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1. Introduction
In today’s world it has become of undelayable im-
portance to reduce the amount of energy wasted
in all human activities. A sector that may bene-
fit from energy saving is information technology,
with respect to the amount of energy required to
perform a computation (in the broader sense of
the word).
By estimating the amount of energy required, de-
velopers can better estimate the resources needed
by their systems. For example, embedded devel-
opers may predict how long the batteries of their
devices will last. This in turn leads to a better
planning of the required maintenance interven-
tions. Moreover, data centers around the world
usually use large amounts of electrical energy:
server administrators can know how much their
system will absorb, and they can scale them ac-
cordingly.
On the other hand, reducing the amount of en-
ergy required to perform a task is important to re-
duce the environmental footprint digital systems
have, a topic of truly undelayable importance
nowadays. Moreover, it can reduce the costs of
running such systems. For instance, embedded
devices may extend the useful lifetime of their
batteries, and a reduction in server maintenance
costs can be beneficial for the agency running

them.
Usually, software is optimized with respect to
the time required to perform its work. However,
time optimizations do not imply that the power
consumption is contextually reduced. For in-
stance, there can theoretically be optimizations
that reduce the software time cost, but increase
the power consumption. We hypothesize instead
a compiler driver that can specifically operate
energy aware optimizations. Such tool would
receive as inputs the source code we’d like to
compile, along with a flag indicating the target
architecture; as a result it would drive the un-
derlying generic compiler to perform a certain
number of optimization, so to emit a target code
as efficient as possible for that specific architec-
ture. This presents a number of obstacles that
we assess during our work, and in the end we
produce an introductory feasibility analysis of
the construction of such a tool.
In order to know when to perform an optimiza-
tion, we need to know what is the difference in
the predicted power consumption such optimiza-
tion would introduce. This means computing the
difference between the optimization pass input
and the output versions of the program. In turn,
to do this it is required to be able to estimate
the power consumption of an arbitrary program,
that is, to build an oracle.
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Since we expect different processors to have dif-
ferent power consumptions for the same program,
our oracle needs to be trained with respect to
the processor the compiler will emit code for.
However, profiling the target architecture is dif-
ficult when it is done downstream with respect
to the processor manufacturing process. In order
to obtain a reliable profile for a given central
processing unit (CPU), we may use information
about its internal structure, along with the power
consumption profile for the complete instruction
set architecture (ISA), depending on the profil-
ing methodology we will choose. These pieces of
information are practically always kept secret by
the manufacturer; therefore, we need to extract
such information (and thus, the model) from the
actual manufactured chip, keeping our analysis
as black box as possible.
In this work we focus our analysis only on the
first part of this tool, that is, the building of the
oracle.

2. State of the art
2.1. Choosing the estimation tech-

nique
To search for the best estimation technique, we
took into consideration different methods.
A first possibility is to perform a simulation of
the processor under test, i.e. to simulate the
hardware components and their behaviour (in-
cluding the power consumption) with a software
program [6]. The simulator receives as input a
description of the device in a suitable hardware
description language (HDL), possibly (but not
necessarily) Verilog [7] or VHDL [8], along with
some code to execute on its physical counterpart,
and it simulates the processor’s working (up to
the simplified physical effects). This is however
not feasible for us, since we aim to build the
oracle even when we cannot access the internal
workings of the device under test (DUT).
Another approach is to rely on tools provided
directly by the manufacturers, such as hardware
performance counters (HPCs) and performance
monitor counters (PMCs) [6]. Such tools are ex-
posed by the CPU, accessed by specific registers
or files, and they measure appropriate metrics
about the CPU workings (like elapsed clock cy-
cles or directly a power measurement). Their
usage is very straightforward, but their accuracy

greatly varies [4], with errors up to 32%, so they
are not a very sound approach. We considered
this error too high to guide a reliable optimiza-
tion toolchain.
In the end, we resolved to use direct current
readings to build an ISA model of the proces-
sor. They offer great accuracy, can be relatively
easy to build even when the disclosed informa-
tion is limited, and we can benefit from a great
theoretical background to build our work on.

