the para-vector x = u+ vI ∈ CI we have

dλα,I(x) :=
|x|2α+2

π2αΓ(α + 1)
Kα(|x|2)dλI(x).
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Hence, we define the slice monogenic Cholewinski-Fock space on Rn+1 to be

Fα
Slice(Rn+1) := {f ∈ SM(Rn+1); ‖f‖n,α <∞}.

Themonomials given by paravectors (xn)n form an orthogonal basis ofFα
Slice(Rn+1).

Moreover, note that if α = −1

2
this space is the slice hyperholomorhic Clifford

Fock space introduced in section 5 of [15].
Finally, we conclude this by this comment

Remark 5.6.1. The theory of slice monogenic functions with Clifford valued func-
tions [35, 36] extends following the same spirit the one of slice regular functions
on quaternions so that we have the same extended versions of : Splitting Lemma,
series expansion theorem, Representation Formula, etc. Hence, most of the results
obtained in this paper in the quaternionic setting could be rewritten in the slice
monogenic setting.
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CHAPTER6
A quaternionic Short-time Fourier transform

QSTFT

In this chapter, we study a special one dimensional quaternion short-time Fourier
transform (QSTFT). Its construction is based on the slice hyperholomorphic
Segal-Bargmann transform. We discuss some of its basic properties and prove
different results on this QSTFT such as Moyal formula, reconstruction formula
and Lieb’s uncertainty principle. We provide also the reproducing kernel asso-
ciated to the Gabor space considered in this case. The results obtained here are
based on [56]

6.1 Motivation

There has been an increased interest in the generalization of integral transforms
to the quaternionic and Clifford settings in the last years. Such transforms are
widely studied, since they help in analysis of vector-valued signals and images.
In [31] it was explained that some hypercomplex signals can be useful tools for
extracting intrinsically 1D-features from images. The reader can find othermoti-
vations for studying the extension of the time frequency-analysis to quaternions
in [31]. In the survey [54] the author states that this research topic is based on
three main approaches: the eigenfunction approach, the generalized roots of−1
approach and the spin group approach. In particular, using the second approach
a quaternionic short-time Fourier transform in dimension 2 is studied in [21].
In the paper [94] the same transform is defined in a Clifford setting for even
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Chapter 6. A quaternionic Short-time Fourier transform QSTFT

dimension more than two. We introduce here an extension of the short-time
Fourier transform in the quaternionic setting in dimension one. To this end,
we fix a property that relates the complex short-time Fourier transform and the
complex Segal-Bargmann transform:

Vϕf(x, ω) = e−πixωGf(z̄)e
−π|z|2

2 , (6.1.1)

where Vϕ is the complex short-time Fourier transform with respect to the Gaus-
sian window ϕ (see [78, Def. 3.1]) and Gf(z) denotes the complex version of
the Segal-Bargmann transform according to [78]. To achieve our aim we use the
quaternionc analogue of the Segal-Bargmann transform studied in [60]. This in-
tegral transformwas used also in [63] to study some quaternionic Hilbert spaces
of Cauchy-Fueter regular functions.

In order to present our results, we adopt the following structure: in the next
section, we prove some new properties of the quaternionic Segal-Bargmann
transform that will be useful for our purpose. In particular we deal with an
unitary property and give a characterization of the range of the Schwartz space.
Moreover, we provide some calculations related to the position and the momen-
tum operators. After that, we give a brief overview of the 1D Fourier trans-
form [65] and show a Plancherel theorem in this framework. Then, we will
define the 1D QSTFT and prove an isometric relation for the 1D QSTFT and a
Moyal formula using the Segal-Bargmann techniques. We show also the follow-
ing reconstruction formula

f(y) = 2−
1
4

∫
R2

e2πIωyVϕf(x, ω)e−π(y−x)
2

dxdω, ∀y ∈ R.

From this follows that the adjoint operator of the QSTFT defines a left inverse.
Furthermore, it gives the possibility to write the 1D QSTFT using the reproduc-
ing kernel associated to the Gabor space

GϕH := {Vϕf, f ∈ L2(R,H)}.

Finally, we prove that the 1DQSTFT considered here follows a Lieb’s uncertainty
principle.

6.2 Further properties of the quaternionic Segal-Bargmann transform

In this sectionwe prove some newproperties of the quaternionic Segal-Bargmann
transform.

6.2.1 A unitary property

We start from an unitary property which is not found in literature in the follow-
ing explicit form.
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6.2. Further properties of the quaternionic Segal-Bargmann transform

Proposition 6.2.1. Let f, g ∈ L2(R,H). Then, we have

〈BSH(f),BSH(g)〉F2,ν
slice(H) = 〈f, g〉L2(R,H). (6.2.1)

Proof. Any f, g ∈ L2(R,H) can be expanded as

f(x) =
∑
k≥0

hνk(x)αk,

g(x) =
∑
k≥0

hνk(x)βk,

where (αk)k∈N, (βk)k∈N ⊂ H.

〈f, g〉L2(R,H) =

∫
R
g(x)f(x) dx =

∑
k≥0

∫
R
hνk(x)βkh

ν
k(x)αk dx

=
∑
k≥0

βk

(∫
R
hνk(x)h

ν
k(x) dx

)
αk (6.2.2)

=
∑
k≥0

‖hνk(x)‖2L2(R,H)βkαk.

On the other way, since

〈f, hνk〉L2(R,H) =
∑
j≥0

(∫
R
hνk(x)h

ν
j (x) dx

)
αj = ‖hνk(x)‖2L2(R,H)αk.

We have by [60]

BSH(f)(q) =
∑
k≥0

ek(q)
〈f, hνk〉L2(R,H)

‖hνk(x)‖L2(R,H)‖ek‖F2,ν
Slice

(6.2.3)

=
∑
k≥0

ek(q)
‖hνk(x)‖22

‖hνk(x)‖L2(R,H)‖ek‖F2,ν
Slice

αk

=
∑
k≥0

ek(q)
‖hνk(x)‖L2(R,H)

‖ek‖F2,ν
Slice

αk.

Using the same calculus we obtain

BSH(g)(q) =
∑
k≥0

‖hνk(x)‖L2(R,H)

‖ek‖F2,ν
Slice

ek(q)βk. (6.2.4)
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Chapter 6. A quaternionic Short-time Fourier transform QSTFT

By putting together (6.2.3) and (6.2.4) we obtain

〈BSH(f),BSH(g)〉F2,ν
Slice(H) =

∑
k≥0

∫
CI

‖hνk(x)‖2L2(R,H)βk
ek(q)

‖ek‖F2,ν
Slice

·

· ek(q)

‖ek‖F2,ν
Slice

αke
−ν|q|2 dλI(q)

=
∑
k≥0

‖hνk(x)‖2L2(R,H)βk

(∫
CI

ek(q)

‖ek‖F2,ν
Slice

·

· ek(q)

‖ek‖F2,ν
Slice

e−ν|q|
2

dλI(q)

)
αk

=
∑
k≥0

‖hνk(x)‖2L2(R,H)βk
1

‖ek‖2F2,ν
Slice

·

·
(∫

CI

ek(q)ek(q)e
−ν|q|2 dλI(q)

)
αk

=
∑
k≥0

‖hνk(x)‖2L2(R,H)βk
1

‖ek‖2F2,ν
Slice

‖ek‖2F2,ν
Slice

αk

=
∑
k≥0

‖hνk(x)‖2L2(R,H)βkαk (6.2.5)

Finally, since (6.2.2) and (6.2.5) are equal we obtain the thesis. �

Remark 6.2.2. If f = g in (6.2.1) we have that the quaternionic Segal-Bargmann
transform realizes an isometry from L2(R,H) onto the slice hyperholomorphic
Bargmann-Fock space F2,ν

Slice(H), as proved in a different way in [60, Thm. 4.6]

6.2.2 Range of the Schwartz space

We characterize the range of the Schwartz space under the Segal-Bargmann
transformwith parameter ν = 1 in the slice hyperholomorphic setting of quater-
nions. We consider also some equivalence relations related to the position and
momentum operators in this setting. The quaternionic Schwartz space on the
real line that we are considering in this framework is defined by

SH(R) := {ψ : R −→ H : sup
x∈R

∣∣∣∣xα dβdxβ (ψ)(x)
∣∣∣∣ <∞, ∀α, β ∈ N}.

For I ∈ S, the classical Schwartz space is given by

SCI
(R) := {ϕ : R −→ CI ; : sup

x∈R

∣∣∣∣xα dβdxβ (ϕ)(x)
∣∣∣∣ <∞, ∀α, β ∈ N}.
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6.2. Further properties of the quaternionic Segal-Bargmann transform

Clearly, we have that

SCI
(R) ⊂ SH(R) ⊂ L2

H(R).

Moreover, we prove the following

Lemma6.2.3. Letψ : x 7−→ ψ(x) be a quaternionic valued function. Let I, J ∈ S
be such that I ⊥ J . Then, ψ ∈ SH(R) if and only if there exist ϕ1, ϕ2 ∈ SCI

(R)
such that we have

ψ(x) = ϕ1(x) + ϕ2(x)J, ∀x ∈ R.

Proof. Let ψ ∈ SH(R). Then, we can write

ψ(x) = ϕ1(x) + ϕ2(x)J,

where ϕ1 and ϕ2 are CI−valued functions. Note that for all α, β ∈ N we have∣∣∣∣xα dβdxβ (ψ)(x)
∣∣∣∣2 = ∣∣∣∣xα dβdxβ (ϕ1)(x)

∣∣∣∣2 + ∣∣∣∣xα dβdxβ (ϕ2)(x)

∣∣∣∣2 .
In particular, this implies that ψ ∈ SH(R) if and only if ϕ1, ϕ2 ∈ SCI

(R). �

Let us now denote by SF(H) the range of SH(R) under the quaternionic
Segal-Bargmann transform BSH.Therefore, we have the following characteriza-
tion of SF(H):

Theorem 6.2.4. A function f(q) =
∞∑
k=0

qkck belongs to SF(H) if and only if

sup
k∈N

|ck|kp
√
k! <∞,∀p > 0.

i.e,

SF(H) = {
∞∑
k=0

qkck, ck ∈ H and sup
k∈N

|ck|kp
√
k! <∞,∀p > 0}.

Proof. Let f ∈ SF(H), then by definition f = BSHψ where ψ ∈ SH(R). Let
I, J ∈ S, be such that I ⊥ J . Thus, Lemma 6.2.3 implies that

ψ(x) = ϕ1(x) + ϕ2(x)J,

where ϕ1, ϕ2 ∈ SCI
(R). Therefore, we have

BSH(ψ)(q) = BSH(ϕ1)(q) + BSH(ϕ2)(q)J.

Then, we take the restriction to the complex plane CI and get:

BSH(ψ)(z) = BCI
(ϕ1)(z) + BCI

(ϕ2)(z)J, ∀z ∈ CI ,
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Chapter 6. A quaternionic Short-time Fourier transform QSTFT

where the complex Bargmann transform (see [23]) is given by

BCI
(ϕl)(z) =

1

π
3
4

∫
R
e−

1
2
(z2+x2)+

√
2zxϕl(x)dx, l = 1, 2.

In particular, we set fI := BSH(ψ), f1 := BCI
(ϕ1) and f2 := BCI

(ϕ2). Then,
we have f1, f2 ∈ SF(CI). Thus, by applying the classical result in complex
analysis, see [98] we have

f1(z) =
∞∑
n=0

anz
n and f2(z) =

∞∑
n=0

bnz
n, ∀z ∈ CI .

Moreover, for all p > 0 the following conditions hold

sup
n∈N

|an|np
√
n! <∞ and sup

n∈N
|bn|np

√
n! <∞.

In particular, we have then

fI(z) =
∞∑
n=0

anz
n + (

∞∑
n=0

anz
n)J, ∀z ∈ CI .

Therefore,

fI(z) =
∞∑
n=0

zncn with cn = an + bnJ, for all z ∈ CI .

Thus, by taking the slice hyperholomorphic extension we get

f(q) =
∞∑
n=0

qncn, ∀q ∈ H.

Moreover, note that cn = an + bnJ, n ∈ N. Then, |cn| ≤ |an| + |bn|, ∀n ∈ N.
Thus, for all p > 0, we have

sup
n∈N

|cn|np
√
n! ≤ sup

n∈N
|an|np

√
n! + sup

n∈N
|bn|np

√
n! <∞.

Finally, we conclude that

SF(H) = {f(q) =
∞∑
k=0

qkck, ck ∈ H and sup
k∈N

|ck|kp
√
k! <∞,∀p > 0}.

�
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6.2. Further properties of the quaternionic Segal-Bargmann transform

6.2.3 Position and momentum operators

Now, let us consider on L2(R,H) = L2
H(R) the position and momentum opera-

tors defined by

X : ϕ 7→ Xϕ(x) = xϕ(x) and D : ϕ 7→ Dϕ(x) =
d

dx
ϕ(x).

Their domains are given respectively by

D(X) := {ϕ ∈ L2
H(R); Xϕ ∈ L2

H(R)} and D(D) := {ϕ ∈ L2
H(R); Dϕ ∈ L2

H(R)}.

First, let us prove the following

Lemma 6.2.5. For all (q, x) ∈ H× R, we have

∂SAS
H(q, x) = (−q +

√
2x)AS

H(q, x).

Proof. Let (q, x) ∈ H×R. Then, by definition of the quaternionic Segal-Bargmann
kernel we can write

AS
H(q, x) := π− 3

4 e−
x2

2 e−
q2

2 e
√
2qx.

In this case, we can apply the Leibnitz rule with respect to the slice derivative
and get

∂SAS
H(q, x) = π− 3

4 e−
x2

2

(
e−

q2

2 ∂S(e
√
2xq) + ∂S(e

− q2

2 )e
√
2xq

)
.

However, using the series expansion of the exponential function and applying
the slice derivative we know that

∂S(e
− q2

2 ) = −qe−
q2

2 and ∂S(e
√
2xq) =

√
2xe

√
2xq.

Therefore, we obtain

∂SAS
H(q, x) = (−q +

√
2x)ASH(q, x).

�

Theorem 6.2.6. Let ϕ ∈ D(X). Then, we have

(∂S + q)BSH(ϕ)(q) =
√
2BSH(xϕ)(q), ∀q ∈ H.

Proof. Let ϕ ∈ D(X) and q ∈ H. Then, we have

∂SBSH(ϕ)(q) =
∫

R
∂SAS

H(q, x)ϕ(x)dx.
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Therefore, using Lemma 6.2.5 we obtain

∂SBSH(ϕ)(q) =
√
2BSH(xϕ)(q)− qBSH(ϕ)(q).

Finally, we get

(∂S + q)BSH(ϕ)(q) =
√
2BSH(xϕ)(q), ∀q ∈ H.

�

As a quick consequence, we have

Corollary 6.2.7. The position operator X on L2
H(R) is equivalent to the operator

1√
2
(∂S+q) on the spaceF2,1

Slice(H) via the quaternionic Segal-Bargmann transform

BSH. In other words, for all ϕ ∈ D(X) we have

X(ϕ) = (BSH)−1 (∂S + q)√
2

BSH(ϕ).

On the other hand, we have also the following

Theorem 6.2.8. We denote byMq : ϕ 7−→Mqϕ(q) = qϕ(q) the creation operator
on F2,1

Slice(H). Then, we have

(BSH)−1MqBSH =
1√
2
(X −D) on D(X) ∩ D(D).

Proof. Let ϕ ∈ D(X) ∩ D(D). Then, we have

BSH(Dϕ)(q) =
∫

R
AS

H(q, x)
d

dx
ϕ(x)dx

= −
∫

R

d

dx
AS

H(q, x)ϕ(x)dx.

However, note that for all (q, x) ∈ H× R, we have

d

dx
AS

H(q, x) = (−x+
√
2q)AS

H(q, x).

Therefore,
BSH(Dϕ)(q) = BSH(xϕ)(q)−

√
2qBSH(ϕ)(q).

Thus, we obtain

MqBSH(ϕ) = BSH
(

1√
2
(X −D)

)
(ϕ).

Finally, we just need to apply (BSH)−1 to complete the proof. �
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6.3. 1D quaternion Fourier transform

6.3 1D quaternion Fourier transform

In this section, we study the one dimensional quaternion Fourier transforms
(QFT). Namely, we are considering here the 1D left sided QFT studied in chapter
3 of the book [65]. In order to have less problems with computations we add
−2π to the exponential.

Definition 6.3.1. The left sided 1D quaternionic Fourier transform of a quaternion
valued signal ψ : R −→ H is defined on L1(R; dx) = L1(R;H) by

FI(ψ)(ω) =

∫
R
e−2πIωtψ(t)dt

for a given I ∈ S. Its inverse is defined by

∼
FI(φ)(t) =

∫
R
e2πIωtφ(ω)dω.

Let J ∈ S be such that J ⊥ I . We can split the signal ψ via symplectic
decomposition into simplex and perplex parts with respect to I such that we
have:

ψ(t) = ψ1(t) + ψ2(t)J

where ψ1(t), ψ2(t) ∈ CI .The left sided 1D QFT of ψ becomes

FI(ψ)(ω) =

∫
R
e−2πIωtψ1(t)dt+

∫
R
e−2πIωtψ2(t)dtJ

so that
FI(ψ)(ω) = FI(ψ1)(ω) + FI(ψ2)(ω)J.

According to [65], most of the properties may be inherited from the classical
complex case thanks to the equivalence between CI and the standard complex
plane and the fact that QFT can be decomposed into a sum of complex subfield
functions.

Now, we define two fundamental operators for the time-frequency analysis.

Translation
τxψ(t) := ψ(t− x) x ∈ R.

Modulation
Mωψ(t) = e2πIωtψ(t), ω ∈ R.

As in the classical case we have a commutative relation between the two oper-
ators.

Lemma 6.3.1. Let ψ be a function in L2(R,H) then we have

τxMωψ(t) = e−2πIωxMωτxψ(t), ω, x ∈ R. (6.3.1)
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Proof. It is just a matter of computations

τxMωψ(t) = Mωψ(t− x) = e2πIω(t−x)ψ(t− x)

= e2πIωte−2πIωxψ(t− x)

= e−2πIωxe2πIωtψ(t− x)

= e−2πIωxMωτxψ(t).

�

From [65, Table 3.2] we have the following properties

FI(τxψ) =M−xFI(ψ), (6.3.2)

FI(Mωψ) = τωFI(ψ). (6.3.3)
From (6.3.2) and (6.3.3) follow easily that

FI(Mωτxψ) = τωM−xFI(ψ). (6.3.4)

Then, we prove a version of the Plancherel theorem for 1D QFT.

Theorem 6.3.2. Let φ, ψ ∈ L2(R,H). Then, we have

〈FI(φ),FI(ψ)〉L2(R,H) = 〈φ, ψ〉L2(R,H) .

In particular, for any φ ∈ L2(R,H) we have

||FI(φ)||L2(R,H) = ||φ||L2(R,H).

Proof. Let φ, ψ ∈ L2(R,H). By inversion formula for the 1D QFT, see [65], we
have

φ(ω) =
∼
FI(FI(φ))(ω), ∀ω ∈ R.

Thus, direct computations using Fubini’s theorem lead to

〈φ, ψ〉L2(R,H) =

∫
R
ψ(ω)

(∫
R
e2πIωtFI(φ)(t)dt

)
dω

=

∫
R

(∫
R
e−2πIωtψ(ω)dω

)
FI(φ)(t)dt

=

∫
R
FI(ψ)(t)FI(φ)(t)dt

= 〈FI(φ),FI(ψ)〉L2(R,H) .

As a direct consequence, we have for any φ ∈ L2(R,H)

||FI(φ)||2L2(R,H) = 〈FI(φ),FI(φ)〉L2(R,H)

= 〈φ, φ〉L2(R,H)

= ||φ||2L2(R,H).

�
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6.4. Quaternion short-time Fourier transform with a Gaussian window

The following remark may be of interest in some other contexts.
Remark 6.3.3. The formal convolution of two given signals φ, ψ : R −→ H when
it exists is defined by

(φ ∗ ψ)(t) :=
∫

R
φ(τ)ψ(t− τ)dτ.

In particular, if the window function φ is real valued the 1D QFT satisfies the clas-
sical property

FI(φ ∗ ψ) = FI(φ)FI(ψ).

6.4 Quaternion short-time Fourier transformwith a Gaussianwindow

The idea of the short-time Fourier transform is to obtain information about local
properties of the signal f . In order to achieve this aim the signal f is restricted
to an interval and after its Fourier transform is evaluated. However, since a
sharp cut-off can introduce artificial discontinuities and can create problems, it
is usually chosen a smooth cut-off function ϕ called ”window function”. The aim
of this section is to propose a quaternionic analogue of the short-time Fourier
transform in dimension one with a Gaussian window function ϕ(t) = 21/4e−πt

2 .
For this, we consider the following formula [78, Prop. 3.4.1]

Vϕf(x, ω) = e−πixωGf(z̄)e
−π|z|2

2 , (6.4.1)

where the variables (x, ω) ∈ R2 have been converted into a complex vector
z = x + iω, and Gf(z) is the complex version of the Segal-Bargmann trans-
form according to [78]. Therefore, we want to extend (6.4.1) to the quaternionic
setting. To this end, we use the quaternionic analogue of the Segal-Bargmann
transform [60] and the slicing representation of the quaternions q = x + Iω,
where I ∈ S. If the signal is complex we denote the short-time Fourier trans-
form as Vϕ, while if the signal is H-valued we identify the short-time Fourier
transform as Vϕ.
Definition 6.4.1. Let f : R → H be a function in L2(R,H). We define the 1D
quaternion short time Fourier transform of f with respect to ϕ(t) = 21/4e−πt

2 as

Vϕf(x, ω) = e−IπxωBSH(f)
(
q̄√
2

)
e−

|q|2π
2 , (6.4.2)

where q = x+ Iω and BSH(f)(q) is the quaternionic Segal-Bargmann transform.

Fixing ν = 2π, we can write (6.4.2) in the following way

Vϕf(x, ω) = 2
3
4

∫
R
e−π
(

q̄2

2
+t2
)
+2πq̄t−Iπxω− |q|2π

2
f(t) dt.(6.4.3)

From this formula we are able to put in relation the 1D quaternion short-time
Fourier transform and the 1D quaternion Fourier transform defined in the pre-
vious section.
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Lemma 6.4.1. Let f be a function in L2(R,H) and ϕ(t) = 21/4e−πt
2 , recalling

the 1D quaternion Fourier transform we have

Vϕf(x, ω) =
√
2FI(f · τxϕ)(ω). (6.4.4)

Proof. By putting q = x+ Iω in (6.4.3) we have

Vϕf(x, ω) = 2
3
4 e−Iπxωe−

x2π
2 e−

ω2π
2

∫
R
e−πt

2

e−
π
2

(
x2−ω2−2xωI

)
·

·e2π(x−Iω)tf(t) dt

= 2
3
4

∫
R
e−πt

2−πx2+2πxte−2πIωtf(t) dt

=
√
2

∫
R
e−2πIωtf(t)2

1
4 e−π(t−x)

2

dt

=
√
2

∫
R
e−2πIωtf(t)ϕ(t− x) dt =

√
2FI(f · τxϕ)(ω).

�

Now, we prove a formula which relates the 1D quaternion Fourier transform
and its signal through the 1D short-time Fourier transform.

Proposition 6.4.2. Ifϕ is a Gaussian functionϕ(t) = 21/4e−πt
2 and f ∈ L2(R,H)

then
Vϕf(x, ω) =

√
2e−2πIωxVϕFI(f)(ω,−x). (6.4.5)

Proof. Recalling the definition of modulation and of inner product on L2(R,H),
by Lemma 6.4.1 we have

Vϕf(x, ω) =
√
2

∫
R
e2πIωtϕ(t− x)f(t) dt (6.4.6)

=
√
2

∫
R
Mωτxϕ(t)f(t) dt =

√
2 〈f,Mωτxϕ〉 .

Using the Plancherel theorem for the 1D quaternion Fourier transform, the prop-
erty (6.3.4) and the fact that FI(ϕ) = ϕ we have

Vϕf(x, ω) =
√
2 〈FI(f),FI(Mωτxϕ)〉

=
√
2 〈FI(f), τωM−xFI(ϕ)〉

=
√
2 〈FI(f), τωM−xϕ〉

Finally, from (6.3.1) and (6.4.6) we get

Vϕf(x, ω) =
√
2e−2πIωx 〈FI(f),M−xτωϕ〉 =

√
2e−2πIωxVϕFI(f)(ω,−x).

�
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6.4. Quaternion short-time Fourier transform with a Gaussian window

6.4.1 Moyal fromula

Now, we prove the Moyal formula and an isometric relation for the 1D quater-
nion short-time Fourier transform in two ways. In the first way we use the
properties of the quaternionic Segal- Bargmann transform, whereas in the sec-
ondwaywe use Lemma 6.4.1 and some basic properties of 1D quaternion Fourier
transform.

Proposition 6.4.3. For any f ∈ L2(R,H)

‖Vϕf‖L2(R2,H) =
√
2‖f‖L2(R,H). (6.4.7)

Proof. We use the slicing representation of the quaternions q = x + Iω and
formula (6.4.2) to get

‖Vϕf‖2L2(R,H) =

∫
R2

|Vϕf(x, ω)|2 dω dx

=

∫
R
|e−Iπxω|2

∣∣∣∣BSH(f)( q̄√
2

)∣∣∣∣2e−|q|2π dω dx.

Now, using the change of variable p = q̄√
2
we have that dA(p) = 1

2
dω dx, hence

by [60, Thm. 4.6]

‖Vϕf‖2L2(R,H) = 2

∫
R2

|BSH(f)(p)|2e−2π|q|2 dA(p)

= 2‖BSH(f)‖2F2,2π
Slice

= 2‖f‖2L2(R,H).

Therefore
‖Vϕf‖L2(R,H) =

√
2‖f‖L2(R,H).

�

Thus, the 1D quaternionic short-time Fourier transform is an isometry from
L2(R,H) into L2(R2;H).

Proposition 6.4.4 (Moyal formula). Let f, g be functions in L2(R,H). Then we
have

〈Vϕf,Vϕg〉L2(R2;H) = 2〈f, g〉L2(R,H). (6.4.8)

Proof. From (6.4.2) we get

〈Vϕf,Vϕg〉L2(R2;H) =

∫
R2

Vϕg(x, ω)Vϕf(x, ω) dω dx

=

∫
R2

e−IπxωBSH(g)
(
q̄√
2

)
e−

|q|2π
2 e−Iπxω ·
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Chapter 6. A quaternionic Short-time Fourier transform QSTFT

·BSH(f)
(

q̄√
2

)
e−

|q|2π
2 dω dx

= ∫R2BSH(g)
(

q̄√
2

)
eIπxωe−Iπxω ·

·BSH(f)
(

q̄√
2

)
e−|q|2π dω dx

= ∫R2BSH(g)
(

q̄√
2

)
BSH(f)

(
q̄√
2

)
e−|q|2π dω dx.

Using the same change of variables as before p = q̄√
2
and from (6.2.1) we

obtain

〈Vϕf,Vϕg〉L2(R2;H) = 2

∫
R2

BSH(g)(p)B
S
H(f)(p)e

−2|q|2π dω dx

= 2〈BSH(f),BSH(g)〉F2,2π
Slice(H) = 2〈f, g〉L2(R,H).

�

Remark 6.4.5. If we put f =
h2πk (t)

‖h2πk (t)‖22
in (6.4.2) by [60, Lemma 4.4] we get

Vϕf(x, ω) = e−Iπxωe−
π
2
|q|2 2

3/4

2kk!
q̄k.

Remark 6.4.6. From (6.4.4) we can prove (6.4.8) in another way. This proof may
be of interest in some other contexts.

Let us assume f, g ∈ L2(R,H) and recall ϕ(t) = 21/4e−πt
2 , by Lemma 6.4.1

and Plancherel theorem for the 1D quaternion Fourier transform we have

〈Vϕf,Vϕg〉L2(R2,H) =

∫
R2

Vϕg(x, ω)Vϕf(x, ω) dω dx

= 2

∫
R2

FI(g · τxϕ)(ω)FI(f · τxϕ)(ω) dω dx

= 2

∫
R2

g(ω) · τxϕ(ω)f(ω) · τxϕ(ω) dω dx.
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6.4. Quaternion short-time Fourier transform with a Gaussian window

Now, by Fubini’s theorem and the fact that ‖ϕ‖22 = 1 we get

〈Vϕf,Vϕg〉L2(R2,H) = 2

∫
R

(∫
R
g(ω) · τxϕ(ω)f(ω) · τxϕ(ω) dx

)
dω

= 2

∫
R

(∫
R
g(ω)f(ω)ϕ2(x− ω) dx

)
dω

= 2

∫
R
g(ω)f(ω)

(∫
R
ϕ2(x− ω) dx

)
dω

= 2

∫
R
g(ω)f(ω)‖ϕ‖22 dω = 2

∫
R
g(ω)f(ω) dω

= 2〈f, g〉L2(R,H).

Hence
〈Vϕf,Vϕg〉L2(R2;H) = 2〈f, g〉L2(R,H). (6.4.5)

If we put f = g in (6.4.5) we obtain (6.4.7).

6.4.2 Inversion formula and adjoint of QSTFT

The 1D QSTFT with Gaussian window ϕ satisfies a reconstruction formula that
we prove in the following.

Theorem 6.4.7. Let f ∈ L2(R,H). Then, we have

f(y) = 2−
1
4

∫
R2

e2πIωyVϕf(x, ω)e−π(y−x)
2

dxdω, ∀y ∈ R.

Proof. For all y ∈ R, we set

g(y) = 2−
1
4

∫
R2

e2πIωyVϕf(x, ω)e−π(y−x)
2

dxdω.

Let h ∈ L2(R,H). Fubini’s theorem combined with Moyal formula for QSTFT
leads to

〈g, h〉L2(R) =

∫
R
h(y)g(y)dy

= 2−
1
4

∫
R3

h(y)e2πIωyVϕf(x, ω)e−π(y−x)
2

dxdωdy

= 2−1
√
2

∫
R2

(∫
R
e−2πIωy2

1
4 e−π(y−x)2h(y)dy

)
Vϕf(x, ω)dxdω

= 2−1

∫
R2

Vϕh(x, ω)Vϕf(x, ω)dxdω

= 2−1 〈Vϕf,Vϕh〉L2(R2)

= 〈f, h〉L2(R) .
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Chapter 6. A quaternionic Short-time Fourier transform QSTFT

Hence, we have

f(y) = g(y) = 2−
1
4

∫
R2

e2πIωyVϕf(x, ω)e−π(y−x)
2

dxdω.

This ends the proof. �

We note that the QSTFT admits a left side inverse that we can compute as
follows

Theorem 6.4.8. Let ϕ denote the Gaussian window ϕ(t) = 21/4e−πt
2 and let

us consider the operator Aϕ : L2(R2,H) −→ L2(R,H) defined for any F ∈
L2(R2,H) by

Aϕ(F )(y) = 2
3
4

∫
R2

e2πIωyF (x, ω)e−π(y−x)
2

dxdω, ∀y ∈ R.

Then, Aϕ is the adjoint of Vϕ. Moreover, the following identity holds

V∗
ϕVϕ = 2Id. (6.4.6)

Proof. Let F ∈ L2(R2,H) and h ∈ L2(R,H). We use some calculations similar
to the previous result and get

〈Aϕ(F ), h〉L2(R,H) =

∫
R
h(y)Aϕ(F )(y)dy

= 2
3
4

∫
R3

h(y)e2πIωyF (x, ω)e−π(y−x)
2

dxdωdy

=

∫
R2

√
2

(∫
R
e−2πIωy2

1
4 e−π(y−x)2h(y)dy

)
F (x, ω)dxdω

=

∫
R2

Vϕh(x, ω)F (x, ω)dxdω

= 〈F,Vϕh〉L2(R2,H) .

In particular, this shows that

A(ϕ)(F ) = V∗
ϕ(F ), ∀F ∈ L2(R2,H).

From reconstruction formula we obtain (6.4.6).
�

Remark 6.4.9. We note that the identity V∗
ϕVϕ = 2Id provides another proof

for the fact that QSTFT is an isometric operator and the adjoint V∗
ϕ defines a left

inverse.
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6.4. Quaternion short-time Fourier transform with a Gaussian window

6.4.3 The eigenfunctions of the 1D quaternion Fourier transform

Through the 1D QSTFT we can prove in another way that the eigenfunctions of
the 1D quaternion Fourier transform are given by the Hermite functions.

