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Abstract

This thesis considers the issue of applying data collected with discrete fre-
quency to continuous time model. This rough approach could lead to mis-
leading dynamics since discrete data are applied to models that consider
continuous parameter values.
The most direct solution may be to prefer discrete time dynamical systems,
however, for some values of model's parameters, they could have di�erent
dynamics with respect to continuous time dynamical systems. So it is crucial
to develop methods, known as discretization methods, which transform con-
tinuous time dynamical systems into discrete ones and also pay particular
attention to safeguard the original stability.
In the continuation of the thesis, after presenting main characteristics and
di�erences of continuous and discrete time dynamical models, several dis-
cretization methods will be presented with a particular attention to Nearly

Exact Discretization Scheme (NEDS), a discretization method used for 1-
dimensional biological continuous time models.
Hereafter, NEDS will be applied to a 2-dimensional economical model, its
stability will be discussed. Finally, numerical simulations of the economi-
cal model will be performed and moreover we will consider data collected
at discrete frequency regarding the price of a chosen commodity and from
that, we will calibrate the parameters of continuous and NEDS-discretized
models. Lastly we will compare the data trend and the simulations of the
continuous and discretized models.

Keywords: dynamical systems, continuous time, discrete time, discretiza-
tion methods, NEDS method
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Sommario

Questa tesi tratta il problema dell'applicazione di dati raccolti con frequenza
discreta ad un modello a tempo continuo. Questo approccio super�ciale può
portare a dinamiche fuorvianti dato che i dati discreti sono applicati ad un
modello che considera valori di parametri continui.
La soluzione immediata potrebbe essere quella di preferire sistemi dinamici
a tempo discreto, tuttavia, per alcuni valori dei parametri del modello, essi
possono avere dinamiche di�erenti rispetto a sistemi dinamici a tempo con-
tinuo. È quindi molto importante sviluppare dei metodi, noti come metodi

di discretizzazione, che trasformano sistemi dinamici a tempo continuo in a
tempo discreto ed inoltre porre particolare attenzione a preservare la stabi-
lità del modello originario.
Nel prosieguo della tesi, dopo aver presentato le principali caratteristiche e
di�erenze dei sistemi a tempo continuo e discreto, saranno mostrati anche
numerosi metodi di discretizzazione con un particolare focus al Nearly Exact
Discretization Scheme (NEDS), un metodo di discretizzazione usato per mo-
delli biologici a tempo continuo con 1 variabile.
In seguito, il NEDS verrà applicato ad un modello economico a 2 variabili
e la sua stabilità verrà discussa. In�ne, verranno mostrate delle simulazioni
numeriche del modello economico ed inoltre verranno considerati dei dati
raccolti con frequenza discreta riguardanti il prezzo di una commodity pre-
cedentemente scelta. Da lì, verranno poi calibrati i parametri del modello
continuo e di quello discretizzato con il metodo NEDS. L'ultima analisi sarà
la comparazione dell'andamento temporale dei dati con le simulazioni del
modello continuo e di quello discretizzato.

Parole chiave: sistemi dinamici, tempo continuo, tempo discreto, metodi
di discretizzazione, metodo NEDS
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Introduction

Real systems (physical, biological, mechanical, economical etc.) are usually
very complex to manage in their own totality, in this regard a mathematical
description is needed to describe them. When evolution over time is consid-
ered, these mathematical descriptions are known as dynamical systems and
their biggest advantage is that, through a vector of mathematical variables,
known as state variables, they give a su�cient knowledge of the dynamics of
the real system. More brie�y, in order to obtain knowledge from a real sys-
tem, it is required to model it through mathematical variables which give the
"state" of the considered system, so that the real system, which is complex
and would be impossible to consider in each of its aspects, is approximated
by a mathematical model.

Usually, the most used dynamical systems in practice consider time as a
continuous variable, i.e. the set of all admissible values for time is R.
However, data are not collected with continuous frequency; take for instance
a economical model on electricity, its price is not calculated every single mo-
ment but it is available only at established time; consider also an ecological
model on the population of a certain type of �sh in the Adriatic Sea, the
number of �shes is given only every year since it would not be possible to
compute it with a higher frequency.
Arguing in this way, it is clear that using continuous time dynamical systems
with data available only at discrete time is an incoherent choice. Neverthe-
less, it is not just a matter of ethic, indeed, we will see that continuous
time and discrete time dynamical systems could have completely di�erent
behaviours, so using discrete dynamical systems with discrete time data is
crucial in order to obtain result which could be safely applied in the practice.

Another problem is the fact that sometimes it is not possible to choose be-
tween a continuous time and a discrete time dynamical system, since the
latter are not so common in practical uses.
The relative solution is to study a method which transforms a continuous
model into a discrete one, the above-mentioned discretization methods. We
will show some of them with a particular focus on Nearly Exact Discretiza-

tion Schemes (NEDS), presented in [5].
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Once showed the di�erent types of dynamical systems and the discretization
methods, the last step will be studying a continuous time economical model
and apply NEDS method, that will be also the aim of the thesis.
A relative simple 2-dimensional continuous time model, presented in [6] will
be taken into account and it will be performed its discretization. The result
will not be as we previously expected since a tiny additional hypothesis will
be added in order to preserve the original stability.
Finally, numerical simulations will be performed and a comparison, between
real data related to the price of a chosen commodity versus continuous time
model and its discretized version will be showed.

The thesis will be divided into 3 main chapters and �nal conclusions:

Chapter (1) will be devoted to present dynamical systems, their most im-
portant bifurcations and some de�nitions that will be useful also in next
chapters. The chapter will be focused on continuous time and discrete time

systems showing similarities and di�erences through simple but explicative
examples. Indeed, at the end of each section, a numerical example (in the
majority of the sections, the example will be the well known logistic model)
will be showed with a greater attention on the di�erent results obtained ac-
cording to the number of variables considered in the model.

Chapter (2) will present the process of discretization that allows to pass
from a continuous time system to a discrete one. Some di�erent types of
discretization methods will be showed, starting from the simpler, like Eu-

ler and Kahan methods, following Non-Standard Finite Di�erent (NSFD)

scheme will be showed and �nally, it will be paid speci�c attention to the
Nearly Exact Discretization Scheme (NEDS) that will be used also in chap-
ter (3) for the numeric application.
As done for chapter (1), after each section regarding a discretization method,
a numerical example (the logistic model, coherently) will be performed and
great attention will be paid to di�erences between di�erent discretizations
and their pros and cons.

Chapter (3) will be the aim of the thesis, indeed an application of NEDS
model will be performed for a continuous time energy model presented in
[6], we will observe that a small additional hypothesis will be introduced in
order to preserve the stability of the continuous time model.
A numerical simulation for the price of soft wheat in two European countries
(Italy and Austria) will be performed and the theoretical notions regarding
the consistency of NEDS scheme will be con�rmed also for a generic eco-
nomical model like the one used here in this thesis.

Finally a comparison between data regarding the price of the benchmark for
Arabica co�ee and the simulations of the continuous and discretized model

2



will be showed. In particular before simulating the two models, in order
to give solidity to our analysis, we will perform a calibration for model's 5
parameters. We will observe that, for optimal initial values, the discretized
model will perform better than the original one, with a smaller error than
the continuous time model.

Chapter (4), the conclusion, will summarize the thesis work, highlighting the
result obtained, showing the processes used in order to obtain them and the
di�culties that arose in the third chapter.
Finally, some ideas for future works will be given and the potential of NEDS
method for economy will be discussed.
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Chapter 1

Dynamical Systems

1.1 General De�nitions

A dynamical system is a mathematical model i.e. a mathematical description
through variables and equations whose state changes over time, for these
reasons, these models are called dynamical. Constant systems, i.e. systems
in which the state does not change over time, can be considered a particular
case of dynamical systems.
The �rst step in order to give a characterization of the "state" of the system:
therefore, measurable quantities, called state variables are de�ned in the
following way

x1, ..., xn

where xi ∈ R, i = 1, .., n.
In general, in order to describe a real system, many variables xi are neces-
sary; in some particular cases, only one variable is enough and its notation
will be just x. In next chapters, a focus will done especially for systems
described by one and two variables.
In an economic framework xi may represent the price of a stock or the in-
�ation of a given country, in a thermodynamic system xi may represent the
pressure or the temperature and so on.
Sometimes xi may have a value that is not admissible for the system con-
sidered, for example in ecology, where xi represents the density of a certain
species, xi cannot be negative. For this reason the following de�nition is
given:

De�nition 1. The state space (or phase space) M ⊆ Rn is the set of the

admissible values of the state variables xi, i = 1, .., n.

In dynamical systems the model changes over time therefore state vari-
ables are function of time: xi = xi(t), i = 1, .., n. The time t may be a real
number or a natural one.
In the �rst case systems are known as continuous time systems: xi : R→ R,
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in the other case they are called discrete time systems: xi : N→ R.
Usually, the state of the system at a certain time t0 is given and the aim is
to compute the state at a di�erent time t, in other words the purpose is the
knowledge of the evolution operator G: G(·) = (G1(·), ..., Gn(·)) : M → M ,
such that x(t) = G(t,x(t0)), where x(t) = (x1(t), ..., xn(t)) ∈M .
Knowing the evolution operator G and the initial condition x(t0), it is pos-
sible to compute the future state of the system for t > t0 (or past state for
t < t0).
The vector function of the state variables x(t) is the parametric equations of
a trajectory, as t varies. If t ∈ R (continuous time system) the trajectory is
a curve in Rn otherwise if t ∈ N (discrete time), the trajectory is countable
set of points.

A particular trajectory is given when all the state variables are constant:
x(t) = G(t,x*) = x* for t > t0. In this case x* = (x∗1, ..., x

∗
n) is called

equilibrium (or �xed point). A consequence is that any trajectory which is
inside the equilibrium will stay in it in the future i.e. if x(t0) = x* then
x(t) = x* for t > t0.
The de�nition of equilibrium can be extended to a subset of the state space:

De�nition 2. A set A ⊆M is trapping if x(t0) ∈ A then x(t) = G(t, x(t0)) ∈
A for any t > t0.

Commonly speaking, any trajectory that starts from a point inside a
trapping set will always stay inside it.
A stronger property is invariance:

De�nition 3. A closed set A ⊆M is invariant if G(t, A) = A.

From the previous de�nition, we can a�rm that a set A is invariant if
each subset A′ ⊂ A is not trapping. In other words, let A be a trapping set,
then any trajectory starting inside A will always remains in A and moreover
all the points of A are reached by trajectories starting inside it.
A reasonable question could now be: what happens for a trajectory that
starts from a point belonging to a neighbourhood of the invariant set?
We have the following de�nitions for the concept of stable set :

De�nition 4 (Liapunov stability). An invariant set A is stable if for

each neighbourhood U of A there exists another neighbourhood V of A, with

V ⊆ U , such that any trajectory that starts from V remains inside U.

De�nition 5 (Asymptotic stability or attractor). An invariant set A

is asymptotically stable (or called attractor) if:

(i) A is stable w.r.t. Liapunov stability, def. (4)

(ii) lim
t→+∞

G(t, x) ∈ A, ∀ initial condition x ∈ V .
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These two de�nitions can be expressed in the following way: a set A is
Liapunov stable if for any initial condition outside and close to A, all the
possible trajectories will stay around A.
Consequently a set A is asymptotically stable if it is Liapunov stable and all
the trajectories starting "near" it will tend to A, in the long run.
Finally, from de�nition (4), we obtain a characterization of an instable (or

unstable) set A as a set such that exists a neighbourhood U ⊃ A such as
initial conditions taken su�ciently close to A generate trajectories that leave
U.
These de�nitions can be rephrased substituting neighbourhoods with norms
in Rn with no substantial di�erence.

Previous de�nitions concerned the behaviour of the dynamical system when
the initial conditions belong to a su�cient small neighbourhood of an invari-
ant set, i.e. these de�nitions are local. The question now could be: what
happens if the initial conditions are far from the invariant set?
Therefore we are interested in the global behaviour of the system, i.e. how
far can be the perturbation shift of the state of a system from an equilibrium,
in order to have a trajectory that goes back to the original equilibrium in
the long run. For this reason it is given the following de�nition:

De�nition 6 (Basin of attraction). Let A be an attractor, the basin of

attraction of A, denoted as B(A), is the set of all points x ∈ M such that

limt→+∞G(t, x) ∈ A.

In the particular case B(A) = M (where M is the set of all admissible
values of the state variables), A is called global attractor.
A very rough measure of robustness of a system (i.e. the capacity of absorb-
ing small exogenous perturbations without signi�cant changes of the equi-
librium) can be the extension of the basin of attraction, despite so, there is
no evidence of a positive relation between large basins of attraction and the
absence of vulnerable equilibria, due to the fact that the shape of a basin
can in�uence the robustness of the system.

Usually the evolution operator G (that describes the state of the system) is
not known or sometimes it has such a complex structure that it cannot be
used in practice.
To this end, dynamical systems are described in terms of local evolution
equations (or dynamic equations) that gives information how the dynamical
state changes with small time steps.
If the dynamical system is in continuous time then the evolution equations
are described by Ordinary Di�erential Equations (ODE):{

dxi(t)
dt = fi(x1(t), ..., xn(t);α), i = 1, ..., n

xi(t0) = x̄i
(1.1)
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where the time derivative represents the speed of change of the state vari-
able xi(t) with respect to the time variations. The right-hand side describes
the in�uence of the same state variable xi(t) and the other state variables
xj(t), j 6= i. The vector α = (α1, ..., αm), αi ∈ R, represents m real parame-
ters that can assume di�erent values, they stand for the exogenous in�uences
of the dynamical system. If these parameters vary with respect to time, i.e.
αi = αi(t), the model is non-autonomous.

In the case of discrete time, the evolution equations are expressed by Di�er-

ence Equations (DE) that describes the evolution of the system:

{
xi(t+ 1) = fi(x1(t), ..., xn(t);α), i = 1, ..., n

xi(0) = x̄i
(1.2)

The study of equations (1.1) and (1.2) gives the local behaviour of the system
that changes with time. This is just a qualitative analysis but it can be
enough to represent properly the system, indeed solving ODE (or DE in
case of discrete time) gives information about existence of attracting sets,
their basins and substantial changes in case of variation of parameters αi,
i = 1, ...,m.

In next sections, continuous time dynamical systems will be presented and
following discrete time models will be analyzed, moreover similarities and
main di�erences will be highlighted.

1.2 Continuous Time Dynamical Systems

This chapter is devoted to dynamic equation of the form expressed in (1.1).
It will be at �rst present the simplest case: 1-dimensional model (n = 1),
then the case with 2 dynamic equation and eventually the case with n > 2.
There are many theorems regarding existence and uniqueness of a solution
of an ODE; here it is reported a theorem that has "strong" assumptions but
it is enough for the aim of thesis to give a general framework for dynamical
systems.

Theorem 1 (Existence and Uniqueness). If the functions fi have con-

tinuous partial derivatives ∂fi
∂xk

in M and x(t0) ∈ M , then there exists a

unique solution xi(t), i = 1, ..., n of the system (1.1) such that x(t0) = x̄ and

each xi(t) is a continuous function.
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1.2.1 1 - Dimensional Continuous Time Dynamical Systems

The simplest continuous time model is the when the only dynamic equation
is linear, it has the following form:

ẋ = αx, with x(t0) = x0. (1.3)

α is the parameter that relates the rate of growth of x to itself (indeed, the
sign of the derivative of x represents the increase or decrease of the variable).
In particular if α > 0, x will increase, on the contrary if α < 0, x will decrease
(here we are assuming that x is positive, the reasoning can be reversed for
x negative). For equation (1.3) there is an explicit solution:

x(t) = x0e
α(t−t0) (1.4)

Nonetheless explicit solutions are very infrequent, especially with nonlinear
di�erential equations; in order to obtain information regarding the behaviour
of the system, qualitative methods are very helpful. Suppose to have the
di�erential equation:

ẋ = f(x, α) (1.5)

where again α is a parameter of the system.
The procedure in order to �nd the equilibrium points is to solve the equation
ẋ = 0 , i.e. f(x, α) = 0.
Suppose now that x∗ is a �xed point for (1.5) and f ′(x∗) 6= 0. Then the
right-hand side of (1.5) can be approximated by Taylor expansion (�rst order
approximation) as follows:

f(x) = f(x∗) + f ′(x∗)(x− x∗) + o(x− x∗)

This is a linear and local approximation for the system in the neighbourhood
of x∗.
The following result is a cornerstone for stability of 1-dimensional systems
in continuous time.

Proposition 1 (1-dim. local asymptotic stability in continuous

time). Let x∗ be a �xed point of (1.5). If f ′(x∗) < 0 then x∗ is a locally

asymptotically stable equilibrium, if f ′(x∗) > 0 then x∗ is unstable.

We can also give an important de�nition for equilibria:

De�nition 7. An equilibrium point x∗ is called hyperbolic if f ′(x∗) 6= 0,
otherwise if f ′(x∗) = 0 then x∗ is a non-hyperbolic equilibrium.

Proposition (1) gives a result for hyperbolic equilibrium points, what
happens for non-hyperbolic �xed points?
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The answer is not as immediate as in the previous case; nothing can be said
about the stability of x∗ with just a linear approximation, higher derivatives
should be taken into account and simulations should be done in order to give
a local characterization of the stability of the equilibrium point.

In the previous part, the role of parameters was sidelined, we now focus on
what happens to the stability of the system if the value of a parameter is
changed.

De�nition 8 (Bifurcation). A variation of parameter's value that leads to

a qualitatively di�erent dynamic scenario is known as bifurcation.

In other words, when an arbitrarily small modi�cation of the parameter's
value causes a qualitative change in the stability properties of the equilibria
then a bifurcation arises at the boundary between the two equivalence classes.
There are 3 possible bifurcations in a 1-dimensional continuous time model:

De�nition 9 (Fold Bifurcation). Fold bifurcation is characterized by a

creation of two equilibrium points (one stable and one unstable) as the pa-

rameter varies.

The canonical example of fold bifurcation is the dynamical system: ẋ =
µ− x2.
The two �xed points are: x∗1,2 = ±√µ (of course the two equilibrium
points exist only for µ ≥ 0, when µ < 0 there are no �xed points). In
the canonical example, the value µ = 0 is the bifurcation point, indeed at
µ = 0 the equilibrium points are coincident and non-hyperbolic (x∗1,2 = 0
and f ′(x∗1,2) = −2x = 0). We now focus on the stability of the two
equilibria: the �rst one is unstable since the derivative is positive, indeed
f ′(x∗1) = f ′(−√µ) = 2

√
µ > 0. On the contrary, the second equilibrium is

stable, due to the negativity of the derivative computed for the �xed point,
in fact f ′(x∗2) = f ′(+

√
µ) = −2

√
µ < 0.

The bifurcation diagram is showed in �g. 1.1, where the dotted red line
stands for an unstable equilibrium and the green line for a stable one, and
the relative phase portrait in �g. 1.2, where the direction of the arrow repre-
sents the sign of ẋ in that zone of the state space, with the usual convention:
ẋ < 0 implies a left arrow, ẋ > 0 a right arrow.

Another type of bifurcation that could arise in a 1-dimensional continuous
time model is the so-called transcritical bifurcation.

