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1. Introduction
Visual localization consists in inferring the posi-
tion and orientation from which a given picture
(the query) was shot, by comparing it to a 3D
reconstruction of a scene. As autonomous driv-
ing and augmented reality grow their popularity,
more and more precise localization is desirable.
Typically, visual localization is performed in two
steps: (i) matching descriptors of the query and
the 3D points of the scene, (ii) using the at-
tained correspondences to solve for a pose. To
prevent outliers from disrupting the estimate, a
Perspective-n-Pose (PnP) solver is used within
a robust fitting framework (e.g. RANSAC [2]).
The problem becomes harder when radical ap-
pearance variations occur between reconstruc-
tion and query (long-term variations). State-of-
the-art methods [3, 5] employ semantic filters to
filter poor matches, because semantics are quite
independent of the visual appearance.
Yet, two settings remain critical to these meth-
ods: large-scale localization, where repetitive
structures appear in different locations across
the database, and localization with match
scarcity in long-term scenarios, which entails few
correct matches exist overall. In both cases per-
formance drops, respectively by 7.4% and 44.3%
of correct localizations.

In this thesis, our contribution is two-fold. First
we show these performance drops have a com-
mon root cause, i.e. the ambiguity in the space
of descriptors impairing matching. Thus, we in-
corporate semantics within the matching process
rather than using it as a post-matching filter.
We propose Semantic Matching, a matching pro-
cedure that considers several candidate matches
for all query keypoints, and picks the match with
highest semantic consistency. The impact of
this shift of perspective is evident in contexts of
match scarcity, where filtering – hence throwing
away – matches is more harmful than effective.
We furthermore observe that localizing with
match scarcity entails worse pose estimates,
due to increased chances that random samples
achieve larger consensus than the correct pose.
The second contribution of our work aims at
solving this issue. We adapt the framework of
robust pose estimation adding Biased Consen-
sus, consisting in evaluating a pose based on the
overall semantic consistency of its inliers, rather
than their absolute number. We verify the im-
pact of this method on sequences with match
scarcity, where Biased Consensus increases per-
formances of over 10% on the baseline.
Finally, combining the proposed tools, we show
increased localization ability of over 14% on
state-of-the-art algorithms.
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2. Problem Formulation
The inputs to visual localization algorithms are
a query image and a 3D representation of the
scene. We model the information of a query
image Iq ∈ RH×W×3 with a set of keypoint-
descriptor pairs Q = {(x,f) | x ∈ R2,f ∈ RD}.
We also suppose to have a semantic mask M ∈
{1, ..., L}H×W , with quite a large number of
classes L (≈ 102), hence giving a fine-grained
segmentation which is unlikely to overlap signif-
icantly to semantic masks of unrelated images.
A reconstruction of the scene, previously ob-
tained from a collection of images {Id} with
Structure from Motion (SfM) can be represented
as X = {(Xj ,Pj ,Vj , cj)}, where Xj ∈ R3 are
the point locations, Pj = {d1, ...,dnj} ⊂ RD are
two or more associated descriptors, Vj includes
directions and distances of observation of the
point at reconstruction time, and cj ∈ {1, ..., L}
is the semantic content.
We assume the camera internal parameters are
known for all images. Hence, the goal of localiza-
tion is to output a pair (R, t), with R ∈ SO(3)
representing the camera rotation and t ∈ R3 be-
ing the translation vector of the camera centre.
The goodness of the pose is measured through
the position error Xq [m] and orientation er-
ror Yq [°] from the available ground-truth pose
(Rgt, tgt). These errors are defined as:

Xq = ∥C − Cgt∥2, C = −RT t

Yq = |α|, cos α =
1

2
(tr(R−1

gt R)− 1)

(1)

(2)

We may assume we know for every image the
gravity direction gcam in camera coordinates and
the camera height z0.
A challenge to long-term localization is repre-
sented by poor descriptor distinctiveness. This
means a query descriptor fi could have similar
or even larger distance to its corresponding de-
scriptors dj ∈ Pi than to unrelated descriptors
dj ∈ Ph, h ̸= i.
Moreover, robust pose estimation rests on the
assumption that |Igt| ≫ |I(R,t)| ∀ (R, t) ̸=
(Rgt, tgt), with I being the inlier set of a
pose. However, in long-term settings few correct
matches {(xi,Xi)} could be available (match
scarcity), thus the assumption is likely to be vi-
olated.