Proposition 6.4.10. The Hermite functions h2πk (t) are eigenfunctions of the 1D
quaternion Fourier transform :

FI(h
2π
k )(t) = 2−1/2(−I)kh2πk (t), t ∈ R.

Proof. By identity (6.4.2) and [60, Lemma 4.4] we have

Vϕ(h2πk )(x,−ω) = eIπxωBSH(h2πk )
( q√

2

)
e−

π|q|2
2 (6.4.7)

= eIπxω21/42k/2(2π)k2−k/2qke−
π|q|2

2

= eIπxω21/4(2π)kqke−
π|q|2

2 .

Recalling that q = x+ Iω and using (6.4.5) we obtain

VϕFI(h
2π
k )(x,−ω) = 2−1/2e2πIωxVϕh2πk (ω, x)

= 2−1/2e2πIωxe−IπωxBSH(h2πk )

(
ω − Ix√

2

)
e−

|q|2π
2

= 2−1/2eπIωxBSH(h2πk )

(
−Iq√

2

)
e−

|q|2π
2

= 2−1/2eπIωx21/42k/2(2π)k(−I)k2−k/2qke−
|q|2π

2

= 2−1/2(−I)keIπωx21/4(2π)kqke−
|q|2π

2 .

Combining with (6.4.7)

VϕFI(h
2π
k )(x,−ω) = 2−1/2(−I)kVϕh2πk (x,−ω).

From (6.4.6) we know that Vϕ is injective, hence we have the thesis. �

6.4.4 Reproducing kernel property

The inversion formula gives us the possibility to write the 1D QSTFT using the
reproducing kernel associated to the quaternion Gabor space, introduced in [2],
with a Gaussian window that is defined by

GϕH := {Vϕf, f ∈ L2(R,H)}.

Theorem 6.4.11. Let f be in L2(R,H) and ϕ(t) = 21/4e−πt
2 . If

Kϕ(ω, x;ω
′, x′) =

∫
R
e−2πIω′tϕ(t− x′)e−2πIωtϕ(t− x) dt,
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Chapter 6. A quaternionic Short-time Fourier transform QSTFT

then Kϕ(ω, x;ω
′, x′) is the reproducing kernel i.e.

Vϕf(x′, ω′) =

∫
R2

Kϕ(ω, x;ω
′, x′)Vϕf(x, ω) dxdω.

Proof. By Lemma 6.4.1 and the reconstruction formula we have

Vϕf(x′, ω′) = 23/4
∫

R
e−2πIω′tf(t)e−π(t−x

′)2 dt

= 23/4
∫

R
e−2πIω′te−π(t−x

′)22−
1
4 ·

·
(∫

R2

e2πIωte−π(t−x)
2Vϕf(x, ω) dx dω

)
dt

=
√
2

∫
R3

e−2πI(ω′−ω)te−π(t−x
′)2e−π(t−x)

2 ·

·Vϕf(x, ω) dx dω dt.

Using Fubini’s theorem we have

Vϕf(x′, ω′) =
√
2

∫
R2

(∫
R
e−2πI(ω′−ω)te−π(t−x

′)2e−π(t−x)
2

dt

)
·

·Vϕf(x, ω) dx dω

=

∫
R2

(∫
R
e−2πIω′t21/4e−π(t−x

′)221/4e−2πIωte−π(t−x)2 dt

)
·

·Vϕf(x, ω) dx dω

=

∫
R2

(∫
R
e−2πIω′tϕ(t− x′)e−2πIωtϕ(t− x) dt

)
·

·Vϕf(x, ω) dx dω

=

∫
R2

Kϕ(ω, x;ω
′, x′)Vϕf(x, ω) dxdω.

�

6.4.5 Lieb’s uncertainty principle for QSTFT

The QSTFT follows the Lieb’s uncertainty principle with some weak differences
comparing to the classical complex case. Indeed, we first study the weak uncer-
tainty principle which is the subject of this result

Theorem 6.4.12 (Weak uncertainty principle). Let f ∈ L2(R,H) be a unit vector
(i.e ||f || = 1), U an open set of R2 and ε ≥ 0 such that∫

U

|Vϕf(x, ω)|2dxdω ≥ 1− ε.
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6.4. Quaternion short-time Fourier transform with a Gaussian window

Then, we have

|U | ≥ 1− ε

2
,

where |U | denotes the Lebesgue measure of U .

Proof. We note that using Definition of QSTFT and [60, Prop. 4.3] we obtain

|Vϕf(x, ω)| = |BSHf(q̄/
√
2)|e−

|q|2
2
π

= |BSHf(p)|e−π|p|
2

; p = q̄/
√
2

≤
√
2||f ||L2(R).

Thus, by hypothesis we get

1− ε ≤
∫

U

|Vϕf(x, ω)|2dxdω ≤ ||Vϕf ||2∞|U | ≤ 2|U |.

Hence, we have

|U | ≥ 1− ε

2
.

�

Theorem 6.4.13 (Lieb’s inequality). Let f ∈ L2(R,H) and 2 ≤ p < ∞. Then,
we have ∫

R2

|Vϕf(x, ω)|pdxdω ≤ 2p+1

p
||f ||pL2(R,H)

Proof. Let I, J ∈ S be such that I is orthogonal to J . Then, for f ∈ L2(R,H),
there exist f1, f2 ∈ L2(R,CI) such that

f(t) = f1(t) + f2(t)J, ∀t ∈ R

and for which the classical Lieb’s inequality [91] holds , i.e:∫
R2

|Vϕfl(x, ω)|pdxdω ≤ 2

p
||fl||pL2(R,CI)

; l = 1, 2.

In particular, by definition of QSTFT we have

Vϕf(x, ω) = Vϕf1(x, ω) + Vϕf2(x, ω)J, ∀(x, ω) ∈ R2.

Thus,

|Vϕf(x, ω)|p ≤ (|Vϕf1(x, ω)|+ |Vϕf2(x, ω)|)p

≤ 2p−1 (|Vϕf1(x, ω)|p + |Vϕf2(x, ω)|p) .
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Chapter 6. A quaternionic Short-time Fourier transform QSTFT

We use the classical Lieb’s inequality on each component combined with the
fact that ||fl||p ≤ ||f ||p for l = 1, 2 and get∫

R2

|Vϕf(x, ω)|pdxdω ≤ 2p

p

(
||f1||pL2(R) + ||f2||pL2(R)

)
≤ 2p+1

p
||f ||pL2(R,H).

This ends the proof. �

The next result improves the weak uncertainty principle in the sense that it
gives a best sharper estimate for |U |.

Theorem 6.4.14. Let f ∈ L2(R,H) be a unit vector, U an open set of R2 and
ε ≥ 0 such that ∫

U

|Vϕf(x, ω)|2dxdω ≥ 1− ε.

Then, we have
|U | ≥ cp(1− ε)

p
p−2 ,

where |U | denotes the Lebesgue measure of U and cp =
(

2p+1

p

)− 2
p−2

.

Proof. Let f ∈ L2(R,H) be such that ||f ||L2(R,H) = 1. We first apply Holder
inequality with exponents q =

p

2
and q′ =

p

p− 2
. Then, using Lieb’s inequality

for QSTFT we get∫
U

|Vϕf(x, ω)|2dxdω =

∫
R2

|Vϕf(x, ω)|2χU
(x, ω)dxdω

≤
(∫

R2

|Vϕf(x, ω)|pdxdω
) 2

p

|U |
p−2
p

≤
(
2p+1

p

) 2
p

|U |
p−2
p .

Hence, by hypothesis we obtain

|U | ≥ cp(1− ε)
p

p−2

where cp =
(

2p+1

p

)− 2
p−2 .

�
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6.5. Concluding remarks

6.5 Concluding remarks

In this chapter, we studied a quaternion short-time Fourier transform (QSTFT)
with a Gaussian window. This window function corresponds to the first nor-
malized Hermite function given by ψ0(t) = ϕ(t) = 21/4e−πt

2 . Based on the
quternionic Segal-Bargmann transform we proved several results including dif-
ferent versions of Moyal formula, reconstruction formula, Lieb’s principle, etc.
A more general problem in this framework is to consider a QSTFT associated to
some generic quaternion valued window ψ. For a given quaternion q = x+ Iω
we plan to investigate in our future research works the properties of the QSTFT
defined for any f ∈ L2(R,H) by

Vψf(x, ω) =
∫

R
e−2πItωψ(t− x)f(t)dt.

In particular, studying such transforms with normalized Hermite functions
{ψn(t)}n≥0 that are real valued windows will be related to the theory of slice
poly-analytic functions on quaternions considered in [17].
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CHAPTER7
A Clifford-Appell system and

Bargmann-Fock-Fueter transform

This chapter deals with some special integral transforms of Bargmann-Fock type
in the setting of quaternionic valued slice hyperholomorphic and Cauchy-Fueter
regular functions. The construction is based on the well-known Fueter mapping
theorem. In particular, starting with the normalized Hermite functions we can
construct an Appell system of quaternionic regular polynomials. The ranges of
such integral transforms are quaternionic reproducing kernel Hilbert spaces of
regular functions. New integral representations and generating functions in this
quaternionic setting are obtained in the Fock case. The results obtained in this
chapter are based on [63].

7.1 Motivation

The study of Appell sequences has been performed in the setting of Clifford anal-
ysis with respect to the hypercomplex derivative, see for example [29, 93, 99].
In [46, 101] the authors introduced some special modules of monogenic func-
tions of Bargmann-type in Clifford analysis. This line of research opens some
new research directions on Bargmann-Fock spaces and associated transforms in
the setting of Clifford analysis. In this chapter, we construct an Appell sequence
of spherical monogenics in the right Fueter-Bargmann space over quaternions,
denoted byRB(H), and consisting of quaternionic Fueter regular functions that
are square integrable with respect to the Gaussian measure. The main tool that
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Chapter 7. A Clifford-Appell system and Bargmann-Fock-Fueter transform

we use is the Fueter mapping theorem which relates slice hyperholomorphic
functions to Fueter regular ones through the Laplacian. More precisely, we ap-
ply the Fueter mapping on a special basis of the slice hyperholomorphic Fock
space constructed in [15] and obtain a set of homogeneous monogenic polyno-
mials in the right monogenic Bargmann space over the quaternions. This al-
lows us to construct on the standard Hilbert space on the real line the so called
Bargmann-Fock-Fueter integral transform whose range is a quaternionic repro-
ducing kernel Hilbert space of Cauchy-Fueter regular functions. In particular,
we give a partial answer to Remark 4.6 in [88] about Clifford coherent state
transforms using the Fueter mapping theorem in the setting of quaternions.
In section 3 of [46] the real monogenic Bargmannmodule on the Euclidean space
Rm was defined to be the module consisting of solutions of the s-th power of
the Dirac operator that are square integrable on Rm with respect to a Gaussian
measure. In this work we use a similar definition for the quaternions by replac-
ing the s-th power of the Dirac operator by the Cauchy-Fueter operator. So, we
call the right Fueter-Bargmann space on quaternions the space defined by

RB(H) := {f ∈ R(H);
1

π2

∫
H
|f(q)|2e−|q|2dλ(q) <∞},

where dλ denotes the usual Lebesgue measure on the Euclidean vector space
R4.

In order to present our results, we first study how the Fueter mapping acts
on a special basis elements of the slice hyperholomorphic Fock space. Then, we
show that the obtained polynomials constitute an Appell set of the Bargmann
space of Cauchy-Fueter regular functions over the quaternions. Then, we dis-
cuss the notion of Fock-Fueter kernel. We use the previous notion to introduce
and study the Bargmann-Fock-Fueter integral transform iand characterize the
Fueter mapping range. Some new integral representations and generating func-
tions in this quaternionic setting are obtained in the Fock space case.

7.2 A Clifford-Appell system based on the Fueter mapping

The main goal of this section is to apply the Fueter mapping on the quater-
nionic monomials forming an orthogonal basis of the slice hyperholomorphic
Fock space FSlice(H) and to get an Appell set of RB(H). A different proof of
this result using Cauchy-Kowalevski extension arguments can be found in [84].

First, we need a lemma that describes the action of the Cauchy-Fueter opera-
tor on the quaternionic monomials fn(q) = qn:

Lemma 7.2.1 (see [24]). For all n ≥ 2, we have

∂fn(q) = −2
n∑
k=1

qn−kqk−1.
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Then, we prove the following

Theorem 7.2.2. For all n ≥ 2, we have

τ [fn](q) =
∼
fn(q) = −4

n−1∑
k=1

(n− k)qn−k−1qk−1.

Proof. Let q = x0 + x1i + x2j + x3k, thanks to the quaternions multiplication
rules we have

f2(q) = q2 = x20 − x21 − x22 − x23 + 2x0(x1i+ x2j + x3k)

It is easy to check that
∼
f 2(q) = −4, so the formula holds for n = 2.

Let n ≥ 2. We suppose the proposition is true for n and we show that

∼
fn+1(q) = −4

n∑
l=1

(n+ 1− k)qn−kqk−1.

Indeed, we have
∼
fn+1 = ∆fn+1 and fn+1(q) = qfn(q).Therefore, applying the

classical Leibniz rule we get the following system

∂2

∂x20
fn+1(q)= 2

∂

∂x0
fn(q) + q

∂2

∂x20
fn(q)

∂2

∂x21
fn+1(q)=2i

∂

∂x1
fn(q) + q

∂2

∂x21
fn(q)

∂2

∂x22
fn+1(q)=2j

∂

∂x2
fn(q) + q

∂2

∂x22
fn(q)

∂2

∂x23
fn+1(q)=2k

∂

∂x3
fn(q) + q

∂2

∂x23
fn(q)

Thus, by adding both sides of the system we obtain
∼
fn+1 = ∆fn+1 = 2∂fn + q∆fn = 2∂fn + q

∼
fn

Then, thanks to Lemma 11.2.6 combined with the induction hypothesis we ob-
tain

∼
fn+1(q) = −4

n∑
k=1

(n+ 1− k)qn−kqk−1.

This completes the proof. �

Proposition 7.2.3. For all n ≥ 2, we have
∼
fn ∈ RB(H).

Proof. First of all, by the Fueter mapping theorem the functions
∼
fn are mono-

genic. We now show that for n ≥ 2, we have∫
H
|
∼
fn(q)|2e−|q|2dλ(q) <∞.
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Chapter 7. A Clifford-Appell system and Bargmann-Fock-Fueter transform

Indeed, we have ∣∣∣∼fn(q)∣∣∣ = 4

∣∣∣∣∣
n−1∑
k=1

(n− k)qn−k−1qk−1

∣∣∣∣∣
≤ 4

n−1∑
k=1

(n− k) |q|n−2 .

And since
n−1∑
k=1

(n− k) =
(n− 1)n

2
we get the following estimate

|
∼
fn(q)| ≤ 2(n− 1)n|q|n−2

Hence, for all n ≥ 2, we have ‖
∼
fn‖RB(H) ≤ 2n(n− 1)‖fn−2‖L2(H). The proof is

completed since the quaternionic monomials are square integrable with respect
to the Gaussian measure on H.

�

Remark 7.2.4. Let n ≥ 2 and k ≥ 0. Then

1. The functions
∼
fn are spherical monogenics of degree n− 2.

2.
∼
fn+1 = 2∂fn + q

∼
fn.

3.
∼
fk+2(q) = −4

k∑
j=0

(k + 1− j)qk−jqj .

As a consequencewe obtain anAppell set of sphericalmonogenics inRB(H).
To prove this fact we need some preliminary lemmas.

Lemma 7.2.5. Let f : H −→ H be a Fueter regular function. Then,

∂(qf) = 4f + 2
3∑
l=0

xl∂xlf.

Proof. Notice that for the particular case of quaternions the Leibniz rule given by
(3.5.1) correspond tom = 3. Then, if wewrite q = x0+xwithx = x1i+x2j+x3k
we obtain

∂x(xf) = −3f − x∂xf − 2
3∑
l=1

xl∂xlf. (7.2.1)

Morever, we have

∂(qf) = f + x0∂f + x∂x0f − ∂x(xf).
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7.2. A Clifford-Appell system based on the Fueter mapping

So, thanks to (7.2.1) we obtain

∂(qf) = 4f + x0∂f + x∂f + 2
3∑
l=1

xl∂xlf.

It is easy to see that ∂f = 2∂x0f . Moreover, if f is regular then ∂f = 0 which
completes the proof. �

Let us consider the Euler operator

Eq :=
3∑
l=0

xl∂xl.

We have:

Lemma 7.2.6. Let h ≥ 2 and 0 ≤ s ≤ h. Then

Eq(q
h−sqs) = hqh−sqs.

Proof. Note that for all l ≥ 0, we have

d

dx1
(ql) = iql−1 + qiql−2 + q2iql−3 + ...+ ql−1i (7.2.2)

and
d

dx1
(q̄l) = −iq̄l−1 − q̄iq̄l−2 − q̄2iq̄l−3 − ...− q̄l−1i. (7.2.3)

We have analogous relations for
d

dx2
(ql),

d

dx3
(ql) and

d

dx2
(q̄l),

d

dx3
(q̄l). Now

observe that by the classical Leibniz rule we have

d

dx0
(qh−sq̄s) = sqh−sq̄s−1 + (h− s)qh−s−1q̄s.

On the other hand, applying the Leibniz rule we also have

d

dx1
(qh−sq̄s) = qh−s

d

dx1
(q̄s) +

d

dx1
(qh−s)q̄s.

Therefore, we use the formulas (7.2.2), (7.2.3) and those ones with respect to all

other derivatives to compute
d

dx1
(qh−sq̄s),

d

dx2
(qh−sq̄s) and

d

dx3
(qh−sq̄s). Then,

by standard computations we obtain the result. �

Lemma 7.2.7. For all k ≥ 1,

∂
∼
fk+2 = 2(k + 2)

∼
fk+1.
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Chapter 7. A Clifford-Appell system and Bargmann-Fock-Fueter transform

Proof. Direct computations show that the formula holds for k = 1 and k = 2.
Let k ≥ 2, we can just prove ∂

∼
fk+3 = 2(k + 3)

∼
fk+2. Indeed, we have

∼
fk+3 = 2∂fk+2 + q

∼
fk+2

Then, we apply the conjugate of the Cauchy-Fueter operator on both sides of
the latter equality and we use the fact that ∂∂ = ∂∂ = ∆ to get

∂
∼
fk+3 = 2

∼
fk+2 + ∂(q

∼
fk+2). (7.2.4)

Let us calculate ∂(q
∼
fk+2).

Since
∼
fk+2 is Fueter regular and in view of Lemma 7.2.5 we have

∂(q
∼
fk+2) = 4

∼
fk+2 + 2Eq

∼
fk+2, (7.2.5)

and

Eq
∼
fk+2 = −4

k∑
s=0

(k + 1− s)Eq(q
k−sqs). (7.2.6)

Hence, we apply Lemma 7.2.6 to obtain

Eq(q
k−sqs) = kqk−sqs.

Therefore, by replacing in (7.2.6) we get

Eq
∼
fk+2 = k

∼
fk+2.

Finally, we conclude from the equations (7.2.4) and (7.2.5) that

∂
∼
fk+3 = 2(k + 3)

∼
fk+2.

This concludes the proof. �

For k ≥ 0, let us consider the sequence of polynomials defined by

Pk(q) :=

∼
fk+2(q)

(k + 2)!
.

We prove the following

Theorem 7.2.8. The polynomials {Pk}k≥0 form an Appell set of spherical mono-
genics of degree k in the quaternionic vector space RB(H).
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Proof. Any homogeneous monogenic polynomial of the sequence {Pk}k≥0 is
exactly of degree k and belongs to RB(H) since

∼
fk+2 is for all k ≥ 0. Fur-

thermore, thanks to Lemma 7.2.7 we can easily see that for all k ≥ 1 we have
∂Pk = 2Pk−1. It follows that this sequence forms an Appell set in RB(H), in

the sense of [32, 107], with respect to the hypercomplex derivative
1

2
∂. �

Remark 7.2.9. Let k ≥ 0 and set Qk := −k!
2
Pk. Then, we have

Qk = −
∼
fk+2

2(k + 1)(k + 2)
(7.2.7)

and
1

2
∂Qk = kQk−1.

Moreover, we can see that the obtained family of polynomials may be expressed in
terms of the coefficients used in formulas (5) and (6) in the paper [29]. Namely, we
have

Qk(q) =
k∑
j=0

T kj q
k−jqj (7.2.8)

where

T kj := T kj (3) =
k!

(3)k

(2)k−j(1)j
(k − j)!j!

=
2(k − j + 1)

(k + 1)(k + 2)

and (a)n = a(a+ 1)...(a+ n− 1) is the Pochhammer symbol.

7.3 The Bargmann-Fock-Fueter transform

In this section, we study the Bargman-Fock-Fueter transform on the space of
quaternions. A similar integral transform was introduced in [39] making use of
the theory of slice hyperholomorphic Bergman spaces on the quaternionic unit
ball and the Fueter mapping theorem.

7.3.1 Fock-Fueter kernel and Fock-Fueter transform

To this end, we introduce the Fock-Fueter kernel on the quaternions. Indeed, in
[15], the authors proved that the slice hyperholomorphic Fock spaceFSlice(H) is
a right quaternionic reproducing kernel Hilbert space whose reproducing kernel
is given by the formula

KH(p, q) := e∗(pq̄) =
∞∑
k=0

pkq̄k

k!
, ∀(p, q) ∈ H×H.

Then, we consider the following
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Chapter 7. A Clifford-Appell system and Bargmann-Fock-Fueter transform

Definition 7.3.1 (Fock-Fueter kernel). The Fock-Fueter kernelKF(q, p) is defined
by

KF(q, p) := τqKH(q, p) = ∆KH(q, p), ∀(q, p) ∈ H×H,

where Laplacian ∆ is taken with respect to the variable q.

We prove the following

Proposition 7.3.1. For all (q, p) ∈ H×H, we have

KF(q, p) = −2
∞∑
k=0

Qk(q)

k!
p̄k+2,

whereQk(q) are the quaternionic monogenic polynomials defined in Remark 7.2.9.

Proof. Let (q, p) ∈ H×H, by definition of the Fock-Fueter kernel we have

KF(q, p) = ∆KH(q, p)

= ∆

(
∞∑
k=0

qkpk

k!

)

=
∞∑
k=2

∆(qk)pk

k!
.

However, thanks to Remark 7.2.9 we observe that

∆(qk) = −2(k − 1)kQk−2(q); ∀k ≥ 2.

Therefore, we get

KF(q, p) = −2
∞∑
k=2

Qk−2(q)

(k − 2)!
pk

= −2
∞∑
k=0

Qk(q)

k!
pk+2.

�

Remark 7.3.2. For s ∈ H, let

Exp(s) :=
∞∑
k=0

Qk(s)

k!

be the generalized Cauchy-Fueter regular exponential function considered in the
paper [29]. Then, we have

KF(q, p) = −2p2Exp(pq), ∀(q, p) ∈ H× R.
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Proposition 7.3.3. The Fock-Fueter kernel KF(q, p) is Cauchy-Fueter regular on
H with respect to the variable q and anti-slice entire regular with respect to the
variable p.

Proof. Note that KF(q, p) is Cauchy-Fueter regular on H with respect to the
first variable thanks to the Fueter-mapping theorem. On the other hand, for all
p ∈ H we have

KF(q, p) = fq(p) =
∞∑
k=0

ak(q)p̄
k+2 where ak(q) = −2

Qk(q)

k!
.

Then, it is clear by the series expansion theorem for slice hyperholomorphic
functions that the Fock-Fueter kernel is slice anti-regular with respect to the
variable p. �

The Fock-Fueter kernel admits the following estimate
Proposition 7.3.4. For all (q, p) ∈ H×H, we have

|KF(q, p)| ≤ 2|p|2e|qp|.
Proof. First, observe that for all k ≥ 0 and q ∈ H we have

|Qk(q)| ≤
k∑
j=0

T kj (3)|q|k

= |q|k 2

(k + 1)(k + 2)

k∑
j=0

(k + 1− j)

= |q|k.
Hence, making use of Proposition 7.3.1 we obtain

|KF(q, p)| ≤ 2
∞∑
k=0

|Qk(q)|
k!

|p|k+2

≤ 2|p|2
∞∑
k=0

|qp|k

k!

= 2|p|2e|qp|.
�

In this case we introduce the following definition
Definition 7.3.2 (Fock-Fueter transform). Let f ∈ FSlice(H). We define the
Fock-Fueter transform of f by

f̆(q) :=

∫
CI

KF(q, p)f(p)dµI(p);

where KF is the Fock-Fueter kernel, dµI(p) =
1

π
e−|p|2dλI(p) and I ∈ S.
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Chapter 7. A Clifford-Appell system and Bargmann-Fock-Fueter transform

Let L2
H(R) denote the space of functions ψ : R −→ H so that

‖ψ‖2L2
H(R)

=

∫
R
|ψ(x)|2dx <∞.

Then, for any ϕ ∈ L2
H(R) its quaternionic Segal-Bargmann transform is defined

by

BHϕ(q) :=

∫
R
A(q, x)ϕ(x)dx;

where the kernel function A(q, x) is given by the formula

A(q, x) = π− 1
4 e−

1
2
(q2+x2)+

√
2qx, ∀(q, x) ∈ H× R.

It was shown in [60] thatBH defines an isometry onL2
H(R)with rangeFSlice(H).

Then, for any ϕ ∈ L2
H(R) we set

fϕ := BHϕ ∈ FSlice(H)

and consider the associated Fock-Fueter transform f̆ϕ that we call Bargmann-
Fock-Fueter transform. We can easily check the following

Proposition 7.3.5. Let ϕ ∈ L2
H(R), q ∈ H and I ∈ S. Then, we have

f̆ϕ(q) :=

∫
R
Φ(q, x)ϕ(x)dx;

where

Φ(q, x) =

∫
CI

KF(q, p)A(p, x)dµI(p).

Proof. This follows directly from the quaternionic Segal-Bargmann transform
and Fock-Fueter transform definitions making use of the Fubini’s theorem. �

7.3.2 Fueter mapping range of the slice hyperholomorphic Fock space

Now, let us consider the quaternionic regular polynomials defined in Remark
7.2.9 and which may be written as :

Qk(q) =
k∑
j=0

T kj q
k−jqj;∀q ∈ H. (7.3.1)

Then, we denote the range of the Fueter mapping on the slice hyperholomorphic
Fock space by

A(H) := {τ(f); f ∈ FSlice(H)}.

We have the following sequential characterization of this vector space:
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Theorem 7.3.6. Let g ∈ R(H). Then, g belongs toA(H) if and only if the follow-
ing conditions are satisfied:

i) ∀q ∈ H, g(q) =
∞∑
k=0

Qk(q)αk where (αk)k≥0 ⊂ H.

ii)
∞∑
k=0

k!

(k + 1)(k + 2)
|αk|2 <∞.

Proof. The Fueter mapping theorem gives A(H) ⊂ R(H). Then, we suppose
that g ∈ A(H), thus g = τ(f) where f ∈ FSlice(H). Then, according to [15] we
have

f(q) =
∞∑
k=0

qkck, with (ck) ⊂ H and ‖f‖2FSlice(H) =
∞∑
k=0

k!|ck|2 <∞.

However, we know that

τ(1) = τ(q) = 0 and τ(qk) = −2(k − 1)kQk−2(q), ∀k ≥ 2.

Therefore, we get

g(q) =
∞∑
k=0

Qk(q)αk with αk = −2(k + 1)(k + 2)ck+2, ∀k ≥ 0,

moreover,
∞∑
k=0

k!

(k + 1)(k + 2)
|αk|2 = 4

∞∑
k=0

(k + 2)!|ck+2|2 ≤ 4‖f‖2FSlice(H) <∞.

Conversely, let us suppose that the conditions i) and ii) hold. Then, we con-
sider the function

h(q) =
∞∑
k=2

qkβk, where βk = − αk−2

2(k − 1)k
;∀k ≥ 2.

Thus, we get g = τ(h) since

Qk(q) = − τ(qk+2)

2(k + 1)(k + 2)
, ∀k ≥ 0.

Moreover, note that we have

‖h‖2FSlice(H) =
∞∑
k=2

k!|βk|2 =
1

4

∞∑
k=0

k!

(k + 1)(k + 2)
|αk|2 <∞.

Hence, g = τ(h) with h ∈ FSlice(H). In particular, it shows that g ∈ A(H).
This completes the proof. �
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Remark 7.3.7. As a direct consequence of Theorem 7.3.6 we have

A(H) = {
∞∑
k=0

Qk(q)αk; (αk)k≥0 ⊂ H and
∞∑
k=0

k!

(k + 1)(k + 2)
|αk|2 <∞}.

Given f(q) =
∞∑
k=0

Qk(q)αk and g(q) =
∞∑
k=0

Qk(q)βk inA(H)we define their

inner product by

〈f, g〉A(H) :=
∞∑
k=0

k!

(k + 1)(k + 2)
βkαk,

so that the associated norm is

‖f‖2 = 〈f, f〉A(H) :=
∞∑
k=0

k!

(k + 1)(k + 2)
|αk|2.

Then, one can easily check the following properties

Proposition 7.3.8. Let f, g, h ∈ A(H) and λ ∈ H. Then, we have:

i) 〈f, g〉A(H) = 〈g, f〉A(H) .

ii) ‖f‖2 = 〈f, f〉A(H) > 0 unless f = 0.

iii) 〈f, g + h〉A(H) = 〈f, g〉A(H) + 〈f, h〉A(H) .

iv) 〈fλ, g〉A(H) = 〈f, g〉A(H) λ and 〈f, gλ〉A(H) = λ 〈f, g〉A(H) .

Proof. This statement follows using classical arguments. �

Now, for all k ≥ 0,we consider the quaternionic regular polynomials defined
by

Tk(q) =

√
(k + 1)(k + 2)

k!
Qk(q), ∀q ∈ H, (7.3.2)

and we introduce the following:

Definition 7.3.3. For all (p, q) ∈ H×H, we define the function

G(p, q) = Gq(p) :=
∞∑
k=0

Tk(p)Tk(q). (7.3.3)

Note that, for any (q, p) ∈ H×H we have:

i) |G(p, q)| ≤
∞∑
k=0

(k + 1)(k + 2)

k!
|pq|k <∞.
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ii) G(p, q) = G(q, p).

iii) G(q, q) =
∞∑
k=0

|Tk(q)|2 <∞.

Let us prove that all the evaluation mappings are continuous on A(H). In-
deed, we have

Proposition 7.3.9. Let q, q′ ∈ H, then we have:

i) The function Gq : p 7−→ Gq(p) = G(p, q) belongs to A(H).

ii) The evaluation mapping Λq : f 7−→ Λq(f) = f(q) is a continuous linear
functional on A(H). Moreover, for any f ∈ A(H) we have

|Λq(f)| = |f(q)| ≤ ‖Gq‖A(H)‖f‖A(H).

iii) 〈Gq′, Gq〉A(H) = G(q, q′).

Proof. i) Note that by definition of the polynomials (Tk(q))k≥0, for any fixed
q ∈ H we have

Gq(p) =
∞∑
k=0

Qk(p)αk(q) with αk(q) =
(k + 1)(k + 2)

k!
Qk(q) ∈ H, ∀k ≥ 0.

(7.3.4)
Moreover, observe that

‖Gq‖2A(H) =
∞∑
k=0

k!

(k + 1)(k + 2)
|αk(q)|2

=
∞∑
k=0

(k + 1)(k + 2)

k!
|Qk(q)|2

≤
∞∑
k=0

(k + 1)(k + 2)

k!
|q|2k <∞.

(7.3.5)

This shows that Gq ∈ A(H) for any q ∈ H.

ii) If f ∈ A(H), then by definition we have

f(q) =
∞∑
k=0

Qk(q)αk and ‖f‖2A(H) =
∞∑
k=0

k!

(k + 1)(k + 2)
|αk|2 <∞.
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Therefore, making use of the Cauchy-Schwarz inequality we get

|Λq(f)| = |f(q)|

≤
∞∑
k=0

|Qk(q)||αk|

≤

(
∞∑
k=0

(k + 1)(k + 2)

k!
|Qk(q)|2

) 1
2
(

∞∑
k=0

k!

(k + 1)(k + 2)
|αk|2

) 1
2

= ‖Gq‖A(H)‖f‖A(H).

iii) Let q, q′ ∈ H be such that

Gq(p) =
∞∑
k=0

Qk(p)αk(q) and Gq′(p) =
∞∑
k=0

Qk(p)αk(q
′)

where we have set αk(w) =
(k + 1)(k + 2)

k!
Qk(w) for any w ∈ H and

k ≥ 0. Therefore, we get

〈Gq′, Gq〉A(H) =
∞∑
k=0

k!