2.2. Choosing the ISA model
A common starting point when studying power
consumption is [14]. There, the authors outline
an idealized model for the energy consumed by a
program. This model is theoretically extremely
precise (with errors as low as 0.26%), but prac-
tically useless on its own, since it uses a set of
parameters related to the power dissipated by
each CPU activity. To use it we need first to
accurately estimate all the parameters, which is
the major difficulty of the experimental analysis.
Lee et al. in [10] suppose that the power con-
sumption can be estimated by a linear model. In
particular, they assume the system under test
is a black-box, and try to infer its behaviour by
extracting data in a stimulus-response approach.
The key idea here is that their model uses arbi-
trary functions of the code profiled. By choosing
the correct function, we can analyse a specific
behaviour or effect of the code under test. The
authors list some of them: we took inspiration
and implemented some of our own, as explained
later.
A completely different approach is proposed in [9],
where the authors try to model a power consump-
tion score in a purely statistical way. They ob-
serve that the switching activity of the internal
signals of a processor is proportional to the power
consumed. Starting by this, they observe how
signals vary in a realistic setting, dividing them
in two parts: one more static (related to the most
significant bits) and one more dynamic (related
to the least significant bits). This approach is
interesting and achieves low error rates, but it
requires a still too deep knowledge of the pro-
cessor internals. For this reason, we discard this
method and we focus ourselves on linear models.
The last contribution we can analyse is provided
by Georgiou et al. in [5]. There, the authors
employ a linear model that separates the power
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consumption into three contributions: a common
power equal for all instructions, an instruction
specific power, and a switching overhead related
to the interleaving of instructions. The results
are good, as the average absolute error is about
3.2%, and the worst is around 10%. The authors
use a particular processor and leverage some of
its peculiar characteristics, so the work can not
be easily ported; however, we can use some of its
basic principles to create a more general model.
In practice, we combine ideas from [5], [10], [14]
to create a model that is as general purpose as
possible.

3. Model architecture and con-
struction

3.1. The physical tools
To build an example oracle, we chose to pro-
file the STMicroelectronics™ microcontroller unit
(MCU) STM32F407VGT6.a It is part of the
ARM® Cortex®-M4 processor family, is a 32
bit architecture, runs the Armv7E-M ISA, mean-
ing it supports Thumb instructions, has an hard-
ware floating point unit (FPU) [13], and is easily
programmable by end users using STMicroelec-
tronics’ tools. The MCU is hosted on a STM32
Discovery kit board.b

Moreover, to measure the power absorbed by the
CPU we used the Qoitech™ Otii Arc Pro, an
easy to use digital voltmeter capable of measur-
ing time varying tension with a decent precision.
Since the device actually measures only tension,
the current reading is obtained by using a shunt
resistor, connected in series with the processor.
The apparatus is placed inside a Faraday’s box
to shield it from electromagnetic disturbances.
The Otii Arc Pro comes with a graphical user
interface (GUI) program delivered by the man-
ufacturer, from which it is possible to start and
stop a recording and export its data in a CSV file.
Using a GUI can be a problem as the time to save
a measurement will considerably be slower than
using a command line tool. Since the machine
used in this work was running the X11 protocol,
we picked the xdotool software,c to automate

asee https://www.st.com/en/
microcontrollers-microprocessors/stm32f407vg.
html

bsee https://www.st.com/en/evaluation-tools/
stm32f4discovery.html

csee https://github.com/jordansissel/xdotool

the physical recording process.

3.2. The measurement workflow
The overall process is handled by a script writ-
ten in Emacs Lisp [11], that invokes the other
external programs, script and functions to run a
measurement battery.
First, a small library of Emacs Lisp functions we
wrote generates the instructions to test starting
from a given template. For instance, we can run
the command