3. Related Work
We now explore the most relevant research areas
for our work, namely descriptor matching tech-
niques and match semantic consistency.

3.1. Matching in Visual Localization
Descriptors of appearance are commonly used
as embedding to form 2D-3D correspondences.
These descriptors have desirable properties of
robustness to scale and rotation changes, and
distinctiveness, that is low probability of colli-
sion with unrelated descriptors thanks to their
high dimensionality.
Matching and filtering are straightforward, since
corresponding descriptors are expected to be
close to each other, and far from unrelated de-
scriptors. Commonly, all query keypoints are as-
signed their nearest neighbor in descriptor space.
Subsequently, mismatches are filtered out by
checking whether the ratio of distances to the
first- and second-nearest neighbor is larger than
some threshold (ratio test). The underpinning
principle of this approach is that most corre-
spondences are within two categories: (a) cor-
rect matches, and (b) incorrect matches which
were formed because the query descriptor has no
correspondent among database points.
In large-scale settings a third category should be
added, i.e. (c) ambiguous matches. Indeed, the
frequent presence of repetitive visual elements
entails collisions are more likely to occur due to
increasing density in the space of descriptors.
Large-scale localization literature targets these
ambiguous descriptors, to improve localization
performances. For example, [6] include K-
nearest neighbors in the pose estimation, to en-
sure they pick most correct matches. To keep
pose estimation feasible, they let every match
vote for some discrete pose and finally select the
largest consensus for geometric pose estimation.
While this approach works well with repetitive
structures, it is not suited to a match scarcity
context, where there are too few inliers for the
correct model to stand out from background
noise. Thus, it is not possible to consider all K
neighbors of every match in the pose estimation
phase, but we should carefully select at most one
match for all keypoints.
Moreover, descriptor ambiguity has broader
manifestation than in repetitive structures. It
is common in long-term scenarios too, where the
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Figure 1: Example of a correct retrieval through Semantic Matching. The considered query keypoint
(fuchsia dot) is associated to the wrong location due to the long-term variation of the described patch.
The correct match is still close in descriptor space and can be retrieved thanks to the semantic score.

varying appearance pushes matching descriptors
away from each other, and closer to unrelated
descriptors. Thanks to this observed property,
part of the lost matches of long-term localization
can be recovered.

3.2. Semantic Match Consistency
Semantic consistency is a notable use of seman-
tics in visual localization. It consists in checking
if the labels of 3D points and their 2D corre-
spondents are the same, either locally through
the direct comparison of the labels in a 2D-3D
correspondence, or globally, through the count
of semantic inliers, namely the number of pro-
jected 3D points that match the label of the pixel
they fall into in the query image. These two ap-
proaches are known as Simple Semantic Match
Consistency [3] (SSMC), and Geometric Seman-
tic Match Consistency [5] (GSMC).
Although providing orthogonal information to
appearance, these consistency checks are hardly
distinctive, because they rely on coarse segmen-
tations, which may overlap significantly even
in unrelated images with homogeneous content
(e.g. vegetation). An improved version of the
scores [3] employs ad-hoc fine-grained segmenta-
tions to reduce the probability of a wrong match
to project points to the correct classes.
Both the resulting SSMC and GSMC scores
with fine-grained segmentations are used to fil-
ter matches to for pose estimation. While this
allows to accelerate the research of the cor-
rect model by improving the quality of sampled
matches, it also reduces the actual amount of
matches that are used for pose estimation. In
situations of match scarcity this effect is detri-
mental, as it aggravates the scarcity of corre-
spondences.

4. Proposed method
We present here the two main contributions of
this work, Semantic Matching and Biased Con-
sensus.

4.1. Semantic Matching
We first consider the problem of forming 2D-3D
matches, that is find a correspondent in X for
every point in Q.
Let fi be a query descriptor, and {d1, ...,dK}
the K-nearest neighbor descriptors from the
database set, ordered by distance. In large-scale
and long-term settings, it is often the case that
this order does not rank the desired descriptor
first, as observed in Fig. 1. Indeed, it can be
seen how the seasonal variation of appearance of
the highlighted keypoint (in fuchsia) causes am-
biguity in the descriptor space, with the nearest
neighbor descriptor coming from an unrelated
part of the scene.
We propose to re-rank the descriptors based
on global information orthogonal to appearance.
For every candidate match {mi,1, ...,mi,K} we
compute a measure of their quality q(mi), and
choose the match with highest quality. The mea-
sure q(·) we choose is

q(mi) = max
ϕ

|Is
i (ϕ)|

|Ps
i (ϕ)|

, (3)

that is a semantic consistency score inspired on
the GSMC measure used in [5]. We explain it in
the following.
To assess the global semantic consistency, 3D
points need to be projected onto the image plane
through some pose. Thanks to simplifying as-
sumptions of known gravity direction and cam-
era height, [5] show how to lock all but one de-
gree of freedom in the pose with the information
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Figure 2: Illustration of Semantic Matching.