(k + 1)(k + 2)
αk(q)αk(q

′)

=
∞∑
k=0

Tk(q)Tk(q′)

= Gq′(q) = G(q, q′).

�

As a consequence we prove the following result

Theorem 7.3.10. The set A(H) is a right quaternionic reproducing kernel Hilbert
space whose reproducing kernel is given by the kernel function G : H×H −→ H
defined in (7.3.3). Moreover, for any q ∈ H and f ∈ A(H) we have

f(q) = 〈f,Gq〉A(H) .

Proof. According to Proposition 7.3.9 we know that all the evaluation mappings
are continuous on A(H) and Gq ∈ A(H) for any q ∈ H. So, we only need to
prove the reproducing kernel property. Indeed, let q ∈ H and f ∈ A(H) be such
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7.4. Factorization of the Bargmann-Fock-Fueter transform and consequences

that f(p) =
∞∑
k=0

Qk(p)βk, for any p ∈ H. Using (7.3.4) we obtain

〈f,Gq〉A(H) =
∞∑
k=0

k!

(k + 1)(k + 2)
αk(q)βk

=
∞∑
k=0

Qk(q)βk

= f(q).

This completes the proof. �

7.4 Factorization of the Bargmann-Fock-Fueter transform and conse-
quences

We can factorize the Bargmann-Fock-Fueter transform thanks to the following:

Theorem 7.4.1. The Bargmann-Fock-Fueter transform can be realized by the com-
mutative diagram

SH : L2
H(R) //

BH
��

A(H)

F2
Slice(H)

Id
// SR(H)

τ

OO

so that
SH := τ ◦ Id ◦ BH.

More precisely, for any ϕ ∈ L2
H(R), and q ∈ H, we have

SHϕ(q) = f̆ϕ(q) =

∫
R
Φ(q, x)ϕ(x)dx;

where

Φ(q, x) = − 1

π
1
4

∞∑
k=0

Qk(q)hk+2(x)

2
k
2 k!

; ∀(q, x) ∈ H× R.

Proof. Let ϕ ∈ L2
H(R) and q ∈ H, observe that

SH[ϕ](q) = τ ◦ Id ◦ BH[ϕ](q)

=

∫
R
∆A(q, x)ϕ(x)dx.

Thus, by Proposition 7.3.5 we only need to prove that

∆A(q, x) = Φ(q, x) ∀(q, x) ∈ H× R,
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Chapter 7. A Clifford-Appell system and Bargmann-Fock-Fueter transform

where
Φ(q, x) =

∫
CI

KF(q, p)A(p, x)dµI(p).

Indeed, note that according to Proposition 4.1 in [60] for all (q, x) ∈ H× R we
have the following expansion of the Segal-Bargmann kernel

A(q, x) =
∞∑
k=0

qk

‖qk‖
hk(x)

‖hk‖
,

where {hk}k≥0 stands for the well-knownHermite functions forming an orthog-
onal basis of L2

H(R). Therefore, on the one hand we have

∆A(q, x) =
1

π
1
4

∞∑
k=2

∆(qk)hk(x)

k!2
k
2

= − 2

π
1
4

∞∑
k=2

Qk−2(q)hk(x)

(k − 2)!2
k
2

= − 1

π
1
4

∞∑
k=0

Qk(q)hk+2(x)

k!2
k
2

.

On the other hand, making use of Proposition 7.3.1 combinedwith the expansion
of the Segal-Bargmann kernel we get

Φ(q, x) =

∫
CI

KF(q, p)A(p, x)dµI(p)

= − 2

π
1
4

∫
CI

(
∞∑
k=0

Qk(q)

k!
p̄k+2

)(
∞∑
j=0

pj

j!2
j
2

hj(x)

)
dµI(p)

= − 2

π
1
4

∞∑
k,j=0

Qk(q)

k!j!

hj(x)

2
j
2

〈
pj, pk+2

〉
FSlice(H)

= − 2

π
1
4

∞∑
l=2,j=0

Ql−2(q)

(l − 2)!j!

hj(x)

2
j
2

〈
pj, pl

〉
FSlice(H)

= − 2

π
1
4

∞∑
l=2,j=0

Ql−2(q)

(l − 2)!

hj(x)

2
j
2

δl,j

= − 2

π
1
4

∞∑
l=2

Ql−2(q)

(l − 2)!

hl(x)

2
l
2

= − 1

π
1
4

∞∑
k=0

Qk(q)hk+2(x)

k!2
k
2

.

This completes the proof. �
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Proposition 7.4.2. For all (q, p) ∈ H×H we have∫
R
Φ(q, x)Φ(p, x)dx = 4

∞∑
k=0

Tk(q)Tk(p).

Proof. Let (q, p) ∈ H×H, then∫
R
Φ(q, x)Φ(p, x)dx =

1√
π

∫
R

(
∞∑
k=0

Qk(q)hk+2(x)

2
k
2 k!

)(
∞∑
j=0

Qj(p)hj+2(x)

2
j
2 j!

)

=
1√
π

∞∑
k,j=0

Qk(q)Qj(p)

k!j!2
k+j
2

∫
R
hk+2(x)hj+2(x)dx

=
1√
π

∞∑
k=0

Qk(q)Qk(p)

(k!)22k
‖hk+2‖2.

Therefore, making use of the orthogonality of Hermite functions we get∫
R
Φ(q, x)Φ(p, x)dx = 4

∞∑
k=0

(k + 1)(k + 2)

k!
Qk(q)Qk(p)

= 4
∞∑
k=0

Tk(q)Tk(p).

�

Remark 7.4.3. Recalling that L2
H(R) is endowed with the scalar product

〈φ1, φ2〉 =
∫

R
φ2(x)φ1(x)dx, ∀φ1, φ2 ∈ L2

H(R),

as a consequence of Proposition 7.4.2 and of (7.3.3) we get

G(q, p) =
1

4
〈Φp,Φq〉 , ∀(q, p) ∈ H×H.

Corollary 7.4.4. For all q ∈ H, the function Φq : x 7−→ Φq(x) := Φ(q, x)
belongs to L2

H(R) and

‖Φq‖L2
H(R) = 2

(
∞∑
k=0

(k + 1)(k + 2)

k!
|Qk(q)|2

) 1
2

<∞.

Moreover, for any ϕ ∈ L2
H(R) we have

|SHϕ(q)| ≤ ‖Φq‖L2
H(R)‖ϕ‖L2

H(R).
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Chapter 7. A Clifford-Appell system and Bargmann-Fock-Fueter transform

Proof. Let q ∈ H, then we have

‖Φq‖2L2
H(R)

=

∫
R
Φ(q, x)Φ(q, x)dx

=

∫
R
Φ(q, x)Φ(q̄, x)dx.

Thus, by Proposition 7.4.2 we get

‖Φq‖2L2
H(R)

= 4
∞∑
k=0

Tk(q)Tk(q̄)

= 4
∞∑
k=0

(k + 1)(k + 2)

k!
|Qk(q)|2.

However, since |Qk(q)|2 ≤ |q|2k for all k ≥ 0, using (7.3.5) and the Cauchy-
Schwarz inequality we conclude the proof. �

The action of the Bargmann-Fock-Fueter transform on the normalized Her-
mite functions is given by

Proposition 7.4.5. For all n ≥ 0, set

ξn(x) =
hn(x)

‖hn‖L2
H(R)

. (7.4.1)

Then, we have
SHξn = f̆ξn = 0; for n = 0, 1

and
SHξn(q) = f̆ξn(q) = −2Tn−2(q); for all n ≥ 2.

Proof. To prove this fact we only need to use the definition of SH as a compo-
sition of the Fueter mapping τ and the quaternionic Segal-Bargmann transform
BH. Then, by Lemma 4.4 in [60] we know that

BH(ξn)(q) =
qn√
n!
; ∀n ≥ 2.

Finally, we apply Remark 3.8 to conclude the proof. �

Then, we have

Proposition 7.4.6. The Bargmann-Fock-Fueter transform

SH : L2
H(R) −→ A(H)

is a quaternionic right linear bounded surjective operator such that for any ϕ ∈
L2
H(R), we have

‖SHϕ‖A(H) ≤ 2‖ϕ‖L2
H(R).
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Proof. Let ϕ ∈ L2(R). Since (ξk)k as in (7.4.1) form an orthonormal basis of
L2(R) we then have

ϕ =
∞∑
k=0

ξkαk with (αk)k ⊂ H and such that ‖ϕ‖2 =
∞∑
k=0

|αk|2 <∞.

Hence, since BH is an isometric isomorphism we use Proposition 7.4.5 to get

SHϕ(q) =
∞∑
k=0

Qk(q)βk where βk = −2

√
(k + 1)(k + 2)

k!
αk+2.

In particular, this implies that

‖SHϕ‖2A(H) =
∞∑
k=0

k!

(k + 1)(k + 2)
|βk|2

= 4
∞∑
k=2

|αk|2 ≤ 4‖ϕ‖2.

Finally, SH : L2
H(R) −→ A(H) is surjective by construction. This completes the

proof. �

For any k ≥ 0, we consider the subspaces of L2
H(R) defined by

Hk := ξkH = {ξkα;α ∈ H},

where ξk denote the normalized Hermite functions. It is clear that we have the
orthogonal decomposition

L2
H(R) = ⊕∞

k=0Hk.

Then, we consider H = ⊕∞
k=2Hk as a subspace of L2

H(R), endowed with the
induced norm and prove

Proposition 7.4.7. Let ϕ, ψ ∈ H, then we have

〈SHϕ,SHψ〉A(H) = 4 〈ϕ, ψ〉H .

In particular,
‖SHϕ‖A(H) = 2‖ϕ‖H.

Proof. Let ϕ =
∞∑
k=2

ξkαk and ψ =
∞∑
k=2

ξkβk be two functions belonging to H.

Thus, by Proposition 7.4.5 we get

SHϕ =
∞∑
k=0

Qkα
′
k and SHψ =

∞∑
k=0

Qkβ
′
k,
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Chapter 7. A Clifford-Appell system and Bargmann-Fock-Fueter transform

where we have set

α′
k = −2

√
(k + 1)(k + 2)

k!
αk+2 and β′

k = −2

√
(k + 1)(k + 2)

k!
βk+2.

Therefore, we obtain

〈SHϕ,SHψ〉A(H) = 4
∞∑
k=0

k!

(k + 1)(k + 2)
β′
kα

′
k

= 4
∞∑
k=2

βkαk

= 4 〈ϕ, ψ〉H .

Thus, in particular, for ψ = ϕ we obtain

‖SHϕ‖A(H) = 2‖ϕ‖H.

�

Finally, we finish this section by giving some integral representations of the
quaternionic regular polynomials (Qk)k≥0 in terms of the Fock-Fueter kernel
KF(q, p) and the Segal-Bargmann-Fueter kernel Φ(q, x), respectively. Indeed,

Proposition 7.4.8. Let I ∈ S and q ∈ H. Then, we have

i) Qk(q) = − 1

2(k + 1)(k + 2)

∫
CI

KF(q, p)p
k+2dµI(p), ∀k ≥ 0.

ii) Qk(q) = − 1

4π
1
42

k
2 (k + 1)(k + 2)

∫
R
Φ(q, x)hk+2(x)dx, ∀k ≥ 0.

Proof. i) When k ≥ 0, Proposition 7.3.1 yields

KF(q, p) = −2
∞∑
k=0

Qk(q)

k!
p̄k+2, ∀(q, p) ∈ H×H.

Therefore,∫
CI

KF(q, p)p
k+2dµI(p) = −2

∞∑
j=0

Qj(q)

j!

〈
pk+2, pj+2

〉
FSlice(H)

= −2
Qk(q)

k!
‖pk+2‖2FSlice(H)

= −2(k + 1)(k + 2)Qk(q).
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ii) This assertion follows reasoning in the same way we did for i) using The-
orem 7.4.1 combined with the fact that Hermite functions form an orthog-
onal basis of L2

H(R).
�

As a consequence we have this special identity

Corollary 7.4.9. For any x ∈ R, I ∈ S and k ≥ 0, we have∫
CI

pk|p|4e−|p|2+xp̄dλI(p) = π(k + 1)(k + 2)xk,

where I ∈ S and dλI is the Lebesgue measure on CI .

Proof. We only need to apply Proposition 7.4.8 combined with the expression of
the Fock-Fueter kernel for x ∈ R, which is given by

KF(x, p) = −2p2exp, ∀(x, p) ∈ R×H.

�
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CHAPTER8
The Bergman kernel and Bergman-Fueter

transform on different quaternionic domains

In this chapter, we continue the study related to the Clifford-Appell polynomials
constructed using the Fueter mapping theorem. In particular, we calculate the
Bergman kernels on some different quaternionic domains. We treat also the so-
called Bergman-Fueter integral transform in the cases of the unit ball, the half
space and the unit half-ball on quaternions. As a consequence of this construc-
tion some new integral representations and generating functions related to the
Clifford-Appell system are obtained. The results presented in this chapter are
also based on [63].

8.1 The slice hyperholomorphic Bergman kernels

In this section, we compute the explicit expression of the slice hyperholomor-
phic Bergman kernel on the quaternionic unit half ball and the fractional wedge
domain. The case of the quarter-ball could be treated also using similar tech-
niques. For the study of the Bergman kernel function in the setting of mono-
genic or Cauchy Fueter regular functions one may consult for example [52,106].

8.1.1 The quaternionic unit half ball B+ case

Let B+ denote the quaternionic half ball defined by the conditions q ∈ B and
Re(q) > 0. For a fixed I ∈ S, let B+

I := B+ ∩CI be the half disk of the complex
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Chapter 8. The Bergman kernel and Bergman-Fueter transform on different
quaternionic domains

plane CI . Then, the classical complex Bergman space on B+
I is defined by

A(B+
I ) := {f ∈ Hol(B+

I ),
1

π

∫
B+
I

|fI(z)|2dA(z) <∞}

where Hol(B+
I ) denotes the space of holomorphic functions on the half disk

B+
I , z = x + Iy and dA(z) = dxdy. Note that the space A(B+

I ) is a complex
reproducing kernel Hilbert space. Furthermore, its reproducing kernel KB+

I
is

obtained as the sum of the Bergman kernels of both the complex unit disk and
half plane. In particular, we have

KB+
I
(z, w) :=

1

(1− zw)2
+

1

(z + w)2
; ∀(z, w) ∈ B+

I × B+
I (8.1.1)

where the first term corresponds to the Bergman kernel of the unit disk KBI

while the second one is the Bergman kernel of the complex half plane KC+
I
,

(see, e,g., p. 812 in [52]). Now, let us fix an imaginary unit I ∈ S and consider
on the quaternionic half ball B+ the set defined by

ASlice(B+) := {f ∈ SR(B+),
1

π

∫
B+
I

|fI(p)|2dσI(p) <∞} (8.1.2)

where for p = x+ Iy we have set dσI(p) = dxdy. The set ASlice(B+) is a right
quaternionic vector space and may be endowed with the inner product:

〈f, g〉ASlice(B+) :=
1

π

∫
B+
I

fI(p)gI(p)dσI(p). (8.1.3)

Moreover, since the quaternionic half-ball is a bounded axially symmetric slice
domain it turns out that ASlice(B+) is the slice hyperholomorphic Bergman
space of the second kind on B+. These spaces were introduced and studied in
a more general setting on axially symmetric slice domains in [43]. In particular
we have:

Proposition 8.1.1. The set ASlice(B+) defined in (8.1.2) is a right quaternionic
Hilbert space which does not depend on the choice of the imaginary unit I ∈ S.

Note that in this framework the evaluation mapping

δq : f 7−→ δq(f) = f(q)

is a right quaternionic bounded linear form onASlice(B+) for any q ∈ B+. More-
over, the slice hyperholomorphic Bergman kernel of the second kind associated
with B+ or slice Bergman kernel for short, is the function

KB+ : B+ × B+ −→ B+, (q, r) 7−→ KB+(q, r)
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which is defined making use of the slice hyperholomorphic extension operator,
i.e.

KB+(q, r) := Kr
B+(q)

:= ext[Kr
B+
J
(z)](q), for r ∈ B+ ∩ CJ , q ∈ B+.

The next result relates the slice Bergman kernel on the quaternionic half ball
to the slice Bergman kernels in the case of the quaternionic unit ball and of the
half space.

Theorem 8.1.2. The slice hyperholomorphic Bergman space ASlice(B+) is a right
quaternionic reproducing kernel Hilbert space. Moreover, for all (q, r) ∈ B+ ×B+

we have:
KB+(q, r) = KB(q, r) +KH+(q, r),

whereKB andKH+ are, respectively, the slice Bergman kernels of the quaternionic
unit ball and half space.

Proof. The first assertion follows from the general theory.
Then, let us fix r ∈ B+ such that r belongs to the slice CJ with J ∈ S. Then, we
consider the function ψr defined by

ψr(q) := KB(q, r) +KH+(q, r), ∀q ∈ B+.

Clearly ψr belongs to ASlice(B+) since B+ is contained in both B and H+ and
since by definition KB and KH+ are the slice Bergman kernels of the quater-
nionic unit ball and half space. Then, we only need to prove the reproducing
kernel property. Indeed, let f ∈ ASlice(B+). In particular, by the Splitting
Lemma we can write fJ(z) = F (z) + G(z)J ′ for any z ∈ B+

J with J ′ ∈ S
is orthogonal to J and F,G : B+

J −→ CJ belong to the complex Bergman space
A(B+

J ). Therefore, we have

〈ψr, f〉ASlice(B+) =

∫
B+
J

ψr(z)fJ(z)dσJ(z)

=

(∫
B+
J

ψr(z)F (z)dσJ(z)

)
+

(∫
B+
J

ψr(z)G(z)dσJ(z)

)
J ′

=

(∫
B+
J

KB+
J
(z, r)F (z)dσJ(z)

)
+

(∫
B+
J

KB+
J
(z, r)G(z)dσJ(z)

)
J ′.

Thus, by applying the results from the classical complex setting we get

〈ψr, f〉ASlice(B+) = F (r) +G(r)J ′

= f(r).
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quaternionic domains

So, it follows that the function ψr belongs and reproduces any element of the
space ASlice(B+) for any r ∈ B+. Hence, by the uniqueness of the reproducing
kernel we get

KB+(q, r) = KB(q, r) +KH+(q, r), ∀(q, r) ∈ B+ × B+.

This completes the proof. �

The explicit expression of the slice Bergman kernel of the quaternionic half-
ball is given by the following

Theorem 8.1.3. For all (q, r) ∈ B+ × B+, we have:

KB+(q, r) = (1 + q2) [(1− qr) ∗ (q + r)]−∗2 (1 + r2),

where the ∗-product is taken with respect to the variable q.

Proof. Let (q, r) ∈ B+ × B+ and assume that r belongs to a slice CJ . First,
observe that

KB+
J
(z, r) =

(1 + z2)(1 + r2)

((1− zr)(z + r))2
; ∀z ∈ B+

J .

Let Φr : B+ −→ H be the function defined by

Φr(q) := ext

[
1

(1− zr)2(z + r)2

]
(q); ∀q ∈ B+.

Then, we consider the function

Ψr(q) = (1 + q2)Φr(q)(1 + r2); ∀q ∈ B+.

Note that, Ψr is slice regular on B+ as a multiplication of the intrinsic slice
regular function q 7−→ 1 + q2 with q 7−→ Φr(q)(1 + r2) which is also slice
regular on the quaternionic half ball by construction. Moreover, for any z ∈ B+

J

we have

Ψr(z) =
(1 + z2)(1 + r2)

((1− zr)(z + r))2
= KB+

J
(z, r).

Therefore, by the Identity Principle for slice regular functions we get

Ψr(q) = KB+(q, r); ∀(q, r) ∈ B+ × B+.

Finally, we use the definition of the ∗ product to see that, for all (q, r) ∈
B+ × B+ we have

Φr(q) = (q + r)−∗2 ∗ (1− qr)−∗2 = [(1− qr) ∗ (q + r)]−∗2 .

�
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8.1.2 The fractional wedge domain case

For I ∈ S, let us now consider the wedge domain defined by

Wn
CI

:= {z ∈ CI , Re(z) > 0 and Re(α
1
2 zα

1
2 ) < 0 with α = e

Iπ
n }.

In particular, in the complex case the Bergman kernel is given in [52] by

KWn
CI
(z, w) = (−1)nn2 zn−1w̄n−1

(zn − (−1)nw̄n)2
.

Let Wn
H denotes the axially symmetric completion of Wn

CI
. In the next result,

we compute the quaternionic slice hyperholomorphic Bergman kernel onWn
H:

Theorem 8.1.4. For all (q, r) ∈ Wn
H ×Wn

H, we have

KWn
H
(q, r) = (−1)nn2qn−1(q̄2n − 2(−1)nq̄nr̄n + r̄2n)r̄n−1

·(|q|2 − 2(−1)nRe(qn)r̄n + r̄2n)−2.

Proof. Let q, r ∈ Wn
H be such that r belongs to CJ where J ∈ S. Then, for

q = x+ Iqy and z = x+ Jy thanks to the extension operator we have that

KWn
H
(q, r) =

1

2

(
Kr

Wn
CJ
(z) +Kr

Wn
CJ
(z̄)
)
+
IqJ

2

(
Kr

Wn
CJ
(z̄)−Kr

Wn
CJ
(z)
)
.

Thus, using the complex case formula we get

Kr
Wn

CJ
(z) +Kr

Wn
CJ
(z̄) = 2(−1)nn2Re(z

n−1z̄2n)r̄n−1 +Re(zn−1)r̄3n−1

(|z|2n + r̄2n − 2(−1)nRe(zn)r̄n)2

−2(−1)nn2 2(−1)nRe(zn−1z̄n)r̄2n−1

(|z|2n + r̄2n − 2(−1)nRe(zn)r̄n)2
.

and

Kr
Wn

CJ
(z̄)−Kr

Wn
CJ
(z) = 2(−1)nn2−Im(zn−1z̄2n)Jr̄n−1 − Im(zn−1)Jr̄3n−1

(|z|2n + r̄2n − 2(−1)nRe(zn)r̄n)2

+2(−1)nn2 2(−1)nIm(zn−1z̄n)Jr̄2n−1

(|z|2n + r̄2n − 2(−1)nRe(zn)r̄n)2
.

Therefore, developing the computations we obtain

KWn
H
(q, r) = (−1)nn2

(
qn−1q̄2nr̄n−1 − 2(−1)nqn−1q̄nr̄2n−1 + qn−1r̄3n−1

)
×
(
|q|2n + r̄2n − 2(−1)nRe(qn)r̄n

)−2
.

Hence, we finally get

KWn
H
(q, r) = (−1)nn2qn−1(q̄2n−2(−1)nq̄nr̄n+r̄2n)r̄n−1(|q|2−2(−1)nRe(qn)r̄n+r̄2n)−2.

This completes the proof. �

Remark 8.1.5. Observe that for the case n = 1 in Theorem 8.1.4 the Bergman
kernel function coincide with the result obtained on the quaternionic half space
in [43].
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8.2 The Bergman-Fueter transform and consequences

In this section, we study the Bergman-Fueter integral transform on different ax-
ially symmetric slice domains U on the quaternions, namely we deal with the
unit ball, the half space and the unit half ball. In particular, we obtain some
new generating functions and integral representations of the quaternionic reg-
ular polynomials (Qk)k≥0 obtained in the previous chapter. We give also the
sequential characterization of the range of the Fueter mapping on the slice hy-
perholomorphic Bergman space on the quaternionic unit ball. First, associated
to U we recall from [39] the following

Definition 8.2.1 (Bergman-Fueter transform associated to U ). Let f : U −→
H be in the slice hyperholomorphic Bergman space of the second kind ASlice(U).
Then, we define the Bergman-Fueter transform of f associated to U to be

f̆(q) :=

∫
U∩CI

KU
BF (q, r)f(r)dσ(r),

where KU
BF is the Bergman-Fueter kernel on U defined through the following for-

mula
KU
BF (q, r) := ∆KU(q, r), ∀(q, r) ∈ U × U.

The Laplacian ∆ is taken with respect to the variable q and dσ(r) defines the re-
striction of the normalized Lebesgue measure on UI = U ∩ CI .

8.2.1 The quaternionic unit ball case U = B

In [43] an explicit expression of the Fueter-Bergman kernel was obtained when
U is the quaternionic unit ball B. More precisely, we have the following result
originally proved in [43]:

Theorem 8.2.1. For all (q, r) ∈ B× B, we have

KB
BF (q, r) = −4

(
1− 2Re(q)r̄ + |q|2r̄2

)−2
r̄2 + 2(1− 2q̄r̄ + q̄r̄2)

×
(
1− 2Re(q)r̄ + |q|2r̄2

)−3
r̄2.

(8.2.1)

Furthermore, if we set

R(q, r) =
(
1− 2Re(q)r + |q|2r2

)−1
,

then
KB
BF (q, r) = −4 [R(q, r) + 2KB(q, r)]R(q, r)r

2.

We prove the following

Proposition 8.2.2. Let (q, r) ∈ B× B, we have

KB
BF (q, r) = −2

∞∑
k=0

(k + 1)(k + 2)(k + 3)Qk(q)r̄
k+2.
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8.2. The Bergman-Fueter transform and consequences

Proof. Let (q, r) ∈ B× B, making use of the slice hyperholomorphic extension
operator it is clear that the slice Bergman kernel on B is given by the series
expansion

KB(q, r) =
∞∑
k=0

(k + 1)qkr̄k.

Therefore, by definition of the Bergman-Fueter kernel we obtain:

KB
BF (q, r) = τqKB(q, r)

= −2
∞∑
k=2

(k − 1)k(k + 1)Qk−2(q)r̄
k.

= −2
∞∑
k=0

(k + 1)(k + 2)(k + 3)Qk(q)r̄
k+2.

�

As a consequence of the latter result, we obtain the following generating
function associated to the quaternionic regular polynomials (Qk)k≥0:

Theorem 8.2.3. For all (q, r) ∈ B× B, we have

∞∑
k=0

(k + 1)(k + 2)(k + 3)Qk(q)r̄
k = 2R2(q, r) + 4KB(q, r)R(q, r);

where

R(q, r) =
(
1− 2Re(q)r + |q|2r2

)−1 and KB(q, r) = (1− 2q̄r̄ + q̄2r̄2)R(q, r)2.

Proof. Note that Theorem 8.2.1 gives

KB
BF (q, r) = −4 [R(q, r) + 2KB(q, r)]R(q, r)r

2.

This result combined with Proposition 8.2.2 leads to

∞∑
k=0

(k + 1)(k + 2)(k + 3)Qk(q)r̄
k = 2R2(q, r) + 4KB(q, r)R(q, r).

This completes the proof. �

In particular, we get the following series representation

Corollary 8.2.4. Let −1 < q < 1 and r ∈ B. Then, we have

∞∑
k=0

(k + 1)(k + 2)(k + 3)

6
qkr̄k = (1− qr̄)−4.
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Proof. We only need to observe that if q ∈ R then for all k ≥ 0we haveQk(q) =

qk thanks to the identity
∑k

j=0 T
k
j = 1. Moreover, since −1 < q < 1 we have

R(q, r) = KB(q, r) = (1− qr̄)−2.

Finally, the proof is concluded by making use of Theorem 8.2.3. �

Remark 8.2.5. As a consequence of Corollary 8.2.4 we observe that for all s, t > 1
we have

∞∑
k=0

(k + 1)(k + 2)(k + 3)

sktk
= 6

(
st

1− st

)4

.

Note also that using the fact

∀n ≥ 0 :
n∑
k=1

k(k + 1) =
n(n+ 1)(n+ 2)

3
,

we have
∞∑
j=1

j∑
k=1

k(k + 1)qj−1r̄j−1 = 2(1− qr̄)−4.

The right Bergman-Fueter space B(B) is the range of the slice hyperholo-
morphic Bergman space through the Fueter mapping. Indeed, it is defined by

B(B) := {τ(f); f ∈ ASlice(B)}.

Then, the next result gives the sequential characterization of the Bergman-Fueter
space B(B):

Theorem 8.2.6. Let g ∈ R(B). Then, g ∈ B(B) if and only if the following
conditions are satisfied:

i) ∀q ∈ B, g(q) =
∞∑
k=0

Qk(q)αk where (αk)k≥0 ⊂ H.

ii)
∞∑
k=0

|αk|2

(k + 1)2(k + 2)2(k + 3)
<∞.

Proof. First, note that by the Fueter mapping theorem we have B(B) ⊂ R(B).
Let g ∈ B(B), thus g = τ(f) where f ∈ ASlice(B) such that we have

f(q) =
∞∑
k=0

qkck, with (ck) ⊂ H and ‖f‖2 =
∞∑
k=0

|ck|2

k + 1
<∞.

However,

τ(1) = τ(q) = 0 and τ(qk) = −2(k − 1)kQk−2(q), ∀k ≥ 2.
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8.2. The Bergman-Fueter transform and consequences

Therefore, we get

g(q) =
∞∑
k=0

Qk(q)αk with αk = −2(k + 1)(k + 2)ck+2, ∀k ≥ 0.

Moreover, we have
∞∑
k=0

|αk|2

(k + 1)2(k + 2)2(k + 3)
= 4

∞∑
k=2

|ck|2

k + 1
≤ 4‖f‖2 <∞.

Conversely, let us suppose that the conditions i) and ii) hold. Then, we con-
sider the function

h(q) =
∞∑
k=2

qkβk, where βk = − αk−2

2(k − 1)k
, ∀k ≥ 2.

Thus, we get g = τ(h) thanks to the formula

Qk(q) = − τ(qk+2)

2(k + 1)(k + 2)
, ∀k ≥ 0.

Moreover, note that we have

‖h‖2 =
∞∑
k=2

|βk|2

k + 1
=

1

4

∞∑
k=0

|αk|2

(k + 1)2(k + 2)2(k + 3)
<∞.

Hence, g = τ(h) with h ∈ ASlice(B). In particular, it shows that g ∈ B(B). This
completes the proof. �

Remark 8.2.7. We observe that

B(B) := {f(q) =
∞∑
k=0

Qk(q)αk,∀q ∈ B, αk ∈ H;
∞∑
k=0

|αk|2

(k + 1)2(k + 2)2(k + 3)
<∞}.

As we have seen in Section 4 for the Fock case, it is also possible to endow
the Fueter-Bergman space B(B) with the inner product

〈f, g〉B(B) :=
∞∑
k=0

αkβk
(k + 1)2(k + 2)2(k + 3)

,

for any f =
∞∑
k=0

Qkαk and g =
∞∑
k=0

Qkβk. It is also possible to show that B(B) is

a right quaternionic reproducing kernel Hilbert space whose reproducing kernel
function is given by

L(q, r) := Lr(q) =
∞∑
k=0

(k + 1)2(k + 2)2(k + 3)Qk(q)Qk(r̄),∀(q, r) ∈ B× B.
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So that, for any f ∈ B(B) and p ∈ B we have

〈f, Lp〉B(B) = f(p).

An integral representation of the polynomials (Qk)k≥0 on the quaternionic
unit ball B in terms of the Bergman-Fueter kernel is given in the following:

Proposition 8.2.8. Let I ∈ S , q ∈ B and k ≥ 0. Then, we have

Qk(q) = − 1

2(k + 1)(k + 2)

∫
BI

KB
BF (q, r)r

k+2dσI(r).

Proof. This follows with direct computations making use of Proposition 8.2.2.
�

As a result we get this special identity

Corollary 8.2.9. For any −1 < q < 1, I ∈ S and k ≥ 0, we have∫
BI

rk|r|4(1− qr̄)−4dλI(r) =
π

6
(k + 1)(k + 2)qk,

where I ∈ S and dλI is the Lebesgue measure on BI .

Proof. We only need to apply Proposition 8.2.8 combined with the expression of
the Bergman-Fueter kernel when −1 < q < 1 .

�

8.2.2 The Bergman-Fueter transform on H+ and B+

The next result gives the explicit expression of the Bergman-Fueter kernel on
the quaternionic half space H+:

Theorem 8.2.10. For all (q, r) ∈ H+ ×H+, we have

KH+

BF (q, r) = −4
[(
|q|2 + 2Re(q)r + r2

)−2
+ 2(q2 + 2q̄r̄ + r2)

(
|q|2 + 2Re(q)r̄ + r̄2

)−3
]
.

Moreover, if we set

P (q, r) :=
(
|q|2 + 2Re(q)r + r2

)−1
,

then
KH+

BF (q, r) = −4 [P (q, r) + 2KH+(q, r)]P (q, r).