De�nition 10 (Transcritical Bifurcation). Transcritical bifurcation is

characterized by the existence of two equilibrium points (one stable and one

unstable), that merge at the bifurcation point and after the bifurcation the

pre-existent two equilibria have swapped their stability.
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Figure 1.1: Fold bifurcation diagram for the system ẋ = µ− x2.

(a) (b) (c)

Figure 1.2: Fold bifurcation phase portrait for the system ẋ = µ− x2.
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The canonical example of transcritical bifurcation is the system ẋ =
µx− x2.
The two �xed points are x∗1 = 0 and x∗2 = µ, they merge at µ = 0, that
is the bifurcation value, where the equilibrium is non-hyperbolic (f ′(x∗1,2) =
µ − 2x = 0 for µ = 0 and x∗1,2 = 0). Studying the stability of x∗1, it
is immediate to deduce that its derivative is f ′(x∗1) = f ′(0) = µ; so for
µ < 0, x∗1 is a stable equilibrium, for µ > 0, it is unstable. Regarding
x2, f ′(x∗2) = f ′(µ) = −µ, so its stability is the complementary of x∗1's (i.e.
unstable for µ < 0 and stable for µ > 0).
In �gures 1.3 and 1.4, it is presented the bifurcation diagram for the system
in question and its phase portrait with the same meaning for red and green
colors and the previous notation for the direction of the arrows.

Figure 1.3: Transcritical bifurcation diagram for the system ẋ = µx− x2.

The third possible bifurcation for a 1-dim. continuous time dynamical system
is the pitchfork bifurcation.

De�nition 11 (Pitchfork Bifurcation). Pitchfork bifurcation is charac-

terized by a transition from one equilibrium to three equilibrium points, the

one already existent changes its stability as the parameter crosses the bifur-

cation point while two equilibria are created.

The canonical example is ẋ = µx− x3, the �xed point x∗0 = 0 always ex-
ists, in particular for µ < 0 it is stable and unstable for µ > 0, since its deriva-
tive is f ′(x∗0) = f ′(0) = µ. The other two equilibria are x∗1,2 = ±√µ, of course
x∗1,2 exist only if µ ≥ 0, they are stable since f ′(x∗1,2) = f ′(±√µ) = −µ < 0.
Three equilibrium are coincident for µ = 0, which is the bifurcation value.
This type of pitchfork bifurcation is known as supercritical, in order to distin-
guish it from the subcritical pitchfork bifurcation where the unique unstable
equilibrium becomes stable at the bifurcation value with the creation of two
unstable equilibria. The canonical example for the subcritical version is the

11



(a) (b) (c)

Figure 1.4: Transcritical bifurcation phase portrait for the system ẋ = µx−
x2.

dynamical system ẋ = x3 − µx. The results for this model are obtained in
the same way of supercritical case's.
In �gure 1.5 we show both type of pitchfork bifurcation and in �gures 1.6-1.7
their phase portraits, with the usual meaning for colors and arrows.

(a) ẋ = µx− x3 (b) ẋ = x3 − µx

Figure 1.5: Supercritical and Subcritical Pitchfork Bifurcation.

Example (The Logistic Growth Equation)

Consider the logistic growth equation by Verhulst:

ẋ = rx
(

1− x

k

)
=: f(x) (1.6)

where r and k are positive parameters.

Imposing f(x) = 0, we �nd the two �xed points: x∗1 = 0 and x∗2 = k.
Since (1.6) is a nonlinear 1-dimensional continuous time dynamical model,
we can apply proposition (1), which allows us to get stability results by
studying the derivative of f in x∗1 and x∗2 (checking that the two equilibria
are hyperbolic). In particular we obtain: f ′(x∗1) = f ′(0) = r > 0 and
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(a) (b) (c)

Figure 1.6: Supercritical pitchfork bifurcation phase portrait for the system
ẋ = µx− x3.

(a) (b) (c)

Figure 1.7: Subcritical pitchfork bifurcation phase portrait for the system
ẋ = x3 − µx.

f ′(x∗2) = f ′(k) = −r < 0. So, from the previously cited proposition, x∗1 is
unstable equilibrium and x∗2 is stable.
We can also draw a simple state state space where the direction of arrows
indicates the positivity (or negativity) of ẋ, with the convention that ẋ < 0
is represented by left arrow and ẋ > 0 by right arrow. It is showed in �g.
1.8

1.2.2 2 - Dimensional Continuous Time Dynamical Systems

The next step is to consider a 2-dimensional continuous time model, for
example: {

ẋ1 = f1(x1(t), x2(t))

ẋ2 = f2(x1(t), x2(t))
(1.7)

Figure 1.8: State space for model (1.6) with unstable and stable equilibria
(in red and green, respectively).
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Usually, a good graphical method in order to have a qualitative view of the
model is to represent in the phase space (x1, x2) the two curves: f1(x1(t), x2(t)) =
0 and f2(x1(t), x2(t)) = 0. These curves are called nullclines and their in-
tersections de�ne the �xed points of the model.
Moreover, the utility of drawing nullclines lies in the fact that the phase
plane is divided into zones where the sign of the time derivatives (ẋ1, ẋ2)
gives the resulting direction (obtained by the rule of vector sum) of the tra-
jectory in that part of the plane. In this way, after computing the direction
of the trajectory in every zone of the phase plane, it is possible to draw a
useful qualitative sketch for trajectories.
An example, of what we said above for a 2-dimensional continuous time
model, is the prey-predator model, a famous model used in ecology that
describes the population of two species:{

ẋ1 = rx1(1− x1
k )− ax1

1+ahx1
x2 =: f1(x1, x2)

ẋ2 = e ax1
1+ahx1

x2 − dx2 =: f2(x1, x2)
(1.8)

In particular, x1 represents the number of a species (the prey) while x2

represents the quantity of their predators. In �g. 1.9, we draw, at �rst,
the nullclines of f1 and f2 (in magenta and cyan, respectively), the three
�xed points are their intersections (yellow dots) and then for each zone of
the phase plane we computed the sign of ẋ1 and ẋ2, drawing a black arrow
with the following convention, ẋ1 < 0 implies left arrow, ẋ1 > 0 right arrow,
ẋ2 < 0 down arrow, ẋ2 > 0 up arrow. Then we summed the arrows with the
rule of vector sum, computing the direction of the trajectory in each zone,
de�ned by the red arrow.
Of course, since the considered model is ecological, it would be meaningless
to consider trajectories and equilibria outside the �rst quadrant.

It is immediate to observe that the "central" �xed point (the equilibrium
which does not lies on the Cartesian axes) attracts the trajectories generating
a sort of "vortex", we will see in next pages that it is called stable focus.

We now consider a generic linear 2-dimensional continuous time model:{
ẋ1 = a11x1(t) + a12x2(t)

ẋ2 = a21x1(t) + a22x2(t)
(1.9)

Model (1.9) can be also rewritten in matrix form as:

ẋ = Ax

where:

A =

(
a11 a12

a21 a22

)
; x(t) =

(
x1(t)
x2(t)

)
; ẋ(t) =

(
ẋ1(t)
ẋ2(t)

)
14



Figure 1.9: Nullclines and qualitative sketch for trajectories' directions for
model (1.8), with k = 5, a = 1, h = 1, d = 1, e = 2, �xed points are in yellow
dots and trajectories are represented by red arrows.

In order to study the stability of system (1.9), the characteristic equation,
for the eigenvalues λ1,2 of the system, should be computed:

λ2 − Tr(A)λ+Det(A) = 0 (1.10)

Many types of phase portraits can arise with respect to the value (the sign
in particular) of the two eigenvalues of matrix A.

1. If λ2 < λ1 < 0 (i.e. two distinct, real, negative eigenvalues). The
general solution is:

x(t) = c1v1e
λ1t + c2v2e

λ2t (1.11)

This case can be reformulated with these conditions for trace and de-
terminant of matrix A:

Tr(A)2 − 4Det(A) > 0, T r(A) < 0, Det(A) > 0

The asymptotically stable equilibrium is called stable node (or sink).

2. If λ1 > λ2 > 0 (i.e. two distinct, real, positive eigenvalues) that can
also be rewritten as:

Tr(A)2 − 4Det(A) > 0, T r(A) > 0, Det(A) > 0

The general solution is analogous to (1.11). In this case, the unstable
equilibrium is known as unstable node (or source).

3. If λ2 < 0 < λ1 (i.e. two distinct, real eigenvalues, one positive and one
negative), that can be rephrased as

Tr(A)2 − 4Det(A) > 0 Det(A) < 0
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In this case the unstable �xed point is called saddle, since the tra-
jectory at �rst approaches the equilibrium point along the invariant
line (known as stable manifold) associated to the eigenvector related
to the negative eigenvalue (λ2, in the example) and then moves away
following the invariant line (unstable manifold) related to the positive
eigenvalue (λ1).

4. If λ2 = λ1 < 0 (i.e. two coincident, real, negative eigenvalues) or

Tr(A)2 − 4Det(A) = 0, T r(A) < 0

The equilibrium is called stable improper node. The general solution
is:

x(t) = c1ve
λt + c2vte

λt

with λ = λ1 = λ2 and v = v1 = v2.

5. If λ2 = λ1 > 0 (i.e. two coincident, real, negative eigenvalues) or

Tr(A)2 − 4Det(A) = 0, T r(A) > 0

The equilibrium is called unstable improper node and the general solu-
tion is the same of the stable improper node.

6. If λ1 = a+ ib and λ2 = a− ib (i.e. two complex conjugate eigenvalues)
or

Tr(A)2 − 4Det(A) < 0

In this case the general solution is given by:

x(t) = eat[c1(Re(v1))cos(bt) + c2(Im(v1))sin(bt)]

The sign of the trace of matrix A, gives information regarding the
expanding or contracting nature of the oscillations around the equilib-
rium point.

(a) If Tr(A) < 0 then the equilibrium is a stable focus (negative
eigenvalues since a < 0).

(b) If Tr(A) > 0 the equilibrium is a unstable focus (positive eigen-
values since a > 0).

(c) Finally if the eigenvalues are purely imaginary (i.e. Tr(A) = 0)
the equilibrium is a centre.

Local phrase portraits of previously presented equilibrium points are showed
in �gures 1.10 and 1.11.

The goal is now to understand what happens when the 2-dimensional contin-
uous time model is nonlinear. As for 1-dimensional version, there are results
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(a) Stable node (b) Unstable node

(c) Saddle (d) Stable improper node

(e) Unstable improper node

Figure 1.10: Local phase portraits with real eigenvalues.

(a) Stable focus (b) Unstable focus

(c) Centre

Figure 1.11: Local phase portraits with complex eigenvalues.

17



that give information regarding the local behaviour of the system (i.e. a
qualitative result for a neighbourhood of the equilibrium point).
Consider again system (1.7), the next theorem gives a powerful tool for qual-
itative information regarding the behaviour of the system.

Theorem 2 (Hartman-Grobman, 1964). Give a nonlinear system, as

(1.7). Let x∗ ∈ R2 be an equilibrium point, if x∗ is hyperbolic, i.e. all the

eigenvalues of the Jacobian matrix J(x∗) have non-null real part, then the

local phase in a neighbourhood of x∗ is qualitatively equivalent to the one

related to the linear approximation.

This theorem can be generalized for n > 2 and using de�nitions of home-
omorphisms and neighbourhoods but the relevant part is identical: any hy-
perbolic equilibrium can be classi�ed as stable or unstable just observing the
linear approximation through the Jacobian matrix.
Of course, if the equilibrium is non-hyperbolic, Hartman-Grobman theorem
cannot be applied, so other results should be used or numerical simulation
could be enough to explain the local stability.

In a 2-dimensional continuous time system invariant sets are not just equi-
librium points.

De�nition 12. A limit cycle is an invariant closed orbit such that a trajec-

tory starting from a point of the invariant set will cross the original point

after time T , i.e. x(t) = x(t+ T ). T is the period of the cycle

A limit cycle may be attractive, repellent or neutrally stable (centre).
An example of a limit cycle is presented here in �gure 1.12 (where stability
for the limit cycle is denoted by the color blue and instability by red):

Figure 1.12: Limit cycles for the Kaldor business cycle model [3].

There are several ways in order to �nd out if a closed invariant orbit exists:
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Theorem 3 (Poincaré-Bendixson). Let ẋ = f(x) be a set of two ordinary

di�erential equations de�ned in an open set G ⊆ R, and let D ∈ G be a

compact trapping set that does not contain any equilibrium point. Then D
must contain at least one closed invariant orbit.

Poincaré-Bendixson is applicable only in a 2-dimensional system. It gives
an existence result but it does not specify whether the limit cycle is stable
or not. Dulac proposed a method to rule out limit cycles:

Proposition 2 (Dulac Criterion). Let ẋ = f(x) be a continuously di�er-

entiable vector �eld de�ned on a simply connected subset R of the plane. If

there exists a continuously di�erentiable, real-valued function g(ẋ) such that

∇ · (gẋ) has one sign throughout R , then there are no closed orbits lying

entirely in R.

The drawback of Dulac criterion is that there is not an algorithm for
searching (gẋ). Usually good candidates are g = 1, 1/xayb, eax and eay [11].
Another method used in order to exclude limit cycles is to �nd a Liapunov

function.

De�nition 13 (Liapunov function). Consider a �xed point x∗, a Liapunov
function V is a continuously di�rentiable, real-valued function such that:

(i) V (x) > 0 for all x 6= x∗ and V (x∗) = 0 (V is positive de�nite);

(ii) V̇ < 0 for all x 6= x∗.

From this de�nition the homonymous criterion is:

Proposition 3 (Liapunov Criterion). If it is possible to �nd a Liapunov

function then x∗ is asymptotically stable and in particular closed orbits are

not present.

The problem of the method is analogous to Dulac criterion, in practice
�nding a Liapunov function can be very complicated since no algorithms
exists.

The last useful criterion for excluding the presence of limit cycles that we
present is:

Proposition 4 (Bendixson Criterion). Let A be a closed and bounded

region of R2, if the divergence of the system does not change its sign (or at

most it is null of the axis) then there are not limit cycles in A.

We conclude this section, regarding 2-dimensional continuous time dy-
namical systems, showing possible local bifurcations.
In addition to the ones presented in de�nitions (9), (10) and (11), there is now
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the possibility that two conjugate complex eigenvalues cross the the imagi-
nary axis. We have already seen that eigenvalues with non-null imaginary
part create an oscillatory behaviour (stable and unstable focus or centre).
The "new-entry" bifurcation in 2-dimension is the so called Andronov-Hopf

(or simply Hopf ).

Theorem 4 (Andronov-Hopf bifurcation). Consider the 2-dimensional

dynamic model:

ẋ = f(x, µ), x ∈ R2, µ ∈ R

let x∗(µ) be an isolated equilibrium point. Assume that the eigenvalues,

λ1,2 = α(µ) ± iω(µ), are complex for µ in a neighbourhood of µ0 and for

µ = µ0 there holds that α(µ0) = 0 and ω(µ0) > 0. If
∂Reλ1,2
∂µ > 0 (for

µ = µ0). Then x∗ is a stable focus for µ < µ0 and an unstable focus for

µ > µ0, for µ = µ0 a closed invariant orbit Γ is created around x∗ such that

one of the following holds:

(i) Γ exists for µ > µ0 and is a stable limit cycle;

(ii) Γ exists for µ < µ0 and is a unstable limit cycle;

(iii) in�nitely many closed invariant curves exist for µ = µ0.

Moreover, the period of trajectories is T (µ) = 2π
ω0

+o(|µ−µ0|) and in cases (i)

and (ii) the amplitude of Γ increases, as µ moves away from the bifurcation

value (µ0), proportionally to
√
|µ− µ0|.

It is immediate to observe that (as in Pitchfork bifurcation), case (i) in
theorem (4) is known as supercritical Hopf bifurcation and case (ii) is the
subcritical version. A visual representation is shown below in �g. 1.13:

Figure 1.13: Hopf bifurcation (left supercritical, right subcritical).

Another way of seeing Hopf bifurcation is the following: the loss of stability
in the supercritical case is "soft" since the �xed point becomes unstable,
however there a stable limit cycle is created around it. This implies that
trajectories remains nearby the �xed point. A completely opposite scenario
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is the subcritical case, where the stable �xed point is at �rst surrounded
by an unstable limit cycle (so trajectories starting inside the cycle will con-
verge to the equilibrium) then when the bifurcation threshold is reached, the
limit cycle collapses to the equilibrium point and disappears, moreover the
equilibrium looses its stability. The result is an unstable �xed point where
even trajectories starting from an arbitrarily small neighbourhood of it, will
diverge. This is an example of hard stability loss.

Example (2-dim. Continuous Time Model)

Consider the dynamical model:{
ẋ1 = −px1 + x2 =: f1(x1, x2)

ẋ2 =
x21

1+x21
− x2 =: f2(x1, x2)

(1.12)

where p > 0.

First of all, by applying Bendixson Criterion, proposition (4), it is immediate
to deduce that there cannot be limit cycles in the �rst quadrant since the
divergence of the system is equal to −p−1 < 0, for every value of p (observing
that p is positive by hypothesis of the system).
Another interesting observation can be done by looking at �g. 1.14, where we
draw f2(x1, x2) and f1(x1, x2) for speci�c values of p. We observe that, if p
is greater than a threshold (p̄ = 0.5), then the intersection of nullclines gives
only one �xed point (x∗0, y

∗
0), which is in origin of the axis. On the contrary

if p is smaller than the threshold, the slope of f1 allows the presence of 3
�xed points.

The result of this qualitative observation could also be done analytically, by
imposing both f1(x1, x2) and f1(x1, x2) equal to 0. The result are 3 �xed
points:

(x∗0, y
∗
0) = (0, 0), (x∗1,2, y

∗
1,2) =

(
1±

√
1− 4p2

2p
,
1±

√
1− 4p2

2

)
Of course, (x∗1,2, y

∗
1,2) exist only if 1 − 4p2 > 0, i.e. if p < p̄ = 0.5. We saw

that varying parameter p, there could be one or three equilibria; the �rst
question one may have is: is it a pitchfork bifurcation or a fold?

The answer comes from the study of the stability of (x∗0, y
∗
0). By applying

theorem (2), we can study the linear approximation via the Jacobian matrix
and the results are qualitatively equivalent to the original ones, since the
equilibrium is hyperbolic.
The Jacobian matrix for (x∗0, y

∗
0) is:

J =

[
−p 1
0 −1

]
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Figure 1.14: Nullclines for model (1.12), yellow dots represent �xed point in
the case p = 0.4.

Its eigenvalues are: −p and −1 and they are always both negative for every
value of p (remembering again that by hypothesis of model (1.12) p is posi-
tive), which means that the equilibrium (x∗0, y

∗
0) is always stable.

So the answer to the previous question is that p̄ = 0.5 is the bifurcation
value related to a fold bifurcation, since the origin never looses its stability.

Let us move to the analytical part of the exercise; in order to have simple
computation we divide it into two cases: p = 1 and p = 0.4.

The �rst one is almost already done, since we saw previously that there is
only one equilibrium point in the origin and it is stable. Its eigenvalues are
equal both to −1, so they are coincident. It is a stable improper node. We

only have to compute the eigenvector for λ = −1, which is equal to v =

[
1
0

]
.