of an individual match. The remaining uncer-
tainty is the location of the camera centre on a
circle of height z0, with known orientation. This
set of poses can be easily explored parametrizing
the position of the circle with discrete angles ϕ.
For each angle, one can evaluate the number of
semantic inliers Is

i ⊂ X and the amount of pro-
jected points Ps

i ⊂ X , and compute the score in
Eq. 3.
We choose to evaluate the global semantic con-
sistency as a percentage of inliers over all pro-
jected points, differently from [5] who use the
absolute inlier count. The choice is motivated
by the fact that the number of projected points
largely varies from match to match, making the
absolute inlier count hardly comparable for dif-
ferent matches.
The final choice of matches is per-
formed by selecting the neighbor k∗ =
argmaxk=1,...,K q(mi,k). The set of matches
along with their semantic consistency score
M = {(mi, qi)} is then used directly for biased
pose estimation, as in [5].
Fig. 2 provides a summary of the Semantic
Matching procedure.

4.2. Biased Consensus for Robust
Pose Estimation

Consider a collection of matches M = {(mi, qi)}
with associated semantic score. To estimate a
pose with robust fitting, a RANSAC [2] iteration
comprises three phases: (i) sampling correspon-

dences in number equal to the minimal sample
size (MSS), (ii) estimation of a hypothesis of
pose θ with the PnP method on the sampled
points, (iii) evaluation of consensus.
We modify stages (i) and (iii). For (i), we use
the semantic scores associated to every match as
sampling probabilities, similarly to [5], so to add
a bias towards most consistent matches.
We also propose to use semantics in stage (iii)
to better assess models in presence of match
scarcity. Particularly, we evaluate a model
through the total quality of matches that agree
with this model. Formally, if Iθ are the in-
liers of a model θ, we evaluate consensus as
CS =

∑
i∈Iθ qi.

The best model will only be updated if it can
exhibit matches with better quality than previ-
ously sampled poses. Overall, this more conser-
vative estimate is well suited to situations where
the best model is not believed to have signifi-
cantly more consensus than a random sample.

5. Experiments
We conduct two experiments to evaluate both
the task of matching and the pose estimation.

5.1. Dataset and figures of merit
We use the Extended CMU Seasons dataset
[1, 4] for the variety of long-term scenarios it
contains. All images are taken in Pittsburgh,
US. The dataset consists of 11 traversals by car
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of the same route spanning different seasons and
weather conditions, and one reference traversal
used for 3D reconstruction, with winter-like ap-
pearance and sunny weather. Depending on the
dominating content, images are split in Urban,
Suburban and Park.
We select three sequences from Park images,
with three different levels of complexity: a
hard sequence with long-term variations, se-
vere match scarcity and ambiguity of descrip-
tors (S1), a medium sequence without long-term
variations but with prevailing vegetation (S2),
an easy sequence with abundance of matches
and both man-made repeated structures and
vegetation (S3). These represent the hardest
setting to localize, due to a larger impact of sea-
sonal variations and the repetitiveness of vege-
tation. We also select a Urban sequence with
man-made repeated structures (S4).
We evaluate matching results through precision
and recall. Because no ground truth matches are
available, we create pseudo-ground truths pro-
jecting visible points to image plane with the
ground truth poses, and accepting as a valid
match every keypoint falling nearer than 5 pixels
from the projected point.
Regarding the pose estimation experiments, we
count the percentage of queries localized within
some threshold of position and orientation error,
as defined by Eq. 2. These thresholds are: fine
0.25m - 2◦, medium 0.5m - 5◦, coarse 5m - 10◦.