Proof. First, note that by Theorem 4.4 in [43] we have

KH+(q, r) =
1

π

(
q2 + 2q̄r̄ + r2

) (
|q|2 + 2Re(q)r + r2

)−2
.
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However, the Bergman-Fueter kernel is obtained by computing the Laplacian of
the slice Bergman kernel with respect to the variable q, so that we have

KH+

BF (q, r) := ∆KH+(q, r), ∀(q, r) ∈ H+ ×H+.

Then, direct computations using the formula of KH+(q, r) show that

d2

dx20
KH+(q, r) = 2(|q|2 + 2Re(q)r̄ + r̄2)−2 − 16(q̄ + r̄)(x0 + r̄)(|q|2 + 2Re(q)r̄ + r̄2)−3

− 4(q̄2 + 2q̄r̄ + r̄2)(|q|2 + 2Re(q)r̄ + r̄2)−3 + 24(q̄2 + 2q̄r̄ + r̄2)(x0 + r̄)2

× (|q|2 + 2Re(q)r̄ + r̄2)−4

and also
d2

dx21
KH+(q, r) = −2(|q|2 + 2Re(q)r̄ + r̄2)−2 + 8x1(q̄i+ iq̄ + 2ir̄)(|q|2 + 2Re(q)r̄ + r̄2)−3

− 4(q̄2 + 2q̄r̄ + r̄2)(|q|2 + 2Re(q)r̄ + r̄2)−3 + 24x21(q̄
2 + 2q̄r̄ + r̄2)

× (|q|2 + 2Re(q)r̄ + r̄2)−4.

Similarly we calculate
d2

dx22
KH+(q, r) and

d2

dx23
KH+(q, r). Then, with some

computations, we get

KH+

BF (q, r) = − 4

π

[(
|q|2 + 2Re(q)r̄ + r̄2

)−2
+ 2(q̄2 + 2q̄r̄ + r̄2)

(
|q|2 + 2Re(q)r̄ + r̄2

)−3
]
.

Finally, by replacing the function P (q, r) in the previous formula we obtain

KH+

BF (q, r) = −4 [P (q, r) + 2KH+(q, r)]P (q, r).

�

Proposition 8.2.11. The Bergman-Fueter kernel KH+

BF (q, r) is Fueter regular in q
and slice anti-regular in r on H+.

Proof. Note that on the one hand the Fuetermapping theorem implies thatKH+

BF (q, r)
is Fueter regular in q sinceKH+ is slice regular in q. On the other hand, the func-
tion P−1(q, r) is an anti-slice regular function with real coefficients with respect
to r and so is the function P (q, r). Finally, the result follows since KH+ is also
anti-slice regular in r. �

Concerning the Fueter-Bergman kernel of the quaternionic half unit ball B+

we have the following:

Theorem 8.2.12. For all (q, r) ∈ B+ × B+, the following formula holds

KB+

BF (q, r) = KB
BF (q, r) +KH+

BF (q, r).

Furthermore, the Bergman-Fueter kernelKB+

BF is Fueter regular in q and slice anti-
regular in r on B+.
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Proof. For the first statement, we only need to use the result obtained inTheorem
8.1.2 combinedwith the definition of the Fueter-Bergman kernel. Then, sinceB+

is contained in both of B and H+, we have thatKB+

BF (q, r) is Fueter regular in q
and slice anti-regular in r as the sum of KB

BF (q, r) and KH+

BF (q, r). �
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CHAPTER9
Fock and Hardy spaces: the Clifford-Appell case

In this chapter, we study the Clifford-Appell polynomials and in particular their
CK product. Moreover, we introduce a new family of quaternionic reproduc-
ing kernel Hilbert spaces in the framework of Fueter regular functions. The
construction is based on a general idea which allows to obtain various function
spaces, by specifying a suitable sequence of real numbers. We focus on the Fock
and Hardy cases in this setting, and we study the action of the Fueter mapping
and its range. The results presented in this chapter are based on [8]

9.1 Motivation

As we have already seen before, we recall that a set of polynomials {Pn}n∈N
satisfying an identity with respect to the real derivative that takes Pn to nPn−1

is called an Appell system [20]. The importance of such systems in various
settings is well known, and we mention here, with no pretense of complete-
ness their relevance in probability theory and stochastic process since they can
be connected to random variables. In hypercomplex analysis, we have various
function theories, associated with different differential operators. We will treat
the quaternionic case in this dissertation. Indeed, in the slice hyerholomorphic
setting, Appell systems can be obtained by simply extending the variable in use
to become hypercomplex, and so we have that, for example, the standard mono-
mials in the quaternionic variable define an Appell system with respect to the
slice derivative. But these sets of polynomials were studied also in the setting of
quaternionic and Clifford analysis with respect to the hypercomplex derivative,
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Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

see [29,30, 63, 93, 99]. It turns out that these Clifford-Appell systems play a sim-
ilar role as the complex monomials do to define elementary functions in terms
of their power series like cosine, sine, exponential, etc. This fact opens a variety
of questions also in relation to various function spaces including Fock, Hardy,
Bergman, Dirichlet spaces, etc. Moreover, various questions arise about their
associated operators such as creation, annihilation, shift and backward shift op-
erators. In addition to that, what makes Appell systems in quaternionic and
Clifford analysis rather peculiar, is the fact that the function theory has been
developed using the so-called Fueter polynomials, see [28], [83], and these poly-
nomials do not satisfy the Appell property in general. However, a series expan-
sion for hyperholomorphic functions is possible using both the approaches.
In order to define and study quaternionic reproducing kernel Hilbert spaces, the
approach that makes use of the Appell systems looks very promising and al-
lows to define the associated operators. We will show that using a special set
of Clifford Appell polynomials, denoted by {Qn}n≥0, we can introduce various
functions spaces denoted byHMb whose elements are converging series of the
form

∑
Qnan, where the quaternionic coefficients an satisfy suitable conditions

which depend on a given sequence b = (bn)n≥0 of real (in fact rational) numbers.
This approach is rather general, and it is used also in the slice hyperholomor-
phic setting in which the series under consideration are of the form

∑
qnan,

where q denotes the quaternionic variable and give rise to spaces denoted by
HSc, c = (cn)n≥0.
We treat the case of the quaternionic Fock and the Hardy spaces which have
been already studied in the slice setting but are new in the Fueter regular frame-
work combined with the Appell polynomials. For this reason, these spaces are
called Clifford-Appell Fock space and Clifford-Appell Hardy space, respectively.
One problem of the system {Qn}n≥0 is that if we multiply two such polynomials
we do no obtain an element in the system. This is expected provided the non-
commutative setting and in fact hyperholomorphic functions can be multiplied
using the so-called CK product. With the polynomialsQn there is the additional
problem of remaining within the Appell system and in fact we show how this
can be achieved. This technical result opens the possibility to prove several re-
sults and also to introduce creation, annihilation and shift operators.
An advantage of our description is that we can prove that the function spaces
HMb andHSc for suitable choices of b, c, can be related using the Fueter map-
ping theorem.
The structure of the chapter is the following: we first revise some notations and
preliminary results that we need in the sequel. Then, we introduce some quater-
nionic reproducing kernel Hilbert spaces (QRKHS) based on a specific Appell
system, and prove different properties on such kind of polynomials. We show
also that, under suitable conditions, any axially Fueter regular function can be
expanded in terms of these Appell polynomials. We will focus more on the
Fock space in this setting. In particular, we study different properties related to
the notions of creation, annihilation operators and Segal-Bargmann transforms.
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Then, we move to treat the Hardy space case, and study different properties re-
lated to the shift and backward shift operators. Finally, we show how the Fueter
mapping acts by sending spaces of slice hyperholomorphic functions into spaces
of Fueter regular functions. Moreover, we show that in some special cases the
Fueter mapping acts as an isometric isomorphism up to a constant.

9.2 Notations

First we recall some basic facts about Cauchy-Fueter regular functions, Fueter
variables and their CK product.

We note that the quaternionic monomials Pn(q) = qn are not Fueter regular.
However, there exist some other important functions in this theory, the so-called
Fueter variables, defined by

ζl(x) = xl − elx0, l = 1, 2, 3. (9.2.1)

These functions play the same role that complex monomials play in complex
analysis. For example, a series expansion for Fueter regular functions is obtained
using these Fueter variables. A suitable product that allows to preserve the reg-
ularity in this setting is the so-called C-K product, denoted�. Given two Fueter
regular functions f and g, we take their restriction to x0 = 0 and consider their
pointwise multiplication. Then, we take the Cauchy-Kowalevskaya extension of
this pointwise product, which exists and is unique, to define f � g, see [83].

We recall also the slice hyperholomorphic quaternionic Fock spaceFSlice(H)
(see chapter 4), defined for a given I ∈ S to be

FSlice(H) :=

{
f ∈ SR(H);

1

π

∫
CI

|fI(p)|2e−|p|2dλI(p) <∞
}
,

where fI = f |CI
and dλI(p) = dxdy for p = x + yI . This quaternionic Fock

space can be characterized in terms of the slice hyperholomorphic power series
as follows

FSlice(H) =

{
∞∑
k=0

qkak; ak ∈ H :
∞∑
k=0

k!|ak|2 <∞

}
.

Its associated Segal-Bargmann transform was studied in [60] by consider-
ing the slice hyperholomorphic kernel obtained making use of the normalized
Hermite functions (ηn)n≥0. The explicit expression of this kernel is given by

AS
H(q, x) :=

∞∑
k=0

qk√
k!
ηk(x) = e−

1
2
(q2+x2)+

√
2qx, ∀(q, x) ∈ H× R. (9.2.2)

Then, for any quaternionic valued function ϕ in L2(R,H) the slice hyper-
holomorphic Segal-Bargmann transform is defined by

BSH(ϕ)(q) =
∫

R
AS

H(q, x)ϕ(x)dx. (9.2.3)
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Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

In the same spirit different famous spaces of slice hyperholomorphic functions
such as Hardy, Besov, Bloch, Dirichlet and Bergman spaces were studied in [13,
43, 113].

9.3 A new family of hyperholomorphic QRKHS: General setting

Let us consider the quaternionic polynomials defined by

Qk(q) =
k∑
j=0

T kj q
k−jqj, q ∈ H, k ≥ 0 (9.3.1)

where
T kj :=

k!

(3)k

(2)k−j(1)j
(k − j)!j!

=
2(k − j + 1)

(k + 1)(k + 2)
(9.3.2)

and (a)n = a(a+ 1)...(a+ n− 1) is the Pochhammer symbol.

Remark 9.3.1. Notice that the polynomials (Qk)k≥0 given by (9.3.1) are Fueter
regular on H. Moreover, they form an Appell system with respect to the hypercom-

plex derivative
∂

2
. i.e, for all k ≥ 1 we have the Appell property

∂

2
Qk = kQk−1. (9.3.3)

For s ∈ H, let

Exp(s) :=
∞∑
k=0

Qk(s)

k!
(9.3.4)

be the generalized Fueter regular exponential function considered in the paper
[29]. Then, we introduce the following

Definition 9.3.1. Let Ω be a domain in H. Let c = (ck)k∈N and b = (bk)k∈N be
two non decreasing sequences with c0 = b0 = 1. Then, associated to b and c we
define

1. The subspace of Fueter regular functions defined by

HMb(Ω) =

{
∞∑
k=0

Qkαk; αk ∈ H :
∞∑
k=0

bk|αk|2 <∞

}
.

2. The subspace of slice hyperholomorphic functions defined by

HSc(Ω) =

{
∞∑
k=0

qkfk; fk ∈ H :
∞∑
k=0

ck|fk|2 <∞

}
.
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Given f =
∞∑
k=0

Qkαk and g =
∞∑
k=0

Qkβk in HMb(Ω) we define the Hermi-

tian inner product given by

〈f, g〉Hb
=

∞∑
k=0

bkαkβk.

Remark 9.3.2. We note that, by specifying the sequence c, HSc include different
spaces of slice hyperholomorphic functions such as Fock, Hardy, Dirichlet and gen-
eralized Fock spaces. Such spaces are the quaternionic counterpart of the complex
version introduced in [14].

We are interested in two main problems in this setting:

Problem 9.3.3. Study the counterparts of the spaces introduced in Definition 9.3.1
by suitably chosing the sequence b in order to include in this framework of Cauchy-
Fueter regularity : Fock, Bergman, Hardy, Dirichlet spaces, etc.

In this paper, we will treat the Fock and Hardy cases that correspond, respec-
tively, to the sequences bk = k! and bk = 1, ∀k ≥ 0.

Problem 9.3.4. Study the range of the Fueter mapping on HSc and see when it is
possible to obtain spaces of regular functions of the form HMb. More in general,
we ask if using the Fueter mapping it is possible to get information on the sequence
(bk) in terms of the given datum (ck) ?

Remark 9.3.5. We note that the answer to Problem 9.3.4 for Fock and Bergman
cases were considered in [63]. See also [15,43] for the slice hyperholomorphic setting.
The answer in these two cases is given by:

1. The Fock case:

ck = k! and bk =
k!

(k + 1)(k + 2)
, ∀k ≥ 0.

2. The Bergman case:

ck =
1

k + 1
and bk =

1

(k + 1)2(k + 2)2(k + 3)
, ∀k ≥ 0.

We will show that, under suitable conditions, for some special choices of the
sequence b in Definition 9.3.1 we have the estimate:

|f(q)| ≤

(
∞∑
k=0

|q|2k

bk

) 1
2

‖f‖HMb
, f ∈ HMb(Ω), q ∈ Ω. (9.3.5)
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Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

In these cases, we can also prove thatHMb(Ω) are right quaternionic repro-
ducing kernel Hilbert spaces with reproducing kernel given by

KHMb(Ω)(q, p) =
∞∑
k=0

Qk(q)Qk(p)

bk
, ∀(q, p) ∈ Ω× Ω. (9.3.6)

Furthermore, in such situations
{
Qk√
bk

}
k≥0

form an orthonormal basis of

HMb(Ω).
Now, we will prove an interesting result on the Appell polynomials (Qk)k≥0

useful to compute their C-K product.

Proposition 9.3.6. Let k, s ≥ 0. Then, for any q = x0 + ~x ∈ H we have

Qk �Qs(q) =
ckcs
ck+s

Qk+s(q),

where � is the C-K product and cl :=
l∑

j=0

(−1)jT lj , ∀l ≥ 0.

Proof. Since Qk and Qs are Fueter regular functions on H, their C-K product
Qk �Qs is also Fueter regular. Then, we use the formula of the C-K extension,
see [28], given by

CK[h(~q )](q) = exp (−x0∂~q ) [h(~q )](q).

We write the explicit series expression using the fact that Ql(~q ) = cl~q
l for all

l ≥ 0 and obtain

Qk �Qs(q) =
∞∑
j=0

(−1)jxj0
j!

∂j~q (Qk(~q )Qs(~q ))

= ckcs

∞∑
j=0

(−1)jxj0
j!

∂j~q
(
~q k+s

)
.

In particular, we get

Qk �Qs(q) = ckcsCK
(
~q k+s

)
(q), q ∈ H, k, s ≥ 0, (9.3.7)

with cl :=
l∑

j=0

(−1)jT lj , ∀l ≥ 0.On the other hand, we observe thatQk+s is also

Fueter regular on H. Moreover, it is restriction to x0 = 0 gives

Qk+s(~q ) = ck+s~q
k+s.

Therefore, by uniqueness of the C-K extension we get

Qk+s(q) = ck+sCK
(
~q k+s

)
(q), ∀q ∈ H. (9.3.8)
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9.3. A new family of hyperholomorphic QRKHS: General setting

Hence, we combine (9.3.7) and (9.3.8) to conclude that

Qk �Qs(q) =
ckcs
ck+s

Qk+s(q),∀q ∈ H,∀k, s ≥ 0.

�

Remark 9.3.7. If we consider the Fueter regular polynomials given by Pk =
Qk

ck
,

∀k ≥ 0. Then, the classical multiplication rule holds, in the sens that we have

Pk � Ps = Pk+s, ∀k, s ≥ 0. (9.3.9)

Corollary 9.3.8. Let k, s ≥ 0. Then, for any q = x0 + ~q ∈ H we have

Qk �Qs(q) = ckcsλ
k+s
0 rk+s

(
C1
k+s(

x0
r
) +

2

k + s+ 2
C2
k+s−1(

x0
r
)
~q

r

)
,

where Cν
t are the Gegenbauer polynomials, λ0 is a constant and r2 = |q|2.

Proof. Proposition 9.3.6 gives

Qk �Qs(~q ) = ckcs~q
k+s, k, s ≥ 0,

thus, by the regularity of the C-K product Qk � Qs and uniqueness of the C-K
extension we have that

Qk �Qs(q) = ckcsCK[~q k+s], q ∈ H, k, s ≥ 0.

Hence, the result follows as a direct application of Theorem 2.2.1 in [58] that
gives the expression of the C-K extension for the vector part powers in terms of
Gegenbauer polynomials. �

Remark 9.3.9. We note that the Appell polynomials given by (9.3.1) define a fam-
ily of Fueter regular functions of axial type (or axially Fueter regular functions), in
the sense that if we write q = x0 + ω|~q | ∈ Ω with ω ∈ S there exist two quater-
nionic valued functions A = A(x0, |~q |) and B = B(x0, |~q |) independent of ω
such that we have

Qk(q) = A(x0, |~q |) + ωB(x0, |~q |), ∀k ≥ 0. (9.3.10)

We end this section by proving a converse result of the previous remark. This
allows to characterize axially Fueter regular functions on quaternionic axially
symmetric slice domains in terms of the Appell system (Qk)k≥0.

Theorem 9.3.10. Let Ω ⊆ H be an axially symmetric slice domain. Let g be an
axially Fueter regular function on Ω. Then, there exist some quaternion coefficients
(αk)k≥0 such that we have the expansion

g(q) =
∞∑
k=0

Qk(q)αk, ∀q ∈ Ω. (9.3.11)
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Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

Proof. We note that g is an axially Fueter regular function on Ω. Thus, by the
inverse Fueter mapping theorem proved in [49] there will exist f ∈ SR(Ω) such
that we have

g = τ(f), (9.3.12)

where τ = ∆R4 is the Fueter mapping. Then, using the series expansion theorem
for slice hyperholomorphic functions there exist some quaternion coefficients
(ak)k≥0 so that we can write

f(q) =
∞∑
k=0

qkak, ∀q ∈ Ω. (9.3.13)

In particular, we apply the Fueter mapping τ on (9.3.13) and get

τ(f)(q) =
∞∑
k=0

τ(qk)ak.

However, we know by [63] that

τ(qk) = −2(k − 1)kQk−2,∀k ≥ 2.

Therefore, we continue the calculations and obtain

τ(f) =
∞∑
k=0

Qkαk, (9.3.14)

where we have set αk = −2(k + 1)(k + 2)ak+2, ∀k ≥ 0. Hence, comparing
(9.3.12) with (9.3.14) we conclude that

g(q) =
∞∑
k=0

Qk(q)αk, ∀q ∈ Ω.

This ends the proof. �

9.4 The Fock space case

In this section, we consider the Clifford-Appell Fock space defined by

F(H) :=

{
∞∑
k=0

Qkαk; αk ∈ H :
∞∑
k=0

k!|αk|2 <∞

}
.

This space corresponds to the spaceHMb in Definition 9.3.1 associated with

the sequence b = k!, k ≥ 0 on the domain Ω = H. Let f =
∞∑
k=0

Qkαk and g =
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9.4. The Fock space case

∞∑
k=0

Qkβk in F(H) we can equip F(H) with the scalar product

〈f, g〉F(H) =
∞∑
k=0

k!αkβk.

Then, we can see that all the evaluation mappings on F(H) are continuous.
Indeed, we prove the following estimate

Proposition 9.4.1. For any f ∈ F(H) and q ∈ H, we have

|f(q)| ≤ e
|q|2
2 ‖f‖F(H). (9.4.1)

Proof. We write f(q) =
∞∑
k=0

Qk(q)αk. Thus, we have

|f(q)| ≤
∞∑
k=0

|Qk(q)|√
k!

|αk|
√
k!.

Then, by the Cauchy-Schwarz inequality we obtain

|f(q)| ≤

(
∞∑
k=0

|Qk(q)|2

k!

) 1
2
(

∞∑
k=0

k!|αk|2
) 1

2

However, we know that |Qk(q)| ≤ |q|k for all q ∈ H. Hence, we get

|f(q)| ≤ e
|q|2
2 ‖f‖F(H).

�

As a consequence, we have the following result

Theorem 9.4.2. The set F(H) is a right quaternionic Hilbert space of Cauchy-
Fueter regular functions whose reproducing kernel is given by

KF(H)(q, p) =
∞∑
k=0

Qk(q)Qk(p)

k!
, ∀(q, p) ∈ H×H.

Moreover, if we set ψk(q) =
Qk(q)√
k!

, k ≥ 0, then, the family {ψk}k≥0 form an

orthonormal basis of F(H).
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Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

Proof. For a fixed p ∈ H, we consider the function defined by

Kp(q) =
∞∑
k=0

Qk(q)βk(p), ∀q ∈ H, where βk(p) =
Qk(p)

k!
.

We observe that
∞∑
k=0

k!|βk(p)|2 =
∞∑
k=0

|Qk(p)|2

k!
≤ e|q|

2

<∞.

So, the function Kp belongs to F(H) for all p ∈ H. Now, let f =
∞∑
k=0

Qkαk be

any function in F(H). Then

〈Kp, f〉F(H) =
∞∑
k=0

k!βk(p)αk =
∞∑
k=0

Qk(p)αk = f(p), ∀p ∈ H,

therefore, the reproducing kernel of the space F(H) is given by

KF(H)(q, p) =
∞∑
k=0

Qk(q)Qk(p)

k!
, ∀(q, p) ∈ H×H.

It is clear by definition of the scalar product that

〈ψk, ψj〉F(H) = δk,j , ∀k, j ∈ N.

Furthermore, let f =
∞∑
k=0

Qkαk in F(H) be such that

〈ψk, f〉F(H) = 0, ∀k ∈ N.

We have √
k!αk = 〈ψk, f〉F(H) = 0, ∀k ∈ N,

so, f = 0 for any q ∈ H. In particular, this proves that {ψk}k≥0 form an or-
thonormal basis of F(H). �

Remark 9.4.3. We note that

i) KF(H)(~q , ~p) =
∞∑
k=0

(−1)k
c2k
k!
~q k~pk, ∀(q, p) ∈ H0 ×H0.

ii) KF(H)(x, y) = exy, ∀(x, y) ∈ R× R.
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9.4. The Fock space case

Nowwe turn our attention to the notion of creation operator associated with
the Clifford-Appell Fock space F(H). For this, we consider a sequence of real
numbers γ = (γk)k≥0 that allows to define a weighted shift operator by

Tγ(Qk) := γkQk+1, ∀k ≥ 0. (9.4.2)

We would like to preserve in this setting the main properties of adjoint and
commutation rules satisfied by the standard creation and annihilation operators
on the Fock space. First, we deal with the following

Proposition 9.4.4. Let γ be a sequence with γ0 = 1 and such that (9.4.2) is well
defined. Then, we have [

∂

2
Tγ , Tγ

∂

2

]
= IF(H),

if and only if

γk =
1 + kγk−1

1 + k
, ∀k ≥ 1.

Proof. Let f =
∞∑
k=0

Qkαk be a function in F(H). Then, we have

Tγ(f) =
∞∑
k=0

γkQk+1αk and
∂

2
(f) =

∞∑
k=1

kQk−1αk.

Thus, we obtain

∂

2
Tγ(f) =

∞∑
k=0

(k + 1)γkQkαk and Tγ
∂

2
(f) =

∞∑
k=1

kγk−1Qkαk.

Therefore, it follows that[
∂

2
Tγ , Tγ

∂

2

]
(f) = γ0Q0α0 +

∞∑
k=1

[(k + 1)γk − kγk−1]Qkαk (9.4.3)

We can see that if
γk =

1 + kγk−1

1 + k
, ∀k ≥ 1,

we have then
(k + 1)γk − kγk−1 = 1, ∀k ≥ 1.

Therefore, using the condition γ0 = 1 and formula (9.4.3) we obtain[
∂

2
Tγ , Tγ

∂

2

]
(f) = Q0α0 +

∞∑
k=1

Qkαk = f.
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Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

For the converse, if we assume that[
∂

2
Tγ , Tγ

∂

2

]
(f) = f,

we apply (9.4.3) and get

γ0Q0(q)α0 +
∞∑
k=1

[(k + 1)γk − kγk−1]Qk(q)αk =
∞∑
k=0

Qk(q)αk, ∀q ∈ H.

In particular, using the fact that Qk(t) = tk,∀t ∈ R and γ0 = 1 we observe
that

α0 +
∞∑
k=1

[(k + 1)γk − kγk−1]t
kαk =

∞∑
k=0

tkαk, ∀t ∈ R.

Therefore, comparing the coefficients of the same degree we obtain

(k + 1)γk − kγk−1 = 1, ∀k ≥ 1.

Hence, we have the condition

γk =
1 + kγk−1

1 + k
, ∀k ≥ 1.

�

Furthermore, we can prove the following

Proposition 9.4.5. Let γ be a sequence with γ0 = 1 and such that (9.4.2) holds.
If one of the following properties is satisfied

i)
[
∂

2
Tγ , Tγ

∂

2

]
= IF(H);

ii) Tγ is the adjoint of the hypercomplex derivative
∂

2
;

then, we have
γk = 1, ∀k ≥ 0.

Proof. We observe that condition i) and Proposition 9.4.5 show that

γk =
1 + kγk−1

1 + k
, ∀k ≥ 1.

Thus, since γ0 = 1 a simple induction reasoning allows to prove that if i) holds
then γk = 1, for all k ≥ 1. On the other hand, the condition ii) implies in
particular that we have〈

∂

2
(Qk), Qj

〉
F(H)

= 〈Qk, Tγ(Qj)〉F(H) , ∀k, j ≥ 1.
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So, we conclude

k(k − 1)!δk−1,j = γjk!δk,j+1, ∀k, j ≥ 1,

where δm,n is the Kronecker symbol. In particular, this leads to the same con-
clusion that γj = 1, j ≥ 1. �

Remark 9.4.6. We note that thanks to Proposition 9.4.5 the only operator Tγ that
can play the role of the creation operator with respect to the Clifford-Appell system
should act as follows

Tγ(Qk) = Qk+1, ∀k ≥ 0. (9.4.4)

We now introduce the notion of creation operator associatedwith the quater-
nionic Hilbert space HMb in terms of the C-K product that allows to have the
property (9.4.4) . To this end, let k ≥ 0, and we define first the family of opera-
tors given by

Sk(f) :=
c1+k
c1ck

Q1 � f, ∀f ∈ HMb (9.4.5)

where � denote the C-K product and cl :=
l∑

j=0

(−1)jT lj , ∀l ≥ 0.

Then, for f =
∞∑
k=0

Qkαk inHMbwe consider the operatorS defined by applying

Sk on each component with the corresponding degree as follows

S(f) :=
∞∑
k=0

Sk(Qk)αk. (9.4.6)

Therefore, we have the explicit expression given by

S(f) := 1

c1

∞∑
k=0

c1+k
ck

[Q1 �Qk]αk. (9.4.7)

We note that the operator S acts like the classical shift operator with respect to
the Clifford-Appell system (Qk)k≥0. This can be seen in the following

Proposition 9.4.7. For all k ≥ 0, we have

S(Qk)(q) = Qk+1(q), ∀q ∈ H.

Proof. Let k ≥ 0. Then, for all q ∈ H we have

S(Qk)(q) = Sk(Qk)(q)

=
c1+k
c1ck

Q1 �Qk(q).

149



i
i

“thesis’’ — 2021/1/31 — 22:52 — page 150 — #170 i
i

i
i

i
i

Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

Now, we apply Proposition 9.3.6 and get

Q1 �Qk =
c1ck
c1+k

Qk+1.

Hence, we obtain
S(Qk) = Qk+1.

�

As a consequence of Proposition 9.4.7 we note that the creation operator on
F(H) given by (9.4.6) acts as follows

S(
∞∑
k=0

Qkαk) =
∞∑
k=0

Qk+1αk.

The annihilation operator corresponds to the hypercomplex derivative

∂

2
:=

1

2

(
∂

∂x0
− i

∂

∂x1
− j

∂

∂x2
− k

∂

∂x3

)
.

It is known by the Appell property that

∂

2
(Qk) = kQk−1, ∀k ≥ 1.

The domains of S and
∂

2
in F(H) are denoted respectively by

D(S) := {f ∈ F(H); S(f) ∈ F(H)}

and

D(
∂

2
) := {f ∈ F(H);

∂

2
(f) ∈ F(H)}.

We note that the creation operator S and the hypercomplex derivative ∂
2
are

quaternionic right linear operators densely defined on F(H) since
{
Qk√
k!

}
k≥0

is
an orthonormal basis of the quaternionic Fock Hilbert space. In the sequel, we
shall prove some different properties of these operators:

Proposition 9.4.8. S and ∂
2
are two closed quaternionic operators on F(H).

Proof. We consider the graph of S defined by

G(S) := {(f,Sf); f ∈ D(S)}.

Let us show that G(S) is closed. Indeed, let φn be a sequence in D(S) such
that φn and Sφn converge to φ and ψ respectively on F(H). Then, thanks to
Proposition 9.4.1 we have

|φn(q)− φ(q)| ≤ e
|q|2
2 ‖φn − φ‖F(H)
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and
|Sφn(q)− ψ(q)| ≤ e

|q|2
2 ‖Sφn − ψ‖F(H).

Therefore, it follows that φn and Sφn converge pointwise to φ and ψ, respec-
tively. This leads to ψ = Sφwhich ends the proof. The same technique could be
adapted to prove the closedness of the hypercomplex derivative on F(H). �

Furthermore, we prove also the following

Proposition 9.4.9. Let f ∈ F(H). Then, S(f) belongs toF(H) if and only if
∂

2
f

belongs to F(H). In particular, this means that we have

D(S) = D(
∂

2
).

Proof. We write f =
∞∑
k=0

Qkαk in F(H). Then, we have

S(f) =
∞∑
h=1

Qhαh−1.

In particular, we have

||S(f)||2F(H) =
∞∑
h=1

h!|αh−1|2. (9.4.8)

On the other hand, using the Appell property with respect to the hypercom-
plex derivative we have

∂

2
(f) =

∞∑
h=0

Qhβh, βh = (h+ 1)αh+1,∀h ≥ 0.

Some calculations lead to

||∂
2
(f)||2F(H) =

∞∑
h=1

h(h!)|αh|2. (9.4.9)

We note that by (9.4.8) we have

||Sf ||2F(H) =
∞∑
h=0

(h+ 1)!|αh|2

=
∞∑
h=0

(h+ 1)h!|αh|2

=
∞∑
h=0

h(h)!|αh|2 +
∞∑
h=0

h!|αh|2.
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Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

Therefore, we use (9.4.9) in order to get

||Sf ||2F(H) = ||∂
2
f ||2F(H) + ||f ||2F(H). (9.4.10)

Hence, formula (9.4.10) shows that ||Sf ||F(H) <∞ if and only if ||∂
2
f ||F(H) <

∞ which ends the proof. �

Now, we prove the adjoint property

Proposition 9.4.10. Let f ∈ D(
∂

2
) and g ∈ D(S). Then, we have

〈
∂

2
f, g

〉
F(H)

= 〈f,S(g)〉F(H) .

Proof. Let f =
∞∑
k=0

Qkαk in D(
∂

2
) and g =

∞∑
k=0

Qkβk in D(S). Thus, we have

∂

2
f =

∞∑
k=0

∂

2
(Qk)αk

=
∞∑
k=1

kQk−1αk

=
∞∑
h=0

(h+ 1)Qhαh+1.

On the other hand, making use of Proposition 9.4.7 we have

S(g) =
∞∑
k=0

S(Qk)βk

=
∞∑
k=0

Qk+1βk

=
∞∑
k=1

Qkβk−1.

Therefore, we obtain〈
∂

2
f, g

〉
F(H)

=
∞∑
k=0

(k + 1)!αk+1βk = 〈f,S(g)〉F(H) .

This ends the proof. �
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Proposition 9.4.11. Let f ∈ D(
∂

2
) ∩ D(S). Then, we have

[
∂

2
S,S ∂

2

]
(f) = f.

Proof. Let f =
∞∑
k=0

Qkαk be in D(
∂

2
) ∩D(S). Thus, computations using Propo-

sition 9.4.7 and the Appell property give

∂

2
S(f) =

∞∑
k=0

(k + 1)Qkαk and S ∂
2
(f) =

∞∑
k=0

kQkαk.