Its general solution will be:

x(t) = c1ve
λt + c2vte

λt

We now move to the more complex case p = 0.4. As said before there are 2
other �xed points in addition to the origin of the axes, more precisely they
are (x∗1, y

∗
1) = (2, 0.8) and (x∗2, y

∗
2) = (0.5, 0.2). Consider at �rst (x∗1, y

∗
1),

applying again Hartman-Grobman theorem (2), we study the linearization,
which gives the Jacobian matrix:

J =

[
−0.4 1
0.16 −1

]
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which gives the two eigenvectors λ1 = −0.2, λ2 = −1.2 and the correspondent

eigenvectors:v1 =

[
0.98
0.20

]
,v2 =

[
−0.78
0.62

]
.

There are two distinct, real and negative eigenvalues, so (x∗1, y
∗
1) is a stable

node.
Its general solution will be:

x(t) = c1v1e
λ1t + c2v2e

λ2t

Regarding (x∗2, y
∗
2), the Jacobian matrix is:

J =

[
−0.4 1
0.64 −1

]

which gives the two eigenvalues: λ1 = 0.15, λ2 = −1.55. The correspondent

eigenvectors are:v1 =

[
0.87
0.48

]
,v2 =

[
−0.65
0.75

]
.

It can be observed that here one eigenvalue is negative and one positive,
so (x∗2, y

∗
2) is a saddle, where the stable manifold is v2 and the unstable

manifold is v1.
The general solution is the same of (x∗1, y

∗
1).

Last but not least, we consider (x∗0, y
∗
0), its Jacobian matrix is:

J =

[
−0.4 1

0 −1

]

Its eigenvalues are λ1 = −0.4, λ2 = −1. For p = 0.4 the origin is a stable

node, its eigenvectors are:v1 =

[
1
0

]
,v2 =

[
−0.86
0.51

]
.

Again its general solution is analogous to the one of the other two �xed
points.
Finally we report in �gure 1.15 a sketch for the trajectories, where also the
three �xed points are reported, as usual, in red if unstable (the saddle) and
in green if stable (the two stable nodes).

It can be observed that a trajectory starting near the saddle node at �rst
approaches it through the stable manifold and then suddenly moves away
from (x∗2, y

∗
2) following the unstable manifold, indeed the name "saddle"

comes from this peculiar characteristic of trajectories nearby it.
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Figure 1.15: Di�erent trajectories for model (1.12) for p = 0.4, stable and
unstable equilibria are represented by green and red dots, respectively.

1.2.3 n - Dimensional Continuous Time Dynamical Systems

Many of the results obtained for 2-dimensional dynamical spaces in continu-
ous time can be extended also for n > 2 dimensional spaces. However some
behaviours can happen only if dimension of the system is grater than 2.
In particular, consider the system:

ẋ = f(x, µ) x ∈ Rn, µ ∈ R (1.13)

Then, as usual in order to �nd the equilibrium point x∗(µ), we have to im-
pose the system of n equations equal to 0, i.e. f(x, µ) = 0.
In analogy to what claimed in chapters (1.2.1) and (1.2.2), if the equilibrium
point is hyperbolic (i.e. the eigenvalues of the Jacobian matrix calculated
in the �xed point x∗(µ) have non vanishing real part), then the qualitative
study of the the local stability of the �xed point is equivalent to study the
stability of the linear approximation.
Again, varying the value of parameter µ, can lead to di�erent scenarios for
trajectories, that means that a bifurcation can arise.
If the eigenvalue that crosses the imaginary axis is real the bifurcations are
the one presented in chapter (1.2.1), that means saddle-node, transcritical
and pitchfork bifurcation.
If a pair of complex conjugate eigenvalues crosses the imaginary axis then
the bifurcation that occurs is the Andronov-Hopf version, as mentioned in
the previous chapter (1.2.2).

However, since now the dimension of the system is greater than 2, new scenar-
ios may happen for trajectories. In particular, more complicated attractors
than limit cycle can appear. They are called strange attractors.
The discover of these attractors lead to a particular �eld of study called
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deterministic chaos. It might seem the union of two contrasting words with-
out a meaning. However, we are dealing with continuous time deterministic
models where also initial conditions are known but these attractors have such
a complicated shape that induces the reader to compare the deterministic
trajectories to the ones obtained using a stochastic model.
For this reason they juxtapose the "chaos" to the "determinism" of dynam-
ical systems.
An example is the world-famous strange attractor of the Lorenz metereolog-
ical model: 

ẋ1 = σ(x2 − x1)

ẋ2 = ρx1 − x2 − x1x3

ẋ3 = x1x2 − βx3

(1.14)

The chaotic trajectory is represented in �gure 1.16:

Figure 1.16: Lorenz attractor for σ = 10, ρ = 28, β = 2.6̄ and
(x1(0), x2(0), x3(0)) = (10, 15, 20).

Another characteristic of strange attractors is that if a trajectory starts from
an initial condition inside the set then it remains there and covers all the
points of the attractor (since it is an invariant set). If the trajectory starts
from a point outside the attractor (but very close to it), then it will move
towards the set and then it will have non-periodic trajectory.
Another characteristic is the sensitivity to initial conditions, also known
as butter�y e�ect, it means that even a small di�erence from the initial
conditions (a butter�y blink of wings, precisely) cause large-scale events (in
Lorenz article, a butter�y �ap may cause a tornado in another part of the
planet).

This extreme sensitivity to initial condition can be well showed in �g. 1.17,
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where a small variation to the initial condition for x1 is imposed (from 10 to
9.99999). It can be observed that a tiny di�erence generates two completely
di�erent trajectories such that a long-time prediction is impossible; now it is
clearer why the word "chaos" is used to describe these deterministic models:

(a) "Lorenz's butter�y" (b) Time representations

Figure 1.17: Lorenz attractor and time representation for x1(0) = 10 and
x1(0) = 9.99999 (blue and red, respectively).

As said previously, these scenarios may happen only for continuous time
systems with a dimension greater than 2 and with speci�c values for the
parameters involved in the model.
In chapter (1.3), it will be showed that non-periodic trajectories and chaos
can occur for bi-dimensional discrete time dynamical systems and even if the
dimension is 1.
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1.3 Discrete Time Dynamical Systems

This chapter is devoted to present discrete time dynamical systems, these
models are characterized by a system of evolution equations of the form in
(1.2), which are known as Di�erence Equations. Discrete time dynamical sys-
tems are models where changes in the state system occurs as a consequence
of decisions which cannot be done continuously, in economy, for example, it
is not possible to manage a portfolio buying and selling assets continuously,
because of bank commissions that arise every time an asset is sold/bought,
it would not be clever to modify very frequently the percentage of the assets
that form the portfolio. Also in social models, it is frequent to deal with
discrete time dynamical systems.
In this framework, the state of the system at next time t+ 1 is obtained by
the application of the map T : M → M where, again as in de�nition (1),
M ⊆ Rn is the state space which contains all the admissible values of the
state variables. In general, the single application of map T is the "unit time
advancement" of the state of the dynamical system. A graphical represen-
tation of the application of map T in a discrete system is presented in �gure
1.18.

Figure 1.18: Graphical representation of the application of map T in a dis-
crete time dynamical model.

The inductively iteration of map T de�nes the trajectory of the system and
in general x(n) = Tn(x(0)).

The �rst part will be for mono-dimensional discrete time systems, then the
next sub-chapter will be devoted to bi-dimensional systems.
One of the objectives of this chapter, apart from presenting discrete time
system, is also to highlight main di�erences between continuous and discrete
time systems; in this regard some examples will be showed.

1.3.1 1 - Dimensional Discrete Time Dynamical Systems

The simplest example is when the linear map is homogeneous, i.e. the in-
volved model is:

x(t+ 1) = ax(t), x(0) = x0 (1.15)
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The solution of model (1.15), obtained by induction, is:

x(t) = x0a
t

where t ∈ N.

If |a| < 1 then the trajectory of the model convergence to the unique �xed
point x∗ = 0, in particular, if −1 < a < 0 then the converges has an
oscillatory behaviour, if 0 < a < 1 the convergence is monotone.
On the other side if |a| > 1 then the equilibrium cannot be attractive, in
particular if a > 1 system (1.15) will monotonically diverge while it as well
diverge with oscillations in the case where a < −1.
The two �nal cases are when a = 1 and a = −1. In the �rst one, an identity
map is obtained (i.e. x(t+1) = x(t)) so the result will be a constant sequence
(i.e. x(t) = x0). In the second case, the result will be the oscillating sequence
x(t) = (−1)tx0.
It is important to observe that, even if we are dealing with the simplest
discrete time model with one dimension, it is possible to obtain oscillating
trajectories; this cannot happen for 1-dimensional continuous time models.

A similar reasoning, to the one done for the previous model, can be done for
the linear non-homogeneous discrete time model: x(t+ 1) = ax(t) + b.

We now introduce a generic 1-dimensional model:

x(t+ 1) = f(x(t)), x(0) = x0 (1.16)

In order to �nd the equilibria of the system (i.e. points where x(t+1) = x(t)),
it is necessary to impose the right-hand side of equation (1.16) equal to x
(i.e. f(x) = x).
Suppose that x∗ is a �xed point for system (1.16), then we have the following
de�nition:

De�nition 14. An equilibrium point x∗ is hyperbolic if |f ′(x∗)| 6= 1, other-
wise if |f ′(x∗)| = 1 then x∗ is a non-hyperbolic equilibrium.

It can be observed that for discrete time systems the condition of non-
hyperbolicity is divided into two cases: f ′(x∗) = 1, that corresponds to the
continuous time analogous condition presented in de�nition (7) and f ′(x∗) =
−1 that has no correspondence in continuous time.

Proposition 5. Let x∗ be an equilibrium point for system (1.16). If |f ′(x∗)| <
1 then x∗ is an asymptotic stable equilibrium, if |f ′(x∗)| > 1 then x∗ is un-
stable.
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The previous proposition comes from the fact that, in case of an hyper-
bolic equilibrium, the stability results obtained from a linear approximation
are qualitatively equivalent to the stability of the original model. Indeed
consider the linear approximation of (1.16):

f(x) = f(x∗) + f ′(x∗)(x− x∗) + o(x− x∗)

that leads to:
x(t+ 1) = x∗ + f ′(x∗)(x− x∗)

Again, as for continuous time models, there is the possibility that a varia-
tion of a model's parameter causes a qualitative di�erent dynamic scenario.
We already saw that there is the possibility for 1-dimensional discrete time
systems to have oscillatory trajectories but this chapter will show that a new
bifurcation can happen for discrete time models.
First of all, consider the system:

x(t+ 1) = (x(t), α) (1.17)

and let x∗(α) be a �xed point.
We saw the stability conditions in proposition (5) and now there are two
possibilities for a system to loose stability, indeed the quantity f ′(x∗(α)) can
cross the bifurcation value at ±1.
In particular, when f ′(x∗(α)) = +1 three types of bifurcation may occur:
fold, transcritical or pitchfork (supercritical and subcritical). They are anal-
ogous to the one seen in continuous time, the only di�erence is that the
tangency occurs along the diagonal of the �rst and third quadrant whilst it
comes on the abscissa in the continuous time case. For this reason bifurca-
tion diagrams are equivalent to the ones in �g. (1.1), (1.3) and (1.5).

The new bifurcation is related to the case f ′(x∗(α)) = −1.

De�nition 15 (Flip Bifurcation). Flip bifurcation is characterized by the

creation of a cycle of period 2 at the bifurcation value.

As for the pitchfork bifurcation, the �ip has a supercritical case and a
subcritical one. The �rst one coincides with the creation of a stable 2-periodic
cycle (i.e. trajectories starting inside it will approach the periodic cycle). On
the contrary, the subcritical case coincides with the presence of an unstable
2-periodic cycle.
In �g. 1.19, it is showed the phase plane for the supercritical �ip bifurcation
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when the considered function f is the canonical example f(x, α) = −(1 +
α)x+x3 and the bifurcation parameter is α = 0. We observe that the stable
equilibrium looses stability and a stable periodic cycle is created around it.
Again the red color indicates an unstable trajectory while green a stable one,
the stable period cycle is denoted by the thick yellow line, �nally function f
is locally represented in blue.

(a) (b) (c)

Figure 1.19: Flip bifurcation (supercritical) phase portrait for the system
x(t+ 1) = −(1 + α)x+ x3, stable and unstable trajectories are represented
in green and red, respectively. The yellow line represents the stable periodic
cycle.

After the �ip bifurcation, two new �xed points of the periodic cycle arises
for the map f2(x, α) = f(f(x, α)), moreover the �ip bifurcation for the map
f coincides with the pitchfork bifurcation of map f2. Indeed if f ′(x∗) = −1

then df2

dx (x∗) = f ′(f(x∗))f ′(x∗) = f ′(x∗)f ′(x∗) = +1.
Bifurcations are not just for �xed points, they can be seen also in k-periodic
cycles (since a point of the k-periodic cycle is a �xed point for the map fk).
Indeed the fold bifurcation arises when two k-periodic cycles (one stable, one
unstable) are created or destroyed at the bifurcation value, the transcritical
bifurcation happens when two k-periodic cycles with opposite stability merge
and then exchange their stability and �nally, the supercritical (or subcritical)
pitchfork bifurcation is characterized by the creation (or destruction) or two
k-periodic cycles.

Example (The Logistic Map)

As for the continuous time case, the logistic growth equation (1.6) has dis-
crete version:

x(t+ 1) = µx(t)(1− x(t)), µ > 0 (1.18)

In order to �nd the �xed points, the procedure involves setting equal to x
the logistic map f(x) := µx(t)(1−x(t)); the resulting equilibrium points are
x∗0 = 0 and x∗1 = 1− 1

µ .

30



The objective now is to show that a chaotic behaviour can arise for particu-
lar values of parameter µ, this fact would highlight a huge di�erence to the
continuous time version of the model (1.6).
Before that, we study the local stability of x∗0 and x∗1. Proposition (5)
gives the possibility to analyze the stability by computing the derivative
of f(x), which is equal to f ′(x) = µ(1 − 2x), so f ′(x∗0) = f ′(0) = µ and

f ′(x∗1) = f ′
(

1− 1
µ

)
= 2−µ. The stability conditions expressed in prop. (5)

are |µ| < 1 and |2 − µ| < 1. So x∗0 is asymptotically stable if µ < 1 and x∗1
when 1 < µ < 3. The local bifurcation at µ = 1 is trascritical, since the two
equilibria merge and then exchange their stability.
We now want to observe what happens for µ = 3, in particular f ′(x∗1) =
2−µ = −1. We saw that the condition f ′(x∗) = −1 is typical and unique of
discrete time models and the arising local bifurcation is the �ip, in which a
stable cycle, formed by two points, is created and the �xed point x∗1 looses
its stability. In this case the �ip bifurcation is supercritical, like the one
in �g. 1.19. Moreover we saw that points of the 2-periodic cycle are �xed
points for the map f2(x), the computation gives two periodic points α and

β, which exist only if µ > 3, α, β =
µ+1±

√
(µ−3)(µ+1)

2µ .
Again, we observe that the �ip bifurcation for f coincides with a supercriti-
cal pitchfork bifurcation for f2.
The next step is to check that the two points of the periodic cycle are stable;
in order to do that it is necessary to compute the derivative of F := f2

and evaluate it in α and β. The result is that F ′(α) = F ′(β) is less in
modulus than 1 until the bifurcation value µ = 1 +

√
6 ' 3.449 where

F ′(α) = F ′(β) = −1, i.e. another �ip bifurcation arises, this time not for
the map f but for f2; in particular the 2-periodic cycle looses stability and
another stable cycle is created with period 4.
Increasing µ, the stable cycle of period 4 becomes unstable and another sta-
ble cycle with period 8 is created through a �ip bifurcation for map f4.
We can iterate the procedure until, intuitively, the distance between two
consecutive bifurcation points will tend to 0, the limit point µ∞ ' 3.5699.
After the limit point, periodic trajectories of any period appear as aperiodic
trajectories, since the iteration of �ip bifurcations, also known as doublig

cascade, creates such complicated cycles that a trajectory never hits an al-
ready visited point of the k-period cycle. This trajectories are called chaotic.
A well known consequence of chaotic trajectories is the sensitivity to initial
conditions, i.e. two trajectories starting from two arbitrarily close initial
conditions may assume completely di�erent paths.
This property is highlighted in �g. 1.20.

This concept was already present in continuous time for systems with a di-
mension grater than 2, like the Lorenz model (1.14) in �g. 1.17.
In �gure 1.21, we report the bifurcation diagram of the logistic map.
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(a) Trajectories for di�erent initial condi-
tions

(b) Di�erence (in absolute value) of the
two trajectories

Figure 1.20: Trajectories for model (1.18) for close di�erent initial values.

Figure 1.21: Bifurcation diagram for model (1.18).

The important message the logistic map is that, even if it is just a 1-
dimensional model (so it might be a "simple" model at �rst glance), for
some values of µ a �ip bifurcation occurs and increasing the value of the
parameter a doubling cascade arises until the complexity of periodic cycles
is so high that trajectories can be seen as chaotic (without periodicity). We
saw in chapter (1.2.1) that for 1-dimensional continuous time models, the
trajectories cannot be chaotic and the local bifurcations that can arise are
fold, transcritical and pitchfork.

The last property of this important example, that we would like to highlight,
is the periodic windows

De�nition 16 (Periodic Windows). Periodic windows are strips in the

bifurcation diagram where chaos seems to disappear temporarily, instead an

attracting periodic cycle is present.
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This curious behaviour is due to a fold bifurcation of fk caused by a
tangency between fk and the diagonal of the �rst quadrant.
Slightly increasing the value of µ, the stable cycle looses stability via a �ip
bifurcation and and a doubling cascade leads to a new chaotic condition.
Looking at �g. 1.22, which is nothing else than a zoom of the bifurcation
diagram in �g. 1.21, it can be observed that other small periodic windows
are still present (they are in�nitely many), the result is that the zoom of the
bifurcation diagram present the same qualitative characteristics of the gen-
eral diagram, the phenomenon of observing the same qualitative behaviour
by taking into account a smaller part of the original object is known as frac-
tals. Many books were written about this very interesting argument, indeed
fractal structures can be seen in nature like clouds, broccoli, pineapples, etc.
In particular the bifurcation diagram of the logistic map creates a fractal
structure for µ & 3.5.

Again, it is necessary to highlight the main di�erence between mono-dimensional
continuous and discrete time dynamical models, here we observed in the lo-
gistic map that it is possible to obtain the so-called "deterministic chaos"
simply varying the value of the parameter µ. In 1-dimensional continuous
time models (1.2.1), this behaviour is impossible to obtain, moreover not
even �ip bifurcation can arise in continuous time.
This observation makes clear why continuous time models have always been
preferred to discrete ones in practical uses, since the latter could easily gen-
erate a chaotic behaviour which is di�cult to conciliate to the choice of
using a deterministic model which, sometimes naively, gives the expectation
of getting relatively simple trajectories.