5.2. Matching experiment
The first experiment evaluates the benefits of in-
creasing the amount of detected matches (recall)
by exploring K-nearest neighbors, with respect
to false matches (precision). We focus on S1,
where match scarcity is mostly impactful.
We compare the following matching strategies:
a K-nearest neighbor strategy without any filter-
ing – the maximum we can achieve in terms of re-
call but with poor precision; 1-nearest neighbor
strategies, with ratio test filtering and threshold
0.7 or 0.9 [3, 5], and with SSMC filtering [3]; our
matching strategy with top 1 re-ranked match.
The results, shown in Fig. 5.2, indicate that
several matches are lost by 1-NN methods, thus
confirming the presence of ambiguous keypoints
whose matches are found in subsequent neigh-
bors. Our method is well positioned in both
precision and recall. The latter is higher than

(a) Recall for considered methods. 1-NN methods are set as
constant.

(b) Precision for considered methods. 1-NN methods are
set as constant. Note that SSMC and 1-NN ratio 0.9 are
overlapping.

other methods even for k = 1, which proves the
use of filtering strategies is detrimental for the
absolute number of retrieved matches.
We additionally search for visual evidence of the
increased ability to retrieve correct matches be-
yond the first. Fig. 1 reports one such example
from S1, with the score being the determinant
factor allowing to choose the correct neighbor.
The example clearly confirms the validity of the
proposed matching strategy, which performs ac-
curate re-ranking of the ambiguous candidate
matches.

5.3. Comparison to state of the art
We compare our work to the GSMC and SSMC
methods of [3]. The former uses biased pose es-
timation with semantic consistency scores, and
adopts the matching strategy of 1-NN with ra-
tio test at 0.9. The latter filters matches based
on simple semantic consistency and estimates a
pose with classic RANSAC.
We also include two methods without semantics,
to validate the importance of semantics overall.
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Method / Setting Park hard(S1) Park medium (S2) Park easy (S3) Urban (S4)

m 0.25/0.5/5 0.25/0.5/5 0.25/0.5/5 0.25/0.5/5

deg 2/5/10 2/5/10 2/5/10 2/5/10

1-NN + ratio test 0.9 unbiased 0.0/0.0/0.0 30.7/42.0/49.3 32.7/36.4/44.5 70.0/75.5/88.2

k-NN + ratio test 0.9 unbiased 0.0/0.0/0.0 22.0/27.3/37.3 37.3/39.1/47.3 67.3/81.8/95.5
SSMC [3] 0.0/0.0/0.0 32.7/43.3/52.0 38.2/48.2/78.2 68.2/85.5/93.6

GSMC [3] 2.9/2.9/5.7 46.7/61.3/70.7 47.3/59.1/79.1 71.8/81.8/86.4

sem. matching unbiased 0.0/0.0/0.0 14.0/20.7/25.3 20.0/27.3/39.1 60.0/70.0/83.6

sem. matching biased sampling 2.9/4.3/8.6 50.0/63.3/72.0 60.0/73.6/92.7 81.8/89.1/91.8
sem. matching biased s. + c. 2.9/7.1/20.0 45.3/63.3/72.0 37.3/54.5/90.0 79.1/87.3/92.7

Table 1: Pose estimation results comparison on all sequences.

These are 1-NN and k-NN with ratio test at 0.9.
Regarding our methods, we test the Semantic
Matching on pose estimation without bias, thus
discarding scores after matching, and with bias
as in [5]. On the latter option, we also add
the variation of biased sampling and consensus
method we propose in Sec. 4.2. Tab. 1 reports
the results of pose estimation in all sequences.
Our methods achieve the best performances
across most threshold levels of all sequences.
The gain is evident in S1, where match scarcity
makes it impossible for all unbiased pose estima-
tion techniques to localize correctly. The pro-
posed matching strategy allows to recover cor-
rect matches which are decisive for estimating
the correct pose. Moreover, the biased sampling
and consensus strategy shows outstanding re-
sults on this setting, confirming the assumption
that the best model is not always the one with
largest consensus, in presence of match scarcity.

6. Conclusions
In this work, we have presented novel strate-
gies based on semantics to make long-term vi-
sual localization possible in situations of severe
match scarcity. The proposed matching strat-
egy, which re-ranks several candidate correspon-
dences of every keypoint through a global mea-
sure of the semantic consistency of the matches,
is found to improve both the quality and quan-
tity of correct found matches.
Thanks to the improved matches, as well as an
enhanced pose fitting algorithm specific to the
context of match scarcity, we outperform state-
of-the art techniques on selected sequences that

exhibit our problem.
Interesting directions for future work include ex-
ploiting the pose information associated to se-
mantic scores to accelerate the pose estimation
phase, and exploring the potential of visual at-
tention to provide lightweight global cues to per-
form re-ranking of candidate correspondences.
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