In particular, it shows that

∂

2
S(f)− S ∂

2
(f) = f.

This ends the proof. �

Remark 9.4.12. Note that the creation and annihilation operators denoted respec-

tievly by S and
∂

2
are adjoint of each other and satisfy the classical commutation

rules on the Fock space of Fueter regular functions F(H) like in the classical com-

plex case. Moreover, observe that we have also S ∂
2
(Qk) = kQk, for any k ≥ 1.

This property is related to the notion of number operators that appears in quantum
mechanics.

Let (ηn)n∈N denote the normalized Hermite functions. In order to study the
Segal-Bargmann transform notion in this framework we introduce the Fueter
regular kernel function given by

AF
H(q, x) :=

∞∑
k=0

Qk(q)√
k!

ηk(x), ∀(q, x) ∈ H× R. (9.4.11)

Then, for any quaternionic valued function ϕ in L2(R,H) and q ∈ H we define

BFH(ϕ)(q) =
∫

R
AF

H(q, x)ϕ(x)dx. (9.4.12)

We shall prove the following result:

Theorem 9.4.13. The integral transform BFH defines an isometric isomorphism
mapping the standard Hilbert space L2(R,H) onto the Clifford-Appell Fock space
F(H).
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Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

Proof. Let ϕ ∈ L2(R,H). We write ϕ =
∞∑
j=0

ηj(x)βj such that ‖ϕ‖2L2(R,H) =

∞∑
j=0

|βj|2 <∞.Then, note that we have

BFH(ϕ)(q) =
∞∑
k=0

Qk(q)√
k!

∫
R
ηk(x)ϕ(x)dx.

So, by setting αk =
1√
k!

∫
R
ηk(x)ϕ(x)dx for all k ≥ 0, we get

‖BFH(ϕ)‖2F(H) =
∞∑
k=0

k!|αk|2

=
∞∑
k=0

∣∣∣∣∫
R
ηk(x)ϕ(x)dx

∣∣∣∣2 .
However, by definition of ϕ and using the orthogonality of Hermite functions
we obtain∫

R
ηk(x)ϕ(x)dx =

∞∑
j=0

βj

∫
R
ηk(x)ηj(x)dx = βk, ∀k ≥ 0.

Hence, we conclude that

‖BFH(ϕ)‖2F(H) =
∞∑
j=0

|βj|2 = ‖ϕ‖2L2(R,H).

Moreover, observe that

BFH(ηk) =
Qk√
k!
, ∀k ≥ 0.

In particular, this allows to prove that BFH is an isometric isomorphism mapping
the standard Hilbert space L2(R,H) onto the Fock space F(H) on the quater-
nions. �

Now, we consider the following:

Problem 9.4.14. Is it possible to map FSlice(H) onto F(H) without using the
Fueter mapping, see [63], and keeping the isometry property ?

To answer the question, we will compute BFH composed with the slice hy-
perholomorphic Segal-Bargmann transform.
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In order to answer this problem, we need the slice hyperholomorphic Segal-
Bargmann transform given by (9.2.3).

Notice that thanks to these integral transforms BSH and BFH it is possible to
relate the two notions of Fock spaces on the quaternions, namely the slice hy-
perholomorphicFSlice(H) and the Cauchy-Fueter regular oneF(H). Indeed, for
a fixed i ∈ S, f ∈ FSlice(H) and q ∈ H we define the integral transform given
by

Υ(f)(q) :=

∫
Ci

L(q, z)fi(z)dµi(z),

where dµi(z) :=
1

π
e−|z|2dAi(z) and the kernel function is obtained by taking

the series

L(q, z) =
∞∑
k=0

Qk(q)

k!
zk, ∀(q, z) ∈ H× Ci.

Then, we prove:

Theorem 9.4.15. The quaternionic integral transform Υ does not depend on the
choice of the imaginary unit i ∈ S. Furthermore, it defines an isometric isomor-
phism mapping the slice hyperholomrphic Fock space FSlice(H) onto the Clifford-
Appell Fock space F(H).

Proof. Let f ∈ FSlice(H), by Proposition 3.11 in [15] we have

f(q) =
∞∑
k=0

qkak and
∞∑
k=0

|ak|2k! <∞.

In particular, by definition of Υ we have

Υ(f)(q) =

∫
Ci

(
∞∑
k=0

Qk(q)

k!
zk

)(
∞∑
j=0

zjaj

)
dµi(z)

=
∞∑

k,j=0

Qk(q)

k!

(∫
Ci

zkzjdµi(z)

)
aj.

However, it is known that ∫
Ci

zkzjdµi(z) = k!δk,j .

Therefore, we get

Υ(f)(q) =
∞∑
k=0

Qk(q)ak.

Hence, since the coefficients (ak)k≥0 do not depend on the choice of the imag-
inary unit i we conclude that Υ(f) is well defined and does not depend on the
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choice of the imaginary unit. Now, we observe that the operator Υ can be ob-
tained thanks to the commutative diagram such that we have

Υ = BFH ◦ (BSH)−1.

Indeed, to prove this fact. Let f ∈ FSlice(H) and set

φ(x) = (BSH)−1(f)(x) =

∫
Ci

AS
H(z, x)fi(z)dµi(z).

Thus, for any q ∈ H we have:

BFH(φ)(q) =
∫

Ci

AF
H(q, x)φ(x)dx

=

∫
Ci

AF
H(q, x)

(∫
Ci

AS
H(z, x)fi(z)dµi(z)

)
dx

=

∫
Ci

(∫
R
AF

H(q, x)AS
H(z, x)dx

)
fi(z)dµi(z).

Then, we set

H(q, z) =

∫
R
AF

H(q, x)AS
H(z, x)dx, ∀(q, z) ∈ H× Ci.

So, for all (q, z) ∈ H× Ci we have

H(q, z) =

∫
Ci

(
∞∑
k=0

Qk(q)√
k!

ηk(x)

)(
∞∑
j=0

zj√
j!
ηj(x)

)
dx

=
∞∑

k,j=0

Qk(q)√
k!

(∫
R
ηk(x)ηj(x)dx

)
zj√
j!

Then, using the fact that Hermite functions form an orthonormal basis ofL2(R,H)
we get

H(q, z) =
∞∑
k=0

Qk(q)

k!
zk = L(q, z), ∀(q, z) ∈ H× Ci.

At this stage, we replace H(q, z) by its expression and conclude that we have

Υ = BFH ◦ (BSH)−1.

Therefore, since both ofBFH andBSH are isometric isomorphismsmappingL2(R,H)
respectievly onto F(H) and FSlice(H). This ends the proof. �

This quaternionic operator satisfies also the following properties :
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Proposition 9.4.16. For all n ≥ 0, we set fn(q) =
qn√
n!

and φn(q) =
Qn(q)√
n!

,

q ∈ H.Then, we have

i) Υ(fn) = φn, ∀n ≥ 0.

ii)
∫

Ci

L(q, z)L(p, z)dµi(z) = KF(H)(q, p), ∀(q, p) ∈ H×H.

Proof. The first statement is a direct consequence of the fact that

Υ = BFH ◦ (BSH)−1.

This is combined with the two following relations

(BSH)−1(ηn) = fn and BFH(fn) = φn, ∀n ≥ 0.

Now, let (q, p) ∈ H×H. Then, we have∫
Ci

L(q, z)L(p, z)dµi(z) =
∞∑

k,j=0

Qk(q)

k!

(∫
Ci

zkzjdµi(z)

)
Qj(p)

j!

=
∞∑
k=0

Qk(q)Qk(p)

k!
,

= KF(H)(q, p).

�

Corollary 9.4.17. Let i ∈ S. Then, for all x, y ∈ R and n ≥ 0, we have the
following identities

i)
∫

Ci

exzzndµi(z) = xn.

ii)
∫

Ci

exz+yzdµi(z) = exy .

Proof. Observe that we have

L(t, z) = etz, ∀(t, z) ∈ R× Ci. (9.4.13)

The first identity follows from i) of Proposition 9.4.16 combined with (9.4.13).
The second statement is also a consequence of (9.4.13) combined with ii) of

Proposition 9.4.16 and the fact that

KF(H)(x, y) = exy, ∀(x, y) ∈ R× R.

�
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9.5 The Hardy space case

In this section, we study on the quaternionic unit ball Ω = B the spaces asso-
ciated to some sequence b as considered in Definition 9.3.1. First, we give some
general proofs related to these spacesHMb(B).Then, wewill give more specific
results on the Clifford-Appell Hardy space in this framework that corresponds
to the sequence bk = 1,∀k ≥ 0. In all this part, we take Ω = B and b = (bk)k≥0

a non decreasing sequence with b0 = 1. Then, we have

Proposition 9.5.1. The following estimate holds

|f(q)| ≤

(
∞∑
k=0

|q|2k

bk

) 1
2

‖f‖HMb
, f ∈ HMb(B), q ∈ B.

Proof. Let us consider f(q) =
∞∑
k=0

Qk(q)αk in HMb(B). Thus, we have

|f(q)| ≤
∞∑
k=0

|Qk(q)|√
bk

|αk|
√
bk.

Then, by the Cauchy-Schwarz inequality we have

|f(q)| ≤

(
∞∑
k=0

|Qk(q)|2

bk

) 1
2
(

∞∑
k=0

bk|αk|2
) 1

2

However, we know that |Qk(q)| ≤ |q|k. Hence, we get

|f(q)| ≤

(
∞∑
k=0

|q|2k

bk

) 1
2

‖f‖HMb
.

�

As a consequence, we get this result

Theorem9.5.2. The setsHMb(B) are right quaternionic reproducing kernel Hilbert
spaces. Their reproducing kernel functions are given by

KHb(B)(q, p) =
∞∑
k=0

Qk(q)Qk(p)

bk
, ∀(q, p) ∈ B× B. (9.5.1)

Furthermore, the family {ψbk :=
Qk√
bk
, k ≥ 0} forms an orthonormal basis of

Hb(B).
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Proof. For a fixed p ∈ B, we consider the function defined by

Kp(q) =
∞∑
k=0

Qk(q)βk(p), ∀q ∈ B, where βk(p) =
Qk(p)

bk
.

Thanks to the d’Alembert ratio test for power series, we have

∞∑
k=0

bk|βk(p)|2 =
∞∑
k=0

|Qk(p)|2

bk
≤

∞∑
k=0

|q|2k

bk
<∞.

So, the function Kp belongs to Hb(B) for any p ∈ B. Now, let f =
∞∑
k=0

Qkαk ∈

Hb(B). Then, we have

〈Kp, f〉H(B) =
∞∑
k=0

bkβk(p)αk =
∞∑
k=0

Qk(p)αk = f(p), ∀p ∈ B.

Therefore, the reproducing kernel of the spaceHb(B) is given by

KHb(B)(q, p) =
∞∑
k=0

Qk(q)Qk(p)

bk
, ∀(q, p) ∈ B× B.

It is clear by definition of the scalar product that〈
ψbk, ψ

b
j

〉
Hb(B)

= δk,j , ∀k, j ∈ N.

Furthermore, let f =
∞∑
k=0

Qkαk in Hb(B) be such that

〈
ψbk, f

〉
Hb(B)

= 0, ∀k ∈ N.

Thus, we have √
bkαk =

〈
ψbk, f

〉
Hb(B)

= 0, ∀k ∈ N.

So, f = 0 for any q ∈ B. In particular, this proves that {ψbk}k≥0 form an or-
thonormal basis ofHMb(B). �

Remark 9.5.3. TheClifford-Appell Hardy space corresponds to the sequence bwith
all the terms equal to 1, and will be denoted simplyH(B). In this case, the previous
results of this section read as follows

i) |f(q)| ≤
‖f‖H(B)

(1− |q|2)
1
2

, ∀f ∈ H(B), ∀q ∈ B.

159



i
i

“thesis’’ — 2021/1/31 — 22:52 — page 160 — #180 i
i

i
i

i
i

Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

ii) KH(B)(q, p) =
∞∑
k=0

Qk(q)Qk(p), ∀(q, p) ∈ B× B.

iii) KH(B)(~q , ~p) =
∞∑
k=0

(−1)kc2k~q
k~pk, ∀(q, p) ∈ B0 × B0.

iv) KH(B)(x, y) =
1

1− xy
, ∀(x, y) ∈ (−1, 1)2.

In the previous section we studied the notions of creation and annihilation
operators associated to the Fock space in this framework. We do the same in
this section for the Hardy case by studying the counterparts of the shift and
backward shift operators. We keep the same definition and notation of the shift
operator introduced in the expressions (9.4.6), (9.4.7) and Proposition 9.4.7. Then,
we first prove the following

Proposition 9.5.4. The shift operator S is a right quaternionic isometric operator
from the Clifford-Appell Hardy space H(B) into itself.

Proof. Let f =
∞∑
k=0

Qkαk belongs toH(B). We apply Proposition 9.4.7 and get

S(f)(q) =
∞∑
k=1

Qk(q)αk−1, ∀q ∈ B.

Hence, we have

||S(f)||2H(B) =
∞∑
k=0

|αk|2

= ||f ||2H(B).

This shows that S defines an isometry on the Hardy space H(B). �

In order to calculate the adjoint operator of the shift on H(B) we first deal
with the following observation

Proposition 9.5.5. For all k ≥ 1 and q ∈ B with q 6= 0 we have

Q−1
1 �Qk(q) =

ck
c1ck−1

Qk−1,

where � is the C-K product and cl :=
l∑

j=0

(−1)jT lj , ∀l ≥ 0.
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9.5. The Hardy space case

Proof. First, we observe that (Q1(~q ))
−1 =

(~q )−1

c1
and Qk−1(~q ) = ck−1~q

k−1.
Then, we write the series expansion associated to the C-K product and use sim-
ilar techniques we used to prove Proposition 9.3.6. �

For all k ≥ 1, we introduce a family of operators defined by

Mk(f) :=
c1ck−1

ck
Q−1

1 � f, ∀f ∈ H(B). (9.5.2)

Then, for any f =
∞∑
k=1

Qkαk in H(B) we consider the operator obtained by

applying Mk on each component with the corresponding degree, i.e

M(f) :=
∞∑
k=1

Mk(Qk)αk. (9.5.3)

Therefore, we have an explicit expression given by

M(f) := c1

∞∑
k=1

ck−1

ck
[Q−1

1 �Qk]αk. (9.5.4)

We note that using Proposition 9.5.5 we can see that this operator M acts like
the standard backwardshift with respect to the Appell system (Qk)k≥0, in the
sens that we have

M(Qk) = Qk−1, ∀k ≥ 1. (9.5.5)

The next result allows to compute the adjoint of the shift operator on the
Hardy space H(B).

Proposition 9.5.6. Let f, g ∈ H(B). Then, it holds that

〈M(f), g〉H(B) = 〈f,S(g)〉H(B) .

In other words, the adjoint of the shift on H(B) is given by

S∗ = M.

Proof. Let f =
∞∑
k=0

Qkαk and g =
∞∑
k=0

Qkβk inH(B). Thus, we have

M(f) =
∞∑
k=1

Mk(Qk)αk

=
∞∑
k=1

Qk−1αk =
∞∑
k=0

Qkαk+1.
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We know also by Proposition 9.4.7 that

S(g) =
∞∑
k=1

Qkβk−1.

Therefore, we can see that

〈M(f), g〉H(B) =
∞∑
k=0

αk+1βk = 〈f,S(g)〉H(B) .

This ends the proof. �

In [18] the authors introduced a backward shift with respect to each Fueter
variable using some integral operators. Inspired from this approach, we present
now an equivalent way to deal with the backward shift operator in our situation.
First, for all ε > 0 we consider onH(B) a family of operatorsRε : f 7−→ Rε(f)
defined using the following expression

Rε(f)(q) :=

∫ 1

ε

1

t

∂

2
[f(tq)] dt; q ∈ B \ {0} (9.5.6)

where ∂
2
denote the hypercomplex derivative with respect to the variable q.

Then, we consider the backward shift operator given by

R(f)(q) := lim
ε→0

Rε(f)(q), q ∈ B \ {0} (9.5.7)

and

Rf(0) = ∂

2
f(0). (9.5.8)

We note that the backward shift operator R acts by reducing the degree of
the Appell system (Qk)k≥0 as follows

Proposition 9.5.7. For all k ≥ 1, it holds that

R(Qk) = Qk−1.

Proof. Let k ≥ 1 and ε > 0. First, we note that

Qk(qt) = tkQk(q), ∀ε < t < 1.

Then, by definition ofRε and Appell property of the system (Qk)k≥0 we have

Rε(Qk)(q) =

∫ 1

ε

1

t

∂

2
[Qk(tq)] dt

=

∫ 1

ε

tk

t

∂

2
[Qk(q)] dt

= kQk−1(q)

∫ 1

ε

tk−1dt.
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Therefore, we obtain

Rε(Qk)(q) = Qk−1(q)(1− εk),∀ε > 0.

Hence, by letting ε −→ 0 we conclude that

R(Qk) = Qk−1, ∀k ≥ 1.

�

Remark 9.5.8. We observe thanks to formula (9.5.5) and Proposition 9.5.7 that
the two backward shift operators M and R coincide on the Clifford-Appell Hardy
space H(B).

We prove also another property related to the backward shift operatorR on
the spacesHMb(B).

Proposition 9.5.9. Let b = (bk)k∈N be a non decreasing sequence with b0 = 1
and f ∈ HMb(B). Then, the following inequality holds

||R(f)||2HMb
≤ ||f ||2HMb

− |f(0)|2. (9.5.9)

The equality holds on the Clifford-Appell Hardy space H(B).

Proof. We write f =
∞∑
k=0

Qkαk in HMb(B). Thus, by Proposition 9.5.7 we can

see that R(f) =
∞∑
k=0

Qkαk+1.Therefore, using the fact that b is non decreasing

we get

||R(f)||2HMb(Ω) =
∞∑
k=0

bk|αk+1|2

≤
∞∑
k=0

bk+1|αk+1|2

= ||f ||2HMb(Ω) − |f(0)|2.

�

Remark 9.5.10. We note that using Proposition 9.5.9 we can see that the QRKHS
HMb(B) are invariant under the backward shift R and they satisfy inequality
9.5.9. It would be intersting to investigate the relation with Schur functions and
see if the converse holds also in this framework. If it is the case, it will present a
counterpart of the structure result proved in Theorem 3.1.2 of [16].
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9.6 The Fueter mapping range

In this section we give an answer to Problem 9.3.4. Indeed, we give a char-
acterisation of the Fueter mapping range related to the hypercomplex spaces
introduced in Definition 9.3.1.

Theorem 9.6.1. Let Ω be an axially symmetric slice domain and c = (ck)k∈N
be a given non decreasing sequence with c0 = 1. Then, there exists a sequence
b = (bk)k≥0 such that we have

τ (HSc(Ω)) = HMb(Ω).

More precisely, we have

i) bk =
ck+2

(k + 1)2(k + 2)2
, ∀k ≥ 0.

ii) For all f ∈ HSc(Ω), we have

||τ(f)||HMb(Ω) = 2
√
||f ||2HSc(Ω) − |f(0)|2 − c1|f ′(0)|2.

Proof. Let g ∈ τ (HSc(Ω)) , thus there exists f ∈ HSc such that g = τ(f).
Then, we write the series expansion

f(q) =
∞∑
k=0

qkak, ∀q ∈ Ω.

Thus, we have g = τ(f) =
∞∑
k=0

Qkαk,withαk = −2(k+1)(k+2)ak+2, ∀k ≥

0. Now, we set
bk =

ck+2

(k + 1)2(k + 2)2
, ∀k ≥ 0.

Hence, since a0 = f(0) and a1 = f ′(0) we obtain

||τ(f)||2HMb(Ω) =
∞∑
k=0

bk|αk|2

= 4
∞∑
k=2

ck|ak|2

= 4
(
||f ||2HSc(Ω) − |f(0)|2 − c1|f ′(0)|2

)
<∞.

This ends the proof. �

Corollary 9.6.2. If we set HS0
c := {f ∈ HSc, f(0) = f ′(0) = 0}. Then, the

Fueter mapping τ defines a right quaternionic isometric operator (up to constant)
from HS0

c onto HMb.
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Proof. We only have to apply ii) in Theorem 9.6.1 and get

||τ(f)||HMb(Ω) = 2||f ||HSc(Ω), ∀f ∈ HS0
c .

�

Remark 9.6.3. The generic calculations provided in Theorem 9.6.1 confirm the
results obtained in [63] for the Fock and Bergman cases.

Remark 9.6.4. We note that in Theorem 9.6.1 even if the sequence b is not neces-
sarily a non decreasing sequence but the corresponding spaces HMb are QRKHS.
For the Fock-Fueter space on H we refer to the calculation details provided in [63].
However, on the quaternionic unit ball B this fact results thanks to the convergence
of a certain power series associated to the sequence b.

Proposition 9.6.5. Let c and b two sequences as in Theorem 9.6.1. Then, the power
series given by

∞∑
k=0

|q|2k

bk
=

∞∑
k=

(k + 1)2(k + 2)2

ck+2

|q|2k, (9.6.1)

is convergent on the quaternionic unit ball B.

Proof. Let q ∈ B and set

sk =
(k + 1)2(k + 2)2

ck+2

|q|2k, ∀k ≥ 0.

We have
sk+1

sk
= |q|2 (k + 3)2ck+2

(k + 1)2ck+3

, ∀k ≥ 0.

Then, using the fact that the sequence (ck)k≥0 is non decreasing we can see
that

lim
k→∞

sk+1

sk
≤ |q|2 < 1.

Hence, by the d’Alembert ratio test the thesis follows. �

Remark 9.6.6. As a consequence of the previous Proposition it is not difficult to
see that on B the hypercomplex spaceHMb obtained in Theorem 9.6.1 is a QRKHS
with a reproducing kernel given by

KHMb
(q, p) =

∞∑
k=0

(k + 1)2(k + 2)2

ck+2

Qk(q)Qk(p), ∀(q, p) ∈ B× B. (9.6.2)

In the following table we list some spaces of slice hyperholomorphic func-
tions and their Fueter mapping ranges denoted respectively byHSc andHMb,
the associated sequences c and b and the Fueter mapping norms.
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Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

Table 9.1: Some spaces HMb obtained in Theorem 9.6.1

HSc ck bk ||τ(f)||HMb

Hardy 1
1

(k + 1)2(k + 2)2
2
√

||f ||2HSc
− |f(0)|2 − |f ′(0)|2

Fock k!
k!

(k + 1)(k + 2)
2
√

||f ||2HSc
− |f(0)|2 − |f ′(0)|2

Dirichlet k
1

(k + 1)2(k + 2)
2
√

||f ||2HSc
− |f(0)|2 − |f ′(0)|2

Bergman
1

k + 1

1

(k + 3)(k + 1)2(k + 2)2
2
√
||f ||2HSc

− |f(0)|2 − 1
2 |f ′(0)|2

9.7 Further related results

In [5], we started the study of Schur analysis and de Branges-Rovnyak spaces
in the framework of Fueter hyperholomorphic functions. This allows to develop
some new Schur analysis results in the Fueter hypercomplex setting. It was
also possible to find connections with the recent theory of slice polyanalytic
functions. Indeed, this is based on the notion of Appell-like polynomials and
their nice properties with respect to the CK product. We briefly discuss such
related results in this last section.

9.7.1 Appell-like polynomials

Let us set
Qm(q)

cm

def.
= Pm(q),

where Qm denotes them-th quaternionic Appell polynomial

Qm(q) =
m∑
j=0

Tmj q
m−j q̄j (9.7.1)

(see [8, (3.8)]), and where the coefficients cm are given by

cm =
m∑
j=0

(−1)jTmj , and Tmj =
2(m− j + 1)

(m+ 1)(m+ 2)
, m = 0, 1, . . . .

The polynomialsQm are called Appell since they satisfy the Appell property

1

2
DQm = mQm−1, m ≥ 1;

the Pm do not respect such a property, since

1

2
DPm = m

cm−1

cm
Pm−1, m ≥ 1,
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9.7. Further related results

however, they behave better with respect to the CK-product, as we shall see
below. In particular, for even indexes of the form m = 2k, the Appell property
is still satisfied by the polynomials (P2k)k≥0 since we have cm−1 = cm in this
case.

In what follows, we are looking at a theory of hyperholomorphic functions
of the variable

P1(q) =
Q1(q)

c1
= ζ1(q)e1 + ζ2(q)e2 + ζ3(q)e3, (9.7.2)

with the CK-product. Moreover, note that

P1(x0) = 3x0. (9.7.3)

We have the following characterization, see [17, Proposition 3.6]:

Proposition 9.7.1. Let f0, ..., fN−1 be slice regular functions on a domainΩ ⊆ H.
Then, the function defined by

f(x) :=
N−1∑
k=0

qkfk(q) (9.7.4)

is slice polyanalytic of order N on Ω.

As a consequence:

Corollary 9.7.2. The polynomial Pm is slice polyanalytic of orderm+ 1.

Proof. For all 0 ≤ k ≤ m, we set fk(q) =
Tmk
cm

qm−k. It is clear that all fk are slice
regular functions on Ω. Moreover, we note that

Pm(q) =
m∑
k=0

qkfk(q),∀q ∈ Ω.

Hence, the thesis follows using Proposition 9.7.1. �

We observe that it is also possible to prove a Representation Formula in the
setting of Fueter hyperholomorphic functions using techniques from slice poly-
analytic function theory.

Proposition 9.7.3. Let f be a Fueter hyperholomorphic function of axial type
on some axially symmetric slice domain Ω ⊂ H. Let J ∈ S, then for any x =
u+ Iqv ∈ Ω the following equality holds :

f(u+ Iqv) =
1

2
[fJ(u+ Jv) + fJ(u− Jv)] +

IqJ

2
[fJ(u− Jv)− fJ(u+ Jv)] .
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Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

Proof. Wenote that the Fueter hyperholomorphic polynomials (Pm)m≥0 are slice
polyanalytic of orderm+ 1 thanks to Corollary 9.7.2. Thus, we can apply The-
orem 3.9 in [17] in order to justify that these polynomials satisfy the Represen-
tation Formula. In particular, for z = u+ Jv and x = u+ Iqv we have

Pm(q) =
1

2
[Pm(z) + Pm(z)] +

IqJ

2
[Pm(z)− Pm(z)] . (9.7.5)

However, by Theorem 3.10 in [8], any Fueter hyperholomorphic function f of
axial type admits a power series expansion in terms of the polynomials Pn of
the form

f(q) =
∞∑
n=0

Pn(q)un, un ∈ H.

Therefore, using (9.7.5) we obtain

f(q) =
1

2

(
∞∑
m=0

Pm(z)um +
∞∑
m=0

Pm(z)um

)
+
IqJ

2

(
∞∑
m=0

Pm(z)um −
∞∑
m=0

Pm(z)um

)
=

1

2
[fJ(z) + fJ(z)] +

IqJ

2
[fJ(z)− fJ(z)]

This ends the proof. �

Remark 9.7.4. An alternative proof of the previous Representation Formula in the
Fueter hyperholomorphic context consists to apply Proposition 3.13 in [17] to each
polynomial Pm.

9.7.2 Hardy space and intrinsic Fueter regular functions

In this section we introduce the Hardy space in this framework of Appell-like
polynomials. To start with, we denote by E the ellipsoid

E =
{
q ∈ R4 : 9x20 + x21 + x22 + x23 < 1

}
(9.7.1)

and we note that
The function

kE(q, s) =
∞∑
m=0

Pm�
1 (q)Pm�

1 (s) (9.7.2)

converges and is positive definite for q, s ∈ E . We also note that

kE(x0, y0) =
1

1− 9x0y0
, x0, y0 ∈ (−1/3, 1/3) (9.7.3)

and with (see [8, Remark 5.3])

KQ(q, s) =
∞∑
n=0

Qn(q)Qn(s)
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9.7. Further related results

we have
KQ(x0, y0) =

1

1− x0y0
, x0, y0 ∈ (−1, 1).

Definition 9.7.1. The reproducing kernel Hilbert space associated with (9.7.2)will
be called the Hardy space, and denoted by H2(E).

Theorem 9.7.5. The Hardy space H2(E) consists of functions of the form

f(q) =
∞∑
m=0

(ζ1(q)e1 + ζ2(q)e2 + ζ3(q)e3)m� fm =
∞∑
m=0

Pm(q)fm, (9.7.4)

where the coefficients fm belong to H and are such that

∞∑
m=0

|fm|2 <∞. (9.7.5)

This expression is then the square of the norm of f in the Hardy space.

Proof. The proofs follows standard arguments, see [8]. �

From the form of the elements of the Hardy space H2(E) and using the fact
that the polynomials Pm are Fueter hyperholomorphic of axial type, see Remark
3.9 in [8], we deduce:

Corollary 9.7.6. Elements of H2(E) are Fueter hyperholomorphic of axial type,
in particular are uniquely determined by their restriction to (−1/3, 1/3).

Lemma 9.7.7. The operator S : f 7→ P1 � f is an isometry in the Hardy space,
with adjoint given by

S∗
(

∞∑
n=0

Pnfn

)
=

∞∑
n=0

Pnfn+1. (9.7.6)

Furthermore
SS∗f = f − f(0), f ∈ H2(E). (9.7.7)

Proof. The proof is a consequence of

SS∗f = P1 �

(
∞∑
n=0

Pnfn+1

)

=
∞∑
n=0

Pn+1fn+1

= f − f0

= f − f(0).

�
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Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

Let Cf = f(0) be the point evaluation in H2(E). Then C∗u = kE(·, 0)u = u
and we get from the previous lemma

I −MP1M
∗
P1

= C∗C. (9.7.8)

This equation is really what makes several arguments work in [5].
The operator (9.7.6) will be called the backward-shift operator and denoted

by R0.
Now, we study quaternionic intrinsic Fueter hyperholomorphic functions.

Let us recall that, given an hyperholomorphic function f on some axially sym-
metric open setΩ, we say that f is quaternionic intrinsic if it satisfies the relation

f(q) = f(q), ∀q ∈ Ω. (9.7.9)

Proposition 9.7.8. The family of polynomials (Pn)n≥0 consists of axially hyper-
holomorphic quaternionic intrinsic functions on H.

Proof. We know that for all n ≥ 0 the polynomialsPn are axially hyperholomor-
phic functions onH. Furthermore, using the relation with the n-th quaternionic
Appell polynomials Qn, see [8, (3.8)], we have

Pn(x) =
Qn(x)

cn

=
n∑
j=0

T nj
cn
qn−jqj

=
Qn(q)

cn
= Pn(q).

�

Proposition 9.7.9. Let f be a hyperholomorphic function of axial type on some
axially symmetric open set Ω. Then, f is quaternionic intrinsic if and only if it
admits a power series representation with real coefficients with respect to the poly-
nomials (Pn)n≥0.

Proof. We know byTheorem 3.10 in [8] that f admits a power series with respect

to (Pn)n≥0. So, we canwrite f =
∞∑
n=0

Pnfnwith fn ∈ H for alln ≥ 0. We assume
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that f is intrinsic, thus the formula (9.7.9) and Proposition 9.7.8 imply that

f(q) = f(q),∀q ∈ Ω ⇔
∞∑
n=0

Pn(q)fn =
∞∑
n=0

Pn(q)fn, ∀q ∈ Ω

⇔
∞∑
n=0

fnPn(q) =
∞∑
n=0

Pn(q)fn, ∀q ∈ Ω

⇔
∞∑
n=0

fn(3x0)
n =

∞∑
n=0

(3x0)
nfn,∀x0 ∈ R

⇔ fn = fn,∀n ≥ 0

⇔ fn ∈ R,∀n ≥ 0.

The equivalence between the second and the third lines holds because Pn is the
unique axially hyperholomorphic extension of (3x0)n. This ends the proof. �

Proposition 9.7.10. Let S1 and S2 be two hyperholomorphic functions of axial
type, defined on some axially symmetric open set Ω. If S1 is quaternionic intrinsic,
then S1 � S2 admits a power series expansion with respect to the polynomials
(Pn)n≥0.

Proof. We note that S1 and S2 have power series expansions in terms of (Pn)n≥0

that we can write S1 =
∞∑
n=0

Pnan and S2 =
∞∑
n=0

Pnbn. Since S1 is quaternionic

intrinsic we know by Proposition 9.7.9 that the coefficients (an)n≥0 are real.
Thus, we apply also the fact that Pn � Pm = Pn+m in order to get

S1 � S2 =

(
∞∑
n=0

Pnan

)
�

(
∞∑
m=0

Pmbm

)

=
∞∑

n,m=0

(Pn � Pm)anbm

=
∞∑

n,m=0

Pn+manbm

=
∞∑
n=0

Pn

(
n∑
k=0

akbn−k

)
.