1.3.2 2 - Dimensional Discrete Time Dynamical Systems

A general discrete time model with two variables has the form:{
x1(t+ 1) = T1(x1(t), x2(t))

x2(t+ 1) = T2(x1(t), x2(t))
(1.19)

In order to �nd the equilibrium points the previous model, it is necessary to
create a system of equation where the right-hand side of (1.19) is equal to
x1 and x2. That means: {

T1(x1, x2) = x1

T2(x1, x2) = x2

(1.20)

Again, the stability of �xed points and periodic cycles can be qualitatively
determined by the linearization of the map T = (T1, T2) in an arbitrarily
small neighbourhood of the �xed point.
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Figure 1.22: Periodic windows for model (1.18).

We now focus on the simplest 2-dimensional discrete time model: the linear
system: {

x1(t+ 1) = a11x1(t) + a12x2(t)

x2(t+ 1) = a21x2(t) + a22x2(t)
(1.21)

which, like for the continuous time case, can be written in the matrix form:

x(t+ 1) = Ax(t)

where:

A =

(
a11 a12

a21 a22

)
; x(t) =

(
x1(t)
x2(t)

)
The characteristic equation is used to study the stability of the linear model
(1.21) and it is imposed equal to 0:

P (λ) = λ2 − Tr(A)λ+Det(A) = 0

We can analyze the results by looking at the value of ∆ = Tr(A)2−4Det(A).

1. If ∆ > 0 then there are two real, distinct eigenvalues and the general
solution is:

x(t) = c1v1λ
t
1 + c2v2λ

t
2

where v1 and v2 are the eigenvectors related to λ1 and λ2 and c1 and c2

two real constants determined by applying the initial condition given
in the original model

2. If ∆ = 0 then there are two real and coincident eigenvalues, the general
solution is:

x(t) = c1vλ
t + c2vtλ

t

where λ = λ1 = λ2 and v is the eigenvector
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3. If ∆ < 0 then there are two complex, distinct eigenvalues, the general
solution is:

x(t) = |λ|t[(c1v1 − c2v2)sin(θt) + (c1v1 + c2v2)cos(θt)]

where: λ1,2 = −Tr(A)
2 ±i

√
−∆
2 = |λ|(cosθ±sinθ), |λ| =

√
Re(λ)2 + Im(λ)2 =√

Det(A) and θ = arctan
(
Im(λ)
Re(λ)

)
.

Of course, the local dynamic is stable if both the eigenvalues are inside the
unit circle in the imaginary plane.
Depending on the the value of λ1 and λ2, the local phase portrait is essentially
analogous to a linear 2-dimensional continuous time model.
Here in �gures 1.23 - 1.24, we report the local phase portraits for real and
complex eigenvalues, respectively.

An important necessary and su�cient condition for discrete time models is
reported below:

Proposition 6 (Stability Criterion). All eigenvalues of model (1.21) are
less than 1 in modulus if:

P (1) = 1− Tr(A) +Det(A) > 0

P (−1) = 1 + Tr(A) +Det(A) > 0

Det(A) < 1

(1.22)

Equations in system (1.22) form the so called Stability Triangle because
they can be represented by a triangle in the Trace-Determinant plane. In
�g. 1.25, we report the graphical interpretation of the Stability Criterion.

When the point, whose coordinates are determined by the trace and the
determinant of matrix A, is inside the stability triangle then the �xed point
x = 0 is globally asymptotically stable, when it is outside then trajectories
will diverge.
Of course, if the dynamical system has parameters, then bifurcations will
arise when the point will exit from the stability triangle.

Consider now a nonlinear 2-dimensional discrete time model (1.19) and a
�xed point for it: x∗ = (x∗1, x

∗
2), obtained by solving system (1.20).

Linearizing in a neighbourhood of the �xed point the obtained approximation
is:

x(t+ 1)− x∗ = JT (x∗)(x(t)− x∗)

where JT is the Jacobian matrix.

Proposition 7 (Su�cient condition for stability). A su�cient condi-

tion for local asymptotic stability of a �xed point x∗ of the nonlinear model
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(a) Stable node (b) Unstable node

(c) Saddle

Figure 1.23: Local phase portraits with real eigenvalues.

(a) Stable focus (b) Unstable focus

(c) Centre

Figure 1.24: Local phase portraits with complex eigenvalues.
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Figure 1.25: Stability Triangle (1.22) in Trace-Determinant plane.

(1.19) is represented by the Stability Criterion (6) where the Jacobian matrix

JT (x∗) is substituted in place of matrix A in the stability triangle (1.22).

An important observation, which it is useful to remark, is that proposi-
tion (6) is a necessary and su�cient condition for linear models while in case
of a generic nonlinear model, proposition (7) is just a su�cient condition.

We now deal with possible local bifurcations for model (1.19): we have al-
ready seen in chapter (1.3.1) that, varying the value of an exogenous pa-
rameter, a real eigenvalue can exit from the stability region (i.e. the unit
circle in the imaginary plane) crossing the value λ = 1, generating a fold,
transcritical and pitchfork bifurcation, or λ = −1, generating a 2-periodic
cycle via a �ip bifurcation (that can be iterated forming a doubling cascade
until chaos is reached as in the logistic map example).
Since now, we are dealing with bi-dimensional models, the Jacobian matrix
JT (x∗) can generate a pair of complex conjugate eigenvalues. Again, varying
the value of parameter µ this pair can exit from the stability region causing
the discrete time analogous of the Andronov-Hopf bifurcation for continuous
time models, called Neimark-Sacker bifurcation.

Theorem 5 (Neimark-Sacker bifurcation). Consider a nonlinear 2-dimensional
discrete time dynamical model. Let T (x, µ) : R2 → R2 be the map with a

family of �xed points x∗(µ) at which the eigenvalues are complex conjugates:

λ(µ) and λ̄(µ). When the parameter µ is equal to the bifurcation value µ0,

if the following conditions are true:

(i) |λ(µ0)| = 1, but λj(µ0) 6= 1 for j = 1, 2, 3, 4;

(ii) d|λ(µ)|
dµ (µ0) = d 6= 0.
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Then in a neighbourhood of x∗(µ0) the map T is conjugate to the map (ex-

pressed in polar coordinates) Te(r, θ) = (r(1 +d(µ−µ0) +ar2), θ+ c+ br2) +
o(r, θ).
Moreover, if:

(iii) a 6= 0,

then there exist a simple closed invariant curve in a neighbourhood of x∗(µ0).

The sign of the coe�cient a determines the stability of the bifurcation,
indeed if a < 0, the Neimark-Sacker bifurcation is in the supercritical case.
On the contrary, if a > 0, it is the subcritical case.
the stability of the bifurcation can be studied by looking at the �xed point
at the bifurcation value µ0; if it is stable then the Neimark-Sacker is su-
percritical; viceversa, if the equilibrium is unstable then the bifurcation is
subcritical.
In �g. 1.26, the two cases of the Neimark-Sacker bifurcation are reported.

In particular, since the discrete time behaviour involves jumps along the
closed invariant curve, the trajectory may never hit an already visited point
of the curve (quasi-periodic trajectory) or after n iterations may hit a visited
point of the curve entering in a n-cycle (the related behaviour is known as
frequency locking).

Finally, summing up, in �g. 1.27, the three way of possible bifurcations are
showed with respect to the Stability Triangle (1.22) in the Trace-Determinant
plane.

Example (Financial Market with Heterogeneous Agents)

In this simpli�ed example, let consider a world where there are only two
types of market agents: fundamentalist and chartists. The �rst ones assume
that they know the value of a risky asset, they suppose it is equal to F ,

Figure 1.26: Neimark-Sacker bifurcation.
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Figure 1.27: Bifurcations in Trace-Determinant plane.

so whenever the market price of the asset is less than F , fundamentalist
will buy the asset; on the contrary when the price p(t) is greater than the
threshold F , fundamentalists will sell the stock because in their's opinion it
is overestimated. Chartists (also called technical traders) use a strategy that
take into account the performance of the stock, so when the chart shows an
increasing behaviour of the stock they will buy it, believing that the price
will increase again; on the contrary, when the stock price decreases, chartists
will sell it, relying on the fact that this negative trend will continue also in
the future.
Suppose that the price p of the risky asset at the future time t+1 depends on
the price now at time t and on the excess of demand ∆D at time t, (∆D(t)
can be positive or negative). This assumptions form the law of the discrete
dynamics for the price in the future:

p(t+ 1) = p(t) + γ∆D(t) (1.23)

where γ is a positive constant that measures market's reactivity (the speed
of adjustment)

Suppose that chartists compute the price p of the stock at time t + 1 by
considering the trend of p at time t and t − 1. Their excess of demand for
the stock will be (if they are prudent):

∆DC(t) = β arctan(p(t)− p(t− 1)) (1.24)

where β is a positive coe�cient that measures the weight of chartists in the
market.
Supposing that the excess of demand for fundamentalist is connected to their
expected value of the stock price F and it is:

∆DF (t) = α(F − p(t)) (1.25)
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where α is the positive coe�cient that measures the weight of fundamental-
ists in the market (α+ β = 1).
Plugging in (1.23) expressions (1.24) and (1.25) and thanks to the auxiliary
variable z(t) = p(t− 1) we obtain the nonlinear system of order one:{
z(t+ 1) = p(t) =: T1(z(t), p(t))

p(t+ 1) = (1− γα)p(t) + γβ arctan(p(t)− z(t)) + γαF =: T2(z(t), p(t))

(1.26)
with initial conditions: {

z(0) = p−1

p(0) = p0

By imposing the system: {
T1(z, p) = z

T2(z, p) = p

We obtain the unique �xed point of model (1.26): (z∗, p∗) = (F, F ).
In order to study the stability of the system, we apply proposition (6), the
relative Jacobian matrix J := J(z∗,p∗) is:

J =

[
0 1
−γβ 1 + γ(β − α)

]

We can apply the su�cient condition of the stability triangle (7) and obtain:
1− Tr(J) +Det(J) = γα > 0

1 + Tr(J) +Det(J) = 2 + 2γβ − γα > 0

Det(J) = γβ < 1

Since α, β and γ are strictly positive coe�cients, the �rst condition is always
ful�lled.
Regarding the second and third conditions, they can be summarized by the
inequality for β:

α

2
− 1

γ
< β <

1

γ

When β is increased (i.e. increasing the weight of chartists in the market)
and reaches the value 1

γ a Neimark-Sacker bifurcation occurs, this is also
con�rmed by looking at �g. 1.27, since, crossing the bifurcation value, the
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stable focus becomes unstable and a stable closed invariant curve is created
around the unique �xed point.
On the other hand, increasing the value of α (i.e. the weight of fundamen-
talists increases) leads to a �ip bifurcation, where a stable periodic cycle is
created.
These bifurcations are summed up in �g. 1.28, where the stability region is
colored in light green.

Figure 1.28: Stability region (in light green) and possible bifurcations for
model (1.26) in α-β plane.

Here, for our purposes, the performed analysis is enough in order to show
possible behaviours for a 2-dimensional discrete time model. Of course, in
order to have a more complete view of the model's trajectories, it is un-
avoidable to perform numerical simulations, which could also validate the
correctness of results obtained by our qualitative analysis, but, as previously
said, it goes beyond the goal of the example.
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Chapter 2

Discretization

2.1 General Introduction

In �nance and economics, the majority of models are described using Ordi-

nary Di�erential Equations (ODE), which means that these models are such
that time is a continuous independent variable. However, data are available
in discrete time and in a very few cases it is possible to obtain such frequent
data that they could be considered, with a reasonable approximation, as
continuous time data.
For this reason, practitioners use to convert continuous time models into
discrete time ones. There are many discretization methods, some of them
are considered naïve. The biggest problem of discretizing a continuous time
model is the arise of complex dynamics in the discretized model. For exam-
ple, in chapter (1.2.1), we observed that only pitchfork, saddle or transcrit-
ical bifurcation may appear in a 1-dimensional continuous time model; on
the contrary, in chapter(1.3.1), we saw the 1-dimensional logistic map (1.6)
could present the �ip bifurcation (which cannot happen in a continuous time
dynamic system) and even chaos may arise for particular values of the pa-
rameter µ.
The natural consequence is a bloom of discretization models. In particu-
lar, Ronald Mickens proposed the so called Non-Standard Finite Di�erence

schemes (NSFD), a discretization model that preserves the original dynam-
ics of the continuous time model.
In this thesis, in chapter (3), we will apply a similar discretization method,
known as Nearly Exact Discretization Scheme (NEDS), proposed in [5],
which is a sort of evolution of a NSFD model, to an economic continuous
time model. Here, in the following part of the chapter, di�erent discretiza-
tion method will be presented and eventually NEDS model will be showed.
The �rst method presented may be considered the simplest one, known as
Euler method.
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2.2 Euler Method

The Euler method is largely used, even in professional environments, mostly
due to its simplicity, however its biggest drawback is that, in some cases, it
does not preserve the stability of the original continuous time model.

Consider a system of di�erential equations (with n variables):

dx

dt
= f(x) (2.1)

where x = (x1, x2, ..., xn)T .
Euler method transforms model (2.1) into:

x(t+ h)− x(t)

h
= f(x(t)), h > 0

where h is the step-size.

Substituting t by n and t + h by n + 1, we have a system of di�erence
equations:

x(n+ 1) = x(n) + hf(x(n)), n = 1, 2, ... (2.2)

with the usual initial condition: x(0) = x0.

Thanks to Euler discretization method, it is possible to state the following
proposition:

Proposition 8 (Fixed points for Euler method). If p0 is a �xed point

for model (2.1) then f(p0) = 0 and the same is true for the discretized model

(2.2). Moreover the Jacobian matrix calculated in p0 is respectively J(f(p0))
and I + hJ(f(p0)) and if z is an eigenvalue of J(f(p0)) of the continuous

time model (2.1) then w = 1+hz is an eigenvalue of the matrix I+hJ(f(p0))
of the discretized model (2.2).

In addition to that, [9] discussed a relation between z and w = 1 + hz in
the following lemma.

Lemma 1. For any h > 0; the map w = 1 + hz maps the left half plane

Re(z) < 0 onto the left half plane Re(w) < 1 and the disk |z + 1/h| < 1/h
onto the unit disk |w| < 1.
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Figure 2.1: Euler's mapping w = 1 + hz maps the disk |z + 1/h| < 1/h into
the unit circle |w| < 1.

Figure 2.1 shows graphically Lemma (1).

The straight-forward implication, regarding the Euler method, from Lemma
(1) is that some eigenvalues of the continuous time model that are on the
left-half plane might not be inside the disk |z + 1/h| < 1/h and thus they
will not be inside the unit circle |w| < 1.
The result is the following proposition:

Proposition 9 (Stability of Fixed Points). Let p0 be a �xed point for the

continuous time model (2.1), after that we apply Euler method, the stability

of equilibrium p0, for the model (2.2), will present 3 possible cases:

1. p0 is unstable if p0 is unstable for the continuous time model.

2. p0 is stable if p0 is stable for the continuous time model and all the

eigenvalues of J(f(p0)) are inside the disk |z + 1/h| < 1/h.

3. p0 is unstable if p0 is stable for the continuous time model but unlike

before, there is at least one eigenvalue of J(f(p0)) which is outside the

disk |z + 1/h| < 1/h.

Of course, with a small step size h, the possibility for the Euler discretiza-
tion method to preserve the stability of the starting model increases.

Another analogous problem, always presented in [9], for Euler method is
related to the Hopf bifurcation, that we presented in theorem (4).

Proposition 10. Consider the �xed point p0 for model (2.1) and suppose

that a Hopf bifurcation occurs at p0. Then p0 will be always unstable for the

discretized model (2.2).
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Proof. Consider the Hopf bifurcation for the equilibrium point p0 for the
parameter r = r0 (r0 is the bifurcation value), then the di�erential equation
in the model (2.1) presents a pair of purely imaginary eigenvalues, i.e. z(r) =
α(r) + iβ(r) with α(r0) = 0 and β(r0) 6= 0.
Now, if we consider the complex eigenvalues for the discretized model (2.2),
we obtain:

w(r) = 1 + hz(r) = 1 + hα(r) + ihβ(r)

Then for the bifurcation value r = r0, we have:

|w(r0)| =
√

(1 + hα(r0))2 + h2β2(r0) =
√

1 + h2β2(r0) > 1

So, because of what we saw in chapter (1.3.2) regarding the stability of
discrete models, we have that p0 is an unstable equilibrium for the discretized
model.

Summing up, Euler's main drawback is that, in case of a big step size
h, likely it will not preserve the stability of the continuous time model and
moreover, as seen above, in case of a Hopf bifurcation Euler method will
always produce an unstable �xed point.

2.3 Kahan Method

Another discretization scheme, similar to the Euler's, is the Kahan re�exive
method, named after its Canadian author William Kahan.
As said in [9], this method is applicable only in the case the function f(x)
is linear or at most quadratic in x.
If, again, we consider a system of di�erential equation and we impose that
f is at most a quadratic function, we have:

dx

dt
= f(x) = A(x,x) +Bx+ b (2.3)

where x = (x1, x2, ..., xn)T , A(x,x) is the symmetric vector of quadratic
terms, Bx is a (nxn)-matrix and b is the vector of n constant terms.
Equation (2.3) can be rewritten in the following way:

dx

dt
= f(x) =

1

2
JA(x)x+Bx+ b (2.4)

where JA(x) is the Jacobian matrix of A(x,x).
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Kahan method generates the discrete time model:

X− x
h

=
1

2
JA(x)x+Bx+ b =

1

2
J(f(x))(X− x) + f(x) (2.5)

where h is, as usual, the step-size and X = x+ h.

The di�erence equation (2.5) can be rewritten, making it explicit for the
term X:

X = x+ h

(
I − h

2
J(f(x))

)−1

f(x) (2.6)

From [9], we have two very useful lemmas that we report here:

Lemma 2. Consider the �xed point p0 for model (2.4). Suppose the step-

size h is small enough that the quantity
(
I − h

2J(f(x))
)
is invertible. Now

consider z an eigenvalue of the Jacobian matrix of f(p0) (i.e. J(f(p0))).

Then 2+hz
2−hz is an eigenvalue of

(
I − h

2J(f(p0))
)−1 (

I + h
2J(f(p0))

)
.

The map w = 2+hz
2−hz maps circle onto circles and relates z and w (remem-

ber that z is an eigenvalue for J(f(p0))).

Lemma 3. Let the step-size h be positive, the map w = 2+hz
2−hz maps the left

half plane Re(z) < 0 onto the unit disk |w| < 1 and the imaginary axis

Re(z) = 0 onto the unit circle |w| = 1.

Proof. |w| < 1 ⇔ |2 + hz|2 < |2− hz|2 ⇔ 4h(z + z̄) < 0 ⇔ 8hRe(z) < 0 ⇔
Re(z) < 0.

Figure 2.2 represents graphically Lemma (3).

An important theorem that testi�es the preserving of the stability of the
Kahan method (including also in case of a Hopf bifurcation) is reported
below:

Theorem 6 (Kahan local stability). Let p0 be an equilibrium point for the

di�erential equation (2.4) and the step-size h is such that ‖J(f(p0))‖ < 2
h .

Then p0 is an unstable equilibrium for the continuous time model (2.4) if

and only if p0 is an unstable equilibrium for the discretized model (2.6).