(instruction-cartesian-product "%1 r0, r0,
#%2"↪→

(list (parse-range "add:sub" 1)
(parse-range "0:10:10" 2)))

to produce

add r0, r0, #0
add r0, r0, #10
sub r0, r0, #0
sub r0, r0, #10

It substitutes each placeholder (%1, %2 ecc.) with
the corresponding element from the provided
ranges, building their Cartesian product. The
ranges can either be a sequence of strings or a
numeric range in the form start:step:end.
Then, each instruction in injected into the C code
to be flashed onto the STM32 board. The official
STMicroelectronics editor provides a firmware
and a C template that contains a main function
with an infinite loop. By placing the instruction
into that, wrapped in an __asm__ directive, we
can make the CPU execute that instruction in-
definitely. The resulting C file is compiled and
linked with the STMicroelectronics firmware: to
do so, we used GCC [12].
We note that collecting power readings from ar-
bitrary memory instructions is difficult, as the
board may implement memory protection. We
limited ourselves to prepare the memory by push-
ing onto the stack, and then executing streaks of
pop or push instructions while manipulating the
stack pointer.
The compiler outputs a binary image, that can
be loaded onto the board with the st-flash
program (also provided by STMicroelectronics).
Then, the xdotool script is executed, which in
turn drives the Otii GUI in taking the measure-
ment. The result is a CSV file, whose name is a
mangled version of the instruction just measured.
Then, another Emacs Lisp function cleans the
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C main file to restore it to the previous state,
so that the following instruction can be injected,
and the process is repeated as needed.

3.3. The model
We model the power of a sequence of instructions
as

Pprg =

∑
i∈prg(Pi ·Oi,i+1 · ci)∑

i∈prg ci

For each instruction i we compute the power
consumed by the instruction (Pi) and we scale
it by an overhead multiplicative factor that de-
pends on the current and the next instructions
(Oi,i+1). Then we compute the weighted sum
of the resulting values with respect to the clock
cycles occupied by the instructions. The terms
Pi and Oi,i+1 are estimated by multiple linear re-
gression, where we take as explanatory variables
the results of some functions of the instructions
under test. Such variables can be quantitative or
categorical. For the term Pi, they encode the in-
struction mnemonic opcode, whether the current
instruction updates the application program sta-
tus register (APSR), whether it uses conditional
execution, whether it uses the barrel shift for its
second operand (and by how much), whether the
second operand is an immediate, whether the
destination register of the instruction is equal to
one of the source registers, and the binary weight
of its binary representation.
Some variables are correlated with each other,
as for instance we expect some of their effect
to be dependent on the instruction mnemonic
of the instruction. We cannot measure all the
possible combinations of effects, as it would re-
quire prohibitive amounts of time, so we limit
ourselves to only some of them. Doing so means
that the model is not properly fitted for all the
instructions, and trying to predict the new ones
may lead to runtime errors. So, we provide a
second, simpler model, to be queried if the first
one fails.
In a similar way, we estimate the inter instruction
overhead Oi,i+1, using as explanatory variables
the mean predicted power of the two instructions
under test, their Hamming distance, their binary
weights and their mnemonic opcodes. Again,
some of the variables are correlated, and a second
simpler model is provided. Data for this model
is collected similarly with respect to the single
instructions, but this time we tested a loop of

two instructions. For both the power and the
overhead estimations, a fallback constant value
is provided in case even the second model fails.
The final oracle (written in the Julia program-
ming language [2]) needs a sequence of instruc-
tions to analyse. We explored two possibilities:
first, we can simulate the execution of the pro-
gram with an emulator like QEMU [1], estimat-
ing the particular interleaving of instructions;
second, we can simply read the disassembled bi-
nary code of the application and estimate all the
basic blocks of code. We note that the former
can be done only if the program is completely
deterministic (i.e., it does not require external
inputs), and the emulator does not support all
the architectures.

4. Experimental results
4.1. Data exploration
When deciding which regression variables to use
in the linear models, we searched for patterns
in the collected data during the measurement
process. We included all the variables of the
single instruction model that have an impact on
the power consumption, and that lead to good
predictions. The tentative explanation we give
for these effects is that different capabilities of
the ARM ISA are executed by different areas of
the processor, and activating them means chang-
ing the total number of logic gates involved in
the calculation. However, their impact is not
constant, meaning that different instructions act
differently with respect to the same effect, and
for some of them the power difference is even
reversed in sign. Therefore, we should correlate
all the effects with the instruction mnemonic op-
code whenever is possible, as we did in the single
instruction complete model.