�

Proposition 9.7.11. Let S be a hyperholomorphic function of axial type. If S
is quaternionic intrinsic, then the operator MS coincides with the multiplication
operator f 7→ S � f .
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Chapter 9. Fock and Hardy spaces: the Clifford-Appell case

Proof. We note that since S is quaternionic intrinsic, it has real coefficients.

Thus, we have Pn � S = S � Pn for all n ≥ 0.Then, for any f =
∞∑
n=0

Pnun, we

have

MS(f) =
∞∑
n=0

(Pn � S)un

=
∞∑
n=0

(S � Pn)un

= S �

(
∞∑
n=0

Pnun

)
= S � f.

�

Proposition 9.7.12. Let S1 and S2 be two hyperholomorphic functions of axial
type such that S1 is quaternionic intrinsic. Then, we have

MS1MS2 =MS1�S2. (9.7.10)

Proof. We know by Proposition 9.7.10 that S1 � S2 is well defined and admits
a power series expansion in terms of (Pn)n≥0 since S1 is intrinsic. Therefore,
using Proposition 9.7.11, we have

MS1�S2(f) = (S1 � S2)� f

=MS1(S2 � f)

=MS1MS2(f).

�
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CHAPTER10
A new polyanalytic function theory in

hypercomplex analysis

In this chapter, we introduce the quaternionic slice polyanalytic functions and
prove some of their main properties including a poly-decomposition, identity
principle, representation formula, etc. Then, we apply the obtained results and
start the study of some quaternionic reproducing kernel Hilbert spaces in this
new setting. In particular, we treat Fock and Bergman spaces and give explicit
expressions of their reproducing kernels. The results obtained in this chapter
are based on [17].

10.1 Motivation

The theory of polyanalytic functions is an interesting topic in complex analysis.
It extends the concept of holomorphic functions to nullsolutions of higher order
powers of the Cauchy-Riemann operator. An excellent reference on this subject
is the book of Balk [22]. Some famous Hilbert spaces of holomorphic functions
that were extended to the setting of polyanalytic functions are the Bergman
and Fock spaces, see for example [2, 10, 22, 89] and the references therein. As
we have already seen before, the classical theory of holomorphic functions in
complex analysis was extended to obtain the theory of slice hyperholomorphic
functions of a quaternionic variable, see [35,75]. In this chapter, we extend slice
hyperholomorphic functions to higher order and define the slice polyanalytic
functions of a quaternionic variable. Then, we shall use the obtained results to
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Chapter 10. A new polyanalytic function theory in hypercomplex analysis

introduce and study the Fock and Bergman spaces of quaternionic slice polyan-
alytic functions and give explicit formulas for their reproducing kernels. Note
that by considering polyanalytic functions with respect to the classical Cauchy-
Fueter regularity on quaternions, it turns out that even the simple example given
by F (q, q) = |q|2 is not polyanalytic of order 2. A natural question that arises
here is about a poly Fueter regular function theory [27,57] and associated Fueter
mapping results. We shall discuss these points in more details in the next chap-
ter by proving a new Fueter mapping theorem in the poly hypercomplex case.

This chapter has the following structure: we first introduce the quaternionic
slice polyanalytic function theory and discuss some of its main results. In partic-
ular, on slice domainswe show the so-called poly decomposition, thatmakes any
slice polyanalytic function a sum of quaternionic conjugate powers multiplied
by some unique slice regular functions, thus extending the analogous result for
complex functions. We prove also the counterparts of the Splitting Lemma, Iden-
tity Principle, Representation Formula, Extension Lemma and the Refined Split-
ting Lemma in this framework. We also discuss slice polyanalytic functions as a
subclass of slice functions on axially symmetric domains. In particular, we prove
a version of the identity principle in this case also. We introduce two expamples
of quaternionic reproducing kernel Hilbert spaces QRKHS in this framewor. In
particular, we study Bergman and Fock spaces of slice polyanalytic functions on
quaternions and give explicit expressions of their reproducing kernels.formula
of its reproducing kernel. We conclude with a brief discussion about poly-Hardy
spaces.

10.2 Slice polyanalytic functions of a quaternionic variable

In this section, we extend to higher order the theory of slice regular functions
on quaternions. Most of the material presented here is based on the results we
developed in [17].

10.2.1 Main properties of the function theory

First, we start by considering the following simple example

Example. For any q ∈ H, let F (q) = 1− qqj. Then, we have

∂IFI(x+ Iy) = −(x+ Iy)j and ∂
2

IFI(x+ Iy) = 0; ∀I ∈ S.

We say that F is slice polyanalytic of order 2 on H.

The slice polyanalytic functions of a quaternionic variable (or of a paravector
variable, in the case of Clifford algebra-valued functions) have to be considered
as a subclass of slice functions, see Definition 3.17 of [17].

174



i
i

“thesis’’ — 2021/1/31 — 22:52 — page 175 — #195 i
i

i
i

i
i

10.2. Slice polyanalytic functions of a quaternionic variable

Definition 10.2.1 (Slice polyanalytic functions). Let n ∈ N and denote by Cn(U)
the set of continuously differentiable functions with all their derivatives up to order
n on an axially symmetric open set U ⊆ H. We let U = {(x, y) ∈ R2 : x+ Iy ⊂
U}. A function f : U → H is called a left slice function, if it is of the form

f(q) = α(x, y) + Iβ(x, y) for q = x+ Iy ∈ U

with the two functions α, β : U → H that satisfy the compatibility conditions
α(x,−y) = α(x, y), β(x,−y) = −β(x, y). If in addition α and β are in Cn(U)
and satisfy the poly Cauchy-Riemann equations of order n ∈ N

1

2n
(∂x + I∂y)

n(α(x, y) + Iβ(x, y)) = 0, for all I ∈ S (10.2.1)

then f is called left slice polyanalytic function of order n ∈ N.

The definition is easily adapted in the case of right slice polyanalytic func-
tions. Note that a slice regular function is a function as in the previous definition,
when n = 1.

Remark 10.2.1. We note that when dealing with left slice polyanalytic functions
we will refer to them simply as slice polyanalytic. Due to the lack of commutativity
on H, we can define in an analogous way the right slice polyanalytic functions on
quaternions.

The set of all slice polyanalytic functions of order n on a domain Ω is a right
vector space over the noncommutative field of quaternions. It will be denoted
SPn(Ω) or simply SP(Ω) if no confusion can arise with respect to the order.
Slice polyanalytic functions were considered also in [25]. A simple observation
that will be needed in the sequel is the following

Proposition 10.2.2. If f is an intrinsic, slice polyanalytic function of order m
and g is a slice regular function on a domain Ω then the pointwise multiplication
h(q) = f(q)g(q) defines also a slice polyanalytic function of orderm on Ω.

Proof. This holds because f is intrinsic, thus we can use the Leibniz rule. Indeed,
let I ∈ S and set x = u+ Iv, we will prove that

∂I
m
(fg)(u+ vI) = 0. (10.2.2)

Indeed, first we note that f is intrinsic, we have f(U ∩CI) ⊂ CI . In particular,
we have the Leibniz rule

∂I(fg)(u+ Iv) = f∂(g)(u+ vI) + ∂I(f)g(u+ vI).

We note that since f is poly slice hyperholomorphic of order m and g is slice
hyperholomorphic we have ∂I(g) = 0 and ∂I(f) 6= 0.Thus, we obtain

∂I(fg)(u+ Iv) = ∂I(f)g(u+ vI).
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Chapter 10. A new polyanalytic function theory in hypercomplex analysis

Then, since f is intrinsic we can use the Leibniz rulem times and get

∂I
m
(fg)(u+ Iv) = ∂I

m−1
(f)∂I(g)(u+ vI) + ∂I

m
(f)g(u+ vI).

Therefore, it follows that the formula (10.2.2) holds since f ∈ SPm
L (U) and

g ∈ SPL(U). Moreover, since f is intrinsic we have that fg is a slice function.
Hence, the pointwise product fg is poly slice hyperholomorphic of orderm on
U .

�

As a consequence of the previous proposition and the poly-decomposition
that we shall see later (see Corollary 11.2.9), we can prove also this more general
result

Theorem 10.2.3. Let U be an axially symmetric slice domain and n,m ≥ 1.
Assume that f : U −→ H is an intrinsic left poly slice hyperholomorphic function
of order n and g : U −→ H a left poly slice hyperholomorphic function of orderm.
Then, the pointwise product fg is poly slice hyperholomorphic of order n+m− 1.

Proof. Let n ≥ 1 be fixed. We will use an induction process with respect to
m ≥ 1.

i) Form = 1, it is clear that the result holds in this case by Proposition 10.2.2.

ii) We suppose now the result holds for some m ≥ 1 and let us prove it for
m+ 1. Indeed, let f an intinsic function in SPn

L(U) and g in SPm+1
L (U).

We shall prove that fg ∈ SPn+m
L (U).Then, using the poly-decomposition

for f and g we can write

f(q) =
n−1∑
k=0

qkfk(q) and g(q) =
m∑
k=0

qkgk(q), for all q ∈ U,

with (fk)k=0,...,n−1 and (gk)k=0,...,m are slice hyperholomorphic functions.
Now, setting

Ψm(q) =
m−1∑
k=0

qkgk(q), for all q ∈ U.

We observe that Ψm ∈ SPm
L (U), moreover we have

g(q) = Ψm(q) + qmgm(q), ∀q ∈ U.

Therefore, it follows that

(fg)(q) = f(q)Ψm(q) + f(q)qmgm(q), ∀q ∈ U. (10.2.3)

We note that by induction hypothesis we have (fΨm) ∈ SPn+m−1
L (U),

this holds because Ψm ∈ SPm
L (U) and f ∈ SPn

L(U).

176



i
i

“thesis’’ — 2021/1/31 — 22:52 — page 177 — #197 i
i

i
i

i
i

10.2. Slice polyanalytic functions of a quaternionic variable

On the other hand, since f is intrinsic we have f(q)qm = qmf(q), for all
q ∈ U . In particular, we obtain

f(q)qmgm(q) =
n−1∑
k=0

qk+m(fkgk)(q), ∀q ∈ U.

Wenote that using Proposition 10.2.4 we know that all the slice hyperholo-
morphic components (fk)k=0,...,n−1 are intrinsic slice hyperholomorphic
functions. As a consequence, the pointwise product fkgM are slice hyper-
holomorphic for all k = 0, ..., n− 1. At this stage it is clear that fqmgm ∈
SPn+m

L (U). Hence, it follows by formula (10.2.3) that fg ∈ SPn+m
L (U).

iii) We conclude by induction that the pointwise multiplication fg is poly slice
hyperholomorphic of order n+m− 1.

�

Proposition 10.2.4 (Splitting Lemma). Let f be a slice polyanalytic function of
order n on a domain Ω ⊆ H. Then, for any imaginary units I and J with I ⊥ J
there exist F,G : ΩI −→ CI polyanalytic functions of order n such that for all
z = x+ Iy ∈ ΩI , we have

fI(z) = F (z) +G(z)J.

Proof. Let I, J ∈ S be such that I ⊥ J , then {1, I, J, IJ} forms an orthogonal
basis of H. Hence, for any z = x+ Iy we can write

fI(z) = f0(z) + f1(z)I + f2(z)J + f3(z)IJ

where f0, .., f3 are real valued. This leads to

fI(z) = F (z) +G(z)J

with F (z) = f0(z) + f1(z)I and G(z) = f2(z) + f3(z)I . However, f is slice
polyanalytic of order n which means that ∂nI fI(x + Iy) = 0 on ΩI . Thus, by
linearity of the operator ∂nI and linear independence of the basis elements we
have ∂nIF (x+ Iy) = 0 and ∂nIG(x+ Iy) = 0 on ΩI . This ends the proof. �

10.2.2 Poly-decomposition and Identity Principle

An immediate consequence of the Splitting Lemma for slice polyanalytic func-
tions is

Remark 10.2.5. A function f is slice polyanalytic of order n on a domain Ω ⊆ H
if and only if for any I ∈ S, we have

fI(z) =
n−1∑
k=0

zkhk(z)

where hk : ΩI −→ H are holomorphic maps.
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Proposition 10.2.6. Let f0, ..., fn−1 be slice regular functions on a domain Ω ⊆
H. Then, the function defined by

f(q) :=
n−1∑
k=0

qkfk(q) (10.2.4)

is slice polyanalytic of order n on Ω.

Proof. Let I ∈ S and choose J ∈ S with I ⊥ J . The Splitting Lemma for slice
regular functions yields

fk |CI
(x+ Iy) = Fk(x+ Iy) +Gk(x+ Iy)J ; ∀k = 0, ..., n

where Fk and Gk are CI valued holomorphic functions on ΩI . Hence, we have

fI(x+ Iy) =
n−1∑
k=0

(x− Iy)kfk |CI
(x+ Iy)

=
n−1∑
k=0

(x− Iy)kFk(x+ Iy) +
n−1∑
k=0

(x− Iy)kGk(x+ Iy)J

= F (x+ Iy) +G(x+ Iy)J.

It is immediate that F and G are polyanalytic of order n on ΩI . Thus ∂nI fI(x+
Iy) = 0 on ΩI for any I ∈ S. �

Conversely, we have the following

Proposition 10.2.7. If f is a slice polyanalytic function of order n defined on a
slice domain Ω ⊂ H. Then,

f(q) =
n−1∑
k=0

qkfk(q) (10.2.5)

where f0, ..., fN−1 are slice regular functions on Ω.

Proof. f(q) = f(x+Iy) = α(x, y)+Iβ(x, y) is a left slice polyanalytic of order
N . By fixing a basis 1, e1, e2, e1e2 of H, and writing e0 = 1, e3 = e1e2, we have
α =

∑3
`=0 α`e`, β =

∑3
`=0 β`e`, where the functions α`, β` are real-valued and

are, respectively, even and odd in the second variable. Since the basis elements
e` are linear independent, the system expressing the slice polyanalyticity can
be rewritten in terms of the real components f , in other words, each CI-valued
function F` = α` + Iβ` is polyanalytic and F`(x− Iy) = F`(x + Iy). By the
classical result applied to each function F`, we have F`(x + Iy) =

∑N−1
k=0 (x −

Iy)kfk,`(x+ Iy)where the functions fk,` are CI-valued and satisfy the Cauchy-
Riemann system. SinceF`(x− Iy) =

∑N−1
k=0 (x−Iy)kfk,`(x− Iy) =

∑N−1
k=0 (x−
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Iy)kfk,`(x+ Iy) we have fk,`(x− Iy) = fk,`(x+ Iy) and so each fk,` i s alsice
function. We then deduce

f(x+ Iy) =
3∑
`=0

F`(x+ Iy)e` =
3∑
`=0

N−1∑
k=0

(x− Iy)kfk,`(x+ Iy)e`

=
N−1∑
k=0

(x− Iy)kfk(x+ Iy), fk(x+ Iy) =
3∑
`=0

fk,`(x+ Iy)e`,

where the functions fk are evidently left slice regular, and this concludes the
proof. �

Therefore, we have the following characterization of slice polyanalytic func-
tions on slice domains

Corollary 10.2.8. A function f defined on a slice domain is slice polyanalytic of
order n if and only if it has the form (10.2.5).

Proof. This is a direct consequence of the Propositions 10.2.6 and 10.2.7. �

We point out that Theorem 2.16 in [79] also establishes the previous result.
The next results of slice regular functions that we shall extend to a higher or-
der in this section are the counterparts of the identity principle, representation
formula, extension lemma and the refined splitting lemma for slice polyanalytic
functions.

Theorem 10.2.9 (Identity Principle). Let f and g be two slice polyanalytic func-
tions of order n on a slice domain Ω ⊂ H. If, for some I ∈ S, f and g coincide on
U a subdomain of ΩI , then f = g everywhere in Ω.

Proof. Note that f and g are slice polyanalytic functions of order n on Ω. Thus,
we can write

f(q) =
n−1∑
k=0

qkfk(q) and g(q) =
n−1∑
k=0

qkgk(q);∀q ∈ Ω

where (fk)k=0,...,n−1 and (gk)k=0,...,n−1 are slice regular onΩ. Note that thanks to
the Splitting Lemma for slice polyanalytic functions we have that fI = F1+F2J
and gI = G1 + G2J where J ∈ S such that I ⊥ J and F1, F2, G1, G2 are four
CI−valued polyanalytic functions onΩI . By hypothesis, we have fI = gI on U ,
so F1 = G1 and F2 = G2 on U which is a subdomain of ΩI . Thus, from classical
complex analysis we know that F1 = G1 and F2 = G2 everywhere on ΩI . In
particular, we get that fI = gI everywhere on ΩI . Hence, ∂

n−1

I fI = ∂
n−1

I gI on
ΩI which shows that fn−1 coincides with gn−1 on ΩI . However, fn−1 and gn−1

are slice regular. Then, making use of the Identity Principle for slice regular
functions we have that fn−1 = gn−1 everywhere on Ω. Similarly, using the
same arguments we show that fk = gk on Ω for all k = 0, ..., n − 1.This ends
the proof. �
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10.2.3 Representation Formula and Extension Lemma

Inspired from the proof proposed in [50] for slice regular functions, we can prove
a representation formula for quaternionic slice polyanalytic functions:

Theorem 10.2.10 (Representation Formula). Let f be a slice polyanalytic func-
tion of order n defined on an axially symmetric slice domain Ω ⊂ H. Let J ∈ S,
then for any q = x+ Iy ∈ Ω the following equality holds :

f(x+ Iy) =
1

2
[fJ(x+ Jy) + fJ(x− Jy)] + I

J

2
[fJ(x− Jy)− fJ(x+ Jy)]

Moreover, for all x+ yK ⊂ Ω, K ∈ S, there exist two functions α, β independent
of I , such that for any K ∈ S we have

1

2
[fK(x+ yK) + fK(x− yK)] = α(x, y)

and
1

2
K [fK(x− yK)− fK(x+ yK)] = β(x, y).

Proof. The representation formula is valid since it is a consequence of the slice-
ness of a slice polyanalitic function, see Definition 10.2.1. �

Remark 10.2.11. The proof of the second statement of Theorem 10.2.10 is similar
to the one for slice regular functions which corresponds to n = 1, see [50].

Some immediate consequences of the representation formula for slice poly-
analytic functions are the following :

Corollary 10.2.12. Let U ⊂ H be an axially symmetric slice domain, D ⊂ R2

such that x + yI ∈ U whenever (x, y) ∈ D and let f : U −→ H. Then,
f ∈ SPn(Ω) if and only if there exist α, β : D −→ H satisfying α(x, y) =
α(x,−y), β(x, y) = −β(x,−y) and ∂I

n
(α + Iβ) = 0 such that

f(x+ yI) = α(x, y) + Iβ(x, y).

Corollary 10.2.13. Let U ⊂ H be an axially symmetric slice domain and let
f : U −→ H be a slice polyanalytic function. Then, for all x, y ∈ R such that
x+ yI ∈ U there exist a, b ∈ H such that

f(x+ yI) = a+ Ib

for all I ∈ S.

Inspired from the paper [19], we can show another version of the identity
principle for slice polyanalytic functions without the hypothesis that the open
set onwhich they are defined is a slice domain. First, note that slice functions can
be recovered by their values on two semi-slices, see the Representation Formula
given by Proposition 6 in [81]. We have the following

180



i
i

“thesis’’ — 2021/1/31 — 22:52 — page 181 — #201 i
i

i
i

i
i

10.2. Slice polyanalytic functions of a quaternionic variable

Proposition 10.2.14. LetΩ be an axially symmetric domain and let f : Ω −→ H
be a slice polyanalytic function. Assume that there exist J,K ∈ S, with J 6= K
and UJ , UK two subdomains of Ω+

J and Ω+
K respectively where Ω+

J := Ω∩C+
J and

Ω+
K := Ω ∩ C+

K . If f = 0 on UJ and UK , then f = 0 everywhere in Ω.

Proof. Let f be a slice polyanalytic function onΩ such that f = 0 onUJ andUK .
Thus, since UJ and UK are respectively subdomains of Ω+

J and Ω+
K . It follows,

from the Splitting Lemma for slice polyanalytic functions combined with the
classical complex analysis that f = 0 everywhere on Ω+

J and Ω+
K . Then, we just

need to use the Representation Formula which allows to recover a slice function
by its values on two semi-slices to complete the proof. �

Remark 10.2.15. This last remark on slice functions allows to define slice polyan-
alytic functions on axially symmetric domains which do not necessarily intersect
the real line.

Another interesting fact that holds for slice polyanalytic functions is the Ex-
tension Lemma:

Proposition 10.2.16 (Extension). Let ΩI be a domain in CI symmetric with re-
spect to the real axis and such that ΩI ∩ R 6= ∅. If

f(z) =
N−1∑
k=0

zkhk(z)

with hk : ΩI −→ H are holomorphic functions such that hk(z̄) = hk(z). Then the
unique slice polyanalytic extension of f is

ext(f)(q) :=
N−1∑
k=0

qkext(hk)(q);∀q = x+ Iqy ∈ Ω.

Proof. Assume that f is polyanalytic of order n on ΩI . Then, we have

f(z) =
n−1∑
k=0

zkhk(z)

where hk : ΩI −→ H are holomorphic functions. However, ΩI is symmetric
with respect to the real axis. Thus, according to the Extension Lemma for slice
regular functions for any k = 0, ..., n − 1 we can consider the slice regular
functions defined by

fk(x+ Iqy) :=
1

2
[hk(z) + hk(z)] + Iq

I

2
[hk(z)− hk(z)] ; z = x+ Iy ∈ ΩI .

Let us consider

g(x+ Iqy) =
n−1∑
k=0

(x− Iqy)
kfk(x+ Iqy),
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we shall prove that

g(x+ Iqy) =
1

2
[f(z) + f(z)] + Iq

I

2
[f(z)− f(z)] ; z = x+ Iy ∈ ΩI .

Indeed, first note that we have the two following equalities

(x+ Iqy)
k =

1

2

[
(x+ Iy)k + (x− Iy)k

]
+ Iq

I

2

[
(x− Iy)k − (x+ Iy)k

]
(10.2.6)

and

(x− Iqy)
k =

1

2

[
(x− Iy)k + (x+ Iy)k

]
+ Iq

I

2

[
(x+ Iy)k − (x− Iy)k

]
.

(10.2.7)
Then, by definition of fk we have

g(x+ Iqy) =
Cn(x, y) +Dn(x, y)

2

where we have set

Cn(x, y) =
n−1∑
k=0

(x− Iqy)
k [hk(z) + hk(z)]

and

Dn(x, y) =
n−1∑
k=0

Iq(x− Iqy)
kI [hk(z)− hk(z)] .

We replace (x− Iqy)
k by its expression using the formula (10.2.7) and get

Cn(x, y) = ext(f)(x+ Iqy) +
1

2

n−1∑
k=0

[
zkhk(z) + zkhk(z)

]
+
IqI

2

n−1∑
k=0

[
zkhk(z)− zkhk(z)

]
.

(10.2.8)

On the other hand, after straightforward computations we obtain

Dn(x, y) = ext(f)(x+ Iqy)−
1

2

n−1∑
k=0

[
zkhk(z) + zkhk(z)

]
+
IqI

2

n−1∑
k=0

[
zkhk(z)− zkhk(z)

]
.

(10.2.9)

Therefore, it follows that

g(x+ Iqy) = ext(f)(x+ Iqy)

this ends the proof. �
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10.2.4 A generalized ~−product and intrinsic functions

We note that the pointwise multiplication of two slice polyanalytic functions is
not slice polyanalytic, in general. In fact this problem appears already for n = 1,
namely in the case of slice regular functions. However, the ∗-product preserves
the structure in this case. For slice polyanalaytic functions of the same order
we can introduce also a natural product denoted ~n in order to preserve the
structure. Let f and g be two slice polyanalytic functions of order n on some
axially symmetric slice domain Ω such that f and g have poly-decompositions
given by

f(q) =
n−1∑
k=0

qkfk(q) and g(q) =
n−1∑
k=0

qkgk(q),

where fk, gk are slice regular for all k = 0, .., n− 1. Then, we define

(f ~n g)(q) :=
n−1∑
k=0

qk(fk ∗ gk)(q), (10.2.10)

where fk ∗ gk stands for the classical ∗-product of slice regular functions.
If there is no confusion on the order of polyanalyticity n, we simply denote ~.
We note that the product ~ reduces to the standard ∗-product in the case of
slice regular functions, namely when n = 1. Moreover, it turns out that the
space of slice polyanlytic functions SPn(Ω) is a ring with respect to this new
product ~. A slice polyanalytic function of order n on some slice domain Ω
is quaternionic intrinsic if and only if all its slice regular components are also
quaternionic intrinsic.

Proof. We use the poly-decomposition to write

f(q) =
n−1∑
k=0

qkfk(q),

where fk are slice regular functions for all k = 0, .., n − 1. First, we observe
that if all the functions fk are quaternionic intrinsic, thus f will preserve any
complex plane Ω∩CI , that is to say that f is also quaternionic intrinsic. For the
converse, we suppose that f is quaternionic intrinsic, that means f(q) = f(q),
for all q ∈ Ω. We write the series expansion of each slice regular component
and justify that each of them has real coefficients. �

Let f and g be two slice polyanalytic functions as in Definition 10.2.4. If we
assume moreover that f is quaternionic intrinsic, then we have

(f ~ g)(q) :=
n−1∑
k=0

qk(fkgk)(q), (10.2.11)
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Proof. We note that the product f ~ g is slice polyanalytic of order n by con-
struction. Furthermore, since f is quaternionic intrinsic we get from Proposi-
tion 10.2.4 that all the slice regular components are also quaternionic intrinsic.
In particular, by classical results of slice hyperholomorphic theory we know that

fk ∗ gk(q) = fk(q)gk(q), ∀q ∈ Ω.

Hence, we obtain

(f ~ g)(q) :=
n−1∑
k=0

qk(fkgk)(q), ∀q ∈ Ω.

�

Inspired from the book [50], we present the counterpart of the Refined Split-
ting Lemma for slice polyanalytic functions. First, let us consider the subclass
of SPn(Ω) defined by

Nn(Ω) := {f ∈ SPn(Ω) : f(Ω ∩ CI) ⊂ CI ,∀I ∈ S}.

Then, we have

Proposition 10.2.17 (Refined Splitting Lemma). Let Ω be an axially symmetric
slice domain in H and f be a slice polyanalytic function of order n on Ω. Then,
for any I, J ∈ S with I ⊥ J , there exist ψ` : ΩI −→ CI , ` = 0, .., 3 intrinsic
polyanalytic such that:

fI(x+ yI) = ψ0(x+ yI) + ψ1(x+ yI)I + ψ2(x+ yI)J + ψ3(x+ yI)K

where K = IJ.

Proof. If f is slice polyanalytic of order n, then we can write

f(q) =
n−1∑
k=0

qkhk(q)

with (hk)k=0,..,n−1 are slice regular onΩ. In particular, making use of the Refined
Splitting Lemma for slice regular functions we have that for all k = 0, ..., n−1 :

hk(x+ yI) = h0k(x+ yI) + h1k(x+ yI)I + h2k(x+ yI)J + h3k(x+ yI)IJ

where h`k : ΩI −→ CI are holomorphic intrinsic functions for all ` = 0, ..., 3.
We have,

fI(z) =
n−1∑
k=0

zkhk(z);∀z ∈ ΩI .
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Therefore, the thesis follows by considering the polyanalytic intrinsic functions
defined by

ψ`(x+ yI) =
n−1∑
k=0

(x− yI)kh`k(x+ yI);∀` = 0, ..., 3.

�

As a consequence of the Refined Splitting Lemma, we have the following

Theorem10.2.18. LetΩ ⊂ H be an axially symmetric slice domain and {1, I, J, IJ}
a basis of H. Then,

SPn(Ω) = Nn(Ω)⊕Nn(Ω)I ⊕NN(Ω)J ⊕Nn(Ω)IJ.

Proof. The Refined Splitting Lemma combined with the Extension Lemma for
slice polyanalytic functions shows that we have

SPn(Ω) = Nn(Ω) +Nn(Ω)I +Nn(Ω)J +Nn(Ω)IJ.

Moreover, we only need to use Proposition 2.7 in the book [50] and the charac-
terization of slice polyanalytic functions obtained in corollary 11.2.9 to show that
all the intersections betweenNn(Ω),Nn(Ω)I,Nn(Ω)J,Nn(Ω)IJ are reduced to
zero. This ends the proof. �

10.3 Two quaternionic reproducing kernel Hilbert spaces QRKHS of
slice polyanalytic functions

10.3.1 The quaternionic slice polyanalytic Fock space

In this section, we introduce the Fock space of slice polyanalytic functions on
quaternions. Let N ≥ 1 and I ∈ S we define the space

Fn
I (H) := {f ∈ SPn(H)/

∫
CI

|fI(p)|2e−|p|2dλI(p) <∞}.

This space is endowed with the following inner product

〈f, g〉Fn
I (H) =

∫
CI

gI(p)fI(p)e
−|p|2dλI(p).

Then, we have the following:

Proposition 10.3.1. The set Fn
I (H) is a right quaternionic Hilbert space.
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Proof. Theproof is based on the Splitting Lemma for slice polyanalytic functions,
see Proposition 11.2.8. Indeed, let (fk) be a Cauchy sequence in Fn

I (H). Choose
J ∈ S such that I ⊥ J . Then, since fk are slice polyanalytic we have fk,I :=
Fk + GkJ ∀n ∈ N where Fk and Gk are polyanalytic functions on the slice
CI belonging to the classical polyanalytic Fock space Fn(CI). It is easy to see
that (Fk)k and (Gk)k are Cauchy sequences in Fn(CI). Hence, there exists two
functionsF andG belonging toFn(CI) such that the sequences (Fk)k and (Gk)k
are converging respectively to F and G. Let fI = F + GJ and consider f =
ext(fI) we have then f ∈ Fn

I (H) thanks to Proposition 10.2.16. Moreover, the
sequence (fk) converges to f with respect to the norm of Fn

I (H). This ends the
proof. �

Proposition 10.3.2. Let f ∈ SPn(H) and I, J ∈ S two imaginary units. Then,
we have the following

1

2
‖f‖Fn

I (H) ≤ ‖f‖Fn
J (H) ≤ 2‖f‖Fn

I (H).

Proof. This is a consequence of the Representation Formula, seeTheorem 10.2.10.
Indeed, since f is slice polyanalytic of order n on H we have

f(x+ Iy) =
1

2
[f(x+ Jy) + f(x− Jy)] + I

J

2
[f(x− Jy)− f(x+ Jy)] .

Then,
|f(x+ Iy)| ≤ |f(x+ Jy)|+ |f(x− Jy)| ,

and therefore

|f(x+ Iy)|2 ≤ (|f(x+ Jy)|+ |f(x− Jy)|)2

≤ 2
(
|f(x+ Jy)|2 + |f(x− Jy)|2

)
because (|f(x+ Jy)| − |f(x− Jy)|)2 ≥ 0. This implies that

‖f‖2Fn
I (H) ≤ 2

(
‖f‖2Fn

J (H) + ‖f‖2Fn
−J(H)

)
.

However, since ‖f‖Fn
J (H) = ‖f‖Fn

−J(H) we get ‖f‖2Fn
I (H) ≤ 4‖f‖2Fn

J (H). By in-
terchanging the roles of I and J we get also ‖f‖2Fn

I (H) ≤ 4‖f‖2Fn
J (H). Finally, it

follows that
1

2
‖f‖Fn

I (H) ≤ ‖f‖Fn
J (H) ≤ 2‖f‖Fn

I (H).

�

Corollary 10.3.3. Given any I, J ∈ S, the slice polyanalytic Fock spaces Fn
I (H)

and Fn
J (H) contain the same elements and have equivalent norms.
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Remark 10.3.4. By the previous Corollary, the quaternionic slice polyanalytic
Fock space is independent of the choice of the imaginary unit. Thus, we shall use
the notation Fn

Slice(H).

Let us fix q ∈ H and consider the evaluation mapping

Λq : Fn
Slice(H) −→ H; f 7→ Λq(f) = f(q).

Then, we have the following estimate on Fn
Slice(H) :

Proposition 10.3.5. Let f ∈ Fn
Slice(H) and q ∈ H. Then,

|Λq(f)| ≤
√
ne

|q|2
2 ‖f‖Fn

Slice(H).