Moreover if an Hopf bifurcation occurs for p0 in the starting model (2.4) then

it will also occur for the discretized model (2.6).
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Figure 2.2: Kahan's mapping w = 2+hz
2−hz maps the left half plane Re(z) < 0

onto the unit circle |w| < 1.

It can observed that Kahan discretization method preserves better the
stability of a continuous time model with respect to the Euler method, es-
pecially in the case of a Hopf bifurcation, where the Euler method always
produce an unstable discrete time model. For this reason the Kahan method
is locally consistent.
Nonetheless, it cannot be a�rmed that Kahan method does not have any
drawback: again, as for the Euler method, in order to have an acceptable
discretization, h should be small and one of the hypothesis of theorem (6)
impose that the norm of the Jacobian matrix must be smaller than h

2 . Fi-
nally, it is crucial to remark that the Kahan method presented in [9] is only
applicable in the case where the function f(x) is linear or at most quadratic
in x; this fact implies that impossibility to apply Kahan to more complex
dynamic models.

We now describe an example of a well known continuous time dynamic sys-
tem and we discretize it through the Euler and the Kahan methods and
�nally we highlight main di�erences between them.

Example: Comparison Between Euler and Kahan Methods

We consider an already presented 1-dimensional continuous time model: the
logistic growth model.
We saw in chapter (1.2.1) that the equation:

dx

dt
= f(x) = x(1− x) (2.7)
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Note that, the two positive parameters r and k in equation (1.6) are both
equal to 1.
We already know that the two �xed points of model (2.7) are 0 and 1.
Since f ′(0) = 1 > 0 then 0 is an unstable equilibrium; on the contrary,
f ′(1) = −1 < 0 implies that 1 in a stable �xed point.

Euler method produces the following discrete time model:

x(t+ 1) = x(t)(1 + h− hx(t)) (2.8)

Kahan discretization method transforms the starting model into:

x(t+ 1) = x(t)

(
2 + h

2− h+ 2hx(t)

)
(2.9)

Regarding the Euler method, we observed in Lemma (1) that, in order to
preserve local stability of equilibrium 1, |z+1/h| < 1/h i.e. |−1+1/h| < 1/h
which implies that the step-size h must be grater than 0 and less than 2 (i.e.
0 < h < 2). For h ≥ 2 we should obtain a non-consistent discretization
method.

In �gures 2.3, Euler method is showed graphically: on the left the step-size
h is 1.9, so it satis�es the hypothesis of Lemma (1), on the contrary, on
the right side, the value of h exceeds the threshold imposed by the Lemma,
indeed the dynamics of the discretized model shows that the equilibrium 1
is unstable.

(a) (b)

Figure 2.3: Euler discretization method applied to the logistic growth model
(2.8) with h = 1.9 (left) and h = 2.1 (right), x(0) = 0.9.

Regarding Kahan's, we observed in theorem (6) that the condition for pre-
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serving the local stability is |f ′(1)| < 2/h which implies 0 < h < 2.
We show in �gure 2.4, a numerical application of theorem (6), which shows
that, if the hypothesis is ful�lled, then the result that Kahan method is con-
sistent.

Figure 2.4: Kahan discretization method applied to the logistic growth model
(2.9) with h = 1.9, x(0) = 0.9.

Finally, comparing �g. 2.3(a) and 2.4, it is evident that Kahan's produces a
much faster method than the Euler's, for time-step h ceteris paribus.

2.4 Non-Standard Finite Di�erence (NSFD) Schemes

Ronald Mickens started to think about Non-Standard Finite Di�erence (NEDS)
Schemes in 1989, during the years he re�ned the scheme in order to obtain a
discretization method that does not have the drawbacks of Euler and Kahan
methods. Of course, his aim was to reduce as much as possible unwanted
behaviours in the discretized model like chaos and instability that were not
present in the continuous time model.
A discretization method, in order to be called a Non-Standard Finite Di�er-
ence method must be created following particular rules, described by Mickens
in [7].

Remark 1. NSFD Method's Constructing Rules:

1. The orders of the discrete derivatives must be equal to the orders of the

corresponding derivatives in the continuous time model.

2. The discrete representation for a derivative should not have a trivial

denominator (i.e. let φ(h) be the denominator, then φ(h) = h+O(h2)).
For instance, a trivial denominator is φ(h) = 1.
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3. Nonlinear terms should be substituted by nonlocal discrete representa-

tion, which means that a (continuous time) term of order greater than

1 must be substituted by a (discrete time) term of order greater than 1
or by the multiplication of two or more (discrete time) terms.

This rule will be explained more in detail through a numerical example

below.

4. Particular conditions that hold for the di�erential equation in the con-

tinuous time model must hold also in the di�erence equation in the

discretized model.

It is worth to remark that the second rule can be written in the following
way, consider the �rst order derivative of x(t), then its discretization is:

dx

dt
→ xk+1 − ψ(h)xk

φ(h)

where ψ and φ are functions of the step-size h. Moreover x(t)→ xk, tk = hk,
ψ(h) = 1 +O(h) and φ(h) = h+O(h2).

Regarding the third rule, a typical application is related to the logistic equa-
tion:

dx

dt
= x(1− x) (2.10)

We have previously seen, in chapter (1.2.1), that the two �xed points are 0
and 1. They are, respectively, unstable and stable equilibrium.
If we transform the logistic equation into the following discrete time version:

zk+1 = (1 + h)zk(1− zk)

The above discrete time dynamical system may cause unwanted behaviours.
Indeed, in chapter (1.3.1), we observed that this discrete time equation
presents a behaviour di�erent from the original continuous time logistic equa-
tion. This is due to the fact that �ip bifurcations and even chaotic behaviour
may arise in the discretized model.
Mickens proposed a nonlocal representation for terms with an order greater
than 1.
In particular it lead to a possible non-local representation for x2:

x2 → xk+1xk
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Which leads to the discretized model:

xk+1 =

(
1 + h

1 + hxk

)
xk (2.11)

In �gure 2.5, we are able to con�rm the dynamical consistence (also included
in the fourth rule) of NSFD method for the logistic growth model.
It can be observed how, contrary to the case of Kahan and Euler, increasing
the time-step h leads to a model which reaches faster the equilibrium point
1.

From these rules Mickens provided the formal de�nition for NSFD schemes:

De�nition 17 (NSFD Scheme). A discretization method, whose construc-

tion is based on the rules in remark (1), is called a Non-Standard Finite

Di�erence (NSFD) Scheme.

However, in [8], the author presented a list of drawbacks of Non-Standard
Finite Di�erence methods.
Firstly, a very di�cult scenario to apply NSFD method is the case of �xed
points with neutral stability (i.e. complex conjugate eigenvalues with null
real part, for example λ1,2 = ±i), we observed that this scenario could lead
to unwanted dynamics also for Euler method.
The author also expressed that few work has done for a continuous time
dynamical system with 2 dimensions (or more); moreover, increasing the
number of variables leads to a more complicated structure for the discretized
model. Until the year of publication of [8], Ronald Mickens did not developed
a Non-Standard Finite Di�erence method which can be applied also for 2-
dimensional dynamical systems.
For this reason we report here, from [8], a numerical example of a NSFD
method application with just one variable.

(a) (b) (c)

Figure 2.5: NSFD discretization method applied to the logistic growth model
(2.11) with h = 0.5 (left), h = 1 (center) and h = 1.5 (right), x(0) = 0.9.
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Example: An application of NSFD Method

We consider a 1-dimensional continuous time dynamical system (quite similar
to the known logistic growth):

du

dt
= f(u) = u2(1− u) (2.12)

The above model is a basic model for combustion in physics.
Recalling chapter (1.2.1), there are 2 �xed points: u∗1 = 0 and u∗2 = 1.
Moreover, equilibrium u∗2 is stable, since f ′(u∗2) = f ′(1) = −1 < 0 while
equilibrium u∗1 is non-hyperbolic since f ′(u∗1) = f ′(0) = 0, so nothing can be
said regarding its stability only looking at its �rst derivative (see de�nition
(7)). However, using a numerical approach, it can be showed that equilibrium
u∗1 = 0 is unstable.
Applying NSFD to the left-hand side of (2.12) the result is:

du

dt
→ uk+1 − ψ(h)uk

φ(h)

In this case, the author suggested ψ(h) = 1 and φ(h) = 1− e−h.

Regarding the right-hand side of model (2.12), we have to be careful since
we have non-linear terms (i.e. u2 and u3), so they must be substituted by a
nonlocal discrete representations (see Rule 3).
The author proposed the following:

u2 → 2u2
k − uk+1u

2
k; u3 → uk+1u

2
k

So the resulting discretized model with NSFD method is:

uk+1 =
uk(1 + 2φ(h)uk)

1 + φ(h)(uk + u2
k)

(2.13)

Where, as before, φ(h) = 1− e−h.
It can be observed that the �xed points are the same of the continuous time
model (2.12), and the discretization method preserves the stability, so in this
case, NSFD method is locally consistent.

In �gure 2.6, we show the stability of �xed point u∗2 = 1, for di�erent values
of the step-size h. Again, we observe that increasing h leads to a model
which converges faster to the equilibrium.
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(a) (b) (c)

Figure 2.6: NSFD discretization method applied to combustion model (2.13)
with h = 0.5 (left), h = 1 (center) and h = 1.5 (right), x(0) = 1.1.

2.5 Nearly Exact Discretization Scheme (NEDS)

The Nearly Exact Discretization Scheme, also known with its acronymNEDS,
is a discretization method presented by its four authors in [5], predominantly
used in ecological dynamical systems.
This method can be seen as an evolution of NSFD methods, indeed, as for
the method presented by Mickens, the objective of the authors is always the
same: develop a discretization method which preserves the properties of the
continuous time model.
As usually done before, we start by considering the continuous time model
described by the ODE:

dx

dt
= f(x(t)) (2.14)

Before giving the de�nitions of NEDS and its discretization scheme, we have
to show several useful de�nitions in order to construct it.

De�nition 18 (Dynamical consistency). A discretization scheme is dy-

namically consistent if these conditions hold:

A1: The stability of the considered continuous time model (ODE) coincides

with the stability of the discrete time model (DE).

A2: The bifurcations of ODE coincide with the bifurcation of DE.

A3: If two ODEs are equivalent after a re-parametrization then the resulting

DEs (obtained by a discretization of the two ODEs) must be equivalent

by the same re-parametrization.

De�nition 19 (NEDS). A discretization scheme is called NEDS if it is

dynamically consistent (through de�nition (18)) and the trajectories of the

discretized model are the same or "nearly the same" of the starting continuous

time model.
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After presenting the last de�nitions we now give the principles in order
to perform the NEDS discretization scheme, before that, in oder to simplify
these steps, we make some assumptions on the continuous time model (2.14).

De�nition 20. Consider the function f in the right-hand side of (2.14); f
is T1 if f(x) = rx+ g(x)x+ b, f is T2 if f(x) = rx− g(x)x+ b.

Thanks to de�nition (20), we are supposing that f has a particular shape,
where r is a non-zero linear constant and g(x) a function which takes as in-
put only real values.

Remark 2. NEDS Method's Constructing Rules:

1. The left-hand side of ODE (2.14) is discretized in the following way:

dx

dt
→ xt+1 − xt

φ(h)

where h is the step-size and φ(h) = h+O(h2) as h→ 0+.

2. φ has the following form:

φ(h) =
erh − 1

r

Moreover, the resulting DE of the right-hand side of (2.14) is:

xt+1 − xt
φ(h)

=

{
rxt + g(xt)xt + b, if f is T1

rxt − g(xt)xt + b, if f is T2

Finally, the resulting discretized model is:

xt+1 =

{
erhxt + φ(h)g(xt)xt + φ(h)b, if f is T1

erhxt+φ(h)b
1+φ(h)g(xt)

, if f is T2

(2.15)

3. If the right-hand side of (2.14) is f(x) = r ± g(x)x then a change of

variable is required to bring it back to the known case; in particular we

de�ne u = x− x∗ where x∗ is the non-zero �xed point of model (2.14),

for this reason, the right-hand side will be f(x) = rx± g(x)x.

4. If the structure of f cannot be re-parametrized as in step 3, we impose:

f(x) = rx− g(x)x

where:

r = k(−x∗)k−1f (k)(x∗), with k = min(α > 0 : f (α)(x∗) 6= 0)
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An equivalent de�nition of (17) is the following:

De�nition 21 (NSFD Scheme). A discretization scheme is called Non-

Standard Finite Di�erence (NSFD) Scheme if it satis�es conditions A1 of

de�nition (18) and the �rst step of NEDS Method's constructing rules of

remark (2).

It is immediate to observe from the previous de�nitions that NEDS and
NSFD schemes are closely related and that NEDS is a sort of re�nement of
NSFD.
Indeed consider the case where f is T1, we have already seen the NEDS
formula in (2.15); regarding NSFD, the result is:

xt+1 =
erhxt

1− φ(h)g(xt)

A drawback of NSFD is that xt+1 could be negative if g(xt) ≤ 1
φ(h) = r

erh−1
,

this could lead to problems if we are considering an ecological model, where
negative values for the variables may not make sense. On the contrary NEDS,
in this case, returns a non-negative value for xt+1.

One of the virtues of NEDS discretization scheme, proclaimed by the authors
in [5], is the fact that the method, unlike other previously seen discretization
methods like Euler and Kahan, it allows large time steps. However, always
in the same paper, the authors admitted that there could be models where
the ODE and DE have the same dynamics only for particular values of the
step-size h and also for this reason the research on discretization methods
cannot be absolutely considered �nished.

We now move to the comparison between the continuous time model and
its NEDS-discretized version, the objective is to �nd �xed points and study
their stability.
In order to obtain the same results as in [5] we slightly change the assump-
tions made in model (2.15), indeed here we do not consider the constant
term b. The result is that the right-hand side of (2.14) will be:

f(x) =

{
rx+ g(x)x, if f is T1

rx− g(x)x, if f is T2

Consider now the �xed points:

Lemma 4 (Fixed Points). The �xed points of the continuous time model

(2.14) and its discretized version are:

x∗ = 0, g(x∗) = ±r (+r, if f is T1;−r, if f is T2)
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Consider now the stability of the ODE; the authors of NEDS stated this
theorem:

Theorem 7 (Asymptotic Stability of the Continuous Time Model).
Consider the �xed point x∗ = 0, x∗ is asymptotically stable if and only if:{

r + g(0) < 0, if f is T1

r − g(0) < 0, if f is T2

Consider now a non-zero �xed point x∗, it is asymptotically stable if and only
if:

x∗g′(x∗) > 0

We report below the theorem regarding the stability of the DE:

Theorem 8 (Asymptotic Stability of the Discretized Model). Con-
sider the �xed point x∗ = 0, x∗ is asymptotically stable if and only if:

r >
erh − 1

erh + 1
g(0) and

{
r + g(0) < 0, if f is T1

r − g(0) < 0, if f is T2

Consider now a non-zero �xed point x∗, it is asymptotically stable if and only
if:

x∗g′(x∗) > 0 and

{
φ(h)g′(x∗)x∗ > −2, if f is T1

φ(h)e−rhg′(x∗)x∗ < 2, if f is T2

Finally, as done for the previous discretization methods, we report an
example, in order to show the potential of NEDS. We report here 2 examples,
one regarding the case when f is T1 and the other one related to f equal to
T2.

Example: An application of NEDS Method (T1 case)

We introduce the model:

dx

dt
= f(x) = rx+ x3 (2.16)

where r is non-zero.
It is immediate to observe that the equilibria are: x∗1 = 0 and x∗2,3 = ∓

√
−r

where x∗2,3 exist only if r < 0.
In particular since f ′(x∗1) = f ′(0) = r we obtain that the equilibrium point
x∗1 is stable if r < 0 and unstable if r > 0. Regarding x∗2,3, we have always
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instability since f ′(x∗2,3) = f ′(∓
√
−r) = −2r > 0.

In order to redirect to a known case (i.e. f is T1) for model (2.16), just
consider g(x) = x2 so that it is immediate to perform NEDS discretization
in the case where f(x) = rx+ g(x)x.
The result of NEDS, applied to model (2.16), is the discrete time model:

xt+1 = erhxt +
erh − 1

r
x3
t (2.17)

The obtained �xed point are in common to the continuous time model, indeed
we have: x∗1 = 0 and x∗2,3 = ∓

√
−r where x∗2,3 exist only in the case r < 0.

Moreover, by applying rules showed in theorem (8), we obtain the same local
dynamics, of the continuous time model, for x∗1 = 0 and x∗2,3.
We proved that NEDS discretization, in this case, is dynamically consistent.

A remark is now required, we want to compare the NEDS discretization
model (2.17) with a possible NSFD discretization; a problem could arise
with discretization of the non-linear term x3 in model (2.16), a possible way
to solve it could be discretize x3 as 2x3

t − xt+1x
2
t . The result model would

be:

xt+1 =
erhxt + 2

(
erh−1
r

)
x3
t

1 + erh−1
r x2

t

(2.18)

It is immediate to observe that, unlike the NEDS discretization, the NSFD
method gives birth to a model which could have some problems. Indeed,
here in �gure 2.7, we show a numerical example where, due to its velocity
and robustness, NEDS is preferable with respect to NSFD.

We observe that, in both cases where we changed the value of step-size h,

(a) (b)

Figure 2.7: NEDS and NSFD discretization methods applied to model (2.16)
with h = 1 (left), h = 1.5 (right), x(0) 1.5 and r = −2.5.
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NEDS is faster than NSFD.

Example: An application of NEDS Method (T2 case)

Now we want to deal with an application of T2-case for NEDS. The simplest
example is the logistic growth model. We have already seen this example
several times and its possible discretizations with Euler, Kahan and NSFD
methods. It is now reasonable to study its discretization with NEDS.

Consider the continuous time logistic model (also seen in (1.6)):

dx

dt
= f(x) = rx

(
1− x

k

)
(2.19)

where r, k > 0 are positive, real constants.
We have already seen in chapter (1.2.1) that the �xed points are x∗1 = 0 and
x∗2 = k. In particular x∗1 is unstable, on the contrary x∗2 is locally stable.

In oder to perform NEDS discretization in the case T2, from de�nition (20),
we have to consider g(x) = r xk . The result is the discrete time model:

xt+1 =
kerhxt

k + (erh − 1)xt
(2.20)

where we considered, as usually done in NEDS discretizations, φ(h) = erh−1
r .

The two �xed points are the same of continuous time model (2.19), i.e. x∗1 = 0
and x∗2 = k.
We now want to study the local stability of the discretized model, in order
to do that, we apply theorem (8).
Consider x∗1 = 0, it immediate that the necessary and su�cient conditions
for asymptotic stability are r > 0 and r < 0, the last condition cannot be
satis�ed since by initial hypothesis the logistic growth model has two strictly
positive parameters: r and k.
Regarding the non-zero equilibrium x∗2 = k, we verify that the necessary and
su�cient conditions in theorem (8) are satis�ed.
The �rst one is x∗2g

′(x∗2) > 0 that becomes r > 0, so it is satis�ed. The
second condition is φ(h)e−rhg′(x∗)x∗ < 2 that, after some computations be-
comes, 1− e−rh < 1 < 2.
From these two results we have that the stability of the continuous time
model is preserved through NEDS discretization method.
This result con�rms the goodness of NEDS for ecology models, as said by
its authors in [5].
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We now show some graphs regarding a numerical simulation of model (2.20)
and a comparison of the logistic growth model with NEDS and NSFD dis-
cretization, respectively in �gures 2.8 and 2.9.