4.2. Goodness of the models
Since our predictor is composed of different lin-
ear models, assessing their single goodness does
not completely capture the adequacy of the ora-
cle; however, computing some basic metrics can
give us an intuition about it. We computed
the R2 index, the mean absolute percentage er-
ror (MAPE), both with the train data and in
a 10-fold cross validation setting (we report the
average value), and the percentage of parameters
for which the common hypothesis test H0 : βi = 0
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versus H1 : βi ̸= 0 presents a p-value higher than
the usual level of significance of 0.05. The results
are shown in Table 1 at page 6. For the inter-
instruction overhead models we collected fewer
data points and the errors are very much higher;
however, they still perform reasonably well when
validating the predictor with real programs.

4.3. Predictor validation
The real validation can be done when testing
the predictor against real programs. First, we
wrote five simple programs that can be tested
in a totally deterministic way, to evaluate the
model performance with the QEMU generated
trace. Such programs compute the nth Fibonacci
number (both recursively and iteratively), the
factorial of a natural number n (recursively and
iteratively), and the sum of the first n integers.
Then, to test a more general program, and to
assess the performance against a real compiler
optimization, we used a series of benchmarks
employing the Taffo framework [3]. We did in to-
tal three validations: the deterministic programs
with the QEMU trace, the Taffo benchmarks
with the normal trace, and the deterministic pro-
grams with the normal trace.
For each of these programs, we wrote the code on
the board and measured the power consumption.
Then, we used our predictor to produce an esti-
mate of the consumption. We then produced a
matrix of the pairwise power differences between
each couple of programs in the same group, both
for the measured and for the predicted powers.
Since we are only interested in knowing if a com-
piler modification of the code is saving energy
or not, we consider the predictor successful if
the difference in measured power and the dif-
ference in predicted power have the same sign.
The results are plotted in Figure 4.1: we can see
that the trace obtained with QEMU performed
badly, whereas the Taffo programs with the nor-
mal trace gave much better results. In particular,
if we take each Taffo program, and check only
the prediction regarding the optimization of that
single benchmark, the rate of success raises up
to 86.21%. This is an interesting result because
it’s the closest one to what we expect will be the
predictions in an optimization toolchain. Lastly,
we see that using the normal trace with the de-
terministic programs improves the results also
for them.

Figure 4.1: Success rate for the oracle, with
different benchmark suites.

5. Feasibility study
Our example oracle is able to correctly predict
the effect of a compiler optimization in more than
half of the cases. Elaborating on this work, we
outline a series of requirements to build similar
oracles in a general purpose way.

1. The identified general model must be valid
for all processors, or at least for a large range
of them. Since including a new processor
in the compiler toolchain should be a rel-
atively fast operation, adapting the model
to a particular CPU should be simple and
quick. The general model (or the adapted
particular one) should not present under nor
overfitting.

2. It must be possible to collect the data in an
easy and accurate way. Also, a professional
setup is desirable, as it accelerates data col-
lection and allows for better precision. The
processor under test should be injectable
with arbitrary code in an easy way.

3. It must be possible to access to all the infor-
mation required to produce the estimate. In
practice, this means doing the prediction at
a stage when such information is available.
For instance, since we noted the high depen-
dency of power consumption on instruction
binary weight, we needed to know the bi-
nary instruction representations that would
end in memory. This meant that we needed
to work at the assembly level: higher level
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Table 1: Goodness indexes for the single instruction linear models.

Model R2 MAPE (%)
mean MAPE
10-fold (%)

Parameters with
p-values > 0.05 (%)

Single instr.,
complete 0.7938 6.4 6.6 26.92

Single instr.,
reduced 0.7711 7.27 7.41 53.88

Inter-instr.,
complete 0.9302 1051.25 1064.35 74.22

Inter-instr.,
reduced 0.4225 1097.69 1098.48 25.0

representations that mask the register alloca-
tions, or the final ISA mapping (such as, for
instance, the LLVM intermediate represen-
tation (LLVM-IR)), couldn’t have predicted
these effects.

Requirement number 2 is particularly impor-
tant for the total goodness of the predictor: in
our case, for instance, the memory instructions
(loads, stores, push and pop) were particularly
difficult to test, and collecting fewer data points
may reduce the accuracy of the model. By deeply
analysing the firmware code it may be possible
to solve the issue, but that is not guaranteed and
it would require an ad hoc analysis for each pro-
cessor, partially contrasting with requirement 1.
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