Proof. Let I ∈ S be such that q ∈ CI and choose J ∈ S with I ⊥ J . Then, the
Splitting Lemma yields

fI(z) = F (z) +G(z)J ; ∀z ∈ CI

where F and G belong to Fn(CI). In particular, we have

|f(q)|2 = |F (q)|2 + |G(q)|2

However, we know from classical complex analysis that

|F (q)| ≤
√
Ne

|q|2
2 ‖F‖Fn(CI) and |G(q)| ≤

√
Ne

|q|2
2 ‖G‖Fn(CI).

Therefore,

|f(q)| ≤
√
ne

|q|2
2

(
‖F‖2Fn(CI)

+ ‖G‖2Fn(CI)

) 1
2 =

√
ne

|q|2
2 ‖f‖Fn

Slice(H).

�

Proposition 10.3.5 shows that all the evaluation mappings on Fn
Slice(H) are

continuous. Then, the Riesz representation theorem for quaternionic right-linear
Hilbert spaces, see [28] shows that for any q ∈ H there exists a unique function
Kq
n ∈ Fn

Slice(H) such that for any f ∈ Fn
Slice(H) we have

f(q) = 〈f,Kq
n〉Fn

Slice(H) .

Let J ∈ S and r ∈ CJ , then for q = x + Iy and z = x + Jy the corresponding
reproducing kernel of the second kind is obtained by extending the kernel of the
complex case. It is given by the following

Kn : H×H −→ H

Kn(q, r) :=
1

2
[Kn(z, r) +Kn(z, r)] + I

J

2
[Kn(z, r)−Kn(z, r)] .

In order to compute the kernel function we use the ∗-product of (left) slice
functions with respect to the first variable, see [81].
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Remark 10.3.6. If f ∈ SPn(H) and g ∈ SPm(H), then we have

f ∗ g ∈ SPn+m−1(H).

We observe that the ∗-product of (left) slice functions coincides with the convolution
product related to the poly-decomposition considered in Definition 4.15 of [6].

As a consequence we can state the following result

Theorem 10.3.7. The set Fn
Slice(H) is a right quaternionic reproducing kernel

Hilbert space whose reproducing kernel is given by

Kn(q, r) = e∗(qr)∗

(
n−1∑
k=0

(−1)k
(

n

k + 1

)
1

k!
(q̄q − qr̄ − q̄r + r̄r)k∗

)
; ∀(q, r) ∈ H×H.

Proof. Fix r ∈ H such that r belongs to the slice CJ , we consider the function
defined by

F r
n(q) = e∗(qr) ∗ ϕn(q, r)

where

ϕn(q, r) :=
n−1∑
k=0

(−1)k
(

n

k + 1

)
1

k!
(q̄q − qr̄ − q̄r + r̄r)k∗;∀q ∈ H.

Clearly q 7−→ e∗(qr) is slice regular on H with respect to the variable q. More-
over, thanks to Remark 10.3.6 we can see that ϕn(q, r) is a slice polyanalytic
function of order n on H with respect to q. Thus, F r

n is a slice polyanalytic
function of order n onH with respect to the variable q. Furthermore, the repro-
ducing kernel of Fn

Slice(H) extends the classical one on the slice CJ . In partic-
ular, F r

n(q) and Kn(q, r) coincide on the slice CJ containing r. Hence, we have
Kn(q, r) = F r

n(q) everywhere on H thanks to the Identity Principle for slice
polyanalytic functions. This ends the proof. �

Remark 10.3.8. For n = 1, the spaceFn
Slice(H) is exactly the slice hyperholomor-

phic Fock space and the reproducing kernel obtained in Theorem 10.3.7 corresponds
to the result obtained in [15].

10.3.2 The quaternionic slice polyanalytic Bergman space

The slice polyanalytic Bergman space of the second kind on the quaternionic
unit ball B is defined to be

An
Slice(B) := {f ∈ SPN(B)/

∫
BI

|fI(p)|2dλI(p) <∞},

188



i
i

“thesis’’ — 2021/1/31 — 22:52 — page 189 — #209 i
i

i
i

i
i

10.3. Two quaternionic reproducing kernel Hilbert spaces QRKHS of slice
polyanalytic functions

for p = x+ Iy, dλI(p) = dxdy is the usual Lebesgue measure on BI = B ∩CI .
This space is endowed with the following inner product

〈f, g〉An
Slice(B)

=

∫
CI

gI(p)fI(p)dλI(p).

As we have seen in the previous section for the Fock space, we can use the same
techniques involving the Splitting Lemma and Representation Formula for slice
polyanalytic functions to prove that An

Slice(B) is a right quaternionic Hilbert
space which does not depend on the choice of the slices. Furthermore, for any
q ∈ B and f ∈ An

Slice(B) we have the following estimate

|f(q)| ≤ n√
π

‖f‖An
Slice(B)

(1− |q|2)
.

Hence, the Riesz representation theorem for quaternionic right-linear Hilbert
spaces shows that An

Slice(B) has a reproducing kernel. The theory of quater-
nionic Bergman spaces of the second kind introduced in [43] suggests that the
expression of the reproducing kernel of An

Slice(B) denoted by Bn
S(q, r) is ob-

tained making use of the extension operator. Indeed, let r ∈ B be fixed such
that r ∈ CJ , the expression of the kernel in the slice BJ is given in [22] by

Br
n(z) =

n

π(1− rz)2N

n−1∑
k=0

(−1)k
(

n

k + 1

)(
n+ k

n

)
|1− rz|2(n−1−k)|z − r|2k.

(10.3.1)
Then, by definition, for any q = x+ Iy ∈ B we have

Bn
S(q, r) = Br

n(q)

:= ext[Br
n(z)](q).

To give the explicit expression of Bn
S(q, r), we consider first the function f rn :

BJ −→ CJ , depending on r and defined by

f rn(z) =
n

π

1

(1− rz)2n
;∀z ∈ BJ .

We start by proving the following

Lemma 10.3.9. For every fixed r ∈ BJ , the slice regular extension of f rn(z) to the
quaternionic unit ball B is given by

grn(q) = Pn(q, r)Qn(q, r); ∀q ∈ B

where

Pn(q, r) =
N

π

2n∑
k=0

(−1)k
(
2n

k

)
qkrk, and Qn(q, r) = (1− 2Re(q)r + |q|2r2)−2n.
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Chapter 10. A new polyanalytic function theory in hypercomplex analysis

Proof. Clearly, the function f rn : z 7→ f rn(z) is holomorphic onBJ for every fixed
r ∈ BJ . Then, by definition for q = x + Iy and z = x + Jy the slice regular
extension of f rN(z) to B is given by

grn(q) =
1

2
[f rn(z) + f rn(z̄)] +

IJ

2
[f rn(z̄)− f rn(z)].

We have

f rn(z) + f rn(z̄)

2
=

n

2π

[
1

(1− r̄z)2n
+

1

(1− r̄z̄)2n

]

=
n

π

2n∑
k=0

(−1)k
(
2n

k

)
r̄k
(zk + z̄k)

2

(1− 2Re(z)r̄ + |z|2r̄2)2n

=
n

π

2n∑
k=0

(−1)k
(
2n

k

)
r̄kRe(zk)

(1− 2Re(z)r̄ + |z|2r̄2)2n
.

Similarly, we obtain

f rn(z̄)− f rn(z)

2
=
n

π

J
2n∑
k=0

(−1)k
(
2n

k

)
r̄kIm(zk)

(1− 2Re(z)r̄ + |z|2r̄2)2n
.

Since (1 − 2Re(z)r̄ + |z|2r̄2)−2n = Qn(q, r), it follows by the formula of the
extension operator that

grn(q) =
n

π

[
2n∑
k=0

(−1)k
(
2n

k

)
(Re(zk)− Im(zk)I)r̄k

]
Qn(q, r)

=
N

π

[
2n∑
k=0

(−1)k
(
2n

k

)
q̄kr̄k

]
Qn(q, r)

= Pn(q, r)Qn(q, r).

This ends the proof. �

In order to have kernels that are slice functions we use the ∗-product of
(left) slice functions in the first variable as we did in the previous section. We
write the expression of the slice poly-Bergman kernel of the second kind of the
quaternionic slice polyanalytic Bergman space An

Slice(B) as follows:

Theorem 10.3.10. The set An
Slice(B) is a right quaternionic reproducing kernel

Hilbert space whose reproducing kernel is given by

Bn
S(q, r) = Pn(q, r)Qn(q, r) ∗ ψn(q, r); ∀(q, r) ∈ B× B
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where

Pn(q, r) =
n

π

2n∑
k=0

(−1)k
(
2N

k

)
qkrk, Qn(q, r) = (1− 2Re(q)r + |q|2r2)−2n

and

ψn(q, r) =
n−1∑
k=0

(−1)k
(

n

k + 1

)(
n+ k

n

)
(1−q̄r−qr̄+q̄qr̄r)(n−1−k)∗∗(q̄q−qr̄−q̄r+r̄r)k∗.

Proof. For any r ∈ B we consider the function

hrn(q) = grn(q) ∗ ψn(q, r),
where grn(q) = Pn(q, r)Qn(q, r) and ∗ is the product of slice functions. The
polynomials Pn(q, r) and Qn(q, r) are defined as in Lemma 10.3.9 and

ψn(q, r) =
n−1∑
k=0

(−1)k
(

n

k + 1

)(
n+ k

n

)
(1−q̄r−qr̄+q̄qr̄r)(n−1−k)∗∗(q̄q−qr̄−q̄r+r̄r)k∗.

According to Lemma 10.3.9 we note that grn is slice regular by construction with
respect to the variable q. We can see also that ψn(q, r) is a slice polyanalytic
function of order n on B with respect to q. Thus, hrn is a slice polyanalytic func-
tion of order n on B with respect to q. Moreover, hrn(q) and Bn

S(q, r) coincide
on the slice BJ containing r. Hence, thanks to the Identity Principle for slice
polyanalytic functions Bn

S(q, r) = hrn(q) everywhere on B. This completes the
proof. �

Proposition 10.3.11. The kernel Bn
S(q, r) can be written also in this second form

Bn
S(q, r) = Rn(q, r)Ln(q, r) ∗ ψn(q, r); ∀(q, r) ∈ B× B

with

Rn(q, r) = (1− 2qRe(r) + q2|r|2)−2n and Ln(q, r) =
n

π

2N∑
k=0

(−1)k
(
2n

k

)
qkrk.

Proof. Set φ(q, r) = Rn(q, r)Ln(q, r) for all q, r ∈ B. As a product of a rational
function with real coefficients and a polynomial of order 2n with quaternionic
coefficients on the right the function φ(., r) is slice regular on B with respect
to the variable q for every r ∈ B. Moreover, if r ∈ B is fixed on a slice CJ we
can see that the restriction of φ(., r) on BJ coincides with the function f rn(z) =
n

π

1

(1− rz)2n
. Then, the Identity Principle for slice regular functions gives

ext(f rn)(q) = Rn(q, r)Ln(q, r) for all q, r ∈ B.
The last equation leads to the desired result. �

Remark 10.3.12. For the particular case n = 1, the results obtained in this section
coincide with the results of [43] concerning the theory of the second kind for the slice
hyperholomorphic Bergman spaces.
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Chapter 10. A new polyanalytic function theory in hypercomplex analysis

10.4 Further remarks

We finish this chapter with a brief discussion related to further developments
of the theory of slice polyanalytic functions. First, we note that the pointwise
multiplication of two slice polyanalytic functions is not slice polyanalytic, in
general. In fact this fact appears also for n = 1, namely for the case of slice reg-
ular functions. However, the ∗-product preserves the structure of slice regular
functions. For slice polyanalaytic functions of the same order we can consider
also a natural product denoted ∗n in order to preserve the structure. Indeed, let
f and g be two slice polyanalytic functions of order n on Ω such that

f(q) =
n−1∑
k=0

qkfk(q) and g(q) =
n−1∑
k=0

qkgk(q),

where fk, gk are slice regular for all k = 0, .., n− 1. Then, we define

f ∗n g(q) :=
n−1∑
k=0

qk(fk ∗ gk)(q)

where fk∗gk stands for the classical ∗-product of slice regular functions. It turns
out that the set (SPn(Ω),+, ∗n) is a ring, so we wish to study further properties
of this product in future researches.

Furthermore, in the recent paper [87], the authors introduced and studied the
poly-Hardy space on the unit ball in the monogenic setting. A natural problem
would be to study the counterpart of the poly-Hardy space in this new slice poly-
analytic setting. However, like in the classical complex case, this space would
be trivial seen as subspace of L2(B).
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CHAPTER11
The global operator and Fueter mapping theorem

for hypercomplex polyanalytic functions

In this chapter, we prove that slice polyanalytic functions on quaternions can be
considered as solutions of a power of some special global operator with noncon-
stant coefficients as it happens in the case of slice hyperholomorphic functions.
We investigate also an extension version of the Fueter mapping theorem in this
polyanalytic setting. In particular, we show that under axially symmetric con-
ditions it is always possible to construct Fueter regular and poly-Fueter regular
functions through slice polyanalytic ones using what we call the poly-Fueter
mappings. We study also some integral representations of these results on the
quaternionic unit ball. The results presented in this chapter are based on [9].

11.1 Motivation

This chapter proposes a bridge between two theories: the one of slice polyana-
lytic functions and the one of poly-Fueter regular functions. To understand the
framework, we recall that in classical complex analysis, n-analytic or polyan-
alytic functions are null-solutions of the n-power of the Cauchy-Riemann op-
erator. In the quaternionic setting or, more in general, in the Clifford algebra
setting, one can extend this notion by considering functions in the kernel of a
generalized Cauchy-Riemann operator (thus obtaining the so-called regular or
monogenic functions, see [47,83]) or of its n-power (thus obtaining poly-regular
functions or poly-monogenic functions, see [87, 101]).
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This was the first approach to extend holomorphic functions, and then poly-
analytic functions, to a higher dimensional setting. It is interesting to note that
the class of slice hyperholomorphic functions is related with the class of func-
tions considered by Fueter to construct regular functions and thus there is a
bridge between them, specifically the so-called Fueter mapping, in fact by ap-
plying the Laplacian to a slice hyperhomolorphic function one obtains a regular
function, i.e. a function in the kernel of the Cauchy-Fueter operator, see for ex-
ample [48]. Also the theory of polyanalytic functions can be extended to the slice
setting by considering a suitable definition, as we did in [17]. Thus it is a natural
question to askwhether there is an analog of the Fueter map in this more general
setting. The answer is positive and it is one of the main results of this chapter:
we show that by applying the Laplacian composed with the (n−1) power of the
global operator V = 2ϑ (where ϑ is the operator introduced in [80]) to any slice
polyanalytic function of order n we obtain a Cauchy-Fueter regular function. A
second approach to extend the Fueter mapping to the polyanalytic setting con-
sists to apply the standard Fueter mapping on each component associated to the
poly-decomposition. This constrution allows to generate poly-Fueter regular
functions starting from slice polyanalytic ones of the same order.

To put ourwork in perspective, we recall that classical polyanalytic functions
are important not only from the theoretical point of view, see [22], but also in the
theory of signals since they allow to encode n independent analytic functions
into a single polyanalytic one using a special decomposition. This idea is similar
to the problem of multiplexing signals. This is related to the construction of
the polyanalytic Segal-Bargmann transform mapping L2(R) onto the poly-Fock
space, see [2]. In quantum physics these functions are relevant for the study of
the Landau levels associated to Schrödinger operator, see [2, 64]. Polyanalytic
functions were used also in [1] to study sampling and interpolation problems on
Fock spaces using time frequency analysis techniques such as short-time Fourier
transform (STFT) or Gabor transforms. This allows to extend Bargmann theory
to the polyanalytic setting using Gabor analysis. The theory of signals is widely
studied also with hypercomplex methods and for a list of references the reader
may consult [31] and the references therein.

As we said, Fueter regular and slice hyperholomorphic functions are related
by the famous Fueter mapping theorem. This result has some important conse-
quences and allows to define the F-functional calculus for quaternionic opera-
torswith commuting components. Recently, new several results for polyanalytic
functions were proven in the slice hyperholomorphic context over the quater-
nions, see [17], and the counterparts of the Bergman and Fock spaces were also
considered. We continue here the investigations in this direction. In particular,
we prove a new version of the well-known Fueter mapping theorem that will re-
late slice and Cauchy-Fueter polyanalytic functions on quaternions and present
an integral form of this result.

The chapter has the following structure: we set up first some basic notations
and revise some preliminary results. Then, we present some new results on the
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11.2. Preliminary results

powers of the global operator V and give the main statements and proofs of
the poly-Fueter mapping theorems on quaternions. We study also an integral
representation of these results based on the poly-Cauchy formula. Finally, we
rewrite our results in the polymonogenic case.

11.2 Preliminary results

We revise different notions and results related to Cauchy-Fueter and slice hy-
perholomorphic functions and also the polyanalytic setting on quaternions. We
first recall below the variations of the Fueter mapping theorem that we will use
later in this work and refer the reader to [48, 102] for several extensions.

Theorem 11.2.1 (Fueter mapping theorem [48]). Let U be an axially symmetric
set inH and let f : U ⊂ H −→ H be a slice hyperholomorphic function of the form
f(x+yI) = α(x, y)+Iβ(x, y),whereα(x, y) and β(x, y) are quaternionic-valued
functions such that α(x,−y) = α(x, y), β(x,−y) = −β(x, y) and satisfying the
Cauchy-Riemann system. Then, the function

∼
f(x0 + ~q ) = ∆

(
α(x0, |~q |) +

~q

|~q |
β(x0, |~q |)

)
extends to a Fueter regular function on the whole U .

Remark 11.2.2. If U is an axially symmetric slice domain in H, then every slice
hyperholomorphic function f : U ⊂ H −→ H is of the form f(x + Iy) =
α(x, y) + Iβ(x, y), where α and β have the properties mentioned in the preced-
ing statement. This is an immediate consequence of the Representation formula
observed in Lemma 2.2 in [45].

A function f(x+yI) = α(x, y)+Iβ(x, y), where α, β areH (orRn)-valued,
α(x,−y) = α(x, y), β(x,−y) = −β(x, y) is called a slice function.

Remark 11.2.3. We denote by SR(U) the space of slice regular functions which
are slice functions. Below, we can consider the Fueter mapping defined by

τ : SR(U) → FR(U), f 7−→ τ(f) = ∆(f).

Theorem 11.2.4 ( [48]). Given a quaternion s ∈ H, we define

[s] = {p ∈ H : p = Re(s) + I|~s |, I ∈ S}.

Let S−1(s, q) be the Cauchy kernel defined by:

S−1(s, q) = (s− q)(s2 − 2Re(q)s+ |q|2)−1, q /∈ [s].

Then the function

F(s, q) := ∆S−1(s, q) = −4(s− q)(s2 − 2Re(q)s+ |q|2)−2,

is a Cauchy-Fueter regular function in the variable q, and it is right slice regular
in the variable s for q /∈ [s].
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Theorem 11.2.5 (The Fueter mapping theorem in integral form [48]). LetW ⊂
H be an axially symmetric open set and let f be slice hyperholomorphic inW . Let
U be a bounded axially symmetric open set such that U ⊂ W . Suppose that the
boundary of UI = U ∩CI consists of finite number of rectifiable Jordan curves for
any I ∈ S. Then, if q ∈ U , the Cauchy–Fueter regular function given by

τ(f)(q) = ∆f(q)

has the integral representation

τ(f)(q) =
1

2π

∫
∂UI

∆S−1(s, q)dsIf(s), dsI = ds/I,

and the integral does not depend on U nor on the imaginary unit I ∈ S.

We will need also these useful results in our computations

Proposition 11.2.6 ( [24]). For all n ≥ 2, we have

D[qn] = −2
n∑
k=1

qn−kqk−1.

Proposition 11.2.7 ( [63]). For all n ≥ 2, we have

τ [qn] = −4
n−1∑
k=1

(n− k)qn−k−1qk−1.

In [?] the theory of slice hyperholomorphic functions on quaternions is ex-
tended to higher order by considering:

Definition 11.1. LetΩ be an axially symmetric open set inH and let f : Ω −→ H
a slice function of class Cn. For each I ∈ S, let ΩI = Ω ∩ CI and let fI = f|ΩI

be
the restriction of f to ΩI . The restriction fI is called (left) polyanalytic of order n
if it satisfies on ΩI the equation

∂I
n
f(x+ Iy) :=

1

2n

(
∂

∂x
+ I

∂

∂y

)n
fI(x+ Iy) = 0.

The function f is called left slice polyanalytic of order n, if for all I ∈ S, fI is
left polyanalytic of order n on ΩI . The right quaternionic vector space of slice
polyanalytic functions of order n will be denoted by SPn(U).

Note that slice regular functions are a special case of the definition of slice
polyanalytic functions with n = 1. The right slice polyanalytic functions can
be defined in a similar way just by taking the powers of the Cauchy-Riemann
operator with imaginary unit on the right. Several results of these functions
were studied and extended. In particular, we recall some properties that we
need for our computations in the next sections.
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Proposition 11.2.8 (Splitting Lemma). Let f be a slice polyanalytic function of
order n on a domain Ω ⊆ H. Then, for any imaginary units I and J with I ⊥ J
there exist F,G : ΩI −→ CI polyanalytic functions of order n such that for all
z = x+ Iy ∈ ΩI , we have

fI(z) = F (z) +G(z)J.

We will be interested also by the following decomposition

Proposition 11.2.9 (Poly-decomposition). A function f : Ω −→ H defined on a
slice domain is slice polyanalytic of order n if and only there exist f0, ..., fn−1 some
unique slice hyperholomorphic functions on Ω such that we have the following
decomposition:

f(q) :=
n−1∑
k=0

qkfk(q); ∀q ∈ Ω.

Finally, we consider the poly-Fueter regular functions that can be found for
example in [87] for Clifford valued functions.

Definition 11.2.1. Let U ⊂ H be an open set and let f : U −→ H be a function
of class Cn. We say that f is (left) poly-Fueter regular or poly-regular for short of
order n ≥ 1 on U if

Dnf(q) :=

(
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)n
f(q) = 0,∀q ∈ U.

The right quaternionic vector space of poly-Fueter regular functions will be denoted
by FRn(U).

The proof of the next result was communicated to us by Dan Volok, and
appears earlier in section 6 and 7 of [27], see also [57] for the Clifford monogenic
setting. We recall it for completeness

Proposition 11.2.10. A function f is poly-Fueter regular of order n if and only if
it can be decomposed in terms of some unique Fueter regular functions φ0, ..., φn−1

such that we have

f(q) =
n−1∑
k=0

xk0φk(q).

11.3 The global operator and poly-Fueter mapping theorems

In this section, we show that slice polyanalytic functions of some order n are so-
lutions of the n-th power of a certain global operator V . A new extension of the
Fueter mapping theorem involving slice polyanalytic functions on quaternions
will be proved also.
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In [80], the author considered a modified version of the operator G which is
defined by

V (f)(q) := ∂x0f(q) +
~q

|~q |2
3∑
l=1

xl∂xlf(q), ∀q ∈ Ω \ R.

Remark 11.3.1. For suitable domains, we note that the operators G and V are
related by the formula

V (f)(q) =
1

|~q |2
G(f)(q), ∀q ∈ Ω \ R.

In what follows, if V (f) admits a (unique) continuous extension on the whole Ω,
then we implicitly assume that V (f) denotes such an extension. Given any n ≥ 2,
inductively we will say that V n(f) is a function on Ω if V n−1(f) is of class C1 on
Ω \ R and V n(f) := V (V n−1(f)) admits a continuous extension on Ω.

First, we prove some preliminary results on the global operators G and V
that are needed in the sequel.

Lemma 11.3.2. Let Ω be an open set in H and ψ : Ω −→ H a function of class
C1. Then, we have

G(qψ)(q) = qG(ψ)(q) + 2|~q |2ψ(q), ∀q = x0 + ~q ∈ Ω.

Proof. Let ψ be a C1 function onΩ, we apply the definition ofG and Leibniz rule
with respect to the partial derivatives and we get

G(qψ)(q) := |~q |2∂x0(qψ)(q) + ~q
3∑
l=1

xl∂xl(qψ)(q)

= |~q |2q∂x0ψ(q) + |~q |2ψ(q) + ~q q
3∑
l=1

xl∂xlψ(q)− ~q
3∑
l=1

xlelψ(q).

However, we know that

~q =
3∑
l=1

xlel, ~q q = q~q and ~q 2 = −|~q |2.

Thus, for any q ∈ Ω we have

G(qψ)(q) = q

(
|~q |2∂x0ψ(q) + ~q

3∑
l=1

xl∂xlψ(q)

)
+ 2|~q |2ψ(q)

= qG(ψ)(q) + 2|~q |2ψ(q).

This ends the proof. �
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Corollary 11.3.3. Let Ω ⊆ H be a domain and f : Ω −→ H be a slice hyper-
holomorphic function. Then, we have

G(qf)(q) = 2|~q |2f(q), ∀q ∈ Ω

and
V (qf)(q) = 2f(q), ∀q ∈ Ω. (11.3.1)

Proof. The fact that f is slice hyperholomorphic on Ω implies that

G(f)(q) = 0, ∀q ∈ Ω.

Hence, a direct application of Lemma 11.3.2 gives (11.3.1) on Ω \ R. However,
since the right hand side of (11.3.1) extends the left hand side to all ofΩ as a slice
hyperholomorphic function, then (11.3.1) holds on Ω. �

Example. To provide an example, let us consider the particular case f ∈ SP2(H).
Then, we have

1. V 2(f)(q) = 0, ∀q ∈ H.

2. ∆V (f) is Cauchy-Fueter regular on H.

3. DV (f) is poly-Fueter regular of order 2, where D is the conjugate of the
Cauchy-Fueter operator.

To see that (1) holds, we use the poly-decomposition that asserts the existence of
some unique functions f0, f1 ∈ SR(H) such that

f(q) = f0(q) + qf1(q), ∀q ∈ H.

An application of corollary 11.3.3 combined with the fact that slice hyperholomor-
phic functions belong to ker(V ) show that (1) holds. The other two assertions fol-
lows similarly.

Proposition 11.3.4. Let Ω be an open set in H and f : Ω −→ H a slice hyper-
holomorphic function. Let n ≥ 2 and 1 ≤ k ≤ n− 1, then we have

1. G(qkf)(q) = 2k|~q |2qk−1f(q), ∀q ∈ Ω.

2. V (qkf)(q) = 2kqk−1f(q), ∀q ∈ Ω.

Proof. Let f ∈ SR(Ω) and n ≥ 2. We reason by induction with respect to n.
(1) First, we note that the result holds forn = 2 as a consequence of Corollary

11.3.3. Now, let n ≥ 2 be such that we have

G(qkf)(q) = 2k|~q |2qk−1f(q), ∀q ∈ Ω, ∀1 ≤ k ≤ n− 1.

In order, to prove that the result holds for n+ 1, we only have to show that

G(qnf)(q) = 2n|~q |2qn−1f(q),∀q ∈ Ω. (11.3.2)
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Indeed, we apply Lemma 11.3.2 and obtain

G(qnψ)(q) = G(q qn−1f)(q)

= qG(qn−1f)(q) + 2|~q |2qn−1f(q),∀q ∈ Ω.

However, by induction hypothesis we know that

G(qn−1f)(q) = 2(n− 1)|~q |2qn−2f(q),∀q ∈ Ω.

Therefore, we get

G(qnf)(q) = 2(n− 1)|~q |2qn−1f(q) + 2|~q |2qn−1f(q)

= 2n|~q |2qn−1f(q), ∀q ∈ Ω.

Hence, the result holds by induction and this completes the proof.
(2) We know by Remark 11.3.1 that

V (f)(q) =
1

|~q |2
G(f)(q),∀q ∈ Ω \ R.

Then, since f is a slice hyperholomorphic function on Ω, the right hand side
extends the left hand side as polyanalytic function of order k and so we get

V (qkf)(q) = 2kqk−1f(q), ∀q ∈ Ω, 1 ≤ k ≤ n− 1.

�

Proposition 11.3.5. Let Ω be a slice domain in H and f : Ω −→ H a slice
polyanalytic function of order n ≥ 1. Then, V (f) is a slice polyanalytic function
of order n− 1 on Ω.

Proof. We note that Ω is a slice domain. So, by poly-decomposition there exist
some unique slice regular functions ϕ0, ..., ϕn−1 such that we can write

f(q) =
n−1∑
k=0

qkϕk(q), ∀q ∈ Ω.

Thus, by Proposition 11.3.4 we know that for all q ∈ Ω we have

V (f)(q) =
n−1∑
k=1

V (qkϕk)(q)

= 2
n−1∑
k=1

kqk−1ϕk(q)

=
n−2∑
h=0

qhζh(q),

where we have set ζh(q) = 2(h + 1)ϕh+1, ∀0 ≤ h ≤ n − 2 which are slice hy-
perholomorphic functions on the whole Ω by hypothesis. Hence, V (f) extends
as a slice polyanalytic function of order n− 1 on Ω. �
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Theorem 11.3.6. Let Ω be an axially symmetric slice domain inH and f : Ω −→
H a slice polyanalytic function of order n ≥ 1. Then, f belongs to ker(V n), i.e:

V n(f)(q) = 0, ∀q ∈ Ω.

Proof. We apply Proposition 11.3.5 iteratively and obtain

V (f) ∈ SPn−1(Ω), V
2(f) ∈ SPn−2(Ω), ..., V

n−1(f) ∈ SP1(Ω) = SR(Ω).

In particular, we deduce that V n−1(f) is a slice hyperholomorphic function on
Ω. Therefore, it belongs to the kernel of the global operator V outside the real
line. Hence, since V n−1(f) admits a continuous extension to the whole Ω, by
Theorem 2.4 in [80], we conclude that

V n(f)(q) = V (V n−1)(f)(q) = 0, ∀q ∈ Ω.

This ends the proof. �

Theorem11.3.7 (Poly-Fuetermapping theorem I). LetΩ be an axially symmetric
slice domain in H and f : Ω −→ H a slice polyanalytic function of order n ≥ 1.
Then the function given by

τn(f)(q) = ∆ ◦ V n−1(f)(q), ∀q ∈ Ω

belongs to the kernel of the Cauchy-Fueter operator D.

Proof. Using the same argument used to prove Theorem 11.3.6, we deduce that
V n−1(f) is a slice hyperholomorphic function on Ω. Therefore, since Ω is an
axially symmetric slice domain we can useTheorem 11.2.1 and Remark 11.2.2 to
conclude that the function τn(f) is in the kernel of the Cauchy-Fueter operator
D on Ω, i.e.,

D ◦ τn(f)(q) = D ◦∆ ◦ V n−1(f)(q) = 0, ∀q ∈ Ω.

�

Remark 11.3.8. We note that the poly-Fueter mapping

τn := ∆ ◦ V n−1

takes the space of slice polyanalytic functions of order n ≥ 1 into the space of
Cauchy-Fueter regular functions FR(Ω).

Theorem 11.3.9. Let Ω be an axially symmetric slice domain ofH and f : Ω −→
H a slice hyperholomorphic function. Let n ≥ 1 and consider the functions defined
by

Ψk
f (q) := qkf(q), ∀q ∈ Ω,∀0 ≤ k ≤ n− 1.

Then, the family {Ψk
f}0≤k≤n forms anAppell systemwith respect to the operator

1
2
V , namely

1

2
V (Ψ0

f ) = 0 and
1

2
V (Ψk

f ) = kΨk−1
f ,∀1 ≤ k ≤ n− 1.
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Proof. The function Ψ0
f = f is slice hyperholomorphic on Ω. So, f belongs to

the kernel of the global operator V on Ω. Thus, we have
1

2
V (Ψ0

f ) = 0. On the
other hand, we know by Proposition 11.3.4 that

V (qkf)(q) = 2kqk−1f(q), ∀q ∈ Ω, 1 ≤ k ≤ n− 1.

Therefore, this combined with Theorem 2.4 in [80] allows to see that for all
q ∈ Ω and 1 ≤ k ≤ n− 1 we have

1

2
V (Ψk

f )(q) =
1

2
V (qkf)(q)

= kqk−1f(q)

= kΨk−1
f (q).

This ends the proof. �

Corollary 11.3.10. The sequence {qk}k≥0 is an Appell system with respect to 1
2
V .

Proof. If we take the constant function f = 1, we immediately obtain the result.
�

Remark 11.3.11. We note that for any slice hyperholomorphic function f the
family {Ψk

f}0≤k≤n considered in Theorem 11.3.9 form also an Appell system with

respect to the Cauchy-Riemann operator
1

2
∂I for all I ∈ S.