(a) (b) (c)

Figure 2.8: NEDS discretization method applied to logistic growth model
(2.20) with h = 0.5 (left), h = 1 (center) and h = 1.5 (right), x(0) = 0.9,
k = 1.5 and r = 1.

In �g. 2.8, it can be observed that, increasing the value of the step-size h,
implies a greater velocity of reaching the stable �xed point x∗2 = k = 1.5.

Again, in �g. 2.9, it can be observed that NEDS is faster than NSFD, so it
preferable to discretize the logistic model with NEDS in order to have a fast
and a dynamically consistent discrete time model.

In next chapter we want to make a step forward, indeed we will introduce a
model with 2 independent variables used in economy and the objective will
be to verify if it is possible to apply NEDS and if addition hypothesis are
needed in order to obtain a dynamically consistent model.

(a) (b) (c)

Figure 2.9: Comparison between NEDS (equation (2.20), in green) and
NSFD (equation (2.11), in red) discretization methods applied to the logistic
model, with h = 0.5 (left), h = 1 (center) and h = 1.5 (right), x(0) = 0.9,
k = 1 and r = 1.
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Chapter 3

Application

The aim of this chapter is to study a continuous time model and its dis-
cretized version through the NEDS discretization method presented in sec-
tion (2.5).
As said in the introduction, the overwhelming majority of economical mod-
els are of continuous time type. This is due to the fact that they are well
studied in economic literature and they are, in general, simpler to use than
discrete time ones, since a 1 or 2-dimensional discrete time model can gener-
ate chaotic trajectories while it is impossible for a continuous one. Moreover,
many economical models exploit stochastic calculus and this was a great ad-
vantage for the spread of continuous time model in economics in the past.

The problem arises when data are collected; indeed data are gathered in dis-
crete time (even if, for example oil price data are available at high frequency,
data cannot be considered in continuous time). Discretization methods could
be di�cult to use in practice, indeed in chapter (2) we saw that some dis-
cretization schemes does not preserve all stability features (�xed points and
their stability) that were present in the continuous time model. A simplis-
tic solution to this problem could be using a continuous time model with
discrete time collected data, in other words: use the classical models for
data collected with hourly, daily, monthly or yearly frequency. However,
this procedure can be very dangerous, indeed not expected behaviours can
arise using a continuous time model with discrete data.
Another less naïf solution can be using a relatively simple discretization
method in order to convert a continuous time model into a discrete one.
Nonetheless, sometimes the characteristics of continuous time model are not
preserved in the discretization, as showed, for instance, in Euler (chapter
(2.2)) and Kahan (chapter (2.3)) methods.
The goal of this section is to apply NEDS discretization scheme and to study
its goodness and its negative parts, following the idea used in [4].

The �rst step is to introduce the continuous time model and show its stability
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and bifurcations.

3.1 The Continuous Model

3.1.1 Model presentation

The chosen model is the one discussed in [6]. The author of the article pro-
posed this model for the dynamics of oil price; actually since it is a very
generic model for energy it could be used in order to describe trajectories
of prices of many other commodities. The author himself showed how this
very generic model could be used to describe variation of price of cereals or
grains produced in a speci�c country.
Another possible application of the model is the one proposed by [12]. The
Chinese authors presented this model in order to characterize the energy
price in Jiangsu province, known for high energy consumption and very lit-
tle production; so import is crucial in order to ful�ll the energy requirement
of the province.
In this thesis the model will generically describe the energy or another com-
modity price as showed in [12], given that the aim of this work is mainly
to apply the discretization method, study �xed points, their stability and
repeat the procedure for the discretized model version.

The proposed model is the result of assumptions made in [12] and [6],
that we report here in order to o�er a complete model's comprehension.

First of all, the rising of price dP/dt is proportional to the di�erence between
the quantity of energy stocked Q and the determined quantity stocked Q̄.
dP/dt is also proportional to the quantity of energy imported I, always
assuming that Q, Q̄ and I are non-negative.
The obtained equation is:

dP

dt
= u(Q̄−Q) + rI (3.1)

where u and r are constant that determines adjustment velocity of energy
price. These two parameters are chosen positive (u > 0, r > 0).
In agreement with [12] and [6], the quantity stocked Q at time t is the
sum of the initial quantity Q0 and the di�erence between energy supply and
demand at each time s ∈ [0, t]; the used notation is respectively S and D
where S,D ≥ 0. This is expressed in the following equation:

Q(t) = Q0 +

∫ t

0
[S(s)−D(s)]ds (3.2)

Energy demand is chosen as positively correlated to energy price if the latter
does not overcome the threshold that purchasing power can tolerate. If
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the threshold is surpassed, an increase of energy price might decrease the
purchasing power. For this reason the equation that controls energy demand
is:

D = D0 − βP −Ψ(P )
dP

dt
(3.3)

whereD0 is, intuitively, the energy demand at time 0 and it is chosen positive
(i.e. D0 > 0), β > 0 is the so-called marginal energy demand quantity.
Ψ(P ) ≥ 0 is the function of the price and it re�ects the dependence of energy
demand on the rise of energy price. In [12] the authors decided to assume
Ψ(P ) as linear function (Ψ(P (t)) = b(P (t)) + c with b, c real constants).
Here, in order to have the model as general as possible, Ψ(P ) will be a
generic non-negative function of price P .
Energy supply is assumed to be linear with respect to the price, indeed a
power plant is keen to sell more energy as the price increases.

S = S0 + αP (3.4)

S0 ≥ 0 is the energy supply at time t = 0 and α > 0 is the marginal energy
supply quantity.
Lastly, the import I is assumed as a linear function of the price:

I = n−mP (3.5)

where n and m are positive constants (i.e. n > 0,m > 0).

Combining (3.1)-(3.2)-(3.3)-(3.4)-(3.5), the result is equation (3.6) with the
notation x = P and y = dP

dt = dx
dt .{

dx
dt = y
dy
dt = −u(α+ β)x− [u(Ψ(x)) + rm]y + u(D0 − S0)

(3.6)

3.1.2 Fixed Points Computation and Stability of the Model

Once presented the continuous time model, the next step is to �nd the equi-
librium points (or �xed points). As showed in chapter (1.2.2), in order to
�nd the �xed points of the model we have to impose the two equations, that
de�nes the model, equal to 0; that means:{

dx
dt = y = 0
dy
dt = −u(α+ β)x− [u(Ψ(x)) + rm]y + u(D0 − S0) = 0

The result is the only �xed point with coordinates:

(x∗, y∗) =

(
D0 − S0

α+ β
, 0

)
(3.7)
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In [6], the author a�rmed that in order to make a meaningful model it is
mandatory to impose D0 − S0 > 0, since it is not reasonable for oil price be
negative.
However, unlike the cited article, in this thesis the model presented is not
referred just to oil price but to a larger set of commodities like energy, cere-
als, etc. As said before, the aim is to use a generic and simpli�ed model also
for energy, so the condition D0 − S0 > 0 adopted in [6], will not be imposed
here. Indeed, as claimed in [1], the price of electricity can be even negative.
This is due to the fact that electricity cannot be stored (more precisely, only
an almost negligible quantity of electricity can be stored) and sometimes it
is more convenient for coal-�red plants to run even if fuel cost is higher than
electricity price because of huge starting and shutting costs for power plants.

After a small digression on electricity, we now focus on the stability of
the only �xed point (3.7). Coherently with what was done in [6], we assume
that Ψ is di�erentiable in x0.
The Jacobian matrix calculated in the �xed point for the system (3.6) is:

J(x0, y0) =

[
0 1

−u(α+ β) −uΨ(x0)− rm

]
(3.8)

In [6], the author a�rmed that, when Ψ(x0) = 0 it could happen, for spe-
ci�c values of parameters, that the eigenvectors associated to matrix (3.8)
are real and positive.
This statement is untrue, indeed, once computed trace and determinant of
J(x0, y0) it is immediate to observe that the trace is always negative and the
determinant is always positive, for any value of the parameters involved in
the model.

{
Tr(J(x0, y0)) = −uΨ(x0)− rm < 0

Det(J(x0, y0)) = u(α+ β) > 0

This observation leads to a local stable scenario for the continuous time
system. The eigenvectors associated to (3.8) could be real or conjugate
complex but in any case, the real part is always negative since by hypothesis
of the model: r > 0,m > 0, u > 0 and Ψ(x0) ≥ 0.

The explicit formula for the eigenvectors is:

λ1,2 =
−uΨ(x0)− rm±

√
(uΨ(x0) + rm)2 − 4u(α+ β)

2
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Then we can distinguish 3 cases for them:

1. if (uΨ(x0) + rm)2 < 4u(α+ β): 2 conjugate complex eigenvector with
negative real part (i.e. Re(λ1,2) < 0);

2. if (uΨ(x0) + rm)2 = 4u(α+ β): 2 real negative coincident eigenvalues;

3. if (uΨ(x0) + rm)2 > 4u(α+ β): 2 real negative distinct eigenvalues.

According to the de�nition of bifurcation (8), the local stability of the unique
�xed point does not change with respect to the value of parameters so in the
continuous time model there are no bifurcations. Indeed, a stable node, a
stable focus and a stable star are qualitatively equivalent since their local
phases can be identical by applying a continuous local deformation.

3.1.3 Numerical Simulations

In order to perform a numerical simulation, it is preferable to give a value
to the parameters of model (3.6) such that they have a practical meaning.
Unfortunately neither in [6] nor in [12], there is a deep discussion regarding
the practical meaning of the parameters used in the model. In order not
to perform numerical simulation without practical signi�cance and also in
order to do a thesis work as complete as possible, we perform a calibration
of the parameters.
In particular, we used a dataset downloaded from Eurostat 1 related to the
selling price of soft wheat in each country of the European Union for the last
11 years. From this data, using the Matlab function fmincon, which general
presentation is given in the Appendix (A.1), we found the calibrated values
for the parameters u, α, β, r and m, after that, we computed the continuous
time trajectory for the system using the Matlab function ode45, also pre-
sented in (A.2).

The �rst calibration (and then numerical simulation) is performed for Italy,
which has the highest soft wheat price on average from 2008 to 2019.
The chosen function for Ψ(x) is a cubic one, i.e. Ψ(x) = x3.
In �g. 3.1 it is represented the price and its speed, in �g. 3.2 the trajectory.

It is possible to observe that the two eigenvalues are distinct, negative and
with null imaginary part (i.e. real eigenvalues), since (uΨ(x0) + rm)2 >

1Dataset available at: https://ec.europa.eu/eurostat/databrowser/bookmark/

1e1cea95-23ab-49bd-af65-45da1dea8631?lang=en
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(a) Price: x(t) (b) Speed of price: y(t)

Figure 3.1: Italy, soft wheat price and speed of price for D0 = 2, S0 =
1, u = 0.23, α = 0.39, β = 0.39, r = 1.10,m = 0.56,Ψ = x3. Initial data:
x(0) = 1.2, y(0) = 0.01.

Figure 3.2: Italy, trajectory for D0 = 2, S0 = 1, u = 0.23, α = 0.39, β =
0.39, r = 1.10,m = 0.56,Ψ = x3. Initial data: x(0) = 1.2, y(0) = 0.01.
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4u(α+ β).
Observing the trajectory in �g. 3.2 it can be noticed that the system con-
verges to the �xed point (3.7).

The second calibration and numerical simulation is done for Austria, which,
unlike Italy, has on average the lowest soft wheat price among the European
Union countries. As done for Italy, three �gures are presented below in �g.
3.3 and 3.4:

(a) Price: x(t) (b) Speed of price: y(t)

Figure 3.3: Austria, soft wheat price and speed of price for D0 = 2, S0 =
1, u = 0.10, α = 0.36, β = 0.36, r = 0.10,m = 10−3,Ψ = x3. Initial data:
x(0) = 1.2, y(0) = 0.01.

Figure 3.4: Austria, trajectory for D0 = 2, S0 = 1, u = 0.10, α = 0.36, β =
0.36, r = 0.10,m = 10−3,Ψ = x3. Initial data: x(0) = 1.2, y(0) = 0.01.

Again, it can be observed the nature of the eigenvalues related to the con-
tinuous time system. This time, the values of the parameters obtained
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through calibration for Austria, lead to a oscillatory dynamics as it can
be seen, for example, in �g. 3.4. This guess is con�rmed by the fact that
(uΨ(x0) + rm)2 < 4u(α + β) and, from the previous chapter, it is immedi-
ate to a�rm that the continuous time 2-dimensional model has 2 conjugate
complex eigenvalues with negative real part: for this reason the trajectory
oscillates towards the unique �xed point (3.7), which is a stable focus.
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3.2 The Discrete Model

3.2.1 NEDS discretization

The next step is to apply NEDS discretization scheme to the continuous time
model. The result will be a discretized model. As previously mentioned, data
are not published continuously so using a continuous time model could lead
to unexpected dynamical scenarios that could be a problem for the reliability
of a economical model as the one presented here.

We apply NEDS scheme (2.15) to the continuous time model (3.6), that we
rewrite it here for convenience:{

dx
dt = y =: F1(x, y)
dy
dt = −u(α+ β)x− [u(Ψ(x)) + rm]y + u(D0 − S0) =: F2(x, y)

(3.6)

For the same convenience reason here the NEDS discretization scheme (2.15)
is re-proposed:

xt+1 =

{
erhxt + φ(h)g(xt)xt + φ(h)b, if f is T1

erhxt+φ(h)b
1+φ(h)g(xt)

, if f is T2

(2.15)

Since the aim is to have a T1-form equation as in (2.15), equation F1(x, y)
is rewritten as rx+

( y
x − r

)
x.

So in particular the function g(x) is in this case equal to
( y
x − r

)
. The �rst

discretized equation obtained is: xt+1 = xt + hyt.

Regarding F2(x, y), it could be useful to rewrite the second equation as:

dy

dt
= −rmy + u

(
−Ψ(x)− (α+ β)x

y
+

(D0 − S0)

y

)
y

It is immediate to observe that it is possible again to apply NEDS discretiza-
tion scheme since F2(x, y) can be identi�ed with a T1-type equation (2.15);

where: r∗ = −rm and g(y) = u
(
−Ψ(x)− (α+β)x

y + (D0−S0)
y

)
.

The result, after some computations, is:

yt+1 = e−rmhyt +

(
1− e−rmh

rm

)
u (−Ψ(xt)yt + (D0 − S0)− (α+ β)xt)
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The discretized model obtained is reported in (3.9):{
xt+1 = xt + hyt

yt+1 = e−rmhyt +
(

1−e−rmh

rm

)
u (−Ψ(xt)yt + (D0 − S0)− (α+ β)xt)

(3.9)

3.2.2 Fixed Points Computation and Stability of the Model

In chapter (1.3.2), we saw that for a discrete system, in order to �nd its
�xed points, the equilibrium condition is x(t+ 1) = x(t) and y(t+ 1) = y(t);
so the �rst step is to impose the �rst equation of (3.9) equal to x and the
second one equal to y.
The result, after some simpli�cations, is the same unique �xed point that
was found in continuous time:

(x∗, y∗) =

(
D0 − S0

α+ β
, 0

)
(3.7)

So, the �rst important result is that the discretized model (3.9) has the
identical �xed point of the continuous model (3.6).

The next step is to study the stability of the discretized model, we also saw
in chapter (1.3.2) that it is fundamental to compute the Jacobian matrix of
system (3.9), which it is presented here:

J =

[
1 h
j21 j22

]
(3.10)

where: j21 =
(

1−e−rmh

rm

)
u(−Ψ′(xt)yt − (α+ β))

and j22 = e−rmh −
(

1−e−rmh

rm

)
uΨ(xt).

From the previous matrix, substituting the coordinates of the unique �xed
point (3.7), we get:

J(x0, y0) =

[
1 h

j21(x0, y0) j22(x0, y0)

]
(3.11)

where: j21 = −
(

1−e−rmh

rm

)
u(α+ β)

and j22 = e−rmh −
(

1−e−rmh

rm

)
uΨ(x0).

From this result, hereafter the values of trace and determinant of the matrix
just calculated are reported below:
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Tr(J(x0, y0)) = 1 + e−rmh −
(

1−e−rmh

rm

)
uΨ(x0)

Det(J(x0, y0)) = e−rmh +
(

1−e−rmh

rm

)
u(−Ψ(x0) + h(α+ β))

(3.12)

We now focus on the su�cient condition for stability in a discrete system.
From chapter (1.3.2) we saw the conditions that de�nes the so called stability
triangle (1.22); these three conditions give local asymptotic stability of a
�xed point.
For convenience, we report here these conditions:

P (1) = 1− Tr(J(x0, y0)) +Det(J(x0, y0)) > 0

P (−1) = 1 + Tr(J(x0, y0)) +Det(J(x0, y0)) > 0

Det(J(x0, y0)) < 1

(3.13)

In order to have a clearer view of the results we divide the analysis into two
cases:

Case 1: Ψ(x0) = 0

Substituting the values of (3.12) in the �rst condition of (3.13) the result is:(
1− e−rmh

rm

)
uh(α+ β) > 0

and since the above term is positive for any value of the parameters (taking
into account that by hypothesis of the model r,m, u, α, β > 0), the �rst
condition of the stability triangle is satis�ed.

Repeating the same procedure for the second condition, the result is:

2 + 2e−rmh +

(
1− e−rmh

rm

)
uh(α+ β) > 0

and again the quantity is positive for any value of the parameters.
This result can also be obtained geometrically: we can express the previous
inequality in terms of the step size h, it becomes:

h >

(
−2rm

u(α+ β)

)(
1 + e−rmh

1− e−rmh

)
(3.14)

The limit, as h → +∞, of the right-hand side of inequality (3.14) is −2rm
u(α+β)

which is always a negative quantity, this allows us to a�rm that the second
condition of the stability triangle is always veri�ed.

70



We now focus on the last inequality of (3.13), the computation state that
this condition is satis�ed when:

(1− e−rmh)

(
−1 +

uh(α+ β)

rm

)
< 0

which leads to the �nal result:

h <
rm

u(α+ β)
(3.15)

So the unique condition, in the case Ψ(x0) = 0, in order to have a discretized
model that is locally asymptotically stable, is (3.15).

Case 2: Ψ(x0) > 0

We now deal with a more generic assumption than Case 1 (i.e. we consider
Ψ(x0) > 0). Substituting the values of (3.12) in the �rst condition of (3.13)
the result is again: (

1− e−rmh

rm

)
uh(α+ β) > 0

and we previously checked that the quantity is strictly positive.

While, the second condition is satis�ed in the case where this inequality is
true:

u(−2Ψ(x0) + h(α+ β) > −(2 + 2e−rmh)(
1−e−rmh

rm

)
which can be rewritten in terms of the step size h:

h >

(
−2rm(e−rmh + 1)

1− e−rmh
+ 2uΨ(x0)

)
1

u(α+ β)
(3.16)

However, di�erently from case Ψ(x0) = 0, inequality (3.16) is not always sat-
is�ed, for particular values of the parameters the inequality does not hold;for
example, it can be observed that for u = 5, α = β = r = 0.5,m = D0 =
1, S0 = 2 and initial conditions x(0) = 1.2, y(0) = 0.01, the previous inequal-
ity is not satis�ed for a step-size like h = 0.9 while it is veri�ed for a smaller
value of h (which leads to a more precise discretized model).
This geometrically description is also represented graphically in �g. 3.5,
where it can observed that for particular values of h (0.6 . h . 1.2) the
condition is not satis�ed.

Finally, the third condition of the stability triangle is satis�ed when:

(1− e−rmh)
( u

rm
(−Ψ(x0) + h(α+ β))− 1

)
71



Figure 3.5: Condition (3.16), with respect to the step size h, with u = 5, α =
β = r = 0.5,m = D0 = 1, S0 = 2, x(0) = 1.2, y(0) = 0.01.

which result, in terms of h, is:

h <
(rm
u

+ Ψ(x0)
) 1

(α+ β)
(3.17)

From these considerations for the most generic case Ψ(x0) > 0, it is possible
to summarize the obtained results in the next proposition:

Proposition 11. Continuous time model (3.6) and its NEDS discretized

version (3.9) can be compared, in particular:

(i) The discretized time model has the same unique �xed point as the orig-

inal continuous time model.

(ii) Necessary conditions for the �xed point (x∗, y∗) =
(
D0−S0
α+β , 0

)
to be lo-

cally asymptotically stable, both for continuous and discrete time model,

are de�ned by inequalities (3.16) - (3.17), i.e.:h >
(
−2rm(e−rmh+1)

1−e−rmh + 2uΨ(x0)
)

1
u(α+β)

h <
(
rm
u + Ψ(x0)

)
1

(α+β)

Proof. Results were computed in this section (3.2.2).

It is important to observe that, besides an extra assumption on the step-
size h described in proposition (11), NEDS discretization model works also
for the economical model taken into exam in this section. This result is
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less obvious than it might seem, since NEDS model was presented by its
authors in [5] as a discretization scheme useful in ecological systems (like
logistic and exponential growth model), while here, we showed, that adding
few hypothesis on h, it works also for an economical system.

On the other hand, proposition (11) gives a counterexample of what written
in the article that presented NEDS method [5]; indeed, the authors a�rmed
that in the most of the cases, NEDS method preserves the stability of the
continuous time model; here, in order to retrieve the property, we had to
add an extra assumption on the step-size h.

Finally, resuming the theoretical obtained result, we can comment it in two
ways: the �rst one (the optimistic one) a�rms than a simple additional
hypothesis gives power to NEDS to be applicable not only to ecological
model (like the logistic growth model) but also to simple economical models
with two variables (like the considered model (3.6)). The second way (the
pessimistic one) of commenting proposition (11) is to sadly admit that NEDS
discretization method is not infallible, indeed when we consider a dynamical
model with more than 1 variable or a model related to economy, with di�erent
characteristics of 1-dimensional ecology models, some consistency problems
could arise and some additional hypothesis, like the one we introduced, must
be added in order to obtain a discrete time model with same local stability
of the starting model.

3.2.3 Bifurcations

According to the results obtained in the previous sections, there are di�erent
stability scenarios with respect to the value of the parameters.
For convenience, again, we divide the analysis into the two previous cases:

Case 1: Ψ(x0) = 0

In particular we observed that the third condition of the stability triangle
(3.13) may not be satis�ed. More precisely, from (3.15) if h < rm

u(α+β) the
discretized model follows a stable condition, when h reaches the bifurcation
threshold the two complex conjugate eigenvalues exit the stability region (i.e.
the unit circle) and an invariant curve is created.
This behaviour is typical of the Neimark-Sacker bifurcation, where the �xed
point looses stability and a stable limit cycle is born around it. This partic-
ular case is the subcritical Neimark-Sacker.
We want to show two simulation of the discretized model; in �g. 3.6 it is
considered the case where condition (3.15) is satis�ed, in �g. 3.7, it is showed
the Neimark-Sacker bifurcation that creates a stable limit cycle around the
�xed point.
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(a) Price (b) Simulated trajectory

(c) Continuous model vs discretized

Figure 3.6: Case Ψ(x0) = 0. Simulation of price x, trajectory for model (3.9)
and comparison with the continuous one (3.6)with r = α = β = 0.5,m =
S0 = D0 = 1, u = 0.75, x(0) = 1.2, y(0) = 0.01 and h = 0.5. Condition
(3.15) is satis�ed.
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(a) Price (b) Simulated trajectory

(c) Continuous model vs discretized

Figure 3.7: Case Ψ(x0) = 0. Simulation of price x, trajectory for model (3.9)
and comparison with the continuous one (3.6)with r = α = β = 0.5,m =
S0 = D0 = 1, u = 0.75, x(0) = 1.2, y(0) = 0.01 and h = 0.8. Condition
(3.15) is not satis�ed.
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Case 2: Ψ(x0) > 0

This case is obviously more delicate than case 1, since also the function Ψ(x0)
is considered in the stability conditions.
In chapter (1.3.2) it was pointed out that, at most, 3 types of bifurcation may
show up in a 2-dimensional discrete time dynamic system: we previously
observed that if two complex conjugate eigenvalues exit the unit circle a
Neimark-Sacker bifurcation occurs, moreover if an eigenvalue λ is such that
λ = +1, we have a transcritical, pitchfork or saddle-node bifurcation. Finally
if λ = −1, a �ip may occur; in the latter case, the oscillatory behaviour of the
trajectory creates a periodic cycle and, increasing the bifurcation parameter,
it might lead to a doubling cascade that after some period �ips provokes an
aperiodic trajectory, also called chaotic.

In the considered model, from condition (3.17), a Neimark-Sacker bifurcation
is present for particular values of the step size h. This is analogous to the
scenario of case Ψ(x0) = 0, where two complex eigenvalues exit the stability
circle.
Also for the case Ψ(x0) > 0 two indicative simulations are performed in order
to show the arise of the Neimark-Sacker bifurcation as h increases. They are
reported in �gures 3.8 and 3.9:

3.2.4 Numerical Simulations

As done for the continuous time model, some numerical simulations are per-
formed also for the discretized model. Moreover, in order to make a signif-
icant comparison, the same commodity (price of soft wheat) is used for the
simulations. The countries involved (Italy and Austria) and of course their
own calibrated parameters are both used in the simulations.

The graphics for Italy are presented in �gures 3.10 and 3.11:

Regarding Italy, it can be observed how the discretization model works well
in this case, indeed as the time horizon is increased, the discretized model
well approximates the originally continuous time model, as showed in the
right panel of �g. 3.11.

The result of the numerical simulation for the Austrian case are reported in
�gures 3.12 and 3.13:

Regarding this last simulation, as for the Italian version, NEDS originates a
qualitatively identical discrete time model, in fact also the discretized model
has an oscillatory behaviour, and as showed in the right panel of �g. 3.13,
it is qualitatively equivalent to the continuous version.

It is worth to notice that conditions (3.16) and (3.17) are satis�ed both for
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(a) Price (b) Simulated trajectory

(c) Continuous model vs discretized

Figure 3.8: Case Ψ(x0) > 0. Simulation of price x, trajectory for model (3.9)
and comparison with the continuous one (3.6)with r = α = β = 0.5,m =
S0 = D0 = 1.1, u = 0.75, x(0) = 1.2, y(0) = 0.01 and h = 0.5. Condition
(3.17) is satis�ed.
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(a) Price (b) Simulated trajectory

(c) Continuous model vs discretized

Figure 3.9: Case Ψ(x0) > 0. Simulation of price x, trajectory for model (3.9)
and comparison with the continuous one (3.6)with r = α = β = 0.5,m =
S0 = D0 = 1.1, u = 0.75, x(0) = 1.2, y(0) = 0.01 and h = 0.8. Condition
(3.17) is not satis�ed.

(a) Price: x(t) (b) Speed of price: y(t)

Figure 3.10: Italy, soft wheat price and speed of price for D0 = 2, S0 =
1, u = 0.23, α = 0.39, β = 0.39, r = 1.10,m = 0.56,Ψ = x3, h = 0.5. Initial
data: x(0) = 1.2, y(0) = 0.01.
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(a) Trajectory (b) Continuous vs Discrete

Figure 3.11: Italy, discrete trajectory and comparison for D0 = 2, S0 =
1, u = 0.23, α = 0.39, β = 0.39, r = 1.10,m = 0.56,Ψ = x3, h = 0.5. Initial
data: x(0) = 1.2, y(0) = 0.01.

(a) Price: x(t) (b) Speed of price: y(t)

Figure 3.12: Austria, soft wheat price and speed of price for D0 = 2, S0 =
1, u = 0.10, α = 0.36, β = 0.36, r = 0.10,m = 10−3,Ψ = x3, h = 0.5. Initial
data: x(0) = 1.2, y(0) = 0.01.
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(a) Trajectory (b) Continuous vs Discrete

Figure 3.13: Austria, discrete trajectory and comparison for D0 = 2, S0 =
1, u = 0.10, α = 0.36, β = 0.36, r = 0.10,m = 10−3,Ψ = x3, h = 0.5. Initial
data: x(0) = 1.2, y(0) = 0.01.

Italy and Austria, so proposition (11) can be applied and the result, con-
�rmed by the simulations, is that the discretized model and the continuous
original version are qualitatively equivalent. This result might not be so rel-
evant at �rst glance but, on the contrary, shows the great power of NEDS
discretization scheme: its �exibility that allows us to use it for di�erent kind
of models, ecological, physical, economical, etc.

3.2.5 Comparison between Continuous and Discrete Time
Models and Real Data

The last objective of this thesis work is to investigate on the relationship
between the continuous time model (3.6), its discretization through NEDS
model (3.9) and "real data" obtained in the market.
It is quite evident that, even before testing it, the considered model (3.6)
cannot be enough complex to predict and estimate the price of any com-
modity present in o�cial markets, indeed the model is too elementary and
it does not take into account several aspects that may in�uence the price
of a generic commodity, for instance: seasonality, geopolitical decisions (like
wars, embargoes, imposition of duties, etc), lack of raw materials (for oil and
other fossil fuels), climate changes, etc.
However our aim is to study a particular case where the discretized model
has an error less than the continuous time one's; for the described case, it
can be a�rmed that NEDS discretization produced a model which of course
cannot reply the behaviour of the price of the considered commodity for the
above reasons, but at least, it produced a discrete time model better than
the starting one.

We considered the price of co�ee futures at 1 month (ICE-US Co�ee C Fu-
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tures Electronic Commodity Future Continuation 1), downloaded from Eikon
(by Thompson-Reuters) from 06/01/2012 to 09/07/2013 with a 1-week fre-
quency in US Dollars. In particular, this data refers to United States co�ee
futures prices for Arabica co�ee beans and it is considered as the world
benchmark for Arabica co�ee. It prices the physical delivery of green beans
from 20 countries of America, Asia, Africa and Oceania. These beans are
harvested and brought to o�cial warehouses located in USA, Germany, Bel-
gium and Spain. This index is managed by ICE (Intercontinental Exchange).
Unfortunately, since Eikon is a pay-per-use �nancial platform, it is not pos-
sible to report here co�ee futures prices.

We subdivided the data into two parts, the �rst was used for calibrating the
5 parameters of model (3.6) (u, α, β, r and m), starting from the initial point
x0 = 0.81 and y0 = 0.01; the second part was partly used as a "test" for the
models (continuous and discrete) and we used it as "real data" in oder to
make the comparison between market data and what the models predicted.
Moreover we used the log-price in order to better manage real data.
Matlab code is reported in Appendix (B), it is worth to highlight the use
of Matlab functions fcn2optimexpr, optimproblem and solve, their use in
explained in Appendix (A).
We observed that unexpectedly, for optimal values of initial conditions and
step-size, the discretized model performs better than the continuous time
one; indeed the error of the discretized model, calculated as the sum of the
squares of the di�erence at each time between real data and values obtained
from the model, is less than in the continuous version.

In �gure 3.14 we report some examples where the discrete time model better
approximates the behaviour of real data with respect to the continuous time
model. We report also in table 3.1 the respective errors.

Figure x0 h Continuous Error Discrete Error

3.14 (a) 0.2 0.2 0.2879 0.2352
3.14 (b) 0.3 0.2 0.2394 0.1638
3.14 (c) 0.4 0.2 0.2256 0.2200
3.14 (d) 0.3 0.3 0.2394 0.1931

Table 3.1: Error (calculated with the euclidean distance) for continuous time
model (3.6) and for discrete time (3.9), related to �gure 3.14.

It is immediate to appreciate from table 3.1 how, for optimal initial val-
ues, the error of the discrete time model is less than the error of the contin-
uous time error. However, observing �gure 3.14, it would be a big mistake
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(a) x0 = 0.2, h = 0.2 (b) x0 = 0.3, h = 0.2

(c) x0 = 0.4, h = 0.2 (d) x0 = 0.3, h = 0.3

Figure 3.14: Representation of co�ee futures log-prices (in green), contin-
uous time (in blue) and discrete time model (in red) for u = 5.9996, α =
1.2287, β = 1.2287, r = 18.1767,m = 13.2694, D0 = 2, S0 = 1 and y0 = 0.01.
The considered time horizon is 150 days.

a�rming that the continuous time model or its discretization predicts the
price of co�ee futures, characterized by peaks and lows, since their behaviours
are really di�erent.

Finally, it is important to observe that the discrete time dynamical system
performs better than the continuous version, this fact has huge relevance
since the data used in the model (co�ee futures prices) has discrete fre-
quency (1 week) and so, using a discrete time model is a coherent choice,
which, moreover, gives also an appreciable result showed in table 3.1, where
the discrete time model has a lower error than the continuous system.
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Chapter 4

Conclusions

This thesis was written with the aim of describing main di�erences between
continuous and discrete time dynamical systems and discretization methods.
In particular the latter could be a practical solution for the common prob-
lem of considering continuous time models with data collected with discrete
frequency.

The �rst two chapters were devoted to introduce dynamical systems (con-
tinuous and discrete) and the discretization methods, respectively.
In chapter (3), we did a step forward: we applied NEDS method, that was
introduced by its authors in [5] as a discretization method for 1-dimensional
biological models, to a 2-dimensional continuous time economical model.
The result was a little unexpected since we had to introduce an additional
hypothesis, contained in proposition (11), in order to preserve the stability
of the unique �xed point also in the discretized model.
It is worth to highlight again that NEDS model was applied to a di�erent
type of models from the ones expressed by its authors, moreover the rise of
the independent variables (from 1 to 2) was well managed by just adding a
small hypothesis on the step-size h.

We performed a calibration for the 5 parameters of the model using the price
of soft wheat for Italy and Austria from 2008 to 2019, taken from Eurostat,
and we con�rmed that, for admissible values of h, the behaviour of the con-
tinuous time model is replicated by its NEDS-discretized version.

Finally we considered the price of futures of Arabica co�ee, it particular we
took from Eikon platform the ICE-US Co�ee C Futures Electronic Com-

modity Future Continuation 1 which is considered a world benchmark for
Arabica co�ee. We performed, as before, a parameters' calibration and then
we calculated the price using the continuous time model and the discrete one
and, at the end, we compared them with real data.
The result was that, for particular initial values and step-size h, the dis-
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cretized model had a smaller error than the continuous time model. This
fact con�rmed our initial idea: since data is available only at discrete time,
it is a better choice to use discrete time models.

Since the literature on discretization methods for n-dimensional dynamical
systems, where n ≥ 2, is in development, there is space for more deep anal-
ysis; indeed, using NEDS method for very complex models could be tricky
in some cases. It might happen that some constraints on the step-size h or
model's parameters should be added in order to preserve the consistency of
the discretization method.

The economical model (3.6) considered in this thesis is basic and it would
be impossible for it to describe the performance of any commodity since it
does not take into account several aspects that may in�uence the commodity
price.
However it would be interesting to verify if, taking into account the price of a
chosen commodity and after deleting disturbances on the behaviour like sea-
sonality or sudden economical and geopolitical crisis, the discretized model
has still a smaller error than the continuous time model for any initial point
and the majority of the values of the step-size h and so the discretization
could be a way of better approximating the behaviour of a commodity.

Another spark for possible future analysis is to consider a much more com-
plex continuous time model (with more than 2 independent variables and
many parameters) used in practice for pricing an asset and then discuss the
application of NEDS and �nally verify if, maybe with the addition of other
constraints, the discretization is dynamical consistent as for simpler starting
models.
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Appendix A

Matlab Functions

Here, in this Appendix the description of Matlab functions used in the code,
available in Appendix (B), is reported:

A.1 fmincon

fmincon is a Matlab function used for �nding the minimum of a constrained
nonlinear multivariable function. In particular the Matlab function is a
nonlinear solver which �nds the minimum of function f , that means:

min
x
f(x)

such that:
Ax ≤ b

where A is the matrix that takes into account the coe�cients of the left-
hand side of the linear constraints system. The vector b is the vector of the
constant terms of the linear constraint system, i.e. it is the right-hand side
of the system: {

3x+ 4y ≤ 10

−5y ≤ 3

In this example A =

[
3 4
0 −5

]
and b =

[
10
3

]
.

In addition to A and b, input parameters of fmincon are initial conditions
x0 and, of course, the function f that has to be minimized.
The output is the vector x of coe�cients of the variables that minimize the
function f under the applied constraints.
Possible limitations are related to cases when the objective and constraint
functions are not continuous and do not have continuous �rst derivatives
because fmincon is gradient-based method.
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A.2 ode45

ode45 is the most general Matlab ODE solver.

Input arguments are: the the function handle which de�nes the function
to be integrated, the integration window, which is a vector and the initial
condition y0 for each equation of the integrating function.
Output arguments are: the vector of integration points t, which contains the
internal evaluation points used to perform the integration and the vector y
which contains the solutions of the ODE.
There are many ODE solvers used in Matlab and, as said previously, the
version used in the code is the most general between them and it solves non-
sti� di�erential equation with medium order, as expressed in [10]. ode45

solves the di�erential equation y′ = f(t, y) and it is also based on the Runge-
Kutta explicit formula (the Dormand-Prince pair [2]), it is a single step
solver, i.e. in order to compute y(tn), it only needs the knowledge of the
previous step y(tn−1).

A.3 fcn2optimexpr

fcn2optimexpr is used in order to convert a generic function into an opti-
mization expression.
Sometimes it could be useful to include, as input, the desired size of the
output. In this work, it was useful to obtain as output a matrix with 2 rows,
where the �rst one represents the price and the second row its variation.

A.4 optimproblem

optimproblem is used for creating optimization problems.
The function we want to use as the objective function must be inserted in
input. The output will be the optimization problem as OptimizationProblem
object.

A.5 solve

Matlab function solve is used in the code in the last step of calibration,
indeed it solves an optimization problem.
Input arguments are: the problem we want to optimize (obtained from the
use of function optimproblem) and an initial guess which is a vector of
the same size of the vector that represents the parameters that we want to
optimize.
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Appendix B

Matlab Code

Here below, it is presented the Matlab code used in the calibration of soft
wheat price for Italy and Austria and the following simulations of the con-
tinuous and discrete time dynamical model showed in chapters (3.1.3) and
(3.2.4).