The next result allows to construct poly-Fueter regular functions starting
from slice polyanalytic ones of the same order:

Theorem 11.3.12 (Poly-Fueter mapping theorem II). Let Ω ⊆ H be an axially
symmetric slice domain and let f : Ω −→ H a slice polyanalytic function of order
n ≥ 1. Assume that f admits the decomposition

f(q) =
n−1∑
k=0

qkfk(q),∀q ∈ Ω

where f0, ..., fn−1 ∈ SR(Ω).Then, the function defined by

Cn(f)(q) =
n−1∑
k=0

xk0∆(fk)(q),∀q ∈ Ω (11.3.3)

is a poly-Fueter regular function of order n.

Proof. We note by Theorem 11.2.1 and Remark 11.2.2 that the functions φk =
∆(fk) are all Cauchy-Fueter regular on Ω for any 0 ≤ k ≤ n−1. Hence, thanks
to Proposition 11.2.10 we conclude that Cn(f) is poly-Fueter regular of order n.

�
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Let n ≥ 1, the two poly-Fueter mappings τn and Cn can be related to each
other so that we have

τn := (2D)n−1 ◦ Cn,
in other words the diagram

SPn
τn //

Cn
��

FR

FRn

(2D)n−1

;;

is commutative.
The proof of this fact is contained in the next result:

Theorem 11.3.13. Let f : Ω −→ H be a slice polyanalytic function of order
n ≥ 1 on some axially symmetric slice domain. Then, we have

Dn−1Cn(f)(q) =
1

2n−1
τn(f)(q),∀q ∈ Ω.

Proof. SinceΩ is a slice domain, by the poly-decomposition for slice polyanalytic
functions there exist f0, .., fn−1 ∈ SR(Ω) such that

f(q) =
n−1∑
k=0

qkfk(q),∀q ∈ Ω.

Thus, by Proposition 11.3.4 gives

V (f)(q) =
n−1∑
k=1

2kqk−1fk(q),∀q ∈ Ω.

In a similar way, we apply (n − 1) times the global operator V and use Propo-
sition 11.3.4 to get

V n−1(f)(q) = 2n−1(n− 1)!fn−1(q), ∀q ∈ Ω.

As a direct consequence, by definition of τn we have

τn(f)(q) = 2n−1(n− 1)!∆fn−1(q), ∀q ∈ Ω. (11.3.4)

On the other hand, since (fk)0≤k≤n−1 are all slice hyperholomorphic we know
by the Fueter mapping theorem that

D(∆fk) = 0, ∀0 ≤ k ≤ n− 1.

Therefore, by Leibniz rule for the Cauchy-Fueter operator we have

D(xk0∆fk)(q) = kxk−1
0 ∆fk(q); ∀q ∈ Ω, ∀0 ≤ k ≤ n− 1. (11.3.5)
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We know by definition of Cn that

Cn(f)(q) =
n−1∑
k=0

xk0∆(fk)(q),∀q ∈ Ω.

Thus, we use (11.3.5) and get

D[Cn(f)](q) =
n−1∑
k=1

kxk−1
0 ∆fk(q),∀q ∈ Ω.

Similarly, if we apply the Cauchy-Fueter operator (n−1) times and use (11.3.5),
with some computations we get

Dn−1[Cn(f)](q) = (n− 1)!∆fn−1(q),∀q ∈ Ω. (11.3.6)

Finally, we combine the relations (11.3.4) and (11.3.6) to conclude that

Dn−1Cn(f)(q) =
1

2n−1
τn(f)(q),∀q ∈ Ω.

�

11.4 The poly-Cauchy integral theorem and poly-Cauchy formula

In this section, we prove a Cauchy integral theorem and Cauchy formula for
slice polyanaytic functions.

First, we recall the polyanalytic Cauchy formula in complex analysis, see
Theorem 2.1 in [57].

Theorem 11.4.1. For k ≥ 1, we set

ψk(z) =
1

2πi

z̄

|z|2
Re(z)k−1

(k − 1)!
.

For z = x+ iy, set dσ = dx∧dy. If f is polyanalytic of order n, then for all z ∈ D
we have

f(z) =

∫
∂D

n−1∑
j=0

(−2)jψj+1(u− z)
∂j

∂ūj
f(u)dσ.

First, we prove a version of the Cauchy’s integral theorem for slice polyan-
alytic functions

Theorem 11.4.2 (Poly-Cauchy theorem). Let f and g be a left and right slice
polyanalytic functions of order n respectively on some axially symmetric slice do-
main Ω containing the closure of B. Then, for any I ∈ S we have∫

∂BI

n−1∑
j=0

(−1)jg∂I
n−1−j

dwI∂I
j
f = 0,

where dwI = −dwIfor w ∈ CI .
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Proof. Let I ∈ S and choose J ∈ S be such that I ⊥ J . Thus, by Splitting
Lemma for slice polyanalytic functions proved in [17] we can write

f(w) = F1(w) + F2(w)J and g(w) = G1(w) + JG2(w),

where Fl, Gl : BI −→ CI for l = 1, 2 are complex polyanalytic functions of
order n. In order to simplify the computations, we set

Φ(f, g) :=

∫
∂BI

n−1∑
j=0

(−1)jg∂I
n−1−j

dwI∂I
j
f

Then, direct computations lead to

Φ(f, g) = Φ(F1, G1) + Φ(F2, G1)J + JΦ(F1, G2) + JΦ(F2, G2)J

At this stage, we apply the poly-Cauchy integral theorem proved in [57] to de-
duce that

Φ(F1, G1) = Φ(F2, G1) = Φ(F1, G2) = Φ(F2, G2) = 0.

This ends the proof. �

Now, let n ≥ 1 and w ∈ B be such that w ∈ CJ with J ∈ S. For all
0 ≤ j ≤ n− 1, we consider the function defined by

φj,w(z) =
1

w − z

(Re(w − z))j

j!
; z ∈ BJ , z 6= w.

Then, we have

Proposition 11.4.3 (Poly-Cauchy kernels). For all 0 ≤ j ≤ n − 1, the slice
polyanalytic extension of φj,w is given by

φj,w(q) = S−1(w, q)
(Re(w − q))j

j!
∀q ∈ B, q /∈ [w],

where S−1(w, q) is the slice hyperholomorphic Cauchy kernel.

Proof. Let 0 ≤ j ≤ n − 1. We know that S−1(w, q) is left slice regular with

respect to the variable q. Moreover, it is clear that q 7→ (Re(w − q))j

j!
is a real

valued slice polyanalytic function of order n for all 0 ≤ j ≤ n − 1. So, we can

apply Proposition 3.3 in [?] to see that the product S−1(w, q)
(Re(w − q))j

j!
is

slice polyanalytic of order nwith respect to the variable q. And since it coincides
with φj,w(z) on BJ the proof ends thanks to the identity principle (see [17]). �
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Remark 11.4.4. Another way to prove Proposition 11.4.3 consists of using the
extension Lemma for slice polyanalytic functions, see [17]. Indeed, we note that
z 7→ φj,w(z) is polyanalytic of order n for any z 6= w. Thus, it admits a unique slice
polyanalytic extension denoted by ext[φj,w(z)](q). By definition, for q = x + Iqy
and z = x+ Jy such that q /∈ [w] we have

ext[φj,w(z)](q) =
1

2
[φj,w(z) + φj,w(z)] +

IqJ

2
[φj,w(z)− φj,w(z)]

= ext

(
1

w − z

)
(Re(w − q))j

j!

= S−1(w, q)
(Re(w − q))j

j!
,

where S−1(w, q) is the slice hyperholomorphic Cauchy kernel given by

S−1(w, q) = (w − q)(w2 − 2Re(q)w + |q|2)−1.

Proposition 11.4.5. Let q, w ∈ B be such that q /∈ [w]. The function, φj,w(q) is
right slice polynalytic of order j + 1 in the variable w.

Proof. The proof is easy using the fact that S−1(w, q) is right slice regular in w
combined with the right version of Proposition 3.3 in [17]. �

Theorem 11.4.6 (Poly-Cauchy formula). Let Ω be an axially symmetric slice do-
main containing the closure of B and f : Ω −→ H a slice polyanalytic function of
order n ≥ 1. For I ∈ S, set dwI = −dwI . The integral below

1

2π

∫
∂BI

n−1∑
j=0

(−2)jS−1(w, q)
(Re(w − q))j

j!
dwI∂I

j
(f)(w),

does not depend on the choice of the imaginary unit I ∈ S.
Moreover, for all q ∈ B we have the integral representation

f(q) =
1

2π

∫
∂BI

n−1∑
j=0

(−2)jS−1(w, q)
(Re(w − q))j

j!
dwI∂I

j
(f)(w).

Proof. The independence of the choice of I ∈ S is a direct consequence of the
poly-decomposition in Proposition 11.2.9 combined with the series expansion
theorem for slice hyperholomorphic functions. To show the second part of the
statement, let J ∈ S be such that J ⊥ I . We know that f ∈ SPn(B), so by
Proposition 3.4 in [17] there exist two polyanalytic functions F,G : BJ −→ CJ

of order n such that for any w ∈ BJ we have

f(w) = F (w) +G(w)J.

In particular,
∂I
j
f(w) = ∂I

j
F (w) + ∂I

j
G(w)J.
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Then, we have on BI the following reproducing property thanks to the com-
plex poly-Cauchy formula applied to F and G

1

2π

∫
∂BI

n−1∑
j=0

(−2)jS−1(w, q)
(Re(w − q))j

j!
dwI∂I

j
(f)(w) = F (q) +G(q)J

= f(q).

Furthermore, in Proposition 11.4.3 we deal with a slice polyanalytic kernel. So,
the function

Ψ(q) =

∫
∂BI

n−1∑
j=0

(−2)jS−1(w, q)
(Re(w − q))j

j!
dwI∂I

j
(f)(w),

is also slice polyanayltic of ordern. Hence, we can conclude by Identity principle
since Ψ coincides with f on BI .

�

Remark 11.4.7. The case n = 1 in the previous theorem gives the slice hyperholo-
morphic Cauchy formula that can be found in [35].

11.5 The poly-Fueter mapping theorem in integral form

We shall study in this section an integral representation of the poly-Fueter map-
ping theorem on the quaternionic unit ball that will extend the results obtained
in [48]. As a direct application of the slice poly Cauchy formula we will prove
the poly-Fueter mapping theorem in its integral form. To this end, we need some
technical lemmas. First, for every n ≥ 1, 1 ≤ j ≤ n− 1 and w ∈ ∂B, denote by
Fj(w, q) the quaternionic valued function on B sending q into

Fj(w, q) := S−1(w, q)
Rej(w − q)

j!
, (11.5.1)

where Rej(w − q) := (Re(w − q))j .

Lemma 11.5.1. Let w ∈ ∂B. Then, for every q ∈ B, we have

V (F0(w, q)) = 0 and V (Fj(w, q)) = −Fj−1(w, q),∀j ≥ 1.

Proof. First, we haveF0(w, q) = S−1(w, q) is the slice hyperholomorphic Cauchy
kernel. So, q 7−→ F0(w, q) is slice hyperholomorphic with respect to the vari-
able q. Thus, we have V (F0(w, q)) = 0 for all q. On the other hand, for all j ≥ 1
we have

G(Fj(w, q)) = G

(
S−1(w, q)

Rej(w − q)

j!

)
, ∀q ∈ B.
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Then, we apply Proposition 3.1.11 on which we see how the global operator G
acts on the product keeping in mind that one of the functions is real valued and
get

G(Fj(w, q)) = S−1(w, q)G

(
Rej(w − q)

j!

)
, ∀q ∈ B. (11.5.2)

However, we have

G

(
Rej(w − q)

j!

)
= |~q |2∂x0

(
Rej(w − q)

j!

)
= −|~q |2Re

j−1(w − q)

(j − 1)!

Then, we replace in (11.5.2) and get

G(Fj(w, q)) = −|~q |2S−1(w, q)
Rej−1(w − q)

(j − 1)!
, ∀q ∈ B.

Hence, we use Remark 11.3.1 to see that the result holds outside the real line.
Then, we apply again Theorem 2.4 in [80] which allows to extend the formula
everywhere on B. Finally, we conclude that for any q ∈ B we have

V (Fj(w, q)) = −Fj−1(w, q),∀j ≥ 1.

This ends the proof. �

Lemma 11.5.2. Let w ∈ ∂B. For any n ≥ 1, we set

τn = ∆ ◦ V n−1.

Then, for every q ∈ B, we have

1. τ1(F0(w, q)) = ∆S−1(w, q).

2. For all n ≥ 2, we have

(a) τn(Fj(w, q)) = 0,∀0 ≤ j < n− 1.

(b) τn(Fn−1(w, q)) = (−1)n−1∆S−1(w, q).

Proof. (1) It is immediate by the definition of the map τ1 = ∆.
(2) We reason by induction. First, we note that for n = 2, F0(w, q) is slice
hyperholomorphic with respect to q so that

τ2(F0(w, q) = ∆ ◦ V (F0(w, q)) = 0.

Moreover, we have

τ2(F1(w, q)) = ∆ (V (F1(w, q))) .
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Moreover, Lemma 11.5.1 yields

V (F1(w, q)) = −F0(w, q)

so we get
τ2(F1(w, q)) = −∆(F0(w, q)) = −∆S−1(w, q).

We conclude that the result holds for n = 2. Let us suppose by induction that
the assertions (a), (b) in the statement hold for n ≥ 2 and we prove them for
n+ 1.

(a) Let w ∈ ∂B. Then, for every q ∈ B, it is clear that

τn+1(F0(w, q)) = ∆ ◦ V n(F0(w, q)) = 0.

We observe that

τn+1 = ∆ ◦ V n = ∆ ◦ V n−1 ◦ V = τn ◦ V. (11.5.3)

Then, for all 1 ≤ j < n making use of Lemma 11.5.1 we have

τn+1(Fj(w, q)) = τn ◦ V (Fj(w, q))

= −τn(Fj−1(w, q))

= −τn(Fh(w, q)); 0 ≤ h = j − 1 < n− 1.

Therefore, by induction hypothesis we conclude that

τn+1(Fj(w, q)) = 0, ∀0 ≤ j < n.

This shows that (a) holds.
(b) We use a second time the observation (11.5.3) combined with Lemma

11.5.1 and get by induction hypthesis

τn+1(Fn(w, q)) = τn ◦ V (Fn(w, q))

= −τn(Fn−1(w, q))

= (−1)n∆S−1(w, q).

Hence, (b) also holds. This ends the proof. �

Theorem 11.5.3 (Poly-Fueter mapping integarl form). Let f be a slice polyan-
alytic function of order n ≥ 1 on some axially symmetric slice domain Ω that
contains the closure of B. Then, the Fueter regular function τn(f) given by

τn(f)(q) = ∆ ◦ V n−1(f)(q)

has the integral representation

τn(f)(q) = c(n, π)

∫
∂BI

∆S−1(w, q)dwI∂
n−1

I (f)(w),∀q ∈ B

where I ∈ S and c(n, π) =
2n−1

2π
.
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Proof. Let f ∈ SPn(Ω), we know by the poly-Cauchy formula for slice polyan-
alytic functions (Theorem 11.4.6) that for all q ∈ B we have

f(q) =
1

2π

∫
∂BI

n−1∑
j=0

(−2)jFj(w, q)dwI∂
j
(f)(w).

Therefore, we apply the Fueter mapping τn = ∆ ◦ V n−1 and obtain that

τn(f)(q) =
1

2π

∫
∂BI

n−1∑
j=0

(−2)jτn(Fj(w, q))dwI∂
j
(f)(w), ∀q ∈ B \ R.

However, by Lemma 11.5.1 we know that

τn(Fn−1(w, q)) = (−1)n−1∆S−1(w, q) and τn(Fj(w, q)) = 0,∀0 ≤ j < n− 1

Hence, we obtain

τn(f)(q) =
2n−1

2π

∫
∂BI

∆S−1(w, q)dwI∂
n−1

I (f)(w),∀q ∈ B \ R.

Finally, it is clear that the integral in the right hand side is Fueter regular with
respect to q everywhere on B which allows to extend τn(f) to a Fueter regular
function on the unit ball. This completes the proof. �

Corollary 11.5.4. Under the same hypothesis of Theorem 11.5.3 we note that the
poly-Fueter mapping has the explicit integral expression

τn(f)(q) =
2n

π

∫
∂BI

(q − w)(w2 − 2Re(q)w + |q|2)−2dwI∂
n−1

I (f)(w),∀q ∈ B.

Proof. We apply Theorem 11.5.3 and use the expression

∆S−1(w, q) = −4(w − q)(w2 − 2Re(q)w + |q|2)−2,

that was proved in [48]. �

Remark 11.5.5. 1. Thanks to Theorem 11.3.13 the integral formulation of the
poly-Fueter mapping theorem can be expressed in terms of the map Cn as

Dn−1[Cn(f)](q) =
1

2π

∫
∂BI

∆S−1(w, q)dwI∂
n−1

I (f)(w),∀q ∈ B.

2. The case n = 1 in Theorem 11.5.3 is the Fueter mapping theorem in integral
form proved in [48].
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11.6 The polymonogenic case: Fueter-Sce-Qian extension

In this section, we see how the results of quaternionic slice polyanalytic func-
tions can be reformulated in the slice monogenic setting. We omit to write the
proofs since they are similar to the quaternionic case. We recall first some ba-
sic notations, let {e1, e2, ..., en} be an orthonormal basis of the Euclidean vector
space Rn satisfying the rule

ekes + esek = −2δk,s, k, s = 1, ..., n

where δk,s is the Kronecker symbol. The set

{eA : A ⊂ {1, ..., n} with eA = eh1eh2...ehr , 1 ≤ h1 < ... < hr ≤ n, e∅ = 1}

forms a basis of the 2n-dimensional Clifford algebra Rn over R. Let Rn+1 be
embedded in Rn by identifying (x0, x1, ..., xn) ∈ Rn+1 with the paravector x =
x0 + x ∈ Rn. The conjugate of x is given by x̄ = x0 − x and the norm |x| of x is
defined by |x|2 = x20+ ...+x

2
n. We denote also by Sn−1 the (n− 1)-dimensional

sphere of unit vectors in Rn given by

Sn−1 = {ω = x1e1 + ...+ xnen : x21 + ...+ x2n = 1}, ω2 = −1.

The Euclidean Dirac operator on Rn is given by

Dx =
n∑
j=1

ej∂xj .

The generalized Cauchy-Riemann operator (also known as Weyl operator) and
its conjugate in Rn+1 are given respectively by

D := ∂x0 +Dx and D := ∂x0 −Dx.

Real differentiable functions on some open subset of Rn+1 taking their values in
Rn that are in the kernel of Dk are called left k-monogenic or polymonogenic
of order k, see [57]. We consider also the slice monogenic version given by

Definition 11.2. Let U be an axially symmetric open set in Rn+1 and f : U −→
Rn be a slice function of class Ck. We say that f is slice polymonogenic of order k
or s-polymonogenic for short, if for any I ∈ Sn−1, we have

∂I
k
fI(x+ Iy) = 0.

The set of slice polymonogenic functions of order k is denoted SMk(U).

Remark 11.6.1. 1. The set SMk(U) forms a right module on Rn.

2. The case k = 1 corresponds to the slice monogenic functions considered in [?].
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We consider on Ω ⊂ Rn+1 the global operator on high dimensions defined
by

Vn(f)(x) := ∂x0f(x) +
~x

|~x|2
n∑
l=1

xl∂xlf(x),∀x ∈ Ω \ R.

Lemma 11.6.2 (Splitting Lemma). Let U be an axially symmetric open set in
Rn+1 and f : U −→ Rn be a slice polymonogenic function of order k. For every
I = I1 ∈ S let I2, ..., In be a completion to an orthonormal basis ofRn. Then, there
exists 2n−1 polyanayltic functions of order k denoted FA : UI −→ CI such that
for every z = x+ Iy

fI(z) =
n−1∑
|A|=0

FA(z)IA, IA = Ii1...Iil,

where A = {i1, ..., il} is a subset of {2, ..., n}, with i1 < ... < il.

Theorem 11.6.3 (s-polymonogenic decomposition). Let Ω be an axially sym-
metric slice domain of Rn+1 and f : Ω −→ Rn. Then, f ∈ SMk(Ω) if and only if
there exists unique f0, ..., fk−1 ∈ SM(Ω) such that

f(x) = f0(x) + xf1(x) + ...+ xk−1fk−1(x), ∀x ∈ Ω.

Using similar calculations to the quaternions case, we can prove that

Theorem 11.6.4. Let Ω be an axially symmetric slice domain of Rn+1 and f :
Ω −→ Rn an s-polymonogenic function of order k ≥ 1. Then, f belongs to
ker(V k

n ), i.e:
V k
n (f)(x) = 0, ∀x ∈ Ω.

For slice polymonogenic functions we state the poly-Sce-Fueter mapping
theorems in the Clifford setting as follows

Theorem 11.6.5 (Poly-Fueter-Sce mapping theorem I). Let n be an odd number
and Ω an axially symmetric slice domain of Rn+1. If f is an s-polymonogenic
function of order k. Then, the poly-Fueter mapping defined by

τn,k(f)(x) = ∆
n−1
2

Rn+1V
k−1
n f(x)

is a monogenic function, in particular a polymonogenic of order k.

Theorem 11.6.6 (Poly-Fueter-Sce mapping theorem II). LetΩ be an axially sym-
metric slice domain of Rn+1 and f : Ω −→ Rn a slice polyanalytic function of
order k ≥ 1. Assume that f admits a poly-decomposition given by

f(x) =
k−1∑
j=0

xjfj(x),∀x ∈ Ω
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where f0, ..., fn−1 ∈ SM(Ω).Then, the function defined by

Cn,k(f)(q) =
k−1∑
j=0

xj0∆
n−1
2

Rn+1(fj)(x),∀x ∈ Ω (11.6.1)

is a poly-monogenic function of order k.
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CHAPTER12
Conclusion and further research in progress

In this dissertation, we developed several mathematical methods and results
about quaternionic reproducing kernel Hilbert spaces (QRKHSs), using different
tools and techniques from complex and hypercomplex analysis. We considered
different examples such as Hardy, Bergman and Fock spaces both in slice and
Fueter hyperholomorphic settings. In particular, most of the results were ob-
tained in the case of Fock spaces and Segal-Bargmann theory. We note that such
mathematical models are relevant and used in several interesting applications
including quantum mechanics, time-frequency analysis and machine learning
methods. We explain a bit more how Fock spaces and Bargmann theory appear
in these different areas:

• Quantum mechanics: Fock spaces and Segal-Bargmann transforms are
important mathematical models used in quantum mechanics. Sometimes
they are called bosonic Fock spaces of n degrees of freedom. They are re-
lated to several important operators there like creation, annihilation, posi-
tion, momentum, Weyl operators, etc. They are used also to define coher-
ent states in mathematical physics. For more details about such connec-
tions and applications we refer for example to [85] and references therein.

• Signal and time-frequency analysis: wenote that the short-time Fourier
transform corresponding to the Gaussian window is given by the Segal-
Bargmann transform. Furthermore, the short-time Fourier associated to
Hermite function windows lead to Fock spaces of polyanalytic functions.
This explains how Fock spaces and Segal-Bargmann transforms are rele-
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Chapter 12. Conclusion and further research in progress

vant also in signal and time-frequency analysis thanks to the link they have
with the short-time Fourier transform. We refer to the classical book [78]
for more details concerning such connections and applications.

• Machine learning methods: it is well-known that Gaussian radial basis
function (RBF) kernels are one of the most used kernels in modern ma-
chine learningmethods such as support vectormachines (SVMs), see [112].
Actually, in [110] the reproducing kernel Hilbert spaces (RKHSs) corre-
sponding to the (RBF) kernels were introduced and were used to analyze
the learning performance of (SVMs). We can directly recongnize through
such results how the Fock and Bargmann theory are related to machine
learning kernel methods, in particular the case of (RBF) kernels. More-
over, we note that notions such as kernel trick, feature map and feature
spaces can be obtained in this case just by computing the scalar product
on L2(R) of the Segal-Bargmann kernels, which leads to the Fock kernel.

In chapter 4 and 5we studied different Fock spaces of slice hyperholomorphic
functions obtaining new approximation results in both the first and the second
kind theories. We got also Segal-Bargmann type transforms in the noncom-
mutative case of quaternions and gave different descriptions in terms of some
generalized versions of the creation and annihilation operators.

In chapter 6, based on the quaternionic Bargmann transformwe introduced a
quaternionic short-time Fourier transform QSTFT with a Gaussian window that
can be computed for hypercomplex signals. We proved different results there
including a Moyal formula, a reconstruction formula and a Lieb’s uncertainty
principle.

In chapters 7, 8 and 9 we introduced a new vision of QRKHS of Fueter hyper-
holomorphic functions based on a specific Clifford-Appell system which can be
obtained as an application of the Fueter mapping theorem. We studied in this
framework also different kernel techniques and integral transforms related to
Fock, Hardy and Bergman spaces. We studied also Bergman kernels and associ-
ated transforms on different quaternionic domains.

Finally in chapters 10 and 11, we introduced the basis for a new theory of
polyanalytic functions in hypercomplex analysis that contains a very important
subclass of special monogenic functions of axial type. Furthermore, we connect
this noncommutative theory to the classical monogenic and poly monogenic
function theories by constructing two extended versions of the Fueter-Sce-Qian
mapping theorem in this generalized framework.

For perspectives and further research, we started working on some different
problems that are still under progress. Such problems are related to the follow-
ing topics:

1. Fischer decomposition in the space of slice hyperholomorphic functions.

2. Wiener algebra on quaternions: The Fueter variables case.
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3. PS and PF functional calculus and their applications.

4. Poly-Bergman-Fueter transforms.

5. Short-time Fourier transformswithHermitewindows: hypercomplex poly-
analytic framework and applications in time-frequency analysis.

6. Quaternionic support vector machines, reproducing kernel methods in
machine learning and stochastic processes.

In the next lines we explain a bit more some examples of research problems that
we are considering regarding the two first topics.

Fischer decomposition on slice entire functions

We would like to study an extension of the results obtained in [?] to the slice
hyperholomorphic setting. Indeed, in 1985 Meril and Struppa proved the fol-
lowing

Theorem12.0.1. LetP andQ be two polynomials onCn and consider the operator

S : f 7−→ S(f) := P (D)(Qf).

Then, the following conditions are equivalent:

1. S : H(Cn) −→ H(Cn) is a bijection.

2. H(Cn) = I(Q)⊕ kerP (D), where I(Q) = {Qg; g ∈ H(Cn)}.

In order to extend Theorem 12.0.1 to the setting of quaternions, let us first
introduce

Definition 12.1. Let P (X) :=
N∑
k=0

Xkak with (ak)0≤k≤n ⊂ H be a right quater-

nionic polynomial. Then, associated to the slice derivative ∂S , for every given slice
regular function f we define

P (∂S)(f) :=
N∑
k=0

∂kS(f)ak.

First, we can prove two technical results

Lemma 12.0.2. Let u : Ci −→ H be a holomorphic function. Then, the following
formula holds

Ext(P (Di(ui)(z))(q) = P (∂S)(Ext(ui))(q), ∀q ∈ H.
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Chapter 12. Conclusion and further research in progress

Lemma12.0.3. LetP (X) :=
N∑
k=0

Xkak be a right quaternionic polynomial. Then,

P (∂S) : SR(H) −→ SR(H), f 7→ P (∂S)(f)

is a surjective mapping.

As a consequence we state the problem to extend Theorem 12.0.1:

Problem 12.0.4. Let P and Q be two right quaternionic polynomials such that
Q(p) 6= 0 for all p ∈ H. Then, consider the mapping

T : f 7−→ T (f) := P (∂S)(f ∗Q).

Are the following conditions equivalent ?

1. T : SR(H) −→ SR(H) is a bijection.

2. SR(H) = J (Q)⊕ kerP (∂S), where J (Q) = {g ∗Q; g ∈ SR(H)}.

We consider also plynomials of the form

P (X) :=
N∑
k=0

ak ∗Xk, ak ∈ H. (12.0.1)

The associated quaternionic linear operator is defined by

P (∂S)(f) :=
N∑
k=0

ak ∗ ∂kS(f).

Lemma 12.0.5. Let ui : Ci −→ H be a holomorphic function and P be a quater-
nionic polynomial of the form (12.0.1). Then, the following formula holds

Ext(P (Di(ui)(z))(q) = P (∂S)(Ext(ui))(q), ∀q ∈ H.

Remark 12.0.6. Following a similar reasoning as in Lemma 12.0.3 we can prove
that P (∂S) is a surjective operator for any quaternionic polynomial P of the form
(12.0.1).

Therefore, we can state the following problem for quaternionic polynomials
of the form (12.0.1):

Problem12.0.7. LetP andQ be two quaternionic polynomials of the form (12.0.1)
such that Q(p) 6= 0 for all p ∈ H. Then, consider the mapping

L : f 7−→ L(f) := P (∂S)(f ∗Q).

Are the following conditions equivalent ?

218



i
i

“thesis’’ — 2021/1/31 — 22:52 — page 219 — #239 i
i

i
i

i
i

1. L : SR(H) −→ SR(H) is a bijection.

2. SR(H) = J (Q)⊕ kerP (∂S), where J (Q) = {g ∗Q; g ∈ SR(H)}.
Note that the notion of entire slice regular functions of expoential type was

introduced in Chapter 5 of [50]. Indeed, we have the following
Definition 12.2. An entire slice regular function f is said to be of exponential
type if there exist some constants A,B such that we have

|f(q)| ≤ BeA|q|, ∀q ∈ H.

The space of such functions will be denoted Exp(H).

Then, we consider also the following:
Problem 12.0.8. Let P and Q be two right quaternionic polynomials such that
Q(p) 6= 0 for all p ∈ H. Then, consider the mapping

T : f 7−→ T (f) := P (∂S)(f ∗Q).
Are the following conditions equivalent ?

1. T : Exp(H) −→ Exp(H) is a bijection.

2. Exp(H) = J (Q)⊕ kerExp(H) P(∂S), where J (Q) = {g ∗Q; g ∈ Exp(H)}.

Wiener algebras and Lévy-Wiener theorems: the Fueter variables and
Clifford-Appell cases

Wewould like to study new versions of the Lévy-Wiener theorem for the quater-
nions in the setting of Cauchy-Fueter regular functions. In particular, we are
considering the Fueter variables and the Clifford-Appell cases. We are interested
also by the continuous version of the Lévy-Wiener theorem in this framework.

The Fueter variables case

We recall that the so-called Fueter variables are defined by

ζl(x) = xl − elx0, l = 1, 2, 3. (12.0.2)

Then, let us consider the poly-disk on the quaternions with respect to the
Fueter variables given by

BF = {q ∈ H; |ζl(q)| ≤ 1 for l = 1, 2, 3}.
Definition 12.0.1. We denote by WF

H the set of functions of the form

f(q) =
∑
α∈N3

ζα(q)fα

where (fα)α ⊂ H are such that we have

‖f‖ =
∑
α∈N3

|fα| <∞.
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We endow the algebraWF
H with the CK product denoted by�. Then, we can

prove that (WF
H ,�) is a non commutative Banach algebra.

We are studying a counterpart of the Lévy-Wiener theorem for the quternions
in the special case of Fueter variables.

Problem 12.0.9 (Lévy-Wiener theorem: Fueter variables case). Let f ∈ WF
H .

Then, f is invertible in WF
H if and only if f(q) 6= 0 for all q ∈ BF .

The Clifford-Appell case

Let us consider the Clifford-Appell polynomials considered in the previous chap-
ters and defined by

Qk(q) =
k∑
j=0

T kj q
k−jqj,∀q ∈ H (12.0.3)

where
T kj :=

k!

(3)k

(2)k−j(1)j
(k − j)!j!

=
2(k − j + 1)

(k + 1)(k + 2)

and (a)n = a(a + 1)...(a + n − 1) is the Pochhammer symbol. This family of
polynomials form an Appell system with respect to the hypercomplex deriva-
tive. Moreover, for s ∈ H, let

Exp(s) :=
∞∑
k=0

Qk(s)

k!

to be the generalized Cauchy-Fueter regular exponential function considered in
the paper [29]. We are interested by the following problem.

Problem 12.0.10. We would like to study the Wiener algebra W ′
H consisting of

quaternionic valued functions of the form

f =
∞∑
k=0

Qkck such that
∞∑
k=0

|ck| <∞.

A counterpart of the Lévy-Wiener theorem in this setting should be to justify that:
A function f ∈ W ′

H is invertible in W ′
H if and only if f(q) 6= 0 for all q ∈ B.
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