Moreover, it is showed the Matlab code used for the calibration of co�ee
futures price and the following analysis between real data and the result of
continuous and discrete time model for the calibrated parameters, previously
discussed in chapter (3.2.5).

Objective Function: obj_fun.m:

1 % ob j e c t i v e func t i on f o r s o f t wheat ( I t a l y and Austr ia )
2 func t i on co s t = obj_fun_1 (param)
3 % read Excel f i l e
4 load ( 'soft_wheat_EUROSTAT .mat ' )
5 data = softwheatEUROSTATS2 ;
6 nat ion = tab l e2a r ray ( data ( 1 2 , 2 : end ) ) ; % f i nd I t a l y and

Austr ia in the tab l e (12 th and 20 th row , r e s p e c t i v e l y )
7 p r i c e = ze ro s (2 , l ength ( nat ion ) ) ;
8 p r i c e ( 1 , : ) = nat ion ;
9 f o r i = 2 : s i z e ( pr i ce , 2 )
10 p r i c e (2 , i ) = p r i c e (1 , i ) − p r i c e (1 , i −1) ; % vecto r o f

d e r i v a t i v e s ( incrementa l r a t i o with t=1y )
11 end
12 p r i c e = pr i ce ' ;
13 time_short = [ 0 : 1 : s i z e ( pr i c e , 1 ) −1] ' ; % vec to r o f number o f

years
14 D0 = 2 ; % i n i t i a l demand
15 S0 = 1 ; % i n i t i a l supply
16 y0 = [ 1 . 2 0 . 0 1 ] ; % i n i t i a l c ond i t i on s f o r the ODE
17 [ time_long , y ] = ode45 (@(t , y ) lara_1 ( t , y , param ,D0 , S0 ) , [ 0

time_short ( end ) ] , y0 ) ;
18 n = s i z e (y , 1 ) ;

87



19 i f ( s i z e ( pr i c e , 1 ) ~= n)
20 price_new = int e rp1 ( time_short , p r i c e ( : , 1 ) , time_long ) ;
21 % f i g u r e ( )
22 % p lo t ( time_short , p r i c e ( : , 1 ) , ' o ' , time_long , price_new , ' : . ' )
23 end
24 co s t = 0 ;
25 % the ob j e c t i v e w i l l be to minimize " co s t "
26 f o r i = 1 : l ength ( price_new )
27 co s t = cos t + (y ( i , 1 ) − price_new ( i ) ) ^2;
28 end
29 end

Psi Function: Psi.m:

1 % Function Psi ( cub ic )
2 func t i on va l = Psi ( x )
3 va l = x .^3 ;
4 end

Run Script: run_1.m:

1 % run f o r s o f t wheat ( I t a l y and Austr ia )
2 c l e a r a l l
3 c l o s e a l l
4 c l c
5 %% Calibration
6 x0 = [ 0 . 7 5 0 .5 0 .5 0 .5 1 ] ' ; % i n i t i a l guess (= o f Teodoro

Lara s imu la t i on )
7 A = [−1 0 0 0 0 ; % u > 0
8 0 −1 0 0 0 ; % alpha > 0
9 0 0 −1 0 0 ; % beta > 0
10 0 0 0 −1 0 ; % r > 0
11 0 0 0 0 −1; % m > 0
12 1 0 0 0 0 ; % u < 10
13 0 1 0 0 0 ; % alpha < 1
14 0 0 1 0 0 ; % beta < 1
15 0 0 0 1 0 ; % r < 1 .5 f o r Austr ia ( r < 10 f o r I t a l y )
16 0 0 0 0 1 ] ; % m < 1.5
17 b = [0− eps ; % u > 0
18 0−eps ; % alpha > 0
19 0−eps ; % beta > 0
20 0−eps ; % r > 0
21 0−eps ; % m > 0
22 10*(1− eps ) ; % u < 10
23 1*(1− eps ) ; % alpha < 1
24 1*(1− eps ) ; % beta < 1
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25 10*(1− eps ) ; % r < 1 .5 f o r Austr ia ( r < 10 f o r I t a l y )
26 1.5*(1− eps ) ] ; % m < 1.5
27 param = fmincon(@obj_fun_1 , x0 , A , b) ;
28 u = param (1)
29 alpha = param (2)
30 beta = param (3)
31 r = param (4)
32 m = param (5)
33
34 D0 = 2 ;
35 S0 = 1 ;
36
37 %% Continuous Time
38 T_max = 100 ;
39 t_span = [0 T_max ] ;
40 y0 = [ 1 . 2 0 . 0 1 ] ;
41 [ t , y ] = ode45 (@(t , y ) l a r a ( t , y , u , alpha , beta , r , m, D0 ,

S0 ) , t_span , y0 ) ;
42 x_cont = y ( : , 1 ) ;
43 y_cont = y ( : , 2 ) ;
44
45 % Plot s
46 f i g u r e ( )
47 p l o t ( t , x_cont )
48 t i t l e ( 'Continuous Model ' )
49 x l ab e l ( ' t ' )
50 y l ab e l ( 'x ( t ) ' )
51 f i g u r e ( )
52 p l o t ( t , y_cont )
53 t i t l e ( 'Continuous Model ' )
54 x l ab e l ( ' t ' )
55 y l ab e l ( 'y ( t ) ' )
56 f i g u r e ( )
57 p l o t ( x_cont , y_cont )
58 t i t l e ( 'Continuous Model ' )
59 x l ab e l ( 'x ' )
60 y l ab e l ( 'y ' )
61 hold on
62 p l o t ( (D0−S0 ) /( alpha+beta ) , 0 , 'Color ' , '#EDB120 ' , 'Marker ' , '

. ' , ...
63 'MarkerSize ' , 15)
64
65 % Condit ion negat ive r e a l or negat ive complex conjugate

e i g enva lu e s
66 (u*Psi ( (D0−S0 ) /( alpha+beta ) )+r *m)^2
67 4*u*( alpha+beta )
68
69 %% Discrete Time
70 h = 0 . 5 ;
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71 x_discr = ze ro s (T_max, 1 ) ;
72 y_discr = ze ro s (T_max, 1 ) ;
73 x_discr (1 ) = 1 . 2 ;
74 y_discr (1 ) = 0 . 0 1 ;
75 f o r i = 1 :T_max−1
76 x_discr ( i +1) = x_discr ( i ) + h*y_discr ( i ) ;
77 % NEDS (T1 case )
78 y_discr ( i +1) = exp(−r *m*h) *y_discr ( i ) + ((1−exp(−r *m*h) )

/( r *m) ) *u*...
79 (−Psi ( x_discr ( i ) ) *y_discr ( i )+(D0−S0 )−(alpha+beta ) *

x_discr ( i ) ) ;
80
81 end
82
83 % Plot s
84 f i g u r e ( )
85 p l o t ( 1 :T_max, x_discr , ' .− ' )
86 t i t l e ( ' Di s c r e t e Model ' )
87 x l ab e l ( ' t ' )
88 y l ab e l ( 'x_t ' )
89 f i g u r e ( )
90 p l o t ( 1 :T_max, y_discr , ' .− ' )
91 t i t l e ( ' Di s c r e t e Model ' )
92 x l ab e l ( ' t ' )
93 y l ab e l ( 'y_t ' )
94 f i g u r e ( )
95 p l o t ( x_discr , y_discr , ' .− ' )
96 t i t l e ( ' Di s c r e t e Model ' )
97 x l ab e l ( 'x ' )
98 y l ab e l ( 'y ' )
99 hold on
100 p lo t ( (D0−S0 ) /( alpha+beta ) , 0 , 'Color ' , '#EDB120 ' , 'Marker ' , '

. ' , ...
101 'MarkerSize ' , 15)
102
103 f i g u r e ( )
104 p l o t ( t , x_cont )
105 hold on
106 p lo t ( 1 :T_max, x_discr )
107 t i t l e ( 'Continuous vs D i s c r e t e Model ' )
108 x l ab e l ( ' t ' )
109 y l ab e l ( 'x ' )
110 legend ( ' cont inuous ' , ' d i s c r e t e ' )
111
112 % Condit ion 3 i f Ps i ( x0 )=0
113 ( r *m) /(h*( alpha+beta ) )
114 % Condit ion 2 i f Ps i ( x0 )>0
115 u*(−2*Psi ( (D0−S0 ) /( alpha+beta ) )+h*( alpha+beta ) )
116 −(2+2*exp(−r *m*h) ) /((1−exp(−r *m*h) ) /( r *m) )
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117 % Condit ion 3 i f Ps i ( x0 )>0
118 (u*(−Psi ( (D0−S0 ) /( alpha+beta ) )+h*( alpha+beta ) )−r *m) /( r *m)

Function used in the parameters' calibration: PARAMtoODE.m:

1 % func t i on used in the c a l i b r a t i o n model
2 func t i on s o l p t s = PARAMtoODE(param , tspan , y0 ,D0 , S0 )
3 s o l = ode45 (@(t , y ) lara_2 ( t , y , param ,D0 , S0 ) , tspan , y0 ) ;
4 s o l p t s = deval ( so l , tspan ) ;
5 end

Run Script: run_2.m:

1 % run f o r c o f f e e c a l i b r a t i o n
2 c l e a r a l l
3 c l o s e a l l
4 c l c
5 %% Calibration
6 % load c o f f e e data 4 ( weekly )
7 load ( 'COFFEE_data_4 .mat ' )
8 data = COFFEEdata4 ;
9 nation_old = tab l e2a r ray ( data ) ;
10 nation_old = f l i p ud ( nation_old ) ;
11 nation_old = log ( nation_old ) ; % cons id e r log−p r i c e s
12 nat ion = nation_old ( 1 : c e i l ( end /2) ) ;
13 p r i c e_rea l = ze ro s (2 , l ength ( nat ion ) ) ;
14 p r i c e_rea l ( 1 , : ) = nat ion ;
15 % compute the d e r i v a t i v e as the d i f f e r e n c e o f p r i c e at time

t and ( t−1)
16 f o r i = 2 : s i z e ( pr i ce_rea l , 2 )
17 pr i c e_rea l (2 , i ) = pr i c e_rea l (1 , i )−pr i c e_rea l (1 , i −1) ; %

vecto r o f d e r i v a t i v e s ( incrementa l r a t i o with t=1y )
18 end
19 time_short = [ 0 : 1 : s i z e ( pr i ce_rea l , 2 ) −1]; % vecto r o f number

o f years
20 % f o r i = 1 :2
21 % subplot (1 , 2 , i )
22 % p lo t ( time_short , p r i c e_rea l ( i , : ) , '−o ' )
23 % t i t l e ( [ ' y ( ' , num2str ( i ) , ' ) ' ] )
24 % end
25 D0 = 2 ;
26 S0 = 1 ;
27 y0 = [ 0 . 8 1 0 . 0 1 ] ; % i n i t i a l c ond i t i on s f o r the ODE
28 % Create opt imiza t i on va r i ab l e
29 param = optimvar ( 'param ' , 5 , "LowerBound" , 0 . 01 , "UpperBound

" , [ 40 20 20 40 35 ] ) ;
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30 % Convert func t i on to an optmizat ion exp r e s s i on
31 myfcn = fcn2optimexpr(@PARAMtoODE, param , time_short , y0 ,D0 , S0 ,

'OutputSize ' , [ 2 , s i z e ( pr i ce_rea l , 2 ) ] ) ;
32 % the ob j e c t i v e func t i on i s the sum of squared d i f f e r e n c e s

between the ODE
33 % and the r e a l p r i c e s
34 obj = sum( ( myfcn ( 1 , : ) − pr i c e_rea l ( 1 , : ) ) .^2) ; % take only

f i r s t row
35 % Create an opt imiza t i on problem with the ob j e c t i v e func t i on

obj
36 prob = optimproblem ( 'Object ive ' , obj ) ;
37 % View the problem
38 showproblem ( prob )
39 % I n i t i a l guess f o r the parameters (u , alpha , beta , r , m)
40 param0 . param = [ 0 . 7 5 0 .5 0 .5 0 .5 1 ] ; % i n i t i a l guess
41 % Solve the opt imiza t i on problem
42 [ paramsol , sumsq ] = so l v e ( prob , param0 )
43 % Show ca l i b r a t e d parameters
44 d i sp ( paramsol . param)
45
46 u = paramsol . param (1)
47 alpha = paramsol . param (2)
48 beta = paramsol . param (3)
49 r = paramsol . param (4)
50 m = paramsol . param (5)
51
52 D0 = 2 ;
53 S0 = 1 ;
54
55 %% Continuous Time
56 T_max = 150 ;
57 t_span = [0 T_max ] ;
58 y0 = [ 0 . 3 0 . 0 1 ] ;
59 [ t , y ] = ode45 (@(t , y ) l a r a ( t , y , u , alpha , beta , r , m, D0 ,

S0 ) , t_span , y0 ) ;
60 x_cont = y ( : , 1 ) ;
61 y_cont = y ( : , 2 ) ;
62
63 % Plot s
64 f i g u r e ( )
65 p l o t ( t , x_cont )
66 t i t l e ( 'Continuous Model ' )
67 x l ab e l ( ' t ' )
68 y l ab e l ( 'x ( t ) ' )
69 f i g u r e ( )
70 p l o t ( t , y_cont )
71 t i t l e ( 'Continuous Model ' )
72 x l ab e l ( ' t ' )
73 y l ab e l ( 'y ( t ) ' )
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74 f i g u r e ( )
75 p l o t ( x_cont , y_cont )
76 t i t l e ( 'Continuous Model ' )
77 x l ab e l ( 'x ' )
78 y l ab e l ( 'y ' )
79 hold on
80 p l o t ( (D0−S0 ) /( alpha+beta ) , 0 , 'Color ' , '#EDB120 ' , 'Marker ' , '

. ' , ...
81 'MarkerSize ' , 15)
82
83 % Condit ion negat ive r e a l or negat ive complex conjugate

e i g enva lu e s
84 (u*Psi ( (D0−S0 ) /( alpha+beta ) )+r *m)^2
85 4*u*( alpha+beta )
86
87 %% Discrete Time
88 h = 0 . 3 ;
89 x_discr = ze ro s (T_max, 1 ) ;
90 y_discr = ze ro s (T_max, 1 ) ;
91 x_discr (1 ) = 0 . 3 ;
92 y_discr (1 ) = 0 . 0 1 ;
93 f o r i = 1 :T_max−1
94 x_discr ( i +1) = x_discr ( i ) + h*y_discr ( i ) ;
95 % NEDS (T1 case )
96 y_discr ( i +1) = exp(−r *m*h) *y_discr ( i ) + ((1−exp(−r *m*h) )

/( r *m) ) *u*...
97 (−Psi ( x_discr ( i ) ) *y_discr ( i )+(D0−S0 )−(alpha+beta ) *

x_discr ( i ) ) ;
98
99 end
100
101 % Plot s
102 f i g u r e ( )
103 p l o t ( 1 :T_max, x_discr , ' .− ' )
104 t i t l e ( ' Di s c r e t e Model ' )
105 x l ab e l ( ' t ' )
106 y l ab e l ( 'x_t ' )
107 f i g u r e ( )
108 p l o t ( 1 :T_max, y_discr , ' .− ' )
109 t i t l e ( ' Di s c r e t e Model ' )
110 x l ab e l ( ' t ' )
111 y l ab e l ( 'y_t ' )
112 f i g u r e ( )
113 p l o t ( x_discr , y_discr , ' .− ' )
114 t i t l e ( ' Di s c r e t e Model ' )
115 x l ab e l ( 'x ' )
116 y l ab e l ( 'y ' )
117 hold on
118 p lo t ( (D0−S0 ) /( alpha+beta ) , 0 , 'Color ' , '#EDB120 ' , 'Marker ' , '
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. ' , ...
119 'MarkerSize ' , 15)
120
121 f i g u r e ( )
122 p l o t ( t , x_cont )
123 hold on
124 p lo t ( 1 :T_max, x_discr )
125 t i t l e ( 'Real Data vs Continuous vs D i s c r e t e Model ' )
126 x l ab e l ( ' t ' )
127 y l ab e l ( 'x ' )
128
129 % Condit ion 3 i f Ps i ( x0 )=0
130 ( r *m) /(h*( alpha+beta ) )
131 % Condit ion 2 i f Ps i ( x0 )>0
132 u*(−2*Psi ( (D0−S0 ) /( alpha+beta ) )+h*( alpha+beta ) )
133 −(2+2*exp(−r *m*h) ) /((1−exp(−r *m*h) ) /( r *m) )
134 % Condit ion 3 i f Ps i ( x0 )>0
135 (u*(−Psi ( (D0−S0 ) /( alpha+beta ) )+h*( alpha+beta ) )−r *m) /( r *m)
136
137
138 %% Graphical Comparison with real coffee data
139 % c o f f e e 4 ( weekly )
140 load ( 'COFFEE_data_4 .mat ' )
141 data = COFFEEdata4 ;
142 nation_old = tab l e2a r ray ( data ) ;
143 nation_old = f l i p ud ( nation_old ) ;
144 nation_old = log ( nation_old ) ;
145 rd = nation_old ( c e i l ( end /2)+1:end ) ;
146 r t = 0 : 7 : ( l ength ( rd )−1) *7 ;
147 p l o t ( rt , rd , 'g−o ' )
148 ax i s ( [ 0 150 0 0 . 5 ] )
149 legend ( 'Continuous ' , ' Di s c r e t e ' , 'Real Data ' , ' Locat ion ' , '

Best ' )
150
151 %% Continuous model error vs Discretized model error
152 % cont inuous model
153 [~ , y_err ] = ode45 (@(t , y ) l a r a ( t , y , u , alpha , beta , r , m,

D0 , S0 ) , rt , y0 ) ;
154 x_cont_err = y_err ( : , 1 ) ;
155 % d i s c r e t i z e d model
156 x_discr_err = in t e rp1 ( 1 :T_max, x_discr , r t ) ;
157 x_discr_err (1 ) = y0 (1 ) ;
158 x_discr_err = x_discr_err ' ;
159 % compute e r r o r
160 index = 0 ;
161 f o r i = 1 : l ength ( x_discr_err )
162 i f ( i snan ( x_discr_err ( i ) ) == 0)
163 index = i ;
164 end
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165 end
166 x_cont_err_new = x_cont_err ( 1 : index ) ;
167 x_discr_err_new = x_discr_err ( 1 : index ) ;
168 rd_new = rd ( 1 : index ) ;
169 err_cont = sum( ( rd_new − x_cont_err_new ) .^2)
170 e r r_d i s c r = sum( ( rd_new − x_discr_err_new ) .^2)

Economical model: lara.m:

1 % economic model : Teodoro Lara ("On the Dynamics o f Oi l
Pr i ce Model ")

2 func t i on dy = l a r a ( t , y , u , alpha , beta , r , m, D0 , S0 )
3 dy = ze ro s (2 , 1 ) ;
4 dy (1 ) = y (2) ;
5 dy (2 ) = −u*( alpha+beta ) *y (1 )−(u*Psi ( y (1 ) )+r *m) .* y (2 )+u*(D0−

S0 ) ;
6 end

Functions lara_1.m and lara_2.m are equivalent to previous function lara.m